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Preface

The 1990’s marked the beginning of the liberalisation of the electricity and gas
markets. Before the liberalisation of the energy sector, prices were driven by
the cost of production. The risks in energy markets include aspects such as
price risks, volume risks and political risk. Due to ever increasing interrelation
between states there is also political risk, an example of which can be a nation
state nationalizing the energy resources. Some parts of the framework from
traditional markets such as the bond market and stock market may be used
in the energy markets as well. However, the energy markets do differ quite
notably in some respects from the traditional markets. For one, electricity
is rather difficult to store. Therefore, there must always be a balance in the
generation and consumption of energy. To illustrate, take as an example a
stock holder trading in a stock market. If the price of one of the stocks in
the stockholders portfolio is low, the stockholder often has the opportunity
to hold (or store) it until the price is acceptable. Contrarily, an owner of
a wind turbine cannot easily, or rather cost-efficiently, store the electricity
generated until the price is right. Nonetheless, in order to exploit many of
the thoroughly researched concepts and results in traditional mathematical
finance, assumptions are often made to make the theoretical foundation of
energy markets as similar as possible. This thesis will try to uncover how
counterparty risk affects the price of energy derivatives. More precisely, it
considers the price of forward contracts where there exists a possibility that
one of the parties have a risk of default. This possibility of default is known
as Counterparty risk. For this purpose, an introduction of the framework
established for stochastic modelling in energy markets is presented, before
some of the most used mathematical models are stated. An introduction
of credit risk modelling is given in the second chapter in order to establish
a framework for the integration of risk management into energy markets
modelling. Chapter 3 discusses the topic of Monte Carlo simulations of stochastic
processes in general, and in addition a section is reserved for the consideration
of a particular stochastic process which is widely used in energy market
modelling. A special type of options, so-called Quanto options, are reviewed in
chapter 4. Finally, in chapter 5, analytical solutions of forward prices and call



options are given both in standard form, and with includement of credit risk
management.
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Chapter 1: Stochastic Modelling in
Energy Markets

The theory in this chapter relies on results given in Stochastic Modelling of
Electricity and Related Markets, by, Benth, Saltyte and Koekebakker, [BSKO08].
In this chapter, some of the classical models used for stochastic modelling in
energy markets are presented. A main aspect of the models is that they have
to account for prices driven by supply and demand, a dynamic of which for
instance electricity prices are intuitively prone to follow. This is where the
Ornstein-Uhlenbeck process (henceforth OU-process) comes into play. Another
aspect is major fluctuations in price. Take as an example the oil crisis in 1973,
when OAPEC proclaimed an oil embargo resulting in a quadrupling of the
oil price. Before introducing the models, some of the theoretical framework is
established.

1.1 Mathematical Framework

In this chapter, let T* < oo be some finite time date, and assume that
(Q, F,{Fi}+>0P) is a filtered probability space. There are some elements
in stochastical modelling in energy markets that differ from conventional
models in mathematical finance. A key feature in traditional mathematical
finance is the existence of risk-neutral probability measure or equivalent martin-
gale measures. As a reminder to the reader, in a probability space (Q}, F,P),
a probability measure Q, is called a risk-neutral probability measure if it is
equivalent to the objective probability measure P, and in addition discounted
price dynamics are a martingales with respect to Q, for any event A C (). The
existence of a risk-neutral probability measure is ensured by restricting the
spot price models to the class of semimartingale processes, which informally
can be defined on (Q), F,P) as a real-valued process M, where M can be
decomposed as

NI(t) = M(t) + C(b),




MATHEMATICAL FRAMEWORK

where M(t) is a (local) martingale and C is an adapted process with right
continuous left limits and of finite variation. Furthermore, the existence of
these risk-neutral probability measures is sufficient to ascertain that there are
no arbitrage opportunities. In energy markets however, the assets in question
may not be applicable for frictionless buying, selling or storing. In other
words, the assets are not viewed as tradeable assets, and consequently any
probability measure equivalent to the objective probability measure will be a
risk-neutral probability measure. Despite this fact, it is often convenient to let
the spot price dynamics be semimartingales as it is analytically advantageous.
Contrarily, in the swap and futures market, transactions are made frictionlessly
and arbitrage opportunity exists if the forward/futures price dynamics are not
semimartingales. There are several ways of obtaining a risk-neutral probability
measure from the objective probability measure. Whenever the price of a
security or asset has a stochastic term in the form of a Brownian motion, the
Girsanov theorem can be used to rewrite the objective price dynamics under P
to risk-neutral price dynamics under Q. Analogously, if the stochastic term
is a Compound Poisson process (henceforth CPP-process,see section (1.4)), a
generalization of the Girsanov theorem, the so-called Esscher transform, may
be used to construct risk-neutral probabilities. The IP-dynamics are applied
when modelling energy prices, while the Q-dynamics are applied when pri-
cing options. Both Girsanov’s theorem and Esscher transform are structure
preserving, meaning that a Brownian motion will still be a Brownian motion
and the CPP-process will still be a CPP-process under the new probability
measure. In most practical examples, the measure change will be part of the
modelling work, and needs parameter estimation. In this text, the modelling
work that involves measure change is not discussed to any great extent. The
interested reader may be referred to Option Theory with Stochastic Analysis
by Fred Espen Benth, [Ben04]. It will however be clearly stated whether the
price dynamics at hand are given under the objective or risk-neutral probability
measure. The original Esscher transform is given in the following definition.

Definition 1.1. Let f be a probability density and 6 € R. As long as

[ Fway

exists, there can be defined a transformed density

i)
fx6) Jr e f(y)dy’

which is called the Esscher transform of f.

A version of the Girsanov theorem is given in what follows. For a more
general version of the theorem, see e.g. [Dks03].

7



SPOT PRICE DYNAMICS

Theorem 1.2. Let X be a continuous time stochastic process with dynamics given by
dX(t) = a(t)dt + cdB(t), t<T (1.1)

where B is a Brownian motion under IP. The coefficient functions «,c € R are assumed
to be integrable and Borel-measurable functions and «(t), o (t) are Fi-adapted. Assume
there exist functions (, 8 such that

o(t)0(t) = a(t) — (),

where {,0 are integrable, Fi-adapted and Borel-measurable, while 0 also satisfies

exp (% /O T|0(t)|2dt) < oo, (12)

Then (1.2) ensures that

t t
M(t) = exp (— | 6wyin(w) - %/ Gz(u)du)
0 0
is a martingale on [0, T|. Further, define the Radon-Nikodym derivative by

dQ

“E IR = M().

Then fort < T

t
B(t) = / u(s)ds + B(t),
0
is a Brownian motion with respect to Q, and Y has dynamics under Q given by
dY (t) = {(t)dt + 0(t)dB(t).

Remarks. The name equivalent martingale measure has a natural explanation.
It is called equivalent since if P(A) > 0 then Q(A) > 0, and it is called a
martingale since all price dynamics are semimartingales under Q, and it is
called a measure since Q is a probability measure. It is also worth mentioning
that in some texts the objective probability measure PP is called the market
probability.

1.2 Spot Price Dynamics

The spot price dynamics have two main types, namely, arithmetic spot price
and geomtric spot price. If it is assumed that the spot price is given by a price
process P, then the arithmetic spot price S at time ¢ is simply given by

S(t) = P(t), (1.3)
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and the geomtric spot price will be given by
S(t) = P, (1.4)

One of the noticeable differences between these two is that a geomtric spot
prices can not be negative, while they can be in the arithmetic case. Intuitively,
the restriction to non-negative spot prices may make sense, since a negative
power price would imply the power producers to pay their clients when
providing power. However, negative power prices may at times be seen on
some power exchanges. One of the explanations for the occurence of negative
power spot prices is that the producers may find themselves in a situation
where paying to get rid of the power is cheaper than shutting down their
production sites. Another difference is more convoluted, and reveals itself
when modelling the forward price via the spot price. Details on this subject will
be given in section (1.5). Independent of the choice of arithmetic or geometric
dynamics, the following models may be used.

1.3 The Ornstein-Uhlenbeck Process

One of the canonical models lets the spot price of electricity follow an Ornstein-
Uhlenbeck process.

Definition 1.3 (OU-process). An OU-process is a stochastic process X(t) satis-
fying the stochastic differential equation

AX(t) = (u(t) — a(£)X(8))dt + o (t)dB(D), (1.5)

where «, o, it are assumed to be integrable and measurable functions, and B(t)
is a Brownian Motion.

The requirement for «,c, u to be integrable and measurable is to ensure
that the stochastic differential equation (henceforth SDE), (1.5), describing the
dynamics of the OU-process has a unique, strong, global solution. Moreover,
the process has independent increments and it is stationary. Another essen-
tial aspect of the OU-process is that it is a so-called mean-reverting process,
meaning that the stochastic process X is assumed to have given longterm
mean-level described by y(t). The rate at which the process tends to this level
is determined by the coefficient ().

Proposition 1.4 (Explicit solution to Ornstein-Uhlenbeck). The stochastic process
X(s) for s > t satisfying (1.5) is given by

X(S) _ X(t)e* ftszx(u)du + /s ‘u(u)(e* f; a(v)dv)du + O'(Ll) /s e~ fs“(v)dvdB(u).
t t
(1.6)
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If the functions y, &, 0 in (1.6) are assumed to be constants, the explicit
solution (1.6) can be written as

s s
X(s) = = J; wu -|—/ Ju ”‘d” du—I—U/ e~ Jut 4B (u)

t

= X(1)e 67 4 p(1 — e *67H) 4 U/S e~ dB (u) (1.7)
t

Proposition 1.5. Let X(s) be a stochastic process with explicit solution (1.7). Then
fors >t

E[X(s)] = X(£)e 67D 4 (1 — e7#(5=h) (1.8)
Var[X(s)] = 5(1 — 7257 (1.9)

Proof. Due to the independent increments of the Brownian motion, it is clear

that
S
E [0’/ e_‘"(s_”)dB(u)} =0,
t

and by the It isometry

S S 1
—a(s—u) _ —2ua(s—u) _ _ ,—2ua(s—t)
Var {/t e dB(u)} /t e du 3y <1 e )

Furthermore, X has a limiting distribution, which is given by

lim E[X(#)] = lim [X(0)e " + u(1—e*")] = X(0) +p,

t—o00 t—o0

and

o2 ot o2
1 f— 1 — —_— a - —_——
thm Var[X(s)] = thm { (1—e )] = —.

Figure (1.3) shows the simulation of five sample paths over 90 days of an
OU-process of the form (1.7) with long-term mean level y = 10, speed of mean
reversion « = 0.3, and volatility sigma = 0.05.

10
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Ornstein-Uhlenbeck Process

20.0
17.5 -
15.0
12.5 -

£ 10.0 -
7.5

5.0

2.5 A

0.0 A

Figure 1: Simulation of five different sample paths of an OU-process over a
period of 90 days with initial X(0) =0, 4 = 10,& = 0.3, = 0.05.

1.4 The Compound Poisson Process

Where the OU-process is included in energy spot price models to describe
the long-term price development driven by supply & demand, the purpose of
modelling with a Compound Poisson Process (henceforth CPP-process) is to
simulate the greater fluctuations in price. The CPP-process will serve as the
stochastic term in a stochastic differential equation, much like the form of a
OU-process, though without the term including a Brownian motion.

Definition 1.6 (CPP-Process). Let N(t) be a Poisson process with intensity A.
A CPP-process is a stochastic process I(t) on the form

I(t)y =Y U (1.10)

where the U;’s are independent and identically distributed variables according
to some distribution function F;.

The CPP-process possesses, like the OU-process, stationarity and also
has independent increments. In the figure below (1.4), the CPP-process is
illustrated, where the U;’s are the jump sizes, the t/s are the jump times, and
the jump times occure according to a Poisson distribution.

11
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A
1(t)

Poisson distribution

Figure 2: Illustration of a jump process. The U;’s represents the jump size and
the t;’s are the jump times that occure according to a Poisson distribution.

In figure 1.4 below, three sample paths of a CPP-process of the form (1.10)
are sample, with jump times distributed as U; ~ N(0,3), and the jump times

occur according to t; ~ Poisson(A) and A = 0.5.

CPP-Process with Normally Distributed Jumps

25 A

20 A

15 4

10 4

1(t)

—-10 4

o] 5 10 15 20 25 30
t

Figure 3: Simulation of three paths of a CPP-Process with U; ~ N(0,3) and

A =0.5.

Proposition 1.7. The characteristic function of (1.10) is given by
E [eixl(t)} — o0t
where

p(x) = A [ (@ =1)f (s,

(1.11)

(1.12)

12
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and F(u) is the distribution function of U.

Proof. This proof builds on a more general version of the proof which can be
found in [BSKO8].

By the law of total expectation and the fact that the U;’s are independent
indentically distributed variables

E [eixl(t)] —E |:€llejc\]_(;) l,[k:| —F |:E |:€l'xz;:1 LIk

= P(N(t) = n) B[IT{_;¢"] = _MZ n| ( ZXUDH

n:

i (/ eix”F(u)du) — MR =) f(u)du
R

[e0]

—e MY (At

]

This latter result (1.12) will be useful when looking at the distribution of
the SDE given in the following proposition.

Proposition 1.8. Consider the stochastic differential equation
aYy(t) = (6 — BY(t))dt +ndI(t), (1.13)

where 6, B and 1 are constants and 1(t) is a CPP-process as defined in (1.10) with
E [U] < oo and Var [U] < co. Then the explicit solution Y(s) for s > t is given by

Y(s) = e PEDY (1) + %(1 — e Py 4y /t S e B4 (u). (1.14)

The proof that (1.14) is a solution for (1.13) is shown for é = 0. Straighfor-
ward computation yields

Proof.

[ s == [ (e Py [P i) ) as
— _‘B/o e‘ﬁSY(O)ds — By /Ot /OS e‘ﬁ(s_”)dl(u)ds

= —BY(0) [_%eﬁs}t .y / t / | e P dI(u)ds
_ ety (0) ﬁn/ / e B0 (1) ds. (1.15)

13



THE COMPOUND POISSON PROCESS

Using the Fubini-Tonelli theorem on the last term in (1.15), the order of
integration may be swapped. Hence

_/3,7//eﬁsud1 :_5;7//eﬁsudsd1 )

=5 [ e PUW —yI(b). (1.16)

Combining (1.15) and (1.16) yields

—,B/ s)ds = e~ "' (0) — Y (0) + 7 /Ot e P _y1(t) (1.17)
Y(t) = Y(0) —gI(t),  (1.18)

or equivalently

ﬁ/ s)ds +nlI(t)
= Y(0) — Y(0) + e Pty( +/ —1)dI(u) +yI(t)
= e Py (0) + /Ot e PU=0d1(u).

Thus (1.14) is indeed a solution for (1.13). O]

Remarks. The coefficients «, B and 7 in (1.13) may be functions of t. If this is
the case then «, beta and 7 must be assumed to integrable and measurable
functions to ensure that (1.14) is a unique, strong and global solution. In this
text however, these coefficients are assumed to be constants, though the results
hold for certain functions as well.

Moving forward, the expected value and variance is given in the following
proposition.

Proposition 1.9 (Expected value and variance of CPP). Let the stochastic process
Y (t) be defined as in (1.10). Then for s >t
E[Y(s)] = e PE-DY(t) + %(1 — e PTDY L AE (U] %(1 —e Py (1.19)

and

Var[Y(s)] = /\E[uz] (1—eP6-D)  (1.20)

i
2p

14
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Proof. The first two terms of Y(s) are deterministic and thus expectation and
variance are trivial. For the stochastic term, consider the characteristic function
and observe that by (1.11) it follows that

E [eix J; e*ﬁ(S*”)dI(u)] :elp(fts xe‘ﬁ(s‘”)du)
:eﬁ)sjt lp(xeiﬁu)d”)_

Furthermore, note that

/\ / 1) Fy(dz) = aax)‘ (B[ex] -1) =irB[=™], .21)

and
y'(x) = %A (E [ei"z] — 1) — —AE [zze"“] . (1.22)

Expectation is the same as the first moment which is found by

E { / S eﬁ(S”)dI(u)} :(—i)%E [ef e P au]

t

x=0
(i) 2l

X

x=0

=) [y Py P o ¥

x=0

— (=) (0) /0 e Py — AE[2] %(1 Bl

where the third equality is a result of the chain rule and fourth equality follows

by $(0) =
Next, the second moment is found by obtaining the second derivative of the
characteristic function

E {(eixfts e_ﬁ(s—”)dl(u)>2} _ (_i)ZaiE [ iv fts e_ﬂ(s_”)du]
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(1.22)

—_ (iz (E [/ts e‘ﬂ(s_”)dl(u)} )2 ~AE[Z] % (1- e—zf“s—f)))

- (E [ /t i e_ﬁ(s_”)dl(u)} )2 +AE [zﬂ % (1 - e—2ﬁ<s—f>) .

Finally, by the defintion of variance it is clear that

Var VS eﬁ(SH)dI(u)} -F Reixﬁse_ﬂ(s_u)dl(u))? B <E [eﬂﬁ@_ﬂ(s_uml(uq )2
t

— AE [zz] (1 - e—25<s—f>) (1.23)

1
2p
0

With the expected value and variance at hand, the limiting distribution is
calculated below.

lim E [Y ()] = lim [eﬁfY(O) + %(1 —e P+ AE[U]

t—o0 t—o0

T _ Bt
fa-e]
_ 0 1
_Y(0)+5+AE[U] 5

and

fim Var () = iy B 7] 251 ] =g o]

1.5 Forward Pricing in Energy Markets

Forward pricing in energy markets is a well-studied field. In [BSKO08 ], there is
given a thorough mathematical framework as well as numerical examples, and
this section will rely on results from this book. Let T < T be a finite delivery
date of a forward contract, and suppose (), F,P) is a probability space with
corresponding filtration {F;}o<¢<7. In addition, let S be the stochastic process
describing the dynamics of the spot price. Furthermore, let F(t, T) denote the
forward price agreed at time t with settlement T. Assumptions also include

* F(t,T)is Fi-measurable,
« E[|S(T)]] < o,

* The existence of a risk-neutral pricing measure Q equivalent to the
objective measure IP.

16
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In the event that S is given as a geometric spot price, then of course E [S(T)] <
oo is sufficient. In practice, the assumption that the forward price f(t,T) is
assumed to be F;-measurable is to say that it is based upon all available market
information.

The payoff from paying forward price and receiving the spot price is then

S(T) — f(t,T). (1.24)

In line with the no-arbitrage principle, the discounted expected payoff of any
contingent claim should equal the price of entering the contract. Since there is
no cost of entering a forward contract, it is clear that

e "T=DEq [S(T) — f(t,T)|F] = 0. (1.25)

Since f(t, T) is F;-measurable and consequently adapted, it follows that the
forward price is given by

F(t,T) = Eq [S(T)|F]. (1.26)

Let it be noted that specifying the risk-netrual dynamics under Q is the same
as defining the risk premium R defined by

R(t,T) = F(t,T) ~ E[S(T)|F] = Eq [S(T)|F] —E[S(T)|F].  (1.27)

In most cases however, power is bought and delivered for a delivery period
stretching over weeks or months.

Proposition 1.10. Let 71, T be the starting time and end time of a delivery period for
power, respectively. Denote by F(t, T, Tp) the time t price of a forward contract with
delivery period [Ty, To] and settlement date t < T < T*. Assume that the risk-free
interest rate r is constant. Then

1 2
Fltm,m) = - Fo [/ 5(5)d5|ft] .
1

Proof. The payoff at time of at time T

/T % (s, T) — S(s)ds,

1

and the price of entering the contract is zero, thus
T T
e (T g [ [ Rt - s<s>ds|ft} =T IE [ | re rl,n)dsm]
T T

1
T
—e"T=DEq {/ ’ S(s)ds} =0.
5!

17
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Hence
Eo U 2P(t,q,rz)ds|ft] ~ Eq [/ 25(3)ds|ft],
T T

and since the forward price is based on information in F;, the forward price
will be

T ©
/ EF(t, 11, 12)ds = Eqg {/ S(S)d5|Ft:| ,
T1 5!

or equivalently

1
T—T

F(t, 11, 1) = Eq [/:2 S(u)du]]—"t] (1.28)

1

]

With the includement of a delivery period an auxiliary feature on whether
utilizing the arithmetic (1.3) or geometric (1.4) model must be considered. This
matter involves the distribution of

/ % 5(s)ds. (1.29)

1

Every choice of stochastic spot price dynamics comes with a specified dis-
tribution, and the delivery period represented by the integral may alter this
distribution. As an example, assume the spot price is given by an arithmetic
OU-process, that is,

S5(t) = X(1),

where X is defined as in (1.5). Then the distribution of S is normal due
to the normality of X, and (1.29) can be written as the limit of a sum of
independent, normally distributed random variables. S is therefore itself
normally distributed. Choosing the geometric model on the on other hand,
yields a sum of lognormally distributed random variables, which in general is
not lognormally distributed.

Remarks. Throughout this text it will be assumed that the interest rate r is
constant. Thus the theory on forward and futures prices are identical, and the
results are therefore applicable for futures pricing as well.

1.6 Forward pricing with spot price dynamics
given by OU-process

To differentiate between forward prices with arithmetic and geometric dynam-
ics, the arithmetic case is denoted by F/ and the geometric case is denoted

18



FORWARD PRICING WITH SPOT PRICE DYNAMICS GIVEN BY
OU-PROCESS

by F&. Assume the spot price S(t) of electricity follows the dynamics of an
Ornstein-Uhlenbeck process where the mean-reverting level, speed of mean-
reversion and volatility are constants i.e.,

dS(t) = (u — aS(t))dt + odB(t), (1.30)

where B is a Brownian motion under a risk-neutral pricing measure Q.
By (1.7) and (1.28), and assuming the initial value S(t) = x, x € R, the forward
price becomes

FA(t, T) = Eq [S(T)|]:t]5(t)_x = Eq [xe”‘(Tt) +u(1— e*"‘(T*t))

T ~
+<7/ e T="dB(u)
t

g

T
= S(1)eT=H) 4 (1 —e=*T=D) 4 Eq [(T/ e_“(T_”)dW(u)] ,

t
where the last equality is due to S(t) being F;-measurable and the independent
increment property of the Brownian motion B makes B(u) independent of F;
for all t <u < T. Additionally,

T ~
Eo |7 [ e ™ dB(w)] =0
t
since B is Gaussian. Thus the forward price will be
B0, T) = xe 70 4 (1 = 470,

This forward price has several features that in many instances makes it a
reasonable choice. For one, as the time to maturity T increases, the forward
price will converge to the mean since

lim Foyu(t, T) = lim |xe™ T 4 (1 — e*"‘(T*t))} = x + mu,
t—o0 t—o0

which on an intuitive level makes sense, because it is hard to make an educated
guess on what the forward price will be 20 or 30 years from present time,
making the mean the best estimate. A slightly more sophisticated model
could even have a time dependent mean, which would make it possible to
account for sustained increase(decrease) such as inflation(deflation). Another
reasonable trait that comes with this forward price is that as the maturity time
T approaches present time ¢ it converges to

. — 1 _[x(T—t) . —a(T—t) —
lim Fou(t,T) = lim [xe +u(l—e )| = x. (1.31)
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Thus the forward price converges to the initital value S(t) = x.
Moving on to the geometric model, the geometric spot price equivalent of
(1.30) implies that for T > ¢t

T

InS(T) = e TDs(t) 4 & / e~ T g (),
t

making S lognormally distributed, and by the distribution properties of the
OU-process given in (1.8), it is clear that

FSu(t,T) = Eq [S(T)| Filx—y = E [exp (e TX(1)) | S(H)=x

= exp (e"‘(Tt)x + i(l - ez“(Tt))>
1.7 Forward pricing with spot price dynamics
given by Compound Poisson process

As mentioned in section (1.1), attaining the risk-neutral dynamics of a spot
price given by a CPP-process can be done by using the Esscher transform. The
CPP-process will still be a CPP-process under the risk-neutral measure Q, but
will however have altered parameters.

Proposition 1.11. Let the spot price have IP-dynamics as given by (1.13), and assume
that an Esscher transform have given risk-neutral dynamics given by the SDE

dS(t) = (6 — BS(t))dt + ndl(t),

where I is a CPP-process as defined in (1.10), under a risk-neutral measure Q. Further,
let the jumps U have mean and variance given by

E[U] = Uy < o, Var[U] = oy < oo.

Assume that S has time t value value S(t) = x, the forward price at time t will be
given by

Fepp(t, T) = xe~*(T=0 4 2 (1= PTD) + ApyL(1— e PT0),
p B
Proof. Again using (1.28), and (1.14)

Fern(t,T) = Eq [S(T)|Fils- = Eo| S *T) + % (1 PT-0)

Ly / “(T=10) 4T (u )|ﬂ}
S(t)=x

T
= xe (T +% (1-ePT0) 4+ Eq [;7 / eﬁ(TM)df(uﬂ]:t] .
t
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COMPOUND POISSON PROCESS

Since I is a CPP-process, it has independent increments and thus [(u) is
indepenent of F; for all t < u < T. Using independence and the result given
in (1.19), it is clear that

T 5 T _
EQ {U/t g_ﬁ(T—u)dI(u)|ft:| :EQ {Tl/t e—ﬁ(T—u)dI(u):| _ Aﬂu%(l _e_ﬁ(s_t))

Thus

Fepp(t, T) = xe ®(T71) 4 % (1 - e‘m‘”) + Mu%(l _ BT,

This forward price will as well converge to its mean as T — oo, since

T—o00

)
' — i —a(T=t) L % (1 _ p=B(T-1)
Tlgl;o Fepp(t, T) = lim {xe + B <1 e )
+Apu L1 — e—W—”)}
p
0, 5,1
=x+ =+ A u--
pr
As shown in the previous section, the forward price with spot price given by

an OU-process, F5;;, converged to its initial value as T approached present
time t. The same is the case for the forward price Fcpp since

) . _B(T—
B (1 — e_ﬁ(T_t)> +Ayu%(1 —e BT t)) = x.

The price of a forward contract with a delivery period |7, T2] on the form (1.28)
will be discussed in a chapter 5.

lim Fepp(t, T) = li —a(T—t)
%Iftl cep(t, T) %If} {xe +
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Chapter 2: Credit Risk Modelling

2.1 Introduction

This chapter aims to give an introduction to credit risk modelling. In Credit
Risk: Modelling, Valuation and Hedging by Bielecki and Rutkowski, [BR02],
there is given a thourough review which the theory in this thesis is based
on. The discussion will evolve around a special type of credit risk, known
as counterparty risk. Counterparty risk is the possibility of a counterparty
in a contract not being able to meet its contractual obligations. In most
instances counterparty risk is synonymous with default risk. In counterparty
risk modelling there are two main approaches commonly used. The first model
is called the firm value model, also known as structural approach. An important
example of a firm value model is called Moody’s KMV model which has
been widely used in risk analysis in the financial industry. Secondly, there
is the hazard rate model, also known as the intensity-based approach. This text
starts with the mathematical framework for the firm value model, and further
develops a generic risk-neutral pricing formula for defaultable claims, before
an important model based on firm value methods is introduced and used in
a pricing example. Next, some definitions and the framework for the hazard
rate model is presented. Finally, the chapter provides an example of valuation
via the hazard rate model. It can also be mentioned that there exists so-called
hybrid models that involves using notions from both the firm value model and
the hazard rate model, but such models are however not discussed in this text.

2.2 Modelling Corporate debt

The framework for this chapter is a filtered probability space (Q), F,F,P) for
some finite horizon date T* > 0. Assume further that there exists a risk-neutral
pricing measure Q equivalent to IP. The first goal is to develop a generic risk-
neutral valuation model for defaultable claims. For this purpose, assume that
the filtration F = {F; }o<;<7+ is sufficiently rich to support the following

(a) r: the short-term interest rate process,
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STOCHASTIC DIFFERENTIAL EQUATIONS IN THE STRUCTURAL
APPROACH

(b) V: the firm’s value process describing the total value of the firm,
(c) v: the barrier process which determines the trigger point for default,

(d) X: the promised contingent claim which is the amount the firm has to
pay at maturity, given that default has not occured before maturity T,

(e) A: the process that models the promised dividends, i.e., the payments
going to the holder of the claim at all times prior to maturity T,

(f) X: the recovery claim, i.e., the amount paid at time of maturity T if
default happens prior to this time T,

(g) Z: the recovery process describing the recovery payoff at time of default,
if default happens prior to maturity T.

Some technical assumptions must be made on these objects. First of all, V, Z, A
and v are assumed to be progressively measurable with respect to the filtration
IF. Furthermore, the random variables X and X are F;-measurable. Regarding
the dividend process A, it is assumed to have bounded variation as well as
A(0) = 0. With these assumptions in place, only one object remains before a
general risk-neutral valution formula for the structural approach can be stated,
namely the time of default 7.

Definition 2.1 (Default Time Structural Approach). Assume 7 to be a Borel
measurable subset of the time interval [0, T]. Let V be the process describing
the total value of the firm’s assets and define v as the barrier process. The
default time 7 is then defined as

T=inf{t >0:t e T,V(t) <ov(t)}, 2.1)
with the convention that inf{@®} = +oco0.

Note that for the setup in structural approach, T is an F-stopping time
since for all t € [0, T], {t < t} € Fi. Moreover, if the underlying filtration F is
generated by a standard Brownian motion, T will be an [F-predictable stopping
time and consequently the time of default may be predicted to a certain degree.
This latter property is almost never present in the hazard rate model, where
the default event may occure without any forewarnings.

2.3 Stochastic Differential Equations in the
Structural Approach

Assume the financial market is represented by the filtered probability space
(Q), F,F,P) and that there exists a risk-neutral probability Q equivalent to
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IP. To facilitate a generic risk-neutral valuation formula of a defaultable
claim, suppose this underlying financial market is arbitrage-free. That is, the
discounted price process of any tradeable security, which pays no coupons or
dividends, is a [F-martingale under Q.

The short-term term interest process r and the value process V of the firm’s
assets are defined as strong Markov diffusion models under a risk-neutral
pricing measure Q in what follows.

Definition 2.2. Assume y; : Rx [0,T] - R and ¢, : R x [0,T] — R are
measureable and integrable functions. The risk-neutral dynamics of the short-
term interest rate process r(t), t > 0, are given as

dr(t) = ur(r(t), t)dt + o (r(t), ) dW(t), 7(0) >0, (2.2)
where W is a standard Brownian motion under Q.

Note that a deterministic interest rate implies 0, = 0, and a constant interest
rate implies 0, = p, = 0.

Definition 2.3 (Value process of firm'’s assets). Assume « : R x [0, T] — R and
oy : R x [0, T] — R are measureable and integrable functions. The risk-neutral
dynamics of the process V (), t > 0, are given as

dVV—((:)) = (r(t) —x(V(t),r(t),t))dt + oy (V(t),)W(t), V(0) >0, (2.3)

where W(t) is a standard Brownian motion under Q, and (t) is the short-term
interest rate. A non-negative x represents the payout ratio of the firm while
any other value represents a capital inflow to the firm.

In the remainder of this chapter, let X, A, X and Z have objectives as given
in (d),(e) (f), and (g) respectively. In addition, assume that X, X and Z satisfy

X=g(V(T,r(1)), X=hn((V(T),r(T), Z(t)=z(V(t),r(t)t) (24

forallt € [0,T],and ¢ : Rt xR - Rh: Ry xR — Rand z : Ry X R X
[0, T] — R are measurable functions. Furthermore, A is defined as

t
AW = [ eV (), r(n),w)dn, @5)
0
for all t € [0, T], and some integrable function ¢ : Ry x R x [0, T|] — R.

B(t) = elordu, (2.6)
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GENERIC RISK-NETRUAL VALUATION FORMULA FOR THE
STRUCTURAL APPROACH

and thus the price of a unit default-free zero-coupon bond, by which the
defaultable claims are discounted, is given by

B(t,T) = ¢~ i rwdu,

Let T be defined as in (2.1) and introduce the right-continuous process H given

by

H — ]I{Tft}' (2.7)

2.4 Generic Risk-Netrual Valuation Formula for
the Structural Approach

This section tries to develop a risk-neutral valuation formula in order to set up
a no-arbitrage pricing framework for defaultable claims using the structural
approach. In the structural approach, the trigger for default is described by
the barrier process v. In the simplest case it can be defined as v = L, where L
is a constant giving the total liabilities or debt of a firm.

The process describing all the cashflows received by a holder of a defaultabe
claim (dividend process) is defined in what follows.

Definition 2.4. Let D denote the process describing all the cashflows received
by a holder of a defaultabe claim. Furthermore, let the firm’s total value
process V have dynamics (2.3). In addition, X, X, Z, A are assumed to satisfy
(2.4), and (2.5), respectively. Let H be defined as (2.7), where 7 is as defined in
(2.1). Then the cashflows D may be written as

D(t) = X (T) 17,00 (£) + /(O’t](l—H(u))dA(u)jL (g 2w, @9

where Xd(t) = X]l{t>T} + jZ]l{tST}'

This concludes the necessary framework for expressing a general valuation
formula for a defaultable claim, which is given in what follows.

Definition 2.5. Let the money market account B be defined as in (2.6). Denote
by DCT = (X, X, Z, T) a defaultable claim which has cashflows as described in
(2.4). The price process X“(-, T) of a such defaultable claim, with maturity at
time T, is then given by

X%(t, T) = B(t) Eq { o B~Y(u) dD(u)

]—}} , (2.9)
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MERTON’S MODEL

forany t € [0, T).

For modeling purposes, it is convenient to assume that only one of the
payment recovery schemes X and Z are present at the same time. If X = 0, it
means that recovery payments start at time of default 7. If on the other hand
Z = 0, then the recovery payment is done in one transaction at time of maturity
T. These different versions of defaultable claims lead to two special cases of
the generic formula (2.5) which are summarized in the following definition.

Definition 2.6. Let DCT; = (X, A, X,7) and DCT, = (X,A,Z,T) be two
defaultable claims. The price process X% (-, T) with maturity at time T, is then
given by

d = “Yu)dD;(u
x{(0,7) = BB | [, B wdDi(w

’Ft}/ i:1/2,

for any t € [0, T].

2.5 Merton’s Model

An important example of a firm value model is called Merton’s Model. The
framework for this model is established in an assumed complete market.
This means that there are no transaction or bankruptcy costs, there are no
restrictions on short-selling traded securities, and there are no limits for
borrowing and lending at the same interest rate.

In the original Merton’s model, the short-term interest rate r, the volatility
coefficient of the firm’s value process oy = ¢, and the payout/infloat ratio «
are assumed to be constant. Consequenctly, the firm’s value process V from
(2.3) is a Geometric Brownian Motion (henceforth GBM) on the form

dv(t) = V()((r — x)dt + cdW), (2.10)
which has explicit solution for, T > t,
V(T) — V(t)e(T(W(T)—W(t))-F(f’—%UZ(T—t))’ (211)

where 7 = r — «.
Furthermore, due to the constant interest rate, the money market account from
(2.6) will be on the form

B(t,T) = e "TH, (2.12)

Designate by L the amount giving the total liabilites of the firm, and let T be
the maturity date of a contract. The time of default T in Merton’s model is
then given by

T =Ty (r)<1} + ©liy(r)=1}, (2.13)
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PRICING EXAMPLE WITH MERTON’S MODEL

where oo - 0 = 0. Note that this means that default can only occure at time of
maturity T, which is one of the major drawbacks in Merton’s model. There
does however exist extensions of Merton’s model which allows for default to
happen for any t € [0, T|, but such models are not discussed in this text.

2.6 Pricing Example with Merton’s Model

The part of this text concerning firm value models is concluded with a pricing
example using Merton’s model for default. Consider the special case of the
general model DCT; = (X, A, X, 7) as defined in (2.6), and suppose that

(h) the promised contingent claim X = L,

(i) the dividends process A =0,

(j) the recovery claim paid at time of maturity if default occurs X = V/(T),
(k) the time of default 7 = Tl y ()<} + Ly (T)>1})-

In fact, the fixed amount L can in this instance be viewed as the nominal value
of a corporate zero-coupon bond. The following expression may be derived
for the terminal payoff

Proposition 2.7. The terminal payoff X (T) of a defaultable claim DCT;y = (X, A, X, T),
with assumptions (h)-(k), is given by

X{(T) = L — max (L — V(T)) (2.14)

Proof. By the risk-neutral valuation proceeding, the terminal payoff X7 is given

by
XUT) = X1jary + Xlgrery = Llgyrysry + V(D)1 (215)
which is equivalent with
X{(T) = min(V(T), L)1y )= )+ min(V(T), L)1y )<y = min (V(T), L),
and finally
min (V(T),L) = L —max (L — V(T),0).
]

Note that proposition (2.7) implies that the price process X4(t, T) of DCT;
can be written as the difference between the nominal value of default-free
zero-coupon bond L, and a European put-option on the total value of the
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PRICING EXAMPLE WITH MERTON’S MODEL

firm’s assets V, with exercise date T and strike price L. Furthermore, from
(2.14) it is clear that

X{(t,T) = LB(t,T) — P(t), (2.16)

where B(t, T) is the moneymarket account as defined in (2.12) and p(t) is the
time t price of a put-option on V with strike price L. This means that the price
of the defaultable claim can be computed using the Black & Scholes method
for put-option pricing. Details on Black & Scholes methodology may be found
in [Ben04].

Proposition 2.8. Let D(t, T) denote the price of a defaultable claim DCT (X, A, X, T),
with assumption (h)-(k). Then

D(t,T) = LB(t, T)N(dy) + V(£)e TN (d,), (2.17)

where N is the standard normal cumulative distribution function, and

g In(f)+ - 303(T —1t))

e ovT —t ’
and

() (3T 1)

2T ovT —t

Proof. Though this can be proved by using (2.16) and the Black & Scholes
formula, another approach using standard pricing methods is used in this
proof. By the no-arbitrage principle, the price of a contingent claim is equal to
the discounted expected value of the payoff function. The payoff function is
given in (2.15), thus

D(t,T) =B(t,T) Eq [L]l{V(T)zL} + V(T)]I{V(T)<L}!]:t]
=B(t,T) Eq [LIL{V(T)ZL}|~Ff] + B(t,T) Eg [V(T)]I{V(T)<L}|ft] :
=B(t, T)LQ (V(T) > L|F) + B(t, T) Bq | V(T)L{y (1)1 | Fi|

Each term is evaluated individually in the following calculation. The normal
distribution of the Browninan motion implies

c(W(T) — W(t)) ~ N(0,0*(T — t)). (2.18)
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Furthermore, the explicit solution V(T) is given by (2.11), and observe that
V(t) = x is Fy-measurable and (W(T) — W(t)) is independent of F;. Hence

Q(V(T) > L|F) =Q (V(t)ev(W(T)*W(f))+(f*zf72(T*f)) > L ’]:t)

=Q (U(W(T) ~W(#))) > In (;) —(F - %UZ( - t))\}"t>

when Z ~ N(0,1).
For evaluation of the second term, define the probability

Q(A) = Eq []IAM(T)] , (2.19)
for A C ), and
dQ oW(T)-1o?T _
0-° = M(T). (2.20)

Denoting A = {V(T) < L} yields
Eq [V(T)1a|F:] = V(0)e’" Eq [M(T)14| 4],
and by Bayes’ rule

V(0)e'" Eq [M(T)14|Fi] =V (0)e’" Eq [M(T)|F] Eg [1a|F]
=V (0)'TM(1)Q (A|F})
=B (t, T)V()e *T-)Q (A|F),

where the last equality follows from
V(0)e'T M(t) = V(0)e" V-2t r=0T — 7 (p)p(r=e)(T—1),

Girsanov’s theorem ensures that W(t) = W(t) — ¢t is a standard Browninan
motion under Q. The Q-dynamics of V is given by

AV (t) = V(t)(F + o?)dt + cdW(t),

which has explicit solution




HAZARD FUNCTIONS AND HAZARD PROCESSES

In addition, W(T) — W(t) is independent of F; and V(t) = x is F;-measurable.
The distribution of W is the same as (2.18). Hence

Q(A|F) =Q (V(t)eU(W(T)*W(t))+(7+%02(T*t)) <L |]:t>
~ 1,

_ (U(W(T)—W(t)))<ln<§) (7 + 50T —t))]]-"t)
:@(ZZm(%)—(H%aZ(T—t)))

02T —t

n(L) = (7+102(T =
_ (z<1 () ;*T_Z_:(T t”) = N(d),

Thus the price of a the defaultable claim is given by

D(t,T) = B(t, T)LQ (V(T >>L|ff>+B<t,T> [ (D)1 g1y ||
= LB(t, T)N(dy) + B1(t, T)V(t)e * Q (A|F)
= LB(t, T)N(dy) + V(t)e (T~ t)N(dz).

2.7 Hazard Functions and Hazard Processes

In this chapter, hazard rate models are discussed. The framework involves
the concept of a random time, which will serve as the time when the default
event is triggered. To capture the information from the random time as well as
the remaining market information, the filtration setup in this chapter needs
to be defined in a slightly different way than what was done in the structural
approach.

The probability space considered is denoted by (), G, P). The first goal is to
find a filtration that captures all available information at time t € IR;.. For
now however, let G = {G;};>¢ be an arbitrary filtration on (Q2, G, Q), where Q
is risk-neutral pricing measure equivalent to IP. A random time can then be
defined as follows.

Definition 2.9 (Random Time). Denote by T a non-negative random variable
on a probability space (Q), G, Q), satisfying

1) Q{r =0} =0,
(2 Q{t >t} >0,

for any t € R;.. Then 7 is called a random time under Q.
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To obtain the natural filtration of the random time, denote by H the right-
continuous process defined by H = 1,_;,. The natural filtration of 7 is then
the associated filtration H = H; = {H;}u<¢. Finally, introduce an auxiliary
filtration F = {F;}+~0 (henceforth reference filtration) such that

Gr=Hi V Fy, (2.21)

for any t € R;. Both H; and G; are assumed to be right-continuous and
complete.

In most credit risk models, the auxiliary filtration [F is generated by a Brownian
motion W under Q.

Definition 2.10 (IF-Survival Process). Let F be defined as
F(t) = Q(t < t| F). (222)
for any t € IR;. The [F-survival process G of T under Q is then defined as
G(t) =1—F(t) =P(t >t | F). (2.23)

Definition 2.11 (IF-Hazard Process). Let F and G be defined as in (2.22) and
(2.23), respectively. An increasing function I' : R — R4 given by

I['(t) =—InG(t) = —In(1—F(¢))
for any t € Ry, is called the F-hazard process of T.

Definition 2.12 (IF-Hazard Rate). Assume that the F-hazard process I' of T
satisfies

T(t) = /Ot v (w)du, (2.24)

for some non-negative, [F-progressively measurable process -, then 7 is called
the [F-hazard rate of T under Q.

Note that (2.24) is equivalent with I" having absolutely continous sample
paths with regards to the Lebesgue measure on IR . It can also be mentioned
that the hazard rate is sometimes called the F-intensity of T if y is stochastic,
or the intensity function of 7 if y is deterministic. If (2.24) holds, it invokes
a useful property, namely a martingale representation of y. The martingale
representation is given in the following proposition.

Proposition 2.13. Assume (2.24) holds where y is the hazard rate of T. Then the
process M given by

Y AT
M = H; — / y(u)du (2.25)
0

follows an ‘H-martingale for any t € R.
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One additional object is needed in order to define the time of default in the
hazard rate model. Therefore, assume that the probability space (Q2, G, Q) is
sufficiently rich to support a random variable €, which has distribution

€ ~ unif(0,1). (2.26)

In addition, it will be assumed that € is independent of the filtration IF under
Q. The time of default T can then be defined as follows

Definition 2.14 (Random Time of Default). Let € be defined as in (2.26), and
let T' be the [F-hazard process of T as defined in (2.24). The random time
T: () — R given by

T=inf{te Ry :e "W < e} =inf{t € Ry : T(t) > 1},
where 7 is a random variable given by
n = Ineg,

and consequently 77 has a unit exponential distribution under Q.

2.8 Generic Risk-Neutral Valuation Formula for
the Intensity-based approach

In this section the price of defaultable claims using the hazard rate model
is discussed. The relevant probability space is (2, G,Q), supplied with the
filtration F = {F;};>0. The filtration G is as defined in (2.21), where H; is the
filtration associated with the right-continuous process H(t) = 1<, and T
is a random time as defined in (2.9). The short-term interest rate r follows an
J-progressively measurable process, such that the money-market account as
defined in (2.6) is well-defined.

In order to describe the cashflows of a defaultable claim, some of the
objects from Section 1 are needed. Therefore, in the remainder of this text,
let X, A,Z and X have objectives as in (d), (e), (g) and (f), respectively and
that they satisfy suitable integrability conditions such that (2.8) is well-defined.
Furthermore, Z and A are, as in Section 1, assumed to be [F-predictable, with A
following a process of finite variation and A(0) = 0. The promised contingent
claim X and the recovery claim X are Fr-measurable. Moreover, the sample
paths of all processes are assumed to be right-continuous functions, with finite
left-hand limits, almost surely. The dividend process D in this section is the
same as defined in (2.4). A generic risk-neutral valuation formula for the
intensity-based approach can now be stated.
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Definition 2.15. Let the money market account B be defined as in (2.6). Denote
a defaultable claim by DCT = (X, 4, X,Z, T), where T is as defined (2.14). The
price process Xd(-, T) of a such defaultable claim, with maturity at time T, is
then given by

X4(t,T) = B(t) Eq { o B~ (u) dD(u)

@} (2.27)

forany t € [0,T).

Notice that the only difference from the price process in Section 1, (2.5), is
the filtration used in the conditioned expectation.
Combining (2.8) and (2.27) yields a price process of X“(t, T) on the following
form.

d = —(u — u u —(u u u
X (t,T>—B<t>EQ[ o B H)AAW + | B (0)Z(w)dH )

+ B Y(T)X%(T) ‘Gt], (2.28)

where X4(T) = X%(T,T) = XH(T) + X(1 — H(T)).

2.9 Valuation via the Hazard Process

As a final example, the pre-default value D°(t, T) of a corporate zero-coupon
bond with recovery payment at time of maturity T is computed. Recovery
payment at maturity implies Z = 0, and zero-coupon implies A = 0. In other
words, the relevant defaultable claim is DCT= (X, X, 7). In the remainder
of this text it assumed that the reference filtration IF in (2.21) is the trivial
filtration (F; = Fp = {®,Q}), so that G = H. The trivial reference filtration
and a deterministic -y yields the two following equalitites.

QUt < T<TIG) = Qt < T < TIHy) = Loy (1 —e I 108, (229
and

Q(r > TIGr) = QT > T[H:) = E(aye K70, (230)

Proposition 2.16. Let D°(t, T) denote the pre-default value a of defaultable claim
DCT = (X, X, T). Assume the default time T is given by (2.14), where T is the hazard
process of T satisfying (2.24) for a deterministic function -y. In addition, assume that
the short-term interest rate v and the promised contingent claim X as well as the
recovery claim X are deterministic. Then

DU(t,T) = B(t, T) 1z (X(1— e Sty 4 xe- ftT”Y<”>d”) (2.31)
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VALUATION VIA THE HAZARD PROCESS

Proof. The value at maturity T for the defaultable claim DCT = (X, X, T) is
X4(T) = XH(T) + X(1 — H(T)),
thus by the filtration assumption G = H, along with (2.28), (2.29) and (2.30)

D%(t,T) = B(t)E [ (T)(YH(T)%—X(l—H(T)))\Qt}
)B~Y(T)Eq [XH(T) + X(1 — H(T))|H]

(

(

(t,T) (X (Eq [H(T)[H:] + X Eq [(1 — H(T))|H4]))
(£, T) (XQ(t < T < T|H¢) + XQ(T > T|Hy))

(

(

( (= X(1—e” J oty - xq T>t}e Ji )

Lirsy (X(l—e I ()dt) 4 Xe~ U )
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Chapter 3: Simulations

In this chapter Monte Carlo simulations are explained and discussed. Monte
Carlo simulation is a class of computational methods used to obtain a numer-
ical result by repeated random samples. In [Monte Carlo methods in Finance],
by Jackel, [Jac02], there is given an overview of Monte Carlo methods in finance
known to expert practitioners.

The purpose with Monte Carlo simulations in this text is to find prices
of weather derivatives via numerical approximations. More specifically, the
goal is to find the expected value of a function f given a specified distribution
density F over x € A C R. Mathematically, the aim is to obtain a value p
defined as

p=Erlf(x)] = [ Fx)F(x)dx. @)

An integral of the above form can be simulated in the following manner.

Algorithm 1 Expected value of a function

1: procedure

2: Make a function that draws variates x from specified distribution F(x)
Define a variable to contain computed function values RunningSum = 0
Define a counter i = 0

Define a variable to for the average sum RunningAverage = 0

Draw variate x; and compute f; = f(x;)

Add computed function value to RunningSum

Add + 1 counter i

Set average sum variable as RunningAverage = RunningSum/i

The above algorithm yields a Monte Carlo estimator after # iterations given by

Pn = f(xi). (3.2)

Q=

n
i=1

3.1 Error Estimation

In this text two ways of approximating or measuring the error for Monte
Carlo methods are mentioned. One approach tries to track the variation of the
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numerical results, while the other method is to compare the numerical result
with an analytical solution.

The first approach uses the central limit theorem, the Monte Carlo estimator
pn has characteristics approximate to a normal variate.

Proposition 3.1. Let £y be a Monte Carlo estimator of the form
n
Ru=)_ X, (3.3)
i=1

where the xs are independent and identically distributed random variables drawn
from a distribution with expected value y and finite variation o2, respectively. Then
&N converges in distribution to the normal distribution, denoted as

. 2
2, %N (y, ‘%) . (3.4)

Proof. The proof is a direct result from the Lindeberg-Lévy Central limit theorem
which states that given a sequence of identically distributed and inpendent
random variables {x1, x, ..., xx}, the random variables (£y — y)+/n converge
to the standard normal distribution, that is

iy — )V % N (0,02) .

Thus

n

. 2
32”1'—>C1'N(y,0—).

]

the uncertainty in each simulation £, may be quantified by a statistical
measure which is the standard deviation of £, given by

\/ Var[%,] = %.

The standard deviation ¢ is however usually not known when performing
Monte Carlo simulations. That is, if the true standard deviation was known,
then the true mean yu could be computed, which is exactly the value the
Monte Carlo simulations are supposed approximate. With the convergence to
a normal distribution as described (3.4) however, an estimate &2 of ¢ can be
obtained by using the variance in each simulation, i.e., for each N

2

. 1 & 1 &
(i57) - (iEe)

i=1 i=1
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which leads to a standard error given by

o
€ = ——.

NG

It is important to note that this measure of error is stochastic. To illustrate,
any single simulation may deviate significantly more than one standard error,
indeed, for each n, there is according to [Jac02] only 68.3% probability that

£n € (W —€n, ph+€n).

Before looking at the other method, the Monte Carlo simulation of an OU-
process is discussed.

3.2 Ornstein Uhlenbeck process
In this section an OU-process of the form
dX(t) = (p —aX(t))dt + odB(t)

with explicit solution

X(t) = e ™X(0) + u(1 —e ™) + a/ot e~ =1 gB(u) (3.5)

In order to use Monte Carlo simulations on X, it is convenient to exploit
the normal distribution of the Brownian Motion,i.e.,

W(t) ~ N(0, t).

Consequently

' 1
X(t) 2L e X (0) + p(1—e ) + a\/ﬂ(l — e 2t)7, (3.6)
for a standard normal variable Z. This means that speaking in terms of the
algorithm (3), a Monte Carlo simulation of an OU-process can be done by
defining

flx;) = e ™X(0) 4+ pu(1 —e ™) + U\/%(l —e~2at)x,;, (3.7)

where x; ~ N(0,1).

Remarks. Determining the coefficients y, « and ¢ will in many cases be a major
part of the modelling work. Several different methods exist for estimating these
coefficients, with one of the most widely used being linear regression. Another
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thing worth mentioning is that with slight modifications in the algorithm
(3) and the objective function (3.7), there is also a possibility of making the
coefficients functions of t. Defining the coefficients as functions of t rather than
constants is in many instances more realistic. Consider for example a spot
price for electricity over a year. In the months with stable weather conditions
there will often be small changes in price and thus a low volatility, while in the
months with unstable weather conditions prices may fluctuate more, implying
a larger volatility. A volatility function ¢ (t) will be able to take these seasonal
variations into account, while a constant volatility will not.

Rather than assessing the validity of the numerical result by keeping track
of the error for each simulation, the second method aims to argue at which
number n of simulations the numerical result is satisfactory. A satisfactory
result is ambiguous depending on the subject at hand, however in finance,
an accuracy of two decimal points is considered by most practitioners to be
sufficient. The way the method works is that the Monte Carlo simulation is
compared to a closed form solution. For this purpose the pricing formula
for a call-option on an asset with spot price dynamics given by a geometric
OU-process is found in what follows.

3.3 Pricing Formula geometric OU-process

Let S(t) be the spot price of some commodity at time ¢ and let the spot price
be given by

S(t) = X, (3.8)
where X(t) is an OU-process of the form
dX(t) = —aX(t)dt 4+ cdB(t), (3.9)

where B(f) is a brownian motion under a probability measure PP.

A spot price of the form (3.8) is a so-called geometric spot price, as opposed
to the arithmetic version where the spot price is simply given by S(t) = X(t).
Let p(t) be the time ¢ price of a call option on this commodity with strike K
and maturity T, i.e,,

p(t) =TV E[(S(T) = K)|F], (3.10)

where the r is the interest rate and F; is a filtration sufficiently rich to support
S, consequently making S(t) Fi-measurable for all + < T. In the spirit of the
Black & Scholes formula for call options on securities with spot price dynamics
in the form of a GBM, one can derive a similar closed form solution on a call
option with spot price dynamics given by an OU-process. The closed form
solution is given in the proposition that follows.
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Proposition 3.2. Let S as defined in (3.8) be the spot price of some financial asset or
security, where X is an OU-process of the form (3.9). Let T be the finite maturity date
of a call-option with strike price K. Further assume that the risk-free interest rate is
zero. The price p(t) at time t of such a call-option is then given by

p(t) = e 2 S(M + 7) — KD(M), (3.11)
where

E[X(t)] = fI, Var[X(t)] = &7, (3.12)
and ® is the cumulative distribution function for the normal distribution.

Proof. By the no-arbitrage principle, the price should be equal to the discounted
expected value of the payoff function. Let F; be the natural filtration of the
Brownian motion B. With risk-free interest rate equal to zero the price at time
t will be given by

p(t) = E[(S(T) — K)|F]
= E |(S(T) = K)Lys(ry»k | i
:E: (T)Lys(r >1<}|]'_t] - [K]l{s >K}|]:t}
=E :S(T)]I{S(T)>K}} —KE [H{S(T)>K}} , (3.13)

where the last equality is a consequence of S(f) being Fi-measurable and the
Brownian motion B(u) for u € [t, T| is independent of F;.
Using the relation given in (3.6), it is clear that

S(T) l:d ee_“(T_ﬂX(f)Jr]l(l*e_“(T_t))JrU %(17e—2“<T—f>)Z’ 7 ~ N(O,l)

Using notation as in (3.12) yields

e TDX(H) + u(1—e*TH) 4 U\/%(l —e2(T-1))7Z = i + ¢ Z.
Since
i+6Z~N (y & )
S will be lognormally distributed, i.e.

S(T) ~N (eﬁ+%g2,ezﬁ+(72(eﬁz B 1)> .
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Furthermore, 1(5(1)~x; > 0 whenever

S(T)—K>0
eﬂ+6Z>K
fi+6Z >InK
InK — fi

> na

N

=M

Then the first term in (3.13) can be rewritten as

. M
= el ! R
V2 J—oo
M
= el ! 7717 4
V2T J—o0
_ M N .
o] e~ 22700307 g
V21—
. M
S L e 2200,
V271 J oo
122 1 Mto 4, S 12
L Lp— e 2% dz = ' 27 O(M + 7)

Finally, the second term in (3.13) becomes
KE [n{S(TbK}} — KP(S(T) > K) = KP(Z < M) = Kd(M).

Thus

which concludes the proof. O

Example 3.3 (A geometric spot price comparison). With the pricing formula
(3.10), the exact price of a call option can be computed. Meanwhile, there also
exists Monte Carlo methods for this price. Thus it is possible to investigate
how many simulations is needed before the numerical result closes in on the
exact price. To construct an example, let the parameters in (3.7) be « = 0.3,0 =
0.05, 4 = 5. Let the maturity date be set 90 days in the future, that is T = 90,
and let the strike price be 150 so that K = 150. Further, set the initial value of
X(0) = 4. These values results in the following parameters

M = —-0.165, ji=4999, 7 =0.064
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Inserting into (3.10) yields price p as
p =324

In table (3.3) the different prices are given, computed with an increasing
number of simulations N.

N MC price
10 1.34
100 3.97
1000 3.36
10000 3.17
100000 3.23
1000000 3.24

Table 1: Estimated Monte Carlo prices of a call option after N simulations.

As one can see from the table, there is needed N = 10° simulations before
an accuracy of two desimal points is achieved. There is of course no guarantee
that this N gives the right numerical solution in every case. Nonetheless, it does
give an indication of how many simulations are needed before a Monte Carlo
simulation of a geometric OU-process reaches an exact numerical result. In
this thesis, arithmetic OU-processes are used to describe spot price dynamics,
which intuitively will converge on an even less number of simulations than
that of the geometric case.
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Chapter 4: Quanto options

Traditionally, quanto options were incorporated in the pricing framework of
stocks and bonds as a mean to hedge against currency risk. In later years
there has been an increase of the usage of quanto options in energy markets as
well. In energy markets a quanto option may be used to hedge against volume
risk or price risk. In Pricing and Hedging Quanto Options in Energy Markets
[BLM15], both pricing and hedging of quanto options in energy markets is
considered. Amongst other topics, there is developed a general framework
for pricing of quanto options in the form of put/call combinations on energy
and temperature derivatives. There is also given a closed form option pricing
formula via the Heath Jarrow Morton approach. The mathematical framework
includes a pricing measure Q and a filtration F; containing all the market
information. Furthermore, a general model is introduced where the forwards
price dynamics under a pricing measure Q of energy price and the number of
heating degree days (HDD) over a measurement period [11, 2] is given by

Fe(T, 11, @) = Fe(t, T, 1) el e, (4.1)
and
PI(T/ 7, Tz) - Fl(t/ 7, T2>6HI+Y/ (42)

for T > t where the random variables X and Y are bivariate normally distrib-
uted, which is to say that

X 0] [Var(X) pxy

(U i) =
where pxy = corr(X,Y), and the covariance structure is dependend on ¢, T
and 11, 72. See (A) for theory on the bivariate normal distribution. The forward
price dynamic as given in (4.1) falls under the Heath-Jarrow-Morton (hence-
forth HJM) approach, which traditionally has been framework constructed
to model interest rate curves. As one can see from (4.1), the forward price

dynamics in the HJM approach is given directly, rather than finding a relation
to the spot price and the specification of a risk-neutral pricing measure.
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An interesting example presented in [BLM15] is to use bivariate geometric
Brownian motions. Then the futures price dynamics takes the form

Fe(T, 1, 2) = Fe(t, 1, Tz)e_%U%(T—t)+UE(W(T)—W(t))’

and

Fi(T,11,72) = Fy(t, 1y, 1p)e” 21 (T (BD-B(1),
,where B and W are Brownian motions with correlation px y. Pricing is done
subject to the payoff function p given by

p = maX(PE(Tz, 7, Tz) — KE,O) 'maX(FE(Tz, ’L'l,Tz) — K[),O). (4.4)

KEg and Kj are the strikes for European call-options on energy and temperature,
respectively. In this text, the combining of weather derivatives and counter-
party risk will appear as a quasi-quanto option. As a link between these two
concepts a quanto option with payoff function (4.4) is considered. The futures
prices however will have a dynamics based on the spot prices of energy and
temperature. Se om du finner notater

4.1 Correlated prices

Multiple studies suggest a correlation between prices of different commodities
in the energy markets. For instance in the book Managing Energy Risk by
Markus Burger, Bernhard Graeber and Gero Schindlmayr, [BGS08], a linear
regression analysis was done on the relation between electricity, coal, oil and
carbon emission prices, (henceforth EUA). Specifically, there was performed
regression on electricity forward prices based on the forward prices of the
mentioned remaining. That is, electricity forward prices were fitted to the
linear equation

For = co + 1t + CeoarFeoar + CoitFoit + Cco2Feon-

Using forward prices from the European Energy Exchange from 2007, the
most significant regressors were time and EUAs. Coal turned out to be the
only regressor not significant at a 99% confidence level. Even though this
linear regression was done using forward prices, it is a natural implication that
the spot prices will be correlated as well. The correlation for spot prices will
however not be as profound due the high volatility of spot prices. Inspired by
this correlation, there will be given a pricing example of a quanto option in
the following section.

43



QUANTO OPTION PRICING EXAMPLE

4.2 Quanto Option Pricing Example

Denote by S1 and S, the spot price of electrity and EUA’s, respectively. Further
assume the prices have dynamics according to OU-processes of the form

ds;(t) = —ua;S;(t)dt + al-dWi(t) (4.5)

for i = 1,2. B is a standard Brownian motion under a risk-neutral pricing
measure Q, and B; is defined as

Wa(t) = pWi(t) + /1 - p2U(t), p€[-11], (4.6)

where U(f) is again a standard Brownian motion under Q, and independent
of Bl-

Note that (4.5) is an OU-process with mean p equal to zero. The affect on
the explicit solution given in (1.6) is that the deterministic term p(1 —e™*f)
vanishes.

Proposition 4.1. The correlation between two standard Brownian motion W and the
Brownian motion Wy as described in (4.6), is given by

corr(Wq(t), Wa(t)) = pt. (4.7)
Proof. By the defintion of correlation

_ cov(Wy(t), Wa(t))
0102

—Eq (1) (pWa(t) + /1= p20(0) ) | = Eo [p#2(1)] =,

corr(Wi (t), Wa(#)) = Eq[Wa (1) Wa(1)] — Eq[Wi (1)) Eq[Wa (1))

since the product expectation due to independence is equal to
Eg[WU] = Eq[W] Eq[U] = 0.
O
In the following quanto option example, the payoff function is defined as
f(51,52,Kq,Kz) = max (Ky — Dy (11, 12),0) - max (D(11, 72) — K2,0), (4.8)

where D; is the average spot price of electricity and EUA’s over a delivery
period [11, 2], respectively, i.e.,

1 2
Di(n,m) = —— [ " Si(s)ds, 49)
1

for i = 1,2 and S; has dynamics as in (4.5).
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Proposition 4.2. The average spot price D; as defined in (4.9) is given by

Di(t, &) = m (Sl(t) <e“"1(fl_” — e‘“l(TZ_t)>
(e e
+/ e (- )> dwl(l/l)), (4.10)
and
Di(t, ) = ﬁ (Sz(t) (e*"‘z(ﬁ*t) — e*ﬂéz(frﬂ)

+onp ( /t a (e7sa(10) — gmsalm=10) g (u)

+ [ (1 — e_"‘Z(TZ_”)> dWl(u)))
+ouy/1—p2 ( /trl (e_IXZ(Tl_”) — e—txz(Tz—u)) Al (u)
+ /Tz w0 dwl(u)» @&.11)

Proof. Proof is only given for D1(7, Tp) since the procedure is very similar for
D> (71, 12).
The explicit solution for the SDE giving spot price dynamis, (4.5), for s > t, is
given by
S ~
51(s) = Sy (F)e %6~ 4o / e~ (=) gV, (1), (4.12)
t

which implies

T
/zsl(s)ds:/ Sy (t)e (- fds+01/ / —a1 (=) 4T, (1) ds.
T T

The order of integration in the second term can be changed by the Fubini-Tonelli
theorem and computing

T T
/ / A (w)ds = [ / o) (e 2D AW, (1) ds
T %[2
_/ / o) (e dsd Wy (1)
— = —wp(m—u) _ ,—ap(T—u) 374
o (/t (e 2\~ e “2\h dWl(u)>).

Straightforward integral computation gives the result. O
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Proposition 4.3. Let the average spot price over a delivery period |11, 7o) be given by
D; as described in (4.9). Assume the interest rate r is zero, and that the correlation
between Dy and D, is given by p, where |p| < 1. Let T the maturity date be of a
quanto option with strike price Ky and Ky. The time t price p of a quanto option with
payoff function (4.4) is given by

p(t, T, 71, 02) = Ky (&2(t, T)S2(t)C(dv, da, p) + 02 (8, T)pp(m))

— (K1K2C(dy, da, p))
+01(t, T)oa(t, T) (mp(m) — P(m))
Kafia S1(£)C(dy, o, 0) + 51 (£, )og (m), (4.13)

where C is the standard bivariate normal CDF as defined in (A.4), ¢ is the standard
normal PDF, and @ is the standard normal CDF, and m = min(dq,d>).

Proof. According to the no-arbitrage principle, the price p of the quanto option
is equal to the discounted expected value, (with regards to a risk-neutral
measure) of the payoff function, i.e.,

p(t) = Eq[f(S1,52, Ky, Ka)| Fi] (4.14)

Let Dj(t1, 72) = D; for i = 1,2.. Considering the payoff function by itself, the
function can be rewritten as follows

f(S1,52,K1,Ky) = max (Ky — D1),0) - max (D — K3,0)

= (Ki = D1) 1p,<k;y - (D2 = K2) Iyp, =y

= (Kl]l{D1<1<1} - D1]1{D1<1<1}> ' (Dz]l{D2>1<2} - Kz]l{D2>1<2}>

= KiDolp, <,y Lip,>k,3 — KiKelyp, <k, LD, >k}

— DiDy1yp, <k} 1 {D,>k,} + D1Kol(p <3 1D, k51 -
Inserting this last expression into the price (4.14) yields
p(t) =Eq [KiD2lip, <k} L{p,>k,) — KiKolip, <k} (D> Ks)

— D1Dy1p, k3 Lip,>ko} + D1Kalp, <1 1Dy > Ko} | Fi]

:(EQ [K1D21{D1<K1}1{D2>K2}|Ft] —Eqg [KlKZ]l{D1<K1}]l{D2>K2}|]:t}
—Eg [DlDZ]l{D1<K1}]l{D2>K2}|~7:t] +Eg [DlKZ]l{D1<K1}]l{D2>K2}‘}—t] )
:(EQ [KlDZ]l{D1<K1}]l{D2>K2}} - EQ [KlKZ]l{D1<K1}]l{D2>K2}:|

—Eg [D1D2]1{D1<1<1}]1{D2>1<2}} + Eqg [D1K2]1{D1<K1}]1{D2>K2}] )'
(4.15)

46



QUANTO OPTION PRICING EXAMPLE

where the last equality is a consequence of the Brownian motions By (1) and
B, (u) being independent of F; for u > t, and Sq(f),S2(t) are assumed to be
JFi-measurable.

By (4.2), the following relation holds.

. 1 (T — (1
Di(r, ) & s S e — et )
1 1
+ Zo (372“1(71*5) _ e 2m(n—t) _ ,—20(12—s) + e*ZOq(Tz—t‘))j
V243
id. 1 (T — (s
Da (7, 2) 2 msz(t)(e 2(n—t) _ pt2(2 t))

1
+(p+4/1— pZU(s))az\/_Ta%

) (e—2a2(r1—s) — e 2m(nu—t) _ p,m2a0(n—s) 4 e—zaz(fz—t))%

To ease notation, denote &; and ; by

&t s) = m (et — o= ) @6
and
Gi(t,s) = \/i%.al? (e—szi(‘q—s) _ p20i(n—t) _ p—20i(1—s) +e—wi(rz—t)> . 417)
which yields
Di(t, 1) = &1(t,5)S1(t) + Za1(t, 9) (4.18)
and

D11, 1) = Ba(t,8)Sa(t) + (0Z 4+ (/1 — PU)a(t,s).  (419)

The two random variables at hand are X; = Z and X, = pZ + /1 — p2U,
both of which separately are standard normal random variables, but they
are however not independent of each other, making them bivariate normally

distributed, that is
Xi o (1 p
ol ~~ (b5 1) @20
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Eg [K1K21{D1<K1}]1{D2>K2}} = KiK2 Eq [1{D1<K1}H{D2>K2}]
= KiKoQ (D1 < K[ D2 > Ko

= K1 K>,Q <0~61(t)51(t) + Zﬁ'l(t,S) < Kj

N&2$2(8) + (0Z + /1 — 22U (t,5) > Kz)

= K1K,Q (Z K _; Et(ts))&l(t)
t

e - Bt
_ — Sa(t)aa(t)
= K1 K;Q (X1 < 5 ﬂXz > 5’2(t,5) )
_ Ky — iy (t) — K
= K1K>,Q <X1 < 0_1 t 5) ﬂX az(t S) 2)
= K1KoC(dy, d2, p), (4.21)

where C is the bivariate normal cumulative distribution function for Xy, X»
with covariance p, and

dy = S Uf(lt( 3;" 1t ), (4.22)
dy = 52(?72(5 i) o (4.23)

Movin on to the next term in (4.15), it is clear that

Eq [D1K2]1{D1<K1}]1{D2>K2}’Ff} = KoEq [Dl]l{D1<K1}1{Dz>Kz}] :

Furthermore, inserting the expression for D; yields

KaEq [Dl]l{D1<K1}]l{D2>K2}] = K2Eq [(5‘1(051('5) + Zo1(t,5)) 1{D1<K1}]1{D2>K2}}

= KyEq [56151(t)]1{D1<K1}]1{D2>K2}

+ lefl(t,S)]l{pl<1<1}]l{D2>1<2}}

= Koy 51(t)Eq [1{D1<K1}1{D2>K2}]
+1(t,s)Eq [Xl]l{D1<K1}]l{Dz>K2}]

= Ko S (¢t )C(d1/d2r )+

(

+ 01(t,8 )EQ [Xl]l{D1<K1}]l{D2>K2}]
(4.24)
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Note that from the equality (4.19), D, > K; is equivalent with

5&2(15,5)52(15) + (pZ +4/1— p2U)5'2(t,S) >K»p
5(2(15,5)52(15) + X25'2(t,5) >K»p

Xzﬁ’z(t,s) >Kyp — &z(t,S)SQ(t)
Xz >K2 — D:Cz(t,S)SQ(t)
Uz(t,s)
Déz(f,S)Sz(t) — K2
X =
2 5’2(t,S) dz,

and from (4.18), D, > Kj is equivalent with

5&1(t,$)51(t) + Zfrl(t,s) <Kj
Xlﬁ'l(t,S) <Kj — 561(1’,5)51(1’)

X1 < ) =d.

Furthermore, the relation (A.5) implies that

(X1 X2 = x2) ~ N (px2, (1 - p%))

Thus

EQ [ZH{D1<K1}1{D2>K2}:| = EQ |:X1]1{X1<d1}]1{X2<d2}:|

= Eq [EQ [Xl]l{x1<d1}]l{xz<d2}

:/Oopx2]]‘{XZ<d1}]]‘{xZ<d2}(P(x2)dx2
min(dy,dp)

:p/oo xqu(xz)dxz.

pphi(m),

where m = min(dq,d>).
Hence

]

(4.25)

(4.26)

Eqg [KZDI]I{D1<K1}]I{D2>K2} = Kzﬁclsl(t)C(dez,p) + 5’1(t,S)p(P(m) (4.27)

Similarly, the next term in (4.15) can be computed as follows.
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QUANTO OPTION PRICING EXAMPLE

Eg KlDZﬂ{D1<K1}ﬂ{D2>K2}|]:t} =K1 Eq [DZH{D1<K1}1{D2>K2}]

=K; Eg [(56252(1?) + (pZ + /1 — p?U)d»(t,5))

(1{D1<K1}1{D2>K2}> }
=Kj EQ [5‘252(t)]l{X1<d1}]l{X2<D2}] (4.28)

+ Kl EQ |:X25-2(t1s)]l{D1<K1}]1{D2>K2}:|
(4.29)

Observe that (4.28) is similar to what was computed in (4.21), thus
Ky EQ [5‘252(t)ﬂ{X1<d1}]l{X2<D2}] = KlﬁéQSQ(t)C(dl, d», p) (4.30)

Regarding (4.29), remember that D; < Kj is equivalent with X < dj, where d;
is defined in (4.22), and D, > K is equivalent with X, < d, where d; is defined
in (4.23). Consequently

K1 Eg [Xszz(f/5)1{01<K1}1{D2>1<2}] = Kq102(t,5) Eq [XZ]I{X1<d1}]l{X2>d2}}

= Kla'z(t,s) EQ {XZ]I{D1<K1}]1{D2>K2}} .
(4.31)

Note that the (4.26) also implies
(Xa2|Xi = x1) ~ N (pxl, (1- p2)> . (4.32)
Using this last relation, and again the law of total expectation, (4.31) becomes
Eq [X21{2<d1}]1{u<,fz}] = [EQ [Xz]l{xl<d1}11{xz<d2}|xz = xz”
= /_oo Ly cay0x1 Ly, g @(x1)dxy
min(dy,dp)
=p /_ x1¢(x1)dxq

m
=p /_ x1¢(x1)dxy
= ¢(m), (4.33)
where the last equality follows from (4.27). Combining (4.33) and (4.31) yields

Klﬁ'z(t,s) EQ |:X2]1{X1<d1}]1{X2<d2}:| = Kla'z(t, T)‘O(P(m) (434)
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QUANTO OPTION PRICING EXAMPLE

Thus

Eq [KlDQ]l{D1<K1}]l{DZ>K2}\]—"t] = Kida(t, T)S2(£)C(dy, da, p)
T K (t, T)g(m) (4.3

To compute Eg [Dl Dy1p, <k} 1ip,> Kz}] , observe that inserting expressions
(4.18) and (4.19) for Dy and D, respectively, D1 D, can be rewritten as

(18, T)S1 () + Z01 (1, T)) (542(fz T)Sa(t) + (07 + /1 — p2U)a(t, T))
— (@1, T)Sy() + Xa1 (8, T)) (@a(t, T)Sa(t) + Xa0a(t, T))

= &1(t, T)S1(t)ax(t, T)Sa(t)

(5 T)S(H) Xata (8, T)

4 Xy (8, T)aa(t, T) S (F)

+ X451(t, T) X0 (, T)

D1D; =

Hence
Eq [DlDZ]l{D1<K1}]l{D2>K2}} =Eq [lﬂ(f, T)$1(1)a2(t, T)S2(8) 11D, <k} 1{Dy> Ko} |
—|—EQ _561(t, T)Sl(t)X2(7'2(t, T)]l{D1<K1}]l{D2>K2}_

+Eq _X151 (t, T)aa(t, T)Sz(t)]l{D1<1<1}]1{D2>1<2}_

+ EQ _lefl(t, T)Xza'z(t, T)H{D1<K1}1{D2>K2}]

=d1(t, T)S1(t)aa(t, T)S2(t) Eq []1{D1<1<1}]1{D2>1<2}_
(4.36)

+&1(t, T)S1(t)52 (¢, T) Eg [Xzﬂ{D1<1<1}1{D2>1<2}]
(4.37)

+ 1 (t, T)aa(t, T)Sa(t) Eq [Xl]l{D1<K1}]l{D2>K2}]
(4.38)

+ &, (t, T)o(t, T) Eqg [Xle]l{DKKl}]l{DPKz}}
(4.39)

Starting with (4.36), which is equal to (4.21), it is clear that
&1(t, T)S1(t)aa(t, T)S2(t)Eq []1{D1<K1}]1{D2>K2}}
=a1(t, T)S1(t)&2(t, T)S2(t)C(dy, da, p)- (4.40)

where C is the bivariate normal cumulative distribution function for Xj, X>.
Moving on to (4.37), the expectation is the same as the one computed in (4.34),

51



QUANTO OPTION PRICING EXAMPLE

thus

&1(t, T)S1(t)7a2(t, T) Eq [Xzﬂ{D1<K1}]1{D2>K2}] = &1(t, T)S1(H)02(t, T)pp(m).
(4.41)
Regarding (4.38), the expectation has been computed in (4.27), hence

71 (£ T)aa(t, T)S2(1) Eq | X1 1 (p, <k} L D,k
= 01(t, T)ay(t, T)S2(t) pp(m) (4.42)

Finally, the expectation term in (4.39) can be computed the following way.
Eq [XlXZﬂ{D1<K1}1{D2>K2}] = Eq [EQ [Xlxzﬂ{xl<d1}]l{xz<d2}|xz - XZH
= /_Oo x2]l{x2<d2} EQ [Xl]l{X1<d2}|X2 = xz] 4)(3(2)dX2
= /_oo 21y <} 02y <y P (x2)dX2

min(dy,dp) )
= p/_ x5¢(x2)dxo (4.43)

Let m = min(dy, dy).
Looking at the integral, it can be rewritten as

m m
/_ xsz(xz)dxz—\/—/ xze 2x2dXz \/;_n B xz(—xze_%x%)dxz.

Denote u(xy) = x,v(xp) = e~2%, then v'(x) = —xpe~2% and u'(x2) =1, s0
that
—i/m u(x)0' (x)dz = — 1 [u(x2)0(x2)] / u'(x)dxy
27 J o V27 w \/ﬁ infty
. é_n B E /_ "o ¥,
= —m¢p(m) + d(m). (4.44)

So (4.39) is given from (4.43) and (4.44) by

5'1(1" T)&z(t/ T) EQ |:X1X2]1{D1<K1}]1{D2>K2}:|
— 5\t Tt T) (D(m) — mp(m)).  (445)
Summing up (4.40), (4.41), (4.42), (4.45) gives the equality
Eq [DlDZ]l{D1<K1}]1{D2>K2}} =1 (t, T)S1(t)az(t, T)S2(¢)C(dy, d2, p)

+ &1 (t, T)S1(8)2(t, T)pgp(m)
+01(t, T)ax(t, T)S2(t)pep (m) + (4.46)
+01(t, T)oa(t, T) (®(m) — mp(m))  (4.47)
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Ultimately, the price is given by (4.21), (4.27), (4.35), , (4.47), , thus
p(t) = (EQ [KlDZ]l{D1<K1}]1{D2>K2}} —Eg [Kleﬂ{D1<1<l}1{D2>1<2}]

—Eg [DlDZ]l{D1<K1}]1{D2>K2}} +Eq [DlKZ]l{D1<K1}]1{Dz>Kz}} )

= Kq (&2(t, T)S2(t)C(d1, d, ) + Ga(t, T)pgp(m))

— (K1K2C(dy, da, p))
+01(t, T)02(t, T) (mgp(m) — ®(m))
Koy S1(t)C(d1, do, p) + G1(t, 5)pp(m), (4.48)

which corresponds with the price in (4.13).
O

The payoff function in this example is just one of many different put/call-
paritys one can use for a energy quanto option. Another combination could
have been a put option on the spot price of wind power and a call option on
the number of windy days in a month. If the number of windy days is low, the
profit from the long position on wind power spot will increase. Simultanously,
the call option on the number of windy days will make a hegde against the
event that the number of windy days should be numerous. Other combinations
could be coal price and coal power price, or electricity price and the number
of heating degree days over a month.
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Figure (4.2) below, shows six simulations of two OU-processes with dynam-
ics as given in (4.5). As is clearly illustrated by the plots, the value fluctuations
correspond increasingly as p increases. It is worth noting that even though p is
close to 1, the values of the correlated processes may differ substantially, but
increases or decreases in process value will correspond in both processes.

Correlated Ornstein-Uhlenbeck Processes
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12 254 ‘/m 15
10 4
81 15 4 . .
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Figure 4: Simulations of correlated OU-processes with six different p’s.
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Chapter 5: Energy derivatives with
counterparty risk

5.1 Forward price with counterparty risk

Consider two parties A and B, where A is default-free while B has a risk of
default. Assume the risk-free interest rate r is zero. Let the total value of firm
B be given by a value process V which follows the dynamics of a GBM on the
form (2.10), that is,

dV(t) = —xV (t)dt + oydW(t), (5.1)
and let the time of default T be given by

T = Dly ()<L T ®ly(g)>1

where L is the liabilities of company B, and with the usual convention 0 - co = 0.
Furthermore, assume that the spot price of hydro power is given by S which
has risk-neutral dynamics

dS(t) = (u — aS(t))dt + odB(t), (5.2)

and B, W are Brownian motions under Q. The dependency or independency
of B, W will differ in the following examples, it will however be clearly stated
whether they are indedependent or dependent. Let Tx < co be some finite time
date, and suppose (), F, Q) is a probability space endowed with a filtration
{Ft}o<t<t. The filtration is assumed to be sufficiently rich to support the value
process V' and the spot price process S.

Proposition 5.1. Let the spot price of hydro power be assumed to have dynamics as
given in (5.2). Denote by Fp(t, 71, T2) the time t price of a power forward contract
with delivery period [Ty, o] and settlement at T, for t < 7y < Tp. Let the party selling
the forward contract have a total asset value given by V, which has dynamics given by
(6.1). The forward price is then given by

Folt,m,m) = ! E Uf S(u)du} o(dy), (5.3)
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FORWARD PRICE WITH COUNTERPARTY RISK

where @ is the standard normal cumulative function, and

o () —dep(r -y
1 p—

oy T —t

Proof. Let firm A enter a short position in a financial power forward contract.
The payoff for party A of entering such a forward contract will be

]l{V >L}/ du— t Tl,Tz).

Since the risk-free interest rate r is zero, the arbitrage-free price of the forward
contract will be given by the equation

|:( {V T2 >L}/ dl/l— tTlITZ))l]-—t:| :O

Due to the independent increments of Band W, they are independent of F;,
which leads to the forward price

(5
FD(t, T, Tz) = EQ |:/T1 ]l{V(Tz)>L}S(M)du} . (54)

Consider first the indicator function in (5.4). It can be shown that the explicit
solution to the GBM (5.1) for p > tis

V(Tz) — V(t)e(fv(W(Tz)—W(t))—%O"z/)(Tz—t))

7

The indicator function is nonzero when V(<) > L, i.e.

V(t)eUV(W(Tz)*W(f))Jr(r*%)U\Z/)(Tz*f)) > L

-_ 4

which is equivalent to

v (W(m) — W) > In (%) + %U%,(T _h).

Exploiting the normal distribution of the brownian motion, it is clear that the
left-hand side of the equation is equal in distribution to

oV —tXq, (5.5)

where X; ~ N(0,1).
Thus the indicator is nonzero when
V(t
In (#) — 10 (mn—t)

X < =d. 5.6
1 < o 1 (5.6)
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Since W and B are independent the forward price (5.4) becomes

.
Fp(t, 71, 2) = Eq /T S(M)dU]l{v(rz)zL}l (5.7)

1

=Fo :/sz S(u)du} Eg []l{v(rz)zL}}

1

_ Eq /2 S(u)du] Q(V(m) > L)

1

' g UTZS( )d]@(cf)
= u)du ,
—10 Q 51 !
» Wn(Y2)—ted(T-p) . o
where d = T , and & is the standard normal cumulative distri-

bution function.
O

Comparing the forward price (1.28) in section 1.5 with (5.3), it is evident
that with the appearence of a default risk, the forward price is discounted by
a factor of ®(dy), that is, discounted by the probability that the counterparty
company does not default. Figure (5.1) shows the plot of the probability
(P(V(T) > L)) as a function of the volatility oy, and thus shows may be seen
as a plot of the discount ®(d;) of a forward contract as well.

Survival plot

1.0

0.8

P(S(T) > L)
o
=)

<
'S
L

0.2

0.0 4

0.60 0.‘25 0.‘50 0.‘75 ]..60 ]..‘25 1.50 l.':"S 2.‘00
volatility
Figure 5: Plot of the survival probability of a firm as a function of the volatility
of the firm’s value process V, with x = 100, L =90, T = 10.

As one can see in figure (5.1), the probability that a company defaults has a
positive correlation with the volaltility of the firm’s value process. Something
that makes sense intuitively as well, since value processes with high volatility
have increased risk compared to a value process with modest volatility.
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The assumption that W and B from (5.1) and (5.2) are independent implies
that the total value of the company is independent of the spot price of the
power the company is selling. The next proposition states the forward price if
W and B are correlated.

Proposition 5.2. Denote by Fp(t, 71, T2) the time t price of a financial power forward
contract where the spot price of power has dynamics given by (5.2). Assume that the
seller of the forward contract has a default risk, where time of default The forward price
is then given by

FD(t, T1,T2) = p(l)(dAl) + 5615(t)q3(dAl), (5.8)
~ In(4)Je2 (- -
where dl _ Il( LU‘)/\/;‘TTVt(TZ t) = d

Proof. Using notation from chapter 4, the average spot price over a delivery
period of |1, 1] is given as

" [*S(w)du = D(n, )
u)du = D(t, ),
—TJg .

and
D(Tl, Tz) l:d &S(t) + X5,

where X, ~ N(0,1).
Combining this last relation with the forward price equation (5.7), the forward
price is given by

.
Fp(t, 11, ) = Eq /E S(”)du]l{V(rz)zL}|Ft]

1

= EQ _D(Tl, TZ)]I{V(Tz)zL}}
= Eq _(5(15(t) + X101) ]l{V(Tz)ZL}] . (5.9)

The assumption that W and B are correlated can satisfied by defining
X1 =pZ+4/1-p?U,
and
Xo =12,

where Z and U are independent standard normal variables and |p| < 1. The
correlation of X; and X, will be

Eq[X1Xa] = Eg[(pZ + /1 — p?)Z] =Eg[pZ?] + Eq[y/1 — p2ZU]
=p + /1 — p?*Eq[U]Eg[Z] = p. (5.10)
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By (5.6), V(1) > L is equivalent with X; < dy, thus the last forward price
equation (5.9) becomes

Eo [(&1S(t) + Xo07) 11{V(T2)>L}] = Eg [(5615(0 + X01) ]l{x1<d1}]
= Eq [~15(t)1{xl<d1}}
+Eq [Xzﬁl]l{xl<d1}}
= &;S(t) Eg [1{X1<d1}] (5.11)
+ 1 Eg [Xzﬂ{xl<dl}} (5.12)

The term (5.11) can be straigtforwardly computed as

5(t) Eq [n{xldl}] = & S(1)®(dy). (5.13)

While (5.12) can be computed using the law of total expectaton in the following
manner.

Eq [Xz]l{xldl}} = Eq [EQ [Xz]l{x1<51}|X1 = xl”
= /_OOEQ [Xo| X1 = x1] Ly, gy p(x1)dxy

- /oo px1l gy (x1)dx

dy
=p /_ x1¢(x1)dxy
= pp(dy). (5.14)
Combining (5.11) and (5.14) yields the forward price

Fp(t, 11, 12) = pp(dr) + &1 S(t)®(dy),

which is what was to be shown. ]

5.2 Call Option with Counterparty Risk

In this section, a closed form solution of a call-option with the presence of
counterparty is derived. Before looking at a call option involving counterparty
risk, a call option without counterparty risk is priced. Remember that the time
t price of a forward contract over a delivery period [71, T2] may be given as

F(t, 1, ) =

Eq [/:2 S(u)du|]-"t1 . (5.15)

T —1T 1

The following proposition will give an analytical price on a call option with no
counterparty risk.
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Proposition 5.3. Let the time t price of a hydro power forward contract with delivery
period 1y, 1], F(t, 71, &2), be given by (5.15), where S is a continuous stochastic
process given by (5.1). Let T < Ty be the maturity date of a call option with strike
price K, and settlement date T,. Suppose the risk-free interest rate r is zero. The time t
price of such a call option is then given by

p(t, T, 11, 2) = P(c2)(&S(t) — K) + 7¢(c2) (5.16)
Proof. The payoff function f is given by
f=max (F(t, 7, ) — K,0). (5.17)

and chapter 4 grants the relation

1
T—T

/ % 5(s)ds 2 &S(t) + Xoo, (5.18)

T

for X, ~ N(0,1), and &, & on the form (4.16), (4.17), respectively.
Thus the forward price may be given as

F(t, T, T) = Eq [&S(t) + Xzﬁ"]:f] . (5.19)

Solving &S(t) + X20 > K for X», yields

Xo < —— =o2. (5.20)
Since the risk-free interest rate r is zero, the arbitrage-free price is given by

P(t,T,11,2) = Eq [max (F(t, 1, ») — K, 0)|.F¢]

= Eq :(F(t/ 7, 72) — K) ﬂ{F(t,Tl,T2)>K}}

= Eo [((@S() + X27) = K) T (e} |

= Eq [S(D)1 (xcr}| — Fq |Xo0T (30013 = KT (303}
— AS(DQ(Xs < ¢3) + 0 / " xop(xa)dxs — KQ(Xs < )

2

= ®(c3)(&S(t) — K) + d(ca),

which corresponds with (5.16). O
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The following proposition gives the analytical price of a defaultable call
option.

Proposition 5.4. Let the time t price of a hydro power forward contract with delivery
period 11, 2], F(t, 71, 2), be given by (5.15), where S is a continuous stochastic
process given by (5.1). Let T < 7y be the maturity date of a call option with strike
price K, and settlement date T. Assume that the option seller has a default risk and
that the default time T is given by

risk-free interest rate r is equal to zero, and that The time t price, pp, of such a call
option is then given by

P(t/ T/ 1, TZ) = &S(t)C(CZI df\l/ P) + 61¢(min(C21 dAZ)) - KC(Czl d/\ll p) (521)
Proof. The payoff function at time 1, is given by
f = max (F(t, T, Tz) —K, 0) 1{V(T2)>L}

Remember that (5.6) implies V(1) > L is equivalent with X; < dy, and
relying on (5.18), (5.19), (5.20) above, the arbitrage-free price is given by

pp(t, T, 71, 72) = Eq |max (F(t, 71, 72) — K,0) Ty (1 >L}|~Ft}

= Eq |(F(t, 1, 22) = K) ]1{F(t,r1,72)>K}H{V(T2)>L}}
= Eq [((&S() + Xa0) ~ K) T xycc (3,

= EQ _&S(t)]l{X2<C2}]l{X1<dA1}}

+Eq [Xzan{xzqz}n{xldﬁ]
- EQ |:K]1{X2<CZ}]1{X1<dA1}:|
= C(cp,d1,0)(&S(t) — K) + &1¢(min(cp, dy)),
where the last equality relies on results from (4.21) and (4.35). [

Depending on whether ¢; < dy or ¢, > dj, the difference in price d for a
non-defaultable call option (5.16) and a defaultable call option (5.21) will be

d= pD(t, T, Tl) — p(t, T, 1, Tz) C(Cz,dl,p) (565(t) ) + 0’14)(C2 )
— (@(c2)(aS(t) — K) + 7¢(c2))
(C

= (aS(t) — K)(C(ca, d1,p) — ®(c2)), (5.22)
for cp < d], and
d = (&S(t) — K)(C(ca, d1,0) — D(c2)) + phi(ca) — phi(dy), (5.23)
for c; > dj.
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Appendix A: The Bivariate Normal
Distribution

This theory is derived from The Mulitvariate Normal Distribution by Y.L. Tong
given in [Ton90]. In order to see that the bivariate normal distribution is a
natural extension of the univariate normal distribution, and as a reminder to
the reader, the definition of a normally distributed random variable is defined
in what follows.

Definition A.1. A random variable X is said to have a normal distribution
with mean p and variance ¢ > 0 if its probability density function f is of the
form

flx) = \/21_7106(%)’ (A.1)

where 1 € R and ¢? € (0,0).
The bivariate normal distribution on the other hand is defined as follows.

Definition A.2. Let X be a 2-dimensional random variable of the form

- &j ~ N (Lﬂ / {012 c%D (A2)

, where y; € R and U'iz € (0,00) fori = 1,2, and p is the correlation of X; and
X5 given by
cov(Xy, X3)

p = corr(Xy, Xp) = B (A.3)

The random variable X is said to have a bivariate normal distribution if its
probability density function f is of the form

1t () ) (5 (552
f(x1, xz) — e 2(1—p#4) 1 1 2 2 .
27'[0'10'2 1-— p2
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PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION

A.1 Properties of the Bivariate Normal
Distribution

If X is defined as in (A.2), then the following properties hold. Let C is the
cumulative distribution function of X and P is a probability measure, then for
x € R?
X2 X1
P(X < x) =C(x1,x2,p) = /m/oof(xl,xz)dxldxz. (A4)

For x; € R the following conditional expectation will have distribution

(X1[X2 = x2) ~ N (m + Lota - ), (1 - p%%) N
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Appendix B: Codes

B.1 Ornstein-Uhlenbeck Process

import matplotlib.pyplot as plt

import numpy as np
# dX(t) = (mu- alpha X(t))dt + sigma dB(t)

n =25 # number of processes
mu = 10

alpha = 0.3

sigma = 0.05

T = 90 # total time

x =0 # initial value X

dt = 0.01 # length of time steps
N = int(T/dt) # number of time steps
t = np.linspace(0,T,N) # time points

#mean

def m(x,alpha,mu,t):

return x*np.exp(-alpha*t) + mu*(l-np.exp(-alphaxt))

#variance
def v (alpha,

sigma,t):

return sigma*np.sqrt((l-np.exp(-2*%alphax*t))/(2*xalpha))

for i in (n):
normalvariates = np.random.normal(0,1,N) # N standard normal var
B = np.cumsum(normalvariates) # cumulative sum of nor
X = m(x,alpha,mu,t)+ v(alpha,sigma,t)*B
plt.plot(t, X)
plt.title(’0Ornstein-Uhlenbeck Process’)
plt.xlabel (’t?)
plt.ylabel (’X(t)’)
plt.show ()
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COMPOUND POISSON PROCESS

B.2 Compound Poisson Process

impo
impo

N =
n =

Lamb
mu_U

pois
time
valu
for

3 #

30 #

da = 0.5 #

=0 #

sigma_U = 3 #

s = np.random.poisson(Lambda,
= np.linspace(1l,n,n)

e = np.zeros(n)

i in (N):

poiss = np.random.poisson (Lambda,
value = np.zeros(n)

plt.

rt numpy

as np

rt matplotlib.pyplot as plt

for t in
valu
plt.
plt
plt
plt

show ()

(1,n):

number of processes

number of steps

parameter for jumptimes Poisson(Lambda)
mean of the jump
variance of the jump

size = n)

e[t] = value[t-1] + np.

step (time,value,

where

size =

(np.random.normal (mu_U,

’post?)

n)

.title (’CPP-Process with Normally Distributed Jumps?’)
.xlabel (’t?)
.ylabel (?I(t)?)
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B.3

Survival Plot

impo
from

impo

rt numpy as np
math import sqrt, log
rt scipy.stats as si

import matplotlib.pyplot as plt

0

L I ]
I

def

return (log(x_0/L)-0.5*(sigma**2*T))/(sigma*sqrt(T))

= 100.0 # initial value of company
90.0 # trigger value for deafult
10.0 # maturity
default_constant(x_0, T, sigma,

volatilites = np.linspace (0.001,

ds =
for
d =

[] # list for constants

i in volatilites:

si.norm.cdf (default_constant (x_0,

ds.append (d)

plt
plt
plt
plt.

.plot(volatilites, ds)
.xlabel(’Volatility of V?)
.ylabel (’P(S(T) > L)?)

show ()
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MONTE CARLO ESTIMATION CALL OPTION

B.4 Monte Carlo estimation call option

#0U-process parameters
x = 4

mu = 5

alpha = 0.3

sigma = 0.05

K = 150 # strike price

T = 90 # maturity date

N = 1000000 # number of simulations
#E[X(t)]

tildeMu = x*np.exp(-alpha*T) + mux*x(l-np.exp(-alpha*(T)))
#V[X(t)]
tildeSigma = sigma*np.sqrt((l-np.exp(-2*xalpha*T))/(2*xalpha))

M = (tildeMu - np.log(K))/tildeSigma

def assetprice(m,v):
return np.exp(tildeMu + tildeSigma*np.random.normal(0.0,1.0))

def payoff (S, K):
return (0.0, S-K)

def exact_price(tildeMu, tildeSigma, M):
return np.exp(tildeMu + 0.5*tildeSigmax*2)*
si.norm.cdf (M+tildeSigma ,0.0,1.0) - K+*si.norm.cdf (M,

prices = []

for i in (N):
S_T = assetprice(tildeMu, tildeSigma)
prices.append(payoff (S_T,K))

MCprice = (prices)/float (N)

exact_price = exact_price(tildeMu, tildeSigma, M)
print (exact_price, MCprice)
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SIMULATION OF CORRELATED OU-PROCESSES

B.5 Simulation of Correlated OU-processes

import matplotlib.pyplot as plt

import numpy as np

# dX_1(t) = (mu- alpha X(t))dt + sigma dB(t)

# dX_2(2) = (mu-alpha X(t))dt + sigma d( rhoB(t) + sqrt(l-rho~2)U(t))

n =6

mu = 10
alpha = 0.3
sigma = 0.05
T = 90

x =0

dt = 0.01

N = int(T/dt)
t = np.linspace(0,T,N)

def m(x,alpha,mu,t):
return x*np.exp(-alpha*t) + mu*(l-np.exp(-alphaxt))

def v(alpha,sigma,t):
return sigma*np.sqrt((l1-np.exp(-2*alphax*t))/(2*xalpha))

rho = [0,0.1,0.2,0.4,0.6,0.8,0.95]
for i in (1,n+1):

normalvariatesl = np.random.normal (0,1,N)

normalvariates2 = np.random.normal(0,1,N)

B = np.cumsum(normalvariatesl) # cumulative sum of

U = np.cumsum(normalvariates?2)

X = m(x,alpha,mu,t) + v(alpha,sigma,t)=*B

Y = m(x,alpha,mu,t) + v(alpha,sigma,t)*(rho[i]l*B + np.sqrt(l-rhol[i

plt.subplot(2,3,1i)

plt.plot (t,X)

plt.hold(True)

plt.plot(t,Y)

plt.legend ([’S_1(t)’, ’S_2(t)’])

plt.title(r’$\rho$ = %1.2f° Yrhol[i])

plt.hold(False)

plt.suptitle(’Correlated Ornstein-Uhlenbeck Processes’)
plt.show ()
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