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Abstract

Certain polyhedral fans can be constructed from matroids, and these
serve as the local model of tropical manifolds. Such matroidal fans satisfy
a tropical version of Poincaré duality [JRS18]. In this thesis, we give
conditions on pure polyhedral fans which are equivalent to this property.
Moreover, we classify tropical Poincaré spaces of dimension two.

Furthermore, we develop the derived category of cellular sheaves on a
polyhedral complex, based on work by Curry [Cur14], and use Verdier
duality to prove a vanishing result on the compact support cohomology
of the wave sheaf on a Cohen–Macaulay simplicial polyhedral fan.
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CHAPTER 1

Introduction

1.1 A short introduction to Tropical Geometry

From a certain point of view, tropical geometry is the study of the geometry
of the semi-ring T, whose underlying set is R ∪ {−∞}, with non-invertible
addition x ⊕ y := max{x, y} and x � y := x + y as multiplication [Bru+15;
MS15]. Since T is not a field, nor in fact a ring, one cannot simply apply the
classical algebraic geometry theory.

Remarkably, one can still obtain a geometric theory by appropriately defining
concepts from algebraic geometry. For instance, there are several equivalent
definitions of tropical varieties [Bru+15]. For simplicity, we will restrict our
attention to tropical geometry in RN . One can first define tropical polynomials
as functions

f : RN → R, (1.1)

x 7→
⊕
i∈ZN

aix
⊗i, (1.2)

which is a polynomial using tropical operations. These tropical polynomials
are piecewise linear functions, and one defines the tropical hypersurface V (f)
associated to f to be the set of points in RN where f is not differentiable.
This set is a finite union of convex rational polyhedrons, i.e. intersections of
half-spaces {x ∈ RN | Ax ≤ b, A ∈ Zm×n, b ∈ Rm}, which are equipped with
weights obtained through the exponents of the polynomial.

More generally, a tropical subvariety of RN is a pure dimensional rational
finite polyhedral complex in RN , having positive integer weights on its
maximal faces, satisfying a particular balancing condition, widespread in tropical
geometry, for each of its codimension one polyhedrons [Bru+15; JRS18; MS15;
MZ14]. One can generalize further to tropical cycles in RN by allowing negative
weights on the faces.

One way to obtain a tropical variety is through tropicalization. Let (Vt)t∈A
be a family of proper complex analytic subvarieties of dimension k in (C×)N ,
with A ⊂ (1,∞) a subset not bounded from above. Then the componentwise
base t logarithm maps:

Logt : (C×)N → RN ,
(z1, . . . , zn) 7→ (logt |z1|, . . . , logt |zn|),

1



1. Introduction

give amoebas Logt(Vt) ⊂ RN , which are closed subsets [Bru+15]. Given such a
family of amoebas, we may take the limit limtropt→∞ Vt := limt→∞ Logt(Vt),
which is a set admitting the structure of a rational finite polyhedral complex
of dimension k in RN [Bru+15]. Furthermore, one can obtain weights on the
complex from the family Vt [Bru+15, Definition 5.13]. When these weights are
well defined, we say that V = limtropt→∞ Vt is the tropical limit of the family
Vt. Moreover, the tropical limit V = limtropt→∞ Vt is a tropical subvariety of
RN [Bru+15; Ite+16], giving a relation between tropical varieties and complex
varieties.

This connection between tropical geometry and complex geometry has
spurred development of several results “computing invariants tropically”. An
early example is the proof by Mikhalkin that the Gromov-Witten invariant
Nd,g, counting the number of algebraic curves of degree d and geometric genus
g passing through 3d− 1 + g points in CP2, can be determined by counting the
number of certain tropical curves in R2 with multiplicities [Mik05]. Moreover,
Mikhalkin showed that a similar invariant for the real projective plane RP2,
the Welschinger invariant, can also be computed tropically [Mik05]. Other
instances of such connections between tropical and complex geometry include
applications to the Gross–Siebert program in mirror symmetry [Gro11] and
work on Brill–Noether theory [Coo+12; JP14; JP16].

A particular class of tropical subvarieties of RN are the tropical linear spaces
defined in [Spe04]. Speyer also formulated a tropical version of the f -vector
conjecture, specifying exactly the number of polyhedrons of each dimension
a tropical linear space can have. Not all such linear spaces arise from the
tropicalization of a family of algebraic linear spaces, leading to a distinction
between the realizable tropical varieties, which appear as tropical limits, and
the non-realizable tropical varieties.

One way to obtain a tropical linear variety is through the use of matroids
[Bru+15; Oxl11; Spe04]. One can associate a rational weighted finite polyhedral
fan to a matroid (see Section 2.9). These satisfy the balancing condition and
are tropical linear varieties. Any fan that can be constructed from a matroid is
called matroidal. To generalize even further, one can define a tropical manifold,
which is a topological space locally modeled on the Bergman fan of a matroid.
An example of a tropical manifold is the tropical projective space TPN .

Tropical geometry also has an associated tropical homology and cohomology
theory, giving groups Hq(X,Fp) and Hq(X,Fp), as well as Borel–Moore and
compact support versions of these, defined in terms of the homology and
cohomology of the p-th multi-tangent cosheaf Fp and p-th multi-cotangent
sheaf Fp respectively. Tropical homology gives another characterization of the
balancing condition: a k-dimensional tropical subvariety Z of RN induces a class
[Z] ∈ HBM

k (X,Fk), called the fundamental class of Z, in the k-th Borel–Moore
homology group of the k-th multi-tangent cosheaf.

A remarkable result from [Ite+16] states that tropical cohomology can be
used to compute Hodge numbers of complex projective varieties: if a tropical
submanifold X of TPN is the tropical limit of complex analytic family Xt
of projective varieties parametrized over the punctured disk D∗, then for
sufficiently large |t|, the complex variety Xt ⊂ CPN is smooth. Moreover,
again for sufficiently large |t|, the (p, q)-th Hodge number hp,q(Xt) of Xt is equal
to the q-th Betti number hp,q(X) := dimHq(X,Fp) of the p-th multi-cotangent
sheaf Fp, giving a connection between Hodge theory and tropical cohomology.
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1.1. A short introduction to Tropical Geometry

Jell, Rau and Shaw [JRS18] proved that, for any tropical manifold X, i.e.
tropical space locally modeled on Bergman fans of matroids, the cap product
with the fundamental class ∩[X], which is a morphism:

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p),

as defined in [JSS19], is an isomorphism, a property which has been called
tropical Poincaré duality [JRS18; JSS19]. Similarly to Poincaré duality for
smooth manifolds, this duality is proved locally, then lifted up to a global
setting. One shows that tropical Poincaré duality holds for Bergman fans of
matroids, then a Mayer–Vietoris argument is used to prove the result globally.
However, it has been observed that there are polyhedral fans which satisfy
tropical Poincaré duality, despite not being Bergman fans of matroids (see for
instance Example 3.4.4).

A rational polyhedral space is a space locally modeled on polyhedral fans.
This class then encompasses tropical manifolds. We will call any rational
polyhedral space satisfying the tropical Poincaré duality a tropical Poincaré
space. In this thesis, we will primarily be interested in determining which
rational polyhedral spaces are tropical Poincaré spaces. To answer this question,
in the same manner as for Poincaré duality in algebraic topology, one can work
locally, which therefore reduces the question to:

Main question. Which rational polyhedral fans are tropical Poincaré spaces?

There are also several other connections from tropical homology to the
study of matroids. In [AB14], Adiprassito and Björner showed that tropical
manifolds satisfy an analogue of the Lefschetz hyperplane theorem. Furthermore,
Adiprassito, Huh and Katz defined the Chow ring of matroid, which satisfies
many properties of the cohomology ring of compact Kähler manifolds, such
as Poincaré duality, the Hard Lefschetz theorem, and the Hodge–Riemann
relations [AHK18]. These three properties, sometimes referred to collectively
as the “Hodge package” or “Kähler package” [AHK18]. It is expected that
the Chow ring of a matroid is isomorphic to the tropical homology of the
compactification of the fan of a matroid [JSS19].

Another sheaf which is relevant in Tropical Geometry is the p-th wave sheaf
Wp, as introduced in [MZ14]. These sheaves induce corresponding cohomology
theories, giving rise to the wave groups Hq(X,Wp). These groups act on
tropical homology [MZ14]. In particular, Mikhalkin and Zharkov defined a wave
homomorphism:

φ̂ : HBM
q (X,Fp)→ HBM

q−1 (X,Fp+1),
constructed using an element of the wave group H1(X,W1), which can be
applied for any p and q. They observed that the fundamental class of any
tropical cycle is in the kernel of φ̂. This observation leads to a “tropical Hodge
conjecture”: the kernel of φ̂ consists exactly of the classes of tropical cycles.

Using tropical Poincaré duality, Jell, Rau and Shaw [JRS18] proved that for
any tropical manifold X, this statement holds true for the

φ̂ : HBM
n−1(X,Fn−1)→ HBM

n−2(X,Fn).

The only property of tropical manifolds used in the proof is the tropical Poincaré
duality, hence is expected that this will in fact hold for any tropical Poincaré
space.

3



1. Introduction

In investigating our main question, we develop several tools from the derived
category of sheaves on a polyhedral complex. This allows us to consider the
following question:

Question. What is the compact support cohomology Hq
c (X,Wp) of the wave

sheaves on a rational polyhedral fan?

1.2 Main results

In the first part of this thesis, we aim to classify exactly which rational polyhedral
fans are tropical Poincaré spaces. To that end, we first prove the following
result:

Corollary 1.2.1 (Corollary 4.1.5). Let X be a rational polyhedral fan with no
zero weights. Then there is an isomorphism Cp,nc (X) ∼= CBMn−p,n(X).

This corollary can be applied in the case of pure dimensional fans to give:

Theorem 1.2.2 (Theorem 4.3.1). Let X be a pure balanced rational polyhedral
fan, with no zero weights. Then the cap with the fundamental class
∩[X] : Hp,q(X)→ HBM

n−p,n−q(X) is injective.

This theorem can then be used to classify the pure rational polyhedral fans
which are tropical Poincaré spaces in terms of some properties we will introduce
in the main text:

Theorem 1.2.3 (Theorem 4.5.1). A rational balanced polyhedral fan of pure
dimension n with no zero weights is a tropical Poincaré space, i.e.

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for all p, q = 0, . . . , n, if and only if

1. X is uniquely p-balanced for all p, and

2. the dependence cosheaf Kp is acyclic in Borel–Moore homology for all p,
that is, HBM

q (X,Kp) = 0 for q 6= n− 1 and all p.

However, there are non-pure fans which are tropical Poincaré spaces, see for
instance Example 7.1.2. Moreover, we prove the two following conditions on

Corollary 1.2.4 (Corollary 4.6.1). Let X be a polyhedral fan of pure dimension
n, with the cosheaf Kp acyclic in all degrees except n− 1 for all p. Then ∩[X]
is an isomorphism if and only if

(−1)nχ(CBM• (X,Fn−p)) = dimFp(v).

Corollary 1.2.5 (Corollary 4.6.2). Let X be a balanced polyhedral fan of pure
dimension n. Suppose for each τ ∈ X, with τ 6= v, the tangent fan TτX
is a tropical Poincaré space. Then ∩[X] : Hq(X,Fp) → HBM

n−q (X,Fn−p) is
an isomorphism if and only if i∩[X] : Hq(X,Fn−p) → HBM

n−q (X,Fp) is an
isomorphism.

However, in the 2-dimensional case, it can be shown that purity is necessary
(see Proposition 5.1.1), and we prove the following “geometric” classification
theorem:

4



1.2. Main results

Theorem 1.2.6 (Theorem 5.6.1). Let X be a rational 2-dimensional polyhedral
fan. The cap product with the fundamental class ∩[X] : Hp,q(X)→ HBM

2−p,2−q(X)
is an isomorphism if and only if

1. X is pure,

2. the boundary map ∂1 : ⊕τ∈X1 Kp(τ)→ Kp(v) is surjective,

3. X is uniquely balanced, and

4. X is uniquely balanced at each edge.

We also show that each of the above conditions are independently necessary
in a series of examples. Throughout the text, we have included examples
of [polymake] scripts, which we use to compute the tropical homology and
cohomology of several examples, by using the Cellular Sheaves package from
[KSW17].

In the search for conditions guaranteeing tropical Poincaré duality, we
extensively investigated Verdier duality for cellular complexes, as first introduced
in [Cur14]. In Appendix A, we introduce the derived category of sheaves
on a polyhedral complex, consisting of complexes of sheaves modulo quasi-
isomorphisms as objects, and chain maps as morphisms. The Verdier dual
functor, defined in terms of the derived functor of sheaf Hom of complexes
between an object and the dualizing complex of a polyhedral complex, is as
follows:

Definition 1.2.7 (Definition A.6.1). The Verdier dual functor is given by:

D : Db(ShvX)→ Db(ShvX)op,

F• 7→ R Hom •(F•, ω•X).

The complex D(F•) is called the Verdier dual complex of F•.

This functor can be used to compute the compact support cohomology of a
sheaf by:

Theorem 1.2.8 (Theorem A.6.2). Let F be a sheaf on a polyhedral complex X
of dimension n. Then

Hi
c(X,F) ∼= Hn−i(X,D(F))∗,

where Hq(X,D(F)) is the q-th cohomology of the complex {Γ(X,D(F)i)}i∈Z,
also called the hypercohomology of D(F).

A possible approach to the question of classifying which polyhedral fans
satisfy the tropical Poincaré duality then consists in determining exactly when
D(Fp) = Fn−p. This approach has recently been carried through for tropical
manifolds in [GS].

As an application of this theory, we partially resolve the following conjecture:

Conjecture 1.2.9 ([KSW17]). Let L ⊂ Rn be a tropical linear space of dimension
d. Then we have

Hq(L,Wp) = 0 if p 6= q, and Hq
c (L,Wp) = 0 if p 6= d.

5



1. Introduction

This conjecture can be related to the f -vector conjecture on tropical linear spaces
from [Spe04].

We prove the following vanishing theorem on the compact-support
cohomology of the wave sheaf for a particular class of polyhedral fans:

Theorem 1.2.10 (Theorem 6.3.2). If X is a Cohen–Macaulay simplicial
polyhedral fan of dimension n, then Hi

c(X,Wp) = 0 if i 6= n for all p.

Corollary 1.2.11 (Corollary 6.4.1). Let M be a matroid and B(M) its Bergman
fan. Then Hi

c(B(M),Wp) = 0 if i 6= dim(B(M)) for all p.

The theorem builds upon several results in the derived category of sheaves
on a polyhedral complex, which have applications in a larger context. For
instance, we prove the two following theorems:

Theorem 1.2.12 (Theorem 6.1.3). Let X be a polyhedral complex of dimension
n. The dualizing complex ω•X of X is concentrated in degree −n if and only if
X is Cohen–Macaulay.

Theorem 1.2.13 (Theorem 6.3.1). A fan X is simplicial if and only if Wp is
projective for all p.

1.3 Outline of the thesis

The thesis is structured as follows:

Chapter 2 introduces polyhedral complexes and cellular sheaves, along with
refinements of these. These are the basis for a cellular homology and
cohomology theory. Moreover, we introduce tangent fans, a Cohen–
Macaulay property and a class of polyhedral fans coming from matroids.

Chapter 3 introduces tropical theory. We introduce the Fp cosheaves, and
define the balancing condition which determines when a polyhedral
complex is a tropical variety. Furthermore, we introduce a cap product
on tropical cohomology. Finally, we define what it means for this cap
product to induce isomorphisms, giving a tropical Poincaré duality.

Chapter 4 develops tools to define which polyhedral fans are tropical Poincaré
spaces. We prove a theorem giving necessary and sufficient criteria for
the duality to hold in the pure-dimensional case. Finally, we reformulate
these criteria in terms of Euler characteristics.

Chapter 5 is dedicated to the classification of fans of dimension 2 which are
tropical Poincaré spaces.

Chapter 6 presents a vanishing result on a certain sheaf for Cohen–Macaulay
simplicial polyhedral fans, partially confirming a conjecture of [KSW17].

Chapter 7 serves as a conclusion and discussion of possible future research
directions.

Appendix A introduces the derived category of cellular sheaves on a polyhedral
complex. We first develop the homological tools necessary to define the

6



1.3. Outline of the thesis

derived category, then we introduce derived functors. Using these tools,
we derive a version of Verdier duality for cellular sheaves on polyhedral
complexes.

Appendix B presents two results in commutative algebra which are used in
the text.

7





PART I

Tropical Poincaré duality





CHAPTER 2

Polyhedral complexes and cellular
sheaves

In this chapter, we introduce polyhedral complexes, give them the Alexandrov
topology, and then define cellular sheaves. Next, we introduce several related
concepts. Given a polyhedral complex, one can get a similar complex through
refinement. This new polyhedral complex may be more amenable to computation,
in particular if it is simplicial. Next, we introduce tangent fans, which encode
the local structure of a polyhedral complex at a face. These are a construction
used to build a polyhedral complex from a face of another one. Finally, we
introduce the Bergman fan of a matroid. These provide a general class of
examples, and serve as the local model of tropical manifolds.

2.1 Polyhedral complexes and Alexandrov topology

In this section, we follow the conventions of [KSW17] by defining polyhedral
complexes, and then [Cur14] to give them a topology.

Definition 2.1.1. A polyhedron is a set of the form {x ∈ RN | Ax ≤ b}, for some
matrix A ∈ Rm×N and a vector b ∈ Rm. Given this definition, a polyhedron
is always convex and closed. A polyhedron is rational if the coefficients of the
matrix A are integral, i.e. A ∈ Zm×N .

Definition 2.1.2. A polyhedral complex X is a collection of polyhedrons in RN
such that:

• Every face of each polyhedron of X is also in X, i.e. if σ ∈ X, and τ is a
face of σ, then τ ∈ X,

• The intersection of two polyhedrons in X is either empty or a face of
both.

The dimension of X is the dimension of the polyhedron of X with greatest
dimension. The elements of X are called polyhedrons, cells or faces, and the
subset of elements of dimension i is denoted by Xi. A cell of maximal dimension
is also sometimes called a facet. If a cell τ is a face of a cell σ, we write τ ≤ σ,
which gives a partial ordering on X.

We say that a face σ ∈ X is maximal if it is maximal with respect to
the ordering ≤. A polyhedral complex is pure dimensional, or pure if all the
maximal faces are of the same dimension.

11



2. Polyhedral complexes and cellular sheaves

We say that a polyhedral complex is a polyhedral fan if there is a non-empty
polyhedron τ ∈ X such that τ ≤ σ for all σ ∈ X, and it is a pointed polyhedral
fan if the minimal polyhedron τ is a point, located at the origin.

A polyhedral complex is rational if all its polyhedrons are rational.

Remark 2.1.3. Note that our definition of polyhedral fan is somewhat more
general than the standard definition, in which one thinks of polyhedral fans as
a set of cones, corresponding to our pointed polyhedral fans. Our definition
allows for polyhedral fans with non-empty lineality spaces.
Remark 2.1.4. Since the relation ≤ on X is a partial order, any polyhedral
complex X can be made into a category, in the standard manner for a poset,
defined by the data:

• The objects Ob(X) are the polyhedrons in the complex,

• There is a morphism rτ,σ ∈ Mor(X), with rτ,σ ∈ HomX(τ, σ) if and only
if τ ≤ σ.

Moreover, a poset can be graphically represented using a Hasse diagram:

Definition 2.1.5. Let (X,≤) be a partially-ordered set. The Hasse diagram of
X is the directed graph where:

• the nodes are the elements of X, and

• there is an arrow from a node τ to a node σ when τ < σ and there is no
element γ such that τ < γ < σ.

Example 2.1.6. Consider the polyhedral complex X in R3 consisting of the
cone cone{e1, e2, e3} and all of its faces. The Hasse diagram of this complex is:

cone{e1, e2, e3}

cone{e1, e2} cone{e1, e3} cone{e2, e3}

cone{e1} cone{e2} cone{e3}

0

We wish to have a topology on each polyhedral complex, so that we may
later speak of sheaves on such spaces. Since a polyhedral complex X can be
considered as a partially ordered set using the face relation ≤, we may use the
following topology:

Definition 2.1.7 ([Cur14, Definition 4.2.2]). Let (X,≤) be a partially ordered
set. The Alexandrov topology on X is the topology whose open sets U are the
sets such that

x ∈ U and x ≤ y =⇒ y ∈ U.
The open set Star(σ) := {ρ ∈ X | σ ≤ ρ} is called the star of σ. The set of
stars forms a basis for the topology.

12



2.1. Polyhedral complexes and Alexandrov topology

Remark 2.1.8. Let X be a finite polyhedral complex in RN . Since this is a finite
set, the Alexandrov topology is compact, and every subset of X is compact. In
particular, for any polyhedron σ ∈ X, {σ} ⊂ X is compact, even though the
polyhedron σ is may not be compact as a subset of RN .
To make this distinction clear, we introduce the support of the complex:

Definition 2.1.9. Given a polyhedral complex X in RN , and any cell σ ∈ X,
the support of σ is the set

|σ| := {x ∈ RN |x ∈ σ}.

The support of X is the set

|X| := ∪σ∈X |σ| = {x ∈ RN | ∃σ ∈ X, s.t. x ∈ σ}.

The support is equipped with the Euclidean topology inherited from RN .
Moreover, each of the sets |σ| is closed in RN , since our definition of polyhedrons
(Definition 2.1.1) gives closed subsets of RN . If X is a finite polyhedral complex,
then the support of X is a finite union of closed sets, hence is closed.

Definition 2.1.10. Given a polyhedral complex X of dimension n, the f -vector
of X is the n+ 1-dimensional vector whose i-th component is the number of
i-dimensional cells of X, and the f b-vector is the f -vector of bounded faces.

Our interest in the Alexandrov topology primarily comes from the close
relation between the category X of the polyhedral complex as a poset, and the
category OpenX of open subsets of X, see (Remark 2.2.4).

Later, we will want to exploit the cellular nature of polyhedral complexes
in computations of sheaf cohomology, such as in Definition 2.5.1. However, to
be able to define boundary maps that form a complex, we need a notion of
orientation. For each polyhedron of the complex, we can choose an ordered basis
of the subspace of RN parallel to the polyhedron. For each face of a polyhedron,
one can compare the chosen orientation of the face with the orientation of the
polyhedron. To detect whether these orientations are the same, we define a
map, which will be essential in defining an appropriate boundary map for each
polyhedral complex:

Definition 2.1.11. Given a polyhedral complex X with chosen orientations for
each polyhedron, we define an orientation map O : Xi−1 ×Xi → {0, 1,−1} for
each i ≤ dimX, by

O(τ, σ) :=


0 if τ 6≤ σ
1 if the orientation of τ ⊆ ∂σ and τ coincide,
−1 if the orientation of τ ⊆ ∂σ and τ do not coincide.

We prove [Cur14, Lemma 6.1.8] in the case of polyhedral complexes:

Lemma 2.1.12. If τ ∈ X is a face of a face σ ∈ X, such that τ ≤ γ ≤ σ, then
there are exactly two such γ.

Proof. Since τ has codimension 2 in σ, there must be at least two distinct
faces γ1 and γ2 of σ such that τ < γi. Suppose there is a third γ3, distinct
from both others, with τ < γ3. Then, since σ is a polyhedron, the three faces
must intersect in a codimension 3 face. But τ is in this intersection, which is
impossible. Hence there can only be two faces of σ having τ as a face. �
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2. Polyhedral complexes and cellular sheaves

2.2 Cellular sheaves of vector spaces

Using the Alexandrov topology (Definition 2.1.7), one can define cellular sheaves
and cosheaves of vector spaces on a polyhedral complex.

Definition 2.2.1 ([Cur14, Corollary 4.2.13]). A cellular sheaf is a sheaf of vector
spaces on a polyhedral complex with respect to Alexandrov topology.

A cellular cosheaf is a cosheaf of vector spaces on a polyhedral complex
with respect to Alexandrov topology.

Remark 2.2.2. Note that we work with sheaves and cosheaves of vector spaces
throughout this text. In particular, unless stated otherwise, we work with
sheaves of R vector spaces. One could however define sheaves of sets or abelian
groups to obtain a more general theory.

Proposition 2.2.3 ([Cur14, Theorem 4.2.10]). Let X be a polyhedral complex,
hence, by Remark 2.1.4, a category. Any cellular sheaf G is uniquely determined
by a functor F : X → Vectk, where Vectk is the category of vector spaces
over a field k. By abuse of notation, the sheaf and functor are both denoted
by F . Similarly, any cellular cosheaf is uniquely determined by a functor
G : Xop → Vectk.

Remark 2.2.4. This proposition allows us to define sheaves and cosheaves on a
polyhedral complex merely by specifying corresponding functors. To understand
fully the correspondence between sheaves and functors on Alexandrov spaces,
we refer the reader to the discussion in [Cur14, Section 4.2.2]. A particularly
useful consequence of this characterization of sheaves as functors is that, for
any cell τ ∈ X and sheaf F ,

F(τ) = F(Star(τ)),

where on the left F is thought of as a functor, and on the right, as a sheaf.
Remark 2.2.5. Note that the category of cosheaves CoShvX is dual to the
category of sheaves ShvX .

Proposition 2.2.6 ([Cur14, Remark 4.2.11]). Let X be a polyhedral complex, F
a cellular sheaf, and τ ∈ X a cell. Then the stalk Fτ of F at τ is

Fτ = F(τ).

Proof. By definition, the stalk Fτ is the direct limit of the F(U) over open
subsets U containing τ , i.e.

Fτ = lim−→
U3τ
F(U).

Since the smallest open subset U containing τ is Star(τ), we have that

Fτ = F(Star(τ)) = F(τ),

where the last equality follows from the functor-interpretation of the cellular
sheaf, as discussed in Remark 2.2.4. �

We introduce some cellular sheaves as examples:

14
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Definition 2.2.7. Let X be a polyhedral complex. The constant sheaf RX with
values in R is the sheaf defined as the functor RX : X → VecR taking values:

• For a cell σ ∈ X, one has RX(σ) = R.

• For τ ≤ σ, the morphism r : τ → σ is taken to RX(r) = idR.

More generally, one can consider the constant sheaf of any vector space over
any field:

Definition 2.2.8. Let X be a polyhedral complex. For a vector space V over a
field k, the constant sheaf VX with values in V is the sheaf defined as a functor
VX : X → Veck taking values:

• For a cell σ ∈ X, one has VX(σ) = V .

• For τ ≤ σ, the morphism r : τ → σ is taken to VX(r) = idV .

A similar definition gives constant cosheaves:

Definition 2.2.9. Let X be a polyhedral complex. For a vector space V over
a field k, the constant cosheaf VX with values in V is the sheaf defined as a
functor VX : Xop → Veck taking values:

• For a cell σ ∈ X, one has VX(σ) = V .

• For τ ≤ σ, the morphism s : σ → τ is taken to VX(r) = idV .

2.3 Linear duality

Note that one can construct a cosheaf from a sheaf, and vice versa, through
linear duality:

Definition 2.3.1 ([Cur14, Definition 6.2.8]). Given a sheaf G, the linear dual
V̂ (G) is the cosheaf defined by dualizing all the vector spaces G(σ) for each
σ ∈ X, and dualizing the restriction maps ρτσ : G(τ) → G(σ) to extension
maps ιστ : G(σ)∗ → G(τ)∗. Similarly, one can internally dualize a cosheaf F to
obtain a linear dual sheaf V (F). Note that linear duality is a contravariant
functor V̂ : Shv(X)op → CoShv(X), with the linear dual inverse functor
V : CoShv(X)→ Shv(X)op.

Example 2.3.2. The linear dual V (kX) of the constant cosheaf kX , is just the
sheaf kX .

2.4 Elementary injective and projective sheaves and
cosheaves

An important class of sheaves are the “injective” and “projective” sheaves and
cosheaves:

Definition 2.4.1 ([Cur14, Definition 7.1.3]). Let X be a polyhedral complex and
σ ∈ X a face. We define [σ]W , the elementary injective cell sheaf concentrated
at σ, with values in the vector space W , given by:

[σ]W (τ) :=
{
W if τ ≤ σ,
0 otherwise,

15



2. Polyhedral complexes and cellular sheaves

where the only non-zero restriction maps are the identity.

The use of “injective” in the name of these sheaves is explained by the
following two results:

Proposition 2.4.2 ([Cur14, Lemma 7.1.5]). For σ ∈ X a face, the elementary
injective sheaf [σ]W is injective.

Proposition 2.4.3 ([Cur14, Lemma 7.1.6]). A sheaf I on X is injective if and
only if it is isomorphic to one of the form

⊕
σ∈X [σ]Vσ .

By duality, we also easily construct and classify projective sheaves.

Definition 2.4.4. Let X be a polyhedral complex and σ ∈ X a face. We define
{σ}W , the elementary projective cell sheaf concentrated at σ, with values in the
vector space W , given by:

{σ}W (τ) :=
{
W if τ ≥ σ,
0 otherwise,

where the only non-zero restriction maps are the identity.

Proposition 2.4.5. For σ ∈ X a face, the elementary projective sheaf {σ}W is
projective.

Proof. A projective object in a category C is, by duality, an injective object in
Cop. Clearly each {σ}W is an injective object in the dual category CoShvX . �

Proposition 2.4.6. A sheaf I on X is projective if and only if it is isomorphic
to one of the form

⊕
σ∈X{σ}Vσ .

Proof. It suffices to look at I in the dual category Xop, then apply
Proposition 2.4.3. �

In addition to the elementary sheaves, one can also define elementary
cosheaves. The explicit version of the construction given in [Cur14] is:

Definition 2.4.7. Let X be a polyhedral complex and σ ∈ X a face. We define
[σ̂]W , the elementary projective cell cosheaf concentrated at σ, with values in
the vector space W , given by:

[σ̂]W (τ) :=
{
W if τ ≤ σ,
0 otherwise,

where the only non-zero extension maps are the identity.

Definition 2.4.8. Let X be a polyhedral complex and σ ∈ X a face. We define
{σ}W , the elementary injective cell cosheaf concentrated at σ, with values in
the vector space W , given by:

{σ̂}W (τ) :=
{
W if τ ≥ σ,
0 otherwise,

where the only non-zero extension maps are the identity.

Example 2.4.9. The linear dual swaps elementary injectives and projectives:
V̂ ([σ]W ) = [σ̂]W∗ and V̂ ({σ}W ) = {σ̂}W∗ .
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2.5 Cellular homology and cohomology

Furthermore, cellular sheaves and cosheaves can be used to define cellular
cochain and chain groups:

Definition 2.5.1. Given a polyhedral complex X of dimension n, an open subset
U ⊂ X and a cellular sheaf G, define cellular cochain groups and cellular cochain
groups with compact support, respectively by

Cq(U,G) :=
⊕
σ∈U

dimσ=q
|σ| compact

G(σ) and Cqc (U,G) :=
⊕
σ∈U

dimσ=q

G(σ),

for q = 0, . . . , n. The cellular cochain maps (usual or with compact support)

d : Cq(U,G)→ Cq+1(U,G) and d : Cqc (U,G)→ Cq+1
c (U,G)

are given componentwise for τ ∈ Xq and σ ∈ Xq+1 by dτσ : G(τ)→ G(σ), where

dτσ := O(τ, σ)G(rτ,σ).

Proposition 2.5.2 ([Cur14, Lemma 6.2.2]). The morphism d is a boundary map,
i.e. d2 = 0 for each of the chain maps, hence (C•c (U,G), d) and (C•(U,G), d)
are complexes.

Proof. The proof given in [Cur14, Lemma 6.2.2] can be carried through since
the necessary argument [Cur14, Lemma 6.1.8] is Lemma 2.1.12 in the case of
polyhedral complexes. �

Definition 2.5.3. Given a polyhedral complex X of dimension n, an open subset
U ⊂ X and a cellular cosheaf F , define the cellular chain group and Borel–Moore
cellular chain groups, respectively as

Cq(U,F) :=
⊕
σ∈U

dimσ=q
|σ| compact

F(σ) and CBMq (U,F) :=
⊕
σ∈U

dimσ=q

F(σ),

for q = 0, . . . , n. The cellular chain maps (usual or with compact support)

∂ : Cq(U,F)→ Cq−1(U,F) and ∂ : CBMq (U,F)→ CBMq−1 (U,F)

are given componentwise for σ ∈ Xq and τ ∈ Xq−1 by ∂στ : F(σ) → F(τ),
where

∂στ := O(τ, σ)F(sσ,τ ).
where sσ,τ : σ → τ is the morphism rτ,σ : τ → σ reversed for the category Xop.

Proposition 2.5.4. The morphism ∂ is a boundary map, i.e. ∂2 = 0 for each
of the chain maps, hence (CBM• (U,F), ∂) and (C•(U,F), ∂) are complexes.

Proof. This follows from dualizing the arguments from Proposition 2.5.2. �

Definition 2.5.5. Let U ⊂ X be an open subset. The complexes from
Definition 2.5.1 and Definition 2.5.3 give rise to cohomology and homology
theories:
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2. Polyhedral complexes and cellular sheaves

• The cellular sheaf cohomology H•(U,G) of U with respect to G is
the cohomology of the cellular cochain complex (C•(U,G), d) from
Definition 2.5.1.

• The cellular sheaf cohomology with compact support H•c (U,G) of U with
respect to G is the cohomology of the cellular cochain complex (C•c (U,G), d)
from Definition 2.5.1.

• The cellular cosheaf homology H•(U,F) of U with respect to F is the
homology of the cellular chain complex (C•(U,F), ∂) from Definition 2.5.3.

• The cellular Borel–Moore cosheaf homology HBM
• (U,F) of U with respect

to F is the homology of the cellular chain complex (CBM• (U,F), ∂) from
Definition 2.5.3.

Proposition 2.5.6. Let X be a polyhedral fan, and G a cellular sheaf on X.
Then, for q > 0,

Hq(X,G) = 0.

Proof. Since the only compact cell of a pointed polyhedral fan is the vertex,
the only non-zero group Cq(X;G) is for q = 0. If X is not pointed, there are
no compact cells, hence all groups Cq(X;G) are zero. �

Proposition 2.5.7. Let X be a polyhedral fan, and F a cellular cosheaf on X.
Then, for q > 0,

Hq(X,F) = 0.

Proof. The same argument from Proposition 2.5.6 applies. �

Remark 2.5.8. Note that all groups Cq(X;G) being zero does not lead to an
interesting cohomology theory for the non-pointed polyhedral fans. We will
return to this point in Remark 2.6.7.

Proposition 2.5.9 ([Cur14, Lemma 6.2.9.]). Linear duality (Definition 2.3.1)
induces a relationship between homology and cohomology: Hi(X, V̂ (G))∗ ∼=
Hi(X,G) and HBM

i (X, V̂ (G))∗ ∼= Hi
c(X,G).

Remark 2.5.10. Note that Curry does not write that the isomorphism is with
the dual spaces of Hi(X, V̂ (G)) and HBM

i (X, V̂ (G)), however this is necessary.
Consider for instance the one-point space. Applying linear duality will dualize
a sheaf, which is just a vector space, to its internal dual, which is just the dual
vector space.

We now give two examples of cellular homology computations, which can
also be adapted to example computations of cohomology:

Example 2.5.11. Let X be a pointed polyhedral fan of dimension n in RN .
Let σ ∈ X, and consider the elementary projective cosheaf [σ̂]R. We wish to
compute the Borel–Moore homology of [σ̂]R. This is given as the homology of
the complex:

0 CBMn (X, [σ̂]R) · · · CBM0 (X, [σ̂]R) 0,∂ ∂

18
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which is the complex:

0 ⊕γ∈Xn [σ̂]R(γ) · · · ⊕v∈X0 [σ̂]R(v) 0.∂ ∂

Since X is a pointed polyhedral fan, it has a unique vertex. Moreover, [σ̂]R(γ)
is 0 if γ 6≤ σ, and R otherwise. This gives the complex:

0
⊕

γ∈Xn
γ≤σ

R · · · R 0.∂ ∂

The i-th component is Rfσi , where fσi is the number of i-dimensional faces of σ.
Furthermore, since σ is a face of a polyhedral fan, it is a cone over a polytope.
Let P be the polytope such that cone(P ) = σ (one can find such a P by
intersecting σ transversely for instance). Then one observes that the f -vectors
(Definition 2.1.10) of P and σ are related by the equality fPk = fσk+1. We can
then compare (CBM• (X, [σ̂]R), ∂) with the reduced R coefficient homology of
P in the complex (C̃•(P,R), ∂P ). Since the cosheaf [σ̂]R has identity maps
for extensions, the boundary operator ∂ of the first complex is equal to the
boundary operator ∂P . Hence, we have that the complex (C̃•(P,R), ∂P ):

0 RfPn Rf
P
n−1 · · · R 0,∂ ∂

also computes the homology of (CBM• (X, [σ̂]R), ∂). Now since P is a bounded
polytope, it is homotopy equivalent to a point. Therefore, its reduced homology
is 0. Hence HBM

q (X, [σ̂]R) = H̃q(P,R) = 0.

We can extend the computation for any direct sum of projective cosheaves:

Example 2.5.12. Let X be a pointed polyhedral fan of dimension n in RN . Let
Y ⊂ X be a collection of polyhedral, and consider the cosheaf

⊕
σ∈Y [σ̂]Vσ . We

now wish to compute the Borel–Moore homology of
⊕

σ∈Y [σ̂]Vσ . This is given
as the homology of the complex:

0 CBMn (X,
⊕

σ∈Y [σ̂]Vσ ) · · · CBM0 (X,
⊕

σ∈Y [σ̂]Vσ ) 0,∂ ∂

which now is the complex:

0 ⊕γ∈Xn ⊕σ∈Y [σ̂]Vσ (γ) · · · ⊕σ∈Y [σ̂]Vσ (v) 0.∂ ∂

Since X is a pointed polyhedral fan, it has a unique vertex. Now we have:⊕
σ∈Y

[σ̂]Vσ (τ) =
⊕
σ∈Y
σ≥τ

Vσ.

We note now that the complex above splits over the direct sum ⊕σ∈Y . Therefore,
the homology is:

HBM
q (X,

⊕
σ∈Y

[σ̂]Vσ ) =
⊕
σ∈Y

HBM
q (X, [σ̂]Vσ ).

19



2. Polyhedral complexes and cellular sheaves

Now finally, the homology HBM
q (X, [σ̂]Vσ ) of the complex

0 CBMn (X, [σ̂]Vσ ) · · · CBM0 (X, [σ̂]Vσ ) 0,∂ ∂

is just the homology with coefficients in Vσ of the complex (C̃•(P,R), ∂P ), by
using the same arguments as in the previous example. Using the universal
coefficient theorem for homology [Hat02, Theorem 3A.3], we have

H̃k(P,R)⊗ Vσ ∼= H̃k(P, Vσ)

since we work over R, there is no torsion. Using the previous example, this
implies that H̃k(P, Vσ) = 0, hence HBM

k (X, [σ̂]Vσ) = 0, which then gives that
HBM
q (X,

⊕
σ∈Y [σ̂]Vσ ) = 0.

2.6 Refinements and simplicial polyhedral complexes

Any polyhedral complex X can be considered as a poset, whose elements are
the polyhedrons of X, ordered using the relation ≤, which is the inclusion
of a polyhedron as a face of other polyhedron (see Remark 2.1.4). Using
this structure, we define refinements of a polyhedral complex, which are new
polyhedral complexes. These should be thought of as subdivisions of the
complex, for instance as in barycentric subdivision, which preserve the overall
structure of the complex.

Definition 2.6.1. Let X be a polyhedral complex in RN . A polyhedral complex
X̃ in RN is a refinement of X if both complexes share the same support, i.e.
|X| = |X̃|, and there is a surjective order-preserving poset map:

P: X̃ → X.

Definition 2.6.2. Let X be a polyhedral complex and X̃ a refinement of X,
with the refinement map P: X̃ → X. Then there is a sheaf refinement functor :

P̃ : Shv(X)→ Shv(X̃)
F 7→ F̃

where F̃ is the cellular sheaf given as a functor by:

F̃ : X̃ → Vectk
σ 7→ F(P(σ))

and sending a restriction map ρτσ : τ → σ ∈ X̃ to F(P(ρτσ)), where
P(ρτσ) : P(τ)→ P(σ) ∈ X.

A particular kind of refinement we will be interested in are the ones into
simplicial complexes:

Definition 2.6.3. A polyhedral complex X is a simplicial polyhedral complex if

• each bounded cell of X is a simplex, and.

• each unbounded cell of X is a cone over a simplex.
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Remark 2.6.4. Hence for a simplicial polyhedral complex, the number of faces
of a polyhedron is known exactly:

• for each bounded n-dimensional cell σ ∈ Xn, there are exactly
(
n
k

)
cells

τ ∈ Xk of dimension k such that τ ≤ σ, for all n ≤ dimX, and

• for each unbounded n-dimensional cell σ ∈ Xn, there are exactly n cells
τ ∈ Xn−1 of dimension n− 1 such that τ ≤ σ, for all n ≤ dimX.

Remark 2.6.5. Note that this definition slightly generalizes the classical definition
of simplicial complexes, since it defines what it means for an unbounded
polyhedron to be simplicial. If a polyhedral complex consists only of bounded
polyhedrons, then a simplicial refinement is a classical simplicial complex.

We will show that any polyhedral complex has a refinement that is simplicial:

Theorem 2.6.6. Let X be a polyhedral complex in RN . Then X has a refinement
which is a simplicial polyhedral complex.

Proof. For any bounded cell σ ∈ X, one can simply take the barycentric
subdivision of the cell to obtain a new complex X̃, in which the cell σ is
removed, replaced by several cells of equal dimension, all of which are simplicial,
which themselves share the face of σ, and have own faces, which add “roots” to
the Hasse diagram. The refinement map P takes any such root back to the face
σ.

For an unbounded cell, intersect it with a sufficiently large simplex, then
take the barycentric subdivision of this new bounded cell. Finally, add faces on
the subdivided face corresponding to the bounded face. �

Remark 2.6.7. Now we can define the cellular homology and cohomology of a
sheaf G on a non-pointed fan to be the homology and cohomology of the sheaf
G̃ on a simplicial refinement which has a vertex as a minimal face.

2.7 Tangent fans

Definition 2.7.1. Given a polyhedral complex X and a face τ ∈ X, we define
the tangent fan TτX of Xat τ as the set

TτX := {v ∈ RN | ∃ε > 0 s.t. ∀δ < ε, x+ δv ∈ |X| for some x ∈ τ},

where |X| is the support of X (Definition 2.1.9).

Proposition 2.7.2. For a polyhedral complex X in RN and a face τ ∈ X, the
tangent fan TτX has the structure of a polyhedral fan, through an isomorphism
as posets to the Star(τ).

Proof. Let x ∈ τ be an interior point. Let v1, . . . , vk be vectors spanning
the space L(τ) parallel to τ , where k := dim(τ). For each face σ ≥ τ , with
dim(σ) = dim(τ) + 1, pick vσ ∈ σ. Then the cells of TτX are the polyhedrons
Cρ := cone{vσ | τ ≤ σ ≤ ρ} + span{v1, . . . , vk} ⊂ RN for all ρ ≥ τ , and the
unique minimal cell Cτ = span{v1, . . . , vk} ⊂ RN . Now any face of each of the
Cρ is included in TτX, since each cone comes from a cell of X, and for any two
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2. Polyhedral complexes and cellular sheaves

such cones Cρ, Cρ′ intersect either in a Cσ, for some σ with τ ≤ σ ≤ ρ, ρ′, or
in Cτ . Since Cτ is the unique minimal non-empty cell, TτX is a polyhedral
fan. �

We will always be using this polyhedral structure on the tangent fans.

The cellular Borel–Moore homology of the tangent fan

The cellular Borel–Moore homology of the tangent fan at a face is related to the
cellular Borel–Moore homology of the original complex by the following result.

Proposition 2.7.3. Let X be a polyhedral complex of dimension n, τ ∈ X a
face of dimension k and TτX the tangent fan. Then

HBM
i (Star(τ),RX) = HBM

i (TτX,RX).

Proof. This follows from comparing the two complexes. The cellular Borel–
Moore homology of TτX is the homology of the complex

0 CBMn (TτX,RX) · · · CBMk (TτX,RX) 0 · · · 0,

which yields summands R|Ai| in position −i, where

Ai := {σ ∈ X | σ ≥ τ and σ ∈ Xi}

is the set of i-cells containing X, and the boundary maps merely record the
relative orientations. The cellular Borel–Moore homology at Star(τ) is the
homology of the complex:

0 CBMn (Star(τ),RX) · · · CBM0 (Star(τ),RX) 0,∂ ∂

which again yields summands R|Ai| in position −i, with the same boundary map.
Hence the homology groups HBM

i (Star(τ),RX) and HBM
i (TτX,RX) agree for

all i. �

2.8 Cohen–Macaulay polyhedral complexes

Definition 2.8.1. Let X be a polyhedral complex, and k a field. We say that
X is Cohen–Macaulay over k if

HBM
q (TσX, kX) = 0 for q 6= dimX,

for all faces σ ∈ X.

Remark 2.8.2. The name “Cohen–Macaulay” of this property comes from its
relation to Cohen–Macaulay property of simplicial complexes, which itself comes
from the Cohen–Macaulay property of modules over a ring. The connection is
through the following criterion:

Theorem 2.8.3 ([MS05, Theorem 5.53], Reisner’s criterion). The Stanley–
Reisner ring S/I∆ is Cohen–Macaulay over a field k if and only if, for every
face σ ∈ ∆, the link satisfies

H̃i(link∆(σ), kX) = 0 for i 6= dim(∆)− dim(σ),
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2.9. The Bergman fan of a matroid

where link∆(σ) = {τ ∈ ∆ | τ ∪ σ ∈ ∆ and τ ∩ σ = ∅}, where τ ∪ σ is the
simplex generated by the vertices in of both simplicies, and where H̃• indicates
the reduced homology of the complex. We say that ∆ is a Cohen–Macaulay
simplicial complex.

Another property motivating the “Cohen–Macaulay” name can be found in
Remark 6.1.4.
Remark 2.8.4. By Proposition 2.5.9, and Example 2.3.2, one can also characterize
Cohen–Macaulayness over k by

Hq
c (TσX, kX) = 0 for q 6= dimX,

for all faces σ ∈ X.
Remark 2.8.5. Note that the Cohen–Macaulay property is only dependent on
the poset of the polyhedral complex.

Lemma 2.8.6. If X is a Cohen–Macaulay polyhedral fan, then HBM
q (X,RX) =

0 for all q 6= dimX.

Proof. Since X is Cohen–Macaulay, we have that 0 = HBM
q (TτX,RX) for the

minimal cell τ , hence

0 = HBM
q (TτX,RX) = HBM

q (X,RX) = HBM
q (X,F0).

�

Lemma 2.8.7. If X is a Cohen–Macaulay polyhedral fan, then X is pure
dimensional.

Proof. Suppose τ is a maximal face with respect to inclusion, such that
q = dim τ < dimX = n. Then since τ is maximal, the tangent fan TτX
is merely the linear space L(τ) parallel to τ and therefore:

HBM
k (TτX,RX) =

{
0 for k 6= q,
R for k = q,

which contradicts the Cohen–Macaulay condition HBM
k (TσX,R) = 0 for all

σ ∈ X and k 6= dimX. �

2.9 The Bergman fan of a matroid

In this section, we describe a class of examples of polyhedral fans which will
reappear in Chapter 6. A matroid is a combinatorial generalization of the
concept of linear independence. We refer to [Kat16] for a survey, and [Oxl11] for
a textbook. There are many non-obviously equivalent definitions of matroids.
To construct polyhedral fans from matroids, it is most convenient to introduce
matroids as a set of flats:

Definition 2.9.1 ([Kat16, Definition 3.5]). Let E be a finite non-empty set. A
matroid is a collection of subsets F of E that satisfy the following conditions

1. E ∈ F ,
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2. if F1, F2 ∈ F then F1 ∩ F2 ∈ F , and

3. if F ∈ F and {F1, F2, . . . , Fk} is the set of minimal members of F properly
containing F then the sets F1 \ F, F2 \ F, . . . , Fk \ F partition E \ F .

The elements of F are called flats.

Remark 2.9.2 ([Kat16]). There is an equivalent definition of matroids in terms
of rank functions r : P(E)→ Z. Using this definition, one can define a loop in
a matroid. A matroid is said to be loopless if it has no loops. Not all matroids
are loopless.

Definition 2.9.3 ([Kat16, Definition 3.5]). Let M be a loopless matroid on a
finite set E of cardinality n. For a subset S ⊆ E, let

eS :=
∑
i∈S

ei ∈ Rn.

Given the collection of flats F of M , a k-step flag of proper flats is a sequence
of proper flats ordered by containment:

F• := {∅ ( F1 ( · · · ( Fk ( E}.

The cone associated to F• is the non-negative span

σF• := span≥0{eF1 , . . . , eFk}.

The Bergman fan of M is the simplicial fan ∆M consisting of the cones σF• for
all flags of flats F•. Whenever we speak of the Bergman fan of a matroid, we
implicitly assume that the matroid is loopless.

Theorem 2.9.4. The Bergman fan of a matroid is Cohen–Macaulay.

Proof. Recall that the Cohen–Macaulay property only depends on the poset of
the polyhedral complex (Remark 2.8.5). The Bergman fan of a matroid is the
cone over the Bergman complex of the matroid, which is a shellable simplicial
complex, hence is Cohen–Macaulay [AK06]. Since the fan is the cone over the
complex, it must also be Cohen–Macaulay. �
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CHAPTER 3

Tropical homology

In this chapter, we introduce tropical homology and cohomology, as a set of
invariants one can compute for any polyhedral complex. We then introduce the
balancing condition on a polyhedral complex, which is the property defining
tropical cycles. Moreover, we show that this balancing condition can be verified
by the (n, n) tropical Borel–Moore homology group. Next, we show that, for
the balanced polyhedral complexes, the (n, n) tropical Borel–Moore homology
and (0, 0) tropical cohomology groups are of equal dimension if the balancing
of the complex is unique. This will lead us to examine whether there is a
more general correspondence between the tropical Borel–Moore homology and
tropical cohomology groups. We define the tropical cap product from [JRS18],
which defines a map ∩[X] : Hq(X,Fp)→ HBM

n−q (X,Fn−p) when X is balanced,
reminiscent of the cap product for manifolds in algebraic topology. We will say
that a polyhedral fan where this map is an isomorphism is a tropical Poincaré
space. We give several examples of fans using the “Cellular Sheaves” package
([KSW17]) for [polymake] to compute several examples of fans, and check
whether they are tropical Poincaré spaces. Finally, we classify fans of dimension
1 having this property.

3.1 Tropical sheaves

Definition 3.1.1 ([MZ14, Section 3.1]). Let X be a polyhedral complex of
dimension n in RN . For p = 0, . . . , n, the tropical wave sheaf Wp is the cellular
sheaf defined by the data:

• For σ ∈ X, Wp(σ) :=
∧p

L(σ) ⊆
∧pRN , where L(σ) ⊂ RN is the linear

space parallel to the face σ.

• For τ ≤ σ, we have a morphism (r : τ → σ) ∈ Mor(X), and we define
Wp(r) := ιτσ, where ιτσ : Wp(τ)→ Wp(σ) is the wedge of the inclusion
L(τ)→ L(σ).

Definition 3.1.2 ([Ite+16, Definition 13, Definition 16]). Let X be a polyhedral
complex of dimension n in RN . For p = 0, . . . , n, the p-th multi-tangent space
Fp is the cellular cosheaf defined by the data:

• For σ ∈ X, Fp(σ) :=
∑
σ≤γ

∧p
L(γ) ⊆

∧pRN , where L(γ) ⊂ RN is the
linear space parallel to the face γ.
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3. Tropical homology

• For τ ≤ σ, we have a morphism (r : σ → τ) ∈ Mor(Xop), and we define
Fp(r) := ιστ , where ιστ : Fp(σ) → Fp(τ) is the wedge of the natural
inclusion that follows from the ordering on the faces: if τ ≤ σ then

{γ ∈ X | σ ≤ γ} ⊂ {γ ∈ X | τ ≤ γ}.

Furthermore, the cosheaf Fp also gives rise to a sheaf Fp which is defined by
Fp(σ) := (Fp(σ))∗, with morphisms ρτσ : Fp(τ)→ Fp(σ) defined by dualizing
ιστ : Fp(σ)→ Fp(τ). Equivalently, the sheaf Fp is just the linear dual D(Fp)
of the cosheaf Fp (see Definition 2.3.1).

Remark 3.1.3. Note that in [Ite+16, Definition 13], the cosheaves ZFp are
defined in terms of subgroups of

∧p ZN . Our definition is comparable to
[Ite+16, Definition 16], by defining Fp = ZFp ⊗ R. We do similarly for the
sheaves Fp.

Definition 3.1.4. Let X be a polyhedral complex. The cellular cohomology
groups and cellular cohomology with compact support groups

Hq(X,Fp), and Hq
c (X,Fp),

are respectively called the tropical cohomology groups and tropical cohomology
with compact support groups of X.

Similarly, the cellular homology groups and cellular Borel–Moore homology
groups

Hq(X,Fp), and HBM
q (X,Fp),

are respectively called the tropical homology groups and tropical Borel–Moore
homology groups of X.

Proposition 3.1.5 ([JRS18, Remark 2.8]). Let X be a polyhedral complex covered
by stars of vertices. Let X̃ be a simplicial refinement of X (see Theorem 2.6.6).
Then the tropical homology and cohomology of X and X̃, are equal. Explicitly
we have:

Hq(X,Fp) ∼= Hq(X̃,Fp), and Hq
c (X,Fp) ∼= Hq

c (X̃,Fp),

while in cohomology we have:

Hq(X,Fp) ∼= Hq(X̃,Fp), and HBM
q (X,Fp) ∼= HBM

q (X̃,Fp).

Remark 3.1.6. By the above proposition, we can always subdivide a complex
to compute it’s tropical cohomology. Hence, for our purposes, we can always
replace a polyhedral complex X by one that is simplicial.

3.2 Balancing in tropical geometry

Definition 3.2.1. Given a polyhedral complex X of dimension n, an integral
weight function is a function

ω : Xn → Z \ {0},

assigning weights to each of the n-dimensional cells σ of X. A polyhedral
complex with an integral weight function is said to be Z-weighted. As a matter
of notation, we write ωσ := ω(σ) for the weight of a face σ ∈ Xn.
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3.2. Balancing in tropical geometry

Definition 3.2.2 ([Bru+15, Definition 5.7]). Let X be a Z-weighted rational
finite polyhedral complex of dimension n in RN , and let τ ∈ X be a codimension
1 face of X. Let σ1, . . . , σs be the facets adjacent to τ , and let Γσi ⊂ ZN denote
the lattice parallel to σ, (analogously for Γτ ). Let vi be a primitive integer
vector such that, together vi and Γτ generate Γσi , and for any x ∈ τ , one has
x+ εvi ∈ σi for 1 >> ε > 0. We say that X is balanced along τ if the vector

s∑
i=1

ωσivi

is in Γτ , where ωσi is the weight of the facet σi.

Remark 3.2.3. When the polyhedral complex X of dimension n is rational, the
rank of the lattice Γσ parallel to each top dimensional face σ is n. Since the
rank of ΛnΓσ = ΛnZn is 1 ([Eis95, Corollary A3.2]), one can choose the unique
generator Λσ compatible with the orientation of the cell.

Definition 3.2.4 ([Bru+15, Definition 5.8]). A Z-weighted rational finite
polyhedral complex in RN is said to be balanced if it is balanced along every
codimension 1 face. Such a polyhedral complex is also called a tropical cycle in
RN . If all the weights are non-negative, the tropical cycle is called effective or
also a tropical subvariety of RN .

Definition 3.2.5 ([JRS18, Definition 4.8]). Let X be a Z-weighted rational finite
polyhedral complex of dimension n. The fundamental chain of X is

ch(X) := (ωσΛσ)σ∈Xn ∈ CBMn (X,Fn),

where ωσ and Λσ are as in Definition 3.2.2. In [JRS18, Definition 4.8], the
notation ch(X) =

∑
σ∈Xn ωσΛσ ⊗ σ := (ωσΛσ)σ∈Xn is used.

Proposition 3.2.6. Let X be a weighted rational finite polyhedral complex. The
fundamental chain of X is closed, in the sense that ∂(ch(X)) = 0, if and only
if X is balanced.

Proof. Let X be a weighted rational finite polyhedral complex of dimension n in
RN . Let σ ∈ Xn be a top dimensional face, and let τ ∈ Xn−1 be a codimension
1 face such that τ ≤ σ. Then either O(τ, σ) = 1 or O(τ, σ) = −1.

When O(τ, σ) = 1, we choose a vector vσ as in Definition 3.2.2, and letting
v1
τ , . . . , v

n−1
τ be generators of the lattice Γτ ⊂ ZN parallel to τ , we have the

generator
Λσ := vσ ∧ vτ := vσ ∧ v1

τ ∧ · · · ∧ vn−1
τ

of
∧n Γσ of positive orientation. Then ωσΛσ can be chosen as the σ component

of ch(X). Similarly when O(e, f) = −1, we make the same choices, noting that
now

Λσ := vσ ∧ −vτ := vσ ∧ −v1
τ ∧ · · · ∧ −vn−1

τ

is the generator of
∧n Γσ of positive orientation.
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3. Tropical homology

Now let τ be a face of codimension 1 of X. We compute the τ -component
of ∂(ch(X)):

(∂(ch(X)))τ =
∑
τ≤σ

O(τ, σ)ωσΛσ

=
∑
τ≤σ

O(τ,σ)=1

O(τ, σ)ωσvσ ∧ vτ +
∑
τ≤σ

O(τ,σ)=−1

O(τ, σ)ωσvσ ∧ −vτ

=
∑
τ≤σ

ωσvσ ∧ vτ

Thus if the τ -component is zero, that is ∂(ch(X))τ = 0, we have∑
τ≤σ

ωσvσ ∧ vτ = 0.

This is equation holds if and only if
∑
τ≤σ ωσvσ is in the span of the vectors

v1
τ , . . . , v

n−1
τ , i.e.

∑
τ≤σ ωσvσ is in the lattice Γτ . Hence X is balanced at

τ . By reversing the argument, we also see that if X is balanced at τ , then
(∂(ch(X)))τ = 0.

We conclude that, if ∂(ch(X)) = 0, this means that X is balanced along each
codimension 1 face, hence X is balanced. Similarly, if X is balanced along each
codimension 1 face, hence is balanced, then ∂(ch(X))τ = 0, hence ∂(ch(X)) = 0.
Therefore, X is balanced if and only if ch(X) is a closed.

�

Remark 3.2.7. Notice that the element ch(X) ∈ CBMn (X,Fn) could in fact be
considered as an element of CBMn (X, ZFp). This suggests one could consider
more general weights:

Definition 3.2.8. Given a polyhedral complex X of dimension n, a real weight
function is a function

ω : Xn → R \ {0},

assigning weights to each of the n-dimensional cells σ of X. A polyhedral
complex with a real weight function is said to be R-weighted. As a matter of
notation, again write ωσ := ω(σ) for the weight of a face σ ∈ Xn.

Remark 3.2.9. Using these generalized weights, we define the balancing
conditions in the same manner as before. Going forward, we will assume
all weights to be R-weights, and balancing to mean R-balancing.

Definition 3.2.10. If the fundamental chain ch(X) is closed, i.e. X is balanced
by Proposition 3.2.6, the element [X] := [ch(X)] ∈ HBM

n (X,Fn) is called the
fundamental class of X.

Definition 3.2.11. A rational finite polyhedral complex X of dimension n is
uniquely balanced if there exists a unique real weight function (or alternatively
integral) such that X is balanced, up to the equivalence relation: ω ∼ ω′ if and
only if there exists a λ ∈ Z such that ω(σ) = λω′(σ) for all σ ∈ X.
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Proposition 3.2.12. Suppose X is a balanced rational finite polyhedral complex
of dimension n. Then HBM

n (X,Fn) = 〈[X]〉 = R if and only if X is uniquely
balanced.

Proof. Let ω : Xn → N be a weight function on X such that X is balanced,
inducing a fundamental class [X] ∈ HBM

n (X,Fn) by Proposition 3.2.6.
First suppose that HBM

n (X,Fn) = 〈[X]〉 = R. Suppose there is another
weight function ω′ : Xn → R \ {0}, with ω′ 6= λω for all λ ∈ R, such that the X
is balanced with these new weights. By Proposition 3.2.6, the chain

x := (ω′σΛσ)σ∈Xn ∈ CBMn (X,Fn)

is closed, i.e. ∂n(x) = 0. But then x ∈ HBM
n (X,Fn) but not in 〈[X]〉, hence

dimHBM
n (X,Fn) > 1, which contradicts the initial assumption. Hence any

other weight function ω′ : Xn → R \ {0} is such that ω′ = λω for some λ ∈ R.
Thus X is uniquely balanced.

Next suppose that X is uniquely balanced. Let

x = (ω′σΛσ)σ∈Xn ∈ CBMn (X,Fn)

be an element such that for all λ ∈ R, there is a σ ∈ Xn such that ω′σ 6= λωσ.
If ∂n(x) = 0, then X induces a class in HBM

n (X,Fn). By Proposition 3.2.6,

ω′ : Xn → Z \ {0},
σ 7→ ω′σ,

is then another weight function satisfying the balancing condition, hence X
would not be uniquely balanced, contradicting the initial assumption. �

Inspired by this proposition, we can define the following unique balancing
for general fans, not necessarily being rational:

Definition 3.2.13. A polyhedral fan X of dimension n is uniquely balanced if
HBM
n (X,Fn) ∼= R.

3.3 The tropical cap product

We will be using a contraction map from multilinear algebra, as developed in
[Bou48, Section 5.6] and [FH91, Appendix B.3]. The following definitions will
be sufficient for our needs:

Definition 3.3.1. Let V be a vector space over R. Let f ∈ V ∗ be an
element of the dual vector space. For each p, there is a contraction map
cf :

∧p
V →

∧p−1
V , such that for v1, . . . , vp ∈ V ,

cf (v1 ∧ . . . ∧ vp) =
p∑
i=1

(−1)i−1f(vi)v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp,

where the v̂i indicates that vi has been removed from the wedge.

We observe that this is an R-linear map in f , so in fact it is giving a bilinear
map V ∗ ×

∧p
V →

∧p−1
V , defined by (f, v) 7→ cf (v). We extend this then to

define a multilinear map:
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3. Tropical homology

Definition 3.3.2. Let V be a vector space over R. Let v1, . . . , vp ∈ V and
f1, . . . , fp′ ∈ V ∗, For each p, p′ with p ≤ p′, there is a contraction map:

〈− ;− 〉 :
p∧
V ∗ ×

p′∧
V →

p′−p∧
M,

given by composition of regular contractions:

( f1 ∧ . . . ∧ fp′ , v1 ∧ . . . ∧ vp ) 7→ cfp′ ◦ cfp′−1 ◦ · · · ◦ cf1 (v1 ∧ . . . ∧ vp) .

We can use contraction to define an operation on the tropical cosheaves:

Definition 3.3.3 ([JRS18, Definition 4.10]). Given l ∈ Fp(σ) and v ∈ Fp′(σ)
with p ≤ p′, the contraction 〈l; v〉 ∈ Fp′−p(σ) is induced by the contraction
map:

〈−;−〉 :
p∧

(Rr)∗ ×
p′∧

Rr →
p′−p∧

Rr.

More generally, given τ, τ ′ ≤ σ and l ∈ Fp(τ), v ∈ Fp′(σ), the contraction 〈l; v〉
is given by

〈l; v〉 = iτ ′,σ (〈ρτ,σ(l); v〉) ∈ Fp′−p(τ ′).
Recall that when computing tropical homology and cohomology, can replace

a polyhedral complex X by a simplicial subdivision X̃ (Remark 3.1.6). Given a
balanced polyhedral fan X of dimension n, we can define a cap product with
the fundamental class of X, following [JRS18]:

Definition 3.3.4 ([JRS18, Definition 4.11]). The cap product with the fundamen-
tal class of X is the map

∩[X] : Cq(X,Fp)→ CBMn−q(X,Fn−p),

α 7→

 ∑
[i0,...,in]∈X̃n

ωσ〈α |[i0,...,iq ]; Λσ〉


[iq,...in]

.

Remark 3.3.5. Note that this is the definition stated in [JRS18], which uses a
refinement of the polyhedral complex into a simplicial complex, using infinitely
many simplices to subdivide the unbounded polyhedrons of the complex. We will
only use this definition in the case of polyhedral fans, where this construction
is not needed (Proposition 3.4.1).

Furthermore, as is noted in [JRS18], the Leibniz formula holds for the cap
product, such that ∂(α ∩ [X]) = (−1)q+1(∂(α) ∩ [X]− α ∩ ∂([X])).

Proposition 3.3.6. If X is balanced, the map ∩[X] descends to a map

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p).

Proof. If X is balanced, the fundamental class [X] is closed by Proposition 3.2.6.
Therefore,

∂(α ∩ [X]) = −(∂(α) ∩ [X]− α ∩ ∂([X])) = −(∂(α) ∩ [X]),

hence if α ∈ Hq(X,Fp), then α∩ [X] ∈ HBM
n (X,Fn−p), meaning that the map

can be restricted to homology. �
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3.4. Tropical Poincaré duality

Remark 3.3.7. As observed in [JRS18], this definition can be applied for any
class α ∈ HBM

n (X,Fn) to give a map

∩α : Hq(X,Fp)→ HBM
n−q (X,Fn−p).

3.4 Tropical Poincaré duality

Observe that the cap product with the fundamental class in homology is
particularly easy to formulate in the case of rational balanced polyhedral fans:

Proposition 3.4.1. Let X be a rational balanced polyhedral fan of dimension n.
The cap product with the fundamental class is then given by:

• For q > 0, the cap product with the fundamental class ∩[X] : Hq(X,Fp)→
HBM
n−q (X,Fn−p) is the zero map and

• For q = 0, the cap product with the fundamental class ∩[X] : H0(X,Fp)→
HBM
n−p,n(X) is given by the map:

α 7→
(
ωσ〈α |L(σ); Λσ〉

)
σ∈Xn ,

where 〈 ; 〉 is the contraction map 〈 ; 〉 : Fp(σ) × Fn(σ) → Fn−p(σ) as
introduced in Definition 3.3.3.

Proof. For q > 0, by Proposition 2.5.6, the group Hq(X,Fp) is zero, so the
map ∩[X] is also necessarily zero.

For q = 0, this expression is simply the definition given in Definition 3.3.4.
�

Whenever we use this cap product, it will be assumed that the fan is pointed.
Any non-pointed fan can be subdivided to this case.s

Using this cap product, we formulate the “tropical Poincaré duality for
polyhedral fans” as follows:

Definition 3.4.2 ([JRS18, Definition 5.2]). We say that a balanced rational
finite polyhedral fan X of dimension n is a tropical Poincaré space if the cap
product with the fundamental class

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for all p, q = 0, . . . , n. We will sometimes call such fans
tropical Poincaré spaces.

A class of fans satisfying this condition has already been identified:

Theorem 3.4.3 ([JSS19, Proposition 4.27]). Let M be a matroid, and B(M) its
Bergman fan Definition 2.9.3. Then B(M) is a tropical Poincaré space.

However, this is not exhaustive since there are examples of fans which are
tropical Poincaré spaces even though they are not Bergman fans of matroids,
which shows that matroidality is not a necessary condition as was noted in
[JRS18].
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f1 f2 f3 f4 −f4 −f2 −f3

e1 e2 e3 e4 −e2 −e3 −e4

Figure 3.1: The graph of cones for Example 3.4.4.

Example 3.4.4. Let f1 := (0, 1, 1, 1), f2 := (1, 0,−1, 1), f3 := (1, 1, 0,−1) and
f4 := (1,−1, 1, 0) be vectors in R4 and let e1, e2, e3 and e4 be the standard basis.
Consider the polyhedral fan generated by the cones of vertices connected by an
edge in Figure 3.1, so that for instance the cone of e1 and f2 is included.

This fan, coming from [BH17] is not matroidal, since it does not satisfy
the Hard Lefschetz property of [AHK18], however if we compute its cellular
homology using the cellular sheaves package [KSW17] for [polymake]:
$fan = new PolyhedralFan(INPUT_RAYS=>[

[1,0,0,0,0], #0 Projection point
[0,1,0,0,0], #1 e_1
[0,0,1,0,0], #2 e_2
[0,0,0,1,0], #3 e_3
[0,0,0,0,1], #4 e_4
[0,0,1,1,1], #5 f_1
[0,1,0,-1,1], #6 f_2
[0,1,1,0,-1], #7 f_3
[0,1,-1,1,0], #8 f_4
[0,0,-1,0,0], #9 -e_2
[0,0,0,-1,0], #10 -e_3
[0,0,0,0,-1], #11 -e_4
[0,-1,0,1,-1], #12 -f_2
[0,-1,-1,0,1], #13 -f_3
[0,-1,1,-1,0], #14 -f_4
],

INPUT_CONES =>
new Array<Set<Int>>(
# faces spanning cones with e_1

new Set<Int>(0,1,6),
new Set<Int>(0,1,7),
new Set<Int>(0,1,8),

# faces spanning cones with e_2
new Set<Int>(0,2,5),
new Set<Int>(0,2,7),
new Set<Int>(0,2,14),

# faces spanning cones with e_3
new Set<Int>(0,3,5),
new Set<Int>(0,3,8),
new Set<Int>(0,3,12),

# faces spanning cones with e_4
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new Set<Int>(0,4,5),
new Set<Int>(0,4,6),
new Set<Int>(0,4,13),

# faces spanning cones with -e_2
new Set<Int>(0,9,8),
new Set<Int>(0,9,14),

# faces spanning cones with -e_3
new Set<Int>(0,10,6),
new Set<Int>(0,10,12),

# faces spanning cones with -e_4
new Set<Int>(0,11,7),
new Set<Int>(0,11,13)

));

$complex = new PolyhedralComplex($fan);

@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<4; $i++){

my $f = $complex->fcosheaf($i);
my $s = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $s->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_bm);

Which gives the following output:
fan > print new Matrix(@betti_usual);
1 0 0
4 0 0
5 0 0
0 0 0

fan > print new Matrix(@betti_bm);
0 0 5
0 0 4
0 0 1
0 0 0

Hence this fan is a tropical Poincaré space.

Not all fans satisfy are tropical Poincaré spaces however:

Example 3.4.5. Let e1, e2 and e3 be the standard basis on R3. Consider the
polyhedral fan Σ whose center vertex lies at the origin, where the cones of Σ
are given by cones of vertices connected by an edge in Figure 3.2, so that for
instance the cone between −e1 and −e3 is part of the fan.

This fan is the tropical hypersurface associated to the Newton polytope of a
pyramid with vertices e1, e2, e3, 0 and e1 + e2, with summit in e3. Since this
Newton polytope is not a simplex, the fan cannot come from a matroid. Using
the following [polymake] script, we compute its cellular homology using the
cellular sheaves package [KSW17] for:
application ’fan’;
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,-1,0,0],
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e2 + e3

e1 + e3

−e3

−e2

−e1

Figure 3.2: The graph of cones for Example 3.4.5.

[0,0,-1,0],
[0,0,0,-1],
[0,0,1,1],
[0,1,0,1]],
INPUT_CONES =>
[[0,1,2],
[0,1,3],
[0,2,3],
[0,1,4],
[0,3,4],
[0,3,5],
[0,4,5],
[0,2,5]]
);

$complex = new fan::PolyhedralComplex($fan);

@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<4; $i++){

my $f = $complex->fcosheaf($i);
my $s = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $s->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_bm);

We get the following output:

fan > print new Matrix(@betti_usual);
1 0 0
3 0 0
3 0 0
0 0 0

fan > print new Matrix(@betti_bm);
0 0 4
0 0 4
0 0 1
0 0 0
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Hence we see that this fan is a not tropical Poincaré space.

Figure 3.3: Picture of the fan

Example 3.4.6. Consider the fan in Figure 3.3, which is not pure dimensional.
We can compute the usual cohomology and the Borel–Moore homology of the Fp
sheaves of the fan using the cellular sheaves package [KSW17] for [polymake]:
application "fan";
$fan = new PolyhedralFan(

INPUT_RAYS=>[[1,0,0],[0,-1,-1],[0,1,0],[0,0,1]],
INPUT_CONES => [[0,1],[0,2,3]]);

$complex = new PolyhedralComplex($fan);

$complex -> VISUAL;

@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<3; $i++){

my $f = $complex->fcosheaf($i);
my $u = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_bm);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0
2 0 0
1 0 0

fan > print new Matrix(@betti_bm);
0 1 0
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3. Tropical homology

0 1 0
0 0 0

Since the Betti numbers dimHBM
1 (X,F1) and dimHBM

1 (X,F0) are not 0, this
fan does not satisfy tropical Poincaré duality.

3.5 Classification of tropical Poincaré fans in dimension 1

In this short section, we classify the tropical Poincaré fans of dimension 1.

Theorem 3.5.1. Let X be a weighted pointed polyhedral fan of dimension 1.
Then X is a tropical Poincaré space if and only if X is uniquely balanced.

Proof. Let X be a weighted polyhedral fan of dimension 1, let v be the vertex
of X, and let τ1, . . . , τn ∈ X1 be the rays.

We have already seen that ∩[X] : H0(X,F0) → HBM
1 (X,F1) is an

isomorphism if and only if X is uniquely balanced by Proposition 3.2.12.
It remains to determine when ∩[X] : H0(X,F1) → HBM

1 (X,F0) is an
isomorphism. Assume that span {τ1, . . . , τn} = RM , for some M . Then
H0(X,F1) = RM . Since X must be uniquely balanced we have that
M = n−1. Then HBM

1 (X,F0) = ker(CBM1 (X,F0)→ HBM
0 (X,F0)), which has

dimension n− 1. Therefore when X is uniquely balanced, ∩[X] : H0(X,F1)→
HBM

1 (X,F0) is an isomorphism. �
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CHAPTER 4

Tropical Poincaré duality

In this chapter, we start the search for necessary and sufficient conditions for
a polyhedral fan to to be a tropical Poincaré space. It was shown in [JSS19]
that the Bergman fan of a matroid are tropical Poincaré spaces, but there
are examples of fans which are not Bergman fans of matroids for which this
duality still holds (Example 3.4.4). To examine further, we first introduce an
isomorphism ψ : Cnc (X,Fp) → CBMn−p,n(X). Next, we exploit the structure of
fans to construct a commutative diagram around the isomorphism. Then we
use this diagram to determine equivalent conditions for the fan to satisfy the
duality ∩[X] : Hp,0(X)→ HBM

n−p,0(X) in the case where X is a pure dimensional
fan, identifying the following property:

Definition 4.0.1 (Definition 4.3.2). Given a weighted polyhedral fan X of
dimension n, we say that X is uniquely p-balanced if, given a cochain
b = (bσ)σ∈Xn ∈ Cnc (X,Fp), one has∑

τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉 = 0

for all τ ∈ Xn−1, where ωσ is the weight of the σ face, if and only if there is an
a ∈ Fp(v) such that bσ = (s∗(a))σ for all σ ∈ Xn.

This property is sufficient to determine when ∩[X] : Hp,0(X)→ HBM
n−p,0(X)

is an isomorphism:

Theorem 4.0.2 (Theorem 4.3.5). Let X be a pure balanced rational polyhedral
fan of dimension n in RN . The cap morphism ∩[X] : Hp,0(X) →
HBM
n (X,Fn−p) is an isomorphism if and only if X is uniquely p-balanced.

Finally, we determine for a general polyhedral fan when ∩[X] : Hp,q(X)→
HBM
n−p,n−q(X) is an isomorphism, using a dependence relation cosheaf Kp

(Definition 4.4.1). We have:

Corollary 4.0.3 (Corollary 4.4.3). Let X be a polyhedral fan of dimension n.
Then

HBM
q−1 (X,Kp) ∼= HBM

q (X,Fp)
for q = 1, . . . , n and p = 0, . . . , n, and

HBM
n (X,Kp) = 0 = HBM

0 (X,Fp)

Both these results can then be combined to get equivalent conditions for a
pure fans:
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4. Tropical Poincaré duality

Theorem 4.0.4 (Theorem 4.5.1). A rational balanced polyhedral fan of pure
dimension n is a tropical Poincaré space, i.e.

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for all p, q = 0, . . . , n, if and only if

1. X is uniquely p-balanced for all p, and

2. the dependence cosheaf Kp is acyclic in Borel–Moore homology for all p,
that is, HBM

q (X,Kp) = 0 for q 6= n− 1 and all p.

4.1 An isomorphism between compact support
cohomology and Borel–Moore homology

Let X be a weighted polyhedral fan of dimension n. We will first show that:

⊕
σ∈Xn

(
p∧
L(σ)

)∗
= Cnc (X,Fp) ∼= CBMn−p,n(X) =

⊕
σ∈Xn

n−p∧
L(σ),

using an isomorphism closely related to the cap product ∩[X]. We build a
componentwise map:

Definition 4.1.1. Let X be a weighted rational polyhedral complex of dimension
n, and σ ∈ Xn a face. Let Λσ be a generator of the p-th wedge of the Z-lattice
in L(σ), so that Λσ ∈

∧n
L(σ). Moreover, recall the definition of the contraction

map from Definition 3.3.3. Then we have a linear map:

ψσ :
p∧
L(σ)∗ →

n−p∧
L(σ),

α 7→ ωσ〈α; Λσ〉,

since the contraction map 〈−;−〉 :
∧p

L(σ)∗×
∧n

L(σ)→
∧n−p

L(σ) is bilinear.

Remark 4.1.2. Note that, since
∧p

L(σ)∗ ∼= (
∧p

L(σ))∗, this in fact defines a
map from the σ-component of Cnc (X,Fp) to the σ-component of CBMn (X,Fn−p).

Theorem 4.1.3. The morphism ψσ :
∧p

L(σ)∗ →
∧n−p

L(σ) is an isomorphism
for all σ where ωσ 6= 0.

Proof. First note that, we can choose a basis eσ1 , . . . , eσn for the parallel space
L(σ). Then, for each p, a basis for

∧p
L(σ) is

〈eσI | I := (i1, . . . , ip) ⊆ {1, . . . , n}, |I| = p and i1 < · · · < ip〉.

Using this, we can write Λσ = vσe
σ
1 ∧ . . . ∧ eσn, where vσ is some coefficient. We

can also find bases for the dual spaces (
∧p

L(σ))∗ ∼=
∧p

L(σ)∗:

〈(eσI )∗ | I := (i1, . . . , ip) ⊆ {1, . . . , n}, |I| = p and i1 < · · · < ip〉,

where (eσI )∗ is the p-covector such that:

(eσI )∗(eσJ) =
{

1 if J = I,

0 otherwise.
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4.1. An isomorphism between compact support cohomology and
Borel–Moore homology

Note that since (eσ1 )∗, . . . , (eσn)∗ is a basis for L(σ)∗, hence for I = (i1, . . . , in),
we have that:

(eσi1)∗ ∧ . . . ∧ (eσip)∗ = (eσI )∗

Since:

dim
p∧
L(σ)∗ =

(
n
p

)
=
(

n
n− p

)
= dim

n−p∧
L(σ),

it is sufficient to show that ψσ is injective.
Assume therefore that ψσ(y) = 0 for some y =

∑
I aI(eσI )∗ ∈

∧p
L(σ)∗.

Then we have the following:

0 = ψσ(y),

= ωσ

〈∑
I

aI(eσI )∗; Λσ

〉
,

= ωσ
∑
I

aI〈(eσI )∗; Λσ〉,

and using the observation from earlier that Λσ = vσe
σ
1 ∧ . . . ∧ eσn, we get:

0 = ωσ
∑
I

aI〈(eσI )∗; Λσ〉,

= ωσ
∑
I

aI〈(eσI )∗; vσeσ1 ∧ . . . ∧ eσn〉,

= ωσ
∑
I

aIvσ〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉.

Here to analyze the contraction mapping, we use the following lemma:

Lemma 4.1.4. Contraction by (eσI )∗ gives 〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉 = ±eσIc , where
Ic = {i ∈ [n] | i 6∈ I} in strictly ascending order.

Proof. We can compute the first step of the contraction to be:

〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉 = 〈(eσi1)∗ ∧ . . . ∧ (eσip)∗; eσ1 ∧ . . . ∧ eσn〉,
= c(

eσ
ip

)∗ ◦ · · · ◦ c(
eσ
i1

)∗(eσ1 ∧ . . . ∧ eσn).

Now since (
eσij

)∗
(eσk) =

{
1 if k = ij ,

0 otherwise,

and

c(
eσ
i1

)∗(eσ1 ∧ . . . ∧ eσn) =
n∑
j=1

(−1)j
[(
eσi1
)∗ (eσj )

]
(eσ1 ∧ . . . ∧ êσj ∧ . . . ∧ eσn),

= (−1)i1eσ1 ∧ . . . ∧ êσi1 ∧ . . . ∧ e
σ
n,

we have that

〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉 = c(
eσ
ip

)∗ ◦ · · · ◦ c(
eσ
i2

)∗((−1)i1eσ1 ∧ . . . ∧ êσi1 ∧ · · · ∧ e
σ
n).
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4. Tropical Poincaré duality

Now if we repeat this process for each ik, we see that we remove the eik term
from the original wedge and possibly make a sign change. Therefore, in the end
we have

〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉 = ±eσIc ,

which is the (n− p)-multivector composed of the wedge of the elements in the
original basis with indices 0, . . . , n 6∈ I. �

Lemma 4.1.4 can then be used in our situation, giving:

0 = ωσ
∑
I

aIvσ〈(eσI )∗; eσ1 ∧ . . . ∧ eσn〉,

= ±ωσvσ
∑
I

aIe
σ
Ic .

Finally, since the eσIc are elements of the basis for
∧n−p

L(σ), they must be
linearly independent, hence for this equality to hold, we must have aI = 0 for
all I. This then finally gives:

y =
∑
I

aIe
σ
I = 0,

hence ψσ is injective. �

Since these maps then induce isomorphisms on each component σ, we have:

Corollary 4.1.5. Let X be a weighted polyhedral fan of dimension n. The map

ψ : Cnc (X,Fp)→ CBMn−p,n(X),
(yσ)σ∈Xn 7→ (ψσ(yσ))σ∈Xn ,

is an isomorphism.

Proof. Recall that we defined weight functions to be nowhere zero (Defini-
tion 3.2.8). Then by Theorem 4.1.3, this follows from being a direct sum
of isomorphisms in each component since Fp(σ) =

∧p
L(σ) and Fp(σ) =

(
∧p

L(σ))∗ ∼=
∧p

L(σ)∗ for all σ ∈ Xn. �

Explicitly, the isomorphism ψ is

ψ : Cnc (X,Fp)→ CBMn−p,n(X),
(yσ)σ∈Xn 7→ (ωσ〈yσ; Λσ〉)σ∈Xn ,

which can be compared to the very similar cap product with the fundamental
class of X from Definition 3.3.4.
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4.2. A commutative diagram for pure fans

4.2 A commutative diagram for pure fans

Given a polyhedral fan X of dimension n, and any collection P ⊂ X there is a
summation map:

s :
⊕
γ∈P
Fp(γ)→ Fp(v), (4.1)

(xγ)γ∈P 7→
∑
γ∈P

xγ . (4.2)

In particular, we will use this map when the chosen collection of X is a set of
cells of equal dimension q:

s : CBMq (X,Fp)→ Fp(v),

(xσ)σ∈Xq 7→
∑
σ∈Xn

xσ.

For any fan X, the Fp sheaf at the vertex can be taken over the maximal by
inclusion faces of X, i.e.

Fp(v) =
∑
v≤σ

p∧
L(σ) =

∑
σ∈X

σ maximal

p∧
L(σ),

If X is pure dimensional (Definition 2.1.2), the only maximal by inclusion
faces are the top-dimensional ones. Therefore, Fp(v) =

∑
σ∈Xn

∧p
L(σ), which

guarantees that the map s : CBMn (X,Fp)→ Fp(v) is surjective. Letting Kp(v)
be the kernel of this map (this notation is explained in Definition 4.4.1, but can
safely be ignored here), we have the exact sequence,

0 Kp(v) CBMn (X,Fp) Fp(v) 0.i s

By dualizing this, we get the exact sequence

0 Fp(v) Cnc (X,Fp) Kp(v) 0,s∗ i∗

where Kp(v) := (Kp(v))∗Additionally, since HBM
n (X,Fn−p) = ker(∂n), we have

the exact sequence

0 HBM
n (X,Fn−p) CBMn (X,Fn−p) BBMn−1(X,Fn−p) 0,j ∂n ∂n−1

where BBMn−1(X,Fn−p) ⊆ CBMn−1(X,Fn−p) is the set of boundaries.
Using these two exact rows, and the morphisms ∩[X] and ψ (see

Proposition 3.3.6 and Corollary 4.1.5 respectively), we have the following
diagram:

0 Fp(v) Cnc (X,Fp) Kp(v) 0

0 HBM
n (X,Fn−p) CBMn (X,Fn−p) BBMn−1(X,Fn−p) 0

s∗

∩[X]

i∗

ψ

j ∂n

41



4. Tropical Poincaré duality

Proposition 4.2.1. The square in the diagram is commutative.

Proof. We wish to show that for y =
∑
I a

σ
I e
∗
I ∈ Fp(v), we have

(j ◦ ∩[X])(y) = (ψ ◦ s∗)(y).

First we use the definitions to compute the left side:

(j ◦ ∩[X])(y) = j(y ∩ [X]),
= j (ωσ〈y; Λσ〉)σ∈Xn .

To compute the right side, recall that the map s∗ comes from dualizing s, hence
by examining the diagram

CBMp,n (X) Fp(v) 0,

R

s

y

we see that s∗(y) = y ◦ s =: ys. Therefore, we can write the right hand side as

(ψ ◦ s∗)(y) = ψ(ys),
= (ωσ〈(ys)σ; Λσ〉)σ∈Xn .

Now we note that, when restricting s : CBMn (X,Fp)→ Fp(v) to an individual
component, the sum is merely applying the identity map. Hence (ys)σ is the
restriction y|Fp(σ) of y to the multivectors in Fp(σ), so that (ys)σ = ρv,σ(y),
where ρ is the sheaf restriction map. This gives:

(ψ ◦ s∗)(y) = (ωσ〈(ys)σ; Λσ〉)σ∈Xn ,
= (ωσ〈ρv,σ(y); Λσ〉)σ∈Xn ,
= (ωσ〈y; Λσ〉)σ∈Xn ,

where we simply clarify the contraction using the notation from Definition 3.3.3.
Finally, since j is an injection, we can naturally identify

j (ωσ〈y; Λσ〉)σ∈Xn = (ωσ〈y; Λσ〉)σ∈Xn ,

which finally gives
(j ◦ ∩[X])(y) = (ψ ◦ s∗)(y).

�

Theorem 4.2.2. Let X be a pure rational polyhedral fan of dimension n. Then
the following diagram is commutative:

0 Fp(v) Cnc (X,Fp) Kp(v) 0

0 HBM
n (X,Fn−p) CBMn (X,Fn−p) BBMn−1(X,Fn−p) 0

s∗

∩[X]

i∗

ψ φ

j ∂n
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Proof. Since the left square of the diagram is commutative by Proposition 4.2.1,
we know that we can use the technique from the right completion of diagrams
(Lemma B.1.1) to give us a map from Kp(v) to BBMn−p,n, which will help us
characterize exactly what conditions on polyhedral fans give the isomorphism
Hp,0
c (X) ∼= HBM

n (X,Fn−p).
Following the previous construction from right completion, and using the

commutative diagram

0 Fp(v) Cnc (X,Fp) Kp(v) 0,

0 HBM
n (X,Fn−p) CBMn (X,Fn−p) BBMn−1(X,Fn−p) 0,

s∗

∩[X]

i∗

ψ

j ∂n

we define a morphism:

φ : Kp(v)→ BBMn−1(X,Fn−p),
y 7→ ∂n(ψ(b)),

for b ∈ Cnc (X,Fp) some element such that i∗(b) = y. By Lemma B.1.1, this
map makes both squares of the diagram commutative. �

Next we will use a consequence of the snake lemma to determine when ∩[X]
and φ are isomorphisms.

4.3 Equivalence of isomorphisms

Theorem 4.3.1. Let X be a pure balanced rational polyhedral fan. Then the cap
with the fundamental class ∩[X] : Hp,q(X)→ HBM

n−p,n−q(X) is injective.

Proof. By using Proposition B.2.1, for a pure dimensional balanced polyhedral
fan X, the cap map ∩[X] is always injective, the morphism φ is always surjective,
and if one is an isomorphism, so is the other. �

Using this theorem, it is sufficient to find conditions onX so that φ is injective
to determine when ∩[X] : Hp,0

c (X) → HBM
n (X,Fn−p) is an isomorphism.

With this goal in mind, we should investigate φ. Choose y ∈ Kp(v) and
b = (bσ)σ∈Xn ∈ Cnc (X,Fp) such that i∗(b) = y. Then we can write out φ(y):

φ(y) = ∂n(ψ(b)),
= ∂n

(
(ωσ〈bσ; Λσ〉)σ∈Xn

)
,

=

∑
τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉


τ∈Xn−1

.

Now we wish to see what condition on X would give that φ is injective. Suppose

0 = ψ(y),

=

∑
τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉


τ∈Xn−1

.
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4. Tropical Poincaré duality

We would wish for this to mean that y = 0, so that b ∈ ker(i∗) = im(s∗), i.e.
that bσ = a ◦ s for some a ∈ Fp(v). This motivates the following definition:

Definition 4.3.2. Given a weighted polyhedral fan X of dimension n, we say
that X is uniquely p-balanced if, given b = (bσ)σ∈Xn ∈ Cnc (X,Fp),∑

τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉 = 0

for all τ ∈ Xn−1, where ωσ is the weight of the σ face, if and only if there is an
a ∈ Fp(v) such that bσ = (s∗(a))σ for all σ ∈ Xn.

Remark 4.3.3. By Proposition 3.3.6, given that the fan X is balanced,
Definition 4.3.2 generalizes the definition of X being uniquely balanced
(Definition 3.2.11) to higher codimensions. Indeed suppose X is uniquely
balanced, let p = 0, and pick b ∈ C0,n

c (X) = ⊕σ∈XnR, so that bσ ∈ R for all σ.
Then, ∑

τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉 =
∑
τ≤σ

O(τ, σ)ωσbσΛσ = 0

holds if and only if all the bσ are the same, since otherwise ω′σ = bσωσ would
be other weights balancing the fan, contradicting unique balancing. But then
taking a = bσ for some σ, one has b = (bσ)σ∈Xn = s∗(a). Hence X is 0-balanced.
Moreover, by the same argument, we see that if X is uniquely 0-balanced, it is
uniquely balanced.

Theorem 4.3.4. The map φ is injective if and only if X is uniquely p-balanced.

Proof. Suppose φ is not injective, so that we can find some y ∈ Kp(v) with
y 6= 0, such that φ(y) = 0. Since i∗ is surjective, there is a b ∈ Cnc (X,Fp), with
i∗(b) = y, hence b 6∈ ker(i∗) = im(s∗) such that

0 = ψ(y),
= ∂n(φ(b)),

=

∑
τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉


τ∈Xn−1

.

Since b is not in the image of s∗, there is no a ∈ Fp(v) such that b = s∗(a),
thus X is not uniquely p-balanced.

Next suppose X is not uniquely p-balanced, such that we can find some
b ∈ Cnc (X,Fp) with ∑

τ≤σ

O(τ, σ)ωσ〈bσ; Λσ〉 = 0

for all faces τ ∈ Xn−1, yet there is no a ∈ Fp(v) such that b = s∗(a). Then since
∂n(ψ(b)) = 0 hence φ(b) = 0, so that i∗(b) ∈ ker(φ), but b 6∈ im(s∗) = ker(i∗).
Therefore i∗(b) ∈ Kp(v) is not 0, hence φ is not injective. �

Theorem 4.3.5. Let X be a pure balanced rational polyhedral fan of dimension
n in RN . The cap morphism ∩[X] : Hp,0(X) → HBM

n (X,Fn−p) is an
isomorphism if and only if X is uniquely p-balanced.
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Proof. This follows from Proposition B.2.1 and Theorem 4.3.4. �

Corollary 4.3.6. The Bergman fan of a matroid is uniquely p-balanced for all
p.

Proof. Since Bergman fans are pure balanced rational polyhedral fans, this
follows from Theorem 4.3.5. �

4.4 The dependence relation cosheaf

Next, we seek to establish when HBM
q (X,Fp) = 0 for q = 0, . . . , n − 1 and

all p. Observe that we can resolve the Fp cosheaf using elementary projective
cosheaves concentrated on maximal cells . Indeed, let

Sp :=
⊕

σ maximal
[σ̂]F

p(σ).

Then the sequence

0 Kp Sp Fp 0s

is exact, where s is the summation map from Equation (4.1), and Kp is the
kernel cosheaf.

Definition 4.4.1. The cosheaf Kp as defined above is called the dependence
relation cosheaf.

The exact sequence induces a long exact sequence in homology:

0 HBM
n (X,Kp) HBM

n (X,Sp) HBM
n (X,Fp)

HBM
n−1(X,Kp) · · · HBM

1 (X,Fp)

HBM
0 (X,Kp) HBM

0 (X,Sp) HBM
0 (X,Fp) 0.

Next, we have the following:

Proposition 4.4.2. Given a polyhedral fan X of dimension n, we have

HBM
q (X,Sp) = 0,

for q = 0, . . . , n and p = 0, . . . , n.

Proof. Note that we have already proven this statement in greater generality
in Example 2.5.12. �

Alternatively, one can prove the proposition as follows:
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4. Tropical Poincaré duality

Proof. The linear dual sheaf Sp := V (Sp) of Sp (Definition 2.3.1), is an injective
sheaf by Example 2.4.9. Since injective sheaves are flabby [Har77, Lemma
III.2.4], hence soft, and finite polyhedral complexes with Alexandrov topology
are compact, we can use [Ive86, Theorem III.2.7] to give:

Hi
c(X,Sp) = 0, for i ≥ 1.

By applying Proposition 2.5.9, this gives:

HBM
i (X,Sp)∗ ∼= Hi

c(X,Sp) = 0, for i ≥ 1.

Moreover, HBM
0 (X,Sp) = 0 for any p. Looking at the last terms of the Borel–

Moore homology of Sp, we have:

· · · CBM1 (X,Sp) CBM0 (X,Sp) 0,∂1

which is just:

· · ·
⊕
τ∈X1

⊕
σ≥τ

σ maximal

∧p
L(σ)

⊕
σ maximal

∧p
L(σ) 0.∂1

For any maximal by inclusion cell σ of the fan, there is at least one edge τ ∈ X1

such that τ ≤ σ, hence the term
∧p

L(σ) appears at least once in the degree 1
term of the complex. Hence ∂1 is surjective and so HBM

0 (X,Sp) = 0. �

Corollary 4.4.3. Let X be a polyhedral fan of dimension n. Then

HBM
q−1 (X,Kp) ∼= HBM

q (X,Fp)

for q = 1, . . . , n and p = 0, . . . , n, and

HBM
n (X,Kp) = 0 = HBM

0 (X,Fp)

Proof. This follows from Proposition 4.4.2, since HBM
q (X,Sp) = 0, for

q = 0, . . . , n, hence all the connecting homomorphisms must be isomorphisms,
for p = 0, . . . , n. Moreover, from the long exact sequence, we see that
HBM
n (X,Sp) = 0 gives HBM

n (X,Kp) = 0, and HBM
0 (X,Sp) = 0 gives

HBM
0 (X,Fp) = 0. �

4.5 A classification theorem

We can use unique p-balancing and Section 4.4 to give a complete classification
of pure fans which are tropical Poincaré spaces:

Theorem 4.5.1. A rational balanced polyhedral fan of pure dimension n is a
tropical Poincaré space, i.e.

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for all p, q = 0, . . . , n, if and only if

1. X is uniquely p-balanced for all p, and

46



4.5. A classification theorem

2. the dependence cosheaf Kp is acyclic in Borel–Moore homology in degrees
other than n− 1, that is, HBM

q (X,Kp) = 0 for q 6= n− 1, for all p.

Proof. By Proposition 2.5.6, we have that Hq(X,Fp) = 0 for q > 0, for all p.
Hence

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for q > 0 if and only if HBM
n−q (X,Fn−p) = 0 for q > 0. By

Corollary 4.4.3, this is equivalent to HBM
q−1 (X,Kp) = 0 for q < n.

Next, we need to determine when ∩[X] : Hp,0(X)→ HBM
n (X,Fn−p) is an

isomorphism. By Theorem 4.3.5, for a pure dimensional fan, this is equivalent
to X being uniquely p-balanced. �

One might hope that the second condition guarantees that X is pure, making
the criteria complete, however this is not the case:

Example 4.5.2. The following fan can be thought of as the Bergman fan of the
uniform matroid U6

4 , placed in a hyperplane of R8, to which three rays have
been appended in the orthogonal complement of the hyperplane. A pathological
configuration between these three rays and the Bergman fan is then constructed.
Concretely, one can read of this construction from the following the cellular
sheaves package [KSW17] for [polymake], which we also use to compute the
homology of the fan:
application "fan";
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0,0,0,0,0,0],
[0,-1,0,0,0,0,0,0,0],
[0,0,-1,0,0,0,0,0,0],
[0,0,0,-1,0,0,0,0,0],
[0,0,0,0,-1,0,0,0,0],
[0,0,0,0,0,-1,0,0,0],
[0, 1,1,1,1,1,0,0,0],
[0, 0,0,0,0,0,1,0,0],
[0, 0,0,0,0,0,0,1,0],
[0, 0,0,0,0,0,0,0,1]
],
INPUT_CONES =>
[
[6,1,2,0],[1,2,3,0],[6,2,3,0],[6,1,3,0],[6,1,4,0],[1,3,4,0],[6,3,4,0],
[6,1,5,0],[1,3,5,0],[6,3,5,0],[6,2,4,0],[2,3,4,0],[6,2,5,0],[2,3,5,0],
[6,4,5,0],[3,4,5,0],[1,2,4,0],[1,2,5,0],[1,4,5,0],[2,4,5,0],
[0,7,8],
[0,7,9],
[0,1,7,8],
]

);

$complex = new fan::PolyhedralComplex($fan);

@betti_usual = ();
@betti_borel_moore = ();
for(my $i=0; $i<5; $i++){

my $f = $complex->fcosheaf($i);
my $u = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_borel_moore, $bm->BETTI_NUMBERS;
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}

print new Matrix(@betti_usual);
print new Matrix(@betti_borel_moore);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0 0
8 0 0 0
14 0 0 0
11 0 0 0
0 0 0 0

fan > print new Matrix(@betti_borel_moore);
0 0 0 10
0 0 0 10
0 0 0 5
0 0 0 1
0 0 0 0

Which means that this fan is not a tropical Poincaré space, and as can be
seen from its input cones, it is not pure, despite having HBM

q (X,Fp) = 0, i.e.
HBM
q−1 (X,Kp) = 0, for q < n.

4.6 Euler characteristic conditions

Using the above theorem Theorem 4.5.1, one can also see when ∩[X] is an
isomorphism using the Euler characteristic.

Corollary 4.6.1. Let X be a polyhedral fan of pure dimension n, with the cosheaf
Kp acyclic in all degrees except n− 1 for all p. Then ∩[X] is an isomorphism
if and only if

(−1)nχ(CBM• (X,Fn−p)) = dimFp(v).

Proof. When Kn−p is acyclic, by Corollary 4.4.3, we have 0 = HBM
q−1 (X,Kn−p) ∼=

HBM
q (X,Fn−p) for q 6= n, hence the Euler characteristic is given by:

χ(CBM• (X,Fn−p)) = (−1)nHBM
q (X,Fn−p).

Moreover, since X is pure, the cap with the fundamental class ∩[X] is injective,
hence an isomorphism if and only if dimFp(v) = dimHBM

q (X,Fn−p). We can
now use the above equation to see that ∩[X] is an isomorphism if and only if:

(−1)nχ(CBM• (X,Fn−p)) = dimFp(v).

�

Moreover, given a polyhedral fan X of dimension n, one can consider what
happens in the case where every tangent fan TτX of a face τ ∈ X is a tropical
Poincaré space.

(−1)n dimFp(τ) = χ(CBM• (TτX,Fn−p)) :=
∑
τ≤σ

(−1)dimσFn−p(σ).

In this case, there is some form of duality relating the cap product ∩[X] for p
to the ∩[X] for n− p:
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Corollary 4.6.2. Let X be a balanced polyhedral fan of pure dimension n.
Suppose for each τ ∈ X, with τ 6= v, the tangent fan TτX is a tropical Poincaré
space. Then ∩[X] : Hq(X,Fp) → HBM

n−q (X,Fn−p) is an isomorphism if and
only if i∩[X] : Hq(X,Fn−p)→ HBM

n−q (X,Fp) is an isomorphism.

Proof. We know that X is a tropical Poincaré space if and only if:

χ(CBM• (X,Fn−p)) = (−1)n dimFp(v).

Using our assumptions on the tangent fans, we have that the left hand side of
this equation is:

χ(CBM• (X,Fn−p)) =
∑
σ∈X

(−1)dimσ dimFn−p(σ)

= dimFn−p(v) +
∑
τ 6=v

(−1)n
∑
τ≤σ

(−1)dimσ dimFp(σ)

= dimFn−p(v) + (−1)n
∑
σ 6=v

(−1)dimσ dimFp(σ)
∑
τ 6=v
τ≤σ

(−1)dim τ

Now note that, for any given σ, one can compute the Euler characteristic of
the polytope over which σ is a cone using

∑
τ 6=v
τ≤σ

(−1)dim τ−1, which gives:

∑
τ 6=v
τ≤σ

(−1)dim τ = −1.

This can then be used further to give:

χ(CBM• (X,Fn−p)) = dimFn−p(v) + (−1)n
∑
σ 6=v

(−1)dimσ+1 dimFp(σ).

Therefore,
(−1)nχ(CBM• (X,Fn−p)) = dimFp(v)

if and only if
(−1)nχ(CBM• (X,Fp)) = dimFn−p(v),

i.e. by Corollary 4.6.1, X is a tropical Poincaré space for p if and only if it is
for n− p. �
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CHAPTER 5

Classification of tropical Poincaré
fans of dimension 2

In this chapter, we classify which polyhedral fans of dimension 2 are tropical
Poincaré spaces, i.e. have the property

Hq(X,Fp) ∼= HBM
2−q (X,F2−p),

for q = 0, 1, 2 and p = 0, 1, 2, where the isomorphism is given by the cap with
the fundamental class ∩[X]. We first prove that any such fan is necessarily
of pure dimension. Then we work with the dependence relation cosheaf Kp
from Section 4.4 to obtain criteria for when HBM

q (X,Fp) = 0 for q < 2,
which is necessary since Hq(X,Fp) = 0 for q > 0 by Proposition 2.5.6.
Next we utilize these relations along with the unique p-balancing from
Definition 4.3.2 to determine when H0(X,Fp) ∼= HBM

2 (X,F2−p), which
completes the classification. The classification result can be stated as follows:

Theorem 5.0.1 (Theorem 5.6.1). Let X be a rational 2-dimensional polyhedral
fan. The cap product with the fundamental class ∩[X] : Hq(X,Fp) →
HBM

2−q (X,F2−p) is an isomorphism if and only if

1. X is pure,

2. the boundary map ∂1 : ⊕τ∈X1 Kp(τ)→ Kp(v) is surjective,

3. X is uniquely balanced, and

4. X is uniquely balanced at each edge.

5.1 Tropical Poincaré fans of dimension 2 are pure

We first observe that purity (see Definition 2.1.2) is necessary:

Proposition 5.1.1. If a polyhedral fan of dimension 2 is a tropical Poincaré
space, it is pure dimensional.

Proof. Let X be a 2-dimensional polyhedral fan, and suppose X is not pure.
Then there is a ray τ ∈ X which is maximal by inclusion of cells. Take any
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other ray τ ′ in X. Then consider the element x = (xγ)γ∈X1 ∈ CBM1 (X,F0)
given componentwise:

xγ =


1 if γ = τ ′,
−1 if γ = τ ,
0 otherwise.

Then ∂(x) = 1 − 1 = 0, hence [x] ∈ HBM
1 (X,F0), and since τ is maximal

by inclusion, there is no y ∈ CBM2 (X,F0) such that ∂(y) = x, hence
[x] 6= 0 ∈ HBM

1 (X,F0). Therefore dim
(
HBM

1 (X,F0)
)
> 0 = dim

(
H1(X,F2)

)
,

so the fan cannot be a tropical Poincaré space. �

Since purity is necessary, Theorem 4.3.5 can be used to settle part of the
requirements on X:

Proposition 5.1.2. Let X be a balanced rational polyhedral fan of dimension 2
in RN . For any p, the cap morphism ∩[X] : H0(X,Fp)→ HBM

2 (X,F2−p) is
an isomorphism if and only if X is uniquely p-balanced.

Proof. In Theorem 4.3.5, the equivalence stated holds only for pure fans. Since
purity is necessary in the 2-dimensional case by Proposition 5.1.1, the theorem
provides the equivalence in all cases. �

5.2 The dependence relation cosheaf

We saw in Corollary 4.4.3 that we can use the dependence relation cosheaf Kp
to determine when HBM

q (X,Fp) = 0 for q < dim(X). Briefly recapitulating,
we have:

Sp :=
⊕

σ maximal
[σ̂]F

p(σ).

Then the sequence

0 Kp Sp Fp 0

is exact, where Kp is the kernel cosheaf, called the dependence relation cosheaf.
This induces a long exact sequence in homology:

0 HBM
2 (X,Kp) HBM

2 (X,Sp) HBM
2 (X,Fp)

HBM
1 (X,Kp) HBM

1 (X,Sp) HBM
1 (X,Fp)

HBM
0 (X,Kp) HBM

0 (X,Sp) HBM
0 (X,Fp) 0.

We then have the following:

Corollary 5.2.1. For a polyhedral fan X of dimension 2, we have

HBM
2 (X,Fp) ∼= HBM

1 (X,Kp)
HBM

1 (X,Fp) ∼= HBM
0 (X,Kp)

and HBM
0 (X,Fp) = 0 = HBM

2 (X,Kp).
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Proof. This is just Corollary 4.4.3 in the 2-dimensional case. �

Therefore, for a 2-dimensional fan, to determine when HBM
q (X,Fp) = 0 for

q = 0, 1 and p = 0, 1, 2, it suffices to determine when HBM
0 (X,Kp) = 0:

Theorem 5.2.2. Let X be a 2-dimensional polyhedral fan. Then HBM
q (X,Fp) =

0 for q = 0, 1 if and only if the boundary map

∂1 :
⊕
τ∈X1

Kp(τ)→ Kp(v)

is surjective, for each p = 0, 1, 2.

Proof. By Corollary 5.2.1, we have that HBM
0 (X,Fp) = 0 for any p, and

that HBM
1 (X,Fp) ∼= HBM

0 (X,Kp). Now HBM
0 (X,Kp) = 0 if and only if the

boundary map
∂1 :

⊕
τ∈X1

Kp(τ)→ Kp(v)

is surjective. Hence HBM
1 (X,Fp) = 0 if and only if ∂1 is surjective. �

5.3 Algebraic classification theorem

Using the two previous sections, we can give an “algebraic” classification of
2-dimensional polyhedral fans which are tropical Poincaré spaces:

Corollary 5.3.1. Let X be a rational 2-dimensional polyhedral fan. The cap
product with the fundamental class ∩[X] : Hq(X,Fp)→ HBM

2−q (X,F2−p) is an
isomorphism if and only if

1. X is pure,

2. the boundary map ∂1 : ⊕τ∈X1 Kp(τ)→ Kp(v) is surjective,

3. X is uniquely p-balanced for p = 0, 1, 2.

Proof. This follows from applying Proposition 5.1.2 and Theorem 5.2.2. �

This theorem provides a classification, but it is not straightforward to
understand the geometry of such fans from the provided criteria. We now seek
to clarify the geometric meaning of unique p-balancing. We have already seen
in Remark 4.3.3 that unique 0-balancing is equivalent to the fan being uniquely
balanced Definition 3.2.11. It remains to clarify unique 1- and 2-balancing for
the fans of Corollary 5.3.1.

5.4 Characterizing unique 1-balancing

Proposition 5.4.1. Let X be a rational balanced polyhedral fan of pure
dimension 2, such that the boundary map ∂1 : ⊕τ∈X1K1(τ)→ K1(v) is surjective.
Then the map ∩[X] : H0(X,F1)→ HBM

2 (X,F1) is an isomorphism if and only
if X is uniquely balanced along each edge τ ∈ X1.
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5. Classification of tropical Poincaré fans of dimension 2

Proof. By Theorem 5.2.2, since ∂1 : ⊕τ∈X1 K1(τ) → K1(v) is surjective, we
have that HBM

q (X,F1) = 0 for q = 0, 1. We can again work with the following
diagram:

0 F1(v) C2
c (X,F1) K1(v) 0,

0 HBM
2 (X,F1) CBM2 (X,F1) BBM1 (X,F1) 0.

s∗

∩[X]

i∗

ψ φ

j ∂2

Working with the Euler characteristic of the complex CBM1,• (X), we can use that
HBM
q (X,F1) = 0 for q = 0, 1 to get:

χ
(
CBM• (X,F1)

)
=

2∑
i=0

(−1)i dim
(
CBMi (X,F1)

)
,

2∑
i=0

(−1)i dim
(
HBM
i (X,F1)

)
=

2∑
i=0

(−1)i
∑
σ∈Xi

dim
(
F1(σ)

)
,

dim
(
HBM

2 (X,F1)
)

= 2f2 −
∑
τ∈X1

dim
(
F1(τ)

)
+ dim

(
F1(v)

)
.

Since ∩[X] is an isomorphism if and only if

dim(F1(v)) = dim
(
HBM

2 (X,F1)
)
,

= 2f2 −
∑
τ∈X1

dim
(
F1(τ)

)
+ dim

(
F1(v)

)
,

we must have:

2f2 =
∑
τ∈X1

dim(F1(τ)).

We claim that dim(F1(τ)) = val(τ) + 1 − βτ for each τ , where val(τ) is the
number of faces containing τ , and βτ is the number of ways to balance the fan
tangent fan TτX at τ .

Indeed, suppose we add a face containing τ to the fan. If this face increases
the dimension of dim(F1(τ)), then this new face could not have been obtained
from a balancing of the others, hence βτ is unchanged. Therefore the increase in
dimension is accounted for by val(τ). If however this new face does not increase
the dimension, then it must be dependent on the other faces, which gives a new
way to balance the fan, hence the positive contribution from val(τ) is negated
by the increase of βτ . Moreover, since L(τ) ⊂ F1(τ), we always have at least
one dimension of freedom along the face τ .

Putting this formula to use, and noting that by counting the number of faces
meeting at each edge, we count each face twice, so that 2f2 =

∑
σ∈X1 val(σ),
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we get the following

2f2 =
∑
σ∈X1

dim(F1(σ)),

2f2 =
∑
σ∈X1

(val(σ) + 1− βσ),

2f2 −
∑
σ∈X1

val(σ) = f1 −
∑
σ∈X1

βσ,∑
σ∈X1

βσ = f1.

Now, since the fan is balanced, so that there is at least one way to balance each
tangent fan TτX, this equality holds if and only if there is exactly one way to
balance each edge of the fan, which is what we wanted to show. �

5.5 Characterizing unique 2-balancing

Proposition 5.5.1. Let X be a rational balanced polyhedral fan of pure
dimension 2, such that the boundary map ∂1 : ⊕τ∈X1K2(τ)→ K2(v) is surjective.
Then ∩[X] : H2,0(X)→ HBM

0,2 (X) is an isomorphism if and only if X is uniquely
balanced along each edge.

Proof. By Theorem 5.2.2, the surjectivity of ∂1 on X is equivalent to
HBM
q (X,F2) = 0 for q = 0, 1, so that we can yet again work with the diagram:

0 F2(v) C2
c (X,F2) K2(v) 0,

0 HBM
2 (X,F0) CBM2 (X,F0) BBM1 (X,F0) 0.

s∗

∩[X]

i∗

ψ φ

j ∂2

Working with the Euler characteristic of the complex CBM• (X,F0), we can use
that HBM

q (X,F0) = 0 for q = 0, 1 to get:

χ
(
CBM• (X,F0)

)
=

2∑
i=0

(−1)i dim
(
CBMi (X,F0)

)
,

2∑
i=0

(−1)i dim
(
HBM
i (X,F0)

)
=

2∑
i=0

(−1)i
∑
σ∈Xi

dim
(
F0(σ)

)
,

dim
(
HBM

2 (X,F0)
)

= f2 − f1 + f0 = f2 − f1 + 1.

We have that ∩[X] is an isomorphism if and only if

dim(F2(v)) = dim
(
HBM

2 (X,F0)
)
,

= f2 − f1 + 1,

and since dim(F2(v)) = dim
(
C2
c (X,F2)

)
− dim(K2(v)), the isomorphism is

equivalent to dim(K2(v)) = f1 − 1.
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Since φ : K2(v) → BBM1 (X,F0) is a surjection, and dimBBM1 (X,F0) =
dimCBM2 (X,F0)− dimHBM

2 (X,F0) = f1 − 1, we have that:

dim(K2(v)) ≥ f1 − 1.

Considering the dual of the first row of the diagram,

0 K2(v) CBM2 (X,F2) F2(v) 0,i s

we note that, since X is a balanced fan, for each codimension 1 face τ ∈ X1,
we have

∑
τ≤σ ωσΛσ = 0, which gives at least one subgroup 〈β(τ)〉 :=

(ωσΛσ)σ ≥τ ⊂ K2(v). Furthermore, if we assume all the edges τ ∈ X1 are
such that O(v, τ), we can fix a given Λσ for each face σ ∈ X2, so that for the
two edges τ, τ ′ ≤ σ, we have O(τ, σ) +O(τ ′, σ) = 0. This then gives a relation
among all the β(τ), specifically

∑
τ∈X1 β(τ) = 0.

Moreover, this is the only possible relation among the β(τ). Indeed consider
the map

〈β(τ)〉τ∈X1 → CBM2 (X,F2),

(ατβ(τ))τ 7→
(∑
τ∈X1

ατO(τ, σ)ωσΛσ

)
σ∈X2

,

where we note that a summand is 0 on all components where σ 6≥ τ . Any
relations among the β(τ) would then appear as the kernel of this map. However,
since X is 2-dimensional, there are only two τ, τ ′ ≤ σ for any given σ, hence for
any given component to be 0, we must have ατ = ατ ′ . Hence the only relation
among the β(τ) is

∑
τ∈X1 β(τ) = 0.

Furthermore, note that there is a one-to-one correspondence between
dependent sets of generators for the wedges of the faces and elements of K2(v).
Indeed let v∗ ∈ K2(v). Then by dualizing, v∗ corresponds to an element
v ∈ K2(v). However v ∈ K2(v) if and only if i(v) := (vσΛσ)σ∈X2 ∈ CBM2 (X,F2)
is an element of the kernel of the summation map s : CBM2 (X,F2) → F2(v).
This happens if and only if

∑
σ∈X2 vσΛσ = 0, so that v∗ corresponds to a

dependence relation among the generators of the spaces
∧2

L(σ). Clearly, any
such relation also induces a v∗, by taking the coefficients of each Λσ to the
σ-component of CBM2 (X,F2), observing that this element must be in the kernel
of s, and hence in K2(v), and then dualizing.

We have seen that each set of balancing conditions (β(τ))τ∈X1 induces a
subgroup of dimension f1 −1 of K2(v). Any other balancing β′(τ) along any edge
would induce a new independent subgroup 〈β′(τ)〉. Hence dim(K2(v)) = f1 − 1
if and only if there is a unique set of balancing conditions (β(τ))τ∈X1 , i.e.
X is uniquely balanced along each edge τ ∈ X1, and every dependent set of
generators Λσ of faces is a linear combination of the balancing relations of some
edges.

Since X is pure, Kp fits in the exact sequence:

0 Kp
⊕

σ∈X2 [σ̂]Fp(σ) Fp 0.

Taking the stalk at the vertex v, this gives:

0 Kp(v)
⊕

σ∈X2 Fp(σ) Fp(v) 0,
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Hence all the dependent set of generators Λσ of faces are recorded in Kp(v).
Compare this with talking stalks at an edge τ :

0 Kp(τ)
⊕

σ∈X2

σ≥τ
Fp(σ) Fp(τ) 0,

meaning that Kp(τ) records the dependencies among the Λσ on edges. Since
∂1 : ⊕τ∈X1 Kp(τ)→ Kp(v) is surjective, this means that any relation on all the
Λσ comes from a relation on edges.

Hence we have that dim(K2(v)) = f1 − 1 if and only if there is a unique
set of balancing conditions (β(τ))τ∈X1 , i.e. X is uniquely balanced along each
edge τ ∈ X1.

�

5.6 Geometric classification theorem

Using the work from the two previous sections, we can now provide a
classification theorem with a more geometric flavor:

Theorem 5.6.1. Let X be a rational 2-dimensional polyhedral fan. The cap
product with the fundamental class ∩[X] : Hp,q(X) → HBM

2−p,2−q(X) is an
isomorphism if and only if

1. X is pure,

2. the boundary map ∂1 : ⊕τ∈X1 Kp(τ)→ Kp(v) is surjective,

3. X is uniquely balanced, and

4. X is uniquely balanced at each edge.

Proof. We saw in Proposition 5.1.1 that pure dimensionality is necessary.
Assuming purity, we have by Theorem 5.2.2 that dimHBM

q (X,Fp) = 0 =
dimH2−q(X,F2−p) = 0 for q = 0, 1 and p = 0, 1, 2 if and only if
∂1 : ⊕τ∈X1 Kp(τ) → Kp(v) is surjective. Moreover, by Proposition 5.4.1,
since dimHBM

q (X,F1) = 0 for q = 0, 1, the cap map ∩[X] : H0(X,F1) →
HBM

2 (X,F1) is an isomorphism if and only if X is uniquely balanced
along each edge τ ∈ X1. Similarly, we may use Proposition 5.5.1 to
see that ∩[X] : H2,0(X) → HBM

0,2 (X) is an isomorphism if and only if X
is uniquely balanced along each edge τ ∈ X1. Finally, we recall that
∩[X] : H0,0(X) → HBM

2,2 (X) is an isomorphism if and only if X is uniquely
balanced Proposition 3.2.12. �

Moreover, examples have shown that each of these conditions is indepen-
dently needed. Purity is necessary by Proposition 5.1.1. Unique balancing at
each edge is necessary by Example 3.4.5. Unique balancing is necessary by
Definition 3.2.11. For an example of a fan which is uniquely balanced along each
edge but not uniquely balanced, see Example 5.6.3. Finally, the surjectivity of
∂1 can be seen in Example 5.6.2.

One might for instance hope that the Cohen–Macaulay property is sufficient
to guarantee that the groups HBM

q (X,Fp) vanish for q > 0. However, as the
following example shows, it is not:
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Figure 5.1: Picture of the fan

Example 5.6.2. Consider the polyhedral fan X from Figure 5.1. We see that,
since there are exactly 3 faces meeting at each edge, none of which are parallel,
each edge is uniquely balanced. Moreover, one sees that it is Cohen–Macaulay
since the tangent fan at each face has only one cell, the tangent fan at an edge
only has 4 cells, of which the top 3 surject onto the cell corresponding to the
edge, and the tangent fan at the vertex, i.e. all of X, has only top dimensional
Borel–Moore homology by the computation at the end of this example. The
same computation shows that X is uniquely balanced.

However, not every dependent set of generators Λσ of faces is a linear
combination of the balancing relations of some edges. Indeed, since there
are faces which are parallel, such as the 2-dimensional faces corresponding
to σ = cone{(1, 0, 0), (0, 1, 0)} and σ′ = cone{(−1, 0, 0), (0,−1, 0)}, their
generators are dependent, i.e. Λσ + Λσ′ = 0 or Λσ − Λσ′ = 0, since they
both generate the same subspace of

∧2 R3.
We compute the homology groups of this fan using the cellular sheaves

package [KSW17] for [polymake]:
application ’fan’;
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,-1,0,0],
[0,0,-1,0],
[0,1,-1,1],
[0,1,-1,-1],
[0,-1,1,1],
[0,-1,1,-1]
],
INPUT_CONES =>
[[0,1,2],[0,3,4],
[0,4,5],[0,1,5],[0,4,6],[0,1,6],
[0,3,7],[0,2,7],[0,3,8],[0,2,8],
[0,5,7],[0,6,8]
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]
);

$complex = new fan::PolyhedralComplex($fan);
$complex -> VISUAL;

@betti_usual = ();
@betti_bm = ();
for(my $i=0; $i<5; $i++){

my $f = $complex->fcosheaf($i);
my $s = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $s->BETTI_NUMBERS;
push @betti_bm, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_bm);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0
3 0 0
3 0 0
0 0 0
0 0 0

fan > print new Matrix(@betti_bm);
0 0 5
0 0 3
0 2 1
0 0 0
0 0 0

Which means that this fan is not a tropical Poincaré space.

Example 5.6.3. Consider the polyhedral fan X from Figure 5.2. We see that
there are exactly 3 faces meeting at each edge, so that it is uniquely balanced
along each edge. However, as the following computation from the cellular
sheaves package [KSW17] for [polymake], it is not uniquely balanced:
application "fan";
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1],
[0,1,1,1],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,-1],
[0,-1,-1,-1],
],
INPUT_CONES =>
[
[0,1,2],[0,1,3],[0,1,4],
[0,2,3],[0,2,4],
[0,3,4],
[0,5,6],[0,5,7],[0,5,8],
[0,6,7],[0,6,8],
[0,7,8]
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5. Classification of tropical Poincaré fans of dimension 2

Figure 5.2: Picture of the fan

]
);

$complex = new fan::PolyhedralComplex($fan);
$complex ->VISUAL;

@betti_usual = ();
@betti_borel_moore = ();
for(my $i=0; $i<4; $i++){

my $f = $complex->fcosheaf($i);
my $u = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_borel_moore, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_borel_moore);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0
3 0 0
3 0 0
0 0 0

fan > print new Matrix(@betti_borel_moore);
0 1 6
0 3 6
0 3 2
0 0 0
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PART II

Verdier duality on polyhedral
complexes





CHAPTER 6

An application of Verdier duality
on simplicial fans

In this chapter, we apply techniques from the derived category of sheaves of
vector spaces, as developed in Appendix A, to questions about cellular sheaves.
An important consequence of the theory developed there is the following theorem:

Theorem 6.0.1 ([Cur14, Theorem 12.1.2],Theorem A.6.2). Let F be a sheaf on
a polyhedral complex X of dimension n. Then if the Verdier dual D(F) of F is
a sheaf:

Hi
c(X,F) ∼= Hn−i(X,D(F))∗.

In this thesis, the primary goal in developing this theory was to relate this to
the tropical Poincaré duality, aiming to find conditions such thatD(Fp) = Fn−p.
This approach has been used to give a new proof of tropical Poincaré duality in
the matroidal case [GS].

We will apply this theory to the tropical f-vector conjecture. In [Spe04],
Speyer introduces tropical linear spaces, which are particular polyhedral
complexes, and formulates the following conjecture about their f -vectors (see
Definition 2.1.10):

Conjecture 6.0.2 (The f -vector conjecture). The number of i-dimensional faces
of a tropical linear space of dimension d in n-space which become bounded after
being mapped to Rn/(1, . . . , 1) is at most

(
n−2i
d−i
)(
n−i−1
i−1

)
Recall the definition of the Wp sheaves:

Definition 6.0.3 (Definition 3.1.1). Let X be a polyhedral complex of dimension
n in RN . For p = 0, . . . , n, the tropical wave sheaf Wp is the cellular sheaf
defined by the data:

• For σ ∈ X, Wp(σ) :=
∧p

L(σ) ⊆
∧pRN , where L(σ) ⊂ RN is the linear

space parallel to the face σ.

• For τ ≤ σ, we have a morphism (r : τ → σ) ∈ Mor(X), and we define
Wp(r) := ιτσ, where ιτσ : Wp(τ)→ Wp(σ) is the wedge of the inclusion
L(τ)→ L(σ).

As an approach to the f -vector conjecture, the following conjecture is
introduced in [KSW17]:
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6. An application of Verdier duality on simplicial fans

Conjecture 6.0.4 ([KSW17]). Let L ⊂ Rn be a tropical linear space of dimension
d. Then we have

Hq(L,Wp) = 0 if p 6= q, and Hq
c (L,Wp) = 0 if p 6= d.

If this conjecture holds, one can understand the f -vector by computing the Euler
characteristics of the complexes C•(L,Wp) and C•c (L,Wp), giving:

(−1)pHp(L,Wp) =
d∑
q=0

(−1)q
(
q

p

)
f bq ,

(−1)dHd
c (L,Wp) =

d∑
q=0

(−1)q
(
q

p

)
fq,

which would mean that understanding the f and f b-vectors of a tropical linear
space comes down to understanding the possible dimensions of Hp(L,Wp) and
Hd
c (L,Wp). For example, it is possible to bound the f b-vector by bounding

Hp(X,Wp). This would give an approach to the f -vector conjecture for tropical
linear space similar to the proof to the upper bound conjecture for polytopes.

A particular subset of tropical linear spaces are the following:

Definition 6.0.5 ([Bru+15, Definition 2.23]). A tropical linear space L ⊂ Rn is
a tropical subvariety of Rn which is the Bergman fan of a valuated matroid
Definition 2.9.3.

We partially solve this conjecture by proving the following:

Theorem 6.0.6 (Theorem 6.3.2). If X is a Cohen–Macaulay simplicial
polyhedral fan of dimension n, then Hi

c(X,Wp) = 0 if i 6= n for all p.

In particular this means that the compact-support part of Conjecture 6.0.4
holds for the Bergman fan of a matroid:

Corollary 6.0.7 (Corollary 6.4.1). Let M be a matroid and B(M) its Bergman
fan. Then Hi

c(B(M),Wp) = 0 if i 6= dim(B(M)) for all p.

Moreover, since Bergman fans are fans, the vertex is the only compact cell,
meaning that the f b-vector is only (1, 0, 0, . . . ).

To prove this result, we use methods from the derived category of cellular
sheaves on a polyhedral complex, which are developed in Appendix A.

6.1 The dualizing complex of a polyhedral complex

In this section we introduce a particular complex of sheaves, which will serve to
build a duality relation among the cellular sheaves.

Definition 6.1.1 ([Cur14, Definition 12.2.4]). Let X be an n-dimensional
polyhedral complex, and k a field. We define the dualizing complex ω•X of
X with respect to k to be the complex whose (−i)-th component is the sum
over the elementary injective sheaves concentrated at cells of dimension i with
values in k, which is

0
⊕

σ∈Xn [σ]k
⊕

τ∈Xn−1 [τ ]k · · ·
⊕

v∈X0 [v]k 0,∂ ∂
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6.1. The dualizing complex of a polyhedral complex

Figure 6.1: The polyhedral fan X

where ∂ is the map given componentwise on opens by ∂στ (U) = O(τ, σ) idk,
guaranteeing that this is a complex. Note that we mostly use k = R for the
field.

Example 6.1.2. Let X be the polyhedral fan in R3 with a vertex v at the origin,
four edges in the directions τ1 = (1, 1, 1), τ2 = (−1, 0, 0), τ3 = (0,−1, 0) and
τ4 = (0, 0,−1) respectively, and a face σ12 which is the positive cone of τ1 and
τ2, σ13 the positive cone of τ1 and τ3, carrying on in the same manner to get
σ14, σ34, σ23 and σ24 also. We compute the dualizing complex ω•X with respect
to k of X to be:

0 [σ12]k ⊕ [σ13]k ⊕ · · · ⊕ [σ24]k [τ1]k ⊕ · · · ⊕ [τ4]k [v]k 0.

Localizing at stalks preserves exactness, so we can take the stalk at v:

0 k6 k4 k 0

which we recognize as the complex C−•c (X, kX).
We could have localized at one of the edges τi, obtaining:

0 k3 k 0 0

which in each case we can recognize as the complex C−•c (Star(τi), kX), and
furthermore localizing at one of the faces σ gives a complex:

0 k 0 0 0

which again is the complex C−•c (Star(σ), kX).

The relation between the dualizing complex ω•X and the compact cohomology
can be used in general to characterize the Cohen–Macaulay property.
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6. An application of Verdier duality on simplicial fans

Theorem 6.1.3. Let X be a polyhedral complex of dimension n. The dualizing
complex ω•X of X is concentrated in degree −n if and only if X is Cohen–
Macaulay.

Proof. We wish to check that all but one of the cohomology sheaves Hi(ω•X)
are the zero sheaf, for i = −n+ 1, . . . , 0, where the indices start at −n+ 1 due
to the position of ω•X . A sheaf of abelian groups is isomorphic to the zero sheaf
if and only if the stalks at each point are zero, since the map to the zero sheaf is
an isomorphism if and only if the zero maps on stalks are isomorphisms, which
happens if and only if each stalk is zero. Therefore, for a polyhedral complex
X, we have that ω•X is concentrated in degree −n if and only if Hi(ω•X)x is 0
for i = −n+ 1, . . . , 0, for all cells x ∈ X.

By Proposition A.1.10, we have that the stalk of the cohomology sheaf at x
is the cohomology of the complex of stalks, i.e.

Hi(ω•X)x = Hi(ω•X,x).

Now since X is a polyhedral complex, we know that the stalk of a sheaf F at x
is merely F(x) Proposition 2.2.6, hence for any given cell x, the complex ω•X,x
becomes

0
⊕

σ∈Xn [σ]k(x)
⊕

τ∈Xn−1 [τ ]k(x) · · ·
⊕

v∈X0 [v]k(x) 0.∂ ∂

This is exactly the complex C−ic (Star(x), kX), so that the cohomology at i is
the cohomology H−ic (Star(x), kX). Thus we have

H−i(ω•X)x = Hi(ω•X,x) = Hi
c(Star(x), kX)

for all x ∈ X and i = 0, . . . , n − 1. By Remark 2.8.4, if Hi
c(Star(x), kX) = 0

for all i 6= n and all x ∈ X, then X is Cohen–Macaulay. Hence H−i(ω•X)x = 0
for all x ∈ X and i = 0, . . . , n− 1 if and only if X is Cohen–Macaulay. Hence
H−i(ω•X) = 0 for i 6= n if and only if X is Cohen–Macaulay. Finally this gives
that the dualizing complex ω•X of X is concentrated in degree −n if and only if
X is Cohen–Macaulay. �

Remark 6.1.4. Note the similarity of this result to algebraic geometry. One
can define a Cohen–Macaulay scheme, and observe the same property of its
dualizing complex:

Definition 6.1.5 ([Stacks, Definition 27.8.1]). A scheme X is Cohen–Macaulay
if for every x ∈ X there exists an affine open neighborhood U ⊂ X of x such
that the ring OX(U) is Noetherian and Cohen-Macaulay.

Mirroring our situation, one then has:

Lemma 6.1.6 ([Stacks, Lemma 46.23.1]). Let X be a locally Noetherian scheme
with dualizing complex ω•X . Then X is Cohen-Macaulay if and only if ω•X
locally has a unique nonzero cohomology sheaf. Moreover, if X is connected and
Cohen-Macaulay, then there is an integer n and a coherent Cohen-Macaulay
OX-module ωX such that ω•X = ωX [−n].

This provides another motivation for calling a polyhedral complex “Cohen–
Macaulay” when it has the property from Definition 2.8.1.
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6.2. Verdier dual of cellular sheaves

6.2 Verdier dual of cellular sheaves

The dualizing complex of a polyhedral complex is then used to define the
following dual functor:

Definition 6.2.1 ([Cur14, p. 238]). Let X be a polyhedral complex of dimension
n in RN . The Verdier dual functor D is the functor taking a sheaf F to the
complex

0 Hom (F , ω−nx ) . . . Hom (F , ω0
x) 0,

where Hom (•, •) is the sheaf of local morphisms, also called sheaf hom
(Definition A.3.3). The complex D(F) is called the Verdier dual complex
of F•.

Note that this definition is only correct in the stated form. Attempting to
“replace” ω•X with an other complex having the same cohomology will most
likely change the complex D(F). To properly define this functor, we refer to
Appendix A. However, using this dualizing functor, one has the very useful
theorem:

Theorem 6.2.2 (Theorem A.6.2). Let F be a sheaf on a polyhedral complex X
of dimension n. Then if D(F) is a sheaf:

Hi
c(X,F) ∼= Hn−i(X,D(F))∗.

6.3 A duality result on simplicial polyhedral fans

In this section, we first characterize simplicial polyhedral fans (Definition 2.6.3)
in term of the Wp sheaves (see Definition 3.1.1), and use this to prove that the
most of the compact support cohomology groups with respect to Wp vanish.
Recall that all projective (see Definition A.1.7) sheaves can be decomposed in
terms of elementary projective sheaves (see Proposition 2.4.6).

Theorem 6.3.1. A fan X is simplicial if and only if Wp is projective for all p,
with Wp ∼=

⊕
τ∈Xp{τ}R.

Proof. Observe that the restriction map ρτ,σ : Wp(τ)→Wp(σ) is an inclusion,
which is the identity on Wp(τ) ⊂

∧p RN as a subspace.
Since X is simplicial, the projective sheaf ⊕τ∈Xp{τ}R at a k-dimensional

cell σ is ⊕
τ∈Xp

{τ}R(σ) = R(kp),

which is exactly the dimension of Wp(σ). For each σ ∈ X, we therefore define
φσ : Wp(σ)→

⊕
τ∈Xp{τ}R(σ) by φ = id. Clearly

ρ⊕τ{τ}
R

τ,σ ◦ φτ = φσ ◦ ρW
p

τ,σ ,

since both sides of the equation are just the identity mapping, this is a sheaf
morphism, which is also clearly an isomorphism.

Next suppose Wp is a projective sheaf, so that by Proposition 2.4.6, we have
Wp ∼=

⊕
σ∈X{σ}Vσ for some cells σ and vector spaces Vσ.
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6. An application of Verdier duality on simplicial fans

Since dimWp(τ) =
(dim τ

p

)
for all τ ∈ X, there are no {γ}Vγ ⊂

⊕
σ∈X{σ}Vσ

with dim γ ≤ p, and the elementary projective sheaves on p-dimensional cells
are all part of the sum, i.e.

⊕
τ∈Xp{τ}R ⊂

⊕
σ∈X{σ}Vσ . Moreover, each cell

ρ ∈ Xk has at least k faces σ ∈ Xk−1, therefore

dimWp(ρ) = dim
⊕
σ∈X
{σ}Vσ (ρ) ≥ dim

⊕
τ∈Xp

{τ}R(ρ) ≥
(

dim ρ

p

)
=Wp(ρ).

Hence, we must have that Wp ∼=
⊕

τ∈Xp{τ}R and that each cell ρ ∈ Xk has
exactly k faces γ ∈ Xk−1. Since Wp is projective for each p, this holds for all
cells in X. Hence X is simplicial. �

Theorem 6.3.2. If X is a Cohen–Macaulay simplicial polyhedral fan of
dimension n, then Hi

c(X,Wp) = 0 if i 6= n for all p.

Proof. Since X is simplicial, Wp is projective, hence the Verdier dual complex
D(Wp) is given by the complex:

0 Hom (Wp,H−n(ω•X)) · · · Hom (Wp,H0(ω•X)) 0.

To understand why one can replace ω•X by its complex of cohomology sheaves
H•(ω•X) in the case where Wp is projective, see Appendix A. Moreover, since X
is Cohen–Macaulay, H−k(ω•X) = 0 for k 6= n, and therefore the only non-zero
term in the complex D(Wp) is the term Hom (Wp,H−n(ω•X)) in degree −n.
Hence D(Wp) ∼= Hom (Wp,H−n(ω•X))[n] is a sheaf, and thus by Theorem 6.2.2
we have:

Hi
c(X,Wp) ∼= H−i(X,Hom (Wp,H−n(ω•X))[n]),

∼= Hn−i(X,Hom (Wp,H−n(ω•X))).

Since X is a polyhedral fan, the only compact cell is the vertex, so we have
Hn−i(X,Hom (Wp,H−n(ω•X))) = 0 for i 6= n. Therefore, this gives that
Hi
c(X,Wp) = 0 if i 6= n. �

6.4 Examples and counterexamples

In this section, we present some example applications of this result, and then
show some examples of fans either failing to satisfy the criteria of Theorem 6.3.2
yet satisfying Hi

c(X,Wp) = 0 if i 6= n for all p, and also some cases where both
criteria and conclusion fail.

Corollary 6.4.1. Let M be a matroid and B(M) its Bergman fan. Then
Hi
c(B(M),Wp) = 0 if i 6= dim(B(M)) for all p.

Proof. We saw in Section 2.9 that the Bergman fan of a matroid is simplicial
and Cohen–Macaulay. Hence Theorem 6.3.2 can be applied directly. �

Example 6.4.2. Consider [KSW17, Example 5], which is the Bergman fan of
the matroid of the complete graph on four vertices. The Betti numbers of the
usual cohomology and the cohomology with compact support of the sheaves
Wp for p = 0, 1, 2 of this simplicial polyhedral fan can be computed with the
cellular sheaves package [KSW17] for [polymake]:
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application "graph";
$g = complete(4);
application "matroid";
$m = matroid_from_graph($g);
application "tropical";
$t = matroid_fan<Max>($m);
$t->VERTICES;
application "fan";
$berg = new PolyhedralComplex($t);

$complex = $berg;
@betti_usual = ();
@betti_compact = ();
for(my $i=0; $i<4; $i++){

my $w = $complex->wsheaf($i);
my $usual = $complex->usual_cochain_complex($w);
my $comp = $complex->compact_support_complex($w);
push @betti_usual, $usual->BETTI_NUMBERS;
push @betti_compact, $comp->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_compact);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0
0 0 0
0 0 0
0 0 0

fan > print new Matrix(@betti_compact);
0 0 6
0 0 20
0 0 15
0 0 0

which agrees with our result that for a Cohen–Macaulay simplicial polyhedral
fan of dimension 2, then Hi

c(X,Wp) = 0 if i 6= 2.

A simplicial polyhedral fan can have Hi
c(X,Wp) = 0 for i 6= dim(X) even if

it fails to be Cohen–Macaulay:

Example 6.4.3. Consider the fan Figure 6.2. This fan is not Cohen–Macaulay
since there is an edge where 4 faces meet, which gives a class in HBM

1,1 of the
tangent fan of that edge. For each p, we compute the Wp cohomology of this
fan using the cellular sheaves package [KSW17] for [polymake]:
application "fan";
$fan = new PolyhedralFan(

INPUT_RAYS=>[[1,0,0,0],[0,-1,0,0],[0,0,-1,0],
[0,0,0,-1],[0,0,1,1],[0,1,0,1]
],

INPUT_CONES => [[0,1,2], [0,1,3], [0,2,3],
[0,3,4], [0,3,5], [0,1,4],
[0,2,5], [0,4,5]]);

$complex = new PolyhedralComplex($fan);
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6. An application of Verdier duality on simplicial fans

Figure 6.2: Picture of the fan

$complex -> VISUAL;

@betti_usual = ();
@betti_compact = ();
for(my $i=0; $i<4; $i++){

my $w = $complex->wsheaf($i);
my $u = $complex->usual_cochain_complex($w);
my $c = $complex->compact_support_complex($w);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_compact, $c->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_compact);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0
0 0 0
0 0 0
0 0 0

fan > print new Matrix(@betti_compact);
0 0 4
0 0 11
0 0 8
0 0 0

However, simplicial polyhedral fans can fail to satisfy the property if they
are not Cohen–Macaulay:

Example 6.4.4. Consider the fan Figure 6.3, which is not Cohen–Macaulay
since its link is not connected. For each p, we compute the Wp cohomology of
this fan using the cellular sheaves package [KSW17] for [polymake]:
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6.4. Examples and counterexamples

Figure 6.3: Picture of the fan

application "fan";
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1],
[0,-1,0,0],
[0,0,-1,0]],
INPUT_CONES =>
[[0,1,2,3], [0,4,5]]
);

$complex = new fan::PolyhedralComplex($fan);

@betti_usual = ();
@betti_compact = ();
for(my $i=0; $i<5; $i++){

my $w = $complex->wsheaf($i);
my $u = $complex->usual_cochain_complex($w);
my $c = $complex->compact_support_complex($w);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_compact, $c->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_compact);

The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

fan > print new Matrix(@betti_compact);
0 1 0 0
0 0 0 0
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6. An application of Verdier duality on simplicial fans

Figure 6.4: Picture of the fan

0 0 1 0
0 0 0 1
0 0 0 0

Finally, note that Cohen–Macaulayness without simpliciality is not sufficient:

Example 6.4.5. Consider the fan Figure 6.4 For each p, we compute the
Wp cohomology of this fan using the cellular sheaves package [KSW17] for
[polymake]:
application "fan";
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,1,1,1],
[0,1,1,-1]],
INPUT_CONES =>
[[0,1,2,3,4]]
);

$complex = new fan::PolyhedralComplex($fan);

@betti_usual = ();
@betti_compact = ();
for(my $i=0; $i<5; $i++){

my $w = $complex->wsheaf($i);
my $u = $complex->usual_cochain_complex($w);
my $c = $complex->compact_support_complex($w);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_compact, $c->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_compact);
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The Betti numbers are then output as follows:
fan > print new Matrix(@betti_usual);
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

fan > print new Matrix(@betti_compact);
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0
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CHAPTER 7

Discussion

In this chapter, we briefly recall the results developed in the text, and discuss
possible future research directions.

7.1 On tropical Poincaré duality

Recall the classification result from Chapter 4:

Theorem 7.1.1 (Theorem 4.5.1). A rational balanced polyhedral fan of pure
dimension n is a tropical Poincaré space, i.e.

∩[X] : Hq(X,Fp)→ HBM
n−q (X,Fn−p)

is an isomorphism for all p, q = 0, . . . , n, if and only if

1. X is uniquely p-balanced for all p, and

2. the dependence cosheaf Kp is acyclic in Borel–Moore homology for all p,
that is, HBM

q (X,Kp) = 0 for q 6= n− 1 and all p.

There are several ways one might hope to extend this result. First, we note
that purity seems not to be necessary, as the following example shows:

Example 7.1.2. Consider the Bergman fan of the uniform matroid U3
4 , to which

we add a “flap” consisting of the two dimensional cone cone−e1,−e1 + e− 2.
We compute the Betti numbers of tropical homology and cohomology using the
following [polymake] script with the Cellular Sheaves package [KSW17]:
application "fan";
$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[0,0,-1,0,0,0],[0,0,0,-1,0,0],[0,0,0,0,-1,0],
[0,0,1,1,1,1],[0,0,0,0,0,-1],[1,0,0,0,0,0],
[0,0,-1,1,0,0],
],
INPUT_CONES =>
[
[0,1,2,5],[1,2,3,5],[0,2,3,5],[0,1,3,5],
[0,1,4,5],[1,3,4,5],[0,3,4,5],[0,2,4,5],
[2,3,4,5],[1,2,4,5],
[5,6,0]
]
);

$complex = new fan::PolyhedralComplex($fan);
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@betti_usual = ();
@betti_borel_moore = ();
for(my $i=0; $i<5; $i++){

my $f = $complex->fcosheaf($i);
my $u = $complex->usual_chain_complex($f);
my $bm = $complex->borel_moore_complex($f);
push @betti_usual, $u->BETTI_NUMBERS;
push @betti_borel_moore, $bm->BETTI_NUMBERS;

}

print new Matrix(@betti_usual);
print new Matrix(@betti_borel_moore);

This produces the following output:

fan > print new Matrix(@betti_usual);
1 0 0 0
4 0 0 0
6 0 0 0
4 0 0 0
0 0 0 0

fan > print new Matrix(@betti_borel_moore);
0 0 0 4
0 0 0 6
0 0 0 4
0 0 0 1
0 0 0 0

Which shows that this fan is a tropical Poincaré space.

Next, we should recall that the weight functions, as defined in this thesis, are
not allowed to take zero values on any faces. However, it might be conceivable
to allow such weight functions. Then one could hope to construct “virtual
tropical cycles” living in polyhedral fans. One could then investigate how the
cap product with the fundamental class of such cycles behaves, allowing a form
of tropical Poincaré duality in more pathological fans.

Another possible extension is to lift this theorem to the “global” setting
of rational polyhedral spaces, constructing “tropical Poincaré spaces”, i.e.
determining the class of rational polyhedral spaces for which tropical Poincaré
duality holds. Preliminary investigations suggest that the Mayer–Vietoris
argument applied for tropical manifolds can be applied in this situation also.

It is possible to formulate to take the multi-tangent cosheaves Fp with
coefficients on integers, giving sheaves of abelian groups FZ

p . One may then
ask which fans are tropical Poincaré spaces in this setting. We believe that the
arguments in Chapter 4 can be applied, when restricting the weight functions
to take values in {1,−1}.

7.2 On Verdier duality for tropical sheaves

We introduced many technical tools about derived categories to investigate
tropical homology. In particular, we clarified the meaning of the Verdier dual
functor:
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Definition 7.2.1 (Definition A.6.1). The Verdier dual functor is given by:

D : Db(ShvX)→ Db(ShvX)op,

F• 7→ R Hom •(F•, ω•X).

The complex D(F•) is called the Verdier dual complex of F•.

This functor can be used to compute the compact support cohomology of a
sheaf by:

Theorem 7.2.2 (Theorem A.6.2). Let F be a sheaf on a polyhedral complex X
of dimension n. Then

Hi
c(X,F) ∼= Hn−i(X,D(F))∗,

where Hq(X,D(F)) is the q-th cohomology of the complex {Γ(X,D(F)i)}i∈Z,
also called the hypercohomology of D(F).

In principle, we can consider answering questions about sheaf cohomology
on rational polyhedral spaces using the following lemma:

Lemma 7.2.3 ([Mur06, Lemma 1]). Let (X,OX) be a ringed space and ψ : F →
G a morphism in D(X). If {Vi}i∈I is a nonempty open cover of X then ψ is
an isomorphism in D(X) if and only if ψ|Vi is an isomorphism in D(Vi) for
every i ∈ I.

Considering a rational polyhedral space X as the ringed space (X,Z), we
may directly apply the lemma, using the open cover provided by the charts.

For instance, if one defines Cohen–Macaulayness for rational polyhedral
spaces to be the property that the fans in the charts are Cohen–Macaulay
polyhedral fans, one should be able to prove that the dualizing complex of such
rational polyhedral spaces is concentrated in one degree, by using the above
lemma with the theorem:

Theorem 7.2.4 (Theorem 6.1.3). Let X be a polyhedral complex of dimension
n. The dualizing complex ω•X of X is concentrated in degree −n if and only if
X is Cohen–Macaulay.

Assuming that the dualizing complex is concentrated in one degree, one
might hope for a tropical Serre duality for Cohen–Macaulay rational polyhedral
spaces.

Another possible line of inquiry, motivated by the above lemma, is to consider
how to extend the following theorem to a global setting:

Theorem 7.2.5 (Theorem 6.3.2). If X is a Cohen–Macaulay simplicial
polyhedral fan of dimension n, then Hi

c(X,Wp) = 0 if i 6= n for all p.

The lemma suggests that one might be able to prove the same vanishing
property for any space locally looking like a Cohen–Macaulay simplicial
polyhedral fan. If this is true, one might be able to prove the conjecture
from [KSW17] in general by checking whether there is an open cover of a
tropical linear space by the stars of Cohen–Macaulay simplicial fans at vertices.
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APPENDIX A

Derived categories and cellular
sheaves

In this section, we seek to develop a duality theory of cellular sheaves. The
main goal of this development is a variation on the result [Cur14, Theorem
12.1.2], which in our case will be the following:

Theorem A.0.1. Let F be a cellular sheaf on a polyhedral complex X of
dimension n, and let D(F) be its (to be defined in Definition A.6.1) dual
complex of sheaves. Then, for all i ∈ Z,

Hi
c(X,F) ∼= Hn−i(X,D(F))∗.

This is be proved in Theorem A.6.2. In particular, in view of our interest in
polyhedral fans, we are particularly motivated by the following corollary:

Corollary A.0.2. Let F be a cellular sheaf on a polyhedral fan X of dimension
n, and suppose D(F) is a sheaf. Then Hi

c(X,F) = 0 for all i 6= n, and
Hn
c (X,F) ∼= H0(X,D(F))∗.

To get these results, we will need to develop several results from homological
algebra, in particular theory with regards to Verdier duality. Our presentation
borrows from [Dim04; GM03; Stacks; Tho00], with some extensions to exploit
the features of cellular sheaves.

For a reader already familiar with some notions in derived categories, it may
be sufficient to look at Definition A.3.4, then Definition A.5.6, before moving
on to the Verdier dualizing functor of Definition A.6.1, which is the used in
Theorem A.6.2.

A.1 The derived category

Definition A.1.1. LetA be an abelian category. We denote by C(A) the category
of chain complexes in A, whose objects (A•, d•) are complexes of objects from
A, given by a pair of objects A• = {Ai ∈ A | i ∈ Z} and of morphisms between
them d•A = {diA : Ai → Ai+1 | i ∈ Z}. These data are usually presented as

(A•, d•A) : · · · A−1 A0 A1 · · · ,
d−1
A d0

A d1
A

where the differential maps satisfy diA ◦ d
i−1
A = 0 for all i ∈ Z. We usually

omit the subscript A when the context is clear. Morphisms in C(A) are chain
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maps, so that a morphism between objects f• : (A•, d•A) → (B•, d•B) is a set
of morphisms in A between elements of the complexes {f i : Ai → Bi | i ∈ Z}
commuting with the differential maps, i.e. di−1

B ◦ f i−1 = f i ◦ di−1
A .

Definition A.1.2. There are several subcategories of C(A):

• The lower bounded category of chain complexes C+(A) is the subcategory
of C(A) where objects are bounded below, i.e. for all A• ∈ C+(A), there
is an i(A•) ∈ Z such that Ai = 0 for i ≤ i(A•).

• The upper bounded category of chain complexes C−(A) is the subcategory
of C(A) where objects are bounded above, i.e. for all A• ∈ C−(A), there
is an i(A•) ∈ Z such that Ai = 0 for i ≥ i(A•).

• The bounded category of chain complexes Cb(A) is the subcategory of C(A)
where objects are bounded both below and above, i.e. for all A• ∈ Cb(A),
there are i1(A•), i2(A•) ∈ Z such that Ai = 0 for i ≥ i1(A•) and Ai = 0
for i ≤ i2(A•).

Example A.1.3. For a topological space X, the category ShvX of sheaves of
abelian groups on X is an abelian category, and we denote by C(ShvX) the
category of complexes of sheaves of abelian groups.

Definition A.1.4 ([Dim04, p. 7]). For any complex A• ∈ C(A) and integer
n ∈ Z, there is a complex A•[n] ∈ A•, defined by (A•[n])i = Ai+n.

Definition A.1.5. Let f•, g• : A• → B• be two chain morphisms. If there is a
chain morphism h•A• → B•[1] such that f −g = dB ◦h+h◦dA, we say that f•
and g• are homotopic, and we write f• ∼ g•, noting that this is an equivalence
relation on HomC(A)(A•, B•).

Definition A.1.6. We denote byK(A) the homotopy category of chain complexes
in A, where objects are the same as in C(A), but morphisms are instead
equivalence classes of homotopic chain morphisms, i.e.

HomK(A)(A•, B•) =
HomC(A)(A•, B•)

∼
.

Moreover, the restricted subcategories K+(A), K−(A) and Kb(A) are defined
by restricting K(A) to objects from the categories C+(A), C−(A) and Cb(A)
respectively.

Definition A.1.7. Let A be an abelian category. We say that

• I ∈ A is injective if Hom(−, I) is exact,

• P ∈ A is projective if Hom(P,−) is exact.

Definition A.1.8. For a complex (X•, d•) ∈ C(A), we define the cohomology
objects Hi(X•) ∈ A for i ∈ Z by

Hi(X•) := ker(di+1)
im(di) .

We say that a complex morphism f : X• → Y • is a quasi-isomorphism if the
induced map Hi(f) : Hi(X•)→ Hi(Y •) is an isomorphism for all i ∈ Z. Note
that (X•, d•) is always quasi-isomorphic to (Hi(X•), 0).
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Example A.1.9. Given a complex of sheaves F• ∈ C(ShvX), the cohomology
sheaves Hi(F•) ∈ ShvX are the cohomology objects of the complex.

Proposition A.1.10. The stalks Hi(F•)x of the cohomology sheaves are equal
to the cohomology groups Hi(F•x) of the complex of stalks F•x ∈ C(Ab).

Proof. This follows from the fact that taking the stalk commutes with the
kernel and image, giving

Hi(F•)x =
(

ker(di+1)
im(di)

)
x

∼=
ker(di+1)x

im(di)x
∼=

ker(di+1
x )

im(dix) = Hi(F•x),

where we used that the stalk of a quotient presheaf is the quotient of the
stalks, and that the stalk of the quotient presheaf is the stalk of the associated
sheaf. �

Definition A.1.11 ([GM03, Theorem III.2.1]). Let A be an abelian category,
C(A) the category of complexes over A. There exists a category D(A) and
a functor Q : C(A)→ D(A) such that Q(f) is an isomorphism for any quasi-
isomorphism f . The category D(A) is called the derived category of A.

By restricting to any of the categories C+(A), C−(A) or Cb(A), we obtain
correspondingly restricted categories D+(A), D−(A) or Db(A) respectively.

The construction of the derived category is quite technical, and we refer the
interested reader to [GM03, Chapter III] for the required constructions.

Example A.1.12. Given a topological space X, there is a derived category of
sheaves of abelian groups on X, denoted by D(ShvX) or simply D(X).

Note that the derived category of an abelian category is not abelian itself,
except in trivial cases [GM03, Section III.3.1]. Therefore, the concept of an
exact sequence is not well-defined. Instead one has distinguished triangles.

Definition A.1.13 ([GM03, Definition III.3.4]). In any category of complexes
(D(A), K(A), C(A) or any of their bounded subcategories), we define the
following notions:

a) A triangle is a diagram of the form

K• L• M• K[1]•.

b) A morphism of triangles is a commutative diagram of the form

K• L• M• K[1]•,

K• L• M• K[1]•.

f g h f [1]

Such a morphism is called an isomorphism if f, g, h are quasi-
isomorphisms.

c) A triangle is said to be distinguished if it is isomorphic to some triangle

K• Cyl(f) C(f) K[1]•,f π δ

which is defined in [GM03, Section III.3.2].
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Proposition A.1.14 ([GM03, Proposition III.3.5]). An exact triple of complexes
in C(A) is quasi-isomorphic to a distinguished triangle.

A useful cohomological property of distinguished triangles is the following:

Theorem A.1.15 ([GM03, Theorem III.3.6]). Let

K• L• M• K[1]•.

be a distinguished triangle in D(A). Then the sequence

· · · Hi(K•) Hi(L•) Hi(M•) Hi+1(K•) · · ·

is exact.

A.2 Derived functors

Our main motivation for constructing the derived category D(A) of A is to
define the right derived functors RF : D+(A)→ D+(B) for left exact functors
F : A → B. This derived functor RF will extend F in the sense that it “repairs”
the exactness on the right. The derived functor is constructed essentially as
follows:

• Find a class of objects R ⊂ A for which F is acyclic when applied
componentwise in C(R).

• Show that any object of A is a sub-object of an object of R.

• Compute RF (A•) for any object in D(A) by replacing A• with a quasi-
isomorphic complex of objects in R, on which one applies the functor F
componentwise.

We refer the interested reader to [GM03, Section III.6] for a comprehensive
explanation, or to [Tho00, Section 6] for a shorter one.

Definition A.2.1 ([Tho00, Definition 6.1]). Let A and B be abelian categories.
A class of objects R ⊂ A is adapted to a left exact functor F : A → B if

• R is stable under direct sums,

• F applied to an acyclic complex in R (that is, a complex with vanishing
cohomology) is acyclic,

• any A ∈ A injects 0→ A→ R into some R ∈ R.

The following proposition states an equivalence of categories between the
bounded below homotopy category K+(R) and the bounded below derived
category D+(A), using a construction from [GM03, Chapter III.2]. For our
purposes, this will mean that any A-complex can be functorially replaced by a
quasi-isomorphic R-complex [Tho00, Section 6].

Proposition A.2.2 ([GM03, Proposition III.6.4]). Let R be a class of objects
adapted to a left exact functor F : A → B, and SR a class of quasi-isomorphisms
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in K+(R). Then SR is a localizing class of morphisms in K+(R) and the
canonical functor

K+(R)[S−1
R ]→ D+(A)

is an equivalence of categories.

Since the derived category is usually not abelian, we need to define what it
means for a functor between derived categories to be exact.

Definition A.2.3. A functor D : D(A)→ D(B) is exact if it maps distinguished
triangles to distinguished triangles.

Using Proposition A.1.14 in conjunction with Theorem A.1.15, this then
tells us that such exact functors induce long exact sequences

· · · Hi(D(K•)) Hi(D(L•)) Hi(D(M•)) Hi+1(D(K•)) · · ·

in cohomology for all exact triples.
For any functor F : A → B, one can define a functor on the bounded below

homotopy categories K+(F ) : K+(A)→ K+(B) by applying F componentwise
on complexes, which transforms homotopic morphisms into homotopic ones.

Definition A.2.4 ([GM03, Definition III.6.6]). The derived functor of an
additive left exact functor F : A → B is a pair consisting of an exact functor
RF : D+(A)→ D+(B) and a morphism of functors εF : QB◦K+(F )→ RF ◦QA
satisfying the following universal property: For any exact functor between the
bounded below derived categories G : D+(A) → D+(B) and any morphism
of functors ε : QB ◦ K+(F ) → G ◦ QA, there is exists a unique morphism of
functors η : RF → G making the diagram

QB ◦K+(F )

RF ◦QA G ◦QA

εεF

η◦QA

commute.

Theorem A.2.5 ([GM03, Theorem III.6.8]). Assume that a left exact functor F
admits an adapted class of objects R. Then the derived functor RF exists.

Finally we mention a useful result about injective objects.

Theorem A.2.6 ([GM03, Theorem III.6.12]). If A contains sufficiently many
injective objects, then the class of all injective objects is adapted to any left
exact functor F .

A.3 Hom of complexes

Definition A.3.1 ([GM03, p. 195]). Let A be an abelian category. For any two
M•, N• ∈ C(A), the chain complex Hom•(M•, N•) is defined by

Homn(M•, N•) :=
∏
i∈Z

Hom(M i, N i+n),
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with chain map
df := dN ◦ f − (−1)nf ◦ dM ,

for f ∈ Homn(M•, N•).

Proposition A.3.2 ([Stacks, Lemmas 13.18.8 and 13.19.8]). Let A be an abelian
category.

• If I• ∈ Cb(A) is a complex of injectives, then for any complex A•, the
natural homomorphism

HomKb(A)(A•, I•)→ HomDb(A)(A•, I•)

is an isomorphism.

• If P • ∈ Cb(A) is a complex of projectives, then for any complex A•, the
natural homomorphism

HomKb(A)(P •, A•)→ HomDb(A)(P •, A•)

is an isomorphism.

Definition A.3.3. Let F and G be sheaves on a topological space X. The sheaf
Hom (F ,G), defined by

U 7→ HomShv(X)(F|U ,G|U ),

is called the sheaf of local morphisms of F into G, or sheaf Hom.

Definition A.3.4 ([Stacks, Section 20.35]). Let F• and G• be complexes of
sheaves on a topological space X. The complex of sheaves Hom •(F•,G•) is
defined by

Hom n(F•,G•) :=
∏
i∈Z

Hom (F i,Gi+n),

with chain map
df := dG• ◦ f − (−1)nf ◦ dF• ,

for f ∈Hom n(F•,G•).

Proposition A.3.5 ([Stacks, Equation 20.35.0.1]). For any n ∈ Z and any open
U ⊂ X,

Hn(Γ(U,Hom •(F•,G•))) = HomK(U)(F•|U ,G•|U [n]).

A.4 Properties of projective sheaves on a polyhedral
complex

We develop some results about projective sheaves on cellular complexes, which
will be used in the next section, and in particular in Proposition A.5.2.

Proposition A.4.1. Let P be a projective sheaf on a polyhedral complex X, and
σ ∈ X a cell. Then P|Star(σ) is also projective.
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Proof. Since P is projective, by Proposition 2.4.6, it is a direct sum of elementary
injectives

⊕
τ∈X{τ}Vτ . We will show that P|Star(σ) is also such a direct sum.

For any ρ ∈ X, we have

P|Star(σ)(ρ) =

P(ρ) =
⊕

τ∈X
τ≥ρ

Vτ if ρ ∈ Star(σ),

0 otherwise.

For each τ ∈ X, let τσ ∈ Star(σ) be the cell

τσ := min{γ ∈ X | γ ≥ τ, σ},

where we let τσ = ∅ if the set is empty. We claim that each such τσ is unique.
Indeed suppose there are two such cells τσ, τσ′ , both being minimal. Then
τσ ∩ τσ′ is a non-empty cell of X since σ, τ ≤ τσ ∩ τσ′ , and τσ ∩ τσ′ ≤ τσ, τσ′ ,
which is a contradiction. Now finally, observe that

⊕
τσ∈X

{τσ}Vτ (ρ) =


⊕

τ∈X
τ≥ρ

Vτ if ρ ∈ Star(σ),

0 otherwise,

which means that P|Star(σ) =
⊕

τσ∈X{τσ}
Vτ , hence P|Star(σ) is projective. �

Proposition A.4.2. For a projective sheaf P on a polyhedral complex X, the
functor Hom (P,−) is exact.

Proof. Let F ,G and H be sheaves on X such that the sequence

0 F G H 0

is exact. We wish to see that the sequence

0 Hom (P,F) Hom (P,G) Hom (P,H) 0

is exact. It is sufficient to show this on stalks. Since the stalk of F at a point
σ ∈ X is merely F(Star(σ)) by Proposition 2.2.6, we let Uσ = Star(σ) and need
to show that the sequence

0 Hom (P,F)(Uσ) Hom (P,G)(Uσ) Hom (P,H)(Uσ) 0

is exact for all σ ∈ X. Since Hom (A,B)(U) = HomShv(X)(A|U , B|U ), we need
to examine the sequence

0 Hom(P|Uσ ,F|Uσ ) Hom(P|Uσ ,G|Uσ ) Hom(P|Uσ ,H|Uσ ) 0,

which is exact since P|Uσ is projective by Proposition A.4.1. �

Corollary A.4.3. For a projective sheaf P and an open set U ⊂ X, the restricted
sheaf P|U is also projective.

Proof. Since Hom (P,−) is exact, for any open U ⊂ X, the sequence of sections

0 Hom(P|U , B|U ) Hom(P|U , B|U ) Hom(P|U , B|U ) 0

is exact, so that the functor HomShv(U)(P|U ,−) is exact, which means that
P|U is exact. �
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A.5 Derived sheaf Hom of complexes for polyhedral
complexes

In this section and onward, we will consider the space X to be a polyhedral
complex X with Alexandrov topology. Moreover, we will restrict ourselves to
the bounded derived category of sheaves Db(X).

Proposition A.5.1. Let I• be a bounded complex of injective sheaves, and
U ⊂ X open. Then I•|U is also a complex of injective sheaves.

Proof. Apply [Stacks, Lemma 20.30.1], since abelian sheaves are ZX -module. �

Proposition A.5.2. Let P• be a bounded complex of projective sheaves, and
U ⊂ X open. Then P•|U is also a complex of projective sheaves.

Proof. This follows by applying Corollary A.4.3 on each element of the
complex. �

Proposition A.5.3. Let I• and P• be bounded complexes of sheaves on a
polyhedral complex X. If either I• is a complex of injectives or P• is a complex
of projectives, then

Hn(Γ(U,Hom n(P•, I•))) = HomD(U)(P•|U , I•|U [n]).

Proof. This is an extension of [Stacks, Lemma 20.35.6] to include projective
complexes. We have

Hn(Γ(U,Hom n(P•, I•))) = HomK(U)(P•|U , I•|U [n]),
= HomD(U)(P•|U , I•|U [n]),

where the first equality follows from Proposition A.3.5, and the second
equality holds since either I• is a complex of injectives, hence so is I•|U
by Proposition A.5.1, or since P• is a complex of projectives, hence so is P•|U
by Proposition A.5.2. Either way, one can apply Proposition A.3.2 to get the
second equality. �

Theorem A.5.4. Let P• → F• and I• → G• be quasi-isomorphisms of bounded
complexes of sheaves on a polyhedral complex X. If either I• is a complex of
injectives or P• is a complex of projectives, then

Hom •(P•,G•)→Hom •(F•, I•)

is a quasi-isomorphism.

Proof. This is an extension of [Stacks, Lemma 20.35.7] to include projective
complexes. Let I be the object in Db(X) represented by I• and G•, and P be
the object represented by P• and F•. For ease of notation, A• := Hom •(P•,G•)
and B• := Hom •(F•, I•). The sheaf Hn(Hom •(P•,G•)) is given by

U 7→

(
ker
(
diA•

)
im
(
di−1
A•

)) (U),
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which is the sheaf associated to the presheaf

U 7→ ker(diA•)(U)
im(di−1

A• )(U)
.

By Proposition A.5.3, this is the presheaf

U 7→
ker
(
diA•

)
(U)

im
(
di−1
A•

)
(U)

= Hn(Γ(U,Hom •(P•,G•))) = HomD(U)(P |U , I|U [n]).

Similarly, Hn(Hom •(F•, I•)) is the sheaf associated to the presheaf

U 7→ ker(diB•)(U)
im(di−1

B• )(U)
= Hn(Γ(U,Hom •(F•, I•))) = HomD(U)(P |U , I|U [n]).

Therefore, Hn(Hom •(P•,G•)) and Hn(Hom •(F•, I•)) are sheaves associated
to the same presheaf, hence are the same sheaf. �

Proposition A.5.5. Let X be a polyhedral complex, and F• ∈ Cb(X) be a
bounded complex. Then F• has a projective resolution, that is, there exists
a complex of projective sheaves P• ∈ Cb(X) along with a quasi-isomorphism
α : P• → F•. Moreover, F• also has an injective resolution, i.e. there exists
a complex of injective sheaves I• ∈ Cb(X) along with a quasi-isomorphism
α : F• → I•.

Proof. By [Cur14, Definition 7.4.2], the category of sheaves on X has enough
projectives. Furthermore, the category of abelian sheaves always has enough
projectives [Har77, Corollary III.2.3]. Then one can apply [Stacks, Lemma
13.19.3] to obtain projective resolutions and [Stacks, Lemma 13.18.3] to obtain
injective resolutions. Finiteness of the resolution is a consequence of the
inductive proofs terminating after finitely many steps, since F• only has finitely
many non-zero terms. �

Definition A.5.6. Let X be a polyhedral complex. The right derived functor
of sheaf hom, R Hom •, is defined on two objects F,G ∈ Db(X) by taking a
bounded complex of injectives I• representing G and any bounded complex F•
representing F , and setting

R Hom •(F,G) := Hom •(F•, I•),

which is well-defined by Theorem A.5.4. Equivalently, by Theorem A.5.4, we can
choose a bounded complex of projectives P• of F and any representative G• of G,
and set R Hom •(P, I) = Hom •(P•, I•). Either way to compute R Hom •(F,G)
can be chosen in any case by Proposition A.5.5.

A.6 Verdier duality

The dualizing complex (Definition 6.1.1) is classically used to define a “dualizing
functor” on the derived category of coherent sheaves on a scheme, see for
instance [Har66, Chapter V]. In this spirit, Curry [Cur14] defines a Verdier
dual functor for sheaves on polyhedral complexes with Alexandrov topology:
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A. Derived categories and cellular sheaves

Definition A.6.1 ([Cur14, p. 238]). The Verdier dual functor is given by:

D : Db(ShvX)→ Db(ShvX)op,

F• 7→ R Hom •(F•, ω•X).

The complex D(F•) is called the Verdier dual complex of F•.

The following theorem, adapted from [Cur14, Theorem 12.1.2] and [Cur14,
Lemma 6b.2.9], gives us the duality of cohomology we have been working
towards.

Theorem A.6.2. Let F be a sheaf on a polyhedral complex X of dimension n.
Then

Hi
c(X,F) ∼= Hn−i(X,D(F))∗,

where Hq(X,D(F)) is the q-th cohomology of the complex {Γ(X,D(F)i)}i∈Z,
also called the hypercohomology of D(F).

Proof. Since ω•X is a complex of injective objects, D(F) = R Hom •(F , ω•X) is
merely the complex

0 Hom
(
F , ω−nX

)
Hom

(
F , ω−n+1

X

)
· · · Hom

(
F , ω0

X

)
0,∂ ∂

where the leftmost non-zero term is placed in degree −n. At each term, we
have that

Hom
(
F , ω−iX

)
= Hom

(
F ,⊕σ∈Xi [σ]k

)
,

=
⊕
σ∈Xi

Hom
(
F , [σ]k

)
,

=
⊕
σ∈Xi

[σ]F(σ)∗ ,

so that the complex D(F) becomes

0
⊕

σ∈Xn [σ]F(σ)∗ ⊕
τ∈Xn−1 [τ ]F(τ)∗ · · ·

⊕
v∈X0 [v]F(v)∗ 0,∂∗F ∂∗F

where the differential maps are now given componentwise by ∂τ,σ = O(τ, σ)ρFτ,σ.
Now to compute the cohomology of this complex of injective sheaves, it suffices
to pushforward componentwise to a point, giving

0
⊕

σ∈Xn F(σ)∗
⊕

τ∈Xn−1 F(τ)∗ · · ·
⊕

v∈X0 F(v)∗ 0.∂∗F ∂∗F

This complex has the cohomology of the dual of the compactly supported
cohomology of F , shifted by n in negative degree, which is what we wanted to
show. �

Theorem A.6.3. Let X be a polyhedral fan. If Fn ∼= H−n(ω•X) and X is
Cohen–Macaulay, then D(F0) = Fn[n].
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A.6. Verdier duality

Proof. Since X is a fan, F0 = RX is projective, and X is Cohen–Macaulay so
that ω•X is quasi-isomorphic to the pure complex H−n(ω•X)[n] by Theorem 6.1.3,
we have

D(F0) ∼= Hom (R,H−n(ω•X)[n]) ∼= H−n(ω•X)[n] ∼= Fn[n]

by assumption. �

Corollary A.6.4. Let X be a Cohen–Macaulay polyhedral fan. If the sheaves
Fn and H−n(ω•X) are isomorphic, then

Hi(X,F0)∗ ∼= Hn−i
c (X,Fn)

for all i ∈ Z.

Proof. By applying Theorems A.6.2 and A.6.3, and shifting the cohomology by
an increment of n, we get the desired isomorphisms. �
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APPENDIX B

Some results in commutative
algebra

In this appendix, we include two results from commutative algebra which are
used in Chapter 4.

B.1 Completing diagrams

We give a way of “completing” a commutative diagram, i.e. adding a particular
arrow canonically given certain morphisms. This is useful when considering how
to relate the cokernels of the maps which inject the top Borel–Moore homology
and cohomology into their respective chain and cochain groups.

Lemma B.1.1. Given a commutative diagram

0 A B C 0,

0 A′ B′ C ′ 0,

f

ρ

h

ψ

g i

of modules over a ring R, we can complete the diagram to:

0 A B C 0,

0 A′ B′ C ′ 0.

f

ρ

h

ψ φ

g i

Proof. Indeed since h is surjective, for all c ∈ C, we can find some b ∈ B such
that h(b) = c. Then we define:

φ(c) = i(ψ(b))

To see that this is well-defined, suppose that b′ ∈ B is also such that h(b′) = c.
Then we have h(b− b′) = h(b)−h(b′) = c− c = 0, hence b− b′ ∈ ker(h) = im(f).
Thus we can find a ∈ A such that f(a) = b− b′. Then

ψ(b− b′) = ψ(f(a)) = g(ρ(a)),

and so finally we have i(ψ(b− b′)) = i(g(ρ(a))) = 0, since ker(i) = im(g), which
gives that i(ψ(b)) = i(ψ(b′)), so that φ is well-defined. Moreover, we see that
by the definition of φ, the right square will be commutative. �
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B. Some results in commutative algebra

B.2 Corollary of the snake lemma

Consider a commutative diagram:

0 A B C 0,

0 A′ B′ C ′ 0,

ρ ψ φ

Then we have the following:

Proposition B.2.1. Given a commutative diagram as above, with ψ an
isomorphism. then ρ is injective and φ is surjective. Moreover, ρ is an
isomorphism if and only if φ is an isomorphism.

Proof. This is a standard application of the snake lemma. By exactness in the
diagram, we have a long exact sequence:

0 ker(ρ) ker(ψ) ker(φ)

coker(ρ) coker(ψ) coker(φ) 0,

which gives

0 ker(ρ) 0 ker(φ)

coker(ρ) 0 coker(φ) 0

From this sequence, we see that ker(ρ) and coker(φ) are both 0, hence ρ and φ
are respectively injective and surjective. Moreover, ker(φ) ∼= coker(ρ), hence if
one of the morphisms is an isomorphism, so is the other. �
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