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Summary

Economic recessions are costly, and are among other things associated
with high unemployment rates, low wage growth, low investment
spending and a higher number of bankruptcies. Whether the economy is
in a recession or an expansion is important for economic policy decisions.
To make accurate predictions of the state of the economy is then of key
importance for policymakers.

In this thesis I compare the performance of two data-driven methods
for predicting US recessions. The methods I use are called boosting
and Bayesian model averaging (BMA). Boosting is a machine learning
technique that can be used for both classification and regression problems.
Because it is flexible, boosting have been used for a wide set of applications
in many fields and is considered one of the most powerful learning ideas
in the last twenty years (Hastie et al., 2008, p. 337). Bayesian model
averaging is a Bayesian method that accounts for model uncertainty. BMA
is a framework for both model selection and model combination. As
boosting, is this method also rather flexible and can be applied to address
many different questions. In recent years, has BMA also gained popularity
in economics, especially for macroeconomic forecasting.

My main objective in this thesis is to predict recessions in the US. Since
recessions can be viewed as rare events, is it important to use data that
covers a long time span. The dataset I use consist of data for the US from
January 1959 to November 2018. During this time period, has there been
eight recessions, where the Great Recession is the most recent one. There
is a large amount of papers that propose different methods and predictors
that can be useful for predicting recessions. In order to use as much
information about the economy as possible, I use a dataset consisting of
128 different economic and financial variables. An advantage of using
boosting and BMA compared to standard methods used in economics, is
that they can handle a large amount of data, i.e. high dimensional data.

I evaluate in-sample and out-of-sample performance of different
boosting and BMA specifications for predicting recessions six months
ahead. To assess the forecast accuracy, I calculate the receiver operating
characteristic (ROC) curve. The forecast performance is evaluated by the
integrated area under the ROC-curve (AUROC). The in-sample results for
boosting and BMA show that both methods predict recessions well, with
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AUROC-values of above 0.9 The model with the highest AUROC-value
is a boosting model which has an AUROC-value of 0.972. In general, I
find that boosting has somewhat higher AUROC-values than BMA. This
AUROC-value is also high compared to previous published papers which
use more traditional econometric models.

The out-of-sample results are more mixed. As expected, are the
AUROC-values a bit lower for the out-of-sample analysis compared to the
in-sample analysis. In contrast to the in-sample results, provides BMA
more accurate out-of-sample forecasts than boosting. The AUROC-values
are in most of the cases between 0.85 and 0.90. The model with the
highest AUROC-value is a BMA-model with an AUROC-value of 0.892.
The out-of-sample AUROC-values that I obtain for BMA and boosting are
in line with AUROC-values found in earlier published papers that use
more traditional econometric models.

Finally, although both BMA and boosting allow for including a large
set of predictors, I find that only a few predictors are important for
predicting recessions. Most of these variables are well-known for being
informative about future recessions. Particularly, I find that different
interest rate spreads are the most important predictors for US recessions.
In contrast to earlier studies, which typically have only included one
specific interest rate spread as a predictor, I show that combinations of
various interest rate spreads have high predictive power together for
predicting a future recession. This is an interesting result, which indicates
that various spreads are not mutually exclusive.
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1 Introduction
The National Bureau of Economic Research (NBER) maintains the chronol-
ogy of the business cycle in the United States. The business cycle consists
of recessions and expansions. A recession is the period between a ”peak”
and a ”through”, while an expansion is the period between a ”through”
and a ”peak” (NBER, 2010). Recessions are costly and often associated
with high unemployment and stagnant wage growth, in addition to de-
creasing economic opportunities and lower investment spending (Berge,
2015). The most recent recession in the US was the Great Recession. The
strains in the market in August 2007 were the beginning of the longest
recession in recent history. The catalyst was the collapse of Lehman in
September 2008, which led to panic in the financial markets and a big de-
cline in the economic activity within weeks. The credit access dropped,
the growth rate became low, the real wages were stagnant and there were
higher volatility in consumption, investment, output and inflation (Ng &
Wright, 2013).

All of the recessions since 1985 have had origins in the financial
market (Ng & Wright, 2013). The nature of recessions with origin in
financial markets, are different from the ones where the financial markets
play a passive role. Ng & Wright (2013) highlight five differences in the
recessions after 1985:

1. Long, but weak expansions

2. Weakened procyclicality of labor productivity

3. Jobless recovery: The labor markets have been slowly improving
during the last three recessions

4. Pronounced leverage cycle: The ratios of assets to liabilities of
household and firms have a downward trend

5. Tight availability of credit, which leads to headwinds to the recovery

These points also highlight the key challenges for forecasting recessions;
the important predictors have changed over time. The recessions from
1960 to 1985 had different origins than the recessions from 1985 and
onwards. It is therefore a challenge for classical econometric models, such
as VARs, which are limited to only include a small set of predictors to
capture all of the different warning signs for recessions. One reason is that
many classical econometric models have difficulties with incorporating

1



information from a large amount of data. As a result, important
information may be excluded from the model. One possible solution to
these problems is to rely on methods and algorithms that can incorporate
information from many predictors at the same time. Moreover, by
sequentially updating the forecasts from these methods over time, the
algorithm can learn about which predictors have been important for
capturing previous recessions.

The recent development in computer performance, machine learning,
artificial intelligence and the use of Big Data, have suggested new ways of
handling large amount of data. One of the main differences between these
new methods and traditional mathematical or statistical methods is that
they are much more data-driven. The use of these data-driven approaches
in economics is still mostly unexplored, but they are starting to gain more
popularity also within economics. Athey (2018) states that

I believe that machine learning (ML) will have a dramatic
impact on the field of economics within a short time frame.
Indeed, the impact of ML on economics is already well
underway, and so it is perhaps not too difficult to predict some
of the effects. (p. 1)

This is also the motivation for writing this thesis, namely to explore
some of these new data-driven methods and apply them to the question
of how to predict US recessions. Predicting recessions by using these
methods is a way of contributing to how data-driven methods in
economics can be used. The collection of the predictors can then be
combined in ways that has not yet been covered and give additional
information and insights about the state of the economy.

The two data-driven methods I use are called boosting and Bayesian
model averaging (BMA). To illustrate what boosting is, I present an
example from Freund & Schapire (1997). The example starts with a
horseracing gambler. The problem for this gambler is that he looses a lot,
even though many of his friends win considerably more. He then decides
to allow a group of his gambling friends to make bets on his behalf. He
have a fixed sum in each race and divides them between his friends, first
equally, then according to who wins the most. He does not know which
of his friends who wins the most before he allocates his money. In order
to get the most money in the end, he tries to allocate each race’s wager in
a way that the total number of wins will be approximately close to what
he would have won, had he bet all with friend who is the luckiest. The
boosting algorithm solves how he should allocate his money in order to
earn approximately the same amount of money as if he had bet only on
his luckiest friend.

A more formal way to express boosting is that it is a method that
combine weak learners to a strong learner (Mayr et al., 2014). A weak
learner is a classifier that can predict an event only a bit better than
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random guessing. This is the friends of the gambler in the example. The
weak learners are combined on modified versions of the data many times.
Each time, the weak learners get updated. In the example, this is the
combination of how much money the friends get to bet on a horse in each
wager. How the weak learners change during the iterations, differs for
different types of boosting. In the end, these weak learners are combined
to a new learner that can predict the outcome almost perfectly (Hastie et
al., 2008, p. 337-338). This is called a strong learner (Mayr et al., 2014). This
is illustrated in the example above by how the man can allocate each race’s
wager in a way that the total number of wins will be approximately close
to what he would have won by only betting on the luckiest of his friends.
Summing up, boosting is an algorithm which learns from the iterative
process of the weak learners and uses this information to combine it to
an accurate classification (Mayr et al., 2014).

The boosting method I use in the analysis is called gradient boosting.
This is a type of statistical boosting. The method is then developed from
a statistical perspective, which have some advantages compared to pure
machine learning methods. Mayr et al. (2014) points at these advantages;
(i) their ability to combine variable selection that is automated and model
choice in the fitting process, (ii) how flexible they are of the type of
predictor effect that is possibly included in the final model and (iii) how
stable they are in cases with high dimensional data where it might be more
possible variables than observations.

To illustrate the concept of Bayesian model averaging (BMA), I present
an example from Hoeting et al. (1999). The example starts with a
researcher that gather data for cancer in the esophagus. The number
of patients is big, but she has gathered information about demographic
and medical risk factors and patient’s survival status, for each of these
patients. The researcher wants to specify the size of the predictors’ effect
in order to predict the survival time. She first uses a classical regression
model to analyze the data and then conduct a data-driven search for this
regression model. The final model which fits the data well is called M.
Suppose that there exists an alternative model called M*, which almost
fits the data equally well, but leads to different important predictors and
different predictions. Which model should she choose? And should she
ignore the results from the other model?

Bayesian model averaging is a method that takes model uncertainty
into account and provides a way around the problem stated above (Hoet-
ing et al., 1999). It does so by averaging over all of the possible mod-
els and weights them. The estimates of the model given the data is then
a weighted average of the parameter estimates from the different mod-
els (Amini & Parmeter, 2011). Taking this insecurity into account when
finding the most accurate model is an advantage in situations with a large
number of predictors. This is because the existence of many combinations
of the predictors makes it hard to find which model predicts the response
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most accurate. The results from the other models should not be ignored
either, because they may contain important information. Incorporating in-
formation from all of the different possible models is then the problem that
BMA solves.

The choice of boosting and BMA as methods, is inspired by three
papers that have done similar research – Ng (2014), Berge (2015) and
Döpke et al. (2017). Ng (2014) and Berge (2015) have investigated boosting
for predicting recessions in the US. Berge (2015) has also compared
boosting with BMA, using a considerably smaller dataset consisting of
leading indicators. Döpke et al. (2017) performed similar analysis using
German data. My thesis build on these studies, but also differ in some
important aspects as both my dataset and model specifications differ. In
section 2, I will provide more details on how my analysis differ from the
mentioned studies.

I evaluate both in-sample and out-of-sample performance for different
boosting and BMA specifications for predicting US recessions 6 months
ahead. My data sample is from January 1959 to November 2018 and
the out-of-sample predictions are evaluated from November 1977 to
November 2018. To measure how well the models are at predicting
US recessions, I use the area under the receiver operating characteristic
(AUROC) curve. ROC is a probability curve, where in this analysis,
the x-axis is the probability to falsely predict a recession (false positive
rate), while the y-axis shows the probability of predicting a recession
when there is a recession (true positive rate). To summarize the implied
forecast performance by each curve, I integrate the area under the ROC.
The higher the AUROC-values are, the better the model is at predicting
recessions (Fawcett, 2006).

My main finding is that both boosting and Bayesian model averaging
predicts recessions fairly well. I find that the most important predictors
are the interest rate spreads and building permits in different areas of the
US. The important predictors in the in-sample results and out-of-sample
results are mostly the same. The interest rate spreads are often considered
important together, which means that they are not mutually exclusive and
have high predictive power together and not separately. This separates my
analysis from previous studies, because they tend to consider one spread
variable at a time (Ng, 2014).

The in-sample results show clear spikes in the probability around
the recessions for both boosting and BMA. The results from boosting
indicates that the recessions before 1990 are predicted almost perfectly.
The recessions after 1990 are also predicted well, but they have lower
spikes around the recession dates. The in-sample results for BMA are
also in most cases accurate. However, there are also some spikes between
the recessions. While these spikes seem to be lower than the ones during
recession periods, they still provide weak signals of ”false” recessions. In
general, the AUROC-values from the in-sample analysis are high. The
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model with the highest AUROC-value is a boosting model that obtains
an AUROC-value of 0.972. This is a high number also compared to other
studies that have used more traditional econometric models for predicting
US recessions.

When it comes to the out-of-sample results, the results from the
different models are more mixed. In most of the cases, there are spikes
when there is a recession, but also here are there periods with weak
signals of ”false” recessions. For most model specifications, the AUROC-
values exceed 0.85 and are in some cases close to 0.90. The AUROC-
values from boosting and BMA in the out-of-sample analysis lie in the
same area, around 0.8 to 0.9, compared to results in other studies that use
more traditional econometric models. I compare my results to a simple
benchmark probit model with the Treasury term spread as predictor. In
both the in-sample analysis and the out-of-sample analysis, the various
specifications for boosting and BMA have higher AUROC-values than this
simple benchmark model.

The rest of the paper is structured as follows; section 2 describes
the existing literature and how my thesis contribute to the literature on
predicting recessions. Section 3 describes the methods I use in the analysis,
with a focus on the theoretical framework. The data and the experimental
design is described in section 4. This section focuses on the empirical
framework since the theory has previously been described in section 3.
It will especially focus on how the methods are implemented and used in
the packages that I use in R. Section 5 presents results for the in-sample
and out-of-sample analysis for both boosting and BMA. The methods will
also be compared in this section. In section 6, there is a discussion about
the methods and the results, with a focus on advantages, disadvantages
and future usage of the methods. The thesis ends with a conclusion in
section 7.

2 Literature and Contribution
There is a large amount of literature for predicting recessions. One of
the most common ways of predicting recessions is to use the yield curve.
Estrella & Mishkin (1996) investigates whether the spread between the
interest rates on the ten-year Treasury and three-month Treasury bill
can predict recessions. Their results show that the yield curve contains
important informations for predicting recessions, especially one to two
years ahead. Probit models using the yield curve to forecast recessions are
examined in Wright (2006). He finds that models that use the level of the
federal funds rate combined with the term spread give better in-sample
and out-of-sample predictions than models that use the term spread alone.
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Forecasting recessions using a probit model is for example done in
Fossati (2015). He uses a large amount of data and estimates three factors,
namely a bond and exchange rates factor, a stock market factor and a real
activity factor. He has three main results. The first is that models that
use only financial indicators performs worse after 2005. The second result
is that models that use factors give better fit than the models where the
indicators are used directly. Third, he finds evidence that the individual
indicators affect the factors more than data revisions.

Liu & Moench (2016) predict recessions in the US both in-sample and
out-of-sample at various horizons, from three months ahead to two years
ahead. They do this using different well-known leading indicators, but
they use the Treasury term spread as a benchmark. They consider both
univariate and multivariate probit models and evaluate the performance
of the predictions using AUROC. Their findings are that adding lagged
observations of the term spread improves the predictions in the short
run. Adding the annual return on S&P 500 index with the term spread
improves the predictions even more for a time horizon shorter than one
year. New orders of capital goods for the manufacturers and balances
in Broker-Dealer margin accounts increases the prediction precision when
forecasting more than one year ahead.

Chauvet (1998) empirically characterize business cycles with a dy-
namic factor model with regime switching. She captures how the macroe-
conomic variables comove by an unobservable dynamic factor. The asym-
metries for the business cycles are captured by allowing the factor to
switch regimes. Her results shows that the method makes it possible to
analyze business cycles in real time. An example is if a recession is close
by, it can be found by inferred probabilities or by the implied coincident
indicator. This can be done at the same time as the macroeconomic vari-
ables are signaling a recession.

Chauvet & Piger (2008) compare two multivariate well-known busi-
ness cycle dating approaches, both a nonparametric algorithm and a para-
metric Markov-switching dynamic factor model. Their results show that
both of the approaches can identify turning points in real time quite accu-
rately. The dynamic factor Markov-switching model identifies the turning
points from NBER more accurate and the business cycle throughs with
more lead than the nonparametric algorithm.

Chen et al. (2011) forecasts the probability of a US recession with a
probit and dynamic factor modeling approach. They do this by using a
large set of explanatory variables to model and forecast the probability of
a recession. Their results show that the recessions since 1980 is captured
by their model. The model also catches the Great Recession one year
before the formal declaration from NBER. Their model outperforms many
recession forecast models, both in-sample and out-of-sample. This paper
is an example of predicting recessions using a data-rich environment.

The papers presented above are examples of more traditional econo-

6



metric methods. Typically these studies use either a single predictor or
compress the information from a set of variables into a few common fac-
tors. Moreover, these models are typically either logit/probit models or
models that allows for regime switching, such as Markov Switching mod-
els. One reason to investigate a new type of methods with roots in machine
learning, is to incorporate the large amount of information we have in our
data. These methods can then find new combinations of variables, which
have not been investigated before. Many of the papers I presented above
have given accurate predictions of recessions, but there is still room for im-
provement. Since recessions are severe events, can small improvements in
forecast accuracy actually be quite important. In my thesis, I therefore aim
to analyze what some newer machine learning techniques can add to the
existing literature on predicting recessions. So far, there is only a limited
number of studies that have explored these techniques for predicting re-
cessions.

Berge (2015) uses 19 predictors for the US and compare how four type
of methods, equally weighted forecasts, forecasts from BMA and forecasts
from two different boosting specifications, predict US recessions. His
analysis shows that equal weighted forecasts perform relatively badly.
Both boosting and BMA are more successful in terms of predicting
recessions. He finds that for shorter forecasting horizons, the most
informative predictors are real economic activity variables, while variables
for the housing market and the financial market are the most informative
predictors at longer horizons. Moreover he finds that yield curve in
general is a good predictor, but it did not provide a strong signal for the
two last recessions (the ones starting in 2001 and 2007).

The boosting method in Ng (2014) is similar to what I use in this thesis.
She uses boosting to screen up to 1500 potentially relevant predictors that
consists of 132 real and financial time series and their lags. Even though
she uses a large combination of variables, her results indicate that there are
less than 10 important predictors. She also finds that there are different
variables that are important before and after the mid 1980s. Her rolling
window estimation indicates that how important the term and default
spreads are depends on the recession. The analysis also reveal that the
boosting model provided signals of an upcoming recession in the middle
of 2006.

Ng (2014) models the log-odds ratio as a non-parametric function of
the predictors, where the weak learner is a two-node decision tree. On the
other hand, Berge (2015) takes an approach that is analogous to a logistic
model where the log-odds is assumed to be linear in each predictor.
He also goes further to include nonlinearity, where he uses smoothing
splines1 as weak learners.

1Smoothing splines will not be covered in this thesis, but Berge (2015) refers to Eilers &
Marx (1996) for details.
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Döpke et al. (2017) use boosted regression trees (BRT) to look at
the usefulness of selected leading indicators for predicting recessions in
Germany. Their results show that measures of the short-term interest
rate and the term spread are important leading indicators. The relative
importance of the short-term interest rate has, however, decreased over
time, while for the term spread it has increased. The BRT approach
also shows better out-of-sample results than the ones for standard probit
models. They also argue that the BRT approach is a technique that
can be useful for analysis of economic policy. The reason is that the
relative importance of the short-term interest rate as a leading indicator
has decreased and this may have implications for monetary policy.

In addition to Ng (2014), Berge (2015) and Döpke et al. (2017) recent re-
search conducted by Raffinot & Benoit (2018) investigate other alterinative
machine learning techniques for predicting recessions. Raffinot & Benoit
(2018) use random forest and boosting to detect economic turning points
in the US and the Eurozone.

Berge (2015) and Ng (2014) are the studies that are the most closely
related to my thesis. I would therefore like to highlight the differences
between their studies and my thesis.

First, to implement a boosting analysis I need to define a weak learner.
Berge (2015) uses smoothing splines as weak learners, while Ng (2014)
uses decision trees. I also use decision trees, but my trees are different
from the ones in Ng (2014)2. Ng (2014) use a tree depth of 1, which is
called a decision stump. In many applications, using a decision stump
is considered insufficient. In stead a depth between 3 and 7 are often
preferred for boosting applications (Hastie et al., 2008, p. 363). This is the
reason why I allow for a larger tree depth than 1. My choice of tree depth
is discussed in section 4.2.

Second, one of the goals with this thesis is to study the usefulness of
boosting and BMA for prediction in a data-rich environment. While Berge
(2015) uses a somewhat limited dataset consisting of 19 variables, I instead
use a large dataset that consists of 128 variables3. Ng (2014) also study
boosting in a data-rich environment using 132 variables and their lags.
Moreover, it is not straightforward to use BMA on a dataset consisting
of 128 variables, because it is not possible to evaluate all of the different
models4. To solve this issue, I rely on using Markov Chain Monte Carlo
(MCMC) methods.

Third, I study four different BMA model specifications and six different
boosting model specifications in the in-sample analysis. In the out-of-
sample analysis, I study two different boosting model specifications and
two different BMA model specifications. All of these different model

2Decision trees are introduced in section 3.1.
3For boosting are also some lags included.
4The total number of possible models is 2128. Section 3.2 explains this further.
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specifications are done on the same forecast horizon of six months. Berge
(2015) and Ng (2014) have not studied different model specifications for
any of the methods for the same forecast horizon.

Fourth, an essential part of this thesis is to compare the in-sample
and out-of-sample performance between boosting and BMA and also to
a simple benchmark model. Both Ng (2014) and Berge (2015) evaluate
the predictive power from their models, but they have not compared
their results from these models with results from alternative models5. I
compare the AUROC-values that I obtain for the various models with Liu
& Moench (2016). I also compare both my in-sample and out-of-sample
results with the results from a simple probit model with the Treasury term
spread as predictor.

Finally, I also use a longer data sample than Berge (2015) and Ng (2014).
The sample that I use starts in January 1959, while both Berge (2015) and
Ng (2014) start their sample later. This means that the analysis Berge
(2015) covers six recessions, while the analysis from Ng (2014) covers
seven recessions. Moreover, this may affect both the in-sample and out-
of-sample predictions in addition to the most important predictors. I
have also extended the sample with about five years forward. That the
time period is extended forward is an advantage especially for boosting,
because there are more data to train and test on.

3 Methods
Both boosting and Bayesian model averaging are data-driven methods
with roots in statistics, which means the methods have a theoretical
foundation. This section gives insight to the theoretical characteristics of
the methods. These characteristics make it possible to interpret the most
important predictors, which results in predictions in the end. The methods
will be presented separately by first introducing them at a general level,
before moving over to the details.

3.1 Boosting

Boosting is a machine learning technique, where you build simple base
learners, called weak learners, and combine them to a strong learner in an
iterative and stagewise process (Döpke et al., 2017). In a binary setting,
a weak learner is defined to have a classification rate that is a bit better
5Berge (2015) compare his predictions from the 2001 and 2007 recessions with Chauvet
& Piger (2008) for their nowcast and a univariate logit model with the slope of the yield
curve at a forecast horizon of one year.
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than random guessing. A strong learner on the other hand, should be
able to predict the response accurately because the classification rate is
high. Since it is easier to find weak learners, the idea of boosting is to
combine these weak learners into a strong learner. This strong learner can
be used for prediction. Weak learners vary in different types of boosting,
but can typically be decision trees (both classification and regression trees),
linear models and smoothing splines. The only restriction is that they are
weak, in a way that they should not have too complex solutions in one
iteration (Mayr et al., 2014).

A decision tree is the weak learner used later on in the analysis. A
simple example of a decision tree is illustrated in figure 3.1. The tree
shows the decisions being made according to preferences, in this case
education. The decision that needs to be made is whether to ask a person
to a job interview or not. Since education is the most important decision
for whether the person should get an interview or not, it is at the top of the
tree. To find out if the person is suitable for the job, some questions needs
to be answered. A decision tree makes decisions about the outcome of a
variable based on the data of the predictors by asking different questions
which leads to a decision in the end. The questions are if one event occurs,
then another event will follow based on the data. In figure 3.1 one example
of a question will be ”Does the person have job experience?”. If yes, the
person gets an interview, if no, the next question is asked. In the end, there
will be a specific decision with an answer to the original question.

First of all, there are some terms for decision trees that should be
defined. The first is the definition of different nodes. There exist three
types of nodes. The first node is called a root node/decision node.
This represents the first choice that will split in two or more internal
nodes/chance nodes. The internal nodes then represent the possible
choices at that point in the structure. The final node in the tree is called
the leaf nodes/end nodes and represent the final result which consists of
the combination of the decisions made previously (Song & Ying, 2015). An
example of a root node in figure 3.1 is the question about education, while
an internal node whether the person has experience or not. The end node
is whether the person gets an interview or not.

Moreover, to make decision trees interpretable in boosting, they need
to be based on data. The idea behind a decision tree with data is to build
classification or regression models in a tree-structured form. To break
down the data to smaller subset, the space is split into two regions and the
response is modeled in each region. The splitting can happen again with
the response. This continues until a stopping rule is applied to prevent the
model from becoming too complex. An example of a stopping rule is the
depth of the tree. The region that represents the decision in the end is, as
stated above, the end node (Song & Ying, 2015). In a boosting setting, the
individual decision trees are the weak learners. Combining these decision
trees in an additive way results in a strong learner. This ensemble is used
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Figure 3.1: Decision tree

to forecast recessions (Döpke et al., 2017).
There are at least two points of view when it comes to the theory

of boosting. The first one is to look at boosting from a machine
learning perspective. The focus of this perspective is boosting as a
machine learning algorithm. The other perspective is called statistical
boosting (Mayr et al., 2014). This perspective focuses on presenting
boosting as an algorithm with roots in statistics. It is mainly this statistical
perspective that is presented in this section.

The theory of combining weak learners into a strong learner with good
prediction accuracy was developed by Schapire (1990) and Freund (1995).
Further Freund & Schapire (1997) developed the historically most popular
boosting algorithm, called ”AdaBoost.M1”. The concept for the algorithm
is, as stated above, to learn from the iterative process with a weak learner
and combine it to classification. This procedure would not work if the
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observations were trained over and over again on the same dataset. The
solution to this is to do modifications on the data. The data is modified
by re-weighting the observations in the training data during the iteration
process (Mayr et al., 2014). This means for each iteration, the weights
on the observations are modified and the algorithm is applied again on
the weighted observations. The observations that were misclassified by
the learner at the previous step gets higher weight and the weights will
decrease for those that were correctly classified (Hastie et al., 2008, p.338).
This forces the algorithm to focus on the objects that are hard to classify.
In the final step, the results for the weak learners are combined to a
more accurate prediction. This is done by increasing the iteration-specific
coefficient of the solutions that performs better. This coefficient depends
on the misclassification rate. The weak learners in ”AdaBoost.M1” are
often simple classification trees (Mayr et al., 2014).

The next step in the history of boosting was expanding the method
with a higher focus on statistical and mathematical interpretations. In
this category, the algorithms are used to estimate quantities in general
statistical models (Mayr et al., 2014). J. Friedman et al. (2000) looked at
boosting from a statistical perspective. One reason to look at boosting
from a statistical perspective is that general machine learning algorithms
often have a ”black box” interpretation. In these algorithms, only the
result matter, the underlying data structure is not relevant and how the
predictors contribute to the final solution is not known (Mayr et al.,
2014). J. Friedman et al. (2000) then provided statistical tools to be able
to understand and interpret the boosting algorithm. It will be this group
of boosting algorithms that will be the focus from now on.

In J. H. Friedman (2001) gradient boosting was developed. The
main idea in this boosting category is to fit the weak learner, not to
the re-weighted observations as in ”AdaBoost.M1”, but to the negative
gradient vector of the loss function evaluated at the previous iteration.
The gradient is a mathematical vector which gives information of how
fast and in which direction a function changes (Holden, 2018). Both
”AdaBoost.M1” and gradient boosting increase the performance of the
weak learner by focusing on the observations, which are hard to predict.
While ”AdaBoost.M1” do this by up-weighting the observations that were
classified wrongly, gradient boosting find the difficult observations by
using the negative gradient evaluated in the previous iteration (Mayr
et al., 2014). This means that the empirical risk is minimized. For
each iteration, the models get strengthened because the fitted regression
function is updated. In the end, the optimal fitted model is found and can
be used for predictions.

Summing up, the data is modeled by using weak learners and
minimizing the errors. These errors also find the datapoints, which are
hard to fit. The models get updated in a way that focuses particularly on
the datapoints that were hard to fit. In the end, these predictors will be
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combined to the final model (Mayr et al., 2014).
Since gradient boosting is the method that I use in this thesis, I will

describe this method and the algorithm in more detail. However, I
first need to define some parameters. These parameters must be tuned
according to getting the best results but at the same time avoid overfitting.
The first is the depth of each tree, J. This means how many nodes the tree
consists of, where a node is the end of a branch of a tree, as previously
presented (Greenwell et al., 2019). The branch are the line segments in
figure 3.1. In figure 3.1, the tree depth is 3 and the end node is whether
the person is invited to an interview or not. The next tuning parameter
is the number of boosting iterations, M. This means how many iterations
the weak learner, the tree, goes through. It is important to have the right
number of iterations to avoid overfitting (Hastie et al., 2008, p. 364). ν
is defined as shrinkage, also called the learning rate, which controls the
learning rate of the boosting procedure. The learning rate measures how
much each tree contribute when it is added in the approximation of the
strong learner. It is a way of slowing down the learning by scaling the
contribution of each tree when it is added to the approximation. Smaller
values of ν indicates more shrinkage and higher training risk for the same
number of iterations, which means that that the adaption of the model to
the data is slowed down (Hastie et al., 2008, p. 364-365). On the other hand,
higher values of ν then means lower accuracy since there are higher steps
so the optimization becomes less precise compared to if ν had been small.
Another tuning parameter is the subsampling rate. At each iteration, a
fraction of the training observations is sampled and the next tree grows
using the subsample. It reduces the computing time and often produces a
more accurate model (Hastie et al., 2008, p. 365).

Ridgeway (2019) has given a schematic overlook of the gradient
boosting algorithm that is implemented in the package that is used in the
analysis. f̂ (x) is a regression function, while L(yi, f (x)) is a loss function.
The algorithm is presented in Algorithm 1.
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Algorithm 1 Gradient Tree Boosting in the gbm-package adapted from
Ridgeway (2019)
Select:

• A loss function (distribution)
• The number of iterations, M (n.trees)
• The depth of each tree, J (interaction.depth)
• The shrinkage (or learning rate) parameter ν
• The subsampling rate, p (bag.fraction)

Initialize f̂ (x) to be a constant, f̂ (x) = argminγ ∑N
i=1 L(yi, γ). This is the

optimal constant model and contains only one single end node tree. For
m = 1, . . . , M:

1. Compute the negative gradient as the working response:

ri = −
[∂L(yi, f (xi))

∂ f (xi)

]
f (xi)= f̂ (xi)

2. Select p × N random cases from the dataset. N is the number of
observations in the training sample.

3. Fit a regression tree with J end nodes. This tree is fitted only using
randomly selected observations

4. Compute the optimal end node predictions, γ1, . . . , γJ as:

γj = argminγ ∑
xi∈Sj

L(yi, f̂ (xi) + γ)

where Sj is the set of xs that define end node j. This step uses only
the randomly selected observations.

5. Update f̂ (x) as
f̂ (x)← f̂ (x) + νγj(x)

where j(x) indicates the index of the end node into which an
observation with features x would fall

In step 1. the negative gradient is calculated. The negative gradient
is evaluated for f (xi) = f̂ (xi), which means that it is evaluated for
the previous regression function. Step 2. selects a random number of
observations from the dataset. How many observations are selected,
depends on the randomization parameter p. The regression trees are fitted
to all the end nodes in step 3. This step also depends on the selected
observations. Then in step 4. the optimal end node predictions are
calculated. It depends on which predictors are defined in that specific end
node. In the last step, the regression function is updated. This depends
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on the previous regression function, the learning rate and the index of the
terminal node for the predictors. This means that γj is included for the xs
that are included in the terminal nodes. These steps are repeated for all of
the iterations.

The two loss functions that are implemented in this analysis is the
Bernoulli deviance and the AdaBoost exponential loss function. However,
it is important to note that this AdaBoost exponential loss function is
not the same as ”AdaBoost.M1”. It can be shown6 that ”AdaBoost.M1”
is equivalent to a boosting approach, called forward stagewise additive
modeling, with a loss function

L(y, f (x)) = exp(−y f (x)) (3.1)

(Hastie et al., 2008, p. 343). This exponential loss functions is called
AdaBoost from now on.

The output of the algorithm determines which of the variables that are
most important and will be used for prediction. In many applications,
only a few variables matter for the prediction and the rest is irrelevant.
The output for gradient boosting is the relative importance (Hastie et al.,
2008, p. 367-368). The relative influence for one variable xj is

Î2
j = ∑

splits onxj

I2
m (3.2)

I2
m shows the empirical improvement of splitting xj at that specific point

and at stage m (Ridgeway, 2019). This means that for one variable, the
squared relative importance is the sum of the squared improvements for
all of the internal nodes that were chosen as the splitting variable (Hastie
et al., 2008, p. 368). The way of getting the relevant importance for that
variable for all of the iterations, is to average the relative influence of
that variable for all of the trees that has been generated by the boosting
algorithm. The equation becomes

ˆ̂I2
j =

1
M

M

∑
m=1

Î2
j (3.3)

This means that the relative importance is then the average of Î2
j .

There is no straightforward interpretation of relative importance in
boosting. It is based on how many times a variable is selected over the M
steps and weighted by the squared improvement. However, the sum of the
relative importance for all of the different variables is 100, more specific,
the sum of ˆ̂I2

j for all of the different predictors is 100. This means that a
higher value of relative importance indicates a more important variable. If
the variable is almost never selected, it has a relative influence of zero (Ng,
2014)
6See Hastie et al. (2008, p. 343-344) for details
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3.2 Bayesian Model Averaging

In order to explain the theoretical part of Bayesian model averaging, some
terms in Bayesian statistics need to be introduced. In general, Bayesian
statistics has a different approach to statistical problems compared to
traditional frequentist statistics. It is based on Bayesian interpretations,
where you look at problems with a focus on the probability of an event.
The probabilities can change as you gather new information. The starting
point is that there might be an idea of the distribution of the parameter.
This is called the prior distribution, p(β). Then you have a distribution
of the data given the parameter. This is called the sampling/data
distribution, p(y | β) and is the likelihood function. Using Bayes rule:

p(β | y) =
p(β)p(y | β)

p(y)
(3.4)

where p(y) is the sum (discrete distribution) or integral (continuous
distribution) over all the possible values of β. p(β | y) is called the
posterior distribution and is the desired outcome (Gelman et al., 2013, p. 6-
7).

Moreover, there are also some other arguments that needs to be
clarified in this analysis. The first is that the model used for the binary
data is the logistic regression. The formula for this equation is

log
( pr(yt = 1)

pr(yt = 0)

)
= β0 + β1X1,t−h−s + β2X2,t−h−s + · · ·+ βKXK,t−h−s

(3.5)
where yt = 1 if there is a recession in period t and yt = 0 if there is not
a recession in period t. X1,t−h−s is variable 1 in period t − h − s, where
h is the forecast horizon, and s is either 0, 1, 2 or 3 in this analysis. s is
then the lag in addition to the forecast horizon. The β’s are the coefficients
for the variables. This equation is called the log odds-ratio. Equation 3.5
is the main regression equation that the next part of the analysis is based
on. This is one of the equations that needs to be specified in order for the
analysis to be on binary response data (Agresti, 2015, p. 168).

BMA is method which accounts for model uncertainty. This is
important because when there is a large set of explanatory variables,
which might have an influence on the outcome, it is hard to know which
variables are important and which are irrelevant. Traditionally, this is
solved by doing a sequence of tests to find the best model where the
irrelevant predictors are omitted (Koop, 2003, p. 267). As the number of
tests increases, the probability of a mistake being made increases. One
example of a mistake is if the researcher rejects the model considered
”better” for the one that is ”not so good”. The second problem is that
even though the best procedure is being chosen, there is still a problem
with ignoring the results and evidence from the models that are not the
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best one. In this way, the model uncertainty is being ignored. This means
that the researcher does not know what the parameters of the model are
and which model is correct (Koop, 2003, p. 267).

While general model averaging only takes the average of the models
being considered, BMA takes the average of the posterior distribution for
each of the models being considered and weight them by the posterior
model probability (Hoeting et al., 1999). Taking the average of the
models is a way of finding the variables that are most relevant in the
data generating process. Each of the models then get a weight and the
estimates are then a weighted average of the parameter estimates from the
models (Amini & Parmeter, 2011). All of the variables are included in the
analysis, but the impacts of certain variables are almost 0.

The next step is to have a closer look at the properties of BMA. Assume
we have a set of M models that is estimated to produce a forecast yt which
will result in {ŷ1t, ŷ2t, . . . , ŷMt}. Then assume that there are K predictors.
The total number of models are then M = 2K. The reason for this number
is that the models are defined by inclusion or exclusion of each of the
explanatory variables (Koop, 2003, p. 268). The equation for BMA is
defined as

yt = Pr(∆ | D) =
M

∑
i=1

Pr(∆ | Mi, D)Pr(Mi | D) (3.6)

(Hoeting et al., 1999). ∆ is the quantity of interest, which might be an
effect size or a future observable. In this case, the quantiy is whether
there is a recession in period t or not. The empirical question is then
”What is the posterior probability that we are in a recession in period t?”.
Equation (3.6) shows the average of the posterior distributions under the
models considered, but weighted by the posterior probability of the model
considered.

The posterior probability for model Mi is

Pr(Mi | D) =
Pr(D | Mi)Pr(Mi)

∑M
j=1 Pr(D | Mj)Pr(Mj)

(3.7)

where
Pr(D | Mi) =

∫
Pr(D | βi, Mi)Pr(βi | Mi)dβi (3.8)

is the integrated likelihood of model Mi and βi is the vector of the
parameters in model Mi (Hoeting et al., 1999). Pr(βi | Mi) is then the prior
density of βi. The integral must also be solved and this calculation can
be demanding, because it is not necessarily possible to solve the integral
directly. The solution is to approximate the integral using a computational
method (Hoeting et al., 1999). This is done directly in the package I use for
the BMA-analysis in this thesis.
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Hoeting et al. (1999) points at another problem with solving the
equations in BMA. The number of terms in equation (3.6) might be
enormous. This makes it hard to find the final solution. In this case,
the number of potential models is M = 2K = 2128. This number is so
high that it is impossible to try all of the different combinations of the
variables. One possible solution to solve the sum is to use an algorithm to
carry out BMA without evaluating every possible model. An algorithm
that does this is the Markov Chain Monte Carlo (MCMC). This group
of algorithms takes draws from the parameter space in order to mimic
draws from the posterior. This is done by taking many draws from
regions of the parameter space where the posterior probability is high,
while the draws are few from the regions where the posterior probability
is low (Koop, 2003, p. 272). This means that MCMC focus more on regions
where the posterior probability is high and less on the regions where the
posterior probability is low. This is the standard definition of MCMC with
a parameter focus. Since the focus in BMA is models and not parameters
will the MCMC algorithms behave a bit differently in this setting. The
MCMC algorithm in a BMA setting then draws from the model space, not
the parameter space, and focus on the models with high posterior model
probability (Koop, 2003, p. 272-273). This is called Markov Chain Monte
Carlo Model Composition (MC3). MC3 is based on a MCMC algorithm
called Metropolis-Hastings algorithm which stimulates a chain of models.
It draws different candidate models from a distribution over the model
space and with a certain probability accepts them. If the candidate models
is not accepted, the chain does not go forward, but instead remains at the
current model (Koop, 2003, p. 273).

The specific MC3 model considered is the Random Walk Chain
Metropolis-Hastings. In the region of the model space, it draws in the
neighborhood of the current draw. An alternative model then exists,
namely the neighborhood model. This candidate model is then proposed
and drawn randomly with equal probability from the set of models. It
includes the current model, the models with one explanatory variable
deleted and all the models with one explanatory variable added. The
result is an acceptance probability, which indicates which model is being
accepted (Koop, 2003, p. 273). The method used in the analysis is this MC3

combined with a random swap where it swaps a variable included with a
variable that is currently excluded (Clyde, 2018). Updating one at a time,
might be a poor mixing with variables that are correlated, so one consider
an additional update proposal. The additional update selects a variable
included in the current model randomly and swaps it with a variable that
is randomly excluded from the model (Clyde et al., 2011). This means
that we have a new state using the MC3 algorithm with a probability and
uses the swap proposal with one minus the probability of using the MC3

algorithm (Clyde et al., 2011).
In order to find and interpret the most important variables in the BMA-
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analysis, a value called posterior/marginal inclusion probability is used.
It is a weighted average of the posterior probabilities for all the models
that include predictor j.

PIP(β j) = Pr(β j 6= 0) = ∑
Mi :β j∈Mi

p(Mi | D) (3.9)

(Berge, 2015). This shows the probability of that specific predictor to
be included in the final model and that this is based on the posterior
probability for the models.

4 Data and Experimental Design
One advantage of using databased methods is that they can handle high
dimensional data. The dataset I use in the analysis is from Federal
Reserve Economic Data (FRED), more specifically from McCracken (2019),
and contains a large selection of common macroeconomic and financial
indicators. It is an easily accessible dataset because it is open-source. The
analysis on these data has been implemented in R by using one package
for boosting and one for Bayesian model averaging. The package chosen
for boosting is called ”gbm” and the package chosen for Bayesian model
averaging is called ”BAS”. This section gives an overview of the dataset
and dig deeper into the empirical framework of the methods.

4.1 Data

Since the FRED dataset is updated every month, the dataset I use is from
December 2018. The dataset consists of raw data but I follow McCracken
& Ng (2016) and transform each variable to induce stationarity. I provide
details about all the variables in the dataset and the transformations I use
in Appendix A.

The dataset covers 128 US variables in the period January 1959 until
November 2018. The variables cover a broad range of the US economy and
are divided into categories, where the categories are (i) output and income,
(ii) labor market, (iii) housing, (iv) consumption, orders and inventories,
(v) money and credit, (vi) interest and exchange rates, (vii) prices and (viii)
stock market (McCracken & Ng, 2016). McCracken & Ng (2016) point at
some advantages of this dataset. First of all, it is updated every month. It
is then possible to update the analysis easily and follow the development
of different variables in the economy. Secondly, it is publicly accessible,
which means that it is easy to replicate and confirm empirical work.
Third, it will relieve researchers from managing changes in the dataset
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and revisions. One challenge with collecting a dataset that spans a long
time period is that definitions of variables have often changed over time.
It can, for example, be hard to find exactly the same series back in time.
Using a prepared dataset is then a big advantage. Another advantage of
using this dataset in this analysis is the time frame of the dataset. Since the
dataset starts in 1959, there is enough data to predict a rare event, which
recessions are.

Even though there are many advantages of using the FRED dataset in
this analysis, there is also at least one problem. Since the dataset is updated
every month, observations for some variables may be revised over time.
This is typically the case for National Account variables, which in some
cases can undergo substantial revisions. For these series, it means that the
value of for instance January 2018 is different if the data was collected
in February 2018 compared to being collected in December 2018. This
is, however, only a concern for variables that undergo revisions. Many
variables such as financial markets data and price data are either not
revised or only undergo minor revisions. This may affect the analysis since
the actual value is available at a different point in time than presented in
this analysis. One solution is to make a new dataset by going through all
of the datasets back in time and type the values for that specific month.
Fortunately does not most of the variables change back in time, but it is
still a weakness with this analysis.

The National Bureau of Economic Research (NBER) has a formal
declaration of recessions and these recession dates are found in NBER
(2012). Recessions are binary variables, which means if there is a recession
in period t it is denoted by 1 and if there is not in a recession it is denoted
0. In the period from January 1959 to November 2018, there are eight
recessions. The Great Recession is the longest recession in this time frame
and the shortest recession was the first recession in the 1980s.

In the analysis, recession or not is considered as the binary response
variable. It is only the predictors from the FRED dataset that is included
as predictors and not the lags of whether there has been a recession or not.
The reason is that it often takes time before NBER announces a recession.
Since this information will be available too late, it is not realistic to include
it in the model.

4.2 Experimental Design

This section explains the empirical framework and how the different
specifications in the algorithm will affect the outcome. An example of
an important specification is which loss-functions are used for boosting.
Different loss functions will give different important variables and
different predictions. The rest of this section is structured by first looking
at the empirical framework that the methods have in common, in both the
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in-sample and out-of-sample analysis. Then the specific implementation
for both boosting and BMA will be discussed. In the end, I introduce what
the AUROC-values are.

The first challenge is to make the forecasting analysis as realistic as
possible is the data availability. If the goal is to forecast a recession 6
months ahead, then there is only data available now that can be used. In
more formal terms, the data must be available in time period t− h when
the goal is to forecast h months ahead. Further, it may be the case that it is
some data that were available in period t− h− 1 that are more important.
This suggests that in addition to the forecasting period, the data should
also be lagged. I therefore introduce s, which stands for how many lags are
included in addition to the forecast horizon and s = {0, 1, 2, 3}. The data
with lags will be analyzed together in the boosting case and separately
in the BMA case. The forecast horizon in both the in-sample and out-of-
sample analysis is 6 months. In the in-sample cases, the predictors are
lagged according to h + s. So the dataset consist of a Yt which indicates
recession or not in time period t and predictors 6 months back in time.
In the out-of-sample cases, the predictors are lagged according to s in the
dataset and forecasted 6 months forward.

The estimation method to get out-of-sample results is called rolling
estimation. The window starts with observations from t1 − h = January
1960 and t2 − h = May 1977. The rolling forecasts are constructed in this
way:

1. Initialize t1 and t2

2. For m = 1, . . . , M, follow algorithm 1 using the predictors in Xt−h. t
∈ [t1 − h, t2 − h− 1]

3. For each of the predictors, j = 1 . . . N, record relative importance for
boosting or posterior inclusion probability for BMA in the interval

4. Construct the predicted probability p̂t2 = P̂(yt2+h = 1 | Xt2).
Increase t1 and t2 by one.

(Ng, 2014). There are 493 rolling regressions. Like I stated above, t1 − h
= January 1960 and t2 − h = May 1977. The first forecast is then made for
t2 = November 1977. The next round of forecasts is based on training and
estimation from (t1 − h, t2 − h) = (February 1960, June 1977) and forecasts
for December 1977 and so it continues. The windows rolls forward and
the predictions for next period are in the end gathered and presented in
figure 5.3.

The most important variables in the out-of-sample case are found by
taking the average of the variables in all of the rolling estimations. For
boosting it is the average of the relative importance, while for BMA it is
the average of the posterior inclusion probability. The top ten predictors
with highest average are reported in section 5.2.
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4.2.1 Boosting

The first part of Algorithm 1 is to select a loss function/distribution, the
number of iterations, the depth of each tree, the shrinkage parameter
and the subsampling rate. The first choice is the loss function/distribu-
tion. In cases with binary response, it is most common to use the the
deviance (Hastie et al., 2008, p. 360). The Bernoulli deviance is recom-
mended (Ridgeway, 2019). In addition to the Bernoulli deviance, I also
look at the AdaBoost exponential loss function7. Even though ”Bernoulli”
is in general recommended, can ”AdaBoost” still be more appropriate in
some settings. That is the reason why both of these loss functions are used.
The method is still gradient boosting as presented in section 3.1.

The tuning parameters are important for the final results in boosting.
The goal is to find the combination of tuning parameters, which give the
most accurate predictions but at the same time avoid overfitting. The
problem with overfitting is that it may represent misleading predictions
and weights for the coefficients, resulting in misleading conclusions in the
analysis. Possibly the most important tuning parameter is the number
of iterations. There are different ways of finding the optimal choice of
this parameter. One method is to use cross-validation8. This is a method
to test the model out-of-sample to find how the data will perform on an
independent dataset. The disadvantage of this method is that it only finds
the optimal number of iterations given the other tuning parameters. That
is the reason why the method used in this analysis is based on another
method that is found in University of Cinncinati (2018). The setting of
this method is to use the train fraction. A train fraction of 70 % means
that 70 % of the first rows of the observations are used to fit the model
and the rest are used to compute out-of-sample estimates for the loss
function (Greenwell et al., 2019). This is presented in figure 4.1. When
the train fraction is 70%, the training part in figure 4.1 is 70%, while the
validation part is 30%. The optimal combination of the tuning parameters
is found by making a grid search of all the possible combinations and
minimizing the validation error. A grid search is an iteration process for
tuning the parameters. In this case, it searches through all of the different
combinations of the parameters and find the optimal combination in this
case decided by the minimized validation error. Taking the square root of
the minimized validation error gives the lowest root mean square error
(RMSE). If the root mean square error is low, the predicted values are
almost equal the actual values. This is because the RMSE measures the
error between the predicted and observed values (Chai & Draxler, 2014).
In this case, it is the error between the predicted and observed recessions.
The combination of the chosen tuning parameters are decided by the
square root of the minimized validation error, which is the same as the

7Details about both of these functions are discussed in Ridgeway (2019).
8This method is used in Ng (2014).
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RMSE.

In-sample︷ ︸︸ ︷
Training Validation

Figure 4.1: Obtaining in-sample results

This training fraction is used both in the in-sample analysis for finding
the tuning parameters but also in the actual fitting of the boosted model.
This is because the in-sample fitting is done on the same dataset as
the predictions. By using a train fraction of less than 100 % prevents
overfitting because it also tests how the model will perform on new data.

The tuning parameters are especially important for avoiding overfit-
ting. The included tuning parameters are the number of trees to fit, the
maximum depth of each tree, the minimum number of observations in the
end nodes of the trees (n.minosbsinnode) and the learning rate (Greenwell
et al., 2019). The rest of the parameters in the package are set as the default
in Greenwell et al. (2019). I have also implemented three different train-
ing fractions, 30%, 50% and 60%. This is to look at whether there are big
differences in the results for the training fractions. This parameter is also
important for overfitting, because training everything on the same data
and predicting on the same data without looking at validation, may lead
to overfitting (University of Cinncinati, 2018).

Table 4.1: In-sample tuning parameters using the Bernoulli deviance

Tuning parameters Alternatives Result
train =
0.3

Result
train =
0.5

Result
train =
0.6

Shrinkage (ν) 0.001, 0.005, 0.01 0.001 0.01 0.01
Interaction depth 3, 4, 5 5 3 3
n.minobsinnode 5, 10 5 10 10
Number of trees up to 3000 1759 117 320

Table 4.1 and 4.2 shows all of the different possibilities of the tuning
parameters and the chosen tuning parameters for the in-sample analysis.
The tuning parameters are chosen by the method described above. In the
case of Bernoulli deviance, the chosen tuning parameters when training
30 % of the data, are then a shrinkage of 0.001, an interaction depth of 5,
minimum 5 observations in the end nodes of the trees and 1759 tress.

Both of the tables show that the chosen number of trees are a lot smaller
than 3000. The only case were it is above 400 is for the Bernoulli deviance
when the training fraction is 30%. The reason may be that empirically
smaller values of ν require larger values of trees (Hastie et al., 2008, p. 365).
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Table 4.2: In-sample tuning parameters using the AdaBoost exponential
loss function

Tuning parameters Alternatives Result
train =
0.3

Result
train =
0.5

Result
train =
0.6

Shrinkage (ν) 0.001, 0.005, 0.01 0.01 0.01 0.005
Interaction depth 3, 4, 5 3 5 3
n.minobsinnode 5, 10 10 10 10
Number of trees up to 3000 133 79 265

In all of the different training fractions, table 4.2 has always a smaller
number of trees compared to 4.1. These are then the parameters that will
be used in section 5.1. A code snippet, which shows an example of the
implementation, is found in Appendix B.

The construction of the out-of-sample experimental design is a bit
differently. In addition to training and validation, there is also a testing
part. This is data that has not been used in the in-sample analysis. The

In-sample︷ ︸︸ ︷ Out-of-sample︷ ︸︸ ︷
Training Validation Testing

Figure 4.2: Obtaining out-of-sample results

procedure is to tune the data to the variables in Xt1−h, Xt2−h−1 for Yt1 , Yt2−1.
This is done by using 60% of the data for training and then 40% for
validation. This is in order to avoid overfitting when finding the tuning
parameters. Then the boosting models are fitted. Since the predictions are
made for Yt2 using data from Xt2−h, and the training fraction is 100% in
the fitting process. Then the predictions out-of-sample are made out-of-
sample by using the in-sample fitting process. There is a code example of
this in Appendix B.

4.2.2 Bayesian Model Averaging

There are also some choices that need to be made when doing the BMA-
analysis in the BAS-package. Logistic regression is the most important
model for binary data. It is then usual to assume a binomial distribution
with a logit link (Agresti, 2015, p. 165). This is the specification that needs
to be made to get a logistic regression model in the BAS-package.

One of the choices that need to be made in Bayesian analysis are the
priors. The prior on the coefficients for the model is called the betaprior
and in equation (3.8) it is Pr(βi | Mi). I have chosen the Bayesian
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information criterion (BIC) as the betaprior in this thesis. This is because
it is considered a consistent estimate of the marginal likelihood and is
frequently used in applied work (Berge, 2015).

The modelprior is the family of the prior distribution on the models.
In this case, I have used a uniform prior. This means that all of the models
are equally likely to be drawn. The reason why this is chosen is that there
is no information which indicates that one model is better than the other.

The method that I use to manage the summation is MCMC, which is
covered in section 3.2. The BAS-package use a combination of the random
walk Metropolis-Hastings algorithm with a random swap. This means
that the variable is swapped with a variable included with a variable that
is currently excluded (Clyde, 2018). The number of iterations is 100000
in the in-sample part and 1000 in the rolling estimation part. The rest of
the specifications in the algorithm are set as default parameters in the BAS
package and is found in Clyde (2018).

4.2.3 AUROC

To compare the classification abilities of my models I use the Receiver
Operating Characteristic curve, which plots the full mapping of the false
positive rate, across different values of the threshold parameter. To assess
the recession classification abilities of the various models, I follow Berge
& Jordá (2011) and Liu & Moench (2016) and calculate the Area Under
Receiver Operating Characteristic (AUROC), which takes every point on
the ROC-curve into account. The ROC-curve is a curve plotting the true
positive rate against the false positive rate. This is illustrated in figure
4.3. True positive rate in this setting means that the recession is predicted
correctly. False positive rate means cases where there is predicted a
recession, but there is actually not a recession. The AUROC statistic has a
lower bound of 0 and an upper bound of 1, where higher values indicate
better classification. If the AUROC-value is 0.5, it predicts as good as
random guessing. This is because random guessing produces a diagonal
line in the ROC-curve, where the area under the curve is 0.5 (Fawcett,
2006). This is the diagonal line indicated in figure 4.3. A model with an
AUROC-value of below 0.5 performs worse than random guessing and
should not be used. Figure 4.3 shows the ROC-curve for a case where the
AUROC-value is 0.916.

The choice of using AUROC as a measure of forecasting performance
is based on having a measure which is independent of the incidence of
the forecasting event. The AUROC-value is independent of the incidences
which makes it a good measure of classification abilities when forecasting
recessions (Berge, 2015).

The interpretation of the AUROC-value of a classifier is equivalent to
the probability that the classifier will rank a randomly chosen positive case
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Figure 4.3: ROC-curve

higher than a randomly negative case (Fawcett, 2006). If I mix the order
of recessions and non-recessions and the classifier should rank them, then
the probability that a recession is ranked higher than a non-recession is
determined by the AUROC-value. When the AUROC-value is 50%, the
probability of ranking a recession higher than a non-recession is 50%,
which is random guessing.

5 Results
This section presents the results for both the in-sample and out-of-sample
analysis for boosting and BMA. I will first present the results for boosting
and BMA, respectively. I will then compare the results from the two
methods. When presenting the results, I will also show and discuss what
are the most important predictors for the two methods.

5.1 In-sample Results

5.1.1 Boosting

As I stated in section 3.1, is there no straightforward interpretation of
relative importance in boosting. The most important empirical property
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is that the sum of the relative importance for all of the different variables
is 100. This means that a higher value of relative importance indicates a
more important variable for the final predictions (Ng, 2014).

Table 5.1 shows the predictors with the highest relative importance
for the various boosting specifications. Table (a), (b) and (c) shows the
Bernoulli deviance as a loss function, while table (d), (e) and (f) shows
the results when using the AdaBoost exponential loss. The predictors
are sorted according to the top ten variables with the highest relative
influence. s + h indicates at which lag the variable is chosen from. The
forecast horizon is six months ahead, which means that h is always 6.
Behind the top ten most influential variables, it can potentially be a
combination of one variable at four different lags. The reason why the top
ten variables with higher relative importance is chosen is to have a closer
look at the reasonably more important variables. The rest of the variables
are also included in the predictions, but the relative importance of many
of the variables are very small and will therefore have a small effect on the
final predictions.

Table 5.1: Most important in-sample predictors, boosting

Method Variable (Code) h+s RI
(a) Train = 30%, 3mo-FF spread (TB3SMFFM) 6 9.31

Bernoulli Baa-FF spread (BAAFFM) 6 6.92
Aaa-FF spread (AAAFFM) 6 6.10
Real M2 stock (M2REAL) 9 5.20

Aaa-FF spread (AAAFFM) 7 4.04
3mo-FF spread (TB3SMFFM) 7 3.72

Real M2 stock (M2REAL) 8 3.59
Baa-FF spread (BAAFFM) 8 3.59

CP-FF spread (COMPAPFFx) 9 3.31
CP-FF spread (COMPAPFFx) 8 3.09

(b) Train = 50%, 6mo-FF spread (TB6SMFFM) 6 11.48
Bernoulli Aaa-FF spread (AAAFFM) 7 10.62

1yr-FF spread (T1YFFM) 6 9.37
1yr-FF spread (T1YFFM) 7 7.20

Aaa-FF spread (AAAFFM) 6 5.37
6mo-FF spread (TB6SMFFM) 7 3.70
3mo-FF spread (TB3SMFFM) 6 2.90

Aaa-FF spread (AAAFFM) 9 2.49
Baa-FF spread (BAAFFM) 6 2.44

Hous. Permit MW (PERMITMW) 9 2.29
(c) Train = 60%, Aaa-FF spread (AAAFFM) 6 8.95

Bernoulli Aaa-FF spread (AAAFFM) 7 8.81
Aaa-FF spread (AAAFFM) 7 5.37
Aaa-FF spread (AAAFFM) 8 5.04
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VXO-index (VXOCLSx) 9 4.25
VXO-index (VXOCLSx) 8 3.27
VXO-index (VXOCLSx) 6 3.23

3mo-FF spread (TB3SMFFM) 6 2.80
VXO-index (VXOCLSx) 7 2.77

10yr-FF spread (T10YFFM) 6 2.19
(d) Train = 30%, 3mo-FF spread (TB3SMFFM) 6 11.97

AdaBoost Baa-FF spread (BAAFFM) 6 9.43
Real M2 stock (M2REAL) 9 7.38
Real M2 stock (M2REAL) 7 6.34

Hous. Permit W (PERMITW) 9 5.47
3mo-FF spread (TB3SMFFM) 7 4.82

Aaa-FF spread (AAAFFM) 6 4.39
Aaa-FF spread (AAAFFM) 7 4.28
Real M2 stock (M2REAL) 8 4.01

CP-FF spread (COMPAPFFx) 8 2.91
(e) Train = 50%, 1yr-FF spread (T1YFFM) 6 13.01

AdaBoost 1yr-FF spread (T1YFFM) 7 9.35
6mo-FF spread (TB6SMFFM) 6 8.00

Aaa-FF spread (AAAFFM) 7 7.34
Aaa-FF spread (AAAFFM) 6 6.72
Aaa-FF spread (AAAFFM) 9 3.84

6mo-FF spread (TB6SMFFM) 7 3.77
Aaa-FF spread (AAAFFM) 8 3.23

3mo-FF spread (TB3SMFFM) 6 2.64
Hous. Permits (PERMIT) 9 2.48

(f) Train = 60% Aaa-FF spread (AAAFFM) 7 10.70
AdaBoost Aaa-FF spread (AAAFFM) 9 8.19

Aaa-FF spread (AAAFFM) 6 7.94
VXO-index (VXOCLSx) 6 5.67
VXO-index (VXOCLSx) 8 5.01

Aaa-FF spread (AAAFFM) 8 4.42
VXO-index (VXOCLSx) 9 3.25

3mo-FF spread (TB3SMFFM) 6 3.24
VXO-index (VXOCLSx) 7 3.22

10yr-FF spread (T10YFFM) 6 2.85

Note: RI stands for relative importance

Table 5.1 (a) shows the predictors with the highest relative importance
when the training period consists of 30% of the data and using the
Bernoulli deviance as the loss function. The most important variable in
(a) is the three month Treasury spread when s = 0, which has a relative
importance of 9.31. The rest of the important variables consists mainly of
Aaa, Baa and 3-month commercial paper interest rate spreads in addition
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to the real M2 money stock at different lags. In table 5.1 (b) 50% of the
data is used as training sample. 6-month Treasury bill spread is the most
important variable in table 5.1 (b). This has a relative importance of 11.48.
In addition to spreads, is new private housing permits in the Midwest
also included among top ten predictors in (b). In table 5.1 (c), where the
training sample is 60%, the four variables with highest relative influence
is the Aaa federal funds rate spread at different lags. The first two has a
relative influence of around 8-9, while when s = 2 and s = 3 it is a bit
higher than 5. Another important predictor is the VXO index. This is the
stock market volatility and may be a measure of the uncertainty for the
financial market. This predictor is also included at different lags.

Moreover, the results for the AdaBoost exponential loss function are
presented in table 5.1 (d), (e) and (f). In table 5.1 (d), where the training
fraction is 30%, has the 3-month Treasury bill minus the effective federal
funds rate when s = 0 a relative influence of almost 12. In table 5.1 (e),
where the training fraction is 50%, the interest rate spread for 6-month
Treasury bill and the interest rate spread for 1-year Treasury constant
maturity at two different lags have all a high relative influence of above
8. In table 5.1 (f), where the training fraction is 60%, are all of the different
lags for the Aaa spreads are included among the top ten predictors. The
Aaa spread with the highest relative influence is 10.70 and the Aaa federal
funds rate spread at different lags is the top three predictors with highest
relative importance. These predictors with highest relative importance
are similar to table 5.1 (c). The VXO index is also included in this figure
at many different lags. The conclusion of (f) is then that there are few
included predictors but each predictor is included at many different lags.

The Aaa spread is among the top 10 variables for all the six model
specifications. This indicates that the Aaa spread carries important
information for predicting recessions. The Aaa spread is also often
included in the same model at many different lags. Another variable that
is also always included among top ten predictors is the 3-month Treasury
minus the effective federal funds rate. These are the most important
variables for the predictions.

Treasury term spreads and credit/default spreads are in general
considered as useful predictors for forecasting recessions. I also find that
these variables are important for predicting recessions, as they have a high
relevance for all my models. A large amount of previous studies tend to
consider one spread variable at a time (Ng, 2014). The results in table 5.1
shows that many of the spreads have high relative importance together.
They are in addition often important at different lags. This means that the
spreads are not mutually exclusive and can have high predictive power
together.

Two predictors that are to a large extent included as the most influential
predictors are the Aaa and Baa yield minus the effective federal funds
rate. From the data in McCracken (2019) it can be seen that Aaa yield has
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previously been stable during recessions, especially in the recessions after
1990. The reason is that these bonds have the highest rating from credit
rating agencies and is considered to have low risk. These bonds also have
low yield. Just before a recession, the effective federal funds rate often
reaches a top, since the economy is in an expansion. This means that the
spread is at it most negative. When the bottom is reached, the spread starts
to grow again and that is when the recession often hits. It can be sign of
recession when the spread between these two has gone from decreasing to
suddenly increasing. The Baa bonds on the other hand are a bit riskier but
the curvature on the spread for Baa is similar to the one for Aaa. A bottom
is reached right before the recession hits. During the Great Recession, the
data from McCracken (2019) shows the spread was below 2% in November
2007, while it was above 8% in October 2008.

Another variable that to a large extent is included in the tables is the
permit to build new houses in different parts of the US. The reason can be
that when the economy is in a good state, there are more investments and
optimism so people buy more houses. It is then profitable to build new
houses. When the housing permits decrease, it can be a sign of declines
in jobs in the construction sector in addition to pessimism of the private
economy in the future. The permit to build new houses therefore often
slows down right before the recession hits. The housing market, more
specifically residential investment, has also previously been considered
an important indicator of measuring the state of the economy (Aastveit et
al., 2018).

In general, table 5.1 shows that the influential predictors in the various
boosting specifications are predictors that earlier have been considered
as useful for predicting recessions. These variables consists primarily
of different spreads, real M2 money stock, the VXO-index and housing
permits. There are not big differences between the predictors chosen in the
different models. The relative influence in Ng (2014) at forecast horizon
six months also consists of many of the same variables, especially the
different spreads. This also confirms that these predictors are important
for forecasting recessions.
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(a) Train=30%, Bernoulli distribution
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(b) Train=30%, AdaBoost exponential loss
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(c) Train=50%, Bernoulli distribution
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(d) Train=50%, AdaBoost exponential loss
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(e) Train=60%, Bernoulli distribution
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(f) Train=60%, AdaBoost exponential loss

Figure 5.1: In-sample predictions, boosting
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Figure 5.1 shows the predictions made in-sample for the various
boosting specifications. The grey shaded areas indicate recession periods
defined by NBER. The main conclusion from these plots is that all of the
models predict the recessions until the early 1990s very well. When a
higher fraction of the data is used for training, the predictions after 1990
also get better. This is natural because the data is trained on a higher
fraction of the data so the algorithm has learned more. The predictions
are more accurate for the boosting models with a training sample that
consists of 60% of the sample. This is also confirmed by the AUROC-
values discussed in section 5.1.3, where the models are compared to each
other.

For figure 5.1 (c), (d), (e) and (f), it is only one place where a ”false”
spike in the probability is evident, in the late 1990s. The spike, however, is
always below 20% and occurs just prior to the start of the recession in the
early 2000s.

The boosting and the data that I use are similar to Ng (2014). She
also finds that boosting is better at predicting the earlier recessions than
the last three recessions. One reason for this may be which variables
that are important for predicting recessions have changed over time. The
specification of the algorithm in my thesis is trained on the first 30%, 50%
or 60% of the data, which means the algorithm is unable to catch whether
the important predictors has changed over time. Ng (2014) solves this
by splitting the dataset in two parts and looks at the variables chosen
in the two subsamples. In her analysis, the interest rate spreads are the
most important predictors in the first subsample, while the real activity
variables becomes more important in the second subsample. There are
few variables that have a high relative importance in both of the samples.
Her conclusion is that the important predictors have changed over time.

5.1.2 Bayesian Model Averaging

The variables I present for Bayesian model averaging are sorted according
to the posterior inclusion probability (PIP). PIP is the weighted average of
the posterior probability for each of the models that includes a specific
predictor (Berge, 2015). If the PIP is high, it is considered important
in explaining the predictions. On the other hand, the probability may
be small if the predictors are highly correlated (Clyde, 2018). Another
difference between the results for BMA and boosting is that the variables
are only included one lag at a time. This means that there are four different
sets of results. One set of results for s = 0, one for s = 1, one for s = 2 and
one for s = 3.
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Table 5.2: Most important in-sample predictors, BMA

Method Variable (Code) PIP
(a) BMA, s=0 Baa-FF spread (BAAFFM) 0.77

Cap. util. manufac. (CUMFNS) 0.57
Hous. Permit MW (PERMITMW) 0.56

S&P price index (S&P 500) 0.56
VXO-index (VXOCLSx) 0.55

IP: Manufac. (IPMANSICS) 0.55
Emp: Service (SRVPRD) 0.44

Emp: Wholes. trade (USWTRADE) 0.39
S&P industry (SP indust) 0.32

FF (FEDFUNDS) 0.28
(b) BMA, s=1 Emp: Wholes. trade (USWTRADE) 0.95

Hous. Permit MW (PERMITMW) 0.91
Baa-FF spread (BAAFFM) 0.88
S&P price index (S&P 500) 0.81

S&P div yield (S&P div yield ) 0.57
S&P PE ratio (S&P PE ratio) 0.55
Hous. Permit S (PERMITS) 0.30

Hous. Permit (PERMIT) 0.24
IP:Manufac. (IPMANSICS) 0.22
S&P industry (S&P indust) 0.21

(c) BMA, s = 2 S&P price index (S&P 500) 0.84
Hous. Permit MW (PERMITMW) 0.65

10yr-FF spread (T10YFFM) 0.52
S&P PE ratio (S&P PE ratio) 0.46

Emp: Fin. act. (USFIRE) 0.45
Baa-FF spread (BAAFFM) 0.39

Emp: Wholes. trade (USWTRADE) 0.38
Nonrev. con. cred. (CONSPI) 0.36
Hous. Permit S (PERMITS) 0.33

S&P div yield (S&P div yield) 0.28
(d) BMA, s=3 Emp: Fin act. (USFIRE) 0.63

Nonrev. con. cred. (CONSPI) 0.58
Hous. Permit S (PERMITS) 0.55
10yr-FF spread (T10YFFM) 0.52

Switz./US exch. rate (EXSZUSx) 0.37
Aaa-FF spread (AAAFFM) 0.36

Hous. starts (HOUSTS) 0.35
S&P price index (S&P 500) 0.28

Hous. Permit MW (PERMITMW) 0.26
Emp: Wholes. trade (USWTRADE) 0.25

Note: PIP stands for posterior inclusion probability
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Table 5.2 presents the most important predictors chosen by BMA at
different lags. In (a), where s = 0, the predictor with the highest
posterior inclusion probability is the spread between Moody’s Seasoned
Baa Corporate Bond and the federal funds rate. The posterior inclusion
probability for this predictor is 77%. The second most important predictor
is the capacity utilization for manufacturing. The capacity utilization
is defined as the ratio of actual production to maximum sustainable
production and is an important measure of slack in the economy (Pierce
& Wisniewski, 2018). If the capacity utilization is below 100%, it means
the factories are producing less than they can. This can be an indication
that the demand in the economy is low. Other than that, it is a
combination of financial and macroeconomic variables that are considered
most important in this model.

The most important predictor in table 5.2 for (b), where s = 1, is the
employed in the wholesale trade. This is an important predictor for NBER
when they announce a recession. NBER (2008) state

A recession is a significant decline in economic activity spread
across the economy, lasting more than a few months, normally
visible in real GDP, real income, employment, industrial
production, and wholesale-retail sales.

This predictor has negative growth during recessions and the turning
point for the growth is often close to the recession start.

A difference between the models when s = 1 and s = 0 is that the
posterior inclusion probabilities are often higher when s = 1 compared
to if s = 0. The wholesale trade has a posterior inclusion probability
of 95% when s = 1, which means that this variable is almost always
included in the different models. The four most important predictors
have a posterior inclusion probability of above 80% when s = 0. It is
much higher compared to model (a) where the predictor with the highest
posterior inclusion probability is only 77%.

S&P 500 index is the predictor with the highest posterior inclusion
probability in (c), where s = 2. This index is included among top ten
posterior inclusion probability in all of the other BMA model specifications
as well. S&P price-earnings ratio is the fourth most important predictor.
This is the ratio of the market price of the company’s stocks to its earnings
per share. It is then a measure of the optimism of the market when it comes
to the growth prospects for the firms. The growth prospects are often low
during recessions and that is why this may be an important predictor for
recessions.

In (d), where s = 3, the most important predictor is the number
of employed in financial activities. Since the employment goes down
and the financial markets have tough times during recessions, a decline
in the employment in this sector is expected. Nonrevolving consumer
credit to personal income is the predictor with the second highest PIP in
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(d). Nonrevolving loans are often flat during recessions. This is because
car loans and home mortgages takes time to pay off and can therefore
not adjust personal financial problems by reducing these loans (Federal
Reserve Bank of St.Louis, 2010). The personal income is high during
expansions and lower during recessions. The ratio of these becomes high.

Moreover, figure 5.2 shows plots of the in-sample probabilities of
recession along with the NBER recession dates marked by the grey shaded
areas. The plot consist of four subplots, one for each value of s, where (a) is
when s = 0, (b) is when s = 1, (c) is when s = 2 and (d) is when s = 3. The
predictions are more accurate before the early 1990s, than after. However,
the BMA models seem to more frequently predict ”false” recessions than
the boosting models.

In figure 5.2 (a), when s = 0, the model seems to predict the recessions
quite well. However, the model seems to provide somewhat noisy signals
during the 1960s, indicating wrongly a high probability of a recession
occurring for several periods. In the period before the recession in the
beginning of the 1990s, the probability of a recession increases before the
actual recession. The same happens with the Great Recession. This shows
that the model has predictive power.

The predictions in figure 5.2 (b) are also in most cases accurate. The
first recession in the 1960s is predicted too late. Other than that, when
the probability of a recession is above 50%, it is a clear warning sign of
a recession. Before the Great Recession, the probability is nicely building
its way up. This happens to most of the recessions in this figure, which
means that the model has predictive power.

Figure 5.2 (c) shows that this model predicts recessions reasonably
well. The spike before the early 2000 recession is quite high, around the
same height as during the recession in the 1990s. This is then a wrongly
predicted recession. As in figure (a) and (b), this model also predicts
the Great Recession very well. The probability increase more and more
before the recession hits. The disadvantage with the model is that it
also wrongly specifies recessions and the probabilities for the wrongly
specified recessions are too high.

The last subplot (d) in figure 5.2 has many spikes in the probabilities
that are not recessions. The spikes are around 30%. This model also
predicts the Great Recession accurately, but there are too many warning
signs between recessions, which makes the model not good enough.

Summing up figure 5.2, the best predictive power seems to lie in (b).
The spikes that is not in a recession, are either small or works as a warning
sign of a recession that is on its way. For (c) and (d), the warning signs are
too severe and can probably not be used for prediction.
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(a) s = 0
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(b) s = 1
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(c) s = 2
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(d) s = 3

Figure 5.2: In-sample predictions, BMA
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5.1.3 Comparison of the In-sample Results

Table 5.3: AUROC-values for in-sample analysis

Model AUROC-value
Boosting, train = 30 % , Bernoulli 0.916
Boosting, train = 50 % , Bernoulli 0.932
Boosting, train = 60 % , Bernoulli 0.972
Boosting, train = 30 % , AdaBoost 0.895
Boosting, train = 50 % , AdaBoost 0.911
Boosting, train = 60 % , AdaBoost 0.965

BMA, s = 0 0.933
BMA, s = 1 0.953
BMA, s = 2 0.944
BMA, s = 3 0.924

Table 5.3 shows the AUROC-values for the in-sample predictions for
all boosting and BMA specifications. In general, both boosting and BMA
have high AUROC-values, where almost all of the specifications obtain
AUROC-values above 0.9. The model with the highest AUROC-value
is the Bernoulli deviance with a training fraction of 60%. The AUROC-
value in this case is 0.972. The exponential AdaBoost loss function with
a training fraction of 60% has the second highest AUROC-value of all the
different models. BMA when s = 1 follows close behind. These models
with the top three values have a very high AUROC-value, since all of them
have an AUROC-value of above 0.95.

I create a univariate probit model as a benchmark in order to compare
these values9. The probit model is constructed as the spread between the
3-month Treasury and 10-year Treasury10. The in-sample analysis is on the
same sample as the boosting and BMA analysis. I then get an AUROC-
value of 0.786, which is smaller than all of the values I have gotten from
BMA and boosting. The boosting and BMA results in this analysis are then
higher than the benchmark model when forecasting six months ahead.

In order to interpret how high these AUROC-values are compared
to traditional methods, some AUROC-values from Liu & Moench (2016)
are presented in table 5.4. The method used in Liu & Moench (2016)
is probit regressions. The AUROC-values presented in table 5.4 are in-
sample results for spread and spread-lagged-spread models in addition
to the three best performing models with an additional variable for the
spread-lagged-spread model. The best-performing model in table 5.4
has an AUROC-value of 0.965. This model has S&P, 1y% change as an
additional hand-picked variable for predictions.

9The probit model is explained in Estrella & Hardouvelis (1991).
10This data is calculated using the dataset from McCracken (2019).
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Table 5.4: AUROC-values for in-sample analysis in paper

Paper Variables AUROC-value
Liu & Moench (2016, p.1144) Spread(t) 0.769

Spread(t) + Spread(t-6) 0.878
Building permits 0.922
S&P, 1y% change 0.965
5-year - FF spread 0.933

Note: This is the mean of the AUROC-values in the paper. The spread is the Treasury
term spread. The time horizon is January 1959 to December 2011

Because of the time frame, I can not give clear conclusions of
whether boosting and BMA performs better than these traditional models.
However, the results from this thesis, shows that the models in table 5.3 in
some cases have higher AUROC-values than the models in table 5.4. My
results then lie in the same region as the the models in Liu & Moench
(2016). Both boosting and BMA have then given promising results in-
sample. It is still important to note that this are only AUROC-values
from one paper with different specifications of the probit models and not
traditional models in general.

5.2 Out-of-sample Results

This section presents the results from the out-of-sample exercise. As
for the in-sample exercise, I will present the results for both boosting
and BMA, in addition to a discussion of what are the most important
predictors. I present two different specifications of the boosting analysis
and two different specifications of the BMA analysis. The predictors I
present are the average of the predictors selected when I perform the
rolling estimation analysis. As in the in-sample case, I will focus on the
top ten predictors, those with the highest relative importance for boosting,
and those with the highest posterior inclusion probability. The in-sample
results are relatively good, but it does not necessarily reflect the out-of-
sample predictive ability of the various models. If predictions is the key
objective, which is the case in this thesis, it is the out-of-sample results that
really matters.

Table 5.5: Most important out-of-sample predictors

Model Variable (Code) h + s RI/PIP
(a) Boosting, 10yr-FF spread (T1YFFM) 6 4.94

Bernoulli Aaa-FF spread (AAAFFM) 9 4.36
1yr-FF spread (T1YFFM) 9 4.25

3mo-FF spread (TB3SMFFM) 6 4.19

38



6mo-FF spread (TB6SMFFM) 6 4.02
Aaa-FF spread (AAAFFM) 6 3.91
Aaa-FF spread (AAAFFM) 8 3.37
Aaa-FF spread (AAAFFM) 7 3.16
10yr-FF spread (T10YFFM) 9 2.54
1yr-FF spread (T1YFFM) 7 2.53

(b) Boosting, Aaa-FF spread (AAAFFM) 9 5.84
AdaBoost 1yr-FF spread (T1YFFM) 6 5.75

1yr-FF spread (T1YFFM) 9 5.30
3mo-FF spread (TB3SMFFM) 6 4.80
6mo-FF spread (TB6SMFFM) 6 4.67

Aaa-FF spread (AAAFFM) 8 3.66
Aaa-FF spread (AAAFFM) 6 3.41
Aaa-FF spread (AAAFFM) 7 3.37
10yr-FF spread (T10YFFM) 9 2.94

3mo-FF spread (TB3SMFFM) 7 2.65
(c) BMA, s = 0 Baa-FF spread (BAAFFM) 6 0.39

CP-FF spread (COMPAPFFx) 6 0.32
10yr-FF spread (T10YFFM) 6 0.30
Aaa-FF spread (AAAFFM) 6 0.29
5yr-FF spread (T5YFFM) 6 0.28

3mo-FF spread (TB3SMFFM) 6 0.28
6mo-FF spread (TB6SMFFM) 6 0.27

1yr-FF spread (T1YFFM) 6 0.23
S&P PE ratio (S&P PE ratio) 6 0.22

Switz./US exch. rate (EXSZUSx) 6 0.21
(d) BMA, s = 1 Baa-FF spread (BAAFFM) 7 0.36

10yr-FF spread (T10YFFM) 7 0.32
5yr-FF spread (T5YFFM) 7 0.30

3mo-FF spread (TB3SMFFM) 7 0.30
Aaa-FF spread (AAAFFM) 7 0.28

VXO-index (VXOCLSx) 7 0.27
6mo-FF spread (TB6SMFFM) 7 0.27

1yr-FF spread (T1YFFM) 7 0.25
Switz./US exch. rate (EXSZUSx) 7 0.25
Hous. Permit MW (PERMITMW) 7 0.21

Note: RI stands for relative importance and PIP stands for posterior inclusion probability.
RI is reported in (a) and (b), while PIP is reported in (c) and (d)

Table 5.5 presents the ten most relevant predictors for two boosting
specifications and two BMA specifications, respectively. In table 5.5 (a)
and (b), I report the relative importance for boosting, where the loss
function in (a) is the Bernoulli deviance, while in (b) it is the AdaBoost
exponential loss. The predictor in table 5.5 (a) with the highest relative
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importance is the spread between 1-year Treasury constant maturity and
the federal funds rate. This predictor is also one of the most important
predictors in the in-sample cases as well. In table 5.5 (a), the spreads
are prominent. Especially the Aaa federal funds rate spread, which is
included at all lags. In fact, there are only spreads among the top ten
variables with the highest relative importance. The levels of the relative
importance for the predictors are a bit lower than for the in-sample cases.
Table 5.5 (b) also has the Aaa spread as the predictor with the highest
relative importance. The important predictors are almost as in (a), but
the ordering has changed. The relative importance values are also smaller
here than in the in-sample cases.

In table 5.5 (c) and (d) I report the posterior inclusion probabilities
BMA, where (c) is when s = 0 and (d) is when s = 1. The posterior
inclusion probability are for both model specifications considerably
smaller than those obtained in the in-sample analysis. This is probably
because what are the important predictors have changed during this time
period. This will affect the mean of the posterior inclusion probabilities.
The federal funds rate spreads dominates the list of the top ten predictors
in both (c) and (d) with highest posterior inclusion probability. The
predictor with the highest posterior inclusion probability in both (c) and
(d) is the spread between Moody’s Seasoned Baa Corporate Bond and the
federal funds rate, the same as in table 5.2. In the BMA model when
s = 1 is also housing permits in the Midwest included among the top
ten predictors. One surprising variable in (c) and (d) is the exchange rate
with Switzerland.

To sum up, various interest spreads are the most important predictions
in the out-of-sample analysis.
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(a) Boosting, Bernoulli
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(b) Boosting, AdaBoost
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(c) BMA, s = 0
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(d) BMA, s = 1

Figure 5.3: Out-of-sample predictions
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Figure 5.3 (a) and (b) show the plots for the out-of-sample predictions
for boosting, while (c) and (d) show plots of the out-of-sample predictions
for the various BMA specifications. The NBER recession dates are marked
by the grey shaded areas. Figure (a) shows the plot for the predictions
using the Bernoulli deviance in the boosting approach. The results show
that the first two recessions are predicted reasonably well. Between the last
recession in the 1980s and the recession in the early 1990s, there are small
spikes in the probability of a recession, but they barely exceed 20%. It is a
spike right before the recession in the early 1990s, but the probability of a
recession decreases again after this spike. In the middle of the recession,
the probability of a recession increases again. If the spike before the
recession had been a bit higher, it could have been a warning signal of
a recession. Since it is not, it means that the recession in the early 1990s is
predicted a bit late. The model predicts the recession in the early 2000s, but
this is also predicted a bit late. On the other hand, the Great Recession is
very well predicted with this model. The probability of a recession starts to
increase some months prior to the recession. By the time the US economy
enters into the recession in December 2007 has the model already provided
a strong signal of a recession. In general, and perhaps as expected, the
results from the in-sample analysis are somewhat stronger than those for
the out-of-sample analysis. However, the model still provides in most
cases clear spikes in the recession probabilities around recession dates.

The out-of-sample predictions for the AdaBoost exponential loss
functions is plotted in 5.3 (b). The accuracy of the predictions is more
mixed for this model specification. While the model captures the two
recessions in the 1980s and the early 2000 recession quite well, it struggles
to provide a timely signal for the early 1990 recession. In contrast to all
other models that I consider, it does not capture the Great Recession. There
are some small spikes in the periods between recessions, but they are in
general small. Compared to boosting with the Bernoulli deviance, the
boosting with the AdaBoost seems worse at predicting recessions.

Figure 5.3 (c) shows results for BMA when s = 0. This model seems to
predict recessions well. However, compared to the two boosting models,
the BMA model also seem to provide more noisy signals, with some false
spikes. It wrongly predicts a recession in the beginning of the sample and
there are some spikes between the latest recession in the 1990s and the
recession in the early 2000s. There is also a peak of the predictions with
a probability of recession of 60% between the recession in the 1990s and
the early 2000s. On the other hand, the Great Recession is predicted early
and the predictions are nicely building its way up. Figure 5.3 (d) shows
results for BMA, s = 1. In general this model provided noisy signals with
several wrongly predicted recessions. There are spikes both before and
after some of the recessions have occurred. The Great Recession is also
predicted accurately in this model specification.
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5.2.1 Comparison of the Out-of-sample Results

Table 5.6: AUROC-values for out-of-sample analysis

Model AUROC-value
Boosting; Bernoulli 0.855
Boosting; AdaBoost 0.780

BMA; s = 0 0.892
BMA; s = 1 0.869

The AUROC-values for the out-of-sample predictions are shown in
table 5.611. BMA with s = 0 has the highest AUROC-value. Among
the boosting models, boosting with the Bernoulli deviance has the
highest AUROC-value. Both of the BMA specifications have a higher
AUROC-value than for boosting. The AUROC-values for boosting with
the Bernoulli deviance and the BMA analysis are all above 0.85. The
differences between the AUROC-values for these models are in general
small. The conclusion is that except for boosting with the AdaBoost loss
function, the AUROC-values are almost the same.

To get a sense of whether these AUROC-values are high or not, I also
conduct out-of-sample predictions using a probit model12 for the spread
between the 3-month Treasury and 10-year Treasury as predictor. The out-
of-sample analysis is then done using rolling estimations in the same way
as for all the other models. For this benchmark probit model I achieve an
AUROC-value of 0.700, which is considerably smaller than the AUROC-
values from the boosting and BMA models.

Liu & Moench (2016) report AUROC-values for probit models with the
spread and the difference between the spread and lagged spread using a
probit model. They first estimate these models based on a sample from
January 1959 to August 1985. Based on the estimated parameters, they
then construct recursive out-of-sample forecasts for the period September
1985 to December 2011. They obtain an AUROC-value of 0.842 for the
spread and 0.910 for the spread-lagged-spread difference.

Aastveit et al. (2018, Appendix D) show values for predicting US reces-
sions using panel probit models with residential investment, term spread,
stock prices, consumer confidence survey and oil price, respectively, as re-
gressors. Their out-of-sample forecast period is from 1990Q1 to 2014Q4.
Their out-of-sample analysis is based on an expanding window estima-
tion. They estimate a probit model using data from 1960Q1 to 1989Q4.
The parameters that are estimated are then used to predict recessions over
the next 6 quarters. Next, they reestimate the models, using data until
1990Q1 and predict recessions again. In their out-of-sample analysis, the

11The AUROC-values for BMA when s = 2 is 0.852 and 0.861 when s = 3.
12Same construction of the probit model as in the in-sample analysis.
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probit model with residential investment has the highest AUROC-value
of 0.901. For specifications that use other predictors, the AUROC-values
are mostly between 0.8 and 0.9 in their analysis.

Although my main results are not directly comparable with Aastveit et
al. (2018) and Liu & Moench (2016) as the time periods differ, the AUROC-
values that I obtain in my analysis are in the same region as what these
papers report.

6 Discussion
Machine learning techniques have over the past couple of decades become
popular in statistics and computer science. Recently, these techniques
have also gained popularity in other fields, for example in medicine,
ecology, meteorology and economics. There are reasons to believe
that these techniques will continue to grow in popularity as the data
availability increases. In this thesis, I have applied one particular machine
learning technique, boosting, in order to predict recessions in the US. I
have also compared boosting to a more traditional model, Bayesian model
averaging. In this thesis has BMA also been implemented in a data-rich
environment.

Chen et al. (2011) points at two problems in the existing literature for
predicting recessions; not enough explanatory variables and too restrictive
specifications. Boosting is a method that can select from a large number
of explanatory variables. The variables are picked and weighted before
they are combined to a final model. The variables that are never picked,
do not contribute in the final model used for predictions. In addition,
boosting is also able to select different variables at different lags without
causing overfitting. In the gbm-package in R that I use for the boosting
analysis, there is a function called the validation error and the training
error. The validation error shows the value of the loss function for each of
the boosting iterations evaluated at the validation data (Greenwell et al.,
2019). The training error shows the same, but on the training data. The
number of iterations is decided by the minimized validation error. This is
the solution for boosting in a data-rich environment to avoid overfitting in
this thesis. Boosting then picks the most important variables and combine
them to model used for predictions. This means that boosting addresses
two of the limitations with the existing literature on predicting recessions.

Machine learning techniques have often been criticized for being
”black box” methods where the final results are the only thing that
matters. As a result it is often not very transparent how these results
have been obtained and how to interpret the mechanisms lying behind the
results. This is not the case for boosting, as the predictors that contribute
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the most to the predictions can be analyzed in a very transparent way. As
a result, it is easy to study what are the variables that contributes the most
to improving the forecast accuracy.

BMA, which is a frequently used method in economics, also has some
advantages in this analysis. The results are obtained a lot faster compared
to boosting. The main reason is that the parameters do not need to be
tuned as they do for boosting. Another advantage is that this method
requires less data. While boosting requires additional data observations
for training and validation, BMA can be implemented straightaway.

However, the main reason for using BMA is to take into account
model uncertainty. Selecting one particular model can for example lead
to riskier decisions because the model uncertainty is being ignored. This
can be especially relevant in economic applications where there is a large
number of potential explanatory variables. For predicting recessions, a
large amount of predictors have been proposed by earlier literature. It is
then an advantage that BMA takes this model uncertainty into account.

Moreover, I would like to highlight that the most important predictors
for both methods in the data-rich environment are previously known pre-
dictors considered useful for predicting recessions. This is reassuring and
a reason to further investigate these methods in a data-rich environment.

There are also some limitations with the methods that I use in this
thesis that are important to be aware of. A limitation of boosting is that it
requires a large amount of data. Boosting requires training and validation
to find the preferred model and there are clear limitations when boosting
can be used. Since recessions are rare events, there is a limitation to what
countries one can apply the method of boosting for predicting recessions.
One of the reasons for using US data, is that data exists for a long time
period. For most other countries, the data sample covers a substantially
smaller time period, making it infeasible to use boosting.

Ng (2014) also discussed how well boosting predicts recessions. She
states that the fitted probabilities are not sufficiently persistent because
the model dynamics is only driven by the predictors. The predictors are
frequently selected at isolated lags, but the lags are not consecutive. She
argues further that by improving the model dynamics will lead to better
predictions and it will probably not change which variables are considered
most important. She also argues that incorporating dynamics further is a
topic for future research.

It has been claimed that BMA is robust to overfitting problems. Buntine
(1992) argued that BMA removes the overfitting problem by ”canceling
out” the effects of the overfitted models. Domingos (2000) on the other
hand, claims that BMA is very sensitive to overfitting. The conclusion of
whether BMA is robust to overfitting or not is therefore unclear.

When it comes to future usage of boosting, Döpke et al. (2017) stated
that
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From the point of view of applied business-cycle forecasting,
machine-learning techniques are not a substitute for experience
in business-cycle forecasting in general, and in interpreting
changes in estimated recession probabilities in particular.
(p. 755)

On the other hand, they also state that their boosting approach can be
a useful technique for analyzing economic policy. Their main view of
future usage of boosting in practical business cycle environment is that
it is limited to a complement of the probit model approach.

However, in the future, detailed data of human behavior, details of
people and different societies and so on may be available. As the data
availability grows, it becomes more and more important to incorporate
the big amount of information. As an example of this in the context of
recessions is that before a recession, it is likely that people in general
change their behavior, for instance by changing their spending behavior.
Can this in someway predict a recession? Can it be the case when the
human prospect change, the probability of a recession increases? Or is
the human behavior a result of media or other external factors? As the
amount of information grows, it is important to be able to handle this new
information. Boosting, and possibly BMA, are methods that can handle
this big amount of information and may therefore be important for future
prediction methods. Machine learning technique are therefore likely to
also be highly relevant in economics, a hot topic for future research.

7 Conclusion
In this thesis, I apply the methods of boosting and BMA for predicting US
recessions. In doing so, I consider 128 different predictors. I perform both
in-sample and out-of-sample predictions, where the forecasting horizon
is six months ahead. One advantage of using boosting and BMA is
that they can incorporate all of the information from this big dataset.
Many traditional econometric methods have a problem handling high
dimensional data. This may result in a model which does not include
enough explanatory variables.

I consider six different boosting specifications and four different
BMA specifications in the in-sample analysis and two different boosting
specifications and two different BMA specifications in the out-of-sample
analysis. For the in-sample analysis, I find that the AUROC-values for
most of the specifications exceeds 0.9. For the out-of-sample analysis, the
results are somewhat more mixed. The specifications for BMA and one
boosting specification provides fairly accurate forecasts with an AUROC-
value of above 0.85. However, the other boosting specification provides
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forecasts with a lower AUROC-value.
For both of the methods I also investigate what are the most important

predictors. The predictors found to be most important are well known
economic and financial indicators, which have commonly been used for
predicting recessions in previous studies. I find that the most important
predictors are the Treasury term federal funds rate spreads at different
time horizons and housing permits for various regions in the US. I also
find that the most important predictors are mostly the same for both in-
sample and out-of-sample analysis. In my analysis, I also find that several
different interest rate spreads seem to be important predictors both in-
sample and out-of-sample. An interesting finding is that the spreads are
often included together, which means that they are not mutually exclusive,
but have high predictive power together. This differ from most of the
previous studies, which typically only include one spread as a predictor.

The goal of this thesis has been to apply machine learning techniques
for predicting recessions. I find that these methods provide promising
results for forecasting US recessions. These methods should therefore
be further explored for predicting recessions, as well as other economic
variables. I leave this as a topic for future research.
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Appendices

A Transformations and
Definitions of the Variables
The column with transformation denotes the following data transforma-
tion for a series x:
(1) no transformation
(2) ∆xt = xt − xt−1
(3) ∆2xt = xt − 2 ∗ xt−1 + xt−2
(4) log(xt)
(5) ∆log(xt) = log(xt)− log(xt−1)
(6) ∆2log(xt) = log(xt)− 2 ∗ log(xt−1) + log(xt−2)
(7) ∆(xt/xt−1 − 1.0) = (xt/xt−1 − 1.0)− (xt−1/xt−2 − 1.0)

Variable Explanation Transformation
RPI Real personal

income
5

W875RX1 Real personal
income exclud-
ing transfer
receipts

5

DPCERA3M086SBEA Real personal
consumption
expenditures

5

CMRMTSPLx Real Manu-
facturing and
Trade Indus-
tries Sales

5
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RETAILx Retail and Food
Services Sales

5

INDPRO IP Index 5

IPFPNSS IP: Final Prod-
ucts and Non-
industrial Sup-
plies

5

IPFINAL IP: Final Prod-
ucts (Market
Group)

5

IPCONGD IP: Consumer
Goods

5

IPDCONGD IP: Durable
Consumer
Goods

5

IPNCONGD IP: Nondurable
Consumer
Goods

5

IPBUSEQ IP: Business
Equipment

5

IPMAT IP: Materials 5

IPDMAT IP: Durable Ma-
terials

5

IPNMAT IP: Nondurable
Materials

5

IPMANSICS IP: Manufactur-
ing (SIC)

5

IPB51222S IP: Residential
Utilities

5

IPFUELS IP: Fuels 5
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CUMFNS Capacity Uti-
lization: Manu-
facturing

2

HWI Help-Wanted
Index for
United States

2

HWIURATIO Ratio of Help
Wanted/Num-
ber of Unem-
ployed

2

CLF16OV Civilian Labor
Force

5

CE16OV Civilian Em-
ployment

5

UNRATE Civilian Unem-
ployment Rate

2

UEMPMEAN Average Du-
ration of Un-
employment
(Weeks)

2

UEMPLT5 Civilians Un-
employed -
Less Than 5
Weeks

5

UEMP5TO14 Civilians Un-
employed for
5-14 Weeks

5

UEMP15OV Civilians Un-
employed - 15
Weeks & Over

5

UEMP15T26 Civilians Un-
employed for
15-26 Weeks

5
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UEMP27OV Civilians Un-
employed for
27 Weeks and
Over

5

CLAIMSx Initial Claims 5

PAYEMS All Employees:
Total nonfarm

5

USGOOD All Employ-
ees: Goods-
Producing
Industries

5

CES1021000001 All Employ-
ees: Mining
and Logging:
Mining

5

USCONS All Employees:
Construction

5

MANEMP All Employees:
Manufacturing

5

DMANEMP All Employees:
Durable goods

5

NDMANEMP All Employees:
Nondurable
goods

5

SRVPRD All Employ-
ees: Service-
Providing
Industries

5

USTPU All Employees:
Trade, Trans-
portation &
Utilities

5
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USWTRADE All Employ-
ees: Wholesale
Trade

5

USTRADE All Employees:
Retail Trade

5

USFIRE All Employees:
Financial Activ-
ities

5

USGOVT All Employees:
Government

5

CES0600000007 Average
Weekly
Hours: Goods-
Producing

1

AWOTMAN Average
Weekly Over-
time Hours:
Manufacturing

2

AWHMAN Average
Weekly Hours:
Manufacturing

1

Average HOUST Housing Starts:
Total New Pri-
vately Owned

4

HOUSTNE Housing Starts,
Northeast

4

HOUSTMW Housing Starts,
Midwest

4

HOUSTS Housing Starts,
South

4

HOUSTW Housing Starts,
West

4

57



PERMIT New Private
Housing Per-
mits (SAAR)

4

PERMITNE New Private
Housing Per-
mits, Northeast
(SAAR)

4

PERMITMW New Private
Housing Per-
mits, Midwest
(SAAR)

4

PERMITS New Private
Housing Per-
mits, South
(SAAR)

4

PERMITW New Private
Housing Per-
mits, West
(SAAR)

4

ACOGNO New Orders
for Consumer
Goods

5

AMDMNOx New Orders for
Durable Goods

5

ANDENOx New Orders
for Nondefense
Capital Goods

5

AMDMUOx Unfilled Orders
for Durable
Goods

5

BUSINVx Total Business
Inventories

5

ISRATIOx Total Business:
Inventories to
Sales Ratio

2
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M1SL M1 Money
Stock

6

M2SL M2 Money
Stock

6

M2REAL Real M2 Money
Stock

5

AMBSL St. Louis
Adjusted Mon-
etary Base

6

TOTRESNS Total Reserves
of Depository
Institutions

6

NONBORRES Reserves Of De-
pository Institu-
tions

7

BUSLOANS Commercial
and Industrial
Loans

6

REALLN Real Estate
Loans at All
Commercial
Banks

6

NONREVSL Total Nonre-
volving Credit

6

CONSPI Nonrevolving
consumer credit
to Personal
Income

2

S&P 500 S&P’s Common
Stock Price In-
dex: Composite

5
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S&P: indust S&P’s Common
Stock Price In-
dex: Industrials

5

S&P div yield S&P’s Compos-
ite Common
Stock: Divi-
dend Yield

2

S&P PE ratio S&P’s Compos-
ite Common
Stock: Price-
Earnings Ratio

5

FEDFUNDS Effective fed-
eral funds
rate

2

CP3Mx 3-Month AA
Financial Com-
mercial Paper
Rate

2

TB3MS 3-Month Trea-
sury Bill

2

TB6MS 6-Month Trea-
sury Bill

2

GS1 1-Year Treasury
Rate

2

GS5 5-Year Treasury
Rate

2

GS10 10-Year Trea-
sury Rate

2

AAA Moodys Sea-
soned Aaa
Corporate Bond
Yield

2
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BAA Moodys Sea-
soned Baa
Corporate Bond
Yield

2

COMPAPFFx 3-Month Com-
mercial Paper
Minus FED-
FUNDS

1

TB3SMFFM 3-Month Trea-
sury C Minus
FEDFUNDS

1

TB6SMFFM 6-Month Trea-
sury C Minus
FEDFUNDS

1

T1YFFM 1-Year Treasury
C Minus FED-
FUNDS

1

T5YFFM 5-Year Treasury
C Minus FED-
FUNDS

1

T10YFFM 10-Year Trea-
sury C Minus
FEDFUNDS

1

AAAFFM Moodys Aaa
Corporate
Bond Minus
FEDFUNDS

1

BAAFFM Moodys Baa
Corporate
Bond Minus
FEDFUNDS

1

TWEXMMTH Trade Weighted
U.S. Dollar In-
dex: Major Cur-
rencies

5
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EXSZUSx Switzerland /
U.S. Foreign
Exchange Rate

5

EXJPUSx Japan / U.S.
Foreign Ex-
change Rate

5

EXUSUKx U.S. / U.K. For-
eign Exchange
Rate

5

EXCAUSx Canada /
U.S. Foreign
Exchange Rate

5

WPSFD49207 Producer Price
Index by
Commodity
for Finished
Goods (Index
1982=100)

6

WPSFD49502 Producer Price
Index by
Commodity
for Finished
Consumer
Goods (Index
1982=100)

6

WPSID61 Producer Price
Index by Com-
modity Inter-
mediate Mate-
rials: Supplies
& Compo-
nents (Index
1982=100)

6
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WPSID62 Producer Price
Index: Crude
Materials for
Further Pro-
cessing (Index
1982=100)

6

OILPRICEx Crude Oil,
spliced WTI
and Cushing

6

PPICMM PPI: Metals and
metal products

6

CPIAUCSL CPI: All Items 6

CPIAPPSL CPI: Apparel 6

CPITRNSL CPI: Trans-
portation

6

CPIMEDSL CPI: Medical
Care

6

CUSR0000SAC CPI: Commodi-
ties

6

CUSR0000SAD CPI: Durables 6

CUSR0000SAS CPI: Services 6

CPIULFSL CPI: All Items
Less Food

6

CUSR0000SA0L2 CPI: All items
less shelter

6

CUSR0000SA0L5 CPI: All items
less medical
care

6

PCEPI Personal Cons.
Expend.: Chain
Index

6
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DDURRG3M086SBEA Personal Cons.
Exp: Durable
goods

6

DNDGRG3M086SBEA Personal Cons.
Exp: Non-
durable goods

6

DSERRG3M086SBEA Personal Cons.
Exp: Services

6

CES0600000008 Average
Hourly Earn-
ings: Goods-
Producing

6

CES2000000008 Average Hourly
Earnings: Con-
struction

6

CES3000000008 Average Hourly
Earnings: Man-
ufacturing

6

UMCSENTx Consumer Sen-
timent Index

2

MZMSL MZM Money
Stock

6

DTCOLNVHFNM Consumer
Motor Ve-
hicle Loans
Outstanding

6

DTCTHFNM Total Con-
sumer Loans
and Leases
Outstanding

6

INVEST Securities in
Bank Credit at
All Commercial
Banks

6
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VXOCLSx CBOE S&P 100
Volatility Index:
VXO

1

(McCracken, n.d.)
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B Code Examples
I provide some examples of the code used in the analysis. It is important
to note that there are some randomness in the models. Running the model
twice will then not necessarily result in exactly the same results, but they
will similar overall results. This is boosting with the gbm-package, where
the code is inspired by University of Cinncinati (2018):

# IN-SAMPLE ANALYSIS

# new_data_frame_d4 consists of data with for h+s

# Estimation for the boosting analysis

gbm_final_train_30_bern <- gbm(Y ~., data =

new_data_frame_d4[1:719 ,2:513] ,

distribution = "bernoulli",

n.trees = 1759, interaction.depth = 5,

shrinkage = 0.001 , n.minobsinnode = 5,

bag.fraction = 0.5, train.fraction = 0.3,

n.cores = NULL , verbose = FALSE)

gbmTrainPredictions_train_30_bern =

predict(object = gbm_final_train_30_bern ,

newdata = new_data_frame_d4[1:719 , 2:513] ,

n.trees =1759, type="response")

# OUT-OF-SAMPLE ANALYSIS

# Tuning the parameters out -of-sample

# Defining the different choices of the

# tuning parameters

grid_search = expand.grid(

shrinkage = c(.001 , .005, .01),

interaction.depth = c(3,4,5),

n.minobsinnode = c(5, 10),

optimal_trees = 0,

min_RMSE = 0)

# Running the grid search

# new_data_frame consists of data

# lagged according to s

grid_search_new=NULL

for(j in 0:492){

for(i in 1:nrow(grid_search )) {
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# reproducibility

set.seed (1222)

Y_new = Y[19:226+j]

# train model

gbm.tune <- gbm(

formula = Y_new ~ .,

distribution = "bernoulli",

# Data frame consists of alle the

# variables with lags

data = new_data_frame [13:220+j,2:513] ,

n.trees = 3000,

interaction.depth =

grid_search$interaction.depth[i],

shrinkage = grid_search$shrinkage[i],

n.minobsinnode =

grid_search$n.minobsinnode[i],

# Adds some randomness to the model:

bag.fraction = 0.5,

# Using a training fraction of 60 %:

train.fraction = 0.6

)

# Optimal number of trees - minimizes

# the validation error

grid_search$optimal_trees[i] =

which.min(gbm.tune$valid.error)

grid_search$min_RMSE[i] =

sqrt(min(gbm.tune$valid.error ))

}

grid_combinations = grid_search %>%

dplyr:: arrange(min_RMSE) %>%

# only using the optimal one

head (1)

frame_grid = data.frame(new_data_frame [227+j,1],

grid_combinations)

grid_search_new = rbind(grid_new ,

frame_grid)

}

# Making the actual out -of-sample analysis

# n_trees_bern , n_minobsinnode_bern ,

# interaction_depth_bern , shrink_bern

# are vectors that comes from the

# grid search

full_data_proj = NULL
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data_frame_check =

variable.names(new_data_frame [2:513])

for_auc = NULL

for (i in 0:492){

Y_new = Y[19:226+i]

number_of_trees = n_trees_bern [1+i]

number_minobsinnode = n_minobsinnode_bern [1+i]

depth = interaction_depth_bern [1+i]

number_shrink = shrink_bern [1+i]

# This is the training data , train.fraction =100%

gbm_final_train <- gbm(Y_new ~.,

data = new_data_frame [13:220+i,2:513] ,

distribution = "bernoulli",

n.trees = number_of_trees ,

interaction.depth = depth ,

shrinkage = number_shrink ,

n.minobsinnode = number_minobsinnode ,

bag.fraction = 0.5,

train.fraction = 1,

n.cores = NULL , verbose = FALSE)

rel_inf = summary(gbm_final_train ,

order = FALSE , plotit = FALSE)

data_frame_check = data.frame(data_frame_check ,

rel_inf[,2])

# Predicting based on the analysis already

# done but forward in time(out-of-sample)

gbmTrainPredictions_train = predict(object =

gbm_final_train ,

newdata = new_data_frame [221+i, 2:513] ,

n.trees=number_of_trees , type="response")

full_data_proj = rbind(full_data_proj ,

data_frame(new_data_frame [227+i,1],

gbmTrainPredictions_train))

# To bind the final predictions together

for_auc = rbind(for_auc , gbmTrainPredictions_train)

}

BMA with the BAS-package:

# IN-SAMPLE ANALYSIS

# In-sample estimation and predictions for s=0

Y_new1 = Y[9:719]

# This dataframe consists of data

# lagged according to s+h,

# only using s=0

new_data_frame_lag6 =
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new_data_frame_d4[9:719 , 2:129]

bas_recession_glm_lag6 = bas.glm(Y_new1~.,

family = binomial(link = "logit"),

data = new_data_frame_lag6 ,

betaprior = bic.prior(), modelprior = uniform(),

initprobs = "uniform",

method = "MCMC", MCMC.iterations = 100000)

prediction_bas_lag6 = predict(bas_recession_glm_lag6 ,

newdata = new_data_frame_lag6 , type="response")

# OUT -OF-SAMPLE ANALYSIS

# Out -of-sample predictions for s=0

full_data_proj_6 = NULL

for_auc = NULL

bas_reg = variable.names(bas_recession_glm_lag6)

for (i in 0:492){

Y_new = Y[19:226+i]

bas_rolling_glm_lag6 = bas.glm(Y_new~.,

family = binomial(link = "logit"),

data = new_data_frame [13:220+i,2:129] ,

betaprior = bic.prior(),

modelprior = uniform(), initprobs = "Uniform",

method = "MCMC",

MCMC.iterations = 1000)

basPredictions_rolling_6 =

predict(object = bas_rolling_glm_lag6 ,

newdata = new_data_frame [221+i, 2:129] ,

type="response")

bas_reg = rbind(bas_reg ,

bas_rolling_glm_lag6$probne0)

full_data_proj_6 = rbind(full_data_proj_6,

data_frame(new_data_frame [227+i,1],

basPredictions_rolling_6$fit))

for_auc = rbind(for_auc ,

basPredictions_rolling_6$fit)

}
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