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Abstract

While semantic technologies and the use of ontologies is one of the proposed
solutions to the heterogeneity problem in database systems, the independent
generation of ontologies leaves us with another heterogeneity problem. We
need to match ontologies to allow active co-operation of different systems.
This matching can often not be done by human effort alone because of the
size and complexity of the ontologies. Thus automatic ontology matching
systems are indispensable.

We evaluate the usefulness of embeddings, more specifically ontology
embeddings both for analytical tasks and for ontology alignment tasks. We
further propose OWL2Vec as a framework to create such embeddings.

The embeddings are created by projecting the ontology to an RDF-
graph, conducting a series of walks on the graph and collect them in a
walks document. Natural language embeddings systems such as word2vec
are used to train the embeddings. To leverage ontology matching, we
propose to create joint embeddings in the same vector space for two (or
more ontologies). The user must then provide the system with anchors.

The results are promising for analytical tasks such as clustering and
partitioning of the ontology into related concepts. We demonstrate that
by using the embeddings and the provided anchors, it is possible to
find new mappings between two ontologies. We also demonstrate that
the structural similarities provided by the embeddings can give ontology
matching systems an additional similarity score that could help such systems
to decide if a potential mapping is valid.
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Chapter 1

Introduction

With the advances and constant improvements in the field of information
and communication technology, we see an exponential increase in the
amount of data available from an expanding variety of unequal sources,
both structured and unstructured, employing many different technologies.
In order to take advantage of the available information, we need to handle
massive amounts of data from dissimilar sources with all the challenges
that this poses. Semantic technology is one of the proposed solutions to this
problem, and it is the technology explored in this thesis.

Matching of knowledge bases involves two main steps and many
possible challenges. First, a matching must be performed at the schema
level. In the field of Semantic Technologies, this is known as ontology
matching. When the schema of one knowledge base differs from the schema
of another knowledge base, it can be impossible to extract and compare the
data between the datasets without some form of initial mapping. The field of
Ontology Alignment has been extensively researched over the last decades,
and vast improvements have been made. The last few years, however, have
seen a slight decline in the overall improvements in the field [88].

The second step is the matching at the instance level. This task, entity
matching, or link discovery in linked data, is to discover which instances in
two or more separate datasets refer to the same real-world objects. Entity
matching is also a mature field being widely studied due to its usefulness
for data warehouses, data mining and duplicate detection. The advent of
Linked Data, however, has led to a renewed interest in the field with a focus
on the discovery of links between datasets.

The Machine Learning-community is also on the quest for semantics, and
increasingly mature tools for capturing the semantics of natural languages
are available. The use of word semantic tools such as word2vec [50, 51] has
shown promising results on improving ontology matching tools [97].

Recently, numerous studies have investigated the embedding and
training of neural network models using an increasing variety of different
sources. These sources include RDF knowledge graphs [17, 80, 108].
However, to date, scant attention has been paid to the application of
such models on the embedding of OWL 2 ontologies. Relatively little is
understood about how the semantics of large ontologies can be embedded,
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used to train neural network models, and applied to the task of ontology
similarity in general and ontology matching in particular.

This thesis investigates the usefulness of recent neural network models to
the process of matching large ontologies. Its main contribution is OWL2Vec
a generic framework for the creation of semantic embedding for OWL 2
ontologies.

The thesis comprises of 7 chapters. This chapter (Chapter 1) gives a
brief introduction. Chapter 2 on the facing page provides a theoretical
introduction to relevant fields while Chapter 3 on page 27 gives a reasonably
comprehensive overview of relevant frameworks. Then, Chapter 4 on
page 51 introduces OWL2Vec, a framework for the creation of OWL 2
embeddings before Chapter 5 on page 69 presents experiments with
OWL2Vec. We discuss the findings in Chapter 6 on page 91. Conclusions
and suggestions for future work are found in Chapter 7 on page 101.
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Chapter 2

Background

This chapter intends to provide the reader with the necessary theoretical
background and set the thesis in context. It starts by introducing several
broad topics relevant to the project before it narrows down on the creation of
embeddings in general and embeddings of OWL 2 ontologies in particular.
Details about specific systems and approaches used directly or indirectly in
the project are described in chapter 3 on page 27.

The chapter is divided into nine sections. Section 2.1 deals with the
Semantic Web in general. In section 2.2 on page 8, we introduce ontologies.
The task of ontology matching is discussed in section 2.3 on page 10, while
section 2.4 on page 17 provides a brief introduction to the task of entity
matching. Section 2.5 on page 19 is dedicated to machine learning, followed
by a discussion on word embeddings in section 2.6.1 on page 22. The
word embeddings section paves the way for three subsequent sections on
embeddings. Graph embeddings in section 2.6.2 on page 23, embedding
RDF-graphs in Subsection 2.6.3 on page 24 and the specific challenges on
embedding ontologies 2.6.4 on page 25.

2.1 The Semantic Web and semantic technologies

Semantic refers to the meaning of words. It comes from the French word
sémantique which comes from the Greek word σεµαντικoς (semanticos),
significant, from σεµαινειν (semainein) meaning to show by sign [86].

Two central topics to the Semantic Web (SW) are the addition of abstract
models of knowledge and the idea of computing with knowledge. The SW
aims to extend the World Wide Web (WWW), not replacing it, but employing
abstract models to create order and understanding, and to enable machines
to reason and draw conclusions from the knowledge [68].

To buy something on the web today, one would need to enter different
stores’ web pages, compare prices, the availability of the item of interest and
the delivery conditions, or use some semi-functional price comparing web-
page. After deciding where to buy, one would have to enter that store, create
an account and enter all the details before the purchase can be completed.
With an operational Semantic Web, one could give a specification to a digital
agent. The agent would seamlessly search the web on its own and, according
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to the specifications, not only find the store with the best prices and delivery
conditions but also perform the actual purchase [8].

Adding explicit semantics to the web is not a new idea. The idea has
been around since the beginning of the WWW itself and is closely related to
the WWW. The WWW’s inventor and director of the W3C, Tim Berners-Lee
was the first to coin the term “The Semantic Web.” He has been active
and inspired much of the research in this area [68, Chapter 1]. Berners-Lee
envisions a web filled with machine understandable structured information
that will let us construct computer programs able to reason and draw
conclusions from the knowledge on the web, and shared his vision in his
book Weaving the Web:

I have a dream for the Web [in which computers] become capable of
analyzing all the data on the Web – the content, links, and transactions
between people and computers. A “Semantic Web,” which makes this
possible has yet to emerge, but when it does, the day-to-day mechanisms
of trade, bureaucracy, and our daily lives will be handled by machines
talking to machines. The “intelligent agents” people have touted for
ages will finally materialize [101]

The goals of the WWW and the Semantic Web (SW) are overlapping.
The purpose of both is the exchange of information. Both technologies
aim to make data available to everyone by using interlinked resources
and enabling advanced applications to search and browse them. In the
newsgroup alt.hypertext, Berners-Lee outlined his purpose for the WWW in
1991:

The World Wide Web (WWW) project aims to allow links to be made
to any information anywhere [. . . ] The WWW project was started to
allow high energy physicists to share data, news, and documentation.
We are very interested in spreading the web to other areas and having
gateway servers for other data. Collaborators welcome! [101]

The ideas of the Semantic Web did not gain significant attention until
the publication of the article, “The Semantic Web” in Scientific American
in 2001 [8], where Berners-Lee presents his visions to the general public.
Later, a considerable amount of research has been done on the subject.
W3C has published many standards for the Semantic Web including RDF,
OWL/OWL 2, and SPARQL. The availability of queryable data on the Web
using the Linked Data principles, such as the Link Open Data Cloud (LOD)
is increasing [55]. Some applications such as RDF Site Summary (RSS 1.0) are
using the new standards, while other applications provide ad hoc solutions
to exchange semantic information. The semantic data formats are used
extensively on the web, and the term “web of data” has emerged to describe
the part of the Semantic Web that focuses on data exchange. The more
expressive semantic technologies, however, are used mostly outside the web
where complex knowledge can be managed more easily [68, Chapter 1].
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2.1.1 Current technology

Most of the underlying technology of the Semantic Web is already
standardized under W3C. These technologies include Resource Description
Framework (RDF), Web Ontology Language (OWL and its revision OWL 2)
and SPARQL Protocol and RDF Query Language (SPARQL) [87].

RDF is a model for data interchange organizing data using triples
(“subject”-“predicate”-“object”). The subject and predicate are usually
“Universal Resource Identifiers” (URIs), and the object can be either a URI or
a literal. Both the subject and the object can be represented as blank nodes
enabling the construction of more complex structures and the storing of
data where some information is unknown. RDF datasets are often referred
to as graphs of data because of the linking through the use of URIs [77].

OWL/OWL 2 is a family of languages designed to express knowledge
about concepts and relations between concepts. Its use in the Semantic Web
is to create ontologies (see Section 2.2 on the following page). It is designed
to express complex relationships but limited in such a way that automated
reasoning is feasible [65][68, Chapter 4]. OWL 2 is a revision of OWL 1.1 that
became a W3C recommendation in 2009. OWL 2 defines three sublanguages
or profiles to provide the end-user with more flexibility. The OWL 2 EL is
designed to be lightweight and provides polynomial time reasoning. OWL 2
QL is designed to give easier access to traditional databases, and the OWL 2
RL is designed to interact with rule-based reasoners. OWL 1.1 can also be
seen as a sublanguage of OWL 2. OWL 2 formal semantics can be expressed
in terms of description logic, and we assume the reader to be familiar with
the basics of this field. An introduction to description logic is outside the
scope of this thesis. Hence, the interested reader is referred to [43].

SPARQL is a query language for RDF datasets. From its standard 1.1 it
is also able to perform insertions, deletions, and updates on the dataset. It
aims to fulfill the same purpose for RDF-datasets as SQL does as a query
language for relational databases.

With a knowledge base, we understand a collection of knowledge (i.e.,
facts) in a domain, possibly including a schema, intended to be used by
a computer system to analyze and solve problems. A knowledge graph
is a “large network of entities, their semantic types, properties and the
relationships between the entities” [39]. Commonly, it refers to an RDF
dataset.

2.1.2 Current uses

Well known usages of the Semantic technology on the web are the
Linked Open Data Cloud (LOD) [100], DBpedia, Wikimedia and Google’s
Knowledge Graph. LOD aims to be the seed of Berners-Lee’s Semantic
Web, and DBpedia aspires to create a linked data knowledge base from all
Wikimedia projects [15]. Wikidata [105] is an editable knowledge graph that
provides structural data for all Wikimedia projects. Google’s Knowledge
Graph [33], introduced in 2012, integrates structural data into Google search
and other Google services. When searching, it provides direct access to
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relevant information, and this information is presented to the user in a box
or a carousel. These initiatives are rapidly transforming the web from being
purely document-oriented into a distributed database [22].

The more expressive technologies are, however, easier to exploit in
closed, controlled applications than on the web due to several unresolved
challenges (section 2.1.3). Semantic technology is, for instance, used
extensively in biology and medicine. SNOMED CT [92], National Cancer
Institute Thesaurus (NCI) [53], the UMLS Metathesaurus [102] and the
Foundational Model of Anatomy (FMA) [21] are prominent examples.

2.1.3 Challenges

We are still facing some challenges before the semantic web can emerge as
envisioned by Berners-Lee.

One challenge is the interaction of applications using different vocabu-
laries (ontologies). Consequently, we need effective and efficient methods
for matching ontologies [88]. Furthermore, we need to face the issue of trust-
worthiness. When anyone can express anything, we will need some way
of locating relevant data and ensuring that it comes from reliable sources.
We will also need to be able to reason why a given result is trustworthy.
Another current challenge is the lack of links between datasets already on
the Linked Open Data Cloud. According to [21] 44 % of available Linked
open datasets are not connected to other datasets. The lack of links is partly
because the linking of datasets can be an overwhelming task. The size of the
datasets makes it virtually impossible to do this manually, thus the need for
effective and efficient methods for automatic link discovery [55].

In [22], Gandon, Sabou, and Sack describe the current challenges of the
Semantic Web as “the many S of the Semantic Web”; scalability, storage,
search, semantics, security, streaming. The vast scale of the web makes
scalability, storage, and search, topics of active research. Other topics such
as access control, version management, and long-term preservation are
crucial to provide reliable and trustworthy services.

2.2 Ontologies

The word ontology comes from the Latin word ontologia, a metaphysical
science, which itself is a compound word from ancient Greek oντoς (ontos),
being, genitive of present participle of ειµι (eimai) meaning to be and λoγoς
(logos), a spoken word from the root λεγειν (legein) to speak [62].

In metaphysics, ontology is the study of existence and being. The essence
of what it will say to be and what it means to be a thing. A tradition started
by the Greek philosopher Platon (429–347) and expanded by his student
Aristoteles (384–322) in the endeavor to define reality and the nature of
things [68, Chapter 1].

From the 1970s, in the artificial intelligence (AI) field, it was argued that a
conceptual, explicit model of the real world could prove to be invaluable [47].
This idea drew on the mathematical research on logic and automated
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reasoning and inference. Researchers recognized that having such a model,
AI systems could, “mathematically” infer new, implicit, knowledge based
on its model of the real world.

In the 1990s, the ontology was increasingly seen as a separate layer in
database systems. Gruber, in his paper “Toward Principles for the Design
of Ontologies Used for Knowledge Sharing”, where he describes how the
creation of an ontology can be regarded an engineering art, was one of the
first to define the ontology in computer science as an “explicit specification
of a conceptualization”.

With the increased interests in the Semantic Web seen in the early 2000s,
numerous researchers began to focus on ontologies as a way to share
definitions and rules in a domain of knowledge. RDFS became a W3C
recommendation for ontologies in the early 2000s, OWL 1.1 the in 2004 and
OWL 2 from 2009 [66, 76].

Ontologies can be seen as an abstraction in data modeling [28]. It
serves the same purpose for data models in general as the database
schema, and integrity rules do for a regular database, but the ontology
operates at a higher level of abstraction, above implementation language and
implementation details. In databases, a tuple in a table must conform with
constraints defined in the schema. These constraints could be for example
datatypes constraints, primary and foreign keys or check constraints. Any
deviation from these rules would render the database inconsistent. The same
way, a statement in any dataset using an ontology conforms to the axioms
expressed in that ontology. The expressiveness of an ontology language
is, in general, higher than data definition languages of regular databases
(like SQL’s DLL) and closer to first-order logic than its database counterpart.
Therefore it is considered to be at the semantic level.

We use ontologies as a formal, explicit, description of knowledge about
a domain of interest. The ontology provides a vocabulary, used by an
application, for describing the domain of interest along with a specification
of the meaning of the terms and the relationships between terms [88]. An
ontology can be reused, and it can provide a shared vocabulary for multiple
applications in the same domain of interest. The ontology typically deals
with entities such as classes, individuals, relations, and data types [34,
Chapter 2]. Today an ontology is commonly expressed in OWL/OWL 2,
W3C’s recommendation and the emerging standard for ontologies in
semantic applications. Simple ontologies can also be expressed in RDFS
(RDF Schema). Other languages for ontologies also exist [60][68, Chapter 1].

An OWL-ontology can be expressed using several different syntaxes.
It can, among others, be expressed using RDF/XML-syntax [75], the
turtle syntax [74], the Manchester OWL syntax [63], and the OWL/XML-
syntax [64].

Some common OWL-axioms are described in Manchester syntax and its
equivalent DL notation in Table 2.1 on the following page where C and D
are two arbitrary OWL-classes and R and S two arbitrary object properties.

Semantic Technology handles semi-structured data using triplestores
and can use ontologies to describe its vocabulary. An ontology is somewhat
similar to a database schema in that it provides a vocabulary and constraints
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OWL-axiom DL-expression

C SubClassOf: D C v D
C DisjointWith: D C u D v ⊥
C EquivalentTo: D C ≡ D
C SubClassOf: R some D C v ∃R.D
C SubClassOf: R only D C v ∀R.D
R InverseOf: S R ≡ S−

R Domain: C ∃R.> v C
R Range: C > v ∀R.C

Table 2.1: Common OWL-axioms

the meaning of that vocabulary.
Ontologies today are one of the basic building blocks of the Semantic

Web stack. They provide data model designers with reusable vocabulary
at a high level of abstraction without regard to implementation details.
This vocabulary is essential to facilitate the integration of databases and
the interoperability of systems. Ontologies are also central to automated
reasoning and inference in semantic applications. By reasoning and
inference, machines can evaluate and draw conclusions based on the
data and the resources and rules expressed in the ontology. An ability
that can improve data quality and data completeness, for instance, by
adding relationships between resources and discover inconsistencies in
the dataset [32].

2.3 Ontology matching

Regardless of the domain of interest, two applications using different
ontologies cannot be assumed to be able to interoperate directly. They would
not be able to “understand” each other’s vocabulary. Ontology matching
aims to solve this problem. Thus it is part of the solution to the problem
of handling data from heterogeneous data sources. It plays a vital role in
ontology integration, data integration and data warehouses [88].

Ontology matching is the process of matching two (or more) ontologies.
A mapping is a correspondence between two entities from different
ontologies (E1 and E2) and the relation between them (R). More formally, the
mapping 〈E1, R, E2〉 (or simply E1 R E2) states that E1 and E2 are R-related.
R is usually an equality relation, but it can be another relation, for instance,
owl:subClassOf. A mapping can include additional information such as a
confidence score and a mapping id. The result of a matching process is a set
of mappings. This set is called an ontology alignment.

Many different matching techniques and strategies and are used for
ontology matching. From simple string comparison techniques to more
advanced global similarity techniques such as comparing relations and
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using semantic reasoners. Some systems also work with ontologies written
in different ontology languages, but this is out of the scope of this thesis. We
consider exclusively the matching of ontologies expressed in OWL 2.

Ontology matching is related to schema matching for relational
databases. Schema matching has been researched since the early 1980s when
distributed databases were starting to become available to corporations.
Batini, Lenzerini, and Navathe describe the emerging challenge in the
paper “A Comparative Analysis of Methodologies for Database Schema
Integration” from 1986:

Database integration is a relatively recent problem that has
appeared in the context of distributed databases.

. . .
With the increasing use of databases, we expect the integration

problem to be more severe and pervasive. New technologies of
networking, distributed databases, knowledge-based systems, and office
systems will tend to spread the shared use of data in terms of number of
users, diversity of applications, and sophistication of concepts. Design,
manufacturing, and engineering applications are becoming centered
around database management systems. The need for methodologies for
integrating data in its diverse conceptual and physical forms is thus
expected to increase substantially [6].

In hindsight, we understand that this prediction was right on target. The
issue of heterogeneity has not diminished but instead increased substantially.
The database community is still researching ways to reduce this problem
automatically and semi-automatically. However, it remains an open
question [88].

Schema matching in databases is performed at a syntactical level. A
system can compare strings and data types, keys and constraints. However,
with the interest in ontologies in the semantic web community from the
early 2000s, the heterogeneity challenge shifts to a higher level of abstraction.
Now the challenge lays on a more semantical level, and less dug down in
implementation details. The ontologies can, however, be very rich. They
tend to be much larger and more complex than database schemas. This
vastness and complexity make it challenging to create matchings manually.

2.3.1 A simple matching example

Let ns and ex be two arbitrary namespaces and O1 an ontology with the
following concepts with the natural hierarchical relations: (i) Product, (ii)
Book, (iii) CD, (iv) Person, and (v) Author. Let O2 be a second ontology with
the following concepts with the natural hierarchical relations: (i) Monograph,
(ii) Essay, (iii) Political essay, (iv) Biography, (v) Literature, (vi) Person, and
(vii) Writer.

Applying string equality on the concept labels to match the two
ontologies, we find only one mapping (ns:person ≡ ns:person). If we enhance
the vocabulary with synonyms, as shown in Table 2.4 on page 13, we find
more mapping candidates:
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1. ns:book ≡ ex:essay

2. ns:book ≡ ex:political_essay

3. ns:book ≡ ex:bibliography

4. ns:person ≡ ex:person

5. ns:author ≡ ex:writer

This result is probably not what we want. Some systems include
reasoning to improve the candidate mappings. We can do this by first
identifying a set, M, of reliable mappings. For example by using very
similar strings (e.g., person in O1 and person in O2), and see if there
are some matches also from neighbor to neighbor. In this case we
consider ns:person ≡ ex:person to be reliable. The reliable mapping is
added to the final mapping set. Then, we can check the other candidate
mappings for inconsistency against the growing set of final mappings before
adding them. In this simple case, adding ns:book ≡ ex:bibliography
after ns:book ≡ ex:political_essay would lead to inconsistency if
ex:political_essay and ex:bibliography are declared to be disjoint.
Structural techniques can help us avoid mapping ns:book with both
ex:essay and its subclass ex:political_essay. A more sophisticated
system could even find that all three candidate mappings with ns:book
should be considered subclasses.

URI label

ns:product Product
ns:book Book
ns:cd CD
ns:author Author
ns:person Person

Table 2.2: The URIs and labels of O1 in the simple matching example

URI label

ex:monograph Monograph
ex:essay Essay
ex:political_essay Political essay
ex:bibliography Bibliography
ex:person Person
ex:writer Writer

Table 2.3: The URIs and labels of O2 in the simple matching example
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URI Synonym

ns:product Product
ns:product Goods created
ns:product Creation
ns:book Book
ns:book Essay
ns:book Fiction
ns:book Novel
ns:cd CD
ns:cd Album
ns:author Author
ns:author Writer
ns:author Creator
ns:person Person

Table 2.4: The URIs and labels of O1 in the simple matching example
enhanced with synonyms

2.3.2 Element based matching strategies

Element-level techniques are the most straightforward techniques, and
consider the entities or instances in isolation without taking into account the
relations with other entities or instances. Most of these techniques consider
strings as tokens, while others use language and statistical approaches [34].

One of the simplest and most important strategies for finding corre-
sponding entities between ontologies is comparing the labels. In the ex-
ample in Subsection 2.3.1 on page 11 the comparison of labels finds the
mapping ns:person ≡ ex:person. This strategy has, however, many short-
comings. We would not find concepts described by different synonyms, and
homonyms would provide false mappings. The creators of one ontology
could have preferred “author” over “writer” which would is not possible to
find using string comparison. It could also be possible that the string “name”
in one ontology refers to article name and the string “name” in another
ontology refers to the author’s name and can thus provoke a mismatch.

Another challenge with string comparison is that ontology labels can
be in different natural languages. The word “name” in English would
be “nombre” in Spanish and “navn” in Norwegian. There are multiple
strategies for solving these problems. These include normalization of strings,
language normalization, and the use of external resources such as lexicons,
dictionaries, and thesauruses. Many systems use WordNet for this, but it
seems possible to improve upon synonyms and multilingual ontologies
using word embeddings [97].

Some ontologies provide more lexical information than just the labels.
The URIs could have lexical meaning. There could be useful information
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stored as comments. There could be synonym fields and other annotation
information available. Matching systems could take advantage of these
sources of lexical information as well. The XMap-system, for instance,
aggregates the id, label, and comment and applies string based measures on
the resulting string [42].

There are many ways of determining string similarity. Often the strings
must first be normalized in some way. For instance, substituting all
capital letters with lowercase letters, accents may be removed, whitespace
normalized and punctuation removed. Other techniques include stemming
and removing stop words. It is possible to calculate a similarity score using
one (or several) of many methods from simple string equality measures to
more elaborate token based distance measure methods [34].

2.3.3 Structure-based matching strategies

Another matching strategy is to consider the structure of ontologies and
entities. A matching system can compare the definition of an entity along
with its properties such as data types, values, and related entities. It
can also use the relational structure. One way is seeing the dataset as a
graph and trying to find similar subgraphs. A second way is to exploit the
subClassOf-relations. A third strategy is using semantic-based techniques.
Semantic-based techniques use reasoning to improve alignments and find
inconsistencies [34, Chapter 4]. It can involve the use of other ontologies as
background ontologies to help understand the relations between terms.

While the structure-based techniques are useful, they are usually not
sufficient to identify most matches. Global structure-based techniques are
therefore mostly used in combination with other matching strategies such
as string similarity measures.

2.3.4 Semantic-based matching strategies

Semantic techniques are used to ensure completeness and consistency. It
finds correspondences that would lead to inconsistencies in the alignment.
They are model-theoretic techniques used to justify results, and they do not
perform well alone on ontology matching task. The matching system or the
user must provide semantic-based approaches with anchors, entities that
are declared to be equivalent. Semantic methods then act as amplifiers of
these seed alignments.

Two semantic-based approaches have been used in ontology matching;
Propositional Satisfiability (SAT) techniques and description logic (DL)
techniques [34].

2.3.5 Other strategies

Current systems employ a wide range of other matching strategies
as well. Some examples are matching with background knowledge,
user involvement in the matching process and social and collaborative
matching [88]. To be able to match large ontologies, it is necessary to reduce
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the search space. Testing the cartesian product of classes and properties
for equality is very ineffective. Strategies to reduce search space include
blocking and filtering strategies. One could, for example, create blocks
from the ontology where each block contains classes with labels with equal
substrings and only test for equality only within each block.

2.3.6 Matcher requirements

Applications in need of ontology alignments can put very different
requirements on the alignments systems. Some alignments are created
on design time of an application, for example in data warehousing. The
effectiveness of the alignment system is most important, and the efficiency is
of less importance as it is performed only once. In other cases, the alignment
is needed at runtimes, such as in peer-to-peer systems and web services. In
this context, efficiency is essential, and there must be a trade-off between
effectiveness and efficiency. In some circumstances, it is crucial that the
alignment is complete (it must discover all the links), but it can discover
some mappings without causing too much trouble. Other applications need
it to be the other way around. Precision is the most important, and false
mappings could be devastating.

The process of matching ontologies can, on small datasets that need
ontology alignment on design time, be done manually. In real-world
problems, however, the ontologies can often contain thousands of classes
and complex relationships. The task of manually discovering thousands
of correspondences is virtually impossible. Consequently, there is an
emerging need for automatic and semi-automatic systems capable of
aligning ontologies both effectively and efficiently.

2.3.7 Evaluation of systems

The Ontology Alignment Evaluation Initiative (OAEI) is a coordinated
international initiative for the evaluation of ontology matching [2]. Since
2004 they hold yearly events where manufacturers of ontology alignment
tools can test their tools. OAEI aims to evaluate the different systems’ and
algorithms’ performance and inspire overall improvements.

To be able to determine if one ontology matching tool is better than
another, it is necessary to have some standard measures on performance.
OAEI measures precision (equation 2.1 on the next page), recall (equation 2.2
on the following page) and F-measure (equation 2.3 on the next page) which
is an aggregate of the two. To be able to get a clear picture of the different
system’s performance, a set of systematically generated test benchmarks is
used. If the test suit is stable over time, the evolution of the systems can also
be measured [88].

Precision [34] Given a reference alignment R, the precision of some
alignment A is a function P : Λ×Λ→ [0 1] such that:
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P(A, R) =
| R ∩ A |
| A | (2.1)

Recall [34] Given a reference alignment R, the recall of some alignment A
is a function P : Λ×Λ→ [0 1] such that:

R(A, R) =
| R ∩ A |
| R | (2.2)

F-measure [34] Given a reference alignment R and a number α between 0
and 1, the F-measure of some alignment A is a function Fα : Λ×Λ→ [0 1]
such that:

Fα(A, R) =
P(A, R)× R(A, R)

(1− α)× P(A, R) + α× R(A, R)
(2.3)

If α = 1 the F-measure is equal to precision and if α = 0, the F-measure
is equal to recall. α = 0.5 is a common value.

2.3.8 State of the art

After more than a decade of research on ontology matching, there is now a
myriad of different ontology matching systems available, and they differ
in many important ways. Some take only OWL-ontologies as input while
others can take RDFS as well. Some systems are even able to match XML or
relational databases. Most systems only find one to one equality relations,
while more sophisticated systems can find other types of relationships as
well. Some applications, come with GUI, but most are command line only.
Many of the systems are domain specific and focus on finding alignments
on, for instance, biological datasets and some are general purposes.

Jerome Euzenat and Pavel Shvaiko group ontology matching systems
into four categories based on their main matching strategies [34]. The first
category is schema-based systems, which depend mostly on schema-level
input. The second category of matching strategies is instance-based systems,
which depend mostly on the data indexed by the ontologies. Thirdly, we
have the systems employing a mix of these two strategies. The fourth
category is Meta-matching systems which combine other matching systems
instead of performing the matching themselves.

Achichi et al. provide in [2] and [1] a thorough description of the tests
and results of OAEI’s events in 2017 and 2016 respectively. Jerome Euzenat
and Pavel Shvaiko give an overview of the similarities and differences of
many available ontology matching systems in [34]. Among the systems
considered at OAEI’s event in 2017 [2] we find ALIN, AML, CroLOM,
DiSMatch, I-Match, KEPLER, Legato, LogMap, njuLink, ONTMAT, POMap,
RADON, SANOM, Silk, Wiki2, XMap, and YAM-BIO. The results from 2018
are found in [4].
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2.3.9 Challenges

Some of the current challenges in the field of ontology matching are the need
to match even more large-scale ontologies and the need for more efficient
systems for real-time applications. Few systems are taking advantage of
available background knowledge, and that the systems are challenging to
use for end-users [88].

Most systems focus on the detection of simple equivalence mappings [34,
Chapter 8]. However, the detection of other relationships such as
subsumption relationships is also useful. Other, more complex mappings
could also be part of an alignment. For example, if C, is a class of one
ontology and D and E are classes of another ontology, Cv D u E is a possible
mapping.

Most ontology matching systems depend primarily on lexical similarity
measures to decide if a candidate mapping is valid. Even though they
employ simple structural techniques to help the process, it would be
desirable to capture the semantics of the entities. Vector space embeddings
is a possible means to express the semantics of OWL 2 entities.

The role of the user in the matching process has received relatively little
attention. A domain expert user could provide a matching system with
valuable information and improve the quality of the resulting alignment.
However, how to involve a user in the matching process without having to
understand the technicalities of the ontology matching process is still poorly
understood.

2.4 Entity matching

While ontology matching mainly focus on matching the schema of the
knowledge base, entity alignment (or link discovery for linked data), focuses
on matching the instances indexed by the ontology and resolves links
between datasets.

An automatic entity matching tool takes as input two, or more, datasets
to be linked, configuration parameters, and possibly background knowledge
resources. The datasets can be RDF/OWL dumps or SPARQL endpoints [55].
We define a correspondence, or a link, between two entities e1 and e2
from different datasets as a tuple 〈e1, e2〉. The tuple can include additional
information such as a confidence score and an id. The output is a set of
correspondences between the two datasets.

The Link Data Cloud is based on the link data principles. It depends on
the interlinking of datasets with other datasets. In 2014, Schmachtenberg,
Bizer, and Paulheim pointed out that 44 % of the LOD datasets are only the
target of RDF links from other datasets or completely isolated [85]. They are
not themselves connected to other datasets. This lack of links is a significant
problem as the links are essential to many applications [22].

If we are to merge (or link) distinct datasets, we need to be able to
detect which, if any, elements refer to the same real-world objects. The
same challenge arises when one is trying to find duplicated instances in one
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dataset. Entity matching proposes a solution to this problem. The goal of
the process is to detect pairs of resources automatically. It usually identifies
owl:sameAs relations [55].

LOD now consists of more than 10.000 datasets, and the creation of links
between large datasets is a daunting process. Manually discovering links at
this scale is not possible. Therefore an automatic or semi-automatic tool is
needed to aid the process. This tool needs to be both highly effective and
very efficient to be able to discover most of the links among large datasets.
Consequently, link discovery and the related problems of entity resolution
and object matching are being studied extensively [55].

Because knowledge bases typically are large and semantically different,
it is challenging to solve this problem with both high effectiveness and
efficiency. Although the problem of entity resolution has been studied
extensively, the focus has mostly been on similar and relatively simple
datasets. The resources described using Linked Data are, however,
potentially very heterogeneous and interrelated with other datasets.
Research on entity resolution has relied primarily on equality relations while
link discovery can involve not only owl:sameAs-relations but also other
relations. Linked data can also have an ontology describing vocabulary,
resource properties and relations (see Section 2.2 on page 8) that can aid the
process. However, the ontologies must be matched as well [55].

2.4.1 Requirements

As with ontology alignment, we need the entity alignment tools to be as
effective as possible in discovering the positive links between datasets, and
also in not identify links where such a relationship does not exist. There
are different requirements in terms of efficiency between offline and online
systems, but the vastness of many relevant datasets makes efficiency crucial.
Other requirements for entity alignment tools can be a low manual effort
for configuration and tuning and the support for online background data in
the form of linked data [55].

2.4.2 Existing technology

Typically, a link discovery tool is capable of using multiple techniques for
calculating similarity on the potential instance matches. As for ontology
matching techniques (section 2.3 on page 10), we can categorize link
discovery techniques as element-based or structure-based. Element-level
matchers are the simplest and also the most common. Background
knowledge can be used to help similarity calculation. The ontology can
also be exploited, for instance by limiting the search to equivalent classes.
Another approach is to use existing links to find new links. Using the
transitivity of the owl:sameAs-relation it is possible, by composing several
links to derive new owl:sameAs-links [55].

Link discovery tools have not been evaluated and compared as much
over the last decades as having ontology alignment tools. However, interest
in such systems is increasing.
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Several systems capable of link discovery have been developed in recent
years, we have for example ReMom, KnoFuss, AgreementMaker, Silk, CODI,
LIMES, LogMap and more.

The systems differ in terms of functionality as well as in terms of input.
Some take RDF-dumps while others also can take SPARQL endpoints as
input. The systems’ flexibility and configuration effort differ. Some offer
post-processing, to check for data consistency and logical contradictions.
The user interface also varies from simple CLI-tools to more sophisticated
GUI-interfaces. Most tools, however, focus on simple property-based
matching techniques and are not taking advantage of ontologies, existing
links, and available background knowledge. The tools also need to take
advantage of efficiency techniques such as blocking, filtering, and parallel
processing [55].

2.4.3 Evaluation of systems

There is an effort, from 2009 by the OAEI to, in addition to evaluating
ontology matching tools, also to evaluate link discovery tools [55].
The evaluation of link discovery systems and methods are, however,
still immature, but able to give a reasonable indication of the relative
effectiveness of comparable systems. OAEI has mainly focused on
effectiveness. The efficiency of the systems, however, has not been evaluated.
The participation, in the contests on link discovery, has been rather low, thus
to date most Link Discovery tools have not been evaluated.

2.5 Machine learning

Samuel coined the term Machine lEarning in 1959. Machine learning is
the field of computer science that gives computers the ability to “learn”
without being explicitly programmed [84]. It started as a study of pattern
recognition and computational learning theory in artificial intelligence.
Machine learning creates algorithms that can learn from a large body of data
and make predictions on the data. Machine learning is today applied to a
wide range of tasks, such as email filtering, detection of networks, hacking
detection, optical character recognition, learning to rank, and computer
vision [67].

2.5.1 Machine learning and SW semantics

Discussing the future of the Semantic Web community, Gandon, Sabou,
and Sack argue in [22] that with the growing complexity and scale
of Linked Data, the community must address the development in a
more multidisciplinary manner. The authors particularly mention the
common interest in intelligently processing of data to the machine learning
community and the Semantic Web community. The last few years we have
seen an increased interest in hybrid approaches where description logic
techniques and reasoning are combined with machine learning.
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The Semantic Web-community has a very concise sense of “semantics”
where RDF gives us a way to state facts. OWL gives us vocabularies to
describe resources and the semantics of those resources (see 2.1.1). Semantic
Technology uses triples to state facts in a way that both people and machines
can understand. The machine learning community’s interest in semantics
is more about generalizing from data. In a discussion of the connection
between these two “semantics” technologies, DuCharme argues that while
“RDF-based models are designed to take advantage of explicit semantics”,
neural network models can “infer semantic relationships and make them
explicit.” [17].

One can imagine that modifications could be made to programs like
word2vec so that they output OWL-triples, contributing to systems using
ontologies. At the same time, machine learning models could be trained
with instances along with declared classes in an ontology. Running this
machine learning model on new data, it can do classifications that take
advantage of the ontology. While machine learning systems are designed
around unstructured data, they could take advantage of and do even more
with structured data. In other words; the machine learning and the Semantic
Web-community can take advantage of each others’ “semantics.” While the
Semantic Web can use machine learning to infer explicit semantics from
data, machine learning can use the explicit semantics of the semantic web to
do more.

2.5.2 Machine learning techniques in ontology matching

Utilizing machine learning techniques, it is possible for an ontology
alignment application to identify alignments between ontologies by first
learning from some sample data with already established alignments.
There are multiple possible learning strategies. The naive Bayes learner,
WHIRL, Support vector machines, decision trees, and neural networks are
some examples [34]. Two examples of ontology matching systems that
have employed a machine learning strategy for matching ontologies are
YAM++ [56] and GLUE [16].

The learner can exploit different types of information. From word
frequency, format, positions or properties of value distributions. Results
produced by various learners can be combined with the help of a meta-
learner [34].

Some additional challenges arise when using machine learning for
ontology alignment. First, the model has to be trained and tested with
both positive and negative matches. Issues like overfitting and appropriate
method parameter selection have to be addressed as well. A previously
learned matcher can be reused [34].

2.5.3 Neural networks

In this thesis, the machine learning models explored are embedding models
based on Artificial Neural Networks (neural networks).
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The neural network is not a new idea [109]. Already in the early
1940s, it was shown that simple neurological networks could solve
complex arithmetical problems of different kinds. In the 1950s several
“neurocomputers” were constructed that were able to solve different
proposed problems, but they were not able to use them to solve real-world
problems. Quickly they were seen as an area that promised much and
delivered little. So the enthusiasm diminished. In the 1970s little was
heard from the community, but the community made considerable advances.
Research on neural network saw a renewed interest from the mid-1980s.
Today neural networks are used for a wide array of applications and are
especially successful in pattern recognition such as image recognition. It has
recently also been successful in other fields as well such as the unsupervised
generation of word embeddings.

Neural networks are made up of nodes and weighted connections
between them. The nodes are grouped into layers. The network has an input
layer, an output layer and can have none, one or more hidden layers. Usually,
each node in a hidden layer is connected to all nodes of the preceding and
the following layer.

In ontology alignment, neural networks have been used for various
tasks such as discovering correspondences via categorization and classifica-
tion [20, 44] or learning matching parameters [34].

The work of [51] demonstrates that with the progress of neural network
techniques in recent years, it is no longer only a choice between simple
embedding techniques on vast amounts of data or complex models on
smaller datasets. It has now become possible to train more complex models
on much larger datasets.

2.5.4 Embedding models

One of the recent successes of the neural network models is the unsupervised
generation of embeddings. To embed is defined as ”to fix (an object) firmly
and deeply in a surrounding mass” [18]. In machine learning, the term
usually means representing objects in a real number vector space.

Embeddings reduce complex models to fewer dimensions while
retaining the objects’ characteristics. Moreover, machine learning models
work mostly on numerical data, so having embeddings allows us to perform
complex analysis tasks on new types of data.

Several recent systems (e.g., word2vec, fastText, StarSpace) demon-
strate that it is possible to train high-quality word vectors using simple
model architectures. Because of the lower computational complexity, it is
possible to compute accurate high-dimensional word vectors from a much
larger dataset. They also show that different characteristics easily can be
combined into one representing vector [38, 51, 108].

Other works show that the techniques used to train word embeddings
can be used to embed other data types as well. DeepWalk uses the
same algorithm to create embeddings from social network graphs by
creating walks on the graph and considering the nodes as words [72].
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RDF2Vec applies the DeepWalk algorithm and creates embeddings from
RDF graphs [80].

2.5.5 Vector similarity

An important property of the embeddings is that similar objects are close
in the vector space. We, therefore, need a way to measure distance in
vector space. A common way to measure vector similarity is using cosine
similarity [14]. If A and B are two non-zero vectors, cosine similarity (cos(θ))
is defined as:

cos(θ) =
A · B
‖A‖‖B‖ (2.4)

The magnitude or length of a vector (‖V‖) with n dimensions and vi is
the value of the i-th element in the n-tuple. It is defined as its Euclidean
length:

‖V‖ =
n

∑
i=1

v2
i =

√
v2

1 + v2
2 + · · ·+ v2

n (2.5)

2.5.6 Visualizing the vector space

Even though we speak about word vectors as being low dimensional, they
are usually in the range of 50 and 500 dimensions. Consequently, it is not
possible to visualize them directly. We have to reduce the dimensionality to
2 or 3 dimensions to be able to get an impression of how the elements relate
to each other. One way to do this is to use Principal Component Analysis
(PCA). This technique reduces the number of dimensions by identifying the
dimensions that contribute the most to the variation among the vectors [11].

2.6 Machine learning embeddings

2.6.1 Word embeddings

A word embeddings system aims to represent words as elements in a real
numbered vector space. Representing words as vectors has a long history,
but only recently it has become feasible to train high-quality word vectors
on large amounts of data. Current techniques train word embeddings by
maximizing the probability of the co-occurrence of words within a given
context.

Word embeddings is a fundamental concept in the field of natural
language analysis. It allows, not only to do analysis on texts, documents,
and words but also capture the semantics of words.

The problem of calculating the probability distribution of words in a text
is rendered intractable by the number of different words (variables) involved.
Consider the problem of calculating the joint probability distribution of only
10 consecutive words. If we have a vocabulary of 100 000 words, there
would be 1050 − 1 potential free parameters[7].

In 2000, Bengio, Ducharme, and Vincent proposed to ”fight the curse of
dimensionality” by learning a ”distributed representation for words” [7].
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Mikolov et al. elaborate on these ideas and propose two improved, yet
simpler models, in [51] and [50]. The Skip-gram and the CBOW models can
train the embeddings on a much larger corpus. We discuss specific systems
in more detail in Section 3.2 on page 29.

A word embeddings system takes as an input a preprocessed corpus
of text. Depending on the application of the word embeddings, prepro-
cessing techniques could include the removal of accents, commas, case
normalization, removal of stop words and stemming.

The system outputs an n-dimensional vector for each word in the
vocabulary. The embeddings would ideally conserve each word’s
characteristics in relation to other words in the corpus in such a way that
semantically similar words have similar vectors.

2.6.2 Graph embeddings

Much knowledge is naturally expressed as graphs. One example is the
hierarchical relationships between species in biology. Another is social
graphs as relationships in social networks. Being able to perform analysis on
graph data, is essential to find patterns and discover unknown, potentially
useful, information. Discovery of patterns can also extend and improve
upon already existing graphs. Some typical applications of graph analysis
are data mining, node clustering, and classification.

A graph embedding technique aims to represent a graph or elements
in the graph as elements in a vector space. Usually, unsupervised machine
learning techniques are applied to generate embeddings. Ideally, the
embeddings should preserve all the graph elements’ properties and at
the same time reduce the dimensionality of the representation of these
properties.

Traditional graph analysis methods [12] are computationally expensive
and problematic to scale. Graph embeddings intend to solve this problem
and make possible the analysis of larger graphs. We can consider the
embedding of a graph as the compression of the structural information
in the graph into a few dimensions. Embedding the graph is essential
to provide access to most machine learning systems. Few ML systems
are designed with graphs in mind but operate on numerical data such as
vectors.

The input of a graph embedding system is a graph, and the output is
one or a set of low dimensional vectors. The vectors could denote either the
entire graph, subgraphs or the individual nodes in the graph. It can also be
extended to include the edges in the graph.

There are three main strategies for embedding graphs. (i) The first
approach uses matrix factorization. These systems typically capture some
relationship like the similarity of nodes in a matrix and factorize the matrix
in order to find the individual node embeddings. (ii) The second approach
is to use deep learning methods on the graph. This approach samples
the graph using random walks, or it uses the entire graph as input before
using a neural network to train the embeddings. (iii) The third approach
is to directly optimize the probability of the existence of an edge (i.e., a
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relationship between two nodes). These strategies have different advantages
and use cases. Matrix factorization techniques can embed the entire graph
with all its relationships. Using deep learning with random walks can be
very scalable because one decides the number of and size of walks on the
graph independent of the number of relationships and nodes in the graph.
Edge optimizing makes a good fit for knowledge graph completion and
graph repair. In this thesis, we will focus on deep learning using random
walks.

There are two very different similarity measures that the embeddings
can conserve. One measure of similarity is to regard that closely connected
entities should have similar embeddings (homophily). The other measure
of similarity is to regard that similar structures should have similar
embeddings (structural equivalence). Matrix factorization approaches are
unable to embed structural equivalence [25]. Random walk approaches
embed a combination of the two. It is possible to define which will be most
prominent by changing the walk generation strategy.

Random walks and the Skip-gram (or a similar) algorithm as a way
to embed graphs was introduced by Perozzi [72] and is known as the
DeepWalk algorithm. This algorithm has given rise to a family of systems
using similar approaches. The node2vec expands on this system using, not
only random walks along connected edges but introduces the notion of a
node’s neighborhood and second-order similarity. It uses two variables (p
and q) to bias the walks either to focus on a node’s nearby neighborhood or
to perform deeper walks like the DeepWalk algorithm.

2.6.3 Embedding RDF data

There are several proposed algorithms for embedding RDF-data. The
Neural Tensor Network (NTN) [93] applies a bilinear tensor product to
predict the relationship between two entities. The idea is that any triple
〈h, r, t〉 ∈ D should receive a higher score than any triple not in the dataset.
TransE [10] is a model where, for a triple 〈h, r, t〉, the relation r is seen as a
function transforming the embedding of h to the embedding of t. So that
h + r ≈ t whenever (h, r, t) ∈ D where D is the dataset. Another model
HolE [57] combines the logic of TransE with the tensor product using circular
correlations of the embeddings to represent pairs of entities.

Many embeddings systems focus on the creation of word embedding
from documents in natural language. Some of these systems have been
used successfully to create embeddings from other sources (including graph
embeddings). RDF data lacks the linear structure that natural language texts
have. By nature, RDF data has a graph structure. To be able to embed RDF
using such systems, we first need to create something that a linear system
will understand.

Ristoski and Paulheim introduce Skip-gram to create embedding from
RDF-data in the system RDF2Vec [80]. This system uses all entities that
are instances of owl:Thing as a source for the walks, and it includes both
the nodes and the edges in the walk document. Ristoski and Paulheim
evaluate two general approaches. The first is creating graph walks. Starting
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Figure 2.1: How can RDF data be embedded by systems designed for natural
languages?

from all nodes, they create all possible walk patterns in the graph from that
node until some threshold (i.e., max depth). This algorithm is a kind of
a breadth-first search algorithm. This approach builds on the DeepWalk
algorithm [72]. Ristoski and Paulheim also include, in the source code, a
random walk approach [78]. The second approach proposed by the authors
builds on Deep Graph Kernels [110]. This models graph subtrees instead of
walks and measures the similarity of graphs by computing shared subtrees.

Another approach, proposed by Cochez et al. in [13], builds a co-
occurrence matrix where, for each node, it is counted how often the other
nodes appear close to this node (in the node’s context). In this approach, it is
not necessary to generate the actual walks, only the counts. This matrix can
then be used to train the global vector for word representation presented
in [71].

StarSpace provides yet another approach using supervised learning.
In [108] it is proposed to learn a graph G consisting of (h, r, t) triples as
selecting uniformly at random either a consists of a bag of features h and r
while b consists of only t or that a consists of h only and b consists of r and t.

Agibetov and Samwald use StarSpace [3]. Here they are not embedding
the relation r. They represent the edges by concatenating the embeddings of
the nodes.

2.6.4 Embedding an ontology

We focus here on OWL 2 ontologies. OWL 2 ontologies can be considered
a set of axioms. A document that the Skip-gram algorithm can use can
be created directly by listing all the axioms. Smaili, Gao, and Hoehndorf
apply this strategy for the Onto2Vec [90] and the OPA2Vec-system [91].
Since the “walks” will be very shallow, with only two nodes and one edge,
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this approach is expected to conserve closely connected entities, and not
expected to consider structural similarity.

We assume that some axioms, like for example disjointness will add
noise to the embeddings. The axiom ClassA disjointWith ClassB would,
for instance, make the embeddings of ClassA and ClassB more similar when
one, in most cases, would like them to be more different.

Another approach is to consider the OWL-ontology a graph, and use it
as input it to a system like RDF2Vec [80]. Still, it is preferable to emphasize
concepts such as classes and hierarchical relationships between classes over
other relationships. In the case of classes, it is possible to use not only
the class description context and relationships but also include entities,
instances of a class. As we will see, regarding the OWL-ontology as a graph,
poses a few challenges.

2.6.5 Ontology projection and navigation graphs

As observed in several studies, including [94], [90], and [81], many OWL
axioms are not directly representable as graphs. Consequently, the OWL
ontology is not possible to navigate like a typical RDF-graph. OWL 2
allows many complex structures. Take for example axioms where the
union or the intersection of two classes is expressed as the range of another
union or intersection. The navigation from one such class to another and
the visualizing of this as a graph is non-trivial. Two somewhat similar
approaches have been proposed to solve this challenge. The first approach,
developed by Soylu et al. in [94]. The other by Rodríguez-García and
Hoehndorf in [81]. Both systems use OWL-reasoning and infer edges to
project the OWL-ontology as a navigable graph. The systems that we will
use in this thesis is the one by Soylu et al.

A navigational graph has predicates, constants and data types as nodes
and the edges are relations between the nodes. Following the description
in the paper [94], the edges between the nodes are constructed from the
following object properties: (i) Domain and range axioms, (ii) Object
property restrictions, (iii) Inverse properties, (iv) Role chains, (v) Top-
down propagation, and (vi) Bottom-up propagation. And these datatype
properties: (i) Domain and range axioms, (ii) Datatype restrictions, (iii)
Top-down propagation, and (iv) Bottom-up propagation.
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Chapter 3

Frameworks

This chapter introduces the approaches, systems and datasets that are
relevant to this thesis. An exhaustive and complete description of the
state of the art is outside the scope of this thesis. We start with the ontology
alignment system LogMap in Section 3.1 before we move on to embedding
tools for natural language in Section 3.2 on page 29. In Section 3.3 on page 36,
we look at embedding systems for graphs and RDF-graphs. Section 3.4 on
page 38 introduces a model for using pretrained word embeddings for
ontology alignment. In Section 3.5 on page 40 we look at libraries and APIs
for working with semantic technologies and machine learning. Then, in
Section 3.6 on page 44 there is a description of the ontology projection tool
used in the thesis before in the last section (Section 3.7 on page 46) there is
an overview of the ontologies used in the experiments.

3.1 The ontology alignment system LogMap

3.1.1 How does it work?

LogMap 2 [36, 82] (LogMap) is primarily a tool for ontology alignment. It
can, however, also be used for mapping debugging. The system can be used
as a standalone command line tool or as a Java library. It accepts OWL 2
ontologies and outputs files containing the mappings between the input
ontologies in different formats. LogMap is designed to be very scalable
and handle large ontologies. It uses inversed indexes and partitions the
ontologies into manageable parts to reduce complexity.

LogMap is capable of dealing with a wide variety of ontologies and the
different variations of the LogMap-system show excellent performance on
the different test tracks of the OAEI campagin [1, 2, 4].

The basic function of LogMap is illustrated by algorithm 1 on the
following page (adapted from [36]).

The workflow of LogMap can be divided into major two parts. The first
part is the creation of candidate mappings to maximize recall. The second
part is the discarding of mapping to maximize precision.
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Algorithm 1 LogMap

Input: O1, O2: input ontologies; Interact: Boolean value
Output: M: mappings.

1: 〈LI1, LI2〉 ← LexicalIndexes(O1,O2)
2: M? ← CandidateMappings(LI1, LI2)
3: 〈O′1, O′2〉 ←Module(O1,O∈,M)
4: M← ReliableMappings(M?)
5: M? ←M?\M
6: 〈P ′1,P ′2〉 ← PropEncoding(O′1,O′2)
7: M← Diagnosis(P ′1,P ′2,M, ∅)
8: SI ← SemanticIndex(P ′1,P ′2,M)
9: M? ←M?\ Discarded(LI1, LI2, SI, M?)

10: if Interact = true then
11: Muser ← InteractiveProcess(SI, M?)
12: M← Diagnosis(P ′1,P ′2,M∪Muser,Muser)
13: else
14: M← Diagnosis(P ′1,P ′2,M∪M?,M)

15: returnM

Maximize recall

Ontology concept labels and URIs are stored using inverted indexes. Each
URI is given a unique identifier which maintains the correspondence
between the labels and the URIs. It uses techniques such as stemming
to reduce the impact of variations of words. The indexes can be enhanced
with similar concepts and synonyms by external resources like BioPortal
[83], the SPECIALIST Lexicon [103] or WordNet [107].

LogMap then computes a large number of candidates mapping. It creates
mappings for each concept with the same index labels using all combinations
of all URIs reachable from these indexes. These mappings is the upper
bound of the mappings created by the system. After the creation of these
mappings, it will not add new mappings.

The third step of the LogMap algorithm is called module extraction. It
divides the ontologies into smaller parts (modules) which group together
concepts that naturally belong together. It is done to be able to perform
reasoning tasks involving ontology parts and candidate mappings more
efficiently. Because the computational complexity of such reasoning tasks
depends heavily on the size of the ontologies at hand.

Maximize precision

The system will then identify mappings that are very likely to be valid based
on string and structural similarity. A mapping is (typically) valid if the
lexical information of the involved entities is very similar and the neighbours
of the entities in one ontology also have mappings to neighbours of the entity
in the other ontology. This set of mappings, which is considered very likely
mappings is then diagnosed and “repaired,” usually by discarding some
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very few of these very likely mappings, using logical reasoning creating a set
of “reliable” mappings. It then creates a “semantic index” to answer complex
semantic queries faster. Using the inverted index and the semantic index, it
identifies most of the remaining mapping-candidates as not mappings by
checking that, if adding this concept, it makes some concept unsatisfiable. It
also uses concepts such as word co-occurrence to revise similarity.

LogMap also allows human interaction to help decide difficult or
ambiguous cases. It will then ask questions where the user can accept
or reject mappings.

3.1.2 Using the ontology matching system LogMap

The LogMap framework can be used as a stand-alone matcher on command
line. The program takes a number of arguments. An example of a run is:

$ java -jar logmap2_standalone.jar MATCHER file:/home/ontofile1.owl
file:/home/ontofile2.owl /home/output true

where MATCHERmeans that it is to work as a matcher. /home/ontofile1.owl
is the path to the first of the ontologies to be matched, /home/ontofile2.owl
is the path of the second ontology, and /home/output a folder to put the
resulting mapping. The true-argument says that HermiT [24] is used to
check if the output produced by LogMap leads to unsatisfiable classes.

We compiled LogMap from the source code by cloning its GitHub
(maven) project and using the command mvn clean install. The
generated jar-file was included as a library in the maven project created for
the experiments of this thesis. LogMap can then easily be used from a Java
application as follows:

LogMap2_Matcher logMapMatcher = new LogMap2_Matcher(
"file:" + firstOntologyFile,
"file:" + secondOntologyFile,
"/home/logmap_out/", true);

It will then perform the alignment between the first and second ontology
files and output it to the path provided as the third argument. It is also
possible to access the anchors and other mappings directly.

3.2 Neural language models

Neural language models are systems that use neural networks and
embeddings in vector space to model natural language. It is central to
many natural language processing tasks and it has a rather long history.
Recently it has been possible to train quite complex models on a large corpus
of data [51].
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3.2.1 Training complexity

The training complexity of a model [51] is given by the equation

O = E× T ×Q (3.1)

Where E is the number of times the algorithm passes through the entire
training set, T is the number of words in the training set and Q is the
complexity of each training example, which changes from model to model.

3.2.2 Feedforward Neural Net Language Model (NNLM)

The Feedforward Neural Net Language Model [7] proposed by Bengio,
Ducharme, and Vincent, is a simple neural network model for creating word
embeddings that was quite popular. It introduces the concept of learning
a word vectors in a distributed way. That way it was able to account for
semantic similarities of the words. The model is similar to the CBOW-model
(see Section 3.2.4). It has an input layer, projection layer with a shared
mapping function, hidden layers, and output layers. The model uses a
hyperbolic tangent (tanH) activation function on the hidden layer and the
softmax function (see Section 3.2.3) on the output layer to produce positive
probabilities from the input vectors.

The model is computationally complex between the projection and
hidden layers and the softmax-function is relatively costly.

The complexity of each training examples for the NNLM-model is:

Q = N × D + N × D× H + H ×V (3.2)

Where N is the number of previous words encoded using 1-of-V encoding
at the input layer, V is the size of the vocabulary, the dimensionality of the
projection layer is N × D and H is the hidden layer size.

3.2.3 The softmax function

The purpose of the softmax activation function [51] is to normalize an input
vector ~v with K dimensions in such a way that all dimensions will be in the
interval (0, 1) and the sum of all the dimensions is 1. This is done by, for all
K dimensions of a vector ~v = [v1 . . . vk], calculating the exponential of the
dimension divided by the sum of the exponential of all dimensions. More
formally the softmax function for vj is given by:

σ(vj) =
evj

∑K
k=1 evk

(3.3)

3.2.4 The Continuous Bag-of-Words Model (CBOW)

The Continous Bag-of-Words model, described in [51], is inspired by the
NNLM model. It got its name because the order of the word does not
influence the projection. The input layer consists of the surrounding context,
a window of words, C. Thus some words are before the target word and
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some are from after the target word. In contrast to the NNLM-model there
is no hidden layer.

The CBOW algorithm uses the words surrounding the target word (wt)
where c is the maximum distance from wt to predict wt. More formally, the
objective of the model is to maximize the average log probability:

1
T

T

∑
t=1

log p(wt | wt−c . . . wt+c) (3.4)

To calculate the probability, p(wt | wt−c . . . wt+c), one could do this by
using a function f that maps pairs of context words and target words to real
numbers. f (context_words, target_word)→ RK. This could for example be
softmax (see Equation 3.3 on the preceding page) using the scalar product
between the vector representing the context words (~vwc ) and the vector
representing the target word (~vwt ) as input, as described in [50] and [9].

As the CBOW model does not have a hidden layer, the softmax function,
with its linear complexity, becomes a major computational bottleneck of the
model.

Two alternatives are used to approximate the operation of the softmax
function. The Hierarchical Softmax and Negative Sampling.

The training complexity of each example using the CBOW model is
given by:

Q = N × D + D× log(V) (3.5)

Where N × D is the size of the projection layer and V is the size of the
vocabulary.

3.2.5 The continuous Skip-gram Model

The Continuous Skip-gram model (Skip-gram) [50, 51], is very similar to the
CBOW-model, but unlike the CBOW-model, Skip-gram tries to predict the
context words based on the current word instead of predicting the current
word based on the context. Consider a series of words w0, w1 . . . wn and a
window of words C, the Skip-gram model will try to maximize the average
log probability of the following equation:

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt) (3.6)

The complexity of each training example with Skip-gram is given by:

Q = C× (D + D× log2(V)) (3.7)

Where C is the maximum distance of the words (the windows), D is the
vector dimensionality, and V is the vocabulary size.

Skip-gram gives more weight to words close to the target word than
more distant words because close words tend to be more related. As for
the CBOW model, the softmax function becomes a major bottleneck and
negative sampling or hierarchical softmax are used with this algorithm as
well as more efficient alternatives.
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3.2.6 Word2vec

Word2vec is the name of the system proposed by Mikolov et al. in [51].
The original implementation is written in the programming language C
and allows the user to decide to use either CBOW or Skip-gram together
with either negative sampling or hierarchical softmax to produce the word
embeddings.

Using word2vec

There are several possible ways to use word2vec in applications. We have
tested 3 of them and both the gensim library and deeplearning4j library are
used extensively in the project.

The C-implementation. The original implementation of word2vec is a
multithreaded C-implementation published by Google. It comes with some
demo script and programs to explore the nearest neighbour and word
analogies. The embeddings can be trained with 200 dimensions, using the
Skip-gram model, window size 10 and output a binary model like this:

$ ./word2vec -train input_file.txt -output model.bin -binary 1
-cbow 0 -size 200 -window 10

One can play with and assess the quality of the embeddings using the
nearest neighbor using the distance and word analogy programs.

The gensim implementation. To test the gensim (python) implementation of
word2vec, we followed a guide on the home page of the gensim library [23].
The following example program reads a document from disk, trains the
word2vec model and writes the model.

import gensim

input_file = ’/home/input.txt’
output_file = ’/home/model.bin’

def read_input(input_file):
"""This method reads the input file format"""
with open(input_file, ’r’) as f:

for i, line in enumerate(f):
yield gensim.utils.simple_preprocess(line, deacc=False,

min_len=2, max_len=15)

documents = list(read_input(input_file))

model = gensim.models.Word2Vec(documents, size=50, window=10,
min_count=1, workers=12, iter=1, sg=1, hs=0, negative=25)

model.save(output_file)

We trained the model on a small fragment of Wikipedia (the first
billion bytes, downloaded and preprocessed as explained in the fastText
tutorial [106]). Asking the model what is closest to Norway it returns
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(Sweden, 0.875. . . ). Asking for the word closest to thesis it returns
(dissertation, 0.795. . . ). We tried to ask the model different questions and
the answers it gave were very good in most of the cases. It is also possible
to combine word vectors to give positive and negative concepts and it will
return the closest word to the combined vector.

The deeplearning4j Java library. The following code trains a word2vec model
using deeplearning4j. It looks up the nearest words to a token and find the
similarity between two tokens before it writes the trained model to disk.

SentenceIterator iter = new BasicLineIterator(inputFilePath);
TokenizerFactory t = new DefaultTokenizerFactory();

Word2vec model = new Word2Vec.Builder()
.minWordFrequency(5)
.iterations(1)
.layerSize(100)
.seed(42).windowSize(5)
.iterate(iter).tokenizerFactory(t).build();

model.fit();
Collection<String> closestToConference =

model.wordsNearest("http://cmt#Conference", 10);
double sim = model.similarity("http://cmt#Conference",

"http://ekaw#Conference");
WordVectorSerializer.writeWord2VecModel(model, outputFilePath);

3.2.7 The fastText model

In the word2vec system, the smallest unit is a word and one word is
represented by one vector. Each word’s vector is trained independently
of any other word’s vector, and there is no sharing of information. Mikolov
et al. demonstrate that it is possible to do vector addition of two word vectors
to combine the meaning of the words [50]. FastText [9] elaborates on this
concept to include information contained in the structure of words. This
is done by training the Skip-gram model (Subsection 3.2.5 on page 31) or
the CBOW model (Section 3.2.4 on page 30) on character n-grams instead
of words only. It represents a word as the sum of the vectors of the word’s
character n-grams. That way, the word vectors already take into account
common sub-structures of words. Bojanowski et al. remark that while the
word2vec model is unable to represent unseen words and needs much
training data to get good word vectors, the fastText model generates good
word vectors even on small training datasets and work well even on unseen
words.

FastText does not only compute word vectors, but it can also create
embeddings for classification tasks using a supervised model [38].

Using fastText

FastText can also be included in application in several ways. There is a
C++ -implementation and an implementation in the gensim python library.
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Deeplearning4J does, however, not include an implementation of fastText.

The C++ implementation. We first cloned the repository [45] and built the
source using make. We trained the model with the same Wikipedia fragment
as above. This method is described in the fastText documentation found
on [45]. For example to train a fastText model using Skip-gram, character
n-grams with sizes between 3 and 6, window size 10, 5 epochs, negative
sampling with sampling size 5 and 200-dimensional embeddings and 8
threads. It can be done using the command:

$ ./fasttext skipgram -input input_file.txt -output model.bin
-minn 3 -maxn 6 -ws 10 -epoch 5 -neg 5 -loss ns -thread 8 -dim 200

Instead of coming with additional programs to play with the embeddings
and asses the quality it is bundled in the same program and can be used
by adding parameters. It is possible to query the model for the nearest
neighbours:

$ ./fasttext nn model.bin

This command starts a prompt where one can query for nearest neighbors.
It is also possible to print the word vectors of words or work with analogies
such as if we have the relation Oslo - Norway, what is then related to
Sweden? FastText can also do text classification, for which it is a highly
competitive system[108]. This can be done using supervised training where
the training data is labeled.

The gensim implementation. Using the gensim implementation to work with
fastText is analogous to using the word2vec model. The following snippet
trains and saves a model using Skip-gram, 200 dimensional vectors, 8
threads, character n-grams between 3 and 6, a window size of 10 doing
5 epochs and with 25 negative samples.

import gensim
import logging

input_file = ’/home/input.txt’
output_file = ’/home/output.bin’

def read_input(input_file):
"""This method reads the input file format"""
with open(input_file, ’r’) as f:

for i, line in enumerate(f):
yield gensim.utils.simple_preprocess(line)

documents = list(read_input(input_file))
model = gensim.models.FastText(sg=1, hs=0, size=200, workers=8,

word_ngrams=1, min_n=3, max_n=6, sentences=documents,
window=10, min_count=1, iter=5, negative=25)

model.save(output_file)

The resulting vectors are similar to the vectors trained with word2vec.
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3.2.8 The StarSpace model

Another recent example of a neural embedding model is StarSpace, which,
in contrast to other models, aims to be a general-purpose neural embedding
model. From the paper:

[StarSpace] can solve a wide variety of problems: labeling tasks such
as text classification, ranking tasks such as information retrieval/web
search, collaborative filtering-based or content-based recommendation,
embedding of multi-relational graphs and learning word, sentence or
document level embeddings. [108]

StarSpace considers each entity as a collection of features (bag-of-
features), and learns an embedding for each of the features. Depending
on the task, the embedding of an entity can be defined as the sum of the
embeddings of its features or an optimization. It also allows the user to
choose the loss function and the similarity measure. Where L is the loss
function, (a,b) is a pair of entities in the training data, (a,b−) is a negative
example (b is not associated with a in the training data), and the sim()
function is the similarity function, the objective of StarSpace is to optimize
this function (using stochastic gradient descent):

∑
(a,b)∈E+

b−∈E−

Lbatch(sim(a, b), sim(a, b−1 ), . . . , sim(a, b−k )) (3.8)

StarSpace can in one aspect be considered to take the concepts explored
in fastText one step further. Where fastText considers a word as a set
of n-grams. StarSpace considers an entity e as a bag of features. This bag-
of-features could be, for a word, n-grams. For a document it could be
sentences or words. StarSpace is very flexible and contains many different
algorithms for embeddings, and rather than an extension of fastText it is
more a collection of tools and algorithms.

Using StarSpace as a neural language model

StarSpace was tested, along with the other models for creating word
embeddings, but our experience is that the embeddings produced are of
inferior quality and the time to train is longer. It could be that one can
get better embeddings and faster training by experimenting more with the
parameters. We did not find any official python or Java library, which makes
it more difficult to include as the part of a workflow.

To use StarSpace we cloned the StarSpace GitHub-repository[95].
Following the instructions, we installed the boost-library using apt-get
(sudo apt-get install libboost-all-dev). Then we compiled the source
successfully using make. According to the documentation we can now
train the model using a text-file. Unsupervised word embeddings are
trained using trainMode 5. StarSpace allows for much flexibility using the
parameters. Training a model can be done with for example this command:
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$ ./starspace train -trainFile out.txt -model starspace.model
-dim 50 -loss softmax -thread 10 -minCount 1 -ngrams 2
-trainMode 5 -epoch 1 -maxNegSamples 25 -lr 0.01 -ws 5

StarSpace comes with a tool to inspect the nearest neighbours. This is built
separately with make query_nn. It is possible to use the model created with
trainMode=5 to find the nearest neighbours the same way as with fastText
and word2vec.

3.3 Graph embedding and RDF-embedding

3.3.1 DeepWalk

The first approach to employ the Skip-gram model to graph embedding was
the DeepWalk approach [72]. Where G is the graph to be embedded, |E|
is the number of edges, |N| the number of nodes, w the number of walks
per node and |W| the total number of walks. The DeepWalk algorithm is
described in pseudocode in Algorithm 2.

Algorithm 2 DeepWalk

Input: w - the number of walks per node, F input_file
Output: D - a document of walks

1: G ← readGraph(F)
2: |E| ← numberO f Edges
3: |N| ← numberO f Nodes
4: |W| ← w× walkLength
5: walks = []
6: nodes = listAllNodes
7: for i→ w do
8: shu f f le(nodes)
9: for all node ∈ nodes do

10: walks.append(randomWalks(node))

Algorithm 3 randomWalks

Input: w the number of walks per node, α restart probability
Output: z

1: paths = []
2: while len(path) < w do
3: currentNode = path[−1]
4: if len(currenthNode.adjacentNodes) > 0 then
5: if randomNumber > α then
6: restartWalk
7: else
8: paths.append(random(currentNode.adjacentNodes))
9: else

10: break
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3.3.2 Node2vec

Node2vec [26] extends the DeepWalk by redefining the notion of a node’s
neighborhood. The neighborhood of a node could be viewed as following
a breadth-first search or a depth-first search or something in between. If
the next node in the walk is following a breadth-first sampling, it tends
to create embeddings that makes structurally similarily nodes similar. If
it is following a depth-first strategy, it would create embeddings where
interconnected nodes are more similar to each other. Node2vec has two new
parameters (p and q) that let the user bias the walks to be more similar to
a depth-first search or breadth-first search. It can focus on the fine details
of the close neighborhood which will make the embeddings of strongly
interconnected nodes be more similar. Alternatively, it can favor deep walks
which will tend to make structurally similar nodes more similar. Node2vec
also uses the Skip-gram model to create embeddings from the walks.

3.3.3 StarSpace as a graph embedding model

StarSpace can embed multiple types of data. Including multi-relational
knowledge graphs [108]. It can be used to predict labels for text and
to embed knowledge graphs. This can be done by considering a graph
a collection of classifications. Using subject to property, object and from
subject, property to object statements. Graph embeddings without explicitly
embedding the edge could be created using (subject, object)-pairs [3].

StarSpace has 6 trainModes (0-5) with different functionalities. It will
associate left and right-hand side. So it could for example associate the
nodes without the relation or it could be a concatenation of the subject
and property with the object. We trained with some 5,000 triples taken
from the UMLS Metathesaurus [102] where each triple was duplicated and
alternating if the predicate or the object was to be the “label” [95] with
trainMode=0. It was possible to answer queries on the form virus affects
. . . or . . . produces amino_acid_peptide_or_protein and the answers made some
sense. If we were to ask for some subject it did not have in its vocabulary
(for example truck affects) it would answer the same as for the predicate only.

3.3.4 RDF2Vec

RDF2Vec [80] was introduced in Subsection 2.6.3 on page 24. The work on
RDF2Vec demonstrates that neural language models can be used to embed
RDF-graphs by considering entities and relations between entities instead of
word sequences. It was shown that such entity representations outperform
existing techniques for representing RDF graphs.

We downloaded and built the code for RDF2Vec. It comes without
any documentation and it was quite challenging to make it work. It is
implemented in Java and has some python to glue the system together.
RDF2Vec comes with several important independent files.

The first file is WalkGenerator.java, which contain the code to generate
the actual walks. It takes as a input the path to a Jena TDB triple store
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(introduced in Section 3.5.6 on page 43), the path to the output file and a
number of integer arguments deciding how many threads are to be used,
number of paths to be created and the depth of the paths.

The WalkGenerator creates a file where all the paths generated are on
the format vr → e1i → v1i. This file has to be processed to fit the input of the
neural language system that is to be used. To be able to use word2vec, all
the − > are substituted to spaces, only the last one in all path is substituted
with a newline character. This is the purpose of the PathCleaner.java-file.
That way each element of the path will be considered by word2vec a word
and each path a sentence.

We were not able to run it and test it as a standalone system. Export
the RDF2Vec as a jar-library and importing it using the path to a maven
project in Eclipse [31], however worked without complications. Depending
on which of the implementations that are used, it can output a gzip-file or a
plain text file. We then tried to feed this into word2vec (using the gensim
library) and it created the embeddings as expected.

The RDF2Vec can be used as a library in Java like this.

WalkGeneratorRand walkGenerator = new WalkGeneratorRand();
walkGenerator.generateWalks(REPO_LOCATION, TEMP_FILE,

numberOfWalks, walkDepth,
numberOfThreads, offset, limit);

PathCleaner.cleanPaths(TEMP_FILE, CLEAN);
gunzipFile(CLEAN);

3.4 Pretrained models

This thesis investigates the usefulness of applying vector space embeddings
to the task of discovering similarities and help finding correspondences
among ontologies. One obvious way to include the use of word embeddings
in ontology alignment systems is to use pretrained vector models to match
on a word to word basis. There are already several articles discussing
the value of using such models [58, 96]. The two articles have rather
different approaches to solving the ontology alignment problem, but both
articles show that word embeddings is a valuable extension to the “ontology
alignment toolbox”. The implementation created in this project aims at
reproducing the results reported in the papers and to serve as a baseline to
compare with other ontology embedding strategies.

This pretrained model approach is useful for comparing lexical
information associated with the entities. The actual URIs can also be
compared if it contains lexical information. To be able to compare the
URIs, it must first be parsed into one or multiple words. This is achieved
using regular expressions. Comments and labels attached to the URIs are
also used as a way of finding correspondences.

The system uses OWL API to read the two ontologies and extract the
information needed from them. We focus on word embeddings at the
terminological level of the ontology. This implementation goes through
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all the classes from the first ontology O1 and checks for similarity for all
classes in the second ontology O2 first for URI (URI), then labels (L), then
the comments (C).

All the lexical information (URI, L, C) must be preprocessed to be able
to find word-embeddings. URIs are often multiple words written using the
camelCase, with an underscore (_) or hyphen (-) to separate words. Regex
is used to split these up to and do case normalization to form separate
lowercase words. Any punctuations numbers and multiple consecutive
spaces are also removed. For the labels and comments, camelCase is not
normal so it just converts all to lowercase. Hyphens and underscores are
removed and all blanks are converted to a single space. Numbers are left
untouched.

It finds the similarity measure that is highest between URI, L and C of
the candidate entities e1candidate and e2candidate from O1 and O2, respectively.
When it has compared all the entities in O2 to the one in O1 the similarity
score is compared against an equality threshold (e.g., 0.8). If the similarity
is above this threshold, the mapping (〈e1candidate, e2candidate, con f idence〉) is
added to the alignment. It is assumed that any entity has at most one
corresponding entity in the other ontology. Therefore, only the best match
for the O2-class is considered.

As a measure for equality, the algorithm uses cosine similarity to
determine the similarity between two word vectors. If any word is not
found in the pretrained model, it will be unable to find any correspondence.
Consequently, in a real-world system, it is necessary to include other ways
to determine string similarity in addition to the word embeddings. When
dealing with technical vocabulary, it can be particularly challenging to find
a text corpus that is big enough to train the model.

The algorithm for element-level matching is an adaption from [96] and
it can be represented using the pseudocode in Algorithm 4.

Algorithm 4 Element level matching using pretrained model

1: Entities1 = C1∪OP1 ∪ DP1
2: Entities2 = C2∪OP2 ∪ DP2
3: for all e1 ∈ Entities1 do
4: maxSim = 0
5: candidate = null
6: for all e2 ∈ Entities2 do
7: sim = max{Sim(name1, name2),
8: Sim(label1, label2),
9: Sim(comment1, comment2)}

10: if sim > maxSim then
11: maxSim = sim
12: candidate = e2

13: alignment← alignment + (e1, candidate, maxSim)

14: return alignment
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3.5 Triplestores and APIs

3.5.1 Jena

Jena [5] is a Java-based framework for building semantic web applications.
It comes with an API for handling RDF, RDFS and OWL 1.1. Jena supports
different RDF-store models, such as in memory and persistent on disk
storage, and it has support for SPARQL-queries. It can read and write a
variety of different formats such as turtle, RDF-XML and N-triples. Jena
allows the user to use both built-in and custom reasoners.

Jena has one important drawback for our purposes. It still does not
support OWL 2. It does, however, support reasoning and SPARQL-queries
over RDF-graphs. It also comes with services for data storage such as the
TDB-triple store (Subsection 3.5.6 on page 43) and the Jena Fuseki web-
server.

The following code example creates an in-memory ontology model on
which it performs reasoning using a built-in reasoner. It then performs a
SPARQL-query to find all instances of type owl:Class in the dataset. The
URI is printed to the console.

OntModel ontModel =
ModelFactory.createOntologyModel(OntModelSpec.OWL_DL_MEM);

ontModel.read(inputFile, "TTL");
reasoner = ReasonerRegistry.getOWLReasoner();
Model infModel = ModelFactory.createInfModel(reasoner, ontModel);

String queryString = "SELECT ?s WHERE { ?s "
+ " <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> "
+ " <http://www.w3.org/2002/07/owl#Class> }"

Query query = QueryFactory.create(queryString);
QueryExecution qe = QueryExecutionFactory.create(query, infModel);
ResultSet results = qe.execSelect();
while (results.hasNext()) {

QuerySolution result = results.next();
System.out.println(result.get("s").toString());

}
qe.close();

3.5.2 Eclipse Deeplearning4j

Eclipse Deeplearning4j (DL4J) [98] is a deep learning library, and an open
source project, written for use on the Java Virtual Machine (JVM) to work
with Java and Scala and fronted by Skymind [89]. It is designed to work with
Hadoop and able to work with both CPUs and GPUs. It requires Apache
Zeppelin to be installed on the system.

DL4J’s first element is the DataVec library which is used to prepare
and load data. This is done by using the RecordReader-interface and the
RecordReaderDataSetIterator. The DataIterator can then be passed as
an argument to the fit()-method on the model.
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The second element in ND4J is a tensor library to work with linear
algebra, tensors, and vectors. A tensor is a multidimensional array. It
includes a number (rank) where a tensor with rank 0 is a scalar, a tensor
with rank 1 is a vector, a tensor with rank 2 is a matrix, and tensors with
rank 3 and above are referred to as tensors [99].

A tensor in DL4J is represented as the NDArray object. It differs from a
common multidimensional Java-array in some aspects. It stores numbers as
a flat array contiguously in memory and it is stored off-heap, outside the
JVM which gives improved performance. It is possible to change the order
of how the array is stored in memory (row wise or column wise) which can
give improved performance in some applications.

Basic operations of ND4J are creation and algebraic operations such as
addition and multiplication on matrices. This code for example:

INDArray nd = Nd4j.create(new float[]{1,2,3,4},new int[]{2,2});
nd.add(4);
nd.mul(2);

will create the 2- matrix: [
1 2
3 4

]
and perform matrix addition and multiplications which will yield the
following 2 matrices in succession:[

5 6
7 8

] [
10 12
14 16

]

Several matrix operations are available such adding, multiplying
and subtracting matrices and transpose, adding and deleting rows and
dimensions. An example of cosine similarity is given below:

import static org.nd4j.linalg.ops.transforms.Transforms.*;

public double calculateCosine(INDArray d1, INDArray d2) {
return cosineSim(d1, d2);

}

For the subject of this thesis DL4J it is interesting primarily because it
includes support for the word2vec model. In DL4J the only implementation
of the word2vec model is the Skip-gram model (Subsection 3.2.5 on page 31).
It is not possible to use the CBOW model. A code snippet showing how
one could train a word2vec-model using DL4J is given in the word2vec
subsection ( 3.2.6 on page 32).

3.5.3 Gensim

Gensim [79] is an open source library for creating unsupervised word
embeddings from text and working with these word embeddings in python.
It is implemented in Python and Cython. The library is implemented to be
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very robust and scalable. It comes with support for many different models
such as word2vec, fastText, Doc2Vec, and Latent Semantic Indexing. In
addition it provides many tools for working with the models.

Gensim is compatible with, and typically used in combination with
NumPy [104] which is a python library for mathematical computations
that aims to provide a framework for efficient mathematical operations on
vectors and matrices. This combination lets the user easily perform custom
calculations on the vectors.

A code example using gensim to train a word2vec model is given in
Subsection 3.2.6 on page 32 and example code using gensim to train a
fastText model is given in Subsection 3.2.7 on page 33.

3.5.4 OWL API

The OWL API [30] is a Java API for working with OWL ontologies. It is
built considering the specification of OWL 2. The OWL API allows for
manipulating OWL 2 structures and OWL 2 reasoning. It also validates
OWL 2 profiles such as QL, EL, and RL.

In the OWL API, the ontology is viewed as a set of axioms and
annotations. Unlike Jena, the axioms and classes are not at the level of
RDF triples. The OWL API classifies the entities into classes (C), object
properties (OP), data properties (DP) and instances. These sets are assumed
to be disjoint.

In Jena one would define OWL classes as follows (assuming that ’model’
is a OntModel object):

OntClass a = model.createClass(URI + "a");
OntClass b = model.createClass(URI + "b");
a.disjointWith(b);

In OWL API, one would work on the level of axioms and would achieve
the same by doing something like this, assuming that ’df’ is a DataFactory
object and ’o’ is an OWLOntology object:

OWLClass a = df.getOWLClass(URI + "a");
OWLClass b = df.getOWLClass(URI + "b");
OWLDisjointClassesAxiom disj = df.getOWLDisjointClassesAxiom(a,

b);
o.add(disj);

A short tutorial and basic instructions on how to work with the OWL API
are found in [46].

3.5.5 RDFox

RDFox [54] is a RDF triplestore reasoner developed by the University of
Oxford which is highly scalable and efficient. It is written in C++ but
comes with APIs for both Java and Python. The model is in-memory for
performance, so the scalability is bound by RAM. Still, it is quite economical
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when it comes to memory usage per triple. Both reasoning and SPARQL-
querying are parallelized. RDFox is used for the creation of the ontology
projection.

The RDFox store can be used in Java to store a model, read from a file,
and to query the model using a SPARQL-query as follows:

DataStore store = null;
try {

store = new DataStore(DataStore.StoreType.ParallelSimpleNN);
store.setNumberOfThreads(numberOfThreads);
store.importFiles(new File[] { new File(inputFile) });

TupleIterator tupleIterator = null;
String queryString = "SELECT ?x WHERE { ?x ?y ?z }";
try {

tupleIterator = store.compileQuery(queryString);
if (tupIt.getArity() == 0) {

return null;
}
for (long multiplicity = tupleIterator.open(); multiplicity >

0;
multiplicity = tupleIterator.advance()) {

Resource resource = tupleIterator.getResource(0);
String resourceString = resource.toString();
System.out.println(resourceString);

}
finally {

if (tupleIterator != null) {
tupleIterator.dispose();

}
}

}
} finally {

if (store != null) {
store.dispose()

}

3.5.6 Jena TDB

Jena TDB is Jena’s RDF store. There exists a newer generation TDB2, but the
original TDB is the one that is used in RDF2Vec. It is described as having
high performance and supports RDF storage and query. It uses a folder on
the hard drive to store the RDFs and allows normal Jena transactions to
work with the store. Jena further comes with some scripts to load triples into
a TDB triple store from a file without using Jena transactions tdbloader and
tdbloader2. RDF2Vec uses this library to hold the data for the generation
of the walks, which are generated using SPARQL-queries.

The store can be populated from command line using the scripts like
this:

$ tdbloader --loc /home/test/repo /home/input.ttl
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Next there is an example of how the model could be created and
populated with data from a turtle file in Java using the Jena API. It is
possible to use the model without using the transaction constructs, begin,
commit, and end, but it is recommended.

Dataset dataset = TDBFactory.createDataset(REPO_LOCATION);
dataset.begin(ReadWrite.WRITE);
model = dataset.getDefaultModel();
model.read(inputFile, "TURTLE");
dataset.commit();
dataset.end();
dataset.close();

3.6 Ontology projection tools

The Optique team developed an ontology projection tool [94]. The
implementation is available at [19]. Some of the most important classes,
with methods and variables are illustrated in Figure 3.1 on the next page.

This ontology projection tool is implemented in Java and uses OWL API
to work with the ontology and to create a navigable graph of an ontology.
The graph is stored using RDF4J (Sesame). The ontology projection tool uses
HermiT [24] or ELK [40] together with RDFox [54] as reasoning engines.
Projecting the ontology to a graph is important for applications that need
to navigate an ontology like a graph because of the challenges discussed
in Subsection 2.6.5 on page 26. With the projection, the ontology can be
navigated like a normal RDF-graph.

Let O be the ontology that we are to project, C1, C2, . . . Cn are classes in
O, Ro is an object property in O, and R−o is the inverse property of Ro. Let
Rd be a datatype property in O, dt a datatype. x and y are numerical values,
restriction is one of the restrictions used in OWL-ontologies like for example
some, only, min, max, exactly restrictions. l is a literal and l1, l2 . . . ln
are enumerations.

To create the navigation graph G of the ontology O, all the classes (C) and
datatypes (dt) in O are projected to nodes in G. The edges are added to the
graph according to the axioms of the ontology. The rules are summarized
in Table 3.1 on the next page. Most of the conditions are axioms in the
OWL 2-ontology, but some also include checking if G contains an edge.

Domain and range expression are translated to edges. If it contains a
class expression using union or intersection an edge is added between all
named, pertaining classes. Object property restrictions are added to edges as
well as role chains. Inverse property edges are added and edges are added
through top-down and bottom-up propagation through the subClassOf and
subPropertyOf axioms. The same is done for the data properties including
property restrictions, domain and range expressions and top-down and
bottom-up propagation.

Using eclipse, we exported a jar-file from the implementation available
at [19]. The file was added to the maven project, and using this library, it is
possible to create, access, and save the navigational graph.
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Figure 3.1: Core components of the ontology projection from Optique

Condition1 Condition2 Edge in G

A SubClassO f : Ro restriction B A Ro−→ B

Ro restriction B SubClassO f : A A Ro−→ B

Ro Domain : A Ro Range : B A Ro−→ B

A SubClassO f : Ro value b b type B A Ro−→ B

Ro InverseO f : R−o G includes B
R−o−→ A A Ro−→ B

A SubClassO f : Asup G includes Asup
Ro−→ B A Ro−→ B

Asub SubClassO f : A G includes Asub
Ro−→ B A Ro−→ B

A SubClassO f : Rd restriction dt A
Rd−→ dt

Rd Domain : A Rd Range : dt A
Rd−→ dt

A SubClassO f : Rd value l l type dt A
Rd−→ dt

A SubClassO f : Asup G includes Asup
Rd−→ dt A

Rd−→ dt

Asub SubClassO f : A G includes Asub
Rd−→ B A Rd dt

A SubClassO f : Rd restriction{l1 · · · ln} A
Rd−→ li

Rd Domain : A Rd Range : {l1 · · · ln} A
Rd−→ li

A SubClassO f : Rd value li A
Rd−→ li

B SubClassO f : A A broader−−−−→ B

Table 3.1: The rules used to construct the navigational graph from the OWL 2
ontology
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3.7 Datasets

Here, we describe some of the datasets that was used to test the systems.
All the ontologies are from the OAEI tracks, and the OWLViz view tool in
the protegé ontology editor was used to create the class hierarchies [52, 73].

3.7.1 Ekaw

The ekaw ontology [61] is one of several ontologies describing conferences.
This ontology has 74 classes, 33 object properties and no datatype properties.
It uses the SHIN DL expressiveness. The class hierarchy of the ekaw
ontology is shown in figure A.1 on page 112.

3.7.2 Cmt

The cmt is another ontology in the OAEI’s conference track. It has 36 classes,
10 datatype properties and 49 object properties. Its DL expressiveness is
ALCIN. The class hierarchy of cmt is shown in A.2 on page 114.

3.7.3 The anatomy track

The OAEI anatomy track [61] consist of two ontologies; mouse and human.
It is the task of finding the alignment between the mouse anatomy ontology
with 2744 classes and 3 object properties and the human anatomy ontology
with 3304 classes and 2 object properties. The human anatomy ontology is
a fraction of the NCI Thesaurus [53] and the mouse ontology is the Adult
Mouse Anatomy [29]. In these ontologies, the URIs contain no lexical
information. The lexical information is found in the rdfs:label field, and
can be quite technical.

3.7.4 The largebio track

The OAEI largebio track [61] consist of three real-world ontologies from
the biomedical domain. The Nathional Cancer Institute Thesaurus (NCI)
ontology [53], the SNOMED CT ontology [92] and the Foundational Model
of Anatomy (FMA) ontology [21]. Several matching tasks can be performed
on this track:

• FMA - NCI small fragments (3,696 and 6,488 classes, respectively)

• FMA - NCI whole ontologies (78,989 and 66,724 classes, respectively)

• FMA - SNOMED small fragments (10,157 and 13,412 classes, respec-
tively)

• FMA - SNOMED large fragments (78,989 and 122,464 classes,
respectively)

• SNOMED - NCI small fragments (51,128 and 23,958 classes, respec-
tively)
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• SNOMED - NCI large fragments (55,724 and 122,464 classes, respec-
tively)

The reference alignments on the largebio track are created by using the
UMLS [37] and in many instances contain multiple possible mappings that
could lead to unsatisfiable classes. These are, however, marked with a
?-mark in the reference [59].
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Part II

The project
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Chapter 4

Embedding OWL 2 Ontologies
with OWL2Vec

There are two fundamentally different approaches for the use of vector
space embeddings for ontology alignment, ontology analysis, and ontology
similarity. The first approach is to use pretrained word embeddings as
described in Section 3.4 on page 38.

These embeddings are usually trained on a large general corpus of text
such as Wikipedia, but can also be trained on a corpus from a specific
domain. Another approach is to embed the semantic structure of the
ontology itself. In this approach, the embeddings are not trained beforehand
but instead created as part of a workflow on the ontology or ontologies at
hand.

We have explored several strategies to create semantic embeddings
from OWL 2 ontologies. First, we tested RDF2Vec on the projection of an
ontology. Secondly, we implemented a system that simulates RDF2Vec, but
with weighted edges (OWL2Vec). We experimented with several strategies
to improve this system, and as a result, we implemented several separate,
specific strategy systems. Finally, we implemented a walks generation
strategy that works similar to node2vec (OWL2Vec+). This implementation
also incorporated the strategies learned from many of the former systems
and can “simulate” some of their behaviors. Although not entirely, as the
walks generation strategy is different.

Besides, we have explored different systems for the generation of the
embeddings from the walks. Likewise, for the task of ontology alignment,
we have examined some strategies to improve recall. The components
we have explored for the generation of the embeddings are illustrated in
Figure 4.1 on the next page. The ontology alignment strategies can be seen
in Figure 4.2 on the following page. To help the user identify the names of
the walk generation systems among strategies and descriptions of systems,
the names of all walk generation systems are printed in boldface.

This chapter begins by discussing the limitations of using RDF2Vec
to embed ontologies. Section 4.2 on page 53 introduces OWL2Vec, a
system implementing different strategies to improve RDF2Vec for ontology
embedding. In Section 4.3 on page 54, we describe OWL2Vec+, a different
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Figure 4.1: The components of the creation of the embeddings

Figure 4.2: The alignment systems

system for embedding OWL 2 ontologies based on node2vec. Section 4.4
on page 61 describes approaches and strategies we employ to use semantic
embeddings for ontology alignment. The next section (Section 4.5 on
page 63) discusses the role of properties in embeddings, while Section 4.6
on page 64 evaluates how labels and synonyms can be exploited to improve
the embeddings. Section 4.7 on page 65 is dedicated to the evaluation of the
many parameters that can be adjusted to tweak the system.

4.1 Limitations of RDF2Vec

RDF2Vec is a system designed to create embeddings from RDF graphs [80],
and it shows excellent performance for a variety of tasks such as data
mining. It works by first selecting all entities in the graph, then creating
walks starting from each of the entities. For our purposes, however, it is
necessary to change this. By using the following SPARQL-query we select
all classes instead of all entities.

SELECT DISTINCT ?s WHERE { ?s
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class> . }

The RDF2Vec is not able to walk an OWL 2 ontology as is because of the
challenges discussed in Subsection 2.6.5 on page 26. The ontology must first
be projected to an RDF-graph. Only then, and by using the result of the
SPARQL-query above, is it possible to walk the OWL ontology. This strategy
is, however, insufficient for our purposes because it does not take into
account the importance of common ontology concepts such as subclasses
and disjointness. For RDF2Vec a datatype property is as important as a
subClassOf-relation. Using these walks and training embeddings with a
system such as word2vec could return subclasses as very similar to the
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superclass, and two distinct classes appear close to each other because both
have a subClassOf-relationship to some class. Even the disjointClasses-
axiom could make classes appear as candidates for equal classes because
any axiom makes them appear close in the document. We observed similar
behavior in Onto2Vec [90] and the OPA2Vec-system [91], as discussed in
Section 2.6.4 on page 25.

4.2 A family of RDF2Vec inspired systems for OWL 2

To overcome some of the limitations of using RDF2Vec, we implemented
several strategies to generate random walks in ways that mirror the
RDF2Vec [80] random walk strategy. We call these strategies OWL2Vec.
These strategies rely on a completely new implementation tailored to
the specific use of walking navigational graphs projected from OWL 2-
ontologies. Since datatype properties are not yet considered in OWL2Vec
(see Section 4.5 on page 63), we adapted the ontology projection tool
described in Section 3.6 accordingly. The implementation is multithreaded
to improve runtime on large ontologies.

We use SPARQL-queries to find classes and properties. For each of the
classes in the ontology, we find the adjacent edges and nodes with a given
depth and create a graph of all potential walks where all edges have weights.
This graph is then used to generate all the walks for the given class. The
system adds weights (see Table 4.1) to the edges according to the axiom
created by the graph projection tool. It generates walks by taking one step
at a time. The direction of the next step is determined by randomly picking
an edge from the set of weighted edges, but the probability of picking an
edge is relative to its weight. It is, however, worth mentioning that all the
edge weights are easy to change, and could be considered parameters that
the user can tweak to fit a specific application.

Labels and comments are left out of the walks as they do not contribute
to the ontology structure. We also introduce a possible random jump as in
page rank algorithms. The purpose of the random jump is to avoid dead
ends and loops, and it can only choose nodes in the graph created for the
class at hand.

The top-concept, owl:Thing, is omitted from the walks as it does not add
any useful information. Furthermore, owl:Thing increases the complexity

Type of edge Weight

subClassOf 1
type 0
object property 0.2
random jump 0

Table 4.1: Suggested weights used for the probability of the next step in
random walks
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of the graphs, and it adds noise by putting unrelated classes together. The
inverseOf axiom is also omitted as this would make inverse properties too
similar.

Let Op be the projected ontology to be walked (Op could be the union
of two or more ontologies, potentially with anchor mappings), Q the list of
all classes and properties and q is either a property or a class. Further, let
G be the walk graph containing the edges and nodes reachable by k steps
in the graph, let e be an edge and n a node and D the walk document to be
created. Also, let m be the number of walks to create for each n.

Algorithm 5 OWL2Vec: a general RDF2Vec inspired system

1: Q← All classes and properties in Op
2: for all q ∈ Q do
3: G ← get edges and nodes within k steps to q
4: for all e ∈ E do
5: e← add weight based on the edge type
6: W ← generate m random walks using the edges and weights
7: D ← write the walks to the document

We have created several variants of this system to test different strategies:
(i) RDF2Vec is using the RDF2Vec-system with the new SPARQL-query
on the projection graph (ii) OWL2Vec structural, the system described
above. (iii) OWL2Vec subClass, a system that creates all combinations
of subClassOf-relations until walk depth and ignores all other relations and
the number of walks per node. (iv) OWL2Vec synonyms, a system that
outputs either the URI or randomly substitutes the URI with one synonym
in the walks1. (v) OWL2Vec 2doc, a system that outputs two documents.
One document containing the URIs only, and another document that prints
a random synonym as a representation for the URI, but excluding the URI.

4.3 OWL2Vec+

There are several challenges with the systems above. First of all, each system
is locked to a single strategy and to change walks strategy it is necessary to
change the entire system. Second, they have many similarities, therefore
maintaining them all would be tiresome. Third, they are too slow to scale
effectively on large ontologies and at the same time being able to do long
walks. The above systems are only scalable using very short walks. Fourth,
it is desirable to be able to bias the walks in order to get better embeddings
for specific applications.

We, therefore, implemented a more flexible OWL-ontology embedding
system, OWL2Vec+. In addition to using ideas from the systems in 4.2 we
including ideas from the node2vec-system 3.3.2, add more parameters for
the user to influence how the walks should be created, and implement a
new, more efficient algorithm for walks creation.

1The role of the synonyms is discussed in section 4.6 on page 64
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We store all nodes in an internal structure along with each node’s
immediate neighborhood. That way, there is no need to create a
neighborhood graph for each node. The entire graph is in memory and
can be reused. This graph-in-memory-approach could potentially create
scalability issues. Nonetheless, we have tested large ontologies on this
implementation with no memory problems.

OWL2Vec+ is also implemented to use multithreading. When needed,
it will add synonyms, and a superClass-relation (to do the reverse of the
subClass-relation). Besides, it is possible to add entities to the classes.

The underlying implementation of the OWL2Vec+ algorithm is de-
scribed in pseudocode in Algorithm 6 on the following page. For brevity,
this code is very simplified.

4.3.1 Biased walks

To control the direction of the walks, we no longer look at only the last node
in the current walk and choose a random next edge from that node. Instead,
we let the last two nodes influence the choice. Let the last node in the walk
be dst, and the one before that be src. We still consider only the edges from
dst as potential next edges, but src can influence the weight of the edges.

Two variables, p and q, are used together with the src and dst nodes to
bias the walks. A high p will penalize edges returning from dst back to src,
thus reduces the likelihood that a node is repeated. A low p increases the
likelihood of repeating an edge. It means that having a high p will make the
walks maintain the direction of a path while a walk with low p will keep
going back and forward between two edges if that is possible (depending
on the available edges and the direction) and covering in more detail the
close proximity of the source node. A low p-value tends to bring siblings
and parent nodes closer together, thus giving more weight to the immediate
neighborhood and less to the larger graph structures. A high q value, on the
other hand, will penalize edges pointing to nodes without edges returning
to the src-node. A low q-value will have the opposite effect of favoring
nodes that cannot return to the src. Thus low q will have the effect of going
faster away from its source node. Using these parameters, it is possible to
bias the embeddings to focus primarily on structural similarity or primarily
on closely connected classes.

4.3.2 Complexity

Choosing a random edge when using weights involves iterating over a
possibly large amount of edges. Node2vec uses alias sampling to choose
the next edge. The alias set is calculated beforehand. Node2vec can do
this as all edges have equal weight before using the p and q variables. In
OWL2Vec+, the sampling has to be done after the creation of the node graph
because we deal with weighted edges. Doing alias sampling on each node
would give us much overhead. We have to iterate once over all the node’s
edges to update the weights according to the p and q parameters, but we
can avoid iterating again for the lookup by using a treemap structure to
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Algorithm 6 OWL2Vec+

Input: p, q, number_o f _walks, depth, number_o f _threads,
Output: D

1: N ← all_classes
2: for all n ∈ N do
3: n← add_all_adjacent_edges
4: n← add_all_synonyms (if requested)
5: for i = 0; i < number_o f _walks; i ++ do
6: for all node ∈ N do
7: GENERATERANDOMWALK(node)

8: procedure GENERATERANDOMWALK(node)
9: walk = [node]

10: while l < depth do
11: current = walk[l − 1]
12: if l = 1 then
13: e← CHOOSERANDOMEDGE(current)
14: if no next edge then
15: break
16: l.append(e.outNode)
17: else
18: previous = walk[l − 2]
19: e← CHOOSERANDOMEDGE(previous, current)
20: if no next edge then
21: break
22: return walk

23: procedure CHOOSERANDOMEDGE(srcNode, dstNode)
24: if dstNode has outEdges then
25: E← outEdges
26: H ← newTreeMap f or weighted edges
27: for all e ∈ E do
28: if e.outNode = srcNode then
29: e.weight/ = p
30: if e.outNode has no edge with outnode = srcNode then
31: e.weight/ = q
32: add e to H according to weights
33: nextEdge← H.next() using randomNumber
34: return nextEdge
35: else
36: return null
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store the edges with the obtained weight. The complexity of creating the
treemaps would be O(|E|log|E|). Where |E| is the number of edges in
the graph. The put operation runs in logN time, and each edge must be
inserted into a collection of edges. In practice each treemap will be small,
not at all near |E|. Considering thus the size of each map to be a relatively
small constant (the average number of adjacent edges of a node). We expect
the runtime of the creation of the treemaps to be close to O(|E|). Once
created, this structure can do the lookup in O(log |E|) time. As a result,
the complexity of the creation of the walks will be O(|N| + |E|). It will
iterate over all nodes N, then insert each edge into a treemap to calculate
the weights. Looking up the weights will be a comparably cheap operation
after the treemaps have been created.

4.3.3 Walking up and down

We add a returning edge from parent to child for each subClassOf-edge.
The addition of this edge is useful for the OWL2Vec+ because then, instead
of terminating the walk when it reaches a dead end, it can change direction
and try another path.

The system does not implement shuffling of the nodes between each
walk as node2vec because it makes the implementation slower. It would
imply more thread synchronization. Now each thread can start on the next
iteration after writing and do not have to wait for the other threads to finish
writing. As all the other operations are done in memory, the file writing
operation with thread synchronization can become a limiting factor.

The most important relationships in the ontology are the hierarchical
relationships. The hierarchy is the backbone of the ontology and is
represented in OWL by a set of subClassOf-relationships. If the walks
are created only by following these edges, it will generate a series of short,
similar walks as illustrated in Figure 4.3 on page 59. The walks will be short
because the hierarchy is usually not high enough to generate, for instance
50 steps. The walks will be similar because when starting from the bottom
going up it will, except for complex subClass-structures, have only one way
to go towards the top.

On the other hand, if we were to reverse the subClassOf-relation,
starting on the top, we can go along many possible paths towards the
bottom as shown in Figure 4.4 on page 59. However, still, when we reach
the bottom node, we would be at a dead end. Some walk systems (e.g., page
rank) solve the dead end problem by adding the possibility of a random
jump. We find, however, that this situation can be solved effectively and
adds less noise by adding both subClassOf and the reverse superClassOf-
relation. By adding these edges, we are virtually creating a non-directional
OWL-hierarchy and can walk in both directions as shown in Figure 4.5. If
we combine this strategy with the p-parameter, which adjust the likelihood
of returning to the last node, the walks can go in one direction only (at any
given time). Either up or down until it gets stuck. Then, it can reverse the
direction and go the other way until it gets stuck again. If it can walk both
directions, the system can generate walks from one sibling to another via
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the parent node. Walking between siblings is, in contrast, not possible in a
system that walks the hierarchy using subClass-relations only.

We can give different weights to the subClassOf-edge and the reverse
edge. It could be argued that the superClassOf-edge should have a slight
preference since there are more nodes at the bottom of the hierarchy than at
the top. Thus we should have the walks spend more time in the lower parts
of the hierarchy. But not so much that it could not go up a few steps before
it goes back down. To favor the superClassOf-edges would also increase
the likelihood of getting siblings in the same window.

Nonetheless, favoring superClassOf-edges has a major drawback. It
does not conserve the subsumption of the embeddings. The concepts at
the top of the hierarchy are more general and more important. Having the
subClassOf probability higher than that of the superClassOf tends to keep
more of the hierarchy’s subsumption in the embeddings. In other words, it
makes a subClass’s vector more similar to that of the parent than to that of
the siblings. Consequently, we decide to set the superClassOf-edge is to 0.7
and leave the subClassOf-edge at 1.0.

To understand why we should be able to walk both ways, recall that the
purpose of the walks is to create embeddings using, for instance, the Skip-
gram or the CBOW algorithm. As we have seen in Section 3.2 on page 29,
Skip-gram and CBOW include words both from before and after the target
word, so the final order of the words is irrelevant. Only the distance to the
target word is important. Words outside the window are not considered, and
words that are closer to the target word are given higher weight in the Skip-
gram model than more distant words. Consequently, the strategy of walking
both ways should not be changing the actual embeddings, just enabling the
walk-algorithm to do more and varied walks in a node’s neighborhood.

The object properties are also important. Walking on object properties is
the only way we can capture the relationship between separate hierarchies.
Consequently, these edges can be seen as bridges between otherwise
separate hierarchies of unrelated items as depicted in Figure 4.6 on page 60.
The weight for these edges should be low to avoid noise. Because they
usually link different, related concepts.

4.3.4 Optimizations

The ontology projection stores the triples in a turtle-file, and the graph
is read from file and stored in a triplestore. The node lists are created
by passing SPARQL-queries to the triplestore. To optimize the speed of
accessing the triples, we have used the RDFox data store. That way all triple
access is in memory and SPARQL-queries are parallelized. In order to apply
weights to the edges as described, a fast way is to store all the nodes in
memory with their edges. The nodes are stored by first reading in all the
nodes using a simple SPARQL-query. At the same time, the system creates a
HashMap<String, Node> to be able to look up the nodes when it has the
URI. Then, for each node, it finds all (relevant) adjacent edges and adds
them to the node’s edge list. Then, the out-node is added to each of the
edges’ node-list. To add the out-edges, the system needs to look up the
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Figure 4.3: There is only one possible walk from e when following the
subClassOf-edges. Black, straight lines represent edges. Curved lines
represent the walk

Figure 4.4: There are several possible walks from a when following the
superClassOf-edges. Black, straight lines represent edges. The other lines
represent two of the possible walks
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Figure 4.5: How the walks can look like if it is possible to go in both
directions. The black lines are possible edges, and the dashed lines represent
a possible walk along the edges

Figure 4.6: How an object property can provide a link between two
hierarchies of unrelated items. The black straight lines represent edges,
and the dashed lines represent a possible walk along the edges.
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correct node-object using the name found in the SPARQL-query. How this is
done, has a considerable impact on performance. It can find it by searching
the node list in O(N), or by using the HashMap in almost O(1).

The random selection of the weighted edges using a treemap structure
still takes time. We improve this first by returning whatever edge it has if the
node has only one edge. Second, we have added the ability to cache the edge
collections (the treemaps) in a 2-dimensional ConcurrentHashMap, and the
experiments in Section 5.5 on page 89 suggest substantial efficiency gains.
The caching of the edge collections can be turned on using a parameter.

The rendering of the nodes in the document also has a significant impact
on the time to generate the document. It is because it uses different string
operations such as regex to parse and normalize the strings. By caching
these strings in the Element object instead of calculating them each time a
node or edge is referenced, gives significant speedup.

4.4 Alignment strategies

In order to use the ontology embeddings for ontology alignment, we embed
the different ontologies in the same vector space. We need, however, a way
to “align” the embeddings. Either we can assume that there is a functional
relationship between the embeddings of the different ontologies, and use
the anchors to find that relationship. Alternatively, we can insert the anchors
into the ontology before the projection, and as a consequence generate walks
between the ontologies.

Aligning the ontologies using a transformation matrix

We begin by taking the union of the two ontologies that are to be aligned
and create a projection of the combined ontology. The OWL2Vec-tool uses
this graph to generate embeddings.

Having this embedding model, we apply the idea from [49] to use
a transformation matrix. To find the transformation matrix, we need
anchors. The anchors could come from any source as long as they are
of high confidence. Using the correspondences, we can, by stochastic
gradient descent, estimate a linear relationship (i.e., the transformation
matrix) between the two ontologies. Then, we can use this relationship to
estimate where, given a vector from the first ontology, the position of the
corresponding vector from the other ontology should be in the vector space.
As for the pretrained word embeddings approach, we use cosine similarity
to determine the similarity of two vectors.

The transformation matrix approach is expressed in pseudocode in
Algorithm 7 on the following page.

Aligning the ontologies by including the anchors in the projection

The embeddings of the elements of two distinct ontologies can be aligned
in the same vector space using anchors. If no anchors are provided, the
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Algorithm 7 Structure alignment using a transformation matrix

1: OU = O1 ∪O2
2: G ← OU projecting to graph
3: D ← G generate random walks
4: M← D using word2vec
5: input anchors A
6: Dict← [A]
7: T ← Dict infer transformation matrix
8: for all e ∈ O1 do
9: maxSim = 0

10: candidate = null
11: for all e2 ∈ Entity2 do
12: sim = max{Sim(name1, name2),
13: Sim(label1, label2),
14: Sim(comment1, comment2)}
15: if sim > maxSim then
16: maxSim = sim
17: candidate = e2

18: alignment← alignment + (e1, candidate, maxSim)

19: return alignment

concepts of the different ontologies would be embedded separately in
different parts of the vector space. We will need at least one anchor in
each cluster to get the ontologies to align on all topics. Nevertheless, the
more anchors we provide, the better the ontologies will align.

We start by reading both ontologies (O1 and O2) from files using
OWL API, Then, we create a third ontology (OU), which starts as the
union of O1 and O2, and then we add the anchors as equivalentClass,
equivalentObjectProperty and equivalentDataProperty-axioms. These
anchors will create bridges between the two ontologies for the walks. The
projection tool will later perform reasoning (using the Pellet or Elk reasoner)
on the new ontology.

This reasoning will, in case of statements such as C R D and E ≡ C, add
the corresponding statement, E R D. The OWL2Vec tool uses the projected
graph to generate embeddings. If it has enough anchors, the anchors should
help to move the embedding of the two graphs so that similar concepts
come close together. One could then compare the entities as in the other
approaches by checking if the cosine similarity is above or below some
threshold.

Alignment strategy variations

We are using several variants based on the two general strategies described
above: (i) transformation matrix is the system using a transformation matrix
described in Algorithm 7. (ii) best candidate is the system using anchors
in projection described in Algorithm 8 on the facing page. (iii) all relations
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Algorithm 8 Structure alignment by directly including the anchors in OU

1: anchors← LogMap (or any other methods for finding high confidence
mappings)

2: OU ← O1 ∪O2
3: for all (a1, a2) ∈ anchors do
4: OU ← OU + (a1 ≡ a2)

5: G ← OU by graph projection
6: D ← G by random walks
7: M← D by word2vec
8: for all c1 ∈ C1 do
9: maxSim = 0

10: candidate = null
11: for all c2 ∈ C2 do
12: sim = max{Sim(name1, name2),
13: Sim(label1, label2),
14: Sim(comment1, comment2)}
15: if sim > maxSim then
16: maxSim = sim
17: candidate = c2

18: alignment← alignment + (c1, candidate, maxSim)

19: return alignment

does not find the best, but includes all the mappings that are above the
equality threshold. Finding all the possible correspondences is useful to
observe how much recall it is possible to obtain with a certain equality
threshold or system. (iv) disambiguate uses the structural embeddings with a
lower equality threshold to find a set of possible matches. Then it uses edit
distance to choose one of them. (v) two documents also uses the structural
embeddings to find a set of possible matches, but it uses embeddings of the
lexical information in the ontology, created from the second document, to
disambiguate.

4.5 Properties in the embeddings

4.5.1 Object properties

The object properties are useful when creating the embeddings because
they help to add additional characteristics to the different classes and by
providing a path to another part of the ontology hierarchy. That way it
makes us able to capture the relationship between for example author
and paper. It is, however, not easy to create useful structural embeddings
for the actual properties because there is often less information about the
properties in an ontology than the classes. Besides, they tend to connect
very different concepts. In contrast, subClass-relations relate only similar
concepts. Consequently, we narrow the focus in this thesis to the creation of
class-embeddings only. Nevertheless, the system can output embeddings
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for object properties, but they must be considered less reliable.

4.5.2 Datatype properties

Another, even more significant, challenge with the random walks is for the
data properties. These properties will always be at the end of a walk as
they always relate some class to a string (a datatype). It makes all datatype
properties appear as the structurally equal. The embeddings system will
mostly ignore string because it by default ignores low-frequency words.
The only context they have is a single class. It is, as far as we understand,
impossible to distinguish them using walks only.

In order to distinguish datatype properties, it would be necessary to
use other methods. First one should introduce a way to distinguish data
types, cardinality restrictions and so on. Even then methods such as
string comparisons, pretrained word embeddings are likely to be needed to
distinguish datatype properties. Because of these challenges we choose to
leave this for future work and ignore datatype properties for now.

4.6 Labels and synonyms in the embeddings

A challenge for the embeddings model described above is that, for some
classes, it is difficult to disambiguate subClassOf-relations. An example
from the ekaw-ontology is:

• Late_Registered_Participant v Conference_Participant

• Early_Registered_Participant v Conference_Participant

As there is no more information about these classes in the ontology they are
structurally equal and not possible to distinguish using purely structural
methods.

As described in subsection 4.2, labels and comments are left out of the
walks. They do, however, contain useful information. In addition to the
lexical information in the labels and comments, one should also use potential
information in the URIs by parsing and extracting the words.

Instead of including labels and comments as structures in the structural
walks these descriptions could be used to substitute the URIs, so they are
included in the walks at the correct place. There are several ways this can be
done. All synonyms could be joined into one string separated by whitespace.
This string, containing all related lexical information to a concept could
randomly substitute the URI. Alternatively, one synonym chosen at random
could substitute the URI, or we could choose to exclude the URIs entirely.
While this would not be able to replace the addition of anchors in the
ontology, it will make concepts that contain the same words more similar.
It would also influence the vectors of its surrounding words (within the
window).

Another strategy is to create an additional document so that we have
two documents for the generation of embeddings. One containing the
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structural relationships using the URIs and one document containing the
lexical information, this would of course also have structural information,
but all equal words across the ontologies would be represented with one
vector. These vectors would again influence the vectors of its context words.
One will then have to combine the two similarity scores obtained by the two
documents.

4.6.1 Sentence vectors

Comments and labels and even URIs often consist of more than one word.
Having a sentence makes it impossible to calculate the cosine similarity
directly. There are several proposed ways to cope with this situation, and
a simple method is to use the average vector of all the words and take
the cosine similarity with the average vector of the sentence of the other
ontology. This approach has, according to [41], shown to be a good way to
represent a sentence, but not without limitations. One will, for example,
lose information about word order. Additionally, it could be a good idea to
remove stop words that do not add meaning to the sentence. For example the,
and. These words would make very different sentences more similar (e.g.,
The dog and the emotion would be 50 % equal). Using the average vector, the
sentences will be more similar when there are more similar words regardless
of the importance of the words. Finding the average is done by adding
up dimension for dimension and dividing each dimension on the number
of words. Another approaches commonly used is adding or subtracting
word vectors. The resulting vector can be normalized if necessary. The
cosine distance does not depend on the length of the vectors, so adding and
averaging should give similar results.

The focus of the thesis is not about combining word vectors into sentence
vectors, so we keep it simple and use averaging. However, we would like to
highlight this because it is an important issue that we encounter often, and
it is likely to influence the results.

4.7 Hyperparameters

Any machine learning system has parameters that have to be tuned before
training. This system is no exception.

4.7.1 Dimensions

The dimension of the embedding determines the precision of the model.
If the dimension is high, more properties could be preserved. Preserving
more properties is useful if the aim is to create an as good as possible model
of the graph. On the other hand, having a too precise model could lead to
overfitting. For example, if the goal is to predict missing information in the
graph, it is necessary to allow for some generalization. A high dimensional
model takes more time to train than a low dimensional model. A low
dimensional model will mean more generalization and a high dimensional
model will be more detailed.
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Ristoski and Paulheim report that the vectors with a dimension of
500 generally performed better than the vectors of 200 [80]. Grover and
Leskovec, on the other hand, report that performance tends to increase up
to dimensions of about 100 [80]. After that, there is not much improvement.

4.7.2 Skip-gram or CBOW?

Both word2vec and fastText allows the user to choose between Skip-gram
and CBOW. Ristoski and Paulheim observe in [80] that the Skip-gram-model
performs better than the CBOW-model on RDF-graphs.

Mikolov says in a google group [48] that Skip-gram works better than
CBOW on a small amount of training data while CBOW is much faster to
train and gives better performance on frequent words.

4.7.3 Hierarchical softmax or negative sampling?

Ristoski and Paulheim comment that empirical studies show that negative
sampling tends to give better performance than hierarchical softmax [80].

4.7.4 Character n-grams

For the fastText algorithm, one has to decide the max and min length of
the n-grams. Default values are 3-6 characters, and according to [9] this is
an arbitrary value that seems to work well.

4.7.5 Window size

Another parameter that affects the quality of the embeddings is the window
size. A typical value is 5, but increasing the window tends to increase the
quality of the embeddings.

4.7.6 Epochs

The Epochs count says how many times the training will be performed on
the dataset. If we have little data it can be necessary to train many times.
FastText claims to train on less data than word2vec do. If we do too many
epochs, we risk overfitting.

4.7.7 Node2vec parameters

The parameters p and q are described in the section on node2vec
(Subsection 3.3.2 on page 37).

4.7.8 Depth of walk

Longer walks make it possible to include relationships that are far away
in the graph, thus include more structural information. They also result
in a larger dataset for training. Shorter walks give information on close
relationships only.
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4.7.9 Number of walks

The number of walks tells the system how many random walks to generate
for each node. A larger value gives a larger dataset. A small value will give
few different examples of the context of the node, but to many walks will
return many equal walks. It is related to to the number of epochs needed to
train. With many walks, the number of epochs could be lower.

4.7.10 Equality threshold

This parameter is for ontology matching only. The equality threshold
must be set for each matching task because it is influenced by the amount
of training. A high value will increase precision but limit recall. If the
embeddings are very dense, the value must be set high to avoid false
positives, but if the embeddings are sparse, the value must be lower to
include correct matches.
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Chapter 5

Experiments and results

Many experiments have been conducted in order to demonstrate the
usefulness of the proposed ontology embeddings framework (OWL2Vec)
on both inter- and intra-ontology similarity tasks. The different OWL2Vec
systems and strategies have been presented in Sections 4.2 and 4.3.

First, Section 5.1 presents an experiment on clustering and labeling.
Section 5.2 on page 73 shows the experiments using the systems for ontology
matching. Section 5.3 on page 84 is dedicated to using the LogMap’s
anchors and try to improve LogMap’s recall. Then, an experiment using the
embeddings to find a measure of semantic similarity between ontologies is
presented in section 5.4 on page 89. Last, section 5.5 on page 89 provides
the experiments on scalability.

5.1 Intra-ontology clustering

This experiment aims to demonstrate the usefulness of the OWL2Vec-
systems on intra-ontology similarity tasks. First, we did a visual assessment
of the embeddings using different strategies and systems. These results
are available in Appendix B.1 on page 119. We also did a short similarity
test for the RDF2Vec, the Onto2Vec (introduced in Section 2.6.4 on page 25)
and OWL2Vec+. The results of these experiments are in Appendix B.2 on
page 122. Finally, we did an experiment on node clustering on the ekaw-
ontology (introduced in Section 3.7 on page 46).

For the clustering task, we used the Agglomerative Clustering algorithm
in the sklearn Python library [70]. After doing the clusterings, we reduced
the vector dimensions to 2 with the PCA library in order to plot them on
a page. The names of all the points are left out for readability. By adding
all the vectors in each cluster, we get a vector representing the cluster. By
finding the nearest neighbor to the cluster vector, we expect to find the most
central concept of the cluster. This concept is used as a label for the cluster.

These evaluations focus only on the ontology’s structure, so no lexical
information is included in the walks. The settings for word2vec are mostly
equal for all the tests, with Skip-gram and 200-dimensional embeddings.
The number of epochs was adjusted, however, to fit the different sizes of
the documents generated by the walks systems. OWL2Vec+ uses walks
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with depth 40. RDF2Vec uses walks with depth 5 because it takes a long
time to generate longer walks. We increase the epoch for the training to
compensate for the smaller documents. The Onto2Vec-system create very
small documents, so we increase the epoch count even more for this system.
The Onto2Vec does not use a projection graph. It works directly on the
OWL 2 ontology.

The RDF2Vec and the OWL2Vec+ system were trained directly on URIs,
but only the URI-part is presented. In all three experiments, the ekaw
ontology is partitioned into 7 clusters.

The tables of the cluster contents are found in Appendix B on page 119.

Figure 5.1: Dividing the embedding of ekaw into 7 clusters using the
Onto2Vec framework for the walks and agglomerative clustering for the
clustering task
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Figure 5.2: Dividing the embedding of ekaw into 7 clusters using the
RDF2Vec framework for the walks and agglomerative clustering for the
clustering task
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Figure 5.3: Dividing the embedding of ekaw into 7 clusters using the
OWL2Vec+ framework for the embeddings and agglomerative clustering
for the clustering task
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5.2 Ontology matching tasks

5.2.1 Pretrained model

We used a model with 100-dimensional vectors trained on a small fragment
of Wikipedia 1. In these experiments, we use an equality cutoff for the cosine
similarity of 0.8 for the conference tracks and 0.99 for the anatomy track.
The actual mappings found for ekaw-cmt is in Appendix D.1 on page 135.

Matching task Precision Recall F-measure

ekaw-ekaw 0.97 1 0.99
ekaw-cmt 0.67 0.75 0.7
Anatomy 0.55 0.25 0.34

Table 5.1: Performance of pretrained embeddings for ontology alignment

5.2.2 Joint embeddings

It is essential to have some initial anchors in order to use structural
embeddings for ontology matching. Consequently, the experiments here do
not intend to discover all mappings, but rather to discover to which extent
the models depend on the anchors and to see if it is possible to get a higher
return of mappings from the system than the input of anchors.

The use of random walks and machine learning allows for some
randomness, but this should be averaged out by performing multiple runs.
It is also important to note that the choice of anchors is not arbitrary. Some
anchors or combination of anchors will give better performance than others.
For this reason, we shuffle the set of anchors before each test run. The tests
are performed at least five times (unless other is stated) and the average
scores are reported.

The ontologies used in the standalone ontology matching experiments
are two ontologies from the OAEI conference track: ekaw and cmt. Also,
we use a copy of the ekaw ontology to test how the systems can perform
on two structurally (and lexically) equal ontologies. The gold standard
alignment from OAEI is used both for anchors and for the calculation of
recall, precision and F0.5-measure (F-measure). For some of the systems, we
also include a test with the OAEI anatomy track.

The correlation coefficient between the fraction of all known anchors
and the recall of the system was calculated using the Pearson correlation
coefficient (PCC) [69]. PCC is defined as the covariance divided by the
product of the standard variations. If the coefficient is ρ, cov(x, y) is the
covariance between the variables x and y, σX is the standard deviation of X
and σY is the standard deviation of Y, PCC is given by:

ρ =
cov(X, Y)

σXσY
(5.1)

1This is the same Wikipedia fragment as in Subsection 3.2.6 on page 32
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Where cov(X, Y) is given by:

∑(Xi − Xavg)(Yi −Yavg)

n− 1
(5.2)

Some alignment strategies were tested in combination with the different
walks systems and embeddings strategies to see the effect of for example
using all matches, disambiguating using edit distance and using both
structural and lexical embeddings. The different ontology alignment
strategies are introduced in Section 4.4 on page 61.

Running and comparing the experiments is challenging because of the
many parameters involved. The parameters have to be changed between
runs because some systems work poorly or not at all using the parameters
that work well for other systems. An overview of the parameters used for
the different test runs is found in Table 5.2 on the next page.

System Parameter Value

All embedding systems
all alignment strategies window size 10

dimensions 100
number of walks 100
negative samples 25
include edges false
embedding system gensm w2v
embeddings representation full uri
workers 12
Skip-gram true

OWL2Vec structural
all alignment strategies epochs 50
best candidate walk depth 5

equality threshold 0.7
disambiguate walk depth 5

equality threshold 0.5
lexical eq. thres 0.7

RDF2Vec
best candidate walk depth 4

epochs 15
equality threshold 0.7

OWL2Vec synonyms
all alignment strategies epochs 50

walk depth 5
number of walks 400

best candidate equality threshold 0.6
disambiguate equality threshold 0.5

lexical eq. thresh. 0.7
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transformation m equality threshold 0.5
lexical eq. thresh. 0.7

OWL2Vec 2doc
two documents structure epochs 15

lexical epochs 50
structural eq thresh 0.5
lexical eq thresh 0.7
walk depth 5

OWL2Vec+
best candidate epochs 15

equality threshold 0.85
number of walks 50
walk depth 40
p 1.2
q 0.5

OWL2Vec+–synonyms
best candidate epochs 5

equality threshold 0.85
number of walks 50
walk depth 40
p 1.2
q 0.5

OWL2Vec+–two documents
two documents label doc epochs 50

uri epochs 5
equality threshold 0.85
number of walks 50
walk depth 40
p 1.2
q 0.5

Table 5.2: The parameter settings for each OWL2Vec system in combination
with each alignment strategy

For all ekaw-ekaw and ekaw-cmt matching experiments, we include the
results for 0, 40, 60 and 100 % of the anchors. The details for every single
test run on the ekaw-ekaw matching are left to Appendix C on page 129,
and the details for the cmt-ekaw experiments to Appendix D on page 135.
We have also included the Pearson’s Correlation between the fraction of
anchors and recall. The precision tends to be independent of the number of
anchors, so no such calculation is included for the precision.

We also include experiments using OWL2Vec+ with synonyms and
fastText for ekaw-ekaw and cmt-ekaw matching to demonstrate the
potential for the matching similar ontologies using fastText.

The included figures (Figure 5.4 on page 78 and Figure 5.5 on page 82)
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plot the F-measure against the number of anchors included. We use the
F-measure because the precision varies a lot between the different tests and
to compare the quality of each run, it must include both the notion of recall
and precision.

Ekaw-ekaw matching task

walks model precision recall fmeasure

OWL2Vec structural best candidate 0.87 0.75 0.81
OWL2Vec structural disambiguate 0.97 1.00 0.99
OWL2Vec synonyms best candidate 0.85 0.81 0.83
OWL2Vec synonyms disambiguate 0.96 0.97 0.97
OWL2Vec synonyms all relations 0.44 0.92 0.59
OWL2Vec synonyms transformation m 1.00 0.90 0.95
RDF2Vec best candidate 0.83 0.63 0.72
OWL2Vec subClass best candidate 0.78 0.60 0.68
OWL2Vec 2doc two documents 0.57 0.48 0.52
OWL2Vec+ best candidate 0.93 0.87 0.89
OWL2Vec+ 1 best candidate 0.97 0.97 0.97
OWL2Vec+ 2 best candidate 0.97 1.00 0.99

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.3: A comparison of the systems performance on 100 % anchors. on
the ekaw-ekaw matching.
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walks model precision recall fmeasure

OWL2Vec structural best candidate 0.85 0.48 0.61
OWL2Vec structural disambiguate 0.85 0.84 0.84
OWL2Vec synonyms best candidate 0.83 0.61 0.70
OWL2Vec synonyms disambiguate 0.93 0.85 0.89
OWL2Vec synonyms all relations 0.51 0.72 0.59
OWL2Vec synonyms transformation m 1.00 0.77 0.87
RDF2Vec best candidate 0.60 0.44 0.50
OWL2Vec subClass best candidate 0.73 0.68 0.71
OWL2Vec 2doc two documents 0.63 0.52 0.57
OWL2Vec+ best candidate 0.83 0.66 0.74
OWL2Vec+ 1 best candidate 0.94 0.79 0.86
OWL2Vec+ 2 best candidate 0.97 0.99 0.98

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.4: A comparison of the systems performance on 60 % anchors. on
the ekaw-ekaw matching.

walks model precision recall fmeasure

OWL2Vec structural best candidate 0.86 0.31 0.46
OWL2Vec structural disambiguate 0.72 0.62 0.67
OWL2Vec synonyms best candidate 0.74 0.42 0.54
OWL2Vec synonyms disambiguate 0.89 0.68 0.76
OWL2Vec synonyms all relations 0.50 0.52 0.50
OWL2Vec synonyms transformation m 1.00 0.49 0.66
RDF2Vec best candidate 0.73 0.27 0.39
OWL2Vec subClass best candidate 0.67 0.65 0.66
OWL2Vec 2doc two documents 0.71 0.56 0.64
OWL2Vec+ best candidate 0.71 0.44 0.52
OWL2Vec+ 1 best candidate 0.95 0.57 0.70
OWL2Vec+ 2 best candidate 0.95 0.90 0.92

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.5: A comparison of the systems performance on 40 % anchors. on
the ekaw-ekaw matching.

77



walks model precision recall fmeasure

OWL2Vec structural best candidate 0.40 0.01 0.01
OWL2Vec structural disambiguate 0.71 0.03 0.06
OWL2Vec synonyms best candidate 0.86 0.13 0.23
OWL2Vec synonyms disambiguate 0.84 0.34 0.48
OWL2Vec synonyms all relations 0.69 0.15 0.24
OWL2Vec synonyms transformation m 0.04 0.01 0.02
RDF2Vec best candidate 0.00 0.00 0.00
OWL2Vec subClass best candidate 0.04 0.04 0.04
OWL2Vec 2doc two documents 0.76 0.29 0.41
OWL2Vec+ best candidate 0.70 0.01 0.03
OWL2Vec+ 1 best candidate 0.40 0.02 0.03
OWL2Vec+ 2 best candidate 0.75 0.03 0.05

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.6: A comparison of the systems performance on 0 % anchors. on the
ekaw-ekaw matching.
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Figure 5.4: F-measure for different systems on ekaw-ekaw matching
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walks model correlation

OWL2Vec structural best candidate 0.996
OWL2Vec structural disambiguate 0.967
OWL2Vec synonyms best candidate 0.992
OWL2Vec synonyms disambiguate 0.961
OWL2Vec synonyms all relations 0.988
OWL2Vec synonyms transformation m 0.969
RDF2Vec best candidate 0.990
OWL2Vec 2doc two documents 0.340
OWL2Vec+ best candidate 0.988
OWL2Vec subClass best candidate 0.743

Table 5.7: Correlation between F-measure and anchors on ekaw-ekaw
matching

Ekaw-cmt matching task

The results of the tests with RDF2Vec are weak when it comes to recall and
precision. Looking at the actual results, however, they are not entirely off.
The system usually suggests similar concepts, but the system seems unable
to disambiguate structurally similar concepts. The results of an example run
with RDF2Vec is found in Table D.2 on page 137.
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walks model precision recall fmeasure

OWL2Vec structural best candidate 0.70 0.60 0.64
OWL2Vec structural disambiguate 0.26 0.85 0.39
OWL2Vec synonyms best candidate 0.74 0.45 0.56
OWL2Vec synonyms disambiguate 0.38 0.68 0.48
OWL2Vec synonyms all relations 0.63 0.40 0.48
OWL2Vec synonyms transformation m 0.53 1.00 0.69
RDF2Vec best candidate 0.17 0.13 0.14
OWL2Vec subClass best candidate 0.60 0.95 0.74
OWL2Vec 2doc two documents 0.61 0.75 0.67
OWL2Vec+ best candidate 0.69 0.98 0.81
OWL2Vec+ 1 best candidate 0.97 0.78 0.86
OWL2Vec+ 2 best candidate 0.60 0.95 0.73

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.8: A comparison of the systems performance on 100 % anchors. on
the cmt-ekaw matching.

walks model precision recall fmeasure

OWL2Vec structural best candidate 0.64 0.30 0.53
OWL2Vec structural disambiguate 0.16 0.53 0.24
OWL2Vec synonyms best candidate 0.73 0.20 0.31
OWL2Vec synonyms disambiguate 0.36 0.45 0.40
OWL2Vec synonyms all relations 0.77 0.33 0.45
OWL2Vec synonyms transformation m 0.30 0.63 0.41
RDF2Vec best candidate 0.00 0.00 0.00
OWL2Vec subClass best candidate 0.33 0.75 0.45
OWL2Vec 2doc two documents 0.60 0.70 0.64
OWL2Vec+ best candidate 0.66 0.55 0.59
OWL2Vec+ 1 best candidate 0.93 0.50 0.63
OWL2Vec+ 2 best candidate 0.61 0.63 0.62

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.9: A comparison of the systems performance on 60 % anchors. on
the cmt-ekaw matching.
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walks model precision recall fmeasure

OWL2Vec structural best candidate 0.35 0.23 0.27
OWL2Vec structural disambiguate 0.14 0.43 0.21
OWL2Vec synonyms best candidate 0.83 0.23 0.34
OWL2Vec synonyms disambiguate 0.32 0.23 0.26
OWL2Vec synonyms all relations 0.49 0.18 0.23
OWL2Vec synonyms transformation m 0.15 0.38 0.21
RDF2Vec best candidate 0.00 0.00 0.00
OWL2Vec subClass best candidate 0.19 0.40 0.28
OWL2Vec 2doc two documents 0.62 0.70 0.66
OWL2Vec+ best candidate 0.55 0.50 0.52
OWL2Vec+ 1 best candidate 1.00 0.43 0.59
OWL2Vec+ 2 best candidate 0.65 0.40 0.49

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.10: A comparison of the systems performance on 40 % anchors. on
the cmt-ekaw matching.

walks model precision recall fmeasure

OWL2Vec structural best candidate 0.00 0.00 0.00
OWL2Vec structural disambiguate 0.11 0.08 0.09
OWL2Vec synonyms best candidate 0.30 0.05 0.08
OWL2Vec synonyms disambiguate 0.30 0.05 0.08
OWL2Vec synonyms all relations 0.20 0.03 0.04
OWL2Vec synonyms transformation m 0.08 0.13 0.10
RDF2Vec best candidate 0.00 0.00 0.00
OWL2Vec subClass best candidate 0.07 0.23 0.10
OWL2Vec 2doc two documents 0.37 0.20 0.26
OWL2Vec+ best candidate 0.20 0.03 0.04
OWL2Vec+ 1 best candidate 0.60 0.08 0.39
OWL2Vec+ 2 best candidate 0.47 0.15 0.23

1 Including synonyms and URIs in the same document
2 Including synonyms and URIs in the same document, trained with
fastText

Table 5.11: A comparison of the systems performance on 0 % anchors. on
the cmt-ekaw matching.
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Figure 5.5: F-measure for different systems on cmt-ekaw matching

walks model correlation

OWL2Vec structural best candidate 0.994
OWL2Vec structural disambiguate 0.990
OWL2Vec synonyms best candidate 0.956
OWL2Vec synonyms disambiguate 0.982
OWL2Vec synonyms all relations 0.948
OWL2Vec synonyms transformation m 0.982
RDF2Vec best candidate 0.654
OWL2Vec 2doc two documents 0.688
OWL2Vec+ best candidate 0.991
OWL2Vec subClass best candidate 0.991

Table 5.12: Correlation between recall and anchors on cmt-ekaw matching
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5.2.3 Anatomy track

We tested the OWL2Vec+-system with best candidate-strategy on the anatomy
track. On this test, we did only one run for each of the anchor steps. The
PCC between anchors and recall was found to be 0.997.

Anchors Precision Recall F-measure

100 0.58 0.96 0.72
80 0.49 0.78 0.60
60 0.40 0.59 0.47
40 0.30 0.40 0.34
20 0.21 0.20 0.21
0 0.04 0.00 0.00

Table 5.13: The OWL2Vec+ and best candidate’s performance on the anatomy
track using decreasing % anchors

5.2.4 More than two ontologies

We also conducted an experiment where we created one large document
containing all the information in the ekaw, cmt, iasted, and the edas
conference ontologies. Then, we added the reference anchors for edas-
iasted, cmt-iasted, cmt-edas, ekaw-iasted, and ekaw-edas to the ontology.
To create the embeddings we used the OWL2Vec+-system. We did 5 epochs,
and only one test run for each anchor step. The equality threshold was set
to 0.9. Object properties were not included in this test (i.e., the weight of
object property edges was set to 0).

Anchors Precision Recall F-measure

100 0.40 0.75 0.52
80 0.46 0.75 0.57
60 0.37 0.75 0.50
40 0.50 0.75 0.60
20 0.38 0.75 0.50
0 0.45 0.62 0.52

Table 5.14: The OWL2Vec+ with best candidate’s performance on matching
ekaw-cmt conference track including the ontologies iasted, edas and gold
standard anchors for the other ontologies using decreasing % anchors.
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5.3 Improving LogMap

To determine if it is possible to improve precision or recall on state-of-the-art
systems, we use LogMap [82] as an example of a state-of-the-art system.
This system is introduced in Section 3.1 on page 27. We add LogMap as a
dependency in the embeddings system and by doing the matching, we can
access the anchors from the matching system. These anchors should be sane
and free of any logical inconsistencies. In this experiment, the anchors are
used directly as anchors, and OWL2Vec+ is used to generate embeddings.
LogMap also provides access to other categories of mappings. There are
“hard discarded mappings,” “conflictive mappings,” “discarded mappings”
in addition to the anchors.

The anchors are added to the mappings as a means to create the aligned
embeddings and are expected to have very high cosine similarity. We
investigate if any of these anchors get a lower similarity than expected.
These anchors will be candidates for further examinations.

Likewise, we check if there are any mappings with high cosine similarity
among the discarded mappings. Before flagging them as possible true
mappings, we must check that none of the elements in the possible mapping
do appear as elements in the anchors set. If they do, we assume that this has
higher confidence and not include them in the set.

We evaluated a few methods for detecting outliers among the anchors
and the discarded mappings. One way was using the mean and standard
deviation. The other method we tested was the Inter Quartile Range (IQR).
Another possibility is to take the n largest or smallest cosine values and
check them for possible errors. We will then, however, have to estimate how
many errors the alignment contains.

Parameter Value

dimensions 50
window size 10
number of walks 50
walk depth 10
subClassOf-weight 1
superClass-weight 1
object property-weight 0.4
Skip-gram true
negative samples 25
include edges false
embeddings system gensim word2vec

Table 5.15: Parameters for the experiment improving-LogMap experiments

The parameters used in the test runs are shown in Table 5.15. The NCI-
FMA task (full ontologies) is done with 10 walks and depth 3. To evaluate
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the results, we use the gold standard alignments. We can then see how
many mappings the embeddings mark as possible bad anchors or good
discarded mappings and find how many of these are following the gold
standard alignment.

The results of the experiments with the full FMA-NCI ontologies are
found in Table 5.16 while the experiments with the small fragments of FMA-
NCI are found in Table 5.17 on the next page. In Table 5.18 on page 87
the results from the matching between NCI and SNOWMED is presented,
and finally, the results from the anatomy track are found in Table 5.19 on
page 88. In all the tables, we present several strategies for finding potential
correct mappings marked as false, and false anchors. Mapping is the type of
mappings set (this is found in LogMap), found is how many mappings the
filtering strategy returned, and correct is how many of the mappings found
are actually correct. For anchors, correct is how many of the low confidence
anchors are not found in the gold standard. For discarded mappings, correct
is how many of the high confidence discarded mappings are found in the
gold standard.

mapping found correct fraction

Top-20

anchors 20 2 0.1
hard 20 0 0.0
conflict 20 0 0.00
discarded 20 5 0.25

Mean +- stdDev

anchors 69 6 0.09
hard 0 0 0.00
conflict 0 0 0.00
discarded 0 0 0.00

Table 5.16: Detecting false mappings and map discardings on largebios
FMA-NCI full ontologies

We also did test runs of this on the cmt-ekaw. With 50 walks, 40
depth, trained with word2vec on 50 dimensions, window 20, 5 iterations,
25 negative sampling. Using the mean stdDev it correctly identified
one of the anchors that LogMap added as a false anchor. That is the
cmt:Reviewer - ekaw:PossibleReviewer-mapping. Doing multiple runs
it would also occasionally suggest that the cmt:Paper - ekaw:Paper and the
cmt:Conference - ekaw:Conference could be false anchors. Alternatively,
that cmt:PaperAbstract - ekaw:Abstract could be a false discarded
mappings. However, this still has a low similarity.
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mapping found correct fraction

Top-1000

anchors 1000 36 0.035
hard 1000 15 0.015
conflict 734 90 0.12
discarded 270 35 0.13

Top-20

anchors 20 1 0.05
hard 20 0 0.0
conflict 20 4 0.2
discarded 20 7 0.35

Top-5

anchors 5 0 0.0
hard 5 0 0.0
conflict 5 1 0.4
discarded 5 2 0.2

Mean +/- stdDev

anchors 281 17 0.06
hard 0 0 0.00
conflict 102 14 0.14
discarded 0 0 0.0

IQR

anchors 130 7 0.05
hard 0 0 0.00
conflict 41 7 0.17
discarded 0 0 0.0

Table 5.17: Detecting false mappings and map discardings on largebios
FMA-NCI small fragments
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mapping found correct fraction

Top-20

anchors 20 1 0.05
hard 20 1 0.05
conflict 20 2 0.1
discarded 20 12 0.6

Mean +- stdDev

anchors 268 18 0.067
hard 3316 214 0.065
conflict 251 71 0.28
discarded 317 118 0.37

IQR

anchors 58 7 0.12
hard 0 0 0.00
conflict 88 18 0.20
discarded 13 8 0.62

Table 5.18: Detecting false mapping and map discardings on large bios
NCI-SNOMED small fragments
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mapping found correct fraction

Top-1000

anchors 1000 21 0.021
hard 1000 58 0.058
conflict 64 1 0.015
discarded 10 1 0.1

Top-5

anchors 5 0 0.0
hard 5 1 0.2
conflict 5 0 0.0
discarded 5 1 0.2

Top-20

anchors 20 1 0.05
hard 20 1 0.05
conflict 20 0 0.05
discarded 10 1 0.1

Mean +/- stdDev

anchors 223 3 0.02
hard 490 26 0.05
conflict 12 0 0.00
discarded 4 1 0.25

IQR

anchors 63 2 0.03
hard 0 0 0.0
conflict 0 0 0.00
discarded 0 0 0.0

Table 5.19: Detecting false mappings and map discardings on anatomy
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5.4 Semantic similarity of ontologies

We define a representative vector for an ontology as the sum of the vectors
of all the nodes of the ontology. Only class embeddings are used 2 . As an
estimation of the semantic similarity of two vectors, we jointly embed the
two ontologies in the same vector space together with all gold standard
mappings. We include the URIs only in the document and train with
word2vec, Skip-gram. Add the vectors for each ontology and use the cosine
similarity on the representative vectors. Using embeddings of size 100, we
get the following similarities:

First onto Second onto similarity

ekaw ekaw2 0.998
cmt ekaw 0.907
cmt edas 0.850
cmt iasted 0.754
cmt sigkdd 0.951
ekaw sigkdd 0.812
ekaw iasted 0.873
edas ekaw 0.912
edas iasted 0.841
edas sigkdd 0.777
iasted sigkdd 0.820
mouse human 0.986

Table 5.20: Semantic similarity between the ontologies in the conference and
anatomy track

5.5 Scalability

All test were performed on a personal laptop running an Ubuntu Linux
system with 4-4-0 kernel, 12GB of RAM and a 2,3 GHz dual core (4 virtual
cores with hyperthreading) Intel I5 CPU.

For the EKAW ontology, the process of creating the walk document takes
about 2-3 seconds with 100 walks per node and a depth of 40.

5.5.1 Anatomy

The human ontology from the OAEI track has 3,304 classes. Creating the
walks with depth 40, and 50 walks per class, takes about 25 seconds on a
personal computer. By caching the edge collections in a map, we reduce the
time to 15 seconds, suggesting a speedup of 40 %. While running with this

2 See Section 4.5 on page 63 for a discussion of the role of OWL 2 properties in OWL2Vec.
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ontology the memory consumption of Java (using top) is at about 12 %, this
is about 1.4GB.

The projection takes only about 4 seconds, and the creation of the node
graph takes about one second.

5.5.2 Largebio

The NCI-ontology that is part of the NCI-SNOMED small fragments track
has 23,958 classes. The creation of the node graph took 5 seconds, but the
adding of the edges took some time as it contains 29,974 edges. It uses about
17 % of the memory while running (with the caching of edge weights), and
the creation of the walks with a depth of 40 and 100 walks per node in total
took 104 seconds.

The largest ontology in the largebio track is the SNOMED large fragment.
It contains 122,464 classes. The node graph was initialized in 19 seconds,
and it added 211,527 edges to the graph. Creating the same walks, depth 40
and 100 walks it used 27 % of memory. It took about 22 minutes to create
the walks, and the document that was created was 26 GB.

On the full OAEI largebio track with NCI - FMA matching. The total
number of classes in the combined ontology is 145,712. For the first trial, we
limited the number of classes for walks to 100,000. We created the walks
document with depth 40, and 50 random walks for each class. The load was
at about 379 % of CPU usage (4 virtual cores) and 27.9 % RAM usage (of 12
GB) without the caching of the node weights. The resulting walks document
was at about 12 GB. Training the embeddings with gensim word2vec using
Skip-gram, 50 dimensions, 25 negative samplings on this document was
a lot harder on the system than generating the walks. It used about 90
% of RAM and 90 % of swap-memory. In the end, the time to create the
walk was 30 minutes and the time to train the model was about 10 minutes.
The reason it began to use swap space was that the reading of the 12 GB
document that can not fit into memory.

We then generated walks with a depth of 8, and 10 random walks for each
class using the same system, but with no class limit. The walks generation
took 11 minutes, and the document size was 1.1GB. The training was done
with a dimensionality of 20, CBOW, window 5, and 5 negative samples took
only 33 seconds.

5.5.3 Gene ontology

The Gene Ontology (GO) has about 50 000 classes. It runs well and creates
the document with a walk depth of 40 steps and 50 walks per class, including
reasoning with ELK and graph projection in about 6 minutes on a personal
computer creating a document of about 3.7GB. With the caching of the edge
collections, the time reduces to about 4.1 minutes. The graph projection with
reasoning finished in about 30 seconds.
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Chapter 6

Discussion

6.1 Pretrained embeddings

The main focus in the thesis has not been the use of pretrained word
embeddings as the usefulness of such embeddings already has been studied
extensively in [58, 97]. It is, however, worth mentioning that using
pretrained word embeddings have several advantages. First, it does not
require any anchors, and as many ontologies have a similar vocabulary, it can
do a good job. It seems to be an improvement over simple lexical similarity
measures because it inherently includes semantically similar words. It is,
however, still necessary to decide a cutoff value, which, if set too low, will
include too many matches and set too high will exclude good matches. Our
pretrained vectors were simple, and one can expect better result using high
quality word vectors and vectors trained for a specific domain.

The anatomy track had a low score compared to the others. The low
precision is due to the averaging of the word vectors as described below.
The low recall could be attributed to that the training corpus did not have
the technical vocabulary.

Another thing that could improve this strategy is to use a better way
to represent multiple words as a vector. In this study, we use averaging.
A problem with this strategy is that it gives equal weight to each word.
Therefore two sets of words that include several common words would
give a too high similarity score. However, better and more sophisticated
strategies are available. We leave this as a challenge.

Limitations for the pretrained embeddings include that, having one
vector for each word, does not account for the case where a word can have
different meanings in different contexts, for example, homonyms. The word
embeddings should be considered one of many tools and part of a larger
workflow, as they ignore, for example, the ontology’s satisfiability and
structural information.

6.2 Walk strategies

The “vanilla” RDF2Vec is not possible to use to embed an OWL-ontology.
First of all, it is supposed to n walks for each entity e such that e is of type

91



owl:Thing in the dataset. For ontologies, it makes more sense to speak
of n walks for each c of type owl:Class. RDF2Vec can be used by first
projecting the ontology to a navigable RDF-graph. Even then it has overall
poor performance. It is slow and the embeddings, although they contain
useful information, are not very good. The way it generates the walks makes
it challenging to create long walks, and the walks contain much noise.

One thing that creates noise is that RDF2Vec performs reasoning on the
projected graph. To perform reasoning on the projected graph makes no
sense. It is built to be navigable, and it already conserves all the important
relationships. The graph ends up with having many entries stating that a
class is owl:subclass of owl:Thing. Consequently, the walks often do not
do anything more than going from some class directly to owl:Thing. Then
it can go past owl:Thing via some object property and back to owl:Thing
again. These short walks through owl:Thing draw many unrelated elements
into proximity, thus creates noise.

Still, RDF2Vec is not without value. It gives many reasonable
suggestions, but it confuses similar structures. If A and B are both subclasses
of C, it will provide answers such that A ≡ B or A ≡ C. An example result is
provided in Table D.2 on page 137. It is not difficult to imagine why this
can happen. Word2vec will embed words that have a similar meaning very
close to each other. Since C could replace A in any setting, and it can replace
B the same way, they are likely to be embedded very close together.

Additionally, RDF2Vec tends to confuse terms that, in the ontology, are
declared as disjoint with the same class. For example, if A and B both are
disjoint with C, it tends to produce similar vectors for A and B. The amount
of information about each class in the ontology is limited, so all axioms will
significantly influence the embeddings. Any axiom on the form D R C where
there is another axiom E R C will tend to move the embeddings for D and E
closer because they appear in the same context.

Although OWL2Vec structural still suffers from the confusion of
structurally similar elements, it shows better performance than RDF2Vec in
all the experiments.

OWL2Vec synonyms have better performance than the two others. It
can leverage textual information to distinguish siblings and parent classes.

The OWL2Vec+-walks generally shows better performance than all
the other walk types except when the candidate finder use some way to
disambiguate using lexical embeddings as well as the structural ones. It
is the only system that can achieve a recall that is higher than the fraction
of anchors it receives as input on the cmt-ekaw matching. The reason for
the improved performance is that it combines walks going from the top
towards the bottom with walks that come from the bottom and goes toward
the top, and also that it can keep walking up and down the hierarchy and
by object property-edges without stopping at the edge of the graph. That
way one can get much longer walks with related classes and more diverse
walks including not only parent-child relationships in the window but also
sibling relationships. It does not confuse similar entities as much as with
the RDF2Vec and OWL2Vec structural systems. The structurally similar
classes are still very similar in terms of cosine similarity, but the best match
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is usually correct. This improvement is because it can do more training on
the local neighborhood and capture more of the small differences.

On the matching tests, there is a tendency to create walks that go back
and forward between the anchors. This tendency adds value in emphasizing
the relationship between these, but it could potentially decrease the value of
the embeddings by making the anchors more important than the rest of the
graph. The OWL2Vec subClass system falls into this trap. When there is no
other way to keep walking it keeps repeating the anchors. The OWL2Vec+
system can also do this if the p-value is low. With a high p-value, it does not
return while there exists another possible path. Thus it can avoid the loop
entirely.

The inclusion of the synonyms close to the URIs in the same document
tends to increase performance. In particular when we have few anchors. It
is because the unequal URIs appear in the context of the same lexical words.
This creates more similar vectors for the URIs.

6.3 Matching strategies

While the focus of this thesis is not how to do ontology matching, but instead
on ontology embeddings. We have created a few different strategies to get
results. All of which are very simple. They are too simple to be scalable and
do matching on the large ontologies. Even though we create the walks and
train the embeddings, matching the ontologies using the cartesian product
is not feasible for large ontologies.

The best match strategy is useful in many cases. The effort to
disambiguate the best matches by using textual information has little effect
on the OWL2Vec synonyms. It does, however, improve the performance
of OWL2Vec structural. If we reduce the structural equality threshold, it
tends to improve precision. Lowering this threshold means, however, that
we rely more on the lexical equality and less on the embeddings.

The all relations-alignment strategy can improve recall. It is not useful as
a stand alone strategy, because the effect on precision is detrimental. It is
useful to see if the mappings could be found.

The transformation matrix shows high precision, and the recall is more or
less equal to the anchors provided. We get this result because the model is
trained directly using the anchors. It will most likely find the anchors and
only the anchors with a high equality threshold. The transformation matrix
is capable of finding structurally similar classes as well, but then the cutoff
must be reduced, this will also reduce the precision.

6.4 Embeddings systems and OWL 2 embeddings

We have discussed several systems capable of creating embedding from
text in the Neural language models section (Section 3.2 on page 29). The
tools have some very different characteristics. Most notably, the word2vec-
model [51] considers each word a separate, atomic unit and creates the
embedding for the word while fastText includes not only the context
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information but is capable of creating embeddings for character n-grams.
Thus it takes into account lexical information of what is embedded. If we
are embedding a URI, this means that it could be grouping the entities with
common namespaces closer together. If we are using synonyms or uri_parts
to represent the entities, this could turn out to be a great asset as it would
take into account both lexical similarity and structural similarity at the same
time. On ontologies that are similar both structurally and lexically, these
embeddings are capable of finding many correspondences.

It does also mean that our embeddings would not be purely structural
as it could be using word2vec and would make no sense in some situations
(for example by embedding URIs that do not contain information).

While StarSpace, is shown to be useful for embedding knowledge
graphs [3], it was not found to add anything useful to ontology embeddings
using random walks. It can create word vectors, but the results we got was
not on par with the embeddings from word2vec and fastText. How to
use StarSpace effectively for OWL 2 embeddings is, however, an interesting
topic.

Using the fastText system when including synonyms did show an
improvement on the ontology matching tasks. It is particularly useful when
including the synonyms in the same document as the URIs. This result was
expected as it emphasizes lexical similarity. It can, however, also introduce
false positives.

We tried to use a pretrained word vector model to initialize the vectors of
OWL2Vec, but this was not successful. First of all, it is difficult to determine
how much of the vectors are actually from the pretrained vectors and how
much is from the additional training on the ontology.

Another drawback of using pretrained vectors to initialize the vectors is
that we have to use the words of each URI and the words of any synonym
in the ontology to get an overlapping vocabulary between the two instead
of being able to embed the URIs or URI-parts as they appear in the ontology.
Using the words and synonyms of an ontology, return the matchings of the
words that are lexically equal. This can not be attributed to the vectors, just
that the same word has one vector. We are therefore not able to say anything
about the benefit of using pretrained with extra training on the ontology.

6.4.1 Ekaw-ekaw vs. ekaw-cmt

It is easier to find correspondences using structural embeddings between
two ontologies when they are structurally similar. We observe this effect
in Table 5.4 on page 77, where several systems achieve both high precision
and recall using 60 % of the possible anchors. Another thing to take into
consideration is that between ekaw and ekaw there are many more anchors
to add because all classes have a match. Between cmt and ekaw, however,
there are only eight matches in the gold standard.

We observe that the correlation between matching recall and the number
of anchors is strong. The correlation is higher when matching ekaw-cmt
because there are fewer structural and string similarities to work with,
and fewer anchors. Consequently, each anchor is essential. All have a
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Pearson correlation of above 0.9 between anchors and recall except for
RDF2Vec and OWL2Vec 2doc. For the RDF2Vec it is because of poor
performance. The OWL2Vec 2doc system seems to reach top performance
quickly. The limiting factor is the performance of the lexical embeddings
on disambiguating the set of potential mappings. By changing how the
alignment system works, this could probably be improved.

6.4.2 Several ontologies

When the system provides anchors from both ontologies to a third ontology,
the system can use these as anchors for matching. These anchors are
extended to the ontologies we want to match by reasoning when creating the
projection graph. The performance of the multi ontology matching system
is then virtually unaffected by the addition of ekaw-cmt anchors. This is an
example of using mediation ontologies for matching.

6.5 Improving LogMap

It is challenging to find additional mappings to the ones provided by
LogMap. First, LogMap already has high recall and precision on the
Anatomy and the small largeBio track.

We show that it is possible to improve the chance of finding some false
negatives and false positives using ontology embeddings together with
statistical methods or by taking the ones with the highest overall cosine
similarity among the discarded mappings and lowest overall cosine among
the anchors. More work is, however, needed to understand how this strategy
can be used to improve state-of-the-art ontology matching systems.

6.6 Scalability

The OWL2Vec+ system is designed to handle large ontologies. By holding
the entire graph in memory, using parallelization, and caching names, maps,
and structures, it can efficiently embed large ontologies.

OWL2Vec+ create the walks for the gene ontology in little more than 4
minutes using long and many walks, and the merge between the walks for
NCI and FMA with anchors finished in 30 minutes. While it is possible to
create walks and embed very large ontologies, it is, however, preferable to
limit the size and number of walks on these ontologies because the target
document blows up to several GB. These documents are larger than the ram
size on a regular computer. It is, however, possible to train these documents
as gensim is designed with the idea of large documents and does not require
the entire document to be in memory [79].

The system has been tested on small and large ontologies from the OAEI
and can create embeddings from even the union of the largest largebio
ontologies in a relatively short time. One has to give attention to the
parameter settings, however, in order to not create gigantic walk documents
or run out of heap space. It is even possible to create massive documents
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even from the small ontologies by generating large numbers of very long
walks. One would, however, not be doing more than repeating the same
statements over and over.

6.7 Semantic similarity

Representing an ontology by taking the sum of all the vectors of all the
classes gives a vector that should represent the general idea of the ontology
classes. It represents the purpose or the focus area of the ontology. It does
not take into account differences in size, properties, or lexical differences.
There are many things one could include here to get a better estimate of the
similarity between two ontologies. For example the size, the hierarchy, and
the lexical similarity. Still, the cosine of two ontologies gives an exciting
similarity score.

Semantic similarity of fragments of ontologies could be defined and
compared the same way.

6.8 Object properties and datatype properties

The systems for embedding ontologies presented in this thesis focus
exclusively on creating embeddings of classes and are not in any way
optimized for the embeddings of properties. It can include property names
in the walks, but this is because the inclusion of edge names can potentially
improve the performance of the class embeddings system. It is not able to
include datatype properties. Embedding properties, is, however, an exciting
future research topic.

6.9 Analytical tasks

The embeddings show exciting results on the clustering task. The clusters
found using OWL2Vec+ are excellent and, in most cases, the clusters
represent what one naturally would consider related concepts. The PCA
images show how related concepts tend to cluster together.

6.10 Hyperparameters

The amount of training and increased dimensionality generally improves
the embeddings. For the clustering tasks, the results are miserable for low
dimensional embeddings or little training. The way to increase training is
either to output more and longer walks or to increase epoch count.

For prediction tasks and ontology alignment, it can be the other way
around. Having too much training and too high dimensionality makes it
challenging to detect possible candidates. Seemingly, for tasks that need a
high degree of generalization, the dimensions should not be too high. For a
precision task, however, the embeddings must be more detailed.
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Setting the p very low together with high subClassOf-probability on
alignment tasks can give outstanding results when using many anchors.
These results are, however, not due to the systems the ability to embed
ontology structure, but rather its ability to find the anchors that were
inserted into the ontology. The anchors will have subClassOf-relationships
both ways, and when encouraging to go to repeat the last node, it tends
to produce long walks consisting of the two classes of the anchors only.
These walks make the vectors of the anchors very similar, and they are easily
found. It is therefore essential to use the parameters in such a way that it, not
only finds the anchors that were provided but also finds other structurally
and lexically related classes.

The edge weight settings greatly influence the quality of the embeddings.
We find that favoring the subClassOf- over the superClassOf-edge and give
object properties a low weight (or even ignore the object properties entirely)
gives the best results. A more comprehensive discussion of the edge weights
is found in Subsection 4.3.3 on page 57.
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Part III

Conclusion and future work
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Chapter 7

Conclusion

In this thesis, we have conducted an exploratory study. We have
demonstrated that OWL 2 embeddings are useful, and hope, with this
work, to inspire further interests and research in this direction.

The ontology embeddings created by OWL2Vec are very promising and
show an improvement with respect to the state of the art solutions.

Jointly embedding two (or more) ontologies in the same vector space
and align them with anchor mappings is shown to be useful for finding new
mappings. The strategy is also shown to provide relevant, and potentially
useful, information on the structural similarity of OWL 2-ontologies that
can be exploited by ontology matching systems as an additional similarity
measure.

The downside of using such embeddings for ontology alignment is the
need for anchors, but the anchors can, as shown, easily be found using
existing ontology alignment tools such as LogMap 2.

7.1 Future work

We have identified several areas that need further investigation, and there
are probably many more. The reader is encouraged to implement the
embeddings into existing ontology matching tools, and to design strategies
to leverage the new structural (and potentially lexical) similarity measures.

To improve state-of-the-art ontology matching systems using ontology
embeddings, one could use the cosine score as an additional measure of the
similarity between two concepts. The similarity score could then be used
together with the system’s other similarity scores to increase or decrease the
likelihood of keeping or discarding a potential mapping.

OWL2Vec can be used as a novel strategy to cluster one ontology, but
ontology clustering is also useful as part of an ontology alignment workflow
(as in [35]).

Improve the embeddings for the object properties could be useful. One
would have to take advantage of the property hierarchy, restrictions, and
possibly lexical information. The inclusion of data types and data properties
could potentially improve the embeddings of classes. Embeddings of two
classes would be closer if they were to have the same data type properties
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with the same data types. One would have to figure out a way to achieve
this.

The ontology can be seen, at least in part, as a hierarchy of more and
more specific concepts. It should be possible to exploit this concept more
than it is done by using the walk. The embeddings should be such that the
sum of all the siblings in a branch should be close to the embedding of the
parent concept while maintaining the property that the sibling’s vectors also
should be quite similar. However, if the vector of one concept should be
closest to its sibling or its parent, that would depend on the application.

Another exciting concept to include in the walks is the possibility of
walking directly from one sibling to another. Even though the siblings are
not directly connected by any edge, they are very related.

Expanding on the idea that two ontologies could be compared by adding
all the vectors, it could be useful to implement a way to measure the
similarity between two ontology clusters. This can be relevant for the
blocking of ontologies to reduce the search space. The system could be
able to give two different scores, one for structural equality and one for
lexical equality. The ontology similarity measure could be expanded to
include other information such as lexical information, size, and hierarchical
complexity to give a complete picture.

Investigating and implementing better strategies for combining word
vectors when comparing concepts with several words will improve systems
using lexical embeddings.

The ontology embeddings could be useful also for entity matching. This
was shown to be the case in [90].

It could also be interesting to see how the results would be if we used
a global approach as proposed in [13]. Novel strategies using StarSpace to
create OWL 2 embeddings without doing walks could also be an exciting
future research topic.
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Appendix A

Ontology descriptions

A.1 Ekaw

A.1.1 Ekaw Object properties

Here are the object properties in the ekaw-ontology.
• authorOf

• coversTopic

• eventOnList

• hasPart

– hasEvent

– iverse_of_partOf_7

• hasReview

• hasReviewer

• hasUpdatedVersion

• heldIn

• listsEvent

• locationOf

• organisedBy

– scientificallyOrganisedBy

– technicallyOrganisedBy

• organises

– scientificallyOrganises

– technicallyOrganises

• paperInVolume

• paperPresentedAs

• partOf

– partOfEvent

• presentationOfPaper

• publisherOf

• referencedIn

• reference

• reviewerOfPaper

• topicCoveredBy

• updateVersionOf

• volumeContainsPaper

• writtenBy

– reviewWrittenBy
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Figure A.1: The class hierarchy of the ekaw ontology using OWLViz in
protegé
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A.2 Cmt

A.2.1 Cmt Object Properties

• acceptedBy

• acceptPaper

• addedBy

• addProgramCommitteeMember

• adjustBid

• adjustedBy

• assignedByReviewer

• assignedTo

• assignExternalReviewer

• assignReviewer

• co-writePaper

• detailsEnteredBy

• enableVirtualMeeting

• endReview

• enterConferenceDetails

• finalizePaperAssignment

• hardcopyMailingManifestPrintedBy

• hasAuthor

• hasBeenAssigned

• hasBid

• hasCo-author

• hasConferenceMember

• hasConflictOfInterest

• hasDecision

• hasProgramCommitteeMember

• hasSubjectArea

• markConflictOfInterests

• memberOfConference

• memberOfProgramCommittee

• paperAssignmentFinalizedBy

• paperAssignmentToolsRunBy

• printHardcopyMailingManifest

• readByMeta-Reviewer

• readByReviewer

• readPaper

• rejectedBy

• rejectPaper

• reviewCriterialEnteredBy

• reviewerBiddingStartedBy

• runPaperAssignmentTools

• setMaxPapers

• startReviewerBidding

• submitPaper

• virtualMeetingEnabledBy

• writePaper

• writeReview

• writtenBy

A.2.2 Cmt Datatype properties

• acceptsHardcopySubmissions

• date

• email

• logoURL

• maxPapers

• name

• paperID

• reviewsPerPaper

• siteURL

• title
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Figure A.2: The class hierarchy of the cmt ontology using OWLViz in protegé
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A.3 Other class hierarchies
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Figure A.3: The highest 3 levels of the class hierarchy of the iasted ontology
using OWLViz in protegé
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Figure A.4: The class hierarchy of the edas ontology, but without the many
topics, using OWLViz in protegé
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Figure A.5: The class hierarchy of the sigkdd ontology using OWLViz in
protegé
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Appendix B

Clustering experiments

B.1 Visual assesment

To visually asses the embeddings, we use the python sklearn librarys
implementation of PCA. Using PCA we reduce dimensionality to 2 and
can plot this in two dimensional space. Only a few plots within each group
of related concepts have been included. This way it is easier to se how
the vectors relate to each other. The settings for the word2vec trainer are
equal for all the plots, with Skip-gram and 200-dimensional embeddings.
However, for the walks that go in both direction, we need to reduce the
number of epochs because these walks allow for more training data. All
embeddings also include other types of edges, but with a lower weight. The
RDF2Vec walks were created with a depth of 5. If we use deeper walks, it
uses a lot of time to generate them. Creating walks with depth 5, however,
goes really fast. We increase the epoch for the training to compensate for the
small documents. The Onto2Vec-system also create very small documents
so we increase the epoch count for this as well.
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Figure B.1: Plotting some of the points in the ekaw using the OWL2Vec sub-
Class-system

Figure B.2: Plotting some of the points in the ekaw, using the OWL2Vec+-
system
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Figure B.3: Plotting the same points using the RDF2Vec framework on the
projection
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Figure B.4: Plotting the same points using the Onto2Vec framework

B.2 Similarity task

The embeddings for the similarity tasks were trained the same way as for
the clustering and visual assesment. The RDF2Vec as trained with depth 6
and 100 walks per class. For each concept, we find the most similar concept
by cosine distance. It is not easy to quantify if the predictions are good or
bad.
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Sample Prediction cosine

Accepted_Paper Rejected_Paper 0.922
Workshop_Paper Poster_Paper 0.968
Regular_Session Workshop_Session 0.980
Paper Demo_Paper 0.940
Academic_Institution Research_Institute 0.977
Conference_Participant Late-Registered_Participant 0.952
Review Neutral_Review 0.961
Workshop Track 0.981
Individual_Presentation Invited_Talk 0.949
Flyer Web_Site 0.983
presentationOfPaper Contributed_Talk 0.595

Table B.1: Some similarity samples using the OWL2Vec+ system

Sample Prediction cosine

Accepted_Paper Rejected_Paper 0.791
Workshop_Paper Demo_Paper 0.899
Regular_Session Demo_Session 0.935
Paper hasReviewer 0.523
Academic_Institution scientificallyOrganises 0.541
Conference_Participant OC_Chair 0.609
Review reviewOfPaper 0.520
Workshop Track 0.899
Individual_Presentation presentationOfPaper 0.548
Flyer Multi-author_Volume 0.672
presentationOfPaper reviewWrittenBy 0.672

Table B.2: Similarity samples using RDF2Vec with projection
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Sample Prediction cosine

Accepted_Paper updatedVersionOf 0.877
Workshop_Paper Poster_Paper 0.935
Regular_Session Poster_Session 0.999
Paper Multi-author_Volume 0.926
Academic_Institution Proceedings_Publisher 0.804
Conference_Participant OC_Chair 0.833
Review Multi-author_Volume 0.952
Workshop Tutorial 0.984
Individual_Presentation hasEvent 0.926
Flyer Multi-author_Volume 0.999
presentationOfPaper exactly 0.896

Table B.3: Similarity samples using Onto2Vec
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Evaluated_Paper Invited_Talk Flyer

DisjointWith Session Paper
SubClassOf Track Review
Camera_Ready_Paper Conference Web_Site
Accepted_Paper Invited_Talk Flyer
some Tutorial Programme_Brochure
Evaluated_Paper Workshop Multi-author_Volume
Submitted_Paper Social_Event Industrial_Paper
Assigned_Paper Individual_Presentation Poster_Paper
min Scientific_Event Demo_Paper
Rejected_Paper Demo_Session Regular_Paper
3 Poster_Session Positive_Reviw
hasReview Regular_Session Workshop_Paper
hasReviewer Workshop_Session Negative_Reviw
writtenBy PartOfEvent Neutral_Review
updatedVersionOf Conference_Banquet Conference_Paper

Conference_Trip
Industrial_Session
hasEvent

Student (Accepted_Paper Session_Chair

Person or Conference_Participant
Document Invited_Talk_Abstract PC_Member
Organisation (Conference PC_Chair
Event Workshop) Tutorial_Chair
Academic_Institution (Conference_Paper Workshop_Chair
Organisation_Agency (Accepted_Paper Early-Registered_Participant
Abstract Late-Registered_Participant
Location Possible_Reviewer
Student OC_Member
Proceedings_Publisher Presenter
Tutorial_Abstract Session_Chair
Paper_Author Demo_Chair
Invited_Talks_Abstract OC_Chair
University SC_Member
Agency_Staff_Member Invited_Speaker
Reserach_Institute
Research_Topic

1

Contributed_Talk
Proceedings
Proceedings
Thing
volumeContainsPaper
only
Conference_Proceedings
1
presentationOfPaper
exactly

Table B.4: The 7 clusters of ekaw using Onto2Vec
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Poster_Paper Proceedings_Publisher Demo_Session

Evaluated_Paper Proceedings_Publisher Individual_Presentation
volumeContainsPaper Academic_Institution Scientific_Event
Proceedings Social_Event Session
Assigned_Paper PC_Member Conference
Conference_Paper scientificallyOrganises Track
Camera_Ready_Paper Multi-author_Volume Workshop
Submitted_Paper technicallyOrganises Conference_Session
Industrial_Paper Flyer Demo_Session
Workshop_Paper scientificallyOrganisedBy Regular_Session
Poster_Paper Agency_Staff_Member Poster_Session
Accepted_Paper Organising_Agency Workshop_Session
Regular_Paper Proceedings_Publisher Industrial_Session
Conference_Proceedings Student
Invited_Talk_Abstract Paper_Author
Demo_Paper University
Rejected_Paper Research_Institute
Tutorial_Abstract

owl#Thing PC_Chair Tutorial

owl#Thing Presenter Positive_Review
subClassOf OC_Member Contributed_Talk
Event Workshop_Chair Neutral_Review
Paper Late-Registered_Participant Negative_Review
Person Tutorial_Chair Tutorial
Document PC_Chair Invited_Talk
organises Demo_Chair
hasEvent Early-Registered_Participant
presentationOfPaper Session_Chair
partOfEvent Invited_Speaker
coversTopic OC_Chair
organisedBy

hasReview Conference_Banquet

topicCoveredBy Conference_Trip
paperPresentedAs Conference_Banquet
authorOf
listsEvent
reviewerOfPaper
Organisation
eventOnList
hasReviewer
Review
Possible_Reviewer
heldIn
updatedVersionOf
hasUpdatedVersion
reviewOfPaper
locationOf
publisherOf
writtenBy
inverse_of_partOf_7
Abstract
Programme_Brochure
Web_Site
reviewWrittenBy
Research_Topic
Location

Table B.5: The 7 clusters of ekaw using RDF2Vec
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Paper Document Session

Paper Document Scientific_Event
Camera_Ready_Paper Review Session
Regular_Paper Abstract Individual_Presentation
Conference_Paper Positive_Review Conference
Poster_Paper Invited_Talk_Abstract Workshop
Workshop_Paper Multi-author_Volume Conference_Session
Demo_Paper Neutral_Review Track
Industrial_Paper Negative_Review Tutorial
Location Tutorial_Abstract Invited_Talk
Research_Topic Programme_Brochure Contributed_Talk

Web_Site Demo_Session
Flyer Poster_Session
Proceedings Regular_Session
Conference_Proceedings Industrial_Session

Academic_Institution Conference_Participant Social_Event

Organisation Conference_Participant Social_Event
Academic_Institution PC_Member Event
Proceedings_Publisher Person Conference_Trip
Research_Institute Presenter Conference_Banquet

Organising_Agency OC_Member Evaluated_Paper

University Session_Chair Evaluated_Paper
Workshop_Chair Assigned_Paper
Tutorial_Chair Submitted_Paper
Possible_Reviewer Accepted_Paper
PC_Chair Rejected_Paper
Invited_Speaker
OC_Chair
Agency_Staff_Member
Early-Registered_Participant
Student
Paper_Author
Late-Registered_Participant
Demo_Chair
SC_Member

Table B.6: The 7 clusters of ekaw using OWL2Vec
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Appendix C

Ontology matching
experiments Ekaw-Ekaw

C.1 Semantic embeddings

Anchors Precision Recall F-measure

100 0.87 0.75 0.81
80 0.87 0.65 0.74
60 0.85 0.48 0.61
40 0.86 0.31 0.46
20 0.70 0.12 0.20
0 0.40 0.01 0.01

Table C.1: The OWL2Vec structural system using best candidate on matching
ekaw-ekaw conference track using decreasing % anchors and walks

Anchors Precision Recall F-measure

100 0.97 1.00 0.99
80 0.95 0.97 0.96
60 0.85 0.84 0.84
40 0.72 0.62 0.67
20 0.52 0.34 0.41
0 0.71 0.03 0.06

Table C.2: The OWL2Vec structural system using disambiguate on matching
ekaw-ekaw conference track using decreasing % anchors and walks

129



Anchors Precision Recall F-measure

100 0.85 0.81 0.83
80 0.80 0.75 0.77
60 0.83 0.61 0.70
40 0.74 0.42 0.54
20 0.85 0.29 0.43
0 0.86 0.13 0.23

Table C.3: The OWL2Vec synonyms system with best candidate on matching
ekaw-ekaw conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.96 0.97 0.97
80 0.94 0.91 0.92
60 0.93 0.85 0.89
40 0.89 0.68 0.76
20 0.85 0.62 0.72
0 0.84 0.34 0.48

Table C.4: The OWL2Vec synonyms with disambiguate on matching ekaw-
ekaw conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.44 0.92 0.59
80 0.45 0.82 0.58
60 0.51 0.72 0.59
40 0.50 0.52 0.50
20 0.56 0.29 0.37
0 0.69 0.15 0.24

Table C.5: The OWL2Vec synonyms with all relations on matching ekaw-
ekaw conference track using decreasing % anchors and walks with
synonyms
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Anchors Precision Recall F-measure

100 1.00 0.90 0.95
80 1.00 0.90 0.95
60 1.00 0.77 0.87
40 1.00 0.49 0.66
20 0.87 0.23 0.37
0 0.04 0.01 0.02

Table C.6: The OWL2Vec synonyms with transformation matrix on matching
ekaw-ekaw conference track using decreasing % anchors and walks

Anchors Precision Recall F-measure

100 0.83 0.63 0.72
80 0.81 0.60 0.69
60 0.60 0.44 0.50
40 0.73 0.27 0.39
20 0.66 0.14 0.23
0 0.0 0.0 0.0

Table C.7: The RDF2Vec system on best candidate on matching ekaw-ekaw
conference track using decreasing % anchors and walks

Anchors Precision Recall F-measure

100 0.78 0.60 0.68
80 0.80 0.69 0.74
60 0.73 0.68 0.71
40 0.67 0.65 0.66
20 0.47 0.48 0.47
0 0.04 0.04 0.04

Table C.8: The OWL2Vec subClass on best candidate on matching ekaw-ekaw
conference track using decreasing % anchors
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Anchors Precision Recall F-measure

100 0.57 0.48 0.52
80 0.56 0.47 0.51
60 0.63 0.52 0.57
40 0.71 0.56 0.63
20 0.75 0.56 0.64
0 0.76 0.29 0.41

Table C.9: The OWL2Vec 2doc with two documents on matching ekaw-ekaw
conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.91 0.87 0.89
80 0.88 0.79 0.83
60 0.83 0.66 0.74
40 0.71 0.41 0.52
20 0.62 0.21 0.32
0 0.70 0.01 0.03

Table C.10: The OWL2Vec+ with best candidate on matching ekaw-ekaw
conference track matching using decreasing % anchors

Anchors Precision Recall F-measure

100 0.97 0.97 0.97
80 0.97 0.91 0.94
60 0.94 0.79 0.86
40 0.92 0.57 0.70
20 0.87 0.29 0.44
0 0.40 0.02 0.03

Table C.11: The OWL2Vec+ with synonyms in the document with
best candidate on matching ekaw-ekaw conference track matching using
decreasing % anchors and walks
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Anchors Precision Recall F-measure

100 0.97 1.00 0.99
80 0.97 0.99 0.98
60 0.97 0.99 0.98
40 0.95 0.90 0.92
20 0.87 0.59 0.70
0 0.75 0.03 0.05

Table C.12: The OWL2Vec+ with synonyms in the document and fastText
using best candidate on matching ekaw-ekaw conference track matching
using decreasing % anchors and walks
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Appendix D

Ontology matching
experiments Cmt-Ekaw

D.1 Pretrained embeddings
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cmt ekaw confidence

Author Paper_Author 0.80
Meta-Review Review 0.82
Document Document 1.00
ConferenceChair Conference 0.87
Review Review 1.00
ProgramCommitteeMember Agency_Staff_Member 0.87
Conference Conference 1.00
Paper Paper 1.00
Person Person 1.00

Table D.1: The alignment found between cmt and ekaw using pretrained
word embeddings

D.2 Semantic embeddings
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cmt ekaw confidence

Meta-Review Neutral_Review 0.96
User Student 0.89
ConferenceChair Late-Registered_Participant 0.78
AuthorNotReviewer Paper_Author 0.82
PaperFullVersion Regular_Paper 0.93
ConferenceMember Conference_Participant 0.78
PaperAbstract Regular_Paper 0.93
AssociatedChair Late-Registered_Participant 0.77
Preference Poster_Paper 0.70

Table D.2: An example of the output of RDF2Vec with best candidate given
100 % of the anchors

Anchors Precision Recall F-measure

100 0.70 0.60 0.64
80 0.60 0.48 0.53
60 0.64 0.30 0.39
40 0.35 0.23 0.27
20 0.57 0.10 0.17
0 0.00 0.00 0.00

Table D.3: The OWL2Vec structural with best candidate on matching ekaw-
cmt conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.26 0.85 0.39
80 0.21 0.70 0.32
60 0.16 0.53 0.24
40 0.14 0.43 0.21
20 0.12 0.33 0.18
0 0.11 0.08 0.09

Table D.4: The OWL2Vec structural with disambiguate on matching ekaw-
cmt conference track using decreasing % anchors
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Anchors Precision Recall F-measure

100 0.74 0.45 0.56
80 0.55 0.33 0.40
60 0.73 0.20 0.31
40 0.83 0.23 0.34
20 0.30 0.05 0.08
0 0.30 0.05 0.08

Table D.5: The OWL2Vec synonyms system with best candidate on matching
ekaw-cmt conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.38 0.68 0.48
80 0.40 0.65 0.49
60 0.36 0.45 0.40
40 0.32 0.23 0.26
20 0.26 0.15 0.19
0 0.30 0.05 0.08

Table D.6: The OWL2Vec synonyms system with disambiguate on matching
ekaw-cmt conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.63 0.40 0.48
80 0.44 0.30 0.35
60 0.77 0.33 0.45
40 0.49 0.18 0.23
20 0.67 0.18 0.26
0 0.20 0.03 0.04

Table D.7: The OWL2Vec synonyms with all relations on matching ekaw-
cmt conference track using decreasing % anchors
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Anchors Precision Recall F-measure

100 0.53 1.00 0.69
80 0.37 0.75 0.49
60 0.30 0.63 0.41
40 0.15 0.38 0.21
20 0.14 0.38 0.20
0 0.08 0.13 0.10

Table D.8: The OWL2Vec synonyms system with transformation matrix on
matching ekaw-cmt conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.17 0.13 0.14
80 0.0 0.0 0.0
60 0.0 0.0 0.0
40 0.0 0.0 0.0
20 0.0 0.0 0.0
0 0.0 0.0 0.0

Table D.9: The RDF2Vec with best candidate on matching ekaw-cmt
conference track using decreasing % anchors

Anchors Precision Recall F-measure

100 0.60 0.95 0.74
80 0.44 0.80 0.57
60 0.33 0.75 0.45
40 0.19 0.53 0.28
20 0.14 0.40 0.21
0 0.07 0.23 0.10

Table D.10: The OWL2Vec subClass with best candidate on matching ekaw-
cmt conference track using decreasing % anchors
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Anchors Precision Recall F-measure

100 0.61 0.75 0.67
80 0.48 0.58 0.52
60 0.60 0.70 0.64
40 0.62 0.70 0.66
20 0.60 0.63 0.61
0 0.37 0.20 0.26

Table D.11: The OWL2Vec 2doc with two documents on matching ekaw-cmt
conference track using decreasing % anchors and walks

Anchors Precision Recall F-measure

100 0.69 0.98 0.81
80 0.68 0.78 0.72
60 0.66 0.55 0.59
40 0.55 0.50 0.52
20 0.55 0.23 0.31
0 0.20 0.03 0.04

Table D.12: The OWL2Vec+ with best candidate on matching ekaw-cmt
conference track matching using decreasing % anchors

Anchors Precision Recall F-measure

100 0.97 0.78 0.86
80 0.93 0.68 0.78
60 0.93 0.50 0.63
40 1.00 0.43 0.59
20 1.00 0.25 0.39
0 0.60 0.08 0.13

Table D.13: The OWL2Vec+ with synonyms in the document and
best candidate on matching ekaw-cmt conference track matching using
decreasing % anchors
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Anchors Precision Recall F-measure

100 0.60 0.95 0.73
80 0.62 0.83 0.69
60 0.61 0.63 0.62
40 0.65 0.40 0.49
20 0.61 0.23 0.31
0 0.47 0.15 0.23

Table D.14: The OWL2Vec+ with synonyms in the same document and
using fastText and best candidate on matching ekaw-cmt conference track
matching using decreasing % anchors and walks

Anchors Precision Recall F-measure

100 0.72 0.88 0.79
80 0.70 0.75 0.72
60 0.86 0.60 0.71
40 0.85 0.38 0.52
20 0.90 0.38 0.53
0 1.00 0.13 0.22

Table D.15: The OWL2Vec+ with two documents and two documents
alignment system on matching ekaw-cmt conference track matching using
decreasing % anchors
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