
Idle Listening Reduction
Mechanism for Overprovisioned

Cells in 6TiSCH Tracks

Mathias Utgård

Thesis submitted for the degree of
Master in Informatics: Programming and networks

60 credits

Department of Technology Systems
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Idle Listening Reduction
Mechanism for Overprovisioned

Cells in 6TiSCH Tracks

Mathias Utgård

© 2019 Mathias Utgård

Idle Listening Reduction Mechanism for Overprovisioned Cells in
6TiSCH Tracks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

The future of the (Industrial) Internet-of-Things (IIoT/IoT) is dependent
on deterministic and reliable low-power wireless communication systems.
Because of the limited battery capacity of devices within such a system,
energy consumption must be kept to a minimum in order to extend the
lifetime of a device.

6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4) enables determin-
istic low-power IP-enabled networking for industrial applications by lever-
aging the reliability of the Time Slotted Channel Hopping mode of IEEE
802.15.4-2015. 6TiSCH also introduces the concept of tracks as a mechan-
ism to ensure end-to-end determinism within nodes of a 6TiSCH network.

In order to meet application requirements, tracks can feature over-
provisioned resources in order to meet application requirements during
“worst-case” scenarios. However, overprovisioning leads to unused track
resources in the form of idle listening, which represents unnecessary en-
ergy waste.

This master thesis introduces and evaluates Track Resource Adaptation
(TRA) as a mechanism intended to reduce the amount of idle listening
events occuring in 6TiCH tracks.

i

ii

Contents

1 Introduction 1
1.1 Thesis Structure . 2

2 Theory 3
2.1 The Industrial Internet-of-Things 3

2.1.1 Definition of IIoT . 3
2.1.2 Applications of IIoT 4
2.1.3 Enabling technologies 5

2.2 Wireless Sensor Networks . 6
2.2.1 Industrial Wireless Sensor Networks 7

2.3 The IEEE 802.15.4 standard for Low-Rate Wireless Networks 10
2.3.1 Architecture . 10
2.3.2 Topologies . 10
2.3.3 Device types . 11
2.3.4 MAC . 11
2.3.5 PHY . 13
2.3.6 IEEE 802.15.4e . 13

2.4 Time Slotted Channel Hopping 15
2.4.1 Background . 15
2.4.2 Topology . 15
2.4.3 Synchronized communication 15
2.4.4 Links . 16
2.4.5 Channel hopping . 17
2.4.6 Scheduling . 17

2.5 6TiSCH - IPv6 over the TSCH mode of IEEE 802.15.4e 18
2.5.1 Protocol stack . 18
2.5.2 6TiSCH operation sublayer (6top) 19
2.5.3 Scheduling in 6TiSCH 19
2.5.4 Tracks . 20

2.6 Analytical . 23
2.6.1 Packet latency . 23
2.6.2 Packet generation . 24

3 Proposal 25
3.1 Track Resource Adaptation 25

3.1.1 Mechanism . 25
3.1.2 Variants . 27

iii

3.1.3 Usage of the pending bit 27
3.1.4 Use cases . 27

4 Method 29
4.1 Evaluation of Wireless Sensor Networks 29

4.1.1 Discrete Event Simulation 29
4.1.2 Choosing a simulator 30

4.2 The 6TiSCH Simulator . 31
4.2.1 Introduction . 31
4.2.2 SimEngine . 32
4.2.3 Topology . 32
4.2.4 Propagation Model . 33
4.2.5 Energy Consumption Model 33
4.2.6 6TiSCH Mote Model 35
4.2.7 Metrics . 36
4.2.8 Validation and previous academic use 36

5 Application of the 6TiSCH simulator 39
5.1 Additions and modifications 39

5.1.1 Helper scripts . 39
5.1.2 Path Computation Entity Module 39
5.1.3 TRA Module . 41
5.1.4 TSCH module modifications 42
5.1.5 Custom Mote Applications 43
5.1.6 Custom parameters . 44
5.1.7 General modifications 44

5.2 Simulation metrics . 44

6 Simulation scenarios 47
6.1 Common simulation parameters 47
6.2 Scenario 1 - Critical data with 2 cells per hop 48

6.2.1 Description . 48
6.2.2 Implementation . 48
6.2.3 Simulator settings . 48

6.3 Scenario 2 – Critical data with 3 cells per hop 50
6.3.1 Description . 50
6.3.2 Implementation . 50
6.3.3 Simulator settings . 50

6.4 Scenario 3 – Critical data and best-effort data 51
6.4.1 Description . 51
6.4.2 Implementation . 51
6.4.3 Simulator settings . 52

7 Simulation results and analysis 55
7.1 Scenario 1 - Critical data with 2 cells per hop 55

7.1.1 Results . 55
7.1.2 Analysis and discussion 61

7.2 Scenario 2 - Critical data with 3 cells per hop 63

iv

7.2.1 Results . 63
7.2.2 Latency and packet drops 63
7.2.3 Analysis and discussion 68

7.3 Scenario 3 - Critical and Best-effort data 69
7.3.1 Results . 69
7.3.2 Analysis and discussion 73

8 Conclusion 75

9 Further work 77

A Acronyms 83

B Python code 87

C Additional results 89
C.1 Scenario 1 . 89
C.2 Scenario 2 . 93
C.3 Scenario 3 . 96

v

vi

List of Figures

2.1 An overview of the IIoT infrastructure, from [techtarget-
internetofthingsagenda-Industrial-Internet-of-Things-IIoT] 4

2.2 Illustration of a sensor field containing multiple sensor
nodes and a sink node connected to a Task Manager. The
green line represents a multi-hop path from a node towards
the sink . 6

2.3 LR-WPAN device architecture, from [4] 10
2.4 IEEE 802.15.4 std: supported topologies, from [4] 11
2.5 Format of the MAC frame, from [4] 12
2.6 Format of the Frane Control field, from [4] 12
2.7 TSCH Slotframe (left) and Timeslot (right), from [21] 15
2.8 A sensor network with a tree-topology (a) with a possible

link schedule for data-collection (b), from [23] 18
2.9 The 6TiSCH protocol stack . 18
2.10 A simple illustration of a 6TiSCH track. The scheduled cells

marked red are part of a track from node 3 to the sink 21
2.11 Illustration of the minimium packet latency occuring in an

example TSCH network featuring a single overprovisioned
cell per hop with 3 hops between source and destination. . . 24

3.1 TRA mechanism example for a node with 3 overprovisioned
track cells. 26

3.2 TRA mechanism example for the sender and receiver side of
a hop along a track. 26

4.1 Architecture of the 6TiSCH Simulator, from [25] 32
4.2 Example of how the future event set is managed in the

6TiSCH simulator. ASN, absolute slot number; UUID,
universally unique identifier, from [25] 33

4.3 Received signal strength indicator (RSSI) values generated
using the Pister-Hack model, from [25] 34

4.4 Timeslot timing and sequence of actions used to derive the
energy consumption of a node, from [25] 35

5.1 An example of a 6TiSCH schedule featuring a track created
by the virtual PCE. SHA is the 6TiSCH minimal shared cell . 40

5.2 Overview of the TRA methods called from the TSCH-module 42
5.3 TRA with multiple daisy chains 43

vii

6.1 Scenario 1 topology and schedule 49
6.2 Scenario 2 topology and schedule 50
6.3 Scenario 3 topology and schedule 52

7.1 Latency and average packet drops vs PDR for Scenario 1 @
λ = 0.001 . 56

7.2 Latency and average packet drops vs PDR for Scenario 1 @
λ = 0.005 . 57

7.3 Latency and average packet drops vs PDR for Scenario 1 @
λ = 0.01 . 58

7.4 a. Packet loss rate in percent and b. Drop reasons for
OneShot, for λ = 0.01, Scenario 1 59

7.5 Idle listening reduction vs PDR for OneShot, Scenario 1 . . . 60
7.6 Idle listening reduction vs PDR for AllListen, Scenario 1 . . . 60
7.7 PDR vs increase in network lifetime for OneShot, Scenario 1 61
7.8 PDR vs increase in network lifetime for AllListen, Scenario 1 61
7.9 Latency and average packet drops vs PDR for Scenario 2 @

λ = 0.001 . 64
7.10 Latency and average packet drops vs PDR for Scenario 2 @

λ = 0.005 . 65
7.11 Latency and average packet drops vs PDR for Scenario 2 @

λ = 0.01 . 66
7.12 Idle listening reduction vs PDR for OneShot, Scenario 2 . . . 67
7.13 Idle listening reduction vs PDR for AllListen, Scenario 2 . . . 67
7.14 PDR vs increase in network lifetime for OneShot, Scenario 2 68
7.15 PDR vs increase in network lifetime for AllListen, Scenario 2 68
7.16 Critical data metrics vs traffic generation period for Scenario 3 70
7.17 Best-effort data metrics vs traffic generation period for

Scenario 3 . 71
7.18 Idle listening reduction amount in percent for Scenario 3 . . 72
7.19 Increase in network lifetime, Scenario 3 72
7.20 Average amount of drops per mote for data generation

period 1, Scenario 3 . 73
7.21 Explanation of packet loss in scenario 3 74

C.1 PDR vs percentage reduction in charge consumed for
OneShot, Scenario 1 . 89

C.2 PDR vs percentage reduction in charge consumed for
AllListen, Scenario 1 . 90

C.3 Min max and average latency, AllListen, λ = 0.01, Scenario 1 90
C.4 Min max and average latency, OneShot, λ = 0.01, Scenario 1 91
C.5 Latency distrubution for PDR=0.95, λ = 0.01, Scenario 1 . . 92
C.6 PDR vs percentage reduction in charge consumed for

OneShot, Scenario 2 . 93
C.7 PDR vs percentage reduction in charge consumed for

AllListen, Scenario 2 . 93
C.8 Min max and average latency, AllListen, λ = 0.01, Scenario 2 94
C.9 Min max and average latency, OneShot, λ = 0.01, Scenario 2 94

viii

C.10 Latency distrubution for PDR=0.95, λ = 0.01, Scenario 2 . . 95
C.11 PDR vs percentage reduction in charge consumed for

AllListen and OneShot, Scenario 3 96
C.12 Min max and average latency, OneShot, Critical data, Scen-

ario 3 . 96
C.13 Min max and average latency, AllListen, Scenario 3 97
C.14 Latency distrubution for critical traffic at data generation

period 1, Scenario 3 . 97
C.15 Latency distrubution for best effort traffic at data generation

period 1, Scenario 3 . 98

ix

x

List of Tables

2.1 Key differences of popular 802.15.4 based WSN standards,
adapted from [17] . 7

2.2 Challenges versus design goals in IWSNs, adapted from [17] 8

4.1 RSSI-PDR translation, adapted from [25] 34
4.2 Possible slot types as per the energy consumption model

implemented within the 6TiSCH simulator, adapted from [25] 35
4.3 Some of the available metrics in the 6TiSCH simulator,

adapted from [25] . 37

5.1 Custom simulation parameters 44
5.2 Important simulation metrics 45

6.1 The common simulation parameters 47
6.2 Scenario-specific settings for Scenario 1 49
6.3 Expected packet count for Scenario 1 49
6.4 Scenario-specific settings for Scenario 2 51
6.5 Scenario-specific settings for Scenario 3 52
6.6 Expected best effort packet count, Scenario 3 53

xi

xii

Preface

This thesis concludes my master’s degree for the course of Informatics:
Programming and Networks at the University of Oslo, Department of
Informatics.

I would like to thank my supervisor Professor Knut Øvsthus and PhD
candidate Andreas Urke at the Western Norway University of Applied
Sciences for their invaluable insight and support.

xiii

xiv

Chapter 1

Introduction

Low-power wireless mesh networks are an important part of the future
of digital communication. Concepts such as the Internet-of-Things (IoT)
and the Industrial Internet-of-Things (IIoT) can be effectively realised
by ubiquitous low-cost wireless sensor- and actuator devices and the
technology and standards that surround them.

Advancements within Wireless Sensor Network (WSN) technology
enable affordable "peel-and-stick" deployments of low-power wireless
devices that can offer 99.999% end-to-end reliability for critical industrial
applications [1]. These advancements have previously been available
through WSN technologies such as WirelessHART [2] and ISA100.11a [3],
which are tried and true standards for industrial wireless networking.

Currently, the Time Slotted Channel Hopping (TSCH) mode of IEEE
802.15.4-2015[4] is positioning itself as a very viable technology for WSN
and IoT. Hence, it has been subject lot of attention within the research
community, and is the key technology behind the standardisation efforts
of the IETF 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4) Working
Group [5]. The aim of 6TiSCH [6] is creating a standard that enables
deterministic IP-enabled networking for industrial applications. For this
purpose, 6TiSCH adopts some concepts from Determinstic Networking
(DetNet) [7]. This includes the concept of a DetNet Deterministic Path,
referred to in 6TiSCH as a track. A track is a series of TSCH cells that form
a Layer 2 path from a source to a destination, enabling determinism and
reliability to traffic assigned to the track.

In order to meet application demands for latency and reliability, 6TiSCH
tracks can feature overprovisioned TSCH cells. Overprovisioning provides
extra cells for retransmission of packets, and also allows the track to better
handle traffic peaks. Hence, overprovisioning is often used to allow an
application to adhere to strict requirements for timeliness and reliability in
a “worst-case” scenario. However, overprovisioning also introduces idle
listening, where unused track cells at the transmitter causes the receiver to
unnecessarily activate its radio, wasting energy. As WSN nodes usually run
on batteries with very limited energy capacity, the amount of idle listening
should ideally be kept as low as possible in order to extend the lifetime of
the network.

1

This master thesis introduces Track Resource Adaptation (TRA) as a
proposed mechanism intended to reduce the amount of idle listening
events occuring in 6TiSCH tracks featuring overprovisioning. TRA gives
nodes in a 6TiSCH network the ability to disable overprovisioned track
cells in order to prevent idle listening when no traffic is expected. This
is done by utilizing the pending bit of received packets as a decision
maker for enabling or disabling cells. Later in this thesis, a more detailed
description of TRA is given, and the results of simulations featuring TRA
running in various scenarios is presented and analysed. Using simulation
as a tool, the thesis will investigate the effect of TRA on metrics such as
packet latency, packet loss, idle listening reduction and increase in network
lifetime.

Related work

The following papers present ideas that are similar to this thesis’ usage of
the pending bit as signaling for toggling track cells.

Fafoutis et. al. [8] introduces Adaptive Static Scheduling, which
aims at improving energy efficiency in static TSCH schedules featuring
overallocation. This thesis’ proposal of TRA is partly based on extending
the idea presented in this paper into a 6TiSCH network.

Jin et. al [9] presents the AMUS scheduling algorithm, and discusses
adding an End-Of-Queue notification to headers of transmitted packets in
order to avoid unnecessary communication in the following cells.

1.1 Thesis Structure

The thesis is organized as follows:

• Chapter 1 (this chapter) gives the background and purpose of the
thesis.

• Chapter 2 provides a collection of necessary theory related to the
thesis.

• Chapter 3 introduces Track Resource Adaptation.

• Chapter 4 gives a description of the chosen method of evaulation.

• Chapter 5 details how the 6TiSCH simulator was used for this project.

• Chapter 6 presents the simulation scenarios considered.

• Chapter 7 contains the simulation results along with analysis.

• Chapter 8 draws a final conclusion of the work done in the thesis.

• Chapter 9 discusses eventual further work related to the project.

2

Chapter 2

Theory

This chapter will present some necessary theory related to the concepts
surrounding the thesis. First off, a brief introduction to overarching topics
such as the Industrial Internet-of-Things and wireless sensor networks is
given, followed by a delve into the specifics surrounding the IEEE 802.15.4
wireless standard, Time Slotted Channel Hopping (TSCH), 6TiSCH, tracks,
and the thesis proposal of Track Resource Adaptation.

2.1 The Industrial Internet-of-Things

Industrial Internet-of-Things (IIoT) refers to a trend within industrial auto-
mation where Internet-of-Things (IoT) technology is used to interconnect in-
dustrial devices. Primarily enabled by the convergence of industrial and
IP-enabled low-power wireless networks, IIoT can broadly be thought of
as the "next step up" from traditional Industrial Automation and Control
Systems (IACS), and is considered an very important part of future indus-
trial automation paradigms such as Industry 4.0 [10].

2.1.1 Definition of IIoT

[11] defines IIoT as:

“A system comprising networked smart objects, cyber-
physical assets, associated generic information technologies
and optional cloud or edge computing platforms, which enable
real-time, intelligent, and autonomous access, collection, ana-
lysis, communications, and exchange of process, product an-
d/or service information, within the industrial environment,
so as to optimise overall production value. This value may
include; improving product or service delivery, boosting pro-
ductivity, reducing labour costs, reducing energy consumption,
and reducing the build-to-order cycle.”

[12] describes the IIoT infrastructure defined in Figure 2.1 as a system
consisting of:

3

• intelligent assets – i.e., applications, controllers, sensors and security
components – that can sense, communicate and store information

• data communications infrastructure, e.g., the cloud;

• analytics and applications that generate business information from
raw data; and people

Data processing, analytics, business application integration,
automated processes database

IoT platform On-premises server

Sensors Actuators

IoT gateway, edge gateway

Edge nodes

IIoT infrastructure

Figure 2.1: An overview of the IIoT infrastructure, from [techtarget-
internetofthingsagenda-Industrial-Internet-of-Things-IIoT]

2.1.2 Applications of IIoT

According to [13], IIoT has the potential to transform traditional linear
manufacturing supply chains into dynamic, interconnected systems that
can more easily incorporate various parts of a industrial ecosystem. IIoT-
technology can change the way that products are made and delivered,
making factories more efficient, ensuring better safety for human operators,
and, in some cases, saving millions of dollars. IIoT also provides great
benefits in terms of improving operating efficiencies. If a machine
malfuctions, connected sensors can automatically pinpoint where the
issue is occurring and trigger a service request. IIoT can also help a
manufacturer predict when a machine will likely break down or enter a
dangerous operating condition before it ever happens. Thus among the
flagship applications of IIoT we find highly critical operations such as
monitoring of corrosion state of oil/gas pipelines or real-time monitoring

4

of critical parts of a machinery, as well as less critical operations such as
remote metering of water consumption. In addition, a number of non-
industrial applications also benefit greatly from the technology behind IIoT,
such as health state measurements of blood pressure/heartbeat of elderly;
telemetry readings of status of oil/brakes/etc of cars on the move and
occupancy measurements of parking in cities [14].

2.1.3 Enabling technologies

A key element to enabling IIoT is the advancements in wireless technology
and ubiquitous low-cost sensor- and actuator-enabled devices which allow
for low-power wireless networks with years of battery life, very high end-
to-end reliability and support for determenistic latency - all of which are
important requirements for industrial networks. These advances pave
way for more flexibility and ease of deployment, as well as not having
to rely on expensive cabling for networking industrial devices. The
trend of industrial networks switching to IP technology, and the eventual
convergence of Operational Technology (OT) and Information Technology
(IT) through standards such as 6LoWPAN and 6TiSCH, also play a vital
role in the realization of IIoT [15].

5

2.2 Wireless Sensor Networks

Wireless Sensor Networks are wireless communication networks made up
of many sensor nodes deployed within range of each other forming a
sensor field. This sensor field can then be used to gather data about and
observe a small or large scale local phenomena e.g. for civilian, military,
environmental, agricultural, industrial, or medical uses. WSNs possess
self-organizing capabilities, which allows for very flexible deployments,
as the position of the network nodes does not need to be engineered
or predetermined. This makes it very useful for random deployment in
inaccessible terrain or disaster relief operations, or in other scenarios where
flexible, scalable, low-cost deployments are required. Because of its diverse
applications, WSN is considered a popular field of research, and Akyildiz
et. al [16] provides a comprehensive breakdown of challenges and research
issues related to WSN.

Sink

Node

Sensor Field

Task Manager

Figure 2.2: Illustration of a sensor field containing multiple sensor nodes and a
sink node connected to a Task Manager. The green line represents a multi-hop
path from a node towards the sink

A common WSN-model has the nodes periodically collect and transmit
data to a sink node which serves as a data collection point, and which
further communicates with an external Task Manager. Since not all sensor
nodes are necessarily within communication range of the sink, nodes in a
WSN can act as routers and forward data packets received from on-link
neighbors towards the sink node over multiple hops.

WSN nodes are usually cheap, tiny, low-power embedded devices
with sensing, data processing and communication capabilities. Most
WSN nodes run on small rechargeable batteries, and thus to extend the
target lifetime of a node (which can be in the range of several years)
these devices end up having very limited memory and computational
capacities. Efficient use of the limited memory available in sensors is
required; this means heavily constraining or even opting-out of memory
consuming features like routing tables or security.Hardware constraints,

6

fault tolerance, scalability and power consumption are important factors
that have driven the design of WSNs. Production cost is also an important
design factor. Sensor networks can be made up of hundreds of nodes, and
the price per sensor node must be kept low for WSNs to be cost-justified
compared to other solutions.

Because of the limited amount of power available per node, the protocol
stack used by the nodes is required to enable efficient power consumption.
As the radio usually consumes the most energy in a WSN node, the largest
gain in energy efficiency can be achieved at the MAC and PHY layer. By
ensuring that nodes use communication resources sparingly and efficiently,
as well as avoiding retransmissions by preventing collisions in the wireless
medium, energy consumption can be kept to a minimum.

The limited power supply and the need for a resource- and power-
efficient MAC-layer means that well known wireless standards such as
IEEE 802.11 (aka WiFi), while capable of high data throughput and range,
consume too much energy to be a viable alternative for WSNs. Instead,
WSN nodes employ wireless standards specifically designed for low-
power wireless communication, such as the IEEE 802.15.4 standard for
Low-Rate Wireless Networks. This standard provides low-cost, short-
range, low-power and low data-rate communication for sensor networks,
and is utilized in WSN standards/stacks such as 6LoWPAN, ZigBee,
WirelessHART and ISA100.11a. Table 2.1 provides some more detail on
these mentioned standards and their differences.

Most WSN technologies operate in the ISM band (Industrial, Scientific
and Medical radio band), which are internationally reserved for industrial,
scientific and medical purposes. This means that WSN usually has to
share the medium with other wireless devices operating on the ISM band
which then become sources of interference and can cause communication
problems.

Standard Topology Battery life
(days)

Network
nodes

Max
Throughput

Range
(m)

ZigBee Mesh 100-1000+ 255 250 Kbps 10-100
6LoWPAN Mesh 100-365+ 65536 250 Kbps 1-100
Wire-
lessHART

Mesh 760+ 200 250 Kbps 1-100

ISA100.11a Mesh,
Star

1000+ 250 Kbps 100

Table 2.1: Key differences of popular 802.15.4 based WSN standards, adapted from
[17]

2.2.1 Industrial Wireless Sensor Networks

An Industrial Wireless Sensor Network (IWSN) is a type of WSN that is
employed in an industrial setting in order to monitor industrial equip-
ment. Traditionally, industrial communication has relied on using wired
networks. These networks, while reliable, require the installation of

7

expensive- regularly-maintained cables and are thus not widely implemen-
ted in industrial plants. However, with the recent technological advances
in WSN, the realization of low-cost embedded wireless industrial systems
have become feasible [18].

A IWSN system works similarily to a traditional non-industrial WSN;
Wireless tiny sensor nodes are installed on industrial equipment that
monitor parameters critical to equipment efficiency. This can be a
combination of measurements such as vibration, temperature, pressure,
and power quality. This information is then wirelessly transmitted to
a sink node that analyzes the data from each sensor. Any potential
problems are notified to the plant personnel as an advanced warning
system. This enables plant personnel to repair or replace equipment,
before their effciency drops or they fail entirely. In this way, catastrophic
equipment failures and the associated repair and replacement costs can be
prevented.

The collaborative nature of IWSNs brings several advantages over
traditional wired industrial monitoring and control systems, including
self-organization, rapid deployment, flexibility, and inherent intelligent
processing capability. In this regard, IWSN plays a vital role in creating
a highly reliable and self-healing industrial system that rapidly responds
to real-time events with appropriate actions. The existing and potential
applications of IWSNs span a very wide range, including building
automation, industrial process automation, electric-utility automation,
automatic meter reading, and inventory management [18].

Challenges Design Goals
Resource constraints Resource efficient design

Dynamic topologies and harsh
environmental conditions

Adaptive network operation

Quality of service requirements Application-specific design and time synchronization
Data redundancy Data fusion and localized processing

Packet errors and variable link capacity Fault tolerance and reliability
Security Secure design

Large scale deployment and ad hoc
architecture

Low cost and small sensor nodes, and self
configuration and organization

Integration with Internet and other
wireless technologies

Scalable architectures and efficient protocols

Table 2.2: Challenges versus design goals in IWSNs, adapted from [17]

The industrial domain introduces a set of challenges to WSN, detailed
in Table 2.2. In particular, industrial networks have more stringent require-
ments when it comes to latency and reliability. While traditional wireless
sensor network applications have been assumed as delay-tolerant, real-
time requirements are of utmost importance in industrial (wireless) net-
works, since delayed sensor data could be considered useless or even det-
rimental to the system being monitored. The industrial environment can
inhibit characteristics that make these requirements hard to meet, such as
signal attenuation from dust, heat and water, as well as multipath fad-
ing and electromagnetic interference from other wireless devices. These

8

characteristics impact the reliability of the wireless links, which in turn
negatively affects the performance of the IWSN. To combat these charac-
teristics, IWSN standards usually employ TDMA and FDMA techniques.
TDMA assures that nodes follow a precice schedule that dictates whether
they should send, receive or idle by synchronizing communication over
atomic units of time, and FDMA seeks to increase the robustness of the
wireless links by introducing frequency diversity, allowing multichannel
communication and channel hopping which helps mitigate the effects of
multipath fading and radio interference. WirelessHART [2] and ISA100.11a
[3] are two popular IWSN standards which use TDMA together with chan-
nel hopping to make them robust to interference in harsh industrial envir-
onments [19]. While both are based on the same basic WSN technology
of IEEE 802.15.4, they have fundamental differences in design philosophy.
WirelessHART opts for ease of deployment and multivendor compatibil-
ity, while ISA100.11a chooses flexibility and scalability as its key design
features [20].

9

2.3 The IEEE 802.15.4 standard for Low-Rate Wireless
Networks

IEEE 802.15.4 is a standard for low-rate, low-power, and low-cost Personal
Area Networks (PANs)[a-step-towards]. The standard defines the physical
(PHY) and medium access control (MAC) layer specifications for low-data-
rate wireless connectivity with fixed, portable and moving devices with
very limited energy consumption requirements. The standard provides for
ultra low complexity, ultra low cost, ultra low power consumption, and
low data rate wireless connectivity among inexpensive devices [4].

2.3.1 Architecture

The IEEE 802.15.4 architecture is defined in terms of a number of blocks in
order to simplify the standard. These blocks are called layers. Each layer
is responsible for one part of the standard and offers services to the higher
layers. The interfaces between the layers serve to define the logical links
that are described in this standard.

Figure 2.3: LR-WPAN device architecture, from [4]

An LR-WPAN device comprises at least one PHY, which contains
the radio frequency (RF) transceiver along with its low-level control
mechanism, and a MAC sublayer that provides access to the physical
channel for all types of transfer. Figure 2.3 shows these blocks in a graphical
representation.

2.3.2 Topologies

An IEEE802.15.4 LR-WPAN can operate in either of two topologies: the
star topology or the peer-to-peer topology. Both are shown in Figure 2.4. In
the star topology, the communication is established between devices and a
single central controller, called the PAN coordinator. A device typically
has some associated application and is either the initiation point or the
termination point for network communications. The PAN coordinator is
the primary controller of the PAN. The PAN coordinator will often be mains

10

powered, while the devices will likely be battery powered. Applications
that benefit from a star topology include home automation, personal
computer (PC) peripherals, games, and personal health care.

Figure 2.4: IEEE 802.15.4 std: supported topologies, from [4]

The peer-to-peer topology also has a PAN coordinator; however, it
differs from the star topology in that any device is able to communicate
with any other device as long as they are in range of one another.
Peer-to-peer topology allows more complex network formations to be
implemented, such as mesh networking topology. Applications such as
industrial control and monitoring, wireless sensor networks, asset and
inventory tracking,intelligent agriculture, and security would benefit from
such a network topology. A peer-to-peer network allows multiple hops to
route messages from any device to any other device on the network.

2.3.3 Device types

Two different device types can participate in an IEEE802.15.4 network: a
full-function device (FFD) and a reduced-function device (RFD). An FFD
is a device that is capable of serving as a personal area network (PAN)
coordinator or a coordinator. An RFD is a device that is not capable of
serving as either a PAN coordinator or a coordinator. An RFD is intended
for applications that are extremely simple, such as a light switch or a
passive infrared sensor; it does not have the need to send large amounts
of data and only associates with a single FFD at a time. Consequently, the
RFD can be implemented using minimal resources and memory capacity
[4].

2.3.4 MAC

The MAC sublayer provides an interface between the next higher layer
and the PHY, and enables the transmission and reception of MAC
protocol data units (MPDUs) across the PHY data service. The features
of the MAC sublayer are beacon management, channel access, GTS
management, frame validation, acknowledged frame delivery, association,

11

and disassociation. In addition, the MAC sublayer provides hooks for
implementing application-appropriate security mechanisms.

The legacy IEEE 802.15.4-2006 standard offers the use of either slotted
and unslotted CSMA-CA as a MAC protocol. Following IEEE 802.15.4e,
detailed later in this section, the MAC sublayer allows the operation of
different MAC behaviors to support specific application domains. This
master thesis will only consider the Time Slotted Channel Hopping (TSCH)
behavior of the 802.15.4e MAC, and as such will not detail any of the other
modes of operation.

General MAC frame format

Figure 2.5: Format of the MAC frame, from [4]

Frame Control field

Figure 2.6: Format of the Frane Control field, from [4]

Frame pending field

The frame control field includes the Frame Pending field, which can be
used to indicate to a receiving device that another packet is pending
transmission to this destination. The frame pending field is also referred
to as the "pending bit". The frame control field is used for signaling in
the idle listening reduction mechanism proposed for this thesis, which is
introduced in chapter 3.

12

2.3.5 PHY

The PHY layer provides an interface between the MAC sublayer and the
physical radio channel, via the RF firmware and the RF hardware. The PHY
is responsible for a number of tasks such as activation and deactivation of
the radio tranceiver, Clear Channel Assessment (CCA) for the CSMA-CA
protocol, channel frequency selection, and data transmission and reception
in the form of PHY protocol data units (PPDUs).

2.3.6 IEEE 802.15.4e

While the legacy IEEE 802.15.4-2006 defined a MAC and PHY layer tailored
specifically for use in LLNs, several studies highlighted flaws of the
standard that made it unsuitable for use in critical scenarios, such as those
found in industrial applications. These flaws are characterized by [21] as:

• Unbounded delay: the MAC protocol of IEEE 802.15.4-2006 cannot
provide a bound on maximum delay for data to reach its destination.
This makes it unsuitable for applications that have requirements of
timeliness and deterministic latency.

• Limited communication reliability: the slotted CSMA-CA algorithm
used in IEEE 802.15.4-2006 Beacon Enabled (BE) mode provides a
very low delivery ratio, even with a small node count. Similar issues
can also be found in the Non-Beacon Enabled (NBE) mode.

• No protection against interferences/fading: because the IEEE
802.15.4-2006 MAC only uses a single channel and lacks a frequency
hopping mechanism, it is subject to common phenomena in wireless
networks such as interference and multi-path fading, which can cause
frequent instabilities in the network.

• Powered relay nodes: to overcome limitations in the standard,
intermediate relay nodes in IEEE 802.15.4-2006 multi-hop networks
keeps their radio on at all times, causing large energy consumption.

To address these issues and better meet the demands of the industrial
market, the IEEE formed the 802.15.4e Task Group, which aimed at
defining an improved low-power MAC layer that could meet the stringent
requirements of industrial applications. Building on concepts found in
industrial WSN standards WirelessHART and ISA100.11a, the resulting
IEEE 802.15.4e-amendment [22] describes several improvements to the
MAC layer of the 802.15.4-2006 standard that makes it suitable for use in
industrial applications. These improvements include the implementation
of features such as slotted access with shared and dedicated slots and multi-
channel communication with frequency hopping, together with several
general functional improvements. After its approval in 2012, the 802.15.4e-
amendment was later included into IEEE 802.15.4-2015.

The 4e amendment defines a new MAC scheme called Time Slotted
Channel Hopping (TSCH), which aims to deliver deterministic latency

13

and multichannel operation to applications that require it, such as the
ones found in the industrial domain. Addressing the need for reliability,
timeliness and multi-hop communication within industrial networks,
TSCH is considered a key enabler for IIoT/IWSNs and an important
addition to the 802.15.4 MAC.

14

2.4 Time Slotted Channel Hopping

Time Slotted Channel Hopping (TSCH) is one of the new MAC behaviour
modes defined by the 802.15.4e standard. It is a medium access technique
designed to be used in low-power deterministic networking applications,
such as in process automation for oil and gas, pharmaceuticals, green
energy and more. It is considered by [1] as the de-facto technology for
highly reliable, low-power wireless sensor networking.

2.4.1 Background

TSCH takes inspiration from industrial networking standards Wire-
lessHART and ISA100.11a by combining time slotted access with multi-
channel and channel hopping capabilities. The time slotted aspect of TSCH
allows for a network with a higher potential throughput due to the elimin-
ation of collisions happening between transmitting nodes. This approach
also provides deterministic latency to applications that require it, as well as
a low duty cycle for increased energy efficiency. Multi-channel and chan-
nel hopping capabilities allows nodes to communicate in the same time
slot without risk of collisions, and mitigates the effects of interference and
multipath fading [A Step Towards the Internet of Things].

2.4.2 Topology

TSCH is topology independent, and can be used in star, tree, partial- or
full-mesh configurations. TSCH is particularly well-suited for multi-hop
networks because of its multi-channel operation, where frequency hopping
allows for efficient use of the available channel resources.

2.4.3 Synchronized communication

Nodes in a TSCH network synchronize their communication in a TDMA-
manner using slotframes divided into short intervals of time called timeslots.
Timeslots are fixed units of time which represent a communication
opportunity for a node within the slotframe.

Figure 2.7: TSCH Slotframe (left) and Timeslot (right), from [21]

15

Slotframe

The slotframe is divided into timeslots, and repeats over time. The number
of timeslots in a slotframe is dictated by the slotframe size, which can range
from 10s to 1000s depending on the application. For each timeslot, the
slotframe dictates whether the node should sleep or transmit/receive. In
the case of the latter, it also dictates a set channelOffset used for frequency
selection.

Cells

A combination of a slotOffset and a channelOffset defines a cell within a slot-
frame. The slotOffset refers to the position of a timeslot within a slotframe,
and the channelOffset indicates which frequency to communicate on.

Absolute Slot Number

The Absolute Slot Number (ASN) is a global value that is defined by the
number of timeslots that has elapsed since the start of the network or an
arbitrary start time determined by the PAN coordinator. The ASN is known
by all nodes in the network and dictates the current timeslot all nodes
are operating in. The ASN is globally incremented after the passing of a
timeslot.

Timeslot structure

The structure of a timeslot is depicted in Figure 2.7 (right). Each timeslot
allows a node to send a maximum-size data frame and receive the related
acknowledgement. Data packets are transmitted after TsTxOffset µs, and
listening starts GuardTime µs before the end of TsTxOffset. This allows for
slight desynchronization. In addition, if the reception of the packet does
not begin within GuardTime µs after TsTxOffset, the node disables its radio
to save energy.

The duration of a time slot is not defined by the standard, but 10 ms is
often used, as it gives time for transmission of a maximum-length frame
of 127 bytes and the corresponding ACK, and still leaves time for radio
turnaround, packet processing and security operations (assuming 250 kbps
802.15.4).

2.4.4 Links

A link is defined as the pairwise assignment of a directed communication
between nodes in a given timeslot on a given channelOffset. TSCH
supports two different link types: dedicated links, and shared links. A
dedicated link is a contention-free link reserved only for a single node pair
to use, while a shared link contains multiple node pairs that compete for
channel using CSMA-style back-off.

16

Retransmission

For a dedicated link, if an acknowledgement is not received within a
predefined timeout within the timeslot, the retransmission of the data
frame is deferred to the next time slot assigned to the same destination.
In the case of transmission failure over a shared link, TSCH uses a CSMA-
style retransmission algorithm with a backoff defining a random amount
of shared cells to wait before a retransmission attempt.

2.4.5 Channel hopping

For any scheduled slotframe cell, the frequency f used to communicate is
decided by Eq 2.1

f = F[(ASN + channelO f f set)%Nchannels] (2.1)

where Nchannels is the number of available channels, function F a
lookup table of available channels, ASN the current network ASN and
channelO f f set the channeloffset of the active cell. This functionality en-
sures successive packets between links are transmitted using different fre-
quencies, which can give a higher probability of success in case of retrans-
missions due to fading or interference. There are intially 16 channels avail-
able for communication, each identified by an integer value in the range of
[0, 15]. Channels can be blacklisted in the case of poor performance.

2.4.6 Scheduling

TSCH relies on a link schedule that defines when and how nodes
communicate with each other. This link schedule can be illustrated as a
matrix with width equal to the slotframe size, and a height equal to the
number of available frequencies (channels). The allocated cells of the link
schedule matrix represent a link between a pair of nodes in a given timeslot
and channel offset. Figure 2.8 illustrates a TSCH-schedule over a example
topology.

Maintaining and deriving the link schedule is not part of the IEEE
802.15.4 standard scope, and so this exercise is left to the upper layers.
Creating an optimal link schedule for a TSCH network is not always a
trivial task, especially in large networks with multi-hop topology and in
dynamic networks where the topology changes over time. Scheduling
in TSCH networks is an active field of research, and many proposals for
scheduling algorithms have appeared in literature [23].

17

Figure 2.8: A sensor network with a tree-topology (a) with a possible link schedule
for data-collection (b), from [23]

2.5 6TiSCH - IPv6 over the TSCH mode of IEEE
802.15.4e

6TiSCH [6] is a protocol stack created by the IETF 6TiSCH Working
Group that aims to enable IPv6 for TSCH LLNs. Driven by the trend of
industrial networks to utilize IP-technology, its purpose is to allow IT and
OT convergence while meeting the requirements of low-power wireless
deterministic applications.

2.5.1 Protocol stack

IETF CoAP

IETF RPL

IETF 6LoWPAN

IETF 6top

IEEE 802.15.4 MAC (TSCH)

IEEE 802.15.4 PHY

Figure 2.9: The 6TiSCH protocol stack

The 6TiSCH protocol stack is composed of standards developed by both

18

the IEEE and the IETF. From top to bottom, these are the Constrained
Application Protocol (CoAP), Routing Protocol for Low-Power and Lossy
Networks (RPL), IPv6 Header Compression (6LoWPAN), 6TiSCH 6top,
and the IEEE 802.15.4 MAC & PHY operating in the TSCH mode.

2.5.2 6TiSCH operation sublayer (6top)

6TiSCH defines the 6top sublayer as a logical link control just above the
IEEE 802.15.4 MAC layer. 6top provides the link abstraction that is required
for IP operations, and offers a management API that enables an external
management entity to schedule TSCH cells and slotframes.

6top protocol (6P)

The 6top protocol (6P) specifies a protocol for an external entity to manage
the TSCH schedule of a node. This external entity can either be a neighbor
node or some kind of a management entity, allowing for both distributed
and centralized schedule management.

Schefuling Function

A Scheduling Function (SF) is an entity on the mote that is responsible for
maintaining a distributed TSCH schedule. Many different proposals for
SFs exist in literature regarding 6TiSCH. The 6TiSCH Minimal Scheduling
Function (MSF) is an example of a SF proposed by the 6TiSCH WG that is
designed to operate in a wide range of application domains.

2.5.3 Scheduling in 6TiSCH

As 6TiSCH uses TSCH to provide deterministic networking capabilities, it
is dependent on mechanisms to build and maintain the TSCH-schedules
of the nodes in the 6TiSCH LLN. 6TiSCH identifies four ways a schedule
can be managed: static scheduling, neighbor-to-neighbor scheduling,
Centralized (or Remote) scheduling, and hop-by-hop scheduling.

Static Scheduling

A static schedule is configured for the whole network and is distributed
through the native methods in the TSCH MAC layer. Other scheduling
operations can co-exists with the static schedule on the same 6TiSCH
network. The Miminal 6TiSCH Configuration is an example of a static
schedule which is used for network bootstrapping. This schedule is pre-
established, for instance decided by a network administrator based on
operational needs.

Neighbor-to-Neighbor Scheduling

Refers to dynamic bandwidth adaptaion of the links that are used for traffic
between neighbor nodes. A node uses Scheduling Functions (SFs) to add,

19

update, and remove cells in its own and its peer’s schedules through the
6P protocol.

Centralized scheduling

Refers to central computation of a schedule by a Network Management
Entity (NME), which may work together with a Path Computation Entity
(PCE). Enables Traffic Engineering with deterministic properties.

Hop-by-hop scheduling

Refers to the possibility to reserve cells along a path for a particular flow
using a distributed scheduling mechanism.

2.5.4 Tracks

The 6TiSCH architecture introduces the concept of a Track, which is a
directed and deterministic path from a source node to a destination node
within a 6TiSCH LLN. Tracks are made up of bundles of tx- and rx-cells
installed at each mote along the multi-hop path. Constrained resources
such as memory buffers are reserved for that track in intermediate 6TiSCH
nodes to avoid loss related to limited capacity. A 6TiSCH node along a
track not only knows which bundles of cells it should use to receive packets
from a previous hop, but also knows which bundle(s) it should use to send
packets to its next hop along the Track. Tracks can be reserved either by
a remote PCE or by using a distributed mechanism such as Hop-by-hop
scheduling. Figure 2.10 illustrates a simple track. [6] lists some specific
benefits of using tracks to forward a packet from a source to destination:

1. Track forwarding is a Layer-2 forwarding scheme, which introduces
less process delay and overhead than a Layer-3 scheme. Thus LLN
devices can save more energy and resources, which is important for
such devices.

2. Because bundles of cells have alredy been reserved for communica-
tions between nodes on each hop of the track, throughput and max-
imum latency is guaranteed and the jitter is maintained small.

3. By knowing the scheduled timeslots of incoming and outgoing
bundle(s), nodes on a track can save energy by staying asleep during
inactive slots.

4. Tracks are protected from interfering with one another if a cell
belongs to at most one Track, and congestion loss is avoided if at
most one packet can be presented to the MAC to use that cell. Tracks
enhance the reliability of transmissions and thus further improve
the energy consumption in LLN Devices by reducing the chances of
retransmission.

20

Figure 2.10: A simple illustration of a 6TiSCH track. The scheduled cells marked
red are part of a track from node 3 to the sink

Overprovisioning

Multiple cells may be scheduled in a track for the transmission of a single
packet, in order to allow multiple transmission opportunities per packet(s).
The number of cells in a bundle per hop along a track introduces a
tradeoff between energy usage and bandwidth. If the size of the bundles is
configured to fit an average amount of bandwidth, peak traffic is dropped.
If the size is configured to allow for peak emissions, energy is be wasted
idle listening. A track can be considered optimal when the size of the track
bundles per hop are such that both the energy wasted in idle listening and
the packet drops due to congestion loss are minimized, while packets are
forwarded within an acceptable latency.

Track types

The 6TiSCH architecture draft defines two track types: serial tracks and
complex tracks. In a serial track a bundle of cells that are set to receive
is uniquely paired to a bundle of cells set to transmit. Together these
bundles form a Layer-2 forwarding method which can be used regardless
of the network layer protocol. A serial track is thus formed end-to-
end as a succession of paired bundles. The bundles may be computed
so as to accommodate both variable rates and retransmissions through
overprovisioning [6].

A complex track, as opposed to a serial track, is shaped as a
directed acyclic graph towards one or more destinations to support multi-
path forwarding and route around failures. Thus, complex tracks can
employ Deterministic Networking techniques such as Packet Replication,
Elimination and Ordering Functions (PREOF). The 6TiSCH architecture
also states that a complex track can be part of a larger DetNet End-to-end
path that can extend beyond the 6TiSCH LLN.

21

Track Forwarding

Forwarding along a track can be seen as a Generalized Multi-protocol Label
Switching (G-MPLS) operation in that information used to switch a frame
is related to properties of the way the packet was received, eg. which
particular cell that received the packet. As a result, as long as the TSCH
MAC accepts a frame, that frame can be switched regardless of the protocol,
whether this is an IPv6 packet, a 6LoWPAN fragment, or a frame from an
alternate protocol such as WirelessHART or ISA100.11a.

Cell Reuse

A track TX-cell that is not needed for the current iteration of a slotframe
may be reused for other packets. When all the frames that were received
for a given track have been transmitted, any available track cells can be
reused for upper layer traffic for which the next-hop router matches the
next hop along the track. In addition, if there are not enough TX-cells to
accomodate track traffic, frames can be placed in the bundle that is used
for Layer-3 traffic towards the next hop along the track.

22

2.6 Analytical

This section will present formulas for the calculation of some aspects
related to the TSCH and other aspects of the thesis.

2.6.1 Packet latency

Since time in TSCH is divided into timeslots lasting a specified amount of
time, packet latency in TSCH can be calculated.

As such, the maximum latency of a packet traveling from a source to a
destination can be given by

Lmax = S · N · R · Tslot (2.2)

where S is the slotframe size, N is the number of hops to the destination,
R is the maximum amount of retransmissions per slot and Tslot is the length
of a timeslot in seconds.

Similarily, we can define the minimum latency for a packet by

Lmin = N · Tslot (2.3)

Latency with overprovisioned cells

Calculating latency becomes more complicated for a network with a
specific amount of overprovisioned cells per hop, such as in the scenarios
defined in the thesis. However, the minimum latency in such a topology
can be defined as

Lmin = 2Tslot +
N−2

∑
n=1

n · C · Tslot, N ≥ 2 (2.4)

where C is the amount of overprovisioned cells per hop.

For a single hop, the minimum latency is defined by the value of Tslot
alone. Figure 2.11 illustrates an example of minimum packet latency in a
simple TSCH network with overprovisioned cells.

23

Figure 2.11: Illustration of the minimium packet latency occuring in an example
TSCH network featuring a single overprovisioned cell per hop with 3 hops
between source and destination.

2.6.2 Packet generation

Random packet generation in the thesis is done following a poisson
distribution, where λ is defined as the rate of packets generated per
timeslot.

The probability of generating x number of packets in a single slotframe
is defined as

P (x) =
e−λλx

x!
· S (2.5)

where S is the length of a slotframe.
The expected total amount of packet generated in a simulation run is

defined as
Ptotal = λ · S · NS (2.6)

where S is the length of a slotframe and NS is the amount of slotframes
where the mote is generating packets.

Periodic packet generation

If given a period in number of slotframes per a packet generation event,
the length in slotframes of which to generate packets and an amount of
packets generated per period, the total amount of packets generated can be
calculated using

Ptotal =
NP · NS

T
(2.7)

where NS is the amount of slotframes where the mote is generating packets,
NP is the amount of packets generated per period, and T is the period per
packet generation event in number of slotframes.

24

Chapter 3

Proposal

This chapter will detail Track Resource Adaptation (TRA), which is this
thesis’ proposed method for energy conservation through reduced idle
listening in tracks with overprovisioned cells.

3.1 Track Resource Adaptation

Track Resource Adaptation defines a mechanism for reducing idle listening
occuring on overprovisioned cells in 6TiSCH tracks. The idea behind the
mechanism was based partly upon [8] in how it considers a way to enable
and disable overprovisioned cells based on signaling between neighbor
nodes. TRA is envisioned in this thesis as an entity residing on each mote
along a track from source to destination.

3.1.1 Mechanism

TRA will disable or enable overprovisioned cells belonging to a track in
a node’s TSCH schedule based on the presence of the Frame Pending
field (pending bit) of the received frames. Figure 3.1 illustrates the basic
mechanism behind TRA. A node which utilizes TRA will read the pending
bit of a received frame to decide whether the following track RX-cells
should be enabled for frame reception. For a frame arriving on an enabled
track RX-cell, if the pending bit is set (=1), the successive track RX-cells
in the schedule will be enabled for the current slotframe iteration. If the
pending bit is not set (=0), the following track RX-cells are disabled, and
a node will not perform listening during the scheduled timeslots. In this
way, TRA provides a possibility for nodes hosting a track bundle to reduce
idle listening when there are no expected incoming frames for this track.
The state of Enabled/Disabled cells is only kept for the current slotframe
iteration, and will reset on the start of the next.

Disabling/enabling cells

In TRA, the term “Disabling” or “Enabling” a cell refers to whether a
allocated cell is available for TSCH to use for RX/TX. E.g. a disabled cell

25

Figure 3.1: TRA mechanism example for a node with 3 overprovisioned track cells.

will not consume radio energy during its scheduled timeslot. Enabling or
disabling a cell does not have any effect on its allocation – a disabled cell
will still be considered allocated in the TSCH schedule.

Disabling TX-cells

Since TRA will disable overprovisioned RX-cells on the receiver side of a
link, it is also necessary to disable the related TX-cells on the sender side
in order to prevent the node from transmitting when there is no receiver
cell listening. This mechanism is implemented in a manner similar to the
receiver side, where the successive TX-cells are enabled/disabled based on
the presence of the pending bit of a successfully transmitted frame.

Figure 3.2: TRA mechanism example for the sender and receiver side of a hop
along a track.

26

3.1.2 Variants

The thesis defines two variants of TRA: All Listen and One-Shot. Both share
the same functionality, but differ in the amount of cells initially enabled at
the start of a slotframe iteration. In the All Listen variant, all track cells are
enabled at the beginning of the slotframe. Cells are only disabled when
a frame that contains an unset pending bit is received. This allows for
retransmission opportunities in cases of low link quality, but may come
at the cost of more cells spent idle listening.

For the One-shot variant of TRA, only a single cell is enabled at the
beginning of a slotframe. This means that a frame will only have one
transmission opportunity to enable the rest of the cells based on the
presence of the pending bit. This can offer a higher amount of idle listening
reduction, but might adversely impact the latency and reliability of the
network, as there are no retransmission opportunities in case the packet
fails in the first cell.

3.1.3 Usage of the pending bit

The frame pending field, also called the pending bit, is part of the frame
control field of the 802.15.4 MAC frame. According to [ieee802.15.4], when
operating in TSCH mode the frame pending bit can be set to one to indicate
that the recipient should await a new transmission on the next timeslot and
on the same channel if there is no link scheduled. At all other times, it shall
be set to zero on transmission and ignored on reception. TRA disables the
functionality of scheduling extra opportunistic transmissions for frames
belonging to a track, and instead uses the pending bit for enabling or
disabling already allocated track cells.

3.1.4 Use cases

TRA could be useful in a number of scenarios relating to overprovisioning.
For example, in cases where a node has contiguous overprovisioned cells
to a neighbor node (e.g. to meet Estimated Number of Transmissions, also
known as ETX), the All Listen variant of TRA can be used to prevent idle
listening in cases where the transmission is successful in the first cell. On
the other hand, the One Shot variant of TRA could offer a high level of
idle listening reduction in cases where overprovisioning primarily stems
from trying to allocate bandwidth for traffic spikes in variable-rate traffic
applications. The exact benefit of TRA (in the form of the two variants)
is up for evaluation in this thesis, where reduction in idle listening is
compared to eventual drawbacks introduced. This means examining how
TRA behaves in different scenarios, with specific traffic flows and wireless
link properties, and identifying the situations where TRA might offer a
benefit in reducing idle listening, and thus reduce energy consumption.

27

28

Chapter 4

Method

This chapter will describe the evaluation method used in the project.
Some thoughts surrounding evaluation of a WSN is presented, along
with a description of of Discrete Event Simulation and the process behind
selecting a simulation tool. Lastly, an introduction to the 6TiSCH Simulator
is given.

4.1 Evaluation of Wireless Sensor Networks

Analysing Wireless Sensor Network designs can be a difficult task. WSNs
can often be too complex to model analytically because of the impact
the deployment environment has on the generated traffic, as well as
on the topology. In addition, the factors surrounding node energy
consumption and expected node lifetime further increases the complexity
of the analytical approach. Alternatively, the deployment of real-life
test-beds requires a huge effort, where a great deal of time can be lost
troubleshooting problems that do not relate to the actual WSN design
[Simulation tools for wireless sensor networks]. The complexity of the
analytical approach and the huge deal of effort required for test-bed
deployments make simulation an essential tool to study WSN. Use of
simulators to perform WSN experiments has been described in many
research papers, and is considered a valid method of evaluation.

4.1.1 Discrete Event Simulation

Discrete Event Simulation refers to modeling a system as a series of events
occuring at discrete points in time, where the result of each event incurs
changes in the overall state of the system. In a discrete-event simulator,
events are recorded as event notices in a future event list (FEL) or future event
set (FES), where each event is executed chronologically by the simulator.
The occurence of an event may both trigger changes in the system state as
well as generate new events to be added to the FEL/FES [24].

In the context of LLNs and WSN, discrete event-driven network
simulators are widely used as a method of evaulation since they can be
used as a flexible and inexpensive tool for testing the network without the

29

need of having to deploy an actual physical network. They can also be more
accurate and realistic than mathematical models where simplifications and
abstractions are often assumed. Open-source simulators such as NS-2
and JSim have traditionally been used for simulating low-power wireless
networks. Currently, NS-3, OMNet++ and TOSSIM are among the most
widely used [25].

4.1.2 Choosing a simulator

A critical tasks in the planning of the project was selecting a suitable
simulator. As there are many simulation tools available for networking
and WSN, the feature set, workflow and available simulation models differ
greatly. Learning how to use a particular simulator requires a considerable
time investment, and this time will be wasted if the selected simulator turns
out not suitable for the task at hand. Therefore, careful consideration of
which tool to use is paramount.

For choosing a simulator, it is important to decide on a set of
requirements which should be met by the chosen tool, such as: Are the
required simulation models available? Is it easily usable and extensible?
Is it still maintained and recently updated? Is it well-known, and has it
seen any prior academic use? Most of these criteria should be suitably met
before commiting to a certain tool. To this purpose, a evaluation of the most
commonly used network simulators was performed in the beginning phase
of the project. A number of simulators was considered, primarily evaulated
on the basis of available models for TSCH and 6TiSCH, and secondarily
on the aspects of previous academic use, extensibility, usability and recent
updates. A summary of the evaluated simulation tools is given below:

OMNET++[26] was considered because of its reputation of being a
"tried and true" simulator with a sizable community behind it. It uses C++
as well as its own modeling language NED to create and define simulation
models. It also features an IDE used to manage and run simulations.
Running natively in Windows, it offers a advantage over many tools that
can only be run in an Linux-environment. However, currently OMNET++
lacks any models for simulating TSCH and/or 6TiSCH LLNs, which makes
it unsuitable for the goal of this thesis.

NS3[27] was considered next, in a similar regard to OMNeT++ for being
a well-known simulator backed by a big community. Like OMNeT++, NS3
is a C++ oriented simulator, but differs in the fact that it does not feature
an IDE and must run in a Linux-environment. Models for evaulating
TSCH LLNs does exist for NS3, however as of the time of writing, these
models are not being currently maintained, and are also not part of the NS3
distribution. It is unclear if these models has been used in any publication,
and it is thus difficult to ascertain their validity for academic use.

The IRC-SPHERE TSCH-Simulator[28] is a easy-to-use simulator de-
signed for modeling simple TSCH networks. It is written in Python, and
has been used to evaluate TSCH for applications in healthcare. While it
offers many features compared to its relative low complexity, it is limited
by the fact that it can only simulate star-topology networks, and does not

30

feature multi-hop capability.
The 6TiSCH Simulator[25] is a simulator written in Python that focuses

specifically on simulating 6TiSCH networks. It was created as part of
the standardization activity by the IETF 6TiSCH WG, and as such closely
follows the requirements specified in the 6TiSCH RFCs. It differs from
OMNeT++ and NS3 in that is not a generic purpose simulator, but a
specialized protocol specific tool for fast prototyping. [Simulating-6TiSCH]
highlights features such as good scalability and low complexity as its key
selling points. The 6TiSCH simulator is currently in active development,
and has been utilized in several research papers.

Of all the simulators evaluated, the 6TiSCH Simulator comes closest
to meeting the previously defined set of criteria about having models for
simulating TSCH and/or 6TiSCH networks. It also scores highly when it
comes to extensibility and usability, as a result of its low complexity, and
being written completely in the Python languge. These points, along with
the fact that it is currently being maintained and has seen use in papers,
makes it an ideal choice for this thesis.

4.2 The 6TiSCH Simulator

This section will detail The 6TiSCH Simulator, which is this thesis’ chosen
tool for simulating 6TiSCH networks. The simulator is described in [25] by
Municio et. al., and the following information is gathered from this paper.

4.2.1 Introduction

The 6TiSCH simulator[ref] is a discrete-event simulator written in the
Python programming language. The design of the 6TiSCH simulator
minimizes typical simulation drawbacks by making careful abstractions
specific to 6TiSCH. This means that, instead of simulating physical
behavior, it focuses on simulating the network from the perspective of
the MAC layer. This is achieved with two abstractions. First, time is
quantized into TSCH slots, which means an event can only take place at
the slot boundary. Second, the protocol messages are abstracted to only
carry semantically relevant parameters which also means that exchanged
messages are not byte-accurate.

Building upon these two abstractions, the simulator can accurately
monitor:

• the behavior of a Scheduling Function (SF) in response to generated
traffic (in frames / second)

• the behavior of the routing protocol in response to topological
changes

• the behavior of 6P in response to MAC-layer drops

• the behavior of the application in response to scheduling, routing,
and network stack configuration.

31

The internal architecture of the simulator is shown in Figure 4.1. The
main component is Mote, which is where most of the 6TiSCH stack is
implemented. Mote is configured by SimSettings, which contains various
parameters that can set by users. Mote also generates metrics for SimStats
and SimGUI and creates events that are scheduled and later processed
by SimEngine. An example of such an event is packet transmission and
reception, which is evaluated by the Propagation component according to
the current network topology defined in the Topology component.

Figure 4.1: Architecture of the 6TiSCH Simulator, from [25]

4.2.2 SimEngine

The event-driven core of the simulator is implemented in SimEngine.
Events are generated by the Mote every time a new task needs to
be scheduled in the future, such as increasing the ASN in the nodes,
propagating a packet, or firing a timeout. These events are uniquely
identified by a tag formed by the node ID and a label, which can be
considered as the event’s universally unique identifier (UUID). Since more
than one event can happen at the same time, events are registered with a
specific priority and processed accordingly.

The set of events to be executed in the future, also known as the future
event set (FES), is implemented using a Python list, in which events are
added with the insert method and removed with the pop intermediate
method. Figure 4.2 shows an example of how events are inserted and
removed.

4.2.3 Topology

The simulator supports linear, random and fully-meshed topologies by
default. In addition custom topologies are easily configurable. Network
topology is defined by a connectivity matrix which indicates which motes
are able to communicate which each other. Each cell of the connectivity

32

Figure 4.2: Example of how the future event set is managed in the 6TiSCH
simulator. ASN, absolute slot number; UUID, universally unique identifier, from
[25]

matrix defines a unidirectional wireless link between two motes, where
connection parameters such as Recieved Signal Strength Indication (RSSI)
and Packet Delivery Ratio (PDR) can be set.

4.2.4 Propagation Model

The default propagation model implemented in the 6TiSCH simulator is
based on the Pister-Hack model [pister], which reflects the relationship
between RSSI and PDR in large indoors industrial scenarios using the 2.4
GHz band. The Pister-Hack model and the RSSI-PDR conversion table are
depicted in Figure 4.3 and Table 4.1, respectively.

The PDR values are used to calculate if a transmission is successful or
not by flipping a biased coin. In order to model interference, the RSSI from
the interfering neighbors is added to the ground noise in order to calculate
the signal-to-interference-plus-noise ratio, which is then converted into the
actual perceived PDR.

4.2.5 Energy Consumption Model

The simulator’s energy consumption model is based on the model
published by Vilajosana et. al. [29]. The model takes a component-based
approach by defining the energy consumption of the different types of slots
and combining them according to the schedule configuration. Figure 4.4
presents the sequence of actions that occur during a TSCH timeslot. This
sequence of actions is used to model the energy consumed by a node.

The model considers different types of slots as per Table 4.2. After the
execution of a slot, the simulator aggregates the consumed energy. By
default, the simulator uses the OpenMote[30] platform as a reference for
the current draw of each operation, but the values can easily be adapted to
other platforms.

33

Figure 4.3: Received signal strength indicator (RSSI) values generated using the
Pister-Hack model, from [25]

RSSI PDR
-97 dBm 0.0000
-96 dBm 0.1494
-95 dBm 0.2340
-94 dBm 0.4071
-93 dBm 0.6359
-92 dBm 0.6866
-91 dBm 0.7476
-90 dBm 0.8603
-89 dBm 0.8702
-88 dBm 0.9324
-87 dBm 0.9427
-86 dBm 0.9562
-85 dBm 0.9611
-84 dBm 0.9739
-83 dBm 0.9745
-82 dBm 0.9844
-81 dBm 0.9954
-80 dBm 0.9903
-79 dBm 1.0000

Table 4.1: RSSI-PDR translation, adapted from [25]

34

Figure 4.4: Timeslot timing and sequence of actions used to derive the energy
consumption of a node, from [25]

State Description
Idle The node idle listens. This is an RX state where nothing is received. Hence, it only

listens for the duration of the guard time.
Sleep The node deep sleeps. The slot is off so no CPU nor radio activity due to

communication.
TxDataRx-
Ack

The node transmits a packet and receives an ACK for it.

TxData The node sends a broadcast packet not requiring ACK.
RxData-
TxAck

The node receives a packet and responds with an ACK.

RxData The node receives a frame that does not require to be acknowledged.

Table 4.2: Possible slot types as per the energy consumption model implemented
within the 6TiSCH simulator, adapted from [25]

4.2.6 6TiSCH Mote Model

In the 6TiSCH simulator, a “mote” is an abstraction of a 6TiSCH network
node. The mote implements its different sublayers and core mote logic in
the Mote file. The specified number of motes are instantiated at boot time,
where the first mote (mote 0) is selected as root. The root is responsible
for triggering network formation by periodically adding Enhanced beacons
(EBs) and RPL Destination Information Objects (DIOs) to its transmission
queue.

The remaining motes start listening on randomly picked channels in
order to intercept EBs from the root. The propagation model will decide
whether motes are able to detect and correctly receive EBs. When a node
receives an EB, it synchronizes (enables its TSCH MAC layer) and starts the
joining process. After joining the network through a join proxy, the node
is able to decipher DIO messages and select a preferred parent and obtain
a RPL rank. Following this, the node allocates dedicated cells to neighbors
using the specified Scheduling Function.

Nodes schedule TX/RX events according to their schedule. At
every slot, the Propagation model evaluates which nodes have scheduled
transmissions at this ASN and which nodes are listening. For every packet,

35

it will determine the outcome of the transmission regarding the signal
strength and the interference level provoked by concurrent transmissions
in the same radio vicinity.

The sublayers of the motes are highly configurable through the SimSet-
tings component. It is possible to configure TSCH-related parameters such
as slotframe size, timeslot duration, beacon period, etc. The 6top sublayer
and the MSF scheduling function can be configured by changing paramet-
ers such as MAX_NUMCELLS, LIM_NUMCELLSUSED_LOW, HOUSE-
KEEPINGCOLLISION_PERIOD, etc. The RPL layer is implemented in the
non-storing mode and supports configuring parameters such as periods
for DIO and DAO messages. Finally, application traffic can be constant or
variable and can be injected at any time during the simulation. Variable
traffic can be modeled according to different probability distributions and
configurable traffic bursts can be scheduled.

4.2.7 Metrics

During simulation execution, various event handlers trigger updates for
the different metrics. Over 50 different metrics are currently implemented
and the addition of new metrics is supported and is easily implementable.
Metrics can be defined as per cycle to monitor the evolution of a specific
metric per TSCH slotframe cycle or as absolute in order to obtain the
resulting total value after the simulation. The slotframe cycle is the
collection of timeslots in a slotframe and is set to 101 slots by default.
Absolute metrics (such as charge consumed) can be obtained per node
or aggregated over all the nodes in the network. RSSI values for every
physical link are also logged. Table 4.3 details some of the most important
metrics of the simulator.

The simulator by default logs the metrics of each simulation independ-
ently in a log file. Simulation runs use different files and folders depending
on the CPU ID and the network size. The logging directory structure can
be easily changed by the user in SimSettings. The simulator also provides
with a set of helper scripts that allow the user to postprocess and plot any
desired metric in a fully automated manner. An important part of postpro-
cessing is the “compute_kpis.py” script which is responsible for creating
files containing key performance indicators (KPIs) from the generated sim-
ulator log file.

4.2.8 Validation and previous academic use

The 6TiSCH simulator has been validated against OpenWSN, which is
considered by [6TiSCH-simulator] as the most up-to-date 6TiSCH stack
implementation available. It has also seen use in papers in various areas
of research relating to both TSCH and 6TiSCH [31–34]

36

State Type Description
Average latency Per cycle Average latency of packets arriving at the root (in

ASNs)
Charge consumed Absolute Charge consumed by all nodes during the

simulation
Charge consumed at
every node

Absolute Total charge consumed by a node during the
simulation

App packets
generated/received

Per cycle Number of data packets generated and received at
every cycle

Number of TX/RX Per cycle Number of MAC frames sent and received at every
cycle

Number of drops Per cycle Drops are classified by its cause: QueueFull,
MaxRetries, and NoRoute

Number of used cells Per cycle TX/RX/SHARED cells used by all the nodes
Colliding cells Per cycle Dedicated cells used in more than one link
Parent changes Per cycle Number of parent changes per cycle

Table 4.3: Some of the available metrics in the 6TiSCH simulator, adapted from
[25]

37

38

Chapter 5

Application of the 6TiSCH
simulator

This chapter details the usage of the 6TiSCH simulator for this thesis,
along with a description of the additions and modifications made to the
simulator.

5.1 Additions and modifications

Several modifications and additions to the simulator was made in order
to model a network with TRA. This includes the addition of a virtual
Path Computation Entity (PCE), a TRA module, a traffic class for critical
data, a number of custom parameters together with logging related to
cell utilization. Modifications include adding support for tracks and the
TRA-module at the TSCH layer, as well as tweaks to network convergence
such as the ability to start the simulation with all nodes already TSCH-
synced over a pre-configured static RPL dodag. Scripts for generating key
performance indicator (KPI) values were also modified to include metrics
associated with cell use.

5.1.1 Helper scripts

A few helper scripts were created in order to compute average values of
the individual simulator runs, and present them in a comma separated
value (CSV) table. Each column of the csv table contains values of a metric
mapped to a specific X-value e.g. PDR, packet rate and TRA-type. The
tables were used to plot graphs for various metrics and analyse data.

5.1.2 Path Computation Entity Module

The Patch Computation Entity module “pce.py” defines a virtual PCE that
manages the creation of tracks. It contains the _build_track_specified
method which when given a list of mote ids as its motes parameter will
create a track along the listed motes with the specified trackId and cellnum
amount of cells for each hop. This method is used in all the simulations to

39

create tracks for critical data from source to sink. The track creation time is
scheduled using the simulator event scheduling method ScheduleAtAsn:

def _schedule_track_building(self):
self.engine.scheduleAtAsn(

asn = self.settings.exec_startSend * 101,
cb = self._buildOneTrack ,
uniqueTag = ’build_track ’,
intraSlotOrder = d.INTRASLOTORDER_STARTSLOT

)

where self.settings.exec_startSend is the value representing the
slotframe to start sending data. Track creation is instant and makes no
attempt at simulating a realistic PCE where adding track cells involves back
and forth transanctions between the PCE and the nodes involved in the
track.

The PCE will create cells sequentially starting from timeslot 1 along
the slotframe, forming a “daisy-chain” where overprovisioned cells for
each hop are added directly following each other. The channel assignment
is random between 0 and the number of available channels. Figure 5.1
provides an example of the resulting 6TiSCH schedule for a track created
along a linear network of four motes (3 hops), with two cells per hop.

Figure 5.1: An example of a 6TiSCH schedule featuring a track created by the
virtual PCE. SHA is the 6TiSCH minimal shared cell

40

5.1.3 TRA Module

The TRA module “trae.py” contains the logic for the proposed track
resource adaptation mechanisms. It defines the base TRA-class TRAEBase
along with subclasses TRAEAllListen and TRAEOneShot, representing the
two proposed TRA-variants. The TRAEBase class can be used on its own to
represent a network without TRA, as it only defines common TRA-related
methods without implementing any functionality. For each simulation, all
motes instantiate a specific TRA - variant from the classes defined in this
module.

The module is dependent on methods called from the TSCH-module.
These methods are illustrated in Figure 5.2 and allow the module to be
notified about elapsed track cells and whether idle listening / packet
reception occured, newly added track cells, and the state of the pending
bit of received packets. A brief explanation of the TRA-module methods
follows:

• register_track_cell, called whenever a TSCH-cell with a set
trackId is added. Registers the cell with the TRA-module.

• indicate_rx_cell_elapsed, called whenever a track RX-cell has
elapsed. The elapsed cell is passed as an argument.

• indicate_active_rx_cell, called when a RX-cell receives a packet.
The cell and the packet pending bit is passed as arguments.

• indicate_idle_rx_cell, called whenever idle listening occurs on a
track cell. The cell is included as an argument.

• indicate_tx_cell_elapsed, called when a track TX-cell has elapsed.
The elapsed cell is included as an argument.

• indicate_acked_tx, called whenever a track TX-cell succesfully
completes a transmission. The cell and the pending bit of the sent
packet is included as arguments.

• indicate_non_acked_tx, called whenever a track TX-cell receives no
ACK for a transmission. The cell is included as an argument.

Enabling and disabling cells

The module contains logic that allows it to decide whether to enable or
disable track cells based on the state of the pending bit. This logic is
contained in indicate_active_rx_cell, which is called whenever a cell
receives a packet. The pending_bit argument reflects the received packets
pending bit value, and is used to enable or disable the track RX-cells
following this cell.

In order to support tracks with multiple daisy chains, as illustrated in
Figure 5.3, the state of the last received pending bit is stored in the module.
This ensures that even though a mote in a chain only has a single tracked
packet in queue, the state of the stored pending bit will still be applied to
the packet on TX to the next hop.

41

Figure 5.2: Overview of the TRA methods called from the TSCH-module

5.1.4 TSCH module modifications

A number of modifications to the simulator’s native TSCH-module and its
cell subclass was required. Since the 6TiSCH Simulator does not include the
concept of tracks out-of-the-box, this feature was implemented by adding
a trackId field to the module’s Cell-class. All cells with the same trackId
belong to the same track, and cells with a trackId of None are considered as
not part of any track. Following this, a QoS mechanism was implemented
that priorities critical packets on tracked cells. Support for TRA was added
by ensuring that for any event (RX, TX, elapsed, cell creation) occuring on
a track cell, the related TRA-module method should be called.

The ability to mark a cell as disabled was added; Disabled cells will
remain allocated in the slotframe, but will not be usable for RX or TX,
preventing any activation of the radio. As TSCH iterates through the
slotframe it will sleep for any cells marked as disabled.

For a cell, individual counters for the amount of slots where the cell was
idle listening, disabled and elapsed was also added.

Finally logic for when to set the pending bit for tracked packets was
added.

Traffic and track cells

Only application traffic is allowed on tracked cells. This is done to
only observe the impact of controlled app-related packet flows on TRA,
eliminating the noise of RPL packets and. Non-app traffic is only allowed
on shared cells or cells added by the SF.

42

Figure 5.3: TRA with multiple daisy chains

5.1.5 Custom Mote Applications

Two custom applications, refered to in the simulator as Apps, were defined
in the simulator’s App-module. These apps are responsible for the
generation of data packets towards the sink at various rates and different
packet types. All packets generated have a payload length of 90 bytes.
This value was chosen as it is the default value for the simulator, and also
reprensents the maximum payload size of a packet before fragmentation
occurs.

AppDataCriticalTracked

This app is responisble for the generation of critical packets towards the
sink. The packets are generated in an "Alarm"-like fashion. For each
timeslot / ASN, the app has a chance to generate N number of packets
starting from slotframe iteration exec_startSend. Packet generation
follows a Poisson distribution, where the parameter crPktProb represents
λ which is defined as the amount of packets per slot.

for _ in range(0,
↪→ poisson.rvs(self.settings.crPktProb)):
create data packet

AppPeriodicSlotFrame

Creates best effort traffic at a period equal to beTxPeriod slotframe itera-
tions. For each period starting from slotframe iteration exec_startSend, a
packet is generated at a random timeslot within the slotframe.

43

5.1.6 Custom parameters

In addition to the default parameters, custom parameters specifically
related to various simulator additions were implemented, highlighted by
Table 5.1.

Parameter Description
pdr Global packet delivery rate for links between

nodes
num_track_cells_per_hop Number of cells per hop in the PCE track
trae Specified TRA method
exec_startSend Slotframe to start sending application traffic
crPktProb Critical data rate
beTxPeriod Generation period in slotframes for best-effort

traffic

Table 5.1: Custom simulation parameters

5.1.7 General modifications

General modifications to the simulator includes implementing metrics
related to TRA such as counters for idle listening and adding a class for
critical data, as well as additional logging of events. A big modification to
the simulator was allowing motes to start TSCH-synced, and changing the
RPL module to not allow parent changes that do not reflect the specified
topology of the current simulation scenario. This was necessary to speed
up and maintain convergence at low PDR values, but it must be noted that
as a result an assumption is made that RPL is always able to maintain the
desired topology.

5.2 Simulation metrics

Important simulation metrics are detailed in Table 5.2 They include a
mixture of the default simulator metrics as well custom metrics related
to total track cell usage per simulation run. The default metrics mainly
relate to packets: e.g. latency and amount lost / received, while the custom
metrics relate to track cell utilization. (Total) packets lost has been divided
into specific metrics for both retransmission losses, and losses due to full
transmission queues.

44

Metric Description
Min, max, avg
latency (s)

Latency for app data packets from generation to
arrival at sink

Number of receive
RX-cells

Total number of RX-cells that received a packet
during simulation

Number of idle listen
RX-cells

Total number of RX-cells that did not receive a
packet during simulation

Number of disabled
RX-cells

Total number of disabled RX-cells observed
during simulation

Disabled RX-cell
percentage

Percentage of disabled vs. enabled RX-cells
observed during simulation

Idle listen ratio Ratio of idle listening vs. packet receive events
Idle listening
reduction (%)

Amount of reduction idle listening reduction
compared to baseline

Packets lost Total amount of packets dropped
Packets lost -
Retransmission

Total amount of packets lost to retransmission
drops

Packets lost -
Queues full

Total amount of packets lost to full queues

Packets received Number of packets received at sink
Network lifetime Network lifetime in years

Table 5.2: Important simulation metrics

45

46

Chapter 6

Simulation scenarios

This chapter provides an overview of the simulation scenarios. A
brief description of each scenario is given, along with details about
implementation and simulator settings.

6.1 Common simulation parameters

This section will highlight parameters that remained constant throughout
the simulations. Most of the parameters were left unchanged from the
sample simulation configuration which follows some of the recommend-
ations of IEEE 802.15.4 as well as the Minimal IPv6 Minimal IPv6 over
the TSCH Mode of IEEE 802.15.4e (6TiSCH) RFC [35]. Parameters relat-
ing to fragmentation are not listed as they are not considered relevant;
all packets generated in the simulations have a payload length equal to
tsch_max_payload_length, which prevents any fragmentation from occur-
ing. As the two scenarios defined in the thesis don’t rely on the simulator’s
default apps for packet generation, the parameters related to these apps are
also not listed.

Parameter Value Description
numCPUs 1 Number of CPU cores to use for simulation
numRuns 30 Runs per parameter combiniation
exec_randomSeed random Random seed for simulation
secjoin_enabled true Use secure join process
rpl_daoPeriod 60 s Period in seconds for sending DAO
tsch_max_payload_len 90

bytes
Max length of the packet payload before fragmentation
occurs

sf_class MSF The used SF
tsch_slotDuration 10 ms The length of a TSCH timeslot
tsch_slotframeLength 101 Number of timeslots in a slotframe
tsch_probBcast_ebProb 0.16 The probability for broadcasting an EB
tsch_clock_max_
drift_ppm

30 Amount of clock drift

tsch_clock_frequency 32768 Internal clock operation frequency
tsch_keep_alive _interval 10 s Interval for sending keepalive messages
tsch_maxretries 5 Max number of TX retries per packet
phy_numChans 16 Number of channels available
tsch_queue_size 10 Size of the transmission queue at each mote

Table 6.1: The common simulation parameters

47

6.2 Scenario 1 - Critical data with 2 cells per hop

This scenario aims to investigate the impact TRA has on latency, packet loss
and cell utilization under different PDR and packet generation rates for a
linear network featuring a track with two cells per hop.

6.2.1 Description

The goal of TRA is to minimize the amount of idle listening occuring
in 6TiSCH tracks featuring overprovisioned cells. Overprovisioning is
the result of requiring retransmission opportunities in cases of unreliable
wireless links, or the need to accomodate peaks for traffic with variable
rates. This scenario is intended to evaluate the performance of TRA in
networks where such overprovisioning is present. The performance of TRA
is evaluated on the basis of how it compares to a standard 6TiSCH network
without any TRA mechanisms.

6.2.2 Implementation

A linear network consisting of four motes is considered. Mote 3 is the
source node and mote 0 is the sink. Mote 3 generates critical data following
a Poisson-distribution with a λ of crPktProb packets per timeslot. This data
is sent over 3 hops, using a 6TiSCH track created by the PCE-module.
All motes along the track implement the same TRA-mechanism (e.g. All
Listen, One-Shot). Each hop is made up of two cells in direct succession
towards the neighbour mote, representing a case of overprovisioning. The
Minimal Scheduling Function (MSF) is run as the underlying scheduling
function for non-app traffic such as RPL messages, and is delegated a
specific range of timeslots in the schedule as to not overlap with the track
cells. Figure 6.1 provides an illustration of the scenario topology and
TSCH-schedule.

6.2.3 Simulator settings

The simulations used the commonly defined simulator settings from
Table 6.1. Scenario specific settings are shown in Table 6.2. Parameters
exec_startsend and exec_numSlotframes were adjusted per PDR to allow
the network to converge before generating data packets. Both were set
so the source mote would transmit packets for 20000 slotframe iterations,
which amounts to around 5 and a half hours with a slotframe length of
101 timeslots and 0.01 seconds per slot. PDRs in the range of 1.00 to 0.70
with 0.05 step decrements between each value was considered, along with
the packet generation rates (λ) 0.001, 0.005 and 0.01. Each TRA-method
was tested in conjunction with all possible parameter combinations. 30
simulations was performed per combination, resulting in a total of 1890 (3 ·
3 · 7 · 30) individual simulator runs. Results from each set of combination
runs were averaged, and the min and max latency values were identified
among the runs.

48

Figure 6.1: Scenario 1 topology and schedule

Parameter Value
exec_numMotes 4
num_track_cells_per_hop 2
trae None, All Listen, One-Shot
pdr 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70
crPktProb 0.01, 0.005, 0.001

Table 6.2: Scenario-specific settings for Scenario 1

The specific combinations were chosen to investigate performance
in applications which have different reasons for overprovisioning. At
one end, with crPktProb of 0.001 and low PDRs, the combinations
represent a case where overprovisioning could stem from allowing further
retransmission attempts. At the other end, with crPktProb of 0.01 and high
PDRs, the combinations represent a case where overprovisioning is due to
allocating bandwidth for peaks in traffic.

Table 6.3 lists the expected amount of packets generated for each value
of crPktProb (λ) following Eq 2.6.

crPktProb (λ) Expected packet count
0.01 20 200
0.005 10 100
0.001 2 020

Table 6.3: Expected packet count for Scenario 1

49

6.3 Scenario 2 – Critical data with 3 cells per hop

This scenario increases the amount of cells per hop from Scenario 1 to 3 in
order to investigate the impact of further overprovisioning on TRA.

6.3.1 Description

Similarily to Scenario 1, the aim of this scenario is to evaluate the
effectiveness of TRA in a network with even further overprovisioning.
Three cells per hop allows for more retransmission opportunities within
a single slotframe, as well as greater bandwidth for transmission of peak
traffic. It also allows a mote to more easily recover from congestion,
preventing packet loss due to full queues. It also means that more energy is
wasted on idle listening, which could be mitigated by a TRA mechanism.

6.3.2 Implementation

Similarly to scenario 1, a linear network with 4 motes is considered, where
mote 3 is the source mote and mote 0 is the sink. Mote 3 again generates
critical data following a Poisson-distribution with a λ of crPktProb packets
per timeslot. The packets are sent to the sink over a track created by the
PCE, this time featuring three cells per hop. All motes run the same TRA-
mechanism, and MSF is used as the underlying scheduling function for
non-app traffic.

Figure 6.2: Scenario 2 topology and schedule

6.3.3 Simulator settings

The parameter settings for this scenario are equal to the settings of the pre-
vious, with the only change being the increase in num_track_cells_per_hop.
Parameters exec_startsend and exec_numSlotframes were adjusted per
PDR for convergence, and to allow the source mote to transmit packets for
20000 slotframe iterations.

50

Parameter Value
exec_numMotes 4
num_track_cells_per_hop 3
trae None, All Listen, One-Shot
pdr 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70
crPktProb 0.01, 0.005, 0.001

Table 6.4: Scenario-specific settings for Scenario 2

6.4 Scenario 3 – Critical data and best-effort data

This scenario intends to investigate the impact track cell reuse has on
TRA. Packet latency and loss and cell utilization are considered important
metrics.

6.4.1 Description

The goal of this scenario is to determine what effect TRA has on cell reuse.
Cell reuse is a feature of 6TiSCH tracks that allow packets not belonging to a
track to make use of track cells if there is currently no track traffic available
to send, and the next hop destination of the packets is the the same as for
the track cell. The scenario intends to observe how TRA affects the latencies
and reliability of critical and best-effort traffic as well as the impact on track
cell utilization. In this scenario, critical data has priority on the track, while
best-effort data does not.

6.4.2 Implementation

A network with five motes is considered. The scenario topology and TSCH-
schedule is illustrated in Figure 6.3. The topology is partly based on a
similar one presented by Theoleyre et. al. [36], in which data belonging to
two applications is transported from two sources over a common track to a
destination. In this scenario, Mote 3 and 4 are two data sources and mote 0
is the sink. Mote 3 generates critical data following a Poisson-distribution
with a λ of crPktProb packets per timeslot, and mote 4 generates one best-
effort packet every beTxPeriod in a random slot of the current slotframe. All
data is sent to the sink. Motes 3 to 0 host a track for critical data towards the
sink, and mote 4 has two non-track cells for traffic towards mote 2. Best-
effort traffic is able to travel along the track, but critical data has priority.
For any track TX-cell, if a mote has both a critical and best-effort packet
in its queue, the critical packet will be chosen for TX. Best-effort packets
will only be chosen for TX if there are no critical packets in queue. MSF is
run as the underlying scheduling function for non-app traffic such as RPL
messages, and is delegated a specific range of timeslots in the schedule to
not overlap with the track cells.

51

Figure 6.3: Scenario 3 topology and schedule

Parameter Value
exec_numMotes 5
num_track_cells_per_hop 2
trae None, All Listen, One-Shot
pdr 0.95
crPktProb 0.005
beTxPeriod 1, 2, 3 (slotframes)

Table 6.5: Scenario-specific settings for Scenario 3

6.4.3 Simulator settings

The simulations used the commonly defined simulator settings from
Table 6.1. Scenario specific settings are shown in Table 6.5. Similarly to the
previous scenario, exec_startsend and exec_numSlotframes were set so
both packet generating motes would generate packets for 20000 slotframe
iterations. The value of crPktProb remained at 0.005. Using Eq 2.6 this
gives an expected total packet count of Ptotalcr = 101 000 for critical packets.
beTxPeriod was set to 1, 2 and 3 to investigate the effect of different best-
effort traffic rates. Table 6.6 lists the total expected best-effort packet count
for each beTxPeriod as given by Eq 2.7.

52

beTxPeriod Expected BE packet count
1 20 000
2 10 000
3 6 666

Table 6.6: Expected best effort packet count, Scenario 3

53

54

Chapter 7

Simulation results and analysis

This chapter will present simulation results and provide analysis for the
three scenarios.

7.1 Scenario 1 - Critical data with 2 cells per hop

This section will detail the results of simulation scenario 1. For this
scenario, a network with a 3-hop linear topology was considered, with a
source mote in one end and a sink mote in the other. A track was created
with 1 overprovisioned track cell per hop, resulting in a total of 2 track cells
per hop. The simulations were run for each TRA variant with combinations
of λ values 0.01, 0.005, 0.001, and PDRs 1.0, 0.95, 0.90, 0.85, 0.80, 0.75,
0.70. Packets were generated for 20000 slotframes per simulation, and
metrics related to track cell usage was only recorded for these slotframes.
All combinations were also performed on a series of non-TRA baseline
simulation runs, refered to as “None”, in order to compare the results
to the current state-of-the-art. 30 runs were performed per parameter
combination, and the results of all metrics were averaged.

7.1.1 Results

Results are split into latency and packet drops, idle listening reduction, and
lifetime increase.

Latency and packet drops

Results for latency and average packet drops are illustrated in figures 7.1,
7.2 and 7.3 and are grouped by different values of λ.

55

0.70.80.91
2

4

6

8

10

Max. latency [s]

0.70.80.91

1

1.5

Avg. latency [s]

0.70.80.91
0

0.5

1

1.5

Avg. packet drops

AllListen
OneShot

None

Figure 7.1: Latency and average packet drops vs PDR for Scenario 1 @ λ = 0.001

Results for λ = 0.001 are displayed in Figure 7.1. Latency and average
packet drops increase as the PDR decreases. While AllListen and None
perform similarly for all metrics, OneShot demonstrates higher values for
max. and average latency. Average packet drops is similar for all variants.

56

0.70.80.91

5

10

15

Max. latency [s]

0.70.80.91

1

2

3

Avg. latency [s]

0.70.80.91
0

2

4

6

8

Avg. packet drops

AllListen
OneShot

None

Figure 7.2: Latency and average packet drops vs PDR for Scenario 1 @ λ = 0.005

Figure 7.2 illustrates the results for λ = 0.005. As the packet rate
increases, there is also an increase in latency and average packet drops.
OneShot again deviates from AllListen and None by showing larger values
for max and average latency as PDR lowers. Average packet drops is still
similar for all variants.

57

0.70.80.91

10

20

30

Max. latency [s]

0.70.80.91

2

4

6

8

Avg. latency [s]

0.70.80.91
0

100

200

Avg. packet drops

AllListen
OneShot

None

Figure 7.3: Latency and average packet drops vs PDR for Scenario 1 @ λ = 0.01

Figure 7.3 shows the results for λ = 0.01. There is again an increase in
latency and average packet drops for all variants. OneShot still has the
highest values for both max and average latency, and also suffers from
higher packet loss as PDR goes below 0.85. AllListen and None closely
match values for both latency and packet drops for all PDRs. Figure 7.4
shows packet loss in percent and drop reasons for OneShot at this packet
rate.

58

0.70.750.80.850.90.951
0 %

0.5 %

1 %

1.5 % 1.34

0.54

0.17
0.04000

PDR

(a)

0.70.750.80.850.90.951
0

100

200

254.7

103.5

31.9
7.030.770.030 14.435.071.60.2000

PDR

Full TxQueues
Max. Retries

(b)

Figure 7.4: a. Packet loss rate in percent and b. Drop reasons for OneShot, for
λ = 0.01, Scenario 1

Idle listening reduction

Figures 7.5 and 7.6 presents reduction in idle listening vs PDR for track cells
in the network. Results are presented individually for each TRA-variant,
with plots for each packet rate (λ). Reduction is presented as the percentage
decrease of total observed idle listening events compared to None.

59

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

20 %

40 %

60 %

22.84 25.03 26.87 28.77 30.36 31.97 33.53

41.28 42.07 42.78 43.4 43.92 44.53 45.16
49.55 49.59 49.62 49.66 49.67 49.78 49.72

λ = 0.01 λ = 0.005 λ = 0.001

Figure 7.5: Idle listening reduction vs PDR for OneShot, Scenario 1

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

5 %

10 %

15 %

20 %

10.94
12.72

14.42
15.79

16.8
17.63 17.88

12.31
13.14 13.83 14.44 14.85 15.17 15.66

3.63 3.75 3.91 4.02 4.2 4.48 4.51

λ = 0.01 λ = 0.005 λ = 0.01

Figure 7.6: Idle listening reduction vs PDR for AllListen, Scenario 1

Network lifetime increase

Increase in network lifetime is illustrated by figures 7.7 and 7.8, and is
presented individually for each TRA-variant with plots for each value of
λ. The increase is reported as the difference in network lifetime in years
compared to None.

60

0.7 0.75 0.8 0.85 0.9 0.95 1.0

0.2

0.4

0.6

0.8

1

1.2

0.16
0.11 0.1 0.1 0.1 0.11 0.12

0.28 0.3 0.31 0.33 0.36 0.36 0.38

1.09
1.14 1.16 1.18 1.21 1.23 1.27

Ye
ar

s

λ = 0.01 λ = 0.005 λ = 0.001

Figure 7.7: PDR vs increase in network lifetime for OneShot, Scenario 1

0.7 0.75 0.8 0.85 0.9 0.95 1.0

0.04

0.06

0.08

0.1

0.12

0.02

0.03
0.04 0.04

0.06
0.05 0.06

0.08

0.09
0.1 0.09

0.12
0.13

0.11

0.07
0.07

0.08 0.08
0.09

0.08

0.11

Ye
ar

s

λ = 0.01 λ = 0.005 λ = 0.01

Figure 7.8: PDR vs increase in network lifetime for AllListen, Scenario 1

7.1.2 Analysis and discussion

There is a difference between the two TRA-variants apparent throughout
all simulations. OneShot overall demonstrates a higher idle listening
energy reduction, but suffers greatly when it comes to max and average
latency as the PDR decreases. It also struggles when dealing with higher
packet rates, as drops increase drastically for lower PDRs. As seen in
Figure 7.4, at 0.7 PDR OneShot suffers from a loss of 1.3% of all traffic for
rate λ = 0.01. The vast majority of packets lost stem from packet drops due

61

to full TxQueues which would indicate that OneShot suffers heavily from
congestion at lower PDRs. Congestion is caused by TxQueues filling at a
faster rate than the mote is able to transmit packets, and would normally
be mitigated by the overprovisioned cell present in the track, allowing
more transmission opportunities within a slotframe. However, OneShot is
dependent on a succesful transmission (ACK) of a packet with the pending
bit set to activate the overprovisioned cell. During low PDRs, packets will
fail more often, leaving the overprovisioned cell deactivated for the current
slotframe. The effects of congestion unfavorably impacts the throughput of
the track, and is the cause for the observed congestion loss.

The high max and average latency present in OneShot is also related to
congestion. As queues fill, packets have to “wait in line” for TX, and with
many packets queued up, each maybe requiring multiple retransmission
attempts, packets might end up queued for a long period of time, causing
max latency to reach up to 30s (or around 30 slotframes), as seen in
Figure 7.3. It seems OneShot already begins seeing the effect of congestion
starting from PDR 0.95, as evident by the increase in latency compared to
the other variants.

While OneShot offers great idle listening reduction at the cost of
increased latency and congestion loss, AllListen paints a much more
modest picture. It is not able to provide the same amount of idle listening
reduction, but does manage to closely match the average latency of the
None baseline for all packet probabilities and PDRs, which could make it
suitable for applications with stricter requirements for latency.

Regarding idle listening reduction, there is a slight decline in efficiency
as the PDR lowers for both variants. This is because as PDR decreases,
more retransmissions will occur, and less cells will be left idle listening.
This is compounded by the packet rate, as more packets equals more
retransmissions, leading to increased cell utilization. As such, possible
energy gain from idle listening reduction will shrink as the PDR lowers.

Although the results indicate that AllListen offers better idle listening
reduction as λ increases, it is important to remember that at higher packet
rates, more energy will be spent transmitting packets, and as the energy
consumed by RX/TX is much larger than the energy consumed by an idle
listening cell, the energy saved will only make up a small percentage of the
total energy usage. Figure 7.8 illustrates the reported increase in network
lifetime for AllListen. It is clear that the network lifetime gain is the highest
for λ = 0.005 and PDR=0.95 with an increase of 0.13 years, even though the
idle listening reduction for this point is only 15.17% compared to 17.63% for
λ = 0.01 as shown by Figure 7.6.

As stated earlier, OneShot performs quite poorly when facing high
packet rates combined with low link quality. However, for the packet rates
evaluated in this thesis, packet loss only seems to become apparent at PDRs
below 0.90. Thus, OneShot could be viable in environments featuring such
characteristics. Figure 7.7 demonstrates an impressive network lifetime
increase for OneShot, especially for λ = 0.001 where the lifetime has been
increased by a just over a year. It is though unlikely that an application with
such low packet rates would require overprovisioning in the first place,

62

unless the goal was reducing latency by allowing more retransmission
attempts. In that case, as OneShot only activates its overprovisioned cells
upon reading a set pending bit, essentially not allowing retransmission for
a single packet, it is not suited for this scenario. In different scenarios,
featuring burst of traffic, with high PDRs / good wireless links, the
applicability of OneShot might be more reasonable, since overprovisioning
would then be used as a means to accomodate worst-case traffic spikes.
If we then consider a network with a sparse periodic packet rate, which
occasionally is subject to bursts of traffic, OneShot could offer an advantage
in being able to reduce the amount of idle listening happening during non-
burst traffic, as long as the latency introduced can be accepted.

7.2 Scenario 2 - Critical data with 3 cells per hop

This section details the results of simulation scenario 2. The purpose of
Scenario 2 is to investigate the effect of adding another overprovisioned
track cell per hop to the network of scenario 1. As such, the topology now
features 3 track cells per hop. The parameter combinations are the same as
for the previous scenario.

7.2.1 Results

Reults are split into latency and packet drops, idle listening reduction, and
network lifetime increase.

7.2.2 Latency and packet drops

Results regarding max / average latency and average packet drops are
presented in figures 7.9, 7.10 and 7.11 and are grouped by different λ
values.

63

0.70.80.91

2

4

6

8

10

Max. latency [s]

0.70.80.91

1

1.5

Avg. latency [s]

0.70.80.91
0

0.5

1

1.5

Avg. packet drops

AllListen
OneShot

None

Figure 7.9: Latency and average packet drops vs PDR for Scenario 2 @ λ = 0.001

Figure 7.9 displays the results for λ = 0.001. Max and average latency
is lower for AllListen and None compared to Scenario 1, while OneShot
shows little difference. Average packet drops are the same as in the
previous scenario for all variants.

64

0.70.80.91

5

10

15

Max. latency [s]

0.70.80.91

1

1.5

2

Avg. latency [s]

0.70.80.91
0

2

4

6

Avg. packet drops

AllListen
OneShot

None

Figure 7.10: Latency and average packet drops vs PDR for Scenario 2 @ λ = 0.005

Figure 7.10 indicates the results for λ = 0.005. The values for max and
average latency have decreased for all variants compared to Scenario 1.
Average packet drops is also lower than in the previous scenario.

65

0.70.80.91

5

10

15

Max. latency [s]

0.70.80.91

1

2

3

Avg. latency [s]

0.70.80.91
0

20

40

60

Avg. packet drops

AllListen
OneShot

None

Figure 7.11: Latency and average packet drops vs PDR for Scenario 2 @ λ = 0.01

Figure 7.11 illustrates the results related to λ = 0.001. Latency and
packet drops continue to be lower than in Scenario 1. Congestion loss is
especially lower for OneShot compared to the previous scenario.

Idle listening reduction

Idle listening reduction is presented in figures 7.12 and 7.13. The amount
of idle listening reduction is higher than in the previous scenario.

66

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

20 %

40 %

60 %

22.84 25.03 26.87 28.77 30.36 31.97 33.53

58.93 59.65 60.45 61.15 61.86 62.47 63.05
66.23 66.3 66.31 66.38 66.41 66.47 66.5

λ = 0.01 λ = 0.005 λ = 0.01

Figure 7.12: Idle listening reduction vs PDR for OneShot, Scenario 2

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

10 %

20 %

30 %

40 %

23.72 25.28 26.65 28.03 29.16 29.98 30.86

19.07 19.76 20.47 21.15 21.96 22.45 23.05

5.19 5.37 5.58 5.77 5.89 6.09 6.22

λ = 0.01 λ = 0.005 λ = 0.001

Figure 7.13: Idle listening reduction vs PDR for AllListen, Scenario 2

Network lifetime increase

Network lifetime increase is illustrated in figures 7.14 and 7.15. Lifetime
increase is higher for both variants compared to Scenario 2.

67

0.7 0.75 0.8 0.85 0.9 0.95 1.0

0.5

1

1.5

2

0.17 0.18 0.2 0.2 0.23 0.24 0.26

0.52 0.57 0.61 0.64 0.67 0.71 0.74

1.9 1.94
2.02 2.07 2.11 2.15 2.2

Ye
ar

s

λ = 0.01 λ = 0.005 λ = 0.001

Figure 7.14: PDR vs increase in network lifetime for OneShot, Scenario 2

0.7 0.75 0.8 0.85 0.9 0.95 1.0

0.1

0.15

0.2

0.07
0.09

0.1 0.11
0.12

0.13
0.150.15

0.17
0.19

0.2 0.21

0.23
0.25

0.12 0.11

0.13 0.13

0.14 0.14

0.16

Ye
ar

s

λ = 0.01 λ = 0.005 λ = 0.001

Figure 7.15: PDR vs increase in network lifetime for AllListen, Scenario 2

7.2.3 Analysis and discussion

The results of this scenario echo those of Scenario 1, but with lower values
for latency and drops, and higher values of idle listening reduction and
network lifetime increase. OneShot offers the most reduction overall at
the cost of latency, and AllListen offers less reduction but without any
noticeable latency penalty. OneShot still suffers from congestion for PDRs
close to and lower than 0.8, but the amount of packets dropped has
diminished, compared to Scenario 1. This is because OneShot now has 2

68

further cells available for TX/RX whenever a successful transmission of a
packet with a pending bit is received, which gives queues a better chance
at recovering from congestion.

Compared to the previous scenario, increase in network lifetime is
higher for both TRA-variants, as seen in Figures 7.14 and 7.15. The
gain is relatively high for OneShot, which now boasts a lifetime increase
of 2.2 years compared to 1.27 in Scenario 1, for λ = 0.001. AllListen
also demonstrates higher values, with the maximum value of 0.25 years
compared to 0.13 years for λ = 0.005,.

It is clear that as more overprovisioned cells are added to the track, the
potential for energy gain through reducing idle listening events becomes
higher. In this case it is especially high as the max packet rates have
not been changed. This means that when the PDR is high, the extra
overprovisioning is unnecescary, as the extra cell ends up not used.
However, for low PDRs, the extra overprovisioning does indeed help keep
latency and packet drop lower than in Scenario 1.

7.3 Scenario 3 - Critical and Best-effort data

This section will detail the results of scenario 3, which intends to investigate
the impact track cell reuse has on TRA. For this scenario, a network is
considered consisting of a sink and two data-generating motes, where one
mote is generating Critical data, while the other is generating best-effort
data. Both critical and best-effort data use the same track to transport data
from source to sink, but critical data has priority on the track. Critical data
is created at a rate of λ = 0.005, and best-effort data is generated at a period
of 1, 2 and 3 slotframes. The simulations were run with a PDR of 0.95 for
each TRA variant along with a “None” baseline, in order to compare the
results to the current state-of-the-art.

7.3.1 Results

Results are shown in Figure 7.16 for critical data, and Figure 7.17 for
best-effort data, and lists the max and average latency and average
packets dropped. Figure 7.18 shows the idle listening reduction observed
for different data generation periods of best-effort packets. Figure 7.19
illustrates reported increase in network lifetime for both Oneshot and
AllListen. Figure 7.20 shows the amount of drops for each TRA-variant
per mote during data generation period 1.

69

1 2 3

5

6

4.28 4.4 4.36

5.61

6.83

6.38

4.36
4.59 4.69

Max. latency [s]

1 2 3

0.7

0.75

0.8

0.66 0.66 0.66

0.83 0.83 0.83

0.66 0.66 0.66

Avg. latency [s]

1 2 3
0

2

4

6

8

0.83
0 0

8.33

0.03 0
1.2

0 0.03

Avg. packet drops

AllListen
OneShot

None

Figure 7.16: Critical data metrics vs traffic generation period for Scenario 3

70

1 2 3

12

14

16

12.17

11.13 11.07

16.2

12.15

13.1713.15

11.11

10.13

Max. latency BE [s]

1 2 3

2

2.5

2.06

1.56 1.52

2.59

1.75 1.69

2.08

1.56 1.52

Avg. latency BE [s]

1 2 3
0

1

2

0.07 0 0

2.67

0 00.07 0 0

Avg. packet drops BE

AllListen
OneShot

None

Figure 7.17: Best-effort data metrics vs traffic generation period for Scenario 3

71

1 2 3
0 %

20 %

40 %

60 %

80 %

100 %

14.34
19.38 18.25

26.32

37.87 40.3

Data generation period (slotframes)

Idle listening reduction [%]

AllListen OneShot

Figure 7.18: Idle listening reduction amount in percent for Scenario 3

1 2 3

0.04

0.06

0.08

0.1

0.12

0.14

0.02

0.04
0.05

0.07

0.12

0.15

Data generation period (slotframes)

Ye
ar

s

Increase in network lifetime

AllListen OneShot

Figure 7.19: Increase in network lifetime, Scenario 3

72

NoneAllListen OneShot
0

2

4

6

8

00 0 00

1.53 1.270.9

9.47

00 0 00 0

Avg. drops per mote for data generation period 1

Mote 0 Mote 1 Mote 2
Mote 3 Mote 4

Figure 7.20: Average amount of drops per mote for data generation period 1,
Scenario 3

7.3.2 Analysis and discussion

There is a clear difference between the two traffic types when it comes to
latency. Critical data generally has lower latency than best effort, which is
expected as critical data has priority. Thus, best-effort shows an increase in
average latency as periods become shorter. Max latency for critical traffic
spans 4.28s-4.69s for AllListen and None, while OneShot shows values
ranging from 5.61s-6.83s. Average latency is constant at 0.66s for AllListen
and None, but OneShot shows a higher value of 0.83s. OneShot also has
the highest max and average latency for best-effort traffic.

As seen in Figure 7.18, OneShot offers the highest idle listening
reduction for all periods of data generaration, with a value of 40.3% at
period 3. AllListen shows the highest idle listening reduction at period
2 at 19.38%. Both have the lowest amount of reduction at period 1, with
14.34% and 26.32% for AllListen and OneShot respectively.

Network lifetime increase is displayed in Figure 7.19. The amount of
increase is lower for both variants compared to the previous two scenarios.
In the 6TiSCH simulator, the network lifetime metric is equal to the lowest
expected lifetime observed among the motes in the network, which in this
case would be mote 2. Mote 2 consumes a lot more energy compared to the
other motes, as it must relay the traffic of mote 3 and 4. In addition, mote 2
features 2 extra cells from mote 4 that are not part of the track and cannot
be disabled, resulting in excess idle listening.

When the traffic generation period is 1, drops occur for both packet
types. As the PDR does not change in the scenario, the increase in packet
drops are likely to stem from congestion. As presented in Figure 7.20,
packet drops occur most often on mote 2. This would indicate that, for
data generation period 1, mote 2 has trouble relaying traffic from mote 4
and 3 at a sufficient rate to avoid congestion. The issue is mostly apparent

73

for OneShot, which is known from the previous scenarios to have trouble
with congestion. In any way, the issue of congestion could be mitigated by
increasing the number of overprovisioned cells in the track.

There is a higher amount of critical packets dropped compared to best
effort, which warrants some explanation. The issue stems from the way
cells are allocated in the scenario, and is illustrated in Figure 7.21. In
short, best-effort traffic arrives at mote 2 after transmission opportunities to
mote 1 have passed, meaning there is usually space cleared in the queue to
accomodate a new packet. As critical data arrives in the cells prior to these
transmission opportunities, the chance that the queue is full on reception is
higher. When the queue is full, packets get dropped, and as the probability
of a full queue is highest during the reception of critical data, more critical
data is dropped in comparison to best-effort.

Figure 7.21: Explanation of packet loss in scenario 3

Despite the lower increase in network lifetime shown in this scenario,
TRA has the ability to offer a reduction in idle listening to networks with
multiple traffic types. While OneShot does introduce caveats of increased
latency and increased congestion loss, AllListen is able to provide a small
increase in network lifetime at no cost to latency for both critical and best-
effort packets.

74

Chapter 8

Conclusion

This thesis introduced and evaluated Track Resource Adaptation, which is
a proposed mechanism intended to reduce idle listening events in 6TiSCH
tracks featuring overprovisioning.

Two TRA variants, OneShot and AllListen, were introduced, and each
variant was evaluated in three different simulation scenarios using the
6TiSCH simulator. The three scenarios represented different combinations
of traffic rate and wireless link quality over varying amounts of overprovi-
sioning, along with an evaluation of TRA in a network featuring different
traffic classes. Metrics such as latency, packet loss, idle listening reduction
and network lifetime increase were considered important to determine the
benefits and drawbacks of TRA for each scenario.

The results indicate that OneShot is able to provide a high amount of
idle listening reduction, and an increase in network lifetime of up to two
years in some cases. However, this energy gain comes at the cost of higher
latency and susceptibility to congestion loss when wireless links become
more unreliable. AllListen induced minimal penalties to latency and packet
loss, but provided less reduction in idle listening and a lower increase of
network lifetime. For both variants, the potential energy gain becomes
higher as the number of overprovisioned cells increase.

The applicability of the two TRA variants was discussed. AllListen is
deemed suitable for a wider range of applications that could benefit from
a small increase in network lifetime at little to no performance cost, while
OneShot might be applicable in networks with good wireless links, and
where higher overall latency is an acceptable tradeoff for a greater increase
in network lifetime.

75

76

Chapter 9

Further work

As the scenarios defined in the thesis evaluate TRA in networks with
a constant rate of packet generation, it would be interesting to also
investigate how TRA responds to networks featuring mainly random
bursts of traffic. For example, the thesis mentions that OneShot could offer
a significant amount of idle listening reduction in such a scenario. Hence,
further simulations representing scenarios with burst of traffic should be
considered.

It would also be interesting to explore a different signaling mechanism.
Rather than using the pending bit to toggle cells, a similar method to
the one proposed by Fafoutis et. al. in [8] could be utilized, where a
specific amount of cells are activated based on a integer value included
in the header of a received packet. This could be used to only activate an
(estimated) specific amount of cells needed rather than all, as is the current
method.

77

78

Bibliography

[1] Diego Dujovne et al. ‘6TiSCH: deterministic IP-enabled industrial
internet (of things)’. In: IEEE Communications Magazine 52.12 (2014),
pp. 36–41.

[2] Jianping Song et al. ‘WirelessHART: Applying wireless technology
in real-time industrial process control’. In: 2008 IEEE Real-Time and
Embedded Technology and Applications Symposium. IEEE. 2008, pp. 377–
386.

[3] ISA100, Wireless Systems for Automation. https://www.isa.org/isa100/.
Accessed: 2019-01-01.

[4] ‘IEEE Standard for Low-Rate Wireless Networks’. In: IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (Apr. 2016), pp. 1–
709. DOI: 10.1109/IEEESTD.2016.7460875.

[5] IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch). https://datatracker.
ietf.org/wg/6tisch/about/. Accessed: 2019-01-01.

[6] An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4. https :
//tools.ietf.org/html/draft-ietf-6tisch-architecture-20. Accessed: 2019-
01-01.

[7] Deterministic Networking Architecture. https://tools.ietf.org/html/draft-
ietf-detnet-architecture-12. Accessed: 2019-01-01.

[8] Xenofon Fafoutis et al. ‘Adaptive static scheduling in IEEE 802.15. 4
TSCH networks’. In: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT). IEEE. 2018, pp. 263–268.

[9] Yichao Jin et al. ‘A centralized scheduling algorithm for IEEE 802.15.
4e TSCH based industrial low power wireless networks’. In: 2016
IEEE Wireless Communications and Networking Conference. IEEE. 2016,
pp. 1–6.

[10] Martin Wollschlaeger, Thilo Sauter and Juergen Jasperneite. ‘The
Future of Industrial Communication: Automation Networks in the
Era of the Internet of Things and Industry 4.0’. In: IEEE Industrial
Electronics Magazine 11.1 (2017), pp. 17–27. ISSN: 1932-4529. DOI: 10.
1109/mie.2017.2649104.

[11] Hugh Boyes et al. ‘The industrial internet of things (IIoT): An analysis
framework’. In: Computers in Industry 101 (2018), pp. 1–12.

79

[12] Definition: Industrial internet of things. https://internetofthingsagenda.
techtarget.com/definition/Industrial-Internet-of-Things-IIoT. Accessed:
2019-01-01.

[13] Industrial IoT: How Connected Things are Changing Manufacturing.
https://www.ge.com/digital/blog/industrial-iot-how-connected-things-
are-changing-manufacturing. Accessed: 2019-01-01.

[14] Maria Rita Palattella et al. ‘On optimal scheduling in duty-cycled
industrial IoT applications using IEEE802. 15.4 e TSCH’. In: IEEE
Sensors Journal 13.10 (2013), pp. 3655–3666.

[15] Thomas Watteyne et al. ‘Teaching communication technologies and
standards for the industrial IoT? Use 6TiSCH!’ In: IEEE Communica-
tions Magazine 55.5 (2017), pp. 132–137.

[16] Ian F Akyildiz et al. ‘A survey on sensor networks’. In: IEEE
Communications magazine 40.8 (2002), pp. 102–114.

[17] Priyanka Rawat et al. ‘Wireless Sensor Networks: recent develop-
ments and potential synergies’. In: Journal ofSuperComputing, www.
researchgate. net/publication/25 8165429 ().

[18] Vehbi C Gungor and Gerhard P Hancke. ‘Industrial wireless sensor
networks: Challenges, design principles, and technical approaches’.
In: IEEE Transactions on industrial electronics 56.10 (2009), pp. 4258–
4265.

[19] Rodrigo Teles Hermeto, Antoine Gallais and Fabrice Theoleyre.
‘Scheduling for IEEE802. 15.4-TSCH and slow channel hopping MAC
in low power industrial wireless networks: A survey’. In: Computer
Communications 114 (2017), pp. 84–105.

[20] Industrial wireless networks - comparing the standards. https : / /www .
processonline . com . au / content / wireless / article / industrial - wireless -
networks-mdash-comparing-the-standards-part-2-202802088. Accessed:
2019-01-01.

[21] Domenico De Guglielmo, Simone Brienza and Giuseppe Anastasi.
‘IEEE 802.15.4e: A survey’. In: Computer Communications 88 (2016),
pp. 1–24. ISSN: 0140-3664. DOI: https://doi.org/10.1016/j.comcom.
2016.05.004. URL: http://www.sciencedirect.com/science/article/pii/
S0140366416301980.

[22] ‘IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs) Amend-
ment 1: MAC sublayer’. In: IEEE Std 802.15.4e-2012 (Amendment
to IEEE Std 802.15.4-2011) (Apr. 2012), pp. 1–225. DOI: 10 . 1109 /
IEEESTD.2012.6185525.

[23] Domenico De Guglielmo, Giuseppe Anastasi and Alessio Seghetti.
‘From IEEE 802.15.4 to IEEE 802.15.4e: A step towards the Internet
of Things’. In: Advances in Intelligent Systems and Computing 260 (Mar.
2014), pp. 135–152. DOI: 10.1007/978-3-319-03992-3_10.

80

[24] Klaus Wehrle, Mesut Günes and James Gross. Modeling and tools for
network simulation. Springer Science & Business Media, 2010.

[25] Esteban Municio et al. ‘Simulating 6TiSCH networks’. In: Transactions
on Emerging Telecommunications Technologies 30.3 (2019), e3494.

[26] OMNeT++ Discrete Event Simulator. https://omnetpp.org/. Accessed:
2019-01-01.

[27] ns3 | a discrete event simulator for Internet systems. https://www.nsnam.
org/. Accessed: 2019-01-01.

[28] GitHub - IRC-SPHERE/tsch-simulator. https : / / github . com / IRC -
SPHERE/tsch-simulator. Accessed: 2019-01-01.

[29] Xavier Vilajosana et al. ‘A realistic energy consumption model for
TSCH networks’. In: IEEE Sensors Journal 14.2 (2014), pp. 482–489.

[30] Xavier Vilajosana et al. ‘OpenMote: Open-source prototyping plat-
form for the industrial IoT’. In: International Conference on Ad Hoc Net-
works. Springer. 2015, pp. 211–222.

[31] Maria Rita Palattella et al. ‘On-the-fly bandwidth reservation for
6TiSCH wireless industrial networks’. In: IEEE Sensors Journal 16.2
(2016), pp. 550–560.

[32] Seema Kharb and Anita Singhrova. ‘Slot-frame Length Optimization
using Hill Climbing for Energy Efficient TSCH Network’. In: Procedia
computer science 132 (2018), pp. 541–550.

[33] Glenn Daneels et al. ‘Accurate Energy Consumption Modeling of
IEEE 802.15. 4e TSCH Using Dual-Band OpenMote Hardware’. In:
Sensors 18.2 (2018), p. 437.

[34] Kanghoon Choi and Sang-Hwa Chung. ‘Enhanced time-slotted
channel hopping scheduling with quick setup time for industrial
Internet of Things networks’. In: International Journal of Distributed
Sensor Networks 13.6 (2017), p. 1550147717713629.

[35] Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Config-
uration. https://tools.ietf.org/html/rfc8180. Accessed: 2019-01-01.

[36] Fabrice Theoleyre and Georgios Z. Papadopoulos. ‘Experimental
Validation of a Distributed Self-Configured 6TiSCH with Traffic
Isolation in Low Power Lossy Networks’. In: Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems. MSWiM ’16. Malta, Malta: ACM, 2016,
pp. 102–110. ISBN: 978-1-4503-4502-6. DOI: 10.1145/2988287.2989133.
URL: http://doi.acm.org/10.1145/2988287.2989133.

81

82

Appendix A

Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

6P 6top protocol

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4

6top 6TiSCH Operation Sublaryer

ACK Acknowledgment packet

ASN Absolute slot number

BE Best Effort

CCA Clear Channel Assesment

CSMA-CA Carrier Sense Multiple Access Collision Avoidance

CoAP Constrained Application Protocol

DAO Destination Advertisement Object

DIO Destination Information Object

EB Enhanced Beacon

ETX Estimated Number of Transmissions

FDMA Frequency Division Multiple Access

FES/FEL Future Event Set or Future Event List

FFD Full-Function Device

G-MPLS Generalized Multi-Protocol Label Switching

GTS Guaranteed timeslot

IACS Industrial Automation and Control Systems

IEEE Institute of Electrical and Electronics Engineers

83

IETF Internet Engineering Task Force

IIoT Industrial Internet-of-Things

IPv6 Internet Protocol version 6

IP Internet Protocol

IT Information Technology

IWSN Industrial Wireless Sensor Network

IoT Internet-of-Things

KPI Key Performance Indicator

KPI Key Performance Indicator

LLN Low-power and lossy networks

LR-WPAN Low-Rate Wireless Personal Area Network

MAC Medium Access Control

MAC Medium Access Control

MPDU MAC Protocol Data Unit

MSF Mininmal Scheduling Function

NME Network Management Entity

OT Operational Technology

PAN Personal Area Network

PCE Path Computation Entity

PDR Packet Delivery Ratio

PHY Physical, layer 1 of the OSI-model

PPDU PHY Protocol Data Unit

PREOF Packet Replication and Ordering Functions

QoS Quality - of - Service

RFD Reduced-Function Device

RF Radio Frequency

RPL Routing Protocol for Low-Power and Lossy Networks

RSSI Received Signal Strength Indicator

RX Reception

84

SF Scheduling function

TDMA Time Division Multiple Access

TRA Track Resource Adaptation

TSCH Time Slotted Channel Hopping

TX Transmission

UUID Universally Unique Identifier

WG Working Group

WSN Wireless Sensor Network

85

86

Appendix B

Python code

The modified 6TiSCH simulator used in this thesis, along with various
helper scripts is uploaded to GitHub.com

https://github.com/mutg/track_resource_adaptation

87

88

Appendix C

Additional results

C.1 Scenario 1

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

10 %

20 %

30 %

40 %

50 %

5.68 4.07 3.75 3.61 3.91 4.2 4.53
8.12 8.56 8.7 9.41 9.97 10.18 10.55

27.06 27.86 28.41 28.87 29.45 29.62 30.56

λ = 0.01 λ = 0.005 λ = 0.001

Figure C.1: PDR vs percentage reduction in charge consumed for OneShot,
Scenario 1

89

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

2 %

4 %

6 %

8 %

10 %

0.99
1.52 1.78 1.9

2.34 2.15 2.212.59 2.76 2.93 2.91
3.57 3.77

3.24

1.73 1.92
2.35 2.61 2.7

2.14
3.05

λ = 0.01 λ = 0.005 λ = 0.001

Figure C.2: PDR vs percentage reduction in charge consumed for AllListen,
Scenario 1

0.7 0.75 0.8 0.85 0.9 0.95 1

0

5

10

15

PDR

La
te

nc
y

[s
]

AllListen, λ = 0.01

Figure C.3: Min max and average latency, AllListen, λ = 0.01, Scenario 1

90

0.7 0.75 0.8 0.85 0.9 0.95 1

0

10

20

30

PDR

La
te

nc
y

[s
]

OneShot, λ = 0.01

Figure C.4: Min max and average latency, OneShot, λ = 0.01, Scenario 1

91

[0, 2) [2, 4)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

Seconds

AllListen

(a)

[0, 5) [5, 10)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Seconds

OneShot

(b)

Figure C.5: Latency distrubution for PDR=0.95, λ = 0.01, Scenario 1

92

C.2 Scenario 2

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

10 %

20 %

30 %

40 %

50 %

7.17 7.51 8.26 8.25 9.17 9.58 10.25

15.58 16.84 17.43 17.99 18.64 19.47 20.08

42.65 43.34 44.38 44.97 45.52 46.04 46.58

λ = 0.01 λ = 0.005 λ = 0.001

Figure C.6: PDR vs percentage reduction in charge consumed for OneShot,
Scenario 2

0.7 0.75 0.8 0.85 0.9 0.95 1.0
0 %

2 %

4 %

6 %

8 %

3.56
3.98

4.69 4.66
5.06

5.61
6.08

5.17
5.77 6.12 6.44 6.34

6.98
7.39

3.18 3.24 3.45 3.57
4.11 4.1 4.35

λ = 0.01 λ = 0.005 λ = 0.001

Figure C.7: PDR vs percentage reduction in charge consumed for AllListen,
Scenario 2

93

0.7 0.75 0.8 0.85 0.9 0.95 1

0

2

4

6

8

PDR

La
te

nc
y

[s
]

AllListen, λ = 0.01

Figure C.8: Min max and average latency, AllListen, λ = 0.01, Scenario 2

0.7 0.75 0.8 0.85 0.9 0.95 1

0

5

10

15

20

PDR

La
te

nc
y

[s
]

OneShot, λ = 0.01

Figure C.9: Min max and average latency, OneShot, λ = 0.01, Scenario 2

94

[0, 2) [2, 4)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·104

Seconds

AllListen

(a)

[0, 5) [5, 10)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·104

Seconds

OneShot

(b)

Figure C.10: Latency distrubution for PDR=0.95, λ = 0.01, Scenario 2

95

C.3 Scenario 3

123

2

4

6

8

1.52

2.68
2.95

2.59

5.25

6.38

AllListen OneShot

Figure C.11: PDR vs percentage reduction in charge consumed for AllListen and
OneShot, Scenario 3

1 2 3

0

2

4

6

Data generation period

La
te

nc
y

[s
]

OneShot, Critical

Figure C.12: Min max and average latency, OneShot, Critical data, Scenario 3

96

1 2 3

0

1

2

3

4

Data generation period

La
te

nc
y

[s
]

AllListen, Critical

Figure C.13: Min max and average latency, AllListen, Scenario 3

[0, 2) [2, 4)

0

2,000

4,000

6,000

8,000

Seconds

AllListen

(a)

[0, 5) [5, 10)

0

2,000

4,000

6,000

8,000

Seconds

OneShot

(b)

Figure C.14: Latency distrubution for critical traffic at data generation period 1,
Scenario 3

97

[0, 2) [2, 4)

0

0.2

0.4

0.6

0.8

1

·104

Seconds

AllListen

(a)

[0, 5) [5, 10) [10, 15)

0

0.2

0.4

0.6

0.8

1

1.2

·104

Seconds

OneShot

(b)

Figure C.15: Latency distrubution for best effort traffic at data generation period
1, Scenario 3

98

