
Identifying sentiment bearing
sentences for reviews in

Norwegian

Mateo Caycedo Alvarez

Thesis submitted for the degree of
Master in Informatics: Language and

Communication
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019





Identifying sentiment
bearing sentences for
reviews in Norwegian

Mateo Caycedo Alvarez



© 2019 Mateo Caycedo Alvarez

Identifying sentiment bearing sentences for reviews in Norwegian

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

In this work, we tackled the task of identifying sentiment bearing
sentences for product reviews in Norwegian. We have created a set
of automatically labeled datasets that classify sentences in terms of
how relevant they are to the reviews’ overall sentiment and also in
terms of their sentiment polarity. We leveraged authors’ annotations
in the form of positive and negative keyphrases, called pros and
cons, to provide distant supervision. Then, we used the created
datasets to train a sentence identification system using both feed-
forward and convolutional neural network models, and pre-trained
word embeddings. We also performed a detailed hyperparameter search
for our convolutional architecture. The performance of the models was
analyzed with regards to product categories and a thorough manual
error analysis was performed on the system’s output. Our results
demonstrate the usefulness of pros and cons to capture the overall
sentiment of a review and our convolutional model outperformed all
baselines. Our analysis illustrates how task-specific hyperparameter
tuning is beneficial for training high performing models for sentence
classification.

i



ii



Acknowledgements

First, I would like to thank my supervisors Samia Touileb and Erik
Velldal for their guidance and feedback. I’m specially grateful to Samia
for assisting on the laborious task of manually examining results.

Thanks also to the Språktek squad for the moral support, both
virtually and in the flesh. Thanks to the BDF for always being there
no matter the distance.

Finally, I want to thank my dear Pecosa for her constant support,
encouragement and for keeping me well fed throughout this process.

iii



iv



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 The corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Used Corpora . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Word embeddings . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Convolutional Neural Networks . . . . . . . . . . . . 18
2.2.6 Neural sequence to sequence models . . . . . . . . . 20
2.2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Creating a relevance dataset 25
3.1 Keyphrases from pros/cons . . . . . . . . . . . . . . . . . . . . 26
3.2 Automatic matching . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Exact match . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Ordered overlap . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Full Bag-of-words overlap . . . . . . . . . . . . . . . . 33
3.2.4 Partial Bag-of-words overlap . . . . . . . . . . . . . . 34
3.2.5 Global keyphrases . . . . . . . . . . . . . . . . . . . . . 35

3.3 Manual annotation . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Relevance and polarity classification 41
4.1 Matching algorithm as a Baseline . . . . . . . . . . . . . . . 43
4.2 Feed-forward baseline . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Implementation details . . . . . . . . . . . . . . . . . . 44
4.2.2 Accounting for randomness . . . . . . . . . . . . . . . 45
4.2.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Feature representation . . . . . . . . . . . . . . . . . . 47
4.2.5 Bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.6 Continuous bag-of-words . . . . . . . . . . . . . . . . . 47
4.2.7 Baseline results . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Convolutional neural network models . . . . . . . . . . . . . 52

v



4.3.1 Pooling strategies . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Baseline CNN results . . . . . . . . . . . . . . . . . . . 55
4.3.4 Effect of word embeddings . . . . . . . . . . . . . . . . 56
4.3.5 Performance by product category . . . . . . . . . . . . 60

4.4 End to end experiments . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Filter region size . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 Number of feature maps . . . . . . . . . . . . . . . . . 68
4.5.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.4 Static vs Dynamic embeddings . . . . . . . . . . . . . 71
4.5.5 Best configurations . . . . . . . . . . . . . . . . . . . . 72

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Final evaluation 75
5.1 Relevance classification . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Polarity classification . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 End-to-end results . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 Sentence boundaries . . . . . . . . . . . . . . . . . . . 88

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 91
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



List of Figures

2.1 Example of a “pros/cons section” from DinSide.no, includ-
ing the review’s score 4 out 6. Known in Norwegian as
“terningkast”. The phrases under the green “thumbs up”
icon are the review’s pros and the ones under the red
“thumbs down” icon are the cons. . . . . . . . . . . . . . . . . 7

2.2 Raw CoNLL-U file of the pros section of a review. . . . . . . 8
2.3 Illustration of a feed-forward Neural Network. This is the

most basic architecture within NNs. In this example the
four green nodes, or neurons, represent the inputs to the
network. The blue nodes correspond to the two hidden
layers, with five neurons each. The output layer has two
output neurons. The yellow nodes at each layer are the
bias terms. This kind of architecture with two output
neurons could be used for binary classification. . . . . . . . 14

2.4 Plots of commonly used activation functions for Neural
Networks. The top two functions, sigmoid and Tanh have
the same shape except that the range of outputs for Tanh
is extended to -1. The two bottom functions ReLU and
softplus have a similar relationship in that softplus allows
for some negative output values. Additionally the sigmoid
function is the derivative of the sotfplus function. . . . . . 17

2.5 Illustration of a narrow convolution in vector-stacking
notation. Here the convolution has window size 2 and
dimensional output 3. Finally a pooling operation results
in a 3 dimensional vector. . . . . . . . . . . . . . . . . . . . . . 19

3.1 Distribution of categories present in all splits of the
dataset. The percentages for autofil (car lover), økonomi
(economy) and reise (travel) are not shown in the graph
because they account for less than 0.01% of the documents
in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Diagram of the complete pipeline for classification of
sentences related to pros and cons. . . . . . . . . . . . . . . . 42

vii



4.2 General diagram of the baseline model. The input layer
has 256 nodes. Each successive hidden layer has 128
nodes each. The output layer has two output nodes, one
for each class. Even though the datasets are different
for each task both will use the same general architecture
shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Plot of the values of accuracy, precision, recall and F-score
after running the baseline model 20 times. Accuracy was
the most stable metric across all runs. Recall had the
largest variation across runs, still the model showed to
be relatively stable. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Accuracy and loss plot for BOW baseline model (top)
and CBOW with learned embeddings (bottom) for task 1
relevance. Both models show similar learning curves. . . . 50

4.5 Accuracy and loss plot for the baseline model with
embeddings learned during training in task 2, polarity.
Training accuracy jumps close to 100% after just 4 epochs
while validation accuracy stays relatively constant. . . . . 52

4.6 Illustration of the baseline architecture suggested by
Zhang and Wallace (2017). Three filter region sizes are
depicted: 2, 3 and 4. Each region size has 2 filters.
Filters perform convolutions on the sentence matrix and
generate feature maps of different sizes. 1-max pooling is
performed over each map, recording the largest feature
from each map. A feature vector with fixed length is
generated from all the feature maps. The softmax layer
takes this feature vector as its input to classify the
sentence. Two output states are depicted because both
of our tasks are binary classification problems. . . . . . . . 53

4.7 Accuracy and loss plot for base CNN with vector size 300
(top) and BOW baseline model (bottom) for task 2. . . . . . 58

4.8 Confusion matrices for base CNN with vector size 300
(top) and BOW baseline model (bottom) for task 2. . . . . . 59

4.9 Models’ performance across categories for task 1 Rele-
vance. BOW performed better for the category motor with
an Accuracy of 85.10%. CNN had it’s top performance in
the category fritid (leisure) with an accuracy score of 89.90% 60

4.10 Models’ performance across categories for task 2 Polarity.
BOW performed better for the category motor (motor)
with an accuracy of 87.25%. CNN had it’s top performance
in the category bolig (residential) with an accuracy score
of 88.53% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.11 Confusion matrices for the joint CNN model (top) and the
hierarchical CNN model (bottom). . . . . . . . . . . . . . . . 65

4.12 Effect of the dropout rate compared to the baseline for
task 1. The baseline value was 0.5. . . . . . . . . . . . . . . . 70

4.13 Effect of the dropout rate compared to the baseline for
task 2. The baseline value was 0.5. . . . . . . . . . . . . . . . 70

viii



5.1 Confusion matrix of the best CNN configuration after
being evaluated in the manually corrected test set. More
sentences were wrongly classified in terms of relevance
than polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 CNN Model’s performance in terms of accuracy across
categories in the test set. . . . . . . . . . . . . . . . . . . . . . 82

5.3 CNN Model’s performance in terms of F1 score across
categories in the test set. . . . . . . . . . . . . . . . . . . . . . 83

ix



x



List of Tables

3.1 Basic corpus counts for each split of the dataset. . . . . . . 26
3.2 Atributes present in the keyphrase dictionary . . . . . . . . 27
3.3 Metrics for the different overlap strategies. Document

coverage = percentage of documents with at least one
sentence-phrase match. Sentence coverage = percentage
of sentences per document that had sentence-phrase
matches. (G) denotes the use of global keyphrases. . . . . . 32

3.4 Distribution of labeled sentences in the dataset . . . . . . . 37
3.5 Average precision for sentence labeling after examining

30 random documents. *Precision was calculated only for
documents that had matches. All the 30 documents had
at least 1 match. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Classes defined for the classification process and their
respective labels for classification. . . . . . . . . . . . . . . . 41

4.2 Maximum, mean and minimum values for each of the
monitored metrics, including the standard deviation
across the 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Number of Out Of Vocabulary(OOV) tokens in the word
embeddings models we tested for embeddings in Norwe-
gian. NoWaC = Norwegian Web as Corpus. NAK = Norsk
Aviskorpus. NBDigital = National Library of Norway dig-
ital corpus. For more details about the word embedding
models we refer to (Stadsnes, 2018). . . . . . . . . . . . . . . 48

4.4 Baseline results for relevance. Emb = the word embed-
ding model used. VS = the vector size of the embedding
model. NAK= Norsk Aviskorpus. MC = a majority classi-
fier that classifier all sentences as “not relevant”. . . . . . . 49

4.5 Baseline results for polarity. Emb = the word embedding
model used. VS = the vector size of the embedding model.
NAK= Norsk Aviskorpus. MC = a majority classifier that
labels all sentences as “Cons”. . . . . . . . . . . . . . . . . . . 51

4.6 The basic configuration for our CNN model. It uses three
convolutional layers each with a different region size of 2,
3 and 4. All filters have 100 feature maps and use ReLU
activations. 1-max pooling is performed after each filter
is applied. A dropout of 0.5 is applied before the softmax
layer. Learning was optimized using Adam. . . . . . . . . . 56

xi



4.7 Baseline results for CNNs task 1. Emb = the word
embedding model used. VS = the vector size of the
embedding model. NAK= Norsk Aviskorpus. The BOW
model is included as a baseline. . . . . . . . . . . . . . . . . . 56

4.8 Baseline results CNNs task 2. Emb = the word embedding
model used. VS = the vector size of the embedding model.
NAK= Norsk Aviskorpus. The BOW model is included as
a baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 End to end results of the hierarchical models. Emb
= the word embedding model used. VS = the vector
size of the embedding model. NAK= Norsk Aviskorpus.
MC= majority classifier that marks all sentences as “not
relevant”. SC= stratified classifier, makes predictions
based on the distribution of labels on the training set. . . . 63

4.10 End to end results of the hierarchical models and joint
models. Emb = the word embedding model used. VS
= the vector size of the embedding model. NAK= Norsk
Aviskorpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 The hyperparameters that constitute our search space. . . 66
4.12 Effect of a single filter region size with 100 feature maps

for each task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.13 Effect of multiple region sizes. We report only the best

combinations for each number of filters. . . . . . . . . . . . . 68
4.14 Effect of the number of feature maps for each task. Larger

feature maps improved performance for (b). 100 was the
optimal number (a). . . . . . . . . . . . . . . . . . . . . . . . . 69

4.15 Effect of L2 regularization for each task. . . . . . . . . . . . 71
4.16 Effect of dynamic embeddings for task 1, relevance. . . . . 71
4.17 Effect of dynamic embeddings for task 2, polarity. . . . . . 72
4.18 The best configuration of the CNN model for relevance

classification. It uses 5 convolutional layers each with a
different region size of 6,7,9,10,15. All filters have 300
feature maps and use ReLU activations. 1-max pooling is
performed after each filter is applied. A dropout of 0.4 is
applied before the softmax layer. Learning was optimized
using Adam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.19 The best configuration of the CNN model for polarity
classification. It uses 5 convolutional layers each with a
different region size of 1,2,3,4 and 5. All filters have 100
feature maps and use ReLU activations. 1-max pooling is
performed after each filter is applied. A dropout of 0.4 is
applied before the softmax layer. Learning was optimized
using Adam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Basic corpus counts comparison between the automat-
ically labeled test (A test set) set and the manually-
corrected test set (M test set). . . . . . . . . . . . . . . . . . . 75

xii



5.2 Evaluation of the baseline BOW model and the best
performing CNN model in both the development set and
the M test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Final evaluation results for relevance. M test set is
the manually corrected test set, A test set is the test
set that was automatically labeled. BOW is the bag of
words baseline. CNN is the best configuration of the
convolutional model. MC is a majority classifier that only
precicts “not relevant”. . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Final evaluation results for polarity. M test set is the
manually corrected test set, A test set is the test set
that was automatically labeled. BOW is the bag of
words baseline. CNN is the best configuration of the
convolutional model. MC is a majority classifier that only
predicts “con sentence”. . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Final evaluation end-to-end results. M test set is the
manually corrected test set, A test set is the test set
that was automatically labeled. BOW is the bag of
words baseline. CNN is the best configuration of the
convolutional model. MC is a majority classifier. . . . . . . 80

xiii



xiv



Chapter 1

Introduction

Product reviews published online have become very important for both
service providers and customers. Service providers can use them as a
way to obtain direct feedback on their products or services, as well as
an indicator of how they will do on the market. Potential customers
use reviews to understand the characteristics of products and make a
final decision of whether to purchase them or not. Reviews are also
helpful to highlight the differences between similar products competing
for the same share of the market. However, there is such a large number
of reviews that some form of automatic summarization is needed to
process the amount of information that is available about products and
services.

Traditional text summarization methods applied on product reviews
do not yield satisfying results. This is because the summaries tend to
be too general and focus on aspects such as topics and categories, which
are not central to product reviews (Yu, Huang, Shi, & zhu, 2016). The
central theme in reviews is the sentiment towards a product or service,
an aspect often missing from text summarization techniques.

In this thesis we seek to develop a sentence identification system
that focuses on identifying sentences that represent the main charac-
teristics of a product but also capture the author’s sentiment towards
the product from reviews in Norwegian. This task has also been called
opinion reason identification (S.-M. Kim & Hovy, 2006) and it is defined
as extracting sentences that answer why the author likes or dislikes
the product being reviewed. Our work differs in important ways from
previous studies because relevant sentences for reviews are a combi-
nation of opinions and facts, and thus identifying them constitutes a
distinct problem from subjective opinionated sentence identification or
keyphrase extraction.

1



Identifying sentiment bearing sentences can be interpreted as
a sentence-level classification task. Supervised machine learning
methods have proven useful at solving multiple natural language
processing (NLP) tasks, including sentence classification (Goldberg,
2017). However, in order to utilize supervised learning methods
annotated data is necessary.

To date, there is no annotated data for this task in Norwegian.
Hence, another aim of this project is to create a dataset with annotated
sentences in Norwegian for identifying sentiment bearing sentences in
reviews. Labeling each sentence manually is a time-consuming and
costly task. Thus, to create this dataset we experiment with leveraging
reviews that already contain keyphrases annotated by review authors to
label sentences automatically. Our hypothesis is that these keyphrases
provide a good summary of the reviews’ sentiment. We are the first to
use the pros/cons corpus, a corpus containing annotations of positive
and negative phrases by professional reviewers. In this thesis we refer
to positive keyphrases as pros and negative keyphrases as cons.

We evaluate a variety of approaches to use pros and cons as distant
supervision, with the aim of automatically labeling each sentence from
the reviews present in the corpus. Furthermore, We build upon the
matching technique introduced by S.-M. Kim and Hovy (2006), and seek
to extend this framework by exploring alternative ways of matching
sentences to pros and cons.

Because keyphrases are central to the creation of our “silver”
standard dataset, a dataset with automatically generated labels, we
also review previous works about automatic keyphrase extraction. The
goal of automatic keyphrase extraction is to identify a set of phrases
that are related to the main topics of a given document (Hasan & Ng,
2014).

Many different classification methods have been used for keyphrase
extraction and sentence classification tasks. Most examples found in
literature for supervised approaches include naive Bayes, decision trees,
maximum entropy classifiers, multi-layer perceptrons, and support
vector machines (Goldberg, 2017; Hasan & Ng, 2014). In recent years
artificial neural networks have shown promising results in a wide range
of NLP tasks, including sentiment analysis and sentence classification.
These neural networks use word embeddings as input representations
because they have been shown to capture rich semantic and conceptual
information about words (Goldberg, 2017). We will therefore focus

2



on neural network architectures, specifically convolutional neural
networks using word embeddings as our input representations.

1.1 Overview

The remainder of this thesis is structured as follows:

Chapter 2 provides a description of the corpora used for creating our
relevance dataset. We also provide a theoretical overview of methods
that exploit keyphrases as part of summarization or sentiment analysis
tasks. Special consideration is given to the methods and datasets used
in previous works. Moreover we outline the basics of neural networks
and their uses for NLP tasks.

Chapter 3 describes in detail the process of creating the “silver”
standard datasets. These automatically annotated datasets were used
to train our sentence identification system.

Chapter 4 details how we reformulate the sentence identification
task as two distinct supervised classification sub-tasks: Relevance
classification and Polarity classification. It establishes the baseline
models for our classification tasks using feed forward neural networks
and the development of a convolutional model, including detailed
hyperparameter exploration. This chapter also presents development
evaluation results.

Chapter 5 presents the evaluation results of our system on the held-
out test sets for both our sub-tasks, relevance classification and polarity
classification, and the final sentence identification results. We also
provide a manual analysis of our system’s final output.

Chapter 6 provides a summary and conclusion of the thesis, as well as
possible directions for future work.

3



4



Chapter 2

Background

Commonly used text summarization methods produce sub-par results
when applied on product reviews. An alternative to provide better
summarization of reviews is to use keyphrases (Yu et al., 2016). One
of the ways of utilizing keyphrases as a summarization technique is
automatic keyphrase extraction.

The main goal of automatic keyphrase extraction is to select a set of
phrases that are representative of the main topics of a given document.
Keyphrases are useful for a variety of information retrieval (IR) and
NLP tasks such as document classification and clustering, opinion
mining, web mining and text summarization. Search engines can also
use keyphrases to supplement full-text indexing and assist users in
formulating queries (Merrouni, Frikh, & Ouhbi, 2016). However, there
is no standardized definition of what constitutes a keyphrase and there
are varied ways to evaluate if a group of keyphrases are relevant, or
not, to a document.

There are two general approaches to identifying keyphrases: ex-
tractive and abstractive methods. Extractive methods select relevant
phrases present in the text (S.-M. Kim & Hovy, 2006) while abstrac-
tive methods can generate phrases that correspond to some semantic
properties even though they are not found verbatim in the source text
(Branavan, Chen, Eisenstein, & Barzilay, 2009), with many approaches
falling somewhere in between the two.

What constitutes a keyphrase also varies in the literature. Some
authors consider only pairs of noun-adjectives (Hasan & Ng, 2014),
some include also single words (S. N. Kim, Medelyan, Kan, &
Baldwin, 2013) and others extend the definition to encompass also
complete sentences (Berend, 2011). For the purposes of this paper the
term keyphrase extraction will refer generally to both extractive and

5



abstractive methods and the term keyphrase refers to anything from a
single word to a sentence.

The differences in how authors have tackled keyphrases are often
times a product of the type and the amount of data available. Authors
with access to metadata like URLs, geographical location, or time
of creation, can use that information to find and predict keyphrases
(Sullivan, 2008). In other applications the definition of what is a valid
keyphrase can be limited to the larger task at hand, for example finding
phrases that are relevant to other NLP tasks such as sentiment analysis
(Liu & Seneff, 2009).

Sentiment analysis, the task of identifying the subjective attitude
or sentiment of the author, has been used in conjunction with
keyphrases to analyze large amounts of data, particularly in relation to
online content analysis (Berend, 2011). Identifying sentiment bearing
sentences in a text can be a powerful tool to perform sentiment analysis
because it restricts the set of sentences to analyze, namely only those
that might capture the essence of the topics in question. When
dealing with large amount of user-generated data, like on-line reviews,
combining both relevant sentence extraction and sentiment analysis
can provide a good overview of the general opinion about a particular
product, as well as the product’s main characteristics.

For this project the goal is to exploit the information contained
in keyphrases to identify sentiment bearing sentences for reviews in
Norwegian. To do so we reviewed different techniques and systems that
have attempted to solve a similar problem and we identified the aspects
that are relevant to the structure and content of the corpora we have
available. The ideal approach would be one that takes advantage of the
corpora’s properties, and is able to produce a set of results that can be
useful as a summarization of the reviews’ content and polarity.

In this chapter we will describe the pros/cons and the NoReC
corpus in Section 2.1. We will discus related work in Section 2.2.
Special attention will be given to the corpora used and the classification
methods. Section 2.2.7 describes different challenges present in
evaluating keyphrase extraction and sentence identification systems,
followed by a summary of the chapter in Section 2.3.

6



2.1 The corpus

The pros/cons corpus consists of reviews from DinSide.no, a website
that provides information, advice and reviews on different products
and services such as vehicles, electronics, and other categories. These
reviews are written by professional reviewers. Additionally the reviews
have a “thumbs up” section with words, sentences or phrases that the
reviewer identified as positive aspects, and a “thumbs down” section
that describes the negative aspects of the product or service in question,
as seen in Figure 2.1. I will refer to these collectively as the “pros/cons
section” henceforth.

Figure 2.1: Example of a “pros/cons section” from DinSide.no, including
the review’s score 4 out 6. Known in Norwegian as “terningkast”. The
phrases under the green “thumbs up” icon are the review’s pros and the
ones under the red “thumbs down” icon are the cons.

Some of these reviews have a score, given by the author, known as
“terningkast” (dice roll) that is widely used in Norway to indicate the
rating of a review, scoring products and services from 1 to 6, with 6
being the best possible score. Most reviews with a “terningkast” score
are also part of the Norwegian Review Corpus (NoReC) (Velldal et al.,
2018). Each review is labeled with a score of 1–6, provided by the “dice
roll” rating of the original author.

NoReC is distributed using the CoNLL-U format, pre-processed
using UDPipe (Straka & Hajic, 2016), along with a rich set of metadata.
The corpus was made as a tool for document-level sentiment analysis
in Norwegian, being part of the Sentiment Analysis for Norwegian
Text Project (SANT). NoReC consists of reviews of literature, movies,

7



# language = nb
# newdoc id = pros-200001
# text = Aktiv støydemping som gjør jobben.
# newpar id = pros-200001-01
# sent_id = pros-200001-01-01
1 Aktiv aktiv ADJ _ Definite=Ind|Degree=Pos|Number=Sing 2 amod _ _
2 støydemping støydemping NOUN _ Definite=Ind|Gender=Fem|Number=Sing 0 root _ _
3 som som PRON _ PronType=Rel 4 nsubj _ _
4 gjør gjøre VERB _ Mood=Ind|Tense=Pres|VerbForm=Fin 2 acl:relcl _ _
5 jobben jobb NOUN _ Definite=Def|Gender=Masc|Number=Sing 4 obj _ SpaceAfter=No
6 . $. PUNCT _ _ 2 punct _ SpaceAfter=No

Figure 2.2: Raw CoNLL-U file of the pros section of a review.

video games, restaurants, music and theater, in addition to product
reviews across a wide range of categories. The reviews in NoReC do
not necessarily have a “pros/cons section”.

The pros/cons corpus is also stored in the CoNLL-U format, using the
same pre-processing as NoReC. An example of a raw file from pros/cons
can be seen in Figure 2.2. Although there is some similarity with
NoReC, the pros/cons corpus has each review divided into two files, one
consisting of the pros from the “thumbs up” section, and another for the
cons from the “thumbs down” section. NoReC, on the other hand, has
one file for each review.

The reviews in pros/cons exhibit some degree of structural consis-
tency due to the fact that they are written by professional reviewers.
However, the content of the “pros/cons section” is not consistent across
reviews, not even in the same category. In some reviews the “pros/cons
section” can be a single fully formed sentence (2.1), a list of phrases
(2.2), a list of keywords (2.3) or some combination of the above. Addi-
tionally some reviewers use phrases present in the body of the review
in the “pros/cons section”, while others use different words ranging from
synonyms and antonyms to completely new phrases.

The following examples were taken from the “thumbs down” section of
three different reviews:

(2.1) Knappene
The buttons

på
on

pekeplaten
the touchpad

er
are

ikke
not

gode
good

(2.2) Trist
Sad

utseende,
appearence,

uspennende
unexciting

interiør
interior

8



(2.3) Dyr,
Expensive,

betjening
maintenance

Generally speaking, keyphrases from reviews can be divided in two
categories: opinion-bearing expressions and facts (S.-M. Kim & Hovy,
2006). Opinion-bearing expressions say something about whether the
author’s opinion is positive or negative. Facts are simply information
about the product such as screen size or battery time. Depending on
the product described some facts can also provide information about
the reasons for a particular score being high or low. For example big
components could be detrimental to the score of mobile devices but have
no impact on a different product. We are interested in both types of
keyphrases.

2.2 Related Work

A typical keyphrase extraction system typically has two main steps:
generating candidate phrases and selecting or classifying the phrases
as relevant or not to the document. For the first step it is common to use
heuristics that exploit the structure of the text to generate candidates
(Hasan & Ng, 2014). Previous work in this area has been mostly done
on academic corpora using keyphrase extraction to generate automatic
tags (S. N. Kim, Medelyan, Kan, & Baldwin, 2010; S. N. Kim et al., 2013;
Witten, Paynter, Frank, Gutwin, & Nevill-Manning, 1999).

Keyphrase extraction applied to reviews is slightly different from
keyphrase extraction as a summarization technique. Traditionally,
for summarization tasks, relevant phrases are those which can help
differentiate one document from another within a corpus. Having
different keyphrases for each document facilitates search and ranking
of relevancy (S. N. Kim et al., 2013). In this project we are not concerned
with differentiating reviews from one another at a corpus level. Instead
we look to identify relevant sentiment bearing sentences at a document
level, meaning that having similar sentences for different reviews is not
an issue.

While traditional machine learning systems have been successful at
extractive summarization, recent developments in the field of neural
networks has made abstractive summarization more viable (Meng et
al., 2017). For this reason we will first describe the traditional machine
learning systems that deal with semi-structured reviews and that

9



have some connection to opinion mining or sentiment analysis. We
will focus on the type of corpus used, the candidate generation step,
and the classification step. Finally we will describe neural network
architectures as an alternative to other machine learning models. The
methods and architectures differ so greatly from other models that they
will be covered in detail in their own section.

2.2.1 Used Corpora

Sullivan (2008) used reviews exclusively for GPS devices from the
website buzzillions.com, run by PowerReviews. Those reviews are very
structured, the pros and cons of the corpus used belong to a limited set
of predefined keywords. There are fields containing metadata belonging
to each review like “creation date”, “location”, and “author”. Finally
each author of the review could choose tags that summarized the type
of consumer the author of the review represents. These tags were
called affinities and could be selected from a predefined set or specified
individually by the writer of the review.

Sullivan’s (2008) goal was to predict the set of tags that belonged to
a review, these tags being pros, cons, and affinities. In order to achieve
this the system took the most frequently inputted tags as classes and
attempted to classify each tag from the available information in the
review. Here the potential tags were not extracted from the review
text but their presence was predicted using the different features of the
review including the previously mentioned metadata.

Other works have also dealt with the labeling of pros and cons
in reviews. Berend (2011) specifically defined keyphrases as “phrases
that make the opinion-holder feel negative or positive towards a given
product”. The reviews used were crawled from epinions.com and are
free-text annotations that the author characterized as “ill-structured”
and “extremely heterogeneous”.

Berend (2011) conducted his experiments on two domains from
epinions.com, mobile phone and movie reviews. The reviews were made
by users, the data was noisy, with inconsistent punctuation and some
grammatically incorrect sentences. Additionally the listed pros and
cons ranged from full sentences to token-long phrases with different
ways to separate between them. Although the reviews in the DinSide.no
were written by professionals as opposed to users, the pros and cons in
our corpus exhibit similar characteristics to the reviews used by Berend
(2011).

10



For candidate generation, Berend’s system extracted phrases of at
most 4 tokens beginning with a non-stopword adjective, verb, or noun
and ending with a non-stopword noun or adjective (Berend, 2011). The
candidates were normalized further by lowercasing them and applying
Porter-stemming to each of the lemmatized forms of the tokens. Finally
the stems were sorted alphabetically. This process allowed the system
to deal with orthographically different phrases in the same way.

Berend (2011) presented an alternative way of normalizing the
phrases using the synsets of WordNet (Miller, 1995). Instead of Porter-
stemming the tokens, the representation used was the most frequent
word form of the synset for that token. The intuition behind this
approach was to capture the semantic similarity expressed in the
synset.

Other systems have used phrase extraction as an initial step to try
and capture more abstract semantic properties in the text (Branavan
et al., 2009). This system formed clusters of keyphrases at training
time indexed by topic. Each topic mapped to a keyphrase cluster. These
topics are what the authors called semantic properties and each property
indexed a language model. These models were used to predict relevant
properties of unannotated documents.

The data set used by Branavan et al. (2009) was downloaded from
epinions.com and consisted of reviews of mobile phones and restaurants.
The authors found that review authors often omit properties from the
list of keyphrases that are present in the text of the review.

Attempts to use keyphrases to perform a more in depth sentiment
analysis have also been made by Liu and Seneff (2009). In this
case restaurant reviews from citysearch.com which contained pros,
cons, and free text annotations were used. Furthermore, they used
a hierarchical representation of the surface strings called linguistic
frame. These frames encode different layers of semantic dependencies.
Only sets of related adverbs, adjectives, and nouns were selected as
keyphrase candidates. The fact that a linguistic frame was created for
each sentence made it easier for the system to preserve long distance
dependencies. The second part of the system, called “paraphrase”,
generated noun phrases from the sets of related words.

S.-M. Kim and Hovy (2006) designed a system to identify the reasons
behind pros and cons in online reviews. Their reviews, much like in
DinSide.no, have the pros and cons fields as part of the review. The pros
and cons were used to created labeled data to train a maximum entropy

11



classifier. The labels used were “pro”, “con” and “neither”. The latter
used for sentences that were not connected to a particular keyphrase.
They implemented an automatic labeling process to generate training
data by cross referencing the pros and cons with the body of the review.
This process labeled every sentence in their dataset as being related to
a “pro”, “con” or “neither”.

S.-M. Kim and Hovy’s (2006) approach is strictly extractive regard-
ing candidate generation because it considers only the sentences in the
body of the review. The main objective of their system is to identify the
reasons of the overall sentiment of the review, not just any opinionated
sentence. This means that there can be opinionated sentences in the
text that are not considered relevant because they are not connected to
a particular pro or con.

2.2.2 Classification

The task of selecting the right candidate sentences or phrases for
a given document is often formulated as a classification problem.
Specially with datasets like the ones described in the previous section,
tags or labels, such as pros and cons, can be used to perform supervised
classification or distant supervision using a part of the corpus as a
training set (Hasan & Ng, 2014). However, even though many authors
have chosen this method, the kind of features used for classification
vary.

The KEA features are often taken as a starting point or to define a
baseline (Hasan & Ng, 2014). These features are the TF-IDF score of a
phrase and the first occurrence, “calculated as the number of words that
precede the phrase’s first appearance, divided by the number of words in
the document.” (Witten et al., 1999, p. 8). The KEA features are purely
lexical and represent a good starting point for summarization as they
attempt to capture what phrases characterize a particular document.

Berend (2011) extended these features by adding phrase length,
defined as the number of non-stopword tokens of a phrase candidate.
An alternative for these lexical features is the use of n-grams, more
specifically unigrams, bigrams, trigrams and 4-grams (S.-M. Kim &
Hovy, 2006; Sullivan, 2008).

These sets of lexical features explore two different intuitions about
summarization. On the one hand checking for relative positions within
the document can be useful for scientific publications which contain an
abstract at the beginning which is in itself a summary of the document.

12



Professional reviews can also have something similar to a conclusion or
summary, but the structure is not as rigid or predictable as in academic
papers. On the other hand n-grams try to capture those words that
occur frequently assuming that those might be representative of the
semantics of the document.

Even though short reviews might not contain a summary at
document level it is not unreasonable to think that the first and last
sentence of a paragraph can act as a summary or present the main
ideas of that chunk of text. S.-M. Kim and Hovy (2006) explore this
intuition by adding a feature that indicates the first, the second, the
last and the second last sentence in a paragraph. Sullivan (2008) does
this at sentence level by including the 4-grams that begin and end each
sentence.

Part of speech (POS) tags are often included with some small
variations. Some include the POS tags of the previous word of
an occurrence of a candidate phrase in the text (Sullivan, 2008).
Others like Berend (2011) include the POS tag sequence of a phrase
candidate preserving the order in which they appear as a phrase.
Even systems that do not perform supervised classification attempt to
capture the syntactic structure of a phrase combined with the POS tags
(Branavan et al., 2009; Liu & Seneff, 2009). This is not surprising, as
certain constructions, for example “adjective-noun”, seem to be common
keyphrases.

Identifying opinion-bearing or sentiment-bearing words are also
relevant features (S.-M. Kim & Hovy, 2006). As features they can be
as straight-forward as simply including the surface form of opinion-
bearing words, or one can include information on whether a particular
token is positive, neutral or negative. In order to include sentiment
scores some authors use external resources (Berend, 2011; S.-M. Kim &
Hovy, 2006) like WordNet (Miller, 1995), Wikipedia, and SentiWordNet
(Baccianella, Esuli, & Sebastiani, 2010).

2.2.3 Neural networks

Neural Networks (NNs) are a branch of machine learning that has seen
a rise in popularity in recent years. The use of NNs has increased
for classification tasks that used to be performed by statistical models,
like the ones described in Section 2.2.2 (Goldberg, 2017). Even though
the name originally was inspired by the way computation works in the
brain, it is more accurate to describe the actual computations in NNs

13



as “learning of parameterized differentiable mathematical functions.”
(Goldberg, 2017, p. 16).

One of the main reasons for the widespread use of NNs is that
they are not only able to make predictions based on past observations,
like other machine learning models, but they can create better
representations of the data. These presentations are, of course,
also useful for making correct predictions (Goldberg, 2017). The
mathematical notation to describe NNs is based on the work presented
by Goldberg (2017). Bold uppercase letters are used to represent
matrices and bold lowercase letters to represent vectors. Finally vectors
are assumed to be row vectors.

x0

x1

x2

x3

x4

Input
layer

Hidden
layer

Hidden
layer

y1

y2

Output
layer

Figure 2.3: Illustration of a feed-forward Neural Network. This is the
most basic architecture within NNs. In this example the four green
nodes, or neurons, represent the inputs to the network. The blue nodes
correspond to the two hidden layers, with five neurons each. The output
layer has two output neurons. The yellow nodes at each layer are the
bias terms. This kind of architecture with two output neurons could be
used for binary classification.

The cornerstone of NNs is the idea of a neuron as the basic
computational unit. This idea of an artificial neuron was introduced
already in 1943 (McCulloch & Pitts, 1943). An artificial neuron takes
an input and performs a transformation of the input, often called an
activation function. This activation function is what makes the NNs
able to represent complex functions (Goldberg, 2017).

A neural network without an activation is called a perceptron and
it is a simple linear model (Goldberg, 2017), as shown in equation 2.4.
Where W is the weight matrix, x is the input vector and b is a bias

14



term. di n denotes the input dimension and dout the output dimension,
together these terms inform the size of the weight matrix.

Perceptron(x) = xW+b

x ∈Rdi n ,W ∈Rdi n×dout ,b ∈Rdout
(2.4)

Networks using activation functions to perform non-linear transfor-
mations are often called fully-connected feed-forward networks. In Fig-
ure 2.3 we can see an example of this kind of architecture. It is fully-
connected because each node is connected to every node in the following
layer. The feed-forward name is used because the input travels “for-
ward” to the next layer.

A network like the one shown in Figure 2.3 can be mathematically
expressed as:

NN(x) = y

h1 = g 1(xW1 +b1)

h2 = g 2(xW2 +b2)

y = h2W3

(2.5)

In equation 2.5 h1 represents the first hidden layer, and h2 the
second hidden layer. y is the output of the network. g represents the
activation function. The superscript numbers denote which matrix or
vector belongs to each layer. The matrices W and the bias terms b are
the parameters of the network. Training consist in setting their values
such that the network’s predictions are correct. Different functions can
be used as activation functions to introduce non-linear transformations
in a neural network. Figure 2.4 shows the plots of commonly used
activation functions and how they relate to one another.

The sigmoid function, described in equation 2.6, was the commonly
used function for NNs, because it could model the idea of a neuron firing
by transforming each value into the range 0 to 1. A variation of the
sigmoid, the hyperbolic tangent or TanH (2.7), maps each value into the
range -1 to 1. Figure 2.4 shows how these two functions relate to each
other. For both of these equations x is a scalar input and e is the natural
logarithm base:

sigmoid(x) = 1

1+e−x (2.6)

tanh(x) = e2x −1

e2x +1
(2.7)

15



While the sigmoid and TanH functions are still used nowadays
in some specific architectures of Recurrent Neural Networks, these
functions are considered to be deprecated for most NNs configurations
(Goldberg, 2017). The main reason is known as the vanishing gradient
problem: the fact that the gradients become so small for very high or
low values, that they can stop the network from learning.

The rectified linear unit or ReLU, described in equation 2.8, has
become the activation function of choice for most NNs with several
layers. It avoids some of the problems of the signmoid and TanH
functions and has shown good empirical results (Goldberg, 2017). x is a
scalar input and e is the natural logarithm base:

ReLU(x) =
0 x < 0

x otherwise.
(2.8)

Some experimentation has also been done with a “smoothed”
version of ReLU called the softplus function, shown in equation 2.9.
The theoretical advantage this function has over ReLU is that the
derivatives for negative values are not hard zeroes. This is due to the
fact that the derivative of the softplus is actually the sigmoid function.
However ReLU is often reported as having better performance than the
softplus function (Zhang & Wallace, 2017). x is a scalar input and e is
the natural logarithm base:

Softplus(x) = ln(1+ex ) (2.9)

For the output layers of the network the softmax function (equation
2.10) is commonly used in classification tasks. The softmax function
transforms the values given so they become positive and their sum
equals 1. One can interpret these values as a probability distribution
between the classes. Note that for equation 2.10 x is the output vector,
e is the natural logarithm base and i and j represent the indices for the
values of x.

softmax(xi ) = exi∑
j ex j

(2.10)

Recalling the notation used for a layer of a NN in equation 2.5 we

16



4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 tanh

4 2 0 2 4

0

1

2

3

4

5 ReLU

4 2 0 2 4

0

1

2

3

4

5 Softplus

Figure 2.4: Plots of commonly used activation functions for Neural
Networks. The top two functions, sigmoid and Tanh have the same
shape except that the range of outputs for Tanh is extended to -1. The
two bottom functions ReLU and softplus have a similar relationship in
that softplus allows for some negative output values. Additionally the
sigmoid function is the derivative of the sotfplus function.

can then consider the output ŷ for the classification task to be:

ŷ = softmax(xW+b)

ŷi = e(xW+b)i∑
j e(xW+b) j

(2.11)

2.2.4 Word embeddings

When it comes to applying NNs for NLP tasks a big shift happened
in the choice of input representations. For the models described in
section 2.2.2 a lot of time and effort was put into determining and
choosing which categorical features to use for classification. This task
of feature engineering was not only difficult but it also greatly increased
the dimensionality of the models when attempting to capture complex
linguistic features. An alternative was introduced in the form of dense
representations by Firth (1935) and Harris (1954).

17



In a dense representation each feature is a vector that contains all
the information of said feature in the values of the vector. This not
only reduces the dimensionality problem mentioned above but it also
allows information to be shared between features. Although the use of
dense representations did not eliminate the need to think about how
information is presented to the models for training, it did allow for a
very good method to represent words as vectors to be developed.

Based on the distributional hypothesis of language (Firth, 1935;
Harris, 1954), word embedding models try to infer the meaning of
words from the contexts in which they are used. While distributional
models still result in sparse representations several algorithms have
been developed to create dense representations. These dense word
vectors are called word embeddings. These word vectors make it easy
to compute semantic similarity or to simply use the raw vectors as
inputs for NNs. The most prominent algorithms for creating word
embeddings are word2vec (Mikolov, Chen, Corrado, & Dean, 2013),
fastText (Bojanowski, Grave, Joulin, & Mikolov, 2016), and Glove
(Pennington, Socher, & Manning, 2014).

2.2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were originally developed for
image analysis, where they showed great success recognizing objects
from a specific category (LeCun & Bengio, 1995). Because of these
origins, most of the terminology regarding CNNs reference terms
regarding images. This architecture proved to be very powerful at
detecting features from an image, understood as a 2-dimensional array
of pixels. The different layers would learn to identify different features
such as edges or changes in color (LeCun & Bengio, 1995).

The idea of convolution can also be applied to a 1-dimensional
input, in other words a sequence. Extracting features from sequences
can be very useful for NLP tasks, for example capturing relationships
between words, and how these are combined to form phrases or
sentences. Because 1-dimensional CNNs are very good at capturing
the local ordering of words these are sometimes called n-gram detectors
(Goldberg, 2017).

CNNs use two basic operations: convolutions and pooling. A
convolution in NLP consists of applying a non-linear function over n

words over a sentence. This function is called a filter and transforms
a window of n words into scalar values. Multiple filters can be applied

18



in order to compute important properties of the words in the windows
resulting in a vector. Then a pooling operation is used to combine the
vectors into a single vector of a specific dimension. The main ways to
pool these vectors is to take the maximum or the average value for
each dimension over the different windows (Goldberg, 2017). Figure
2.5 illustrates this process.

Pooling
skjermen

har

en

tiltalende

og

nøytral 

design 

skjermen har

har en 

en tiltalende 

tiltalende og 

og nøytral 

nøytral design 

Figure 2.5: Illustration of a narrow convolution in vector-stacking
notation. Here the convolution has window size 2 and dimensional
output 3. Finally a pooling operation results in a 3 dimensional vector.

A convolution layer for a sequence of words w1, ..., wn each with a
word embedding wi of dimension demb is defined as moving a sliding-
window of size k over the sequence and applying this filter to each
window in the sequence. The filter is a dot-product with a weight
vector u followed by an activation function g , as shown in equation 2.12.
(Goldberg, 2017).

pi = g (xi ·u) (2.12)

The different filters can be arranged into a matrix U. k denotes
the window size and demb the dimensionality of the word embeddings.
Adding the bias vector b gives us:

pi = g (xi ·U+b)

pi ∈Rl ,xi ∈Rk·demb ,U ∈Rk·demb X l ,b ∈Rl .
(2.13)

The amount of the resulting pi vectors is given by the length of the

19



sequence and the window size. For a sequence of length n and a window
size k we get n−k +1 pi vectors. Alternatively one can pad the sequence
with k − 1 padding-tokens to each side, which gives n +k + 1 pi vectors
(Goldberg, 2017). The former is called a narrow convolution while the
latter is known as a wide convolution.

As mentioned previously there are multiple pooling strategies. The
most common one known as 1-max pooling, picks up the most indicative
value from each feature map where Pij is the j th component of pi:

c j = max
1<i≤m

Pij (2.14)

Alternative pooling strategies attempt to capture positional infor-
mation that might be lost with 1-max pooling. One such variation is
k-max pooling, which retains the best k values sorted by the order in
which they appeared in the sequence (Kalchbrenner, Grefenstette, &
Blunsom, 2014) .

Another variant is dynamic pooling. With this strategy the vectors
Pij are split into different groups and pooled separately. The resulting
vectors are then concatenated. This is specially useful for document
classification as different parts of the document might contain different
kinds of useful signals (Goldberg, 2017).

To summarize, CNNs are sensitive to both the identity and order
of words within an n-gram regardless of its position in the sentence.
This makes them useful for keyphrase extraction as they can identify
their presence within a sentence. However, there are other neural
architectures that have been used for keyphrase extraction and related
tasks.

2.2.6 Neural sequence to sequence models

Recent models have moved away from the extractive methods described
in Section 2.2.2, partly due to their inability to cope with absent
keyphrases. Cho et al. (2014) and Sutskever, Vinyals, and Le (2014)
kick-started this approach with an extension of sequence to sequence
or encoder-decoder models to solve machine translation problems. The
models use Recurrent Neural Networks (RNN) to encode the input
sentence into a vector and then use another RNN to produce a new
output sentence.

Models based on neural networks move away from the need to
engineer lots of different representations, and in the case of RNN the

20



output is often at the same level of complexity. For keyphrase extraction
this means that the inputs are often sentences and the outputs are
sentences or keyphrases. The input representations commonly used for
language data are word embeddings, as previously mentioned in Section
2.2.4.

The problem of the so-called “absent keyphrases” is not trivial,
some corpora of scientific papers have between 32% and 52% of their
keyphrases not matching any contiguous subsequence of the source
text. One of the main advantages of sequence models is the ability to
generate new sequences of keyphrases or sentences based on textual
input that are not limited by the fact that some keyphrases or keywords
might be absent in the input text (Meng et al., 2017).

The intuition behind these abstractive methods of summarization is
that by being able to generate novel words and phrases not featured
in the source text the model produces something closer to a human-
written summary (See, Liu, & Manning, 2017). They are, however, still
limited by a fixed input and output vocabulary. Some models combine
deep supervised learning with reinforcement learning to improve the
readability of the summaries created (Paulus, Xiong, & Socher, 2017).
In order to cope with representations of out-of-vocabulary words some
approaches use a copying mechanism to copy parts of the source text
(Meng et al., 2017).

The copying mechanism reintroduces some aspects of extractive
summarization by adding a probability for a term to be copied from the
source text. The phrases to be copied are weighted by their positional
and syntactic characteristics. This mechanism allows the RNN to
correctly generate out-of-vocabulary terms. A potential downside is that
the model gives priority to the words in the text. Meng et al. (2017) do
not see it as a big problem because most keyphrases tend to appear in
the source text.

There are, however, some disadvantages about using these partic-
ular training setups of RNN-models for product reviews. The previ-
ously mentioned models were developed mainly as pure summarization
tools for scientific texts. Even in the cases where the models output
keyphrases, those phrases are closer to “tags” used to categorize a pa-
per than to the pros or cons found in reviews. The difference is that
“tags” are usually more general and describe the field, the theories or
the methods used in an academic publication, as seen in this example
from Meng et al. (2017):

21



(2.15) Title: Towards content-based relevance ranking for video search
keyphrases: Video search, relevance ranking, video metadata,
integrated ranking, video retrieval, video indexing, contentbased
ranking, video segmentation.

The category of the reviews we are dealing with is already known
and the sentences we are interested in say something more specific
about the product in question. In other words, the representations
resulting from the aforementioned RNNs seem to be at a level of
abstraction that is too high for our task.

2.2.7 Evaluation

Regardless of the feature set or the model used, the problem of
evaluating the results of automatic summarization models is often
discussed (Hasan & Ng, 2014). Leaving out a portion of the data as
a test set is common practice (S.-M. Kim & Hovy, 2006; Sullivan, 2008),
if such data is available. However, if the annotations are keyphrases
the data is usually noisy as discussed in Section 2.2.1. Additionally
keyphrase segmentation and sentence boundaries can differ between
reviews or even within the same review. In some cases additional
comments that are neither sentences nor keyphrases, such as “none”,
can appear in the test set.

An alternative method is to use human annotated data. However,
some authors have criticized this approach because of the subjectivity
of the task (Berend & Vincze, 2012). Using human annotations is
not only expensive and time consuming, but different people can focus
on different aspects of the same review and weigh some aspects more
heavily than others.

One solution to the subjectivity problem is to measure the agreement
score between human annotators using the kappa coefficient (S.-M. Kim
& Hovy, 2006) or give precise guidelines as to how they should make
the annotations (Berend, 2011). A different approach is to consider the
union of all the annotations as the gold standard to cover a wider range
of interpretations. It is also noteworthy that the phrases provided by
the annotators and by the authors of a review can vary greatly (Berend
& Vincze, 2012).

Regardless of how the gold standard is generated there is still
uncertainty about automatically evaluating the predicted result with
the gold standard. Some claim that doing exact matching between the

22



expected and predicted results can give misleading results because of
small differences due to synonymy. For example, the phrases “tiny keys”
and “small keys” would not be matched.

Accepting partial matches or results that are semantically similar
might be more representative, but it is not trivial when performing
automated evaluations because of ambiguous polar expressions and
adjectives. A word like “economical” could show positive polarity in
some contexts or be neutral in others. Words such as “like” can be used
as adjectives, verbs, etc. depending on the sentence, and thus their sole
presence in a keyphrase might not be enough to determine if it captures
the meaning of the source text.

Other kinds of noise in the data such as errors in the gold
annotations can also lead to overly negative evaluation results (Berend,
2011). Hasan and Ng (2014) estimate that 7-10% of the overall error
for keyphrase extraction systems can be attributed to these kind of
evaluation errors.

For abstractive methods that output sentences, other considerations
such as readability are also important. Sometimes models that get high
numerical scores in different metrics produce results that are hard to
read (Meng et al., 2017). Extractive methods are usually constrained by
the kind of phrases they output. Since the phrases have to be present
in the input text, and do not need to be concerned about readability in
the same sense.

2.3 Summary

We have reviewed different approaches to summarization and senti-
ment analysis using keyphrases. We covered methods ranging from
traditional feature-based classification models to neural networks us-
ing word embeddings. Based on the similarity of the dataset used with
the corpus we intend to use, reviews from DinSide.no with annotated
keyphrases in the form of pros and cons, the most similar setup to ours
is the one presented by S.-M. Kim and Hovy (2006). Their task is also
similar to ours because their definition of “reasons” for particular pros
or cons is very close to the kind of meaning we intend to capture from
the pros/cons corpus.

Nevertheless, using word embeddings and neural networks like
the ones described in Section 2.2.6 have produced better results than
traditional machine learning methods and avoid some of the pitfalls

23



resulting from poor feature engineering (Goldberg, 2017). Given the
size of our dataset, encoder-decoder methods might not be suitable as
they need larger amounts of data to be trained properly. Some tuning
of the output might also be needed to keep the output consistent to the
kind of sentences and phrases present in the reviews from DinSide.no.

For this project we combined two approaches with a setup similar
to S.-M. Kim and Hovy (2006) where we consider sentences in the
review text as reasons for the pros and cons. However, we used word
embeddings as an input instead of lexical and semantic features, and
used a convolutional network as our feature-extractor. This method
will still not be able to handle absent keyphrases, but the effects on the
overall performance of the model can be mitigated during the candidate
generation step by not relying on strict match of the keyphrases but on
a degree of token overlap and by using a global list of keyphrases. This
process will be covered in Chapter 3. We used a modified version of S.-
M. Kim and Hovy’s (2006) automatic labeling system to generate our
dataset.

24



Chapter 3

Creating a relevance
dataset

In order to build sentence identification system we decided to divide
the task into two sub-tasks, relevance and polarity. The first task
is to identify which sentences of a review are relevant to the author’s
attitude towards the product. The second task is to determine the
sentiment polarity of the sentence. Each task was formulated as a
supervised classification problem, where the system takes a sentence
as its input an predicts a label for each sentence. Unfortunately, we did
not have a dataset in Norwegian that had sentences labeled in terms of
relevance to the overall sentiment of the review or in terms of whether
the sentence was positive or negative. Thus, we needed to create our
own datasets from the reviews available from DinSide.no.

In this chapter we will describe the process of creating a labeled
dataset for each of our sub-tasks based on NoReC and the pros/cons
corpus. A labeled dataset was needed in order to use supervised
learning in our classification tasks. Even though the corpus is of
relatively small size, we did not have the resources to manually label
127893 sentences. Therefore we needed to find a way to automatically
label the sentences for training and also to have a “silver” standard for
our development and test sets. A gold standard in machine learning
refers to a set of true values that are created using human annotators,
a “silver” standard is a similar set except that the values can be
automatically generated.

This chapter will outline and explore the different approaches we
tried in order to automatically create the labeled dataset, using pros
and cons for distant supervision. Section 3.1 explains how we obtained

25



the keyphrases from the pros/cons corpus to guide our labeling process.
Section 3.2 details the different matching strategies we experimented
with to label our dataset, including the relevant statistics that informed
our design choices. In Section 3.3 we describe how we manually
annotated some parts of the dataset to produce a more robust test set.
Finally, we include a summary of the chapter in Section 3.4.

3.1 Keyphrases from pros/cons

The keyphrases from the pros/cons corpus contain a lot of useful
information, as was described in Section 2.1. However, the actual text of
the review was not present in that corpus at the moment of writing this
thesis. The texts for most reviews could be found on the NoReC corpus.

Because most of the reviews used in making these datasets could
be found in a subset of NoReC, we decided to keep the same split
when dividing the dataset into training, development and test sets.
In other words, the reviews that belong to the training set in NoReC
were also placed in our training set, and the same was done with the
development and test sets. Even though we mirror the splitting done in
NoReC, our subset contains less product categories because DinSide.no
covers less categories than NoReC, which has reviews from different
sources. To balance the datasets we tried to keep the same spread of
categories throughout the three splits, Figure 3.1 shows the distribution
of categories in our dataset. The basic corpus counts are presented in
Table 3.1.

Training Development Test
# Documents 2322 254 225
# Sentences 127574 17165 15896
# Tokens 75392 20908 18981
Average # sentences 55 67 71
Average # tokens 957 1162 1255

Table 3.1: Basic corpus counts for each split of the dataset.

In order to see how the pros and cons relate to the review text
we needed to cross reference information between these two corpora,
namely pros/cons and NoReC. To facilitate working with both datasets
we decided to compile a dictionary with some information about the
keyphrases and metadata for ease of reference.

This “keyphrase dictionary” was saved in JSON format. Each
document had a unique ID, the same ID as the corresponding ID in

26



da
ta

m
ot

or

bo
lig

m
ob

il

fri
tid

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.1: Distribution of categories present in all splits of the dataset.
The percentages for autofil (car lover), økonomi (economy) and reise
(travel) are not shown in the graph because they account for less than
0.01% of the documents in the dataset.

NoReC, or an automatically assigned digit if the NoReC ID was missing.
The same ID was used to identify the keyphrases in pros/cons. Other
frequently used information such as the pros and cons themselves, their
lemmatized forms and the POS-tags sequences were also included. The
full attribute list is described in Table 3.2.

Attibute Description
newdoc id The file names
nored-id The id in NoReC
pros List of the pros from the review
pros_Lemma List of the lemmatized pros from the review
pros_POS List of POS-tags sequences of the pros
cons list of the cons from the review
cons_Lemma List of the lemmatized cons from the review
cons_POS List of POS-tags sequences of the cons

Table 3.2: Atributes present in the keyphrase dictionary

The first problem we faced while compiling the phrases from the pros
and cons sections was that phrase boundaries were not always clear.
Phrase boundaries for the “pros/cons section” were not standardized and
varied greatly from one author to another. The most common case was
to use commas to separate individual phrases. Example 3.1 shows the
“thumbs up” section of a single review:

27



(3.1) Kompakt
Compact

utforming,
design,

god
good

bildekvalitet,
image quality,

kontinuerlig
continued

fokus
focus

på
on

video,
video,

meget
very

brukervennlig,
user friendly,

god
good

og
and

skarp
clear

skjerm
screen

Unfortunately, other authors used different punctuation marks, of-
ten inconsistently, such as mixing dashes and commas, using parenthe-
ses and backslashes and other combinations. Here are some examples
of such cases:

(3.2) ingen
no

dvd
dvd

/
/

optisk
optical

media
drive

(3.3) morsomt
fun

design
design

(for
(for

noen)
some)

(3.4) Tåler
Withstands

(nesten)
(almost)

alt:
everything:

Vann,
water,

støv
dust

og
and

støt
shock

-
-

har
has

innebygget
built in

lommelykt
flashlight

(3.5) Stor
Big

skjerm;
screen;

stor
big

mengde
number of

tredjeparts
third party

programvare
software

tilgjengelig
available

-
-

helt
completlely

gratis
free

In other words, we were not able to make rules that could account
for all cases. We therefore decided to account for some of the word
boundaries and ignore the ones that seemed to lead to ambiguities.
After close analysis, we decided to remove parentheses altogether
because in the majority of cases they were just adding information to
the phrase they appeared in. In some border cases the parentheses
were actually used to provide a counter point to a con, or pro, such as:

(3.6) Vanskelig
Difficult

å
to

løsne
remove

batteriet
the battery

(men
(but

kan
can

lades
be charged

mens
while

batteriet
the battery

er
is

i
in

maskinen.)
the machine.)

After removing the parenthesis we split the remaining phrases by
comma, colon or semicolon. If none of these were present the phrases
were split by dashes, if present. A random selection of a 100 documents
were manually inspected to verify the splitting. There were very few
cases of erroneous splitting with this approach. The resulting splitting
of a pro like example 3.4, results in three different phrases:

28



(3.7) Tåler
Withstands

nesten
almost

alt
everything

(3.8) Vann
Water

(3.9) Støv
Dust

og
and

støt
shock

har
has

innebygget
built in

lommelykt
flashlight

This case highlights some of the shortcoming of this approach as the
word Vann (Water) does not really represent an independent pro of this
product. The remaining elements støv og støt (dust and shock), which
are part of the first phrase, are also cut off and carry no useful meaning
on their own. The last phrase is also a lot longer because of the inclusion
of the actual second pro, namely the reference to the flashlight.

Example 3.9 showcases one of the difficulties of automatically
determining phrase boundaries. Fortunately these border cases were
very few and most of the splitting worked well. The results in the
majority of cases were self-contained descriptions of relevant aspects
of a product, such as:

(3.10) Flott
Great

skjerm
screen

(3.11) Hurtigtaster
Hotkeys

til
for

de fleste
most

innstillinger
settings

(3.12) Filmer
Records

i
in

1080p
1080p

(3.13) God
Good

bildekvalitet
image quality

(3.14) Rask
Quick

autofokus
autofocus

Even with an acceptable splitting strategy, we found that some pros
and cons lists contained variations of phrases like ingen (none), ikke
noe spesielt (nothing special), ingenting negativt (nothing negative) and
ingenting (nothing). The issue here is that the authors meant to say that
there were no pros or cons, not that these phrases represented qualities
or defects of a product.

Given that the occurrence of these phrases was less than 1%
of all phrases, we decided to simply remove all occurrences of the

29



aforementioned words on their own from the dataset. This was done
partly to avoid having the same words as negative and positive signals,
and mainly to avoid confusion during the labeling process. These words
are fairly common in Norwegian and can appear in sentences that are
not relevant to the sentiment of the review.

One could argue that the same issue could arise with words meaning
alt (all/everything), and similar variations. Examining the pros/cons
corpus, however, we found no such instances. No author used alt by
itself in either pros or cons. All the occurrences of alt are used to
describe other functions or characteristics. For example:

(3.15) Har
Has

alt
all

av funksjoner
the features

ellers
otherwise

3.2 Automatic matching

Our strategy for making an automated labeling process was mostly
inspired by the work of S.-M. Kim and Hovy (2006). As mentioned in
Section 2.2, their goals and dataset were very close to ours. The main
idea behind the labeling process is to find sentences that match either
a pro or a con in the same review. As an an example, for the pro plass
(space) a matching sentence would be:

(3.16) Det
It

er
is

plass
space

som
which

er
is

disse
these

bilenes
cars’

fremste
premier

salgsargument,
selling point,

og
and

der
there

har
has

Sharan
Sharan

mye
lots

å
to

tilby.
offer.

Finding the presence of a keyphrase in a sentence is very straight-
forward with single-word phrases. For longer phrases S.-M. Kim and
Hovy describe the aim as finding “a sentence that covers most of the
words in the phrase” (S.-M. Kim & Hovy, 2006, p. 485) . It was not
entirely clear how to measure this type of coverage for the phrases in
our dataset. We therefore decided to try different overlap strategies to
investigate which one would give the best coverage.

Since our main aim was to produce a useful dataset for training
and ideally also testing, we looked at two metrics to decide which
strategy was the best suited for this task: document coverage and
sentence coverage. Document coverage is the percentage of documents
for which there was at least one sentence-phrase match. Having a high

30



document coverage translates into having a larger dataset because more
documents, and their corresponding sentences, would be labeled.

Sentence coverage measures the percentage of sentences in one
document that had a sentence-phrase match. Having high sentence
coverage means that a large number of sentences match a keyphrase
in the same document. While having a high sentence coverage means
having more training data, the summarization aspect becomes reduced
as more sentences are marked as relevant.

Norwegian definite forms for both nouns and adjectives are ex-
pressed by adding suffixes. This complicated the matching process when
only using the words’ surface forms. For example the sentence:

(3.17) godt
well

hjulpet
helped

av
by

den
the

skarpe
sharp

skjermen
screen

Will not match against the keyphrase:

(3.18) skarp
sharp

skjerm
screen

To overcome this issue we decided to use the lemmatized tokens for
both the review text and the keyphrases. For the sake of readability all
examples will use the token’s surface forms and not the lemmas.

3.2.1 Exact match

The first method we tried, dubbed “exact match”, consisted in checking
whether the keyphrase, in its entirety, was present in a sentence. This
is essentially sub-string matching limited around word boundaries.
Phrases that were sentence-like, very long or full sentences had very
few matches. This matching strategy had the lowest results as shown
in Table 3.3.

The exact match strategy had a document coverage of 23% and a
sentence converage of 1.11%. The low scores on both coverage metrics
were not surprising, as review authors rarely repeat the phrases used
in the main text in the “pros/cons section”, as discussed in Section
2.1. Norwegian has the added difficulty of compound words like
skjermstørrelse (screen size). Meaning that the individual words skjerm
(screen) and størrelse (size) will not get any matches, even though it is
very likely that a sentence containing these words is relevant for this
particular characteristic.

31



Strategy Document coverage % Sentence coverage %
Exact match 23.0 1.11
Ordered overlap 53.0 2.39
full BoW overlap 54.0 2.61
Partial(2)
BoW overlap 80.0 7.80

partial(1)
BoW overlap 98.0 52.74

Ordered overlap (G) 98.0 31.30
partial(1)
BoW overlap (G) 98.0 66.80

partial(2)
BoW overlap (G) 98.0 43.23

full BoW overlap (G) 98.0 61.70

Table 3.3: Metrics for the different overlap strategies. Document
coverage = percentage of documents with at least one sentence-phrase
match. Sentence coverage = percentage of sentences per document that
had sentence-phrase matches. (G) denotes the use of global keyphrases.

3.2.2 Ordered overlap

Moving from the most strict criteria to the more lax ones, our next
approach, called “ordered overlap” still required all the words of a
keyphrase to be present in a sentence. The difference between exact
match and this strategy is that this one allows for other tokens to be
in between the words from the keyphrase. All the words from the
keyphrase must appear in a sentence in the same order as in the
keyphrase to produce a match. The idea behind this strategy was to
keep some of the syntactical information in hopes that it will carry some
of the same relations between the words in question. It also allows for
matching to be done against similar sentences that are slight variations
of each other. As an example, with this strategy the keyphrase sær
Bluetooth (strange Bluetooth) can match against:

(3.19) Fiio
Fiio

er
is

sær
strange

på
when it comes to

Bluetooth.
Bluetooth

While this strategy improved document coverage considerably
compared to the exact match strategy, achieving a document coverage
of 53%. The sentence coverage was still very low, with only 2.39% of
sentences per document receiving a match, see Table 3.3. One reason

32



appears to be the fact that authors tend to avoid using the exact same
sentence several times to make the text more varied. One form of
variation is to alter the word order or to use a passive voice.

As an example, this strategy will fail to match the keyphrase 3.20 to
the sentence 3.21:

(3.20) Behagelig
comfortable

tastatur
keyboard

(3.21) Vi
We

opplever
experience

tastaturet
the keyboard

som
as

behagelig
comfortable

å
to

skrive
write

på
on

It is clear that the sentence 3.21 is semantically related to keyphrase
3.20. Additionally, this is the kind of sentence that we want our
system to identify. Omitting this kind of sentences would lead to many
classification errors if we were to train a model using this data. In order
to open for these kind of matches we would have to relax our constraint
even more, discarding the requirement of having to preserve word order.

3.2.3 Full Bag-of-words overlap

By removing word order as a requirement, the next step was a
representation commonly known as a bag-of-words, meaning a set of
unordered words. This method of overlap can be thought of as a
less strict version of the previous one. Essentially this translates
into interpreting the keyphrases and the review sentences as sets and
checking if a keyphrase is a subset of a sentence. If a keyphrase
is a set K = {wor d1, wor d2, ..., wor dn} and a sentence a set S =
{wor d1, wor d2, ..., wor dn} then a sentence is labeled as relevant if all
elements of K are elements of the S. In other words, the set K is
contained inside the set S:

K ⊂ S (3.22)

The idea behind this method of overlap is to try and use the semantic
information of the keywords to label sentences, foregoing the syntactic
information from word order. In example 3.20 one can see how the
keyphrase and sentence overlap in terms of words and meaning, but
not in word order. In theory this overlap strategy might also generate
spurious matches, but given that at this point our sentence coverage
was under 3% we decided that the risk was worth taking in order to
increase the number of matches.

33



The difference between this strategy and the ordered overlap
strategy was small in both document and sentence coverage, as shown
in Table 3.3. The most concerning aspect was that the document
coverage was still just 54%, meaning that the remaining 46% of
documents were effectively discarded during the labeling process. We
therefore had to consider even less restrictive matching strategies.

3.2.4 Partial Bag-of-words overlap

This strategy is very similar to the previous one. It checks only if a
predefined amount of words from the keyphrase set is present in the
sentence set. The first variant we tried was called partial(2), meaning
that only 2 of the words from the keyphrase had to be present in the
sentence. A sentence was labeled as relevant if:

wor d1, wor d2 ∈ K e y phr ase ∧wor d1, wor d2 ∈ Sentence (3.23)

In the case of keyphrases containing only one word a sentence
was also labeled relevant if that word was present in the sentence.
This first variant, using minimum two words for matching, increased
the document coverage to 80% and the sentence coverage to 7.8%. A
document coverage of 80% is acceptable because we can use 80% of the
documents in the corpus. The document coverage of this strategy was
acceptable because it means that on average a review would have 7.8%
of it’s sentences as relevant sentences. For our reviews this means that
each review would have between 4 and 5 relevant sentences.

To get the document coverage closer to 100% we tried a second
variant that labeled sentences only if one word from the keyphrases
was present. This was called partial(1). This variant did increase both
document and sentence coverage to 98% and 52.74% respectively, as
shown in Table 3.3. Seeing as one of the aims with relevant sentences
was to provide a degree of summarization of the review’s sentiment,
the sentence coverage of this particular strategy was pushing the upper
boundary for this metric. After a close analysis, we deemed that labeling
more than half of the sentences in a review as relevant was excessive.

Additionally this last strategy had lost part of the meaningful
connection between the keyphrases and the text that we were trying
to capture. For example, this strategy matched pro 3.24 with sentence
3.25 because of the word mye (a lot/much), but these two sentences are
not semantically related.

34



(3.24) mye
a lot

for
for

pengene
the money

(3.25) Med
With

så
so

mye
much

plass
space

er det
it is

ekstremt
extremely

viktig
important

å
to

finne
find

lettfrem
easily

til riktig
the right

låt.
song.

We were unable to examine every single match to verify whether
the sentences labeled were in fact relevant. Because of this uncertainty
and the high sentence coverage of the partial overlap we decided to try
a different strategy.

3.2.5 Global keyphrases

The main idea of using keyphrases to determine if a sentence is relevant
and sentiment bearing is that keyphrases themselves act as a summary
of the review’s sentiment. In this particular case they are already
divided in pros and cons, indicating a positive or negative sentiment
tied to a particular phrase. As described in Section 3.2.2, it was difficult
to match certain phrases to sentences due to small lexical or syntactic
variations. In an attempt to avoid this problem, while still using a
relatively strict strategy for matching, we decided to collect all the
keyphrases from all the reviews into two lists, one for pros and one for
cons.

We called these global lists because they are a compilation of all
the pros and cons found in the corpus. We investigated the results of
applying the matching strategies described previously in sections 3.2.1,
3.2.2, 3.2.3 and 3.2.4 using the global lists of pros and cons, instead of
only using the pros and cons from each individual review.

The reason why this would be desirable is that the same character-
istics of a product are mentioned many times within the same category.
For example: There are 1773 instances of phrases describing the qual-
ity of a screen and 2138 describing the price of a service or product.
Also intuitively, positive and negative characteristics should be univer-
sal for most items being reviewed. Most pros describe good quality, low
price, usefulness or reliability. Conversely, negative qualities are usu-
ally about high prices, poor quality and failure to deliver functions or
expectations.

One could argue that a more systematic approach could be to group
all the different keyphrases in different lists according to product type,

35



category or some other characteristic. This would serve mainly to
avoid making comparisons with keyphrases belonging to a completely
different product, like mentioning the lack of USB ports on a bicycle.
However, since we were checking to see if the words were present in
each individual review, a case where a pro or con was irrelevant would
simply fail to match. In practice, grouping in categories would only
serve to save a negligible amount of time during the matching process.
We did, however, have to tackle a different problem, single-word pros
and cons.

Our claim that keyphrases from a different review can be useful
to determine relevancy in another review is difficult to defend when
dealing with single-word pros and cons. In the corpus we found
numerous instances of single-word keyphrases like Design (Design),
Støynivå (Noise level) and Stor (Big). These words taken completely
out of context, as is the case in our compiled lists of global keyphrases,
can describe positive or negative aspects of a product depending of the
kind of product. In addition, lone nouns can match against sentences
with both positive and negative sentiments.

Let us take Design (Design) as an example. This keyphrase is taken
from a review in which it is classified as a pro. However it being in the
global list means that both of the following sentences would be classified
as relevant and positive:

(3.26) Lyktene
The lights

foran
in the front

og
and

bak
the rear

har
have

fått
gotten

ny
a new

design
design

(3.27) Skriveren
The printer

har
has

en
a

stor
big

og
and

klumpete
bulky

design
design

Example 3.26 is a case where the product’s design was considered a
pro, but it was considered a con in example 3.27. The same situation
arises with vague descriptors such as Stor (Big), where it can be a
positive attribute, as in something with big storage space or a negative
one like in example 3.27. Several such situations can arise and, in order
to minimize the chance of miss matching, we decided to simply remove
single-word pros and cons from the global lists. After the removal of
single-word phrases we ended up with 7516 global pros and 6785 global
cons.

36



Another difficulty, even after eliminating single-word keyphrases
was the fact that in some cases a sentence could match both with a
pro and a con. The distribution is shown in Table 3.4. This is an
unfortunate byproduct found in all matching strategies. To overcome
this issue we considered three alternatives: Having a third label for
ambiguous sentences, making a duplicate of each ambiguous sentence
so one would match with a pro and the other with a con, or to simply
eliminate ambiguous sentences from the dataset.

Percentage
Sentences matched with pros 32.1
Sentences matched with cons 46.1
Sentences matched with both pros and cons 21.8

Table 3.4: Distribution of labeled sentences in the dataset

There were two problems with the first option. We wanted to keep
the polarity classification portion as a binary problem. The reasons for
this were numerous. Firstly we wanted to capture the sentences behind
pros and cons, and our reviews operate only in those two categories.
There is not a third keyphrase category we could match these results to.
It also makes little sense to present sentences in an ambiguous category
as being representative of the sentiment of the review. Additionally we
wanted to stay as close as possible to the experimental setup described
in chapter 4 which consists of two stages of binary classification.

The second option, having copies of a sentence with both positive
and negative labels would solve the problem of having to add a third
category and having to remove sentences from the dataset. It is,
however, not sound within the framework of supervised learning to have
the exact same sample with different labels, specially when we expect
a classifier to only assign one class to each instance. These reasons and
the fact that only 21.8% of the sentences could have ambiguous labels
led us to make the decision of eliminating the ambiguous sentences from
the dataset.

The same overlap strategies were used to label sentences, except
that this time the global pros and cons lists were used. The percentages
of document coverage and sentence coverage can be seen in Table 3.3.
Many of the challenges identified with the overlap strategies using
local keyphrases are still present, and the risk of matching the wrong
sentence does increase with the use of the global lists, but it is difficult
to quantify by how much without looking at the whole dataset.

37



As previously mentioned in chapter 2.2.7, it is very difficult
to automatically evaluate if a sentence is relevant for the overall
sentiment of the review or not. In order to have a firmer grasp of what
the results of the matching strategies were, we decided to manually
examine 30 random labeled reviews for each overlap strategy and try to
get an idea of the kind of matches they were producing. We looked only
at the precision of each strategy because the sentence coverage metric
provided a good estimation of the recall. The results can be seen in
Table 3.5.

The same 30 documents were used for each strategy. Because
we were interested in seeing the kind of labels they would produce
only documents that had at least one match with all strategies were
included. This means that the sample 30 documents were drawn
from a subset corresponding to 23% of the reviews, because only that
subset had at least one match with every strategy. Since we lack a
gold standard the process to evaluate precision consisted in a human
annotator looking through each sentence that was labeled as relevant
and determining if it was relevant or not. The same evaluation was
done in terms of sentiment polarity.

Note that the results from Table 3.5 would likely vary if a different
person performed the same procedure, as human annotators tend to
disagree when evaluating opinionated sentences (Berend & Vincze,
2012). Because of resource constraints we only had one annotator
available for evaluating the matching results.

The manual analysis of the labeled sentences revealed that all the
bag-of-words strategies, both full and partial overlap, created too many
errors in sentiment labeling. The main reason why their precision score
was so low was due to negative sentences being labeled as pro and vice
versa. The less strict nature of these strategies was more prone to errors
even though they had overall “good” numbers in our coverage metrics.
In an attempt to strike a balance between coverage and precision we
decided to use the ordered overlap strategy with the global pros and
cons lists.

Ordered overlap coupled with the global keyphrases provided good
document coverage and the highest precision of any of the other
strategies using the global lists. We also wanted to keep the syntactic
information by respecting word order and potentially avoiding some of
the pitfalls of the aforementioned bag-of-words strategies. The “exact
match” strategy was not considered viable because of the low number

38



of sentences that were labeled. The results were acceptable enough for
the training and development sets but for our test set we wanted to have
something more robust.

Precision*
Exact match: 100.0
Ordered overlap: 93.3
full BoW overlap: 76.6
partial(2) BoW overlap: 56.6
partial(1) BoW overlap: 23.3
Ordered overlap (Global): 80.6
partial(2) BoW overlap (Global): 33.4
partial(1) BoW overlap (Global): 16.6
full BoW overlap (global): 70.8

Table 3.5: Average precision for sentence labeling after examining 30
random documents. *Precision was calculated only for documents that
had matches. All the 30 documents had at least 1 match.

3.3 Manual annotation

A looming concern when dealing with an automatically generated
dataset was the fact that there might be some special circumstances
that can create wrong labels. Even though we manually examined a
small portion of the documents to do a quality check, we could not
be certain that any other mistakes did not slip through. In order to
supplement this “silver” standard we decided to create a small test set
that was partially manually annotated for each task.

Similarly to the sampling done to the results of the overlap
strategies these small annotated sets were checked only in terms of
precision. The annotator checked all the sentences and corrected
the labels to eliminate false positives both in terms of relevance and
polarity. 76 documents were manually checked this way. These small
sets were reserved for testing as it was the closest we could get to a gold
standard.

A total of 5468 sentences were manually checked and only 1043
false positives were found. This also gave us an estimate of the rate
of false positives present in our dataset as a whole. While we do
acknowledge that having 19.07% miss-labeled sentences is far from
ideal, any automatic labeling system is likely to contain some errors.
After performing a thorough manual check, as described in the previous

39



section, we deemed the result to be good enough for the scope of this
project.

3.4 Summary

In this chapter we have detailed the process of creating automatically
annotated datasets to train a sentence identification system. Because
we did not have an annotated dataset we tried to exploit the pros
and cons that were annotated by review authors to automatically label
sentences that summarize the sentiment of a review. A dataset for each
of our sub-tasks was created.

We described different automatic matching strategies and presented
the relevant statistics that informed our design choices. We introduced
global keyphrases, a compiled list of all the pros and cons from all
reviews in the corpus, as a means to overcome lexical and syntactic
difficulties present in the matching process while retaining semantic
relations between phrases.

We also performed a manual exploration of a sample of documents,
to analyze the output of the different matching strategies. Additionally
we created manually corrected test sets for each task, eliminating false
positives resulting from the automatic labeling process in order to have
test data that was closer to a gold standard.

We chose the strategy called “ordered overlap” using global
keyphrases to automatically label our dataset. Additionally we elim-
inated single-word keyphrases and “ambiguous” sentences, meaning
sentences that matched both pros and cons, from the final dataset. We
found that this strategy, with the mentioned additions, provided good
enough examples to use for training and development, and that the sen-
tences labeled as relevant were overall a good summary of the sentiment
of the reviews.

40



Chapter 4

Relevance and polarity
classification

The end goal of our system is to identify the sentences that summarize
the overall sentiment of the review. These sentences are grouped into
pro sentences, related to pros, and con sentences, related to cons. In
order to achieve this we have automatically annotated the sentences
from the reviews using keyphrases from the “pros/cons section” as
distant supervision. Then, we used the datasets from chapter 3 to train
two separate sentence classification models, following the framework
proposed by S.-M. Kim and Hovy (2006).

The reason why two models are trained is that we divide the task of
identifying the positive and negative sentences into two tasks. The first
task, relevance consists in finding relevant sentences that reflect the
overall sentiment of the review. In the second task, polarity we classify
the remaining relevant sentences into positive and negative sentences.
Figure 4.1 shows a diagram of the process. Dividing the overall task into
two reduces the complexity of each task, since we are now only dealing
with a binary classification problem for each one.

Class label Description
0 Sentences not related to pros or cons
1 Sentences related to pros
2 Sentences related to cons

Table 4.1: Classes defined for the classification process and their
respective labels for classification.

41



Input  
Lemmatized

sentences from the
review

Not relevant sentences Relevant sentences

Task 1 Relevance
Classification 
Sentences are
classified into

relevant and not
relevant 

DiscardedTask 2 Polarity
Classification 
Sentences are
classified into

positive(pros) and
negative(cons) 

Pros Cons

Output 
List of pro and con

sentences 

Figure 4.1: Diagram of the complete pipeline for classification of
sentences related to pros and cons.

For the first task, in order to classify relevance, the model looks
through all the sentences in a review and identifies the sentences that
are related to a keyphrase. This can be either a pro or a con but not both.
Sentences that represented both pros and cons were removed from the
dataset as explained in Section 3.2.5. The sentences labeled as relevant
were sent to the second task to be classified in terms of polarity. For
the polarity classification task the sentences to be classified were the
subset of sentences that were labeled as relevant, meaning related to
a pro or a con. Table 4.1 shows the class labels for the three classes
we were dealing with. It’s important to note that “0” is the majority
class and that we were only interested in correctly predicting sentences
corresponding to pros or cons.

42



In this chapter we will experiment with different methods to
establish a baseline for each of our classification sub-tasks. Section 4.1
describes our experiments at using a non-machine learning algorithm
as a baseline. In Section 4.2 we implement a baseline using a feed-
forward neural network and explore different input representations,
including word embeddings. Section 4.3 details our experiments with
convolutional neural networks. We present the results of our end-to-
end experiments in Section 4.4, by end-to-end we mean the results of
the pipeline described in Figure 4.1. Section 4.5 presents our methods
and results for tuning our convolutional models. Finally, we provide a
summary of the chapter in Section 4.6.

4.1 Matching algorithm as a Baseline

Given that we already have automatically labeled the sentences in
our corpus to generate the dataset, we believed that a strong baseline
for the relevance task could be our own matching algorithm. Our
intuition was that we could interpret the matching algorithm, using
the ordered overlap strategy described in Section 3.2.2, as a classifier.
Since our hypothesis was that the global keyphrases capture the general
characteristics of positive and negative sentences we wanted to test if
the algorithm could find the right sentences in the test set using only
the keyphrases from the training and development sets. The “silver”
standard for this baseline was the annotated test set using only local
keyphrases.

The reason why the local keyphrases were used for testing this
first baseline was that if we allowed the matching algorithm to see all
the keyphrases then the baseline and the labeling procedure would be
identical, thus making this a meaningless baseline. The other difficulty
that arose with this potential baseline was the fact that we could not
directly compare the results of any other classifiers because the test
sets would be different.

Our dataset for the relevance task has a majority class. As covered
in chapter 3 each document possesses in average only 31.3% relevant
sentences. This proposed baseline using the matching algorithm did
not provide any better results than simply assigning “not relevant” to
all instances. Assigning the majority class to all instances gives an
accuracy of 0.7, the same result as the matching algorithm.

These results discouraged us from using the matching algorithm as

43



a baseline. We therefore chose a feed-forward network as our starting
point. This network was not tuned and used default values for its
hyperparameters unless otherwise noted.

4.2 Feed-forward baseline

A feed-forward network with 3 hidden layers was used as a baseline.
ReLu activations were used on all layers except on the output layer
where a softmax activation with two output nodes was used. Figure
4.2 shows a general diagram of the network. The loss function used
was categorical cross-entropy and the optimizer used was Adam. No
regularization methods were used in the baseline model.

...

...
...

...

I1

I2

I3

I256

H1

H128

H1

H128

H1

H128

O1

O2

Input
layer

Hidden1
layer

Hidden2
layer

Hidden3
layer

Ouput
layer

Figure 4.2: General diagram of the baseline model. The input layer
has 256 nodes. Each successive hidden layer has 128 nodes each. The
output layer has two output nodes, one for each class. Even though
the datasets are different for each task both will use the same general
architecture shown here.

4.2.1 Implementation details

We used Keras to build our baseline model (Chollet et al., 2015). Keras
is a high-level API for running neural networks in Python. While Keras
supports different kinds of backends, we used the TensorFlow backend
to build the computational graph that represents the network. The

44



library Gensim was used to handle word embeddings (Řehůřek & Sojka,
2010). One of the main advantages of using Gensim and Keras together
is that it is very easy to obtain an embedding layer to use with Keras
from pre-trained word embeddings. This embedding layer works as a
lookup matrix to find the corresponding vector for each word. All of the
activation functions, loss functions and optimization algorithms used in
our models are based on Keras’ implementations.

The Keras API also provides as set of functions that can be used to
access statistics and internal states of the model during training, the
functions are collectivelly reffered to as callbacks. We used three of
these callbacks to monitor training.

In order to present the best version of each model we used the
callback ModelCheckpoint to save the best model in each run. The best
model in this context in the one that maximizes validation accuracy.
Additionally we used EarlyStopping to stop the training when the
validation accuracy stopped improving. Improvement was defined as an
absolute change of at least 0.0001 in validation accuracy. Training was
stopped after four epochs without improvement. Finally the callback
ReduceLROnPlateau was used to dynamically reduce the learning rate
when the model began to stagnate. The learning rate was reduced by a
factor of 0.1 when the validation loss started to increase.

4.2.2 Accounting for randomness

Feed forward models are not fully deterministic and can provide
different results across different runs due to the random initialization
of the weight matrices. In order to get an idea of the effect of random
initializations we ran the baseline model 20 times with different random
seeds and monitored the different results in accuracy, precision, recall
and F-score for the task for relevance classification. Table 4.2 shows
the maximum, mean and minimum values of each metric alongside the
standard deviation. Figure 4.3 shows a plot of the values of the 20 runs.

Metric Max Mean Min Std
Accuracy 84.10 83.81 83.39 0.0018
Precision 78.49 74.65 70.82 0.0202
Recall 73.38 67.10 59.46 0.0362
F-score 72.43 70.56 67.66 0.0116

Table 4.2: Maximum, mean and minimum values for each of the
monitored metrics, including the standard deviation across the 20 runs.

45



Accuracy Precision Recall F-score
Metric

0.60

0.65

0.70

0.75

0.80

0.85

Va
lu

e

Figure 4.3: Plot of the values of accuracy, precision, recall and F-score
after running the baseline model 20 times. Accuracy was the most
stable metric across all runs. Recall had the largest variation across
runs, still the model showed to be relatively stable.

The results after the repeated runs did show some variation, but the
model was relatively stable. The largest fluctuations were observed in
terms of recall of all of the monitored metrics. Even though randomness
did not seem to play a big role in the model’s performance we still
wanted to fix the random seed moving forward to preserve repeatibility
of the experiments. The chosen seed was the one that showed best
performance among the 20 runs.

4.2.3 Pre-processing

All the models presented in this section used the same pre-processing
described in chapter 3. All tokens are represented by their lemmatized
forms. The token boundaries and their lemmas were taken directly
from the CoNLL-U files from the NoReC and pros/cons corpora. All
the tokens were kept, including punctuation marks.

46



4.2.4 Feature representation

We used two methods to represent sentences: Bag-of-words and con-
tinuous bag-of-words. We chose these methods of feature representa-
tion because they are well established within the field and are simple
enough to provide a good starting point.

4.2.5 Bag-of-words

The bag-of-words used is based on the Keras implementation using TF-
IDF (Chollet et al., 2015). We chose to use this weighting strategy
to help adjust for the fact that some words are more frequent. The
weighting strategy is shown in equation 4.1, where tft ,d is the term
frequency of term t in document d belongng to corpus D. The second
term, the inverse document frequency is the inverse of the count of
distinct documents in the corpus in which the term occurred. The
vocabulary size for the bag-of-words was 10000 tokens.

TF-IDFt ,d = (tft ,d ) · log
N

dft
(4.1)

4.2.6 Continuous bag-of-words

We wanted to try the same architecture using pre-trained word
embeddings. We obtained pre-trained models for Norwegian from the
NLPL word embeddings repository1 (Fares, Kutuzov, Oepen, & Velldal,
2017). In order to isolate the effect of the embeddings during the
classification tasks we decided to use models that were similar. A
preliminary evaluation showed that our training set contained many
out of vocabulary tokens. Table 4.3 shows the number of out of
vocabulary tokens found in each model. In order to mitigate the efect of
unknown words we chose to work with fastText models because of their
ability to infer vectors for unknown tokens (Bojanowski et al., 2016).
Due to the fact that we wanted to use lemmas, we also excluded all the
models that were not lemmatized.

We chose two models that fulfilled the criteria described above.
Both models were trained on four subsets of the Norwegian Newspaper
Corpus, Norsk Aviskorpus. The models were, like NoReC and pros/cons,
lemmatized using UDpipe (Straka & Hajic, 2016) and the stop words
were kept. These models were generated using the fastText Skipgram
algorithm with a window size of 5 (Stadsnes, 2018). The only difference

1http://vectors.nlpl.eu/repository/

47



Corpus # OOV tokens
NAK 49708
NAKs + NoWaC + NBDigital 39491
NAKs + NoWaC 37360

Table 4.3: Number of Out Of Vocabulary(OOV) tokens in the word
embeddings models we tested for embeddings in Norwegian. NoWaC
= Norwegian Web as Corpus. NAK = Norsk Aviskorpus. NBDigital =
National Library of Norway digital corpus. For more details about the
word embedding models we refer to (Stadsnes, 2018).

between these models is the vector size, the models have a vector size of
100 and 300 respectively.

To represent a sentence the input vector x is calculated by the
following formula:

x = 1

|D|
|D|∑
i=1

xDi (4.2)

Sentence D is the sentence containing the word vectors where Di is the
word vector at position i . All the word vectors are summed together
and then divided by the number of vectors in the sentence. This
representation is called an averaged bag-of-words or continuous bag-of-
words, because each sentence vector is composed of the averaged sum
of the word vectors in the sentence represented as a continuous vector.
There are some variations in which the sentence vector is just the sum
of all the word vectors. We chose to take the average of the sum to avoid
having vectors with large values due to the length of the sentence.

In order to evaluate the influence of word embeddings on the
baseline model we trained the baseline model using random word
embedding initialization and tuning the weights during training. This
model had an extra Lambda layer after the embedding layer in which
the operation described in formula 4.2 was performed. The reason why
this extra layer was needed is because we wanted to keep the mappings
to individual word tokens and not to whole sentences. The resulting
word vectors had a vector size of 100 and were saved in word2vec
format.

4.2.7 Baseline results

The results of the baseline models for task 1, relevance, are presented
in Table 4.4. The Bag of Words model outperforms all of the models

48



using word embeddings. All of the baselines show an improvement over
a majority classifier which has an accuracy of 0.7. A majority classifier
for task 1 always outputs “not relevant” as a result.

Model Emb VS Acc P R F1
MC 70.00
BOW 84.10 69.49 63.38 66.43
CBOW NAK 100 78.25 60.95 30.81 40.92
CBOW NAK 300 79.56 61.14 44.97 51.82
CBOW learned 100 80.16 60.73 53.33 56.79

Table 4.4: Baseline results for relevance. Emb = the word embedding
model used. VS = the vector size of the embedding model. NAK= Norsk
Aviskorpus. MC = a majority classifier that classifier all sentences as
“not relevant”.

All the models using pre-trained word embeddings had a similar
performance. This is not too surprising given that all of them were
trained on very similar corpora, and have the same vector size of 100.
All of the fastText models we used from the NLPL repository had
also the same window size of 5 and were trained using the skip-gram
algorithm.

The presence of unknown words does not seem to be a big factor,
as random values for embedding initialization yielded similar results to
their pre-trained counterparts. Even though these weights were tuned
during training the expectation would be that the embeddings trained
in much larger corpora would provide a better dense representation of
the different words.

49



0 2 4 6 8 10 12
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training accuracy and loss

train accuracy
validation accuracy
train loss
validation loss

0 1 2 3 4 5
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Training accuracy and loss

train accuracy
validation accuracy
train loss
validation loss

Figure 4.4: Accuracy and loss plot for BOW baseline model (top) and
CBOW with learned embeddings (bottom) for task 1 relevance. Both
models show similar learning curves.

50



A common trend in the results of the word embedding models was a
low recall score. It seems that the feature representations used were not
able to capture meaningful relations between words for the relevance
task. Although some information about individual words is preserved,
which is a strong signal in regards to sentiment, neither the bag-of-
words or the continuous bag-of-words are able to use local syntactic
information to form meaningful representations of word grouping or n-
grams. This might be one of the reasons why the model struggles to
identify relevant sentences.

There was a slight difference with the results for task 2. Table 4.5
shows that even though the scores are generally similar to task 1, recall
results are slightly higher. However, this might just be due to the fact
that there is not a big majority class as in task 1.

Pros Cons
Model Emb VS Acc P R F1 P R F1
MC 56.24
BOW 85.20 84.65 90.38 87.42 86.06 78.38 82.04
CBOW NAK 100 75.50 75.02 85.35 79.85 76.38 62.51 68.76
CBOW NAK 300 79.93 78.59 88.95 83.45 82.36 68.04 74.52
CBOW learned 100 78.35 76.04 72.36 75.57 78.92 63.40 73.21

Table 4.5: Baseline results for polarity. Emb = the word embedding
model used. VS = the vector size of the embedding model. NAK=
Norsk Aviskorpus. MC = a majority classifier that labels all sentences
as “Cons”.

The baseline models had a very similar performance during training
and validation. Most of them follow the same trend as shown in
Figure 4.4. The only exception were the embeddings that were tuned
during training. These models’ performance peaked very early after 2
epochs and then stopped improving, likely due heavily over-fitting to
the training set as shown in Figure 4.5.

51



0 2 4 6 8 10 12
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training accuracy and loss

train accuracy
validation accuracy
train loss
validation loss

Figure 4.5: Accuracy and loss plot for the baseline model with
embeddings learned during training in task 2, polarity. Training
accuracy jumps close to 100% after just 4 epochs while validation
accuracy stays relatively constant.

4.3 Convolutional neural network models

In order to improve upon the baseline we decided to experiment with a
different kind of architecture: Convolutional Neural Netowrks (CNNs).
Originally developed for image classification, this architecture has also
proven useful to several NLP tasks. One dimensional convolutions are
specially useful for analyzing sequences of words. Since we are dealing
with sentence classification this kind of approach is very appropriate to
both our classification tasks (Goldberg, 2017). For a general description
of this architecture see Section 2.2.5.

We used the architectures described by Zhang and Wallace (2017)
as a starting point. Their work deals specifically with the problem of
sentence classification and they already provide a broad study of the
effects different parameters and hyperparameters have on this task.

52



Input: 
Sentence matrix  

7 x 5 

skjermen

har

en

tiltalende

og

nøytral 

design 

3 region sizes: 2, 3, 4 
2 filters for each region size 

6 filters in total 

1-max 
pooling 

2 feature
maps for

each
region
size 

softmax function 
regularization 
 in this layer 

The
concatenated
feature maps
form a single
feature vector 

Output:  
2 classes 

activation function 

convolution 

Relevant 

Not relevant 

Figure 4.6: Illustration of the baseline architecture suggested by Zhang
and Wallace (2017). Three filter region sizes are depicted: 2, 3 and
4. Each region size has 2 filters. Filters perform convolutions on the
sentence matrix and generate feature maps of different sizes. 1-max
pooling is performed over each map, recording the largest feature from
each map. A feature vector with fixed length is generated from all the
feature maps. The softmax layer takes this feature vector as its input
to classify the sentence. Two output states are depicted because both of
our tasks are binary classification problems.

53



We used the same word embeddings models as described in
our baseline as our input features. While it is possible to use
several channels with CNNs, such as combining static and non-static
embeddings or part of speech tags we focused on a single channel
implementation using embeddings for word lemmas. Multiple channels
increase memory use and training time significantly, and increasing
the channel does not always translate to better performance (Zhang &
Wallace, 2017).

The first layer of our CNN is the embedding layer. This layer is
followed by three different convolutional layers each with its own region
size. Each convolutional layer is connected to a pooling layer and the
results of these three layers are concatenated. The last layer is a fully
connected layer with a softmax output.

The embedding layer is a matrix of size V ×d , where V is the size
of the vocabulary and d is the dimensionality of the embeddings. All of
the pre-trained embeddings have a vector size d of 100, but the size of
the vocabulary V will vary depending on the amount of words that can
be inferred from the fastText embeddings. If no vector can be inferred
for a specific word a “dummy” character was used to assign a value to
that particular token. Gensim provides the functionality of importing
the vocabulary from a pre-trained embedding. It is then simply to look
up training words to identify the corresponding vector.

Even though it is theoretically possible to have inputs of different
lengths for a CNN, having a fixed length helps optimize the training
process in batches. If no batches with fixed length are used then each
sequence must be processed one by one. Sentences that were shorter
than the pre-defined sentence length of 100 tokens were padded with a
special token having a value of 0. We did not lose a lot of information by
limiting the length to 100 tokens, as only 27 sentences were longer than
100 tokens.

The following layers are three “parallel” convolutions, each with
a different region size using ReLU as the activation function. This
operations transform a tokenized sentence into a sentence matrix
(Zhang & Wallace, 2017). The dimensionality of the sentence matrix
is s ×d , where s is the length of a sentence and d is the dimensionality
of the word vectors. The filters have a filter matrix W and the matrix
contains h ·d parameters, where h is the region size. Each convolution
is followed by a pooling operation as shown in Figure 4.6.

The final feature vector is created by concatenating the outputs from

54



each convolution and pooling layer. This final feature vector is fed to a
fully connected layer with a softmax activation to generate the final
classification. Dropout is applied to the last layer as a regularization
strategy by randomly setting values in a weight vector to 0.

4.3.1 Pooling strategies

The most common pooling strategy for text classification is a vari-
ant of max pooling. Experimentation with different pooling strategies
for CNNs report that 1-max pooling consistently have superior perfor-
mance (Zhang & Wallace, 2017). Preliminary results with local pooling
and average pooling with our relevance dataset confirm the findings of
Zhang and Wallace (2017). The other pooling strategies showed a clearly
lower performance than 1-max pooling.

4.3.2 Filters

CNNs can use multiple filters to learn complementary features. Y. Kim
(2014) experimented with three different region sizes (3, 4, 5) with
the number of feature maps fixed to 100. Zhang and Wallace (2017)
experiment by varying the region size on a single filter and also explore
different combinations of number of filters and region sizes. Their
results suggest that each dataset has its own optimal filter region size.

Using multiple filters can lead to a moderate increase in perfor-
mance, however considering multiple filter combinations greatly in-
creases the hyperparameter search space. Zhang and Wallace (2017)
limit their search to regions sizes close to the best performing region
size in a single filter configuration. The search is further restricted by
only looking at adjacent regions sizes, for example (3, 4, 5), except for
repeating region sizes, such as (7, 7, 7). However, repeating the same
region size is equivalent to simply using a single filter with that given
size and then increasing the feature maps accordingly. For this reason
we did not experiment with multiple filters with the same region sizes.

4.3.3 Baseline CNN results

In order to determine the effect of the word embedding models and
to have a starting point to compare the convolutional architecture to
our BOW and CBOW baselines we performed experiments for each
classification task using a basic configuration with hyperparameters
values taken from the results reported by Y. Kim (2014) and Zhang and

55



Wallace (2017). The configuration of this network is described in Table
4.6.

Description Values
input word vectors Norsk Aviskorpus fastText
word vector dimensionality 100 and 300
filter region size (2,3,4)
feature maps 100
activation function ReLU
pooling 1-max pooling
dropout rate 0.5
optimization algorithm Adam

Table 4.6: The basic configuration for our CNN model. It uses three
convolutional layers each with a different region size of 2, 3 and 4. All
filters have 100 feature maps and use ReLU activations. 1-max pooling
is performed after each filter is applied. A dropout of 0.5 is applied
before the softmax layer. Learning was optimized using Adam.

4.3.4 Effect of word embeddings

Tables 4.7 and 4.8 show the classification results of task 1 and task
2 respectively. Both of the convolutional models used were identical
except for the word embeddings molds used. The specifics of the word
embeddings models are discussed in Section 4.2.4.

Model Emb VS Acc P R F1
BOW 84.10 69.49 63.38 66.43
CNN NAK 100 86.21 78.77 59.69 67.92
CNN NAK 300 87.27 80.03 63.87 71.04

Table 4.7: Baseline results for CNNs task 1. Emb = the word embedding
model used. VS = the vector size of the embedding model. NAK= Norsk
Aviskorpus. The BOW model is included as a baseline.

These results show that using word embeddings with a larger vector
size increases performance across every metric for both tasks. This
increase in performance came at a cost in terms of training time, as the
models with a higher vector size took roughly double the amount of time
to train. The base CNN models also outperform the best performing
baseline, the baseline BOW model, in relevance classification. The
results are a lot closer for polarity classification, still the CNNs have
a slightly better performance in F1 scores.

56



Pros Cons
Model Emb VS Acc P R F1 P R F1
BOW 85.20 84.65 90.38 87.42 86.06 78.38 82.04
CNN NAK 100 85.28 86.59 87.71 87.14 83.50 82.08 82.79
CNN NAK 300 86.90 88.30 88.73 88.51 85.04 84.49 84.76

Table 4.8: Baseline results CNNs task 2. Emb = the word embedding
model used. VS = the vector size of the embedding model. NAK= Norsk
Aviskorpus. The BOW model is included as a baseline.

Figure 4.7 shows a comparison of the training curves for the BOW
model and the best performing CNN model. While the end performance
of both models was close (86.9% for CNN and 85.2% for BOW), we can
see from this figure that the gap between the validation and training
curves was bigger for the BOW model. Having a tighter gap does not
necessarily translate into better performance for a given model, but a
large gap could be an indication that the model does not generalize very
well.

57



0 2 4 6 8 10 12 14
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Training accuracy and loss

train accuracy
validation accuracy
train loss
validation loss

0 2 4 6 8 10 12
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training accuracy and loss

train accuracy
validation accuracy
train loss
validation loss

Figure 4.7: Accuracy and loss plot for base CNN with vector size 300
(top) and BOW baseline model (bottom) for task 2.

58



Both of the CNN and the BOW models had a skew towards the
majority class for task 1. This is not surprising because the relevant
and not relevant classes are imbalanced with a 70 : 30 ratio in favor of
the not relevant class. The models also have similar predictions for task
2. Figure 4.8 shows the confusion matrices for task 2. The BOW model
tends to identify a few more sentences as pros than the CNN model, but
both models show a clear diagonal with a similar distribution for both
classes.

Con sentence Pro sentence
Predicted label

Con sentence

Pro sentence

Tr
ue

 la
be

l

2027 218

344 1358

Confusion matrix

250

500

750

1000

1250

1500

1750

2000

Figure 4.8: Confusion matrices for base CNN with vector size 300 (top)
and BOW baseline model (bottom) for task 2.

59



4.3.5 Performance by product category

Previously in Section 3.3 we mentioned that there are different product
categories in the dataset. We observed that the models’ performance
varied between the different product categories. Figure 4.9 shows both
the baseline BOW and CNN models’ performance for task 1. The
performance of the BOW model is generally better for the larger product
categories and slightly worse for the smaller categories, unexpectedly
the largest product category data (data) was not the best category for
either model. The best category for the BOW model was motor (motor)
with an Accuracy of 87.25%.

The results for the CNN were even more surprising as it’s best
performing category, fritid (leisure), was the smallest one in the dataset.
This means the model had very little training data for these kinds of
documents and still managed to use the patterns learned from the other
categories to perform remarkably well, with an accuracy score of 89.90%
in this category.

bolig data fritid mobil motor
Category

60

65

70

75

80

85

90

95

100

Ac
c

Model
BOW
CNN

Figure 4.9: Models’ performance across categories for task 1 Relevance.
BOW performed better for the category motor with an Accuracy of
85.10%. CNN had it’s top performance in the category fritid (leisure)
with an accuracy score of 89.90%

For task 2 the BOW model followed a similar trend to the first task
with the same category motor (motor) showing the best performance
with an accuracy score of 87.25%. The biggest difference is that data

60



(data) had the lowest performance in task 2, achieving only 84.24%
accuracy. It was more difficult for the model to classify the sentiment of
sentences than determining if they were relevant or not to the overall
sentiment of the review, and having a larger amount of training data for
that category did not appear to have helped performance.

On the other hand the CNN model had a different category as its
best performance for task 2. This time bolig (residential) performed
better achieving an accuracy score of 88.53%. The roles were reversed
for the top category in the previous task, while fritid (leisure) was the
top category for task 1, it was the lowest scoring for task 2. The fact
that the smallest category had the lowest score is not surprising, on the
contrary it was unexpected that the results from task 1 were different.
However, and perhaps more interesting still is the fact that the second
lowest performing category was the largest one data (data) with an
accuracy of 84.88%.

One possible reason for the poor performance of the models in the
data (data) category might be that the sentences related to pros and
cons contain names of devices, for example USB3.0. These words can
appear in positive and sentences as shown in examples 4.3 and 4.4,
where the first sentence is positive and the second sentence negative.

(4.3) fleksibel
flexible

med
with

mange
many

ekstra
extra

egenskaper
characteristics

for
for

deling
sharing

av

USB3.0
USB3.0

resurser
resources

(positive sentence)

(4.4) mangler
lacks

støtte
support

for
for

USB3.0
USB3.0

og
and

gigabit
gigabit

nettverk
network

(negative sentence)

In fact, all the other models show a similar difficulty with this
particular category. When looking at the embeddings learned by the
CBOW model, which learned the embeddings from scratch, we can see
that these words have a small cosine distance to sentiment bearing
words like god (good) or dårlig (bad). Both these words have USB3.0 in
their 10 closest neighbors. This is also the case for other technological
terms and their cosine distance to sentiment bearing words, being close
to words on both sides of the polarity spectrum. It is important to note,
however that the mentioned embeddings were trained in the CBOW
model and by design that model is not sensitive to the local ordering of

61



words. This means that although the presence of these words in both
contexts might be an indicator of why there is a low performance in that
category it might not be the same cause for all the models.

bolig data fritid mobil motor
Category

60

65

70

75

80

85

90

95

100

Ac
c

Model
BOW
CNN

Figure 4.10: Models’ performance across categories for task 2 Polarity.
BOW performed better for the category motor (motor) with an accuracy
of 87.25%. CNN had it’s top performance in the category bolig
(residential) with an accuracy score of 88.53%

Another possible explanation for the models’ low performance in
the data (data) category could be the fact that this category is not as
homogeneous as the others. While motor (motor) and mobil (mobile)
only deal with the same type of products, cars and mobile phones
respectively, data (data) includes all kinds of electronic appliances
and accessories. The large variety of articles, and the way these are
described, might be the why the data (data) category is more difficult to
classify for our models than the other product categories.

4.4 End to end experiments

In the previous sections we have explored the different models’
performance for each task in isolation. As we explained in the beginning
of this chapter and illustrated in Figure 4.1, the sentences that are
classified as relevant in task 1 are then classified by polarity in task
2. In this section we present the results of the baseline models for both

62



tasks combined. Because the results of task 2 are dependent on the
results of task 1 we called these models “hierarchical models”.

Table 4.9 shows the results of the hierarchical models when
classifying sentences from the development set. These were the same
models trained individually for each task. Because the ranking of
performance of all models was identical for both tasks, the same
architectures were used for task 1 and then task 2. Combinations of
different models did not yield any better results and were therefore
omitted. Unsurprisingly all models performed worse than in their
individual tasks. This is due to the cascading effect that miss-
classification in task 1 carries over to task 2. However the same overall
ranking of models was maintained, with the CNN with vector size 300
being the top performer.

Pros Cons
Model Emb VS Acc P R F1 P R F1
MC 75.96
SC 59.81
BOW 78.14 50.33 49.88 50.10 47.96 59.60 53.15
CBOW NAK 100 74.75 41.49 18.92 25.99 35.83 28.78 31.92
CBOW NAK 300 75.24 41.33 24.38 30.67 41.30 40.94 30.67
CNN NAK 100 80.69 55.31 49.29 52.13 55.07 49.29 52.13
CNN NAK 300 81.50 57.73 56.58 57.15 56.32 60.89 58.52

Table 4.9: End to end results of the hierarchical models. Emb = the
word embedding model used. VS = the vector size of the embedding
model. NAK= Norsk Aviskorpus. MC= majority classifier that marks all
sentences as “not relevant”. SC= stratified classifier, makes predictions
based on the distribution of labels on the training set.

Neural architectures like the ones we used in the hierarchical
models can be very flexible regarding the outputs it can produce for
classification tasks. It is trivial to add classes as classification targets
and turn a binary classifier into a multiclass classifier. With this in
mind we trained two variants of our BOW and CNN models to perform
both task 1 and task 2 at the same time. We called these models “joint
models”. The main difference between the hierarchical models and
their joint counterparts is that the joint models were exposed to the
whole dataset during training and had to predict all the three classes
presented in Table 4.1. For the BOW variants it also meant that a
single tokenizer was used for the whole dataset, instead of having one
for relevance and one for polarity like the hierarchical BOW.

Adding the extra outputs only added 129 trainable parameters to
the BOW model and 300 for the CNN. The training time and resource

63



usage was virtually the same for training 1 joint model and the 2 models
that formed the hierarchical ones. The performance of the joint models
is presented in Table 4.10 alongside the best performing hierarchical
models. Note that while the joint CNN model had an improvement
of 1.28 in accuracy, the F1 scores for both pros and cons were lower
than the hierarchical CNN. The joint BOW performed better than its
hierarchical counterpart in both accuracy and F1 scores.

Pros Cons
Model Emb VS Acc P R F1 P R F1
Hierarchical
BOW 78.14 50.33 49.88 50.10 47.96 59.60 53.15
CNN NAK 300 81.50 57.73 56.58 57.15 56.32 60.89 58.52
Joint
BOW 80.96 61.59 46.53 53.01 57.11 53.67 55.34
CNN NAK 300 82.78 73.33 38.13 50.17 71.04 41.74 52.58

Table 4.10: End to end results of the hierarchical models and joint
models. Emb = the word embedding model used. VS = the vector size of
the embedding model. NAK= Norsk Aviskorpus.

Figure 4.11 shows the confusion matrices of the hierarchical and
joint versions of the CNN models. It appears that even though the
hierarchical model had a larger total amount of correctly classified pros
and cons, it made a lot more errors distinguishing between positive and
negative sentences. The joint model very rarely made errors between
positive and negative sentences, but it struggled more distinguishing
them from “not relevant” sentences.

64



Not relevant Pro sentence Con sentence
Predicted label

Not relevant

Pro sentence

Con sentence

Tr
ue

 la
be

l

12628 227 363

1034 649 19

1299 9 937

Confusion matrix

2000

4000

6000

8000

10000

12000

Not relevant Pro sentence Con sentence
Predicted label

Not relevant

Pro sentence

Con sentence

Tr
ue

 la
be

l

11665 713 840

622 948 132

783 173 1289

Confusion matrix

2000

4000

6000

8000

10000

Figure 4.11: Confusion matrices for the joint CNN model (top) and the
hierarchical CNN model (bottom).

Having neutral examples, like our “not relevant” sentences, can
be important for sentiment classification (Koppel & Schler, 2006). A
possible hypothesis of why the joint model is better at distinguishing
between sentences in terms of sentiment could be the fact that the
model gets presented with neutral examples during training. However
it does not seem to identify what distinguishes the pro and con
sentences from the rest.

65



4.5 Hyperparameter tuning

In this section we will describe the process for tuning the hyperparam-
eters of the CNN model and provide an analysis of the results. Table
4.11 shows each parameter with the possible range or categories of val-
ues to choose from. However even with the reduced ranges for the cho-
sen hyperparameters the search space becomes too great to perform an
exhaustive grid search over all possible combinations.

We followed a similar exploration to the one done by Zhang and
Wallace (2017) exploring one hyperparameter at a time while keeping
the rest constant. This method has some limitations as it does not
account for the interaction between the different hyperparameters.
These interactions are often counter-intuitive as simply choosing the
best results from each individual run does not guarantee the best
performance.

Random hyperparameter search has been reported to provide good
results for exploring the hyperparameter space (Bergstra & Bengio,
2012). However this method does not take advantage of the knowledge
we have of previous experiments or the dataset. Other sophisticated
methods for hyperparameter tuning exist, but these methods require
knowledge of which parameters and their values are worth exploring.

The following sections will present the results concentrating on one
hyperparameter at a time and keeping the rest of the configuration
unchanged. The basic configuration was previously presented in Table
4.6. The performance of models in task 1, relevance, was measured
with regards to the F1 score, due to the fact that there was a class
imbalance. The performance of models in task 2, polarity, was measured
with regards to their accuracy score.

Hyperparameter Values
Filter region size 1-30
Feature maps 100-300
Pooling 1-max, average
Dropout rate 0-0.9
L2 regularization 0-0.1
Embeddings Static, Dynamic

Table 4.11: The hyperparameters that constitute our search space.

66



4.5.1 Filter region size

The filter region size was the most demanding hyperparameter to tune.
There are many possible values to choose from and many combinations
of possible filters. We performed a line-search over single filter region
sizes to find the best performing single region size. After the ’best’
region size was identified, we combined multiple filters using region
sizes near the single ’best’ size. It has been reported that multiple
’good’ region sizes tend to outperform using only the the best single size
(Zhang & Wallace, 2017).

Table 4.12 shows the results of a single filter with varying region
sizes. The ranges for the region sizes were selected from 1 up to the
average sentence length in the dataset. Though a convolution with
a region size of 1 might seem odd, we wanted to include this filter
because CNNs are mostly focused on n-gram features and can lose
some important signals coming from single tokens. Filter region size
of 3 had the best performance for task 2, while region size 6 had the
best performance for task 1. Increasing the size after 10 decreased
performance for both tasks, with the exception of filter size 15 that
showed good performance for task 1.

Region size % Acc
1 82.47
2 85.81
3 86.50
4 86.27
5 86.32
6 86.07
7 85.58
8 85.58
9 85.41
10 84.85
15 84.61
20 84.24
30 82.52

(a) Polarity

Region size % F1
1 51.36
2 64.23
3 66.42
4 67.95
5 68.58
6 69.26
7 69.04
8 68.71
9 69.61
10 68.83
15 69.15
20 67.48
30 66.02

(b) Relevance

Table 4.12: Effect of a single filter region size with 100 feature maps for
each task.

After determining the best single region sizes we explored different
combinations of multiple filters. All the possible permutations of the
regions sizes from 1 to 5 were tested with 2, 3, 4 and 5 filters. The filters
with region sizes over 6 were only tested together with the smaller

67



filters. The number of feature maps was kept at 100 for all the filters.
Additionally we did not test several filters with the same region size,
because this is equivalent to simply increasing the number of feature
maps. The tuning of the number of feature maps is presented in Section
4.5.2. We explored all combinations for each combination of number of
filters and region size with the aforementioned restrictions. The best
performing combinations are presented in Table 4.13.

In general we observed that for the polarity task region sizes
including 3 and 5 performed better. Combinations including region sizes
over 7 performed poorly compared to the lower values. Combinations
including region size 1 also tended to under-perform when using one
to three filters. However when using four and five filter combinations
including region size 1 increased performance. The relevance task
showed better results when using larger region sizes, and including
sizes 6 and 9 increased performance. Size 1 which helped performance
for the previous task was always detrimental to relevance classification.

Multiple region size % Acc
(3,4,5) 86.79
(2,3,4) 86.90
(4,5,6) 86.98

(3,4,5,6) 87.12
(1,2,3,4) 87.53

(2,3,4,5,6) 87.32
(1,2,3,4,5) 88.14
(3,4,5,6,7) 87.79

(a) Polarity

Multiple region size % Acc
(3,4,5) 71.44
(2,3,4) 71.04
(4,5,6) 71.66

(3,4,5,6) 71.63
(1,2,3,4) 71.14

(2,3,4,5,6) 72.57
(3,4,5,6,7) 72.68

(6,7,9,10,15) 72.71

(b) Relevance

Table 4.13: Effect of multiple region sizes. We report only the best
combinations for each number of filters.

4.5.2 Number of feature maps

Table 4.14 shows the performance of models in terms of the number of
feature maps for each filter, while keeping the rest of the configuration
unchanged. While the number of feature maps had little effect on
performance, increasing feature maps improved performance for task
1 and decreased performance for task 2.

We also tested different number of feature maps in the range of
50-300 for a single filter with the best performing region size. Zhang
and Wallace (2017) reported that the best performance for one of their
datasets was to use the best single filter with a high number of feature

68



maps. This was not the case with either of our datasets. These numbers
are not shown as all of the results were worse than using multiple
filters.

# Feature maps % Acc
50 85.79
100 86.90
150 86.54
200 86.72
250 86.50
300 86.58

(a) polarity

# Feature maps % F1
50 69.22
100 71.04
150 70.54
200 71.32
250 71.79
300 72.13

(b) relevance

Table 4.14: Effect of the number of feature maps for each task. Larger
feature maps improved performance for (b). 100 was the optimal
number (a).

4.5.3 Regularization

Regularization was applied to the input of the layer preceding the
sotfmax layer as shown in Figure 4.6. We tried both dropout and
L2 regularization as these are two common regularization strategies
for CNNs (Zhang & Wallace, 2017). Figures 4.12 and 4.13 show the
change of each performance metric relative to the dropout rate. The
baseline model had a dropout rate of 0.5. There was very little effect by
changing the dropout rate and even no dropout performed better than
the baseline model. This confirms the findings of Zhang and Wallace
(2017). L2 regularization only hurt performance and smaller values
performed better as shown in Table 4.15. We also experimented by
applying L2 regularization to the convolution layers but this also led
to a large decrease in performance.

69



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dropout rate

12

10

8

6

4

2

0

C
ha

ng
e 

in
 F

1 
(%

)

Figure 4.12: Effect of the dropout rate compared to the baseline for task
1. The baseline value was 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dropout rate

1.0

0.5

0.0

0.5

1.0

1.5

C
ha

ng
e 

in
 a

cc
ur

ac
y 

(%
)

Figure 4.13: Effect of the dropout rate compared to the baseline for task
2. The baseline value was 0.5.

70



L2 % Acc
0.01 83.56
0.02 82.02
0.03 81.05
0.04 80.57
0.05 79.83
0.06 78.31
0.07 79.07
0.08 79.05
0.09 77.38
0.10 73.22

(a) Polarity

L2 % F1
0.01 67.20
0.02 65.42
0.03 64.31
0.04 63.76
0.05 62.90
0.06 61.16
0.07 62.03
0.08 62.01
0.09 60.08
0.10 55.30

(b) Relevance

Table 4.15: Effect of L2 regularization for each task.

4.5.4 Static vs Dynamic embeddings

The results of using dynamic embeddings vs static ones are presented in
tables 4.16 and 4.17. Dynamic embeddings add a significant amount of
parameters to the network, increasing training time considerably. The
average time for a static model was 15 minutes, while a dynamic model
took several hours. Due to time and resource constraints we did not
test every single combination of parameters described in this section
with both static and dynamic variants. We are aware that increasing
the model’s number of parameter has different interactions with other
hyperparameters, like regularization strategies. This means that while
it is theoretically possible that dynamic embeddings might not be
optimal for some configurations, we found that for both our baseline
and optimal configurations further tuning the embeddings improved the
models’ performance. For our datasets the results achieved by dynamic
embeddings are better than using their static counterparts. However,
the results are comparable to the other hyperparameters tested.

Model Acc P R F1
CNN Dynamic 88.21 81.77 65.69 72.85
CNN Static 87.27 80.03 63.87 71.04

Table 4.16: Effect of dynamic embeddings for task 1, relevance.

71



Pros Cons
Model Acc P R F1 P R F1
CNN Dynamic 88.28 89.59 89.71 89.64 86.50 85.08 85.78
CNN Static 86.90 88.30 88.73 88.51 85.04 84.49 84.76

Table 4.17: Effect of dynamic embeddings for task 2, polarity.

4.5.5 Best configurations

Tables 4.18 and 4.19 show the best configuration of the CNN models for
each classification task. Any other parameters not mentioned in these
tables were left at their default values. The models differ in the number
of feature maps for each filter and the filter region sizes. All the other
parameters are identical.

Parameter Values
word vector dimensionality 300
filter region sizes (6,7,9,10,15)
feature maps 300
activation function ReLU
pooling 1-max pooling
dropout rate 0.4
optimization algorithm Adam
L2 regularization False

Table 4.18: The best configuration of the CNN model for relevance
classification. It uses 5 convolutional layers each with a different region
size of 6,7,9,10,15. All filters have 300 feature maps and use ReLU
activations. 1-max pooling is performed after each filter is applied.
A dropout of 0.4 is applied before the softmax layer. Learning was
optimized using Adam.

72



Parameter Values
word vector dimensionality 300
filter region sizes (1,2,3,4,5)
feature maps 100
activation function ReLU
pooling 1-max pooling
dropout rate 0.4
optimization algorithm Adam
L2 regularization False

Table 4.19: The best configuration of the CNN model for polarity
classification. It uses 5 convolutional layers each with a different region
size of 1,2,3,4 and 5. All filters have 100 feature maps and use ReLU
activations. 1-max pooling is performed after each filter is applied.
A dropout of 0.4 is applied before the softmax layer. Learning was
optimized using Adam.

4.6 Summary

The results presented in this chapter show that the convolutional ar-
chitecture outperforms all other baselines, including bag-of-words, with
even the simplest configurations. We also compared our hierarchical
structure of dividing our problem into two binary classification tasks
with a joint structure that attempts to do both tasks in one pass. The
hierarchical models achieved slightly better F1 scores, but the analy-
sis of the results showed that each structure makes different kind of
mistakes.

The hierarchical models showed that each task has it’s own behavior
regarding performance across the different review categories and
hyperparameter configurations. In general our results align with the
findings of Y. Kim (2014) and Zhang and Wallace (2017). Dropout had
a very small effect and L2 regularization generally hurt performance
across both tasks. Tuning the number of filters and the filters’ regions
size proved to be very difficult and time consuming. Each task had
also different optimal filter regions. The advantage to our hierarchical
approach was that we could fine tune these parameters for each task.

One point where our findings differed from Zhang and Wallace
(2017) was the effect of the number of feature maps. While they reported
single filters with large feature maps as having better performance, we
found that combining different region sizes with a smaller number of

73



feature maps worked better for our tasks.
For both our tasks word vector dimensionality had a big impact on

the models’ performance, with larger vector sizes resulting in better
accuracy and F1 scores. Using dynamic embeddings showed a small
increase in performance, but was by far the most costly alternative in
terms of memory use and training time.

74



Chapter 5

Final evaluation

In this chapter we present the evaluation results of the tuned
convolutional models on the held-out test set. So far we have only
evaluated the models’ performance on the development set. We will also
include the results of the best performing baseline, the Bag-of-words
feed-forward network (BOW), for reference. As previously described in
chapter 3, the labels of our dataset were automatically generated, but
in order to create a test closer to a gold standard we manually checked
a random subset of documents from the test set and corrected the labels
by eliminating false positives for both relevance and polarity. For more
details about the manual annotation process see Section 3.3.

The aforementioned process meant that we had two tests sets, the
A test set that was larger but contained labels that were automatically
generated, and the M test set that was smaller but had been manually
corrected. It is important to note that false positives were corrected,
but not false negatives. In other words we made the classification
task intrinsically harder as we just made the set of possible correct
predictions smaller. Table 5.1 shows a comparison of the basic counts
between the A test set and the M test set.

A test set M test set
# Documents 225 76
# Sentences 15896 5468
# Tokens 18981 9632
Average # sentences 71 72
Average # tokens 1255 1288

Table 5.1: Basic corpus counts comparison between the automatically
labeled test (A test set) set and the manually-corrected test set (M test
set).

75



We have previously discussed the different challenges present in
evaluating sentence identification and keyphrase extraction systems in
Section 2.2.7. Some of these include labeling errors, not accounting for
synonymy and disregarding results that are syntactically different but
semantically equivalent. In order to avoid some of the pitfalls men-
tioned we conducted both automatic evaluation, meaning calculating
traditional metrics like accuracy and F1-scores, and a manual analysis
of some of the sentences extracted.

A summary of the models’ performance on the M test set, including
scores from the development set is presented in Table 5.2. All models’
performance was lower in the test set, as is normally the case, but
the performance drops were relatively high for relevance and polarity.
We attribute this mainly to the fact that the model was trained on
automatically labeled data, but tested on manually-corrected data.
Results were also lower for the end-to-end task, which combines both
relevance and polarity tasks, because the errors made in the first task
carry over to the second.

Accuracy F1
Model Task Dev Test Dev Test
BOW Relevance 84.10 79.30 66.43 59.72
BOW Polarity 85.20 74.90 84.73 74.85
BOW End-to-end 78.14 75.65 63.31 59.11
CNN Relevance 88.02 82.26 72.37 63.51
CNN Polarity 88.17 76.99 87.96 76.99
CNN End-to-end 82.51 78.65 68.68 61.81

Table 5.2: Evaluation of the baseline BOW model and the best
performing CNN model in both the development set and the M test set.

Even though the end-to-end task is the most difficult task of the
three, it also had the lowest drop in accuracy between development and
test. This result can be slightly misleading due to the nature of our
manual test set. As mentioned in the previous chapter most of the
mistakes on this task were made during the relevance task, and the
models tended to classify most sentences as “not relevant”. Because
we corrected false positives, sentences that were erroneously labeled
as “relevant” were now “not relevant”, meaning that the raw number
of “not relevant” sentences increased. This is also the reason why the
majority classifier also had a higher score for the relevance and end-
to-end tasks. Results including evaluation on the A test set will be
presented in the coming sections.

76



We will first present the results of task 1, relevance, in Section 5.1,
followed by the results of task 2, polarity, in Section 5.2 and the results
of the end-to-end task in Section 5.3. We will present the results of our
manual analysis of the models’ output in Section 5.4. Finally we touch
on sentence boundaries and readability in Section 5.4.2 and close with
a summary of the chapter in Section 5.5.

5.1 Relevance classification

Table 5.3 shows the evaluation results for task 1 on both test sets
for the BOW baseline and the convolutional model. Scores across all
metrics were, as expected, higher for the automatically labeled test set.
The CNN model had the largest difference in performance across all
metrics compared to the BOW model. The largest difference being in the
precision score. This is also an expected result given that false positives
generated by the automatic labeling process were corrected in the M
test set. Thus, the precision score had to necessarily decrease, as well
as the overall performance. The majority class, “not relevant”, was also
larger in the M test set, which translated into better accuracy for the
majority classifier. Both of our trained models outperform the majority
class classifier.

The CNN model generally outperforms the BOW, with the exception
of recall on the automatically labeled test set. However, differences
in recall are generally small, booth between models and between test
sets. The results on the A test set are comparable to the results on the
development set, for a summary of the development results see Table
5.2.

77



Model Acc P R F1
M test set
MC 74.31
BOW 79.30 55.38 64.79 59.72
CNN 82.26 61.92 65.17 63.51
A test set
MC 70.00
BOW 84.58 71.87 65.53 68.56
CNN 88.04 84.45 65.40 73.72

Table 5.3: Final evaluation results for relevance. M test set is
the manually corrected test set, A test set is the test set that was
automatically labeled. BOW is the bag of words baseline. CNN is
the best configuration of the convolutional model. MC is a majority
classifier that only precicts “not relevant”.

5.2 Polarity classification

Table 5.4 shows the evaluation results for task 2 on both test sets
for the BOW baseline and the convolutional model. The CNN models
outperforms the BOW baseline in all metrics but two: precision for pros
and recall for cons. However, the difference in these scores was very
small. Note that this is the case in both test sets, so it is unlikely to be
a result of the different labels resulting from our corrections.

Even though the CNN had better accuracy and F1 scores than the
baseline, it did also suffer the largest performance drop between the
automatic test set and the manual one across all metrics compared
to the BOW. Like the previous task, the main difference was in the
precision score, which was the only curated metric during manual
correction of the test labels for the M test set. An important difference
with the previous task was that the majority class for polarity changed
after our manual corrections, from “con sentences” to “pro sentences”.
This is the reason why the majority classifier has a lower score in the M
test set as it only predicts “con sentences”, which is the majority class
of the training set. Both of our trained models outperform the majority
classifier

The difference in precision scores between the two test sets for this
task as also lower than for the relevance task. The polarity results on
the A test set are comparable to the results on the development set
which are shown in Table 5.2.

78



Pros Cons
Model Acc P R F1 P R F1
M test set
MC 45.32
BOW 74.90 86.48 64.12 73.64 67.01 87.90 76.05
CNN 76.99 85.47 69.77 76.83 70.15 85.69 77.15
A test set
MC 56.24
BOW 85.66 87.37 78.59 82.75 84.55 91.16 87.73
CNN 88.12 87.27 85.29 86.27 88.75 90.32 89.53

Table 5.4: Final evaluation results for polarity. M test set is the
manually corrected test set, A test set is the test set that was
automatically labeled. BOW is the bag of words baseline. CNN is
the best configuration of the convolutional model. MC is a majority
classifier that only predicts “con sentence”.

5.3 End-to-end results

We have divided our sentence identification task into two sub-tasks,
relevance and polarity. The end-to-end task refers to performing both
tasks sequentially, first classifying sentences as relevant and then
classifying relevant sentences in terms of sentiment polarity. Figure
4.1 in chapter 4 illustrates this process. We also refer to this process as
a “hierarchical model”, because any errors in the first task carry over to
the second task.

While we also experimented with a single “joint” model that
was trained performing both tasks simultaneously, results during
development showed better F1 scores when using a separate model for
each task, for a comparison of “joint” versus “hierarchical” see section
4.4.

Table 5.5 shows the evaluation of the end-to-end results on both
test sets for the BOW baseline and the convolutional model. Figure 5.1
shows the confusion matrix of the best CNN model. The CNN models
outperforms the BOW baseline in all metrics except recall for pros. Note
that this is the case in both test sets, so it is unlikely to be a result of
the different labels resulting from our corrections.

Even though the CNN had better accuracy and F1 scores than the
baseline, it did also suffer the largest performance drop between the A
test set and M test set one across all metrics compared to the BOW, as
was the case with the previous tasks. The large drop in performance

79



found in the precision score for cons can be attributed to the fact most
of the labeling errors during the automatic dataset generation consisted
in labeling non relevant sentences as cons.

Pros Cons
Model Acc P R F1 P R F1
M test set
MC 76.31
BOW 75.65 51.26 42.94 46.73 36.44 57.24 44.53
CNN 78.65 53.76 41.38 46.77 43.28 60.31 50.39
A test set
MC 75.96
BOW 78.16 51.56 52.39 51.97 50.22 62.49 55.69
CNN 82.09 55.81 50.24 52.88 63.10 68.36 65.62

Table 5.5: Final evaluation end-to-end results. M test set is the
manually corrected test set, A test set is the test set that was
automatically labeled. BOW is the bag of words baseline. CNN is
the best configuration of the convolutional model. MC is a majority
classifier.

80



Not relevant Pro sentence Con sentence
Predicted label

Not relevant

Pro sentence

Con sentence

Tr
ue

 la
be

l

3654 207 312

263 293 152

188 45 354

Confusion matrix

500

1000

1500

2000

2500

3000

3500

Figure 5.1: Confusion matrix of the best CNN configuration after being
evaluated in the manually corrected test set. More sentences were
wrongly classified in terms of relevance than polarity.

We also compared the performance of our best CNN configuration
across the different product categories in the test set for this task.
Figure 5.2 shows performance in each category in terms of accuracy.
Category bolig (residential) had the best performance with a score of
82.95%. The category with the lowest performance was mobil (mobile)
with a score of 75.32%.

We expected that performance for each category would be tied to
document frequency, because the content belonging to the least frequent
categories would be more “out of domain” for the model. However,
mobil (mobile) had the lowest performance even though it is the third
largest category. Conversely fritid (leisure) did exceptionally well for a
category that represents less than 1% of the whole dataset. Category
data (data) is the most frequent category, accounting for almost half
of the dataset, and was the second lowest performing category. One
possible explanation is that the products in the data (data) category are
more varied than the other categories.

81



bolig fritid motor mobil data
Category

70

72

74

76

78

80

82

84
Ac

c

Figure 5.2: CNN Model’s performance in terms of accuracy across
categories in the test set.

The F1 scores of the best CNN configuration across the different
categories of the test set are shown in Figure 5.3. Category bolig
(residential) is once again the top performer with an F1 score of 66.55%,
while fritid (leisure) had the lowest F1 score of 55.71%.

Because of the class imbalance present in our dataset the F1 metric
is a better indicator of the models ability to identify relevant sentences
and their polarity. Also here we found that one of the least frequent
categories, bolig (residential) outperformed the most frequent ones.
This was also the case during development, as explained in Section
4.3.5. A possible hypothesis can be that the writing in this category
is more consistent than the others, making it easier for our model to
identify relevant sentences and their polarity.

82



bolig fritid motor mobil data
Category

40

45

50

55

60

65

70
F1

Figure 5.3: CNN Model’s performance in terms of F1 score across
categories in the test set.

5.4 Manual analysis

Human evaluation for keyphrase extraction can be done in several
ways. One method is to look at the keyphrases outputted by a model
and determine whether or not they represent the content of the text.
S.-M. Kim and Hovy (2006) defined this task specifically for reviews,
proposing that good keyphrases are those that can answer the question:
“What are the reasons that the author of this review likes or dislikes the
product?” (S.-M. Kim & Hovy, 2006, p. 483). Another method, proposed
by Berend and Vincze (2012) consists of comparing the keyphrases
produced by the system to the keyphrases provided by the authors
of the text or manual annotators. In our case this means comparing
the sentences identified by our system to the pros and cons in the
“pros/cons section” of the reviews. We will consider both approaches
when discussing the output of our model. In this section we will also
present some examples of the output of the system, and look at the kind
of classification mistakes the model makes.

Even though Berend and Vincze (2012) recommend to use multiple
human evaluators to check the performance of a model, we only had a
single evaluator available to perform this analysis. Thus, we cannot

83



completely eliminate the element of subjectivity that is present in
opinionated sentences. The human evaluator was also the same person
who corrected false positives in the test set.

In order to see how our model’s predictions match the pros and cons
determined by the author of the review we manually compared the
results of our system with the “pros/cons section” of the review. Due to
time and resource constraints we took a sample of 30 random documents
from our manually corrected test set to perform this analysis.

Examples of some of the negative sentences identified by the model
in a review for a wearable fitness tracker1 are shown below:

(5.1) Etter å ha latt oss begeistre over flere Fitbit-produkter de siste
årene, som Charge og Charge HR, er vi litt skuffet denne gangen.
After being excited about several Fitbit products in recent years,
such as Charge and Charge HR, we are a little disappointed this
time around.

(5.2) skjermen man må tappe på ikke alltid reagerer.
the screen you have to tap does not always react.

(5.3) Og ikke minst lite brukervennlig.
And not least little user-friendly

These sentences do answer why the author dislikes the product,
meaning that the model is in fact capturing the main negative points of
the review. However, when comparing the output to the author’s defined
cons we find that not all represent the same content directly. Some of
the author’s cons were:

(5.4) Tungvint å styre skjermen
Screen was cumbersome to use

(5.5) upraktisk design
unpractical design

While sentence 5.2 matches the content of con 5.4, both referencing
the screen of the product, the author does not directly references user-
friendliness as one of the cons. The “con sentences” identified by the
model do not reference the product’s design directly either. We cannot
then conclude that the model captures all the same key points that the
author defined in this review.

A similar situation to the one described above happens with the pros
of this review. They do answer the question about why the author liked

1https://www.dinside.no/mobil/test-fitbit-alta/60950180

84



the product, raised by S.-M. Kim and Hovy (2006), but we do not find
that the content of all of the author’s defined pros and cons was always
represented. However, we do find situations in other reviews where
the same content is present. Below are some examples from a different
review2, where sentence 5.6 was extracted by the model and phrase 5.7
was defined by the author.

(5.6) Denne har skøyhøy oppløsning og kan ta bilder med 23
megapiksler, selv om sensoren effektivt er 24,7 megapiksler.
It has soaring resolution and can take 23 megapixel images, even
though the sensor is effectively 24.7 megapixels.

(5.7) meget godt kamera med god vidvinkel
very good camera with good wide angle

Another example of the identified sentences having the same content
as author defined keyphrases can be found in examples from another
review3. The model extracted sentence 5.8, which corresponds to the
author’s keyphrase 5.9:

(5.8) Menyene er ikke så enkle og brukervennlige som vi kanskje kunne
ønsket oss, selv om vi skjønner at kineserne hensikten er å dekke
nesten ethvert tenkelig bruksområde for en musikkspiller.
The menus are not as simple and user-friendly as we might have
liked, even though we realize that the Chinese intend to cover
almost every imaginable application for a music player.

(5.9) Kronglete menyer
cumbersome menues

These examples are illustrative for the output found for other
reviews. In general we find that the model manages to answer the
question raised by S.-M. Kim and Hovy (2006) reasonably well. On the
other hand it lacks recall for all of the author’s defined phrases, and
it sometimes identifies sentences that are only tangentially related to
author’s pros and cons.

5.4.1 Error analysis

Even though simply looking at the confusion matrix shown in Figure
5.1 gives us a good idea of the kind of classification errors the model

2https://www.dinside.no/mobil/endelig-har-sony-kameraet-blitt-bedre/62437221
3https://www.dinside.no/data/denne-musikkspilleren-gjor-det-meste-

riktig/65389686

85



makes, we also looked at some examples of wrongly classified sentences
from the same sample of 30 documents. Looking at the model’s output
beyond just the classification label can give some additional insights
into the kind of sentences the model is having trouble classifying.

Most of the polarity classification errors we found in the sample
were due to long sentences referencing different aspects of a product
or a rebuttal within the same sentence. For example the following
sentences were classified wrongly in terms of polarity and they include
both positive and negative points:

(5.10) På tross av sine relativt små, men like fullt nokså irriterende feil
og mangler, gjør FiiO X1 2nd gen jobben den er beregnet til godt.
In spite of its relatively small but still rather annoying faults and
defects, FiiO X1 2nd gen does the job it is intended for well.

(5.11) Joda, det er pent nok, og spesielt produktbildene ser flotte ut,
men den svarte utgaven vi fikk inn til test synes vi fortsatt ser litt
traust ut.
Yes, it’s pretty enough, and especially the product pictures look
great, but the black version we got for testing, we still think it
looks a bit boring.

(5.12) Sensoren er 1/2,3”, som er blant de aller største på
mobilkamerafronten, men med den svært høye oppløsningen, blir
pikselstørrelsen rundt 1,05µm, som er ganske lite sammenlignet
med mange andre.
The sensor is 1/2.3”, which is among the largest on the mobile
camera front, but with the very high resolution, the pixel size is
around 1.05µm , which is quite small compared to many others.

Sentence 5.11 is particularly tricky because the author lists one of
the pros as being: Stiligste treningsarmbåndet fra Fitbit til nå (The most
stylish training band from Fitbit to date). On the one hand the pro listed
by the author makes it seem like it is a stylish product, on the other the
text of the review says it is boring but better than it’s predecessors. It
is impossible for a model that looks at sentences in isolation to be able
to map complex relationships such as this one.

In terms of relevance our models show a weaker performance than
in the polarity task. This was also the case for the development set,
as shown in Table 5.2 at the beginning of the chapter. Determining
if a sentence is relevant or not to the sentiment of the review is a

86



more subjective task than determining polarity. Examples 5.13 and
5.14 below show some sentences that were classified as relevant by the
model, but had “non relevant” as their true label:

(5.13) Denne musikkspilleren gjør det meste riktig.
This music player does almos everything right.

(5.14) Vi føler likevel at produsenten har ofret for mye funksjonalitet og
ikke minst brukervennlig til fordel for en penere design, som ikke
nødvendigvis er noe bedre.
We still feel that the manufacturer has sacrificed too much
functionality and, not least, user-friendliness in favor of a nicer
design, which is not necessarily any better.

It is not difficult to imagine that a different human annotator could
consider these sentences to be relevant. This is not to say the errors
made by the model are solely due to mislabeling of the dataset, but it is
still an important part of the overall evaluation. Hasan and Ng (2014)
estimate that 7-10% of the reported errors in keyphrase extraction tasks
are due to labeling errors in test sets.

Errors were also made by classifying relevant sentences as not
relevant. Examples 5.15, 5.16 and 5.17 showcase relevant sentences,
both positive and negative, that were labeled as “not relevant”:

(5.15) klar og ren lyd
Clear and clean sound

(5.16) Ikke sømløs avspilling
No seamless playback

(5.17) Den er riktignok 700 kroner dyrere enn sin forgjenger, men
allikevel er prisen på 6500 kroner helt ålreit sett i forhold til
konkurransen, spør du oss.
It is certainly NOK 700 more expensive than its predecessor, but
nevertheless the price of NOK 6500 is quite alright in relation to
the competition, if you ask us.

These examples are generally illustrative of the performance of the
model. In general polarity errors are due to difficult edge cases, such
as sentences with rebuttals or containing both positive and negative
aspects. Relevance errors are not only more frequent but the system
also fails in some “easy cases” such as example 5.15. Given the
hierarchical nature of the model the errors in the relevance task

87



carry over to the final output of the model. However this is also an
advantage of the hierarchical setup because future tuning of the model
for relevance, or even using a completely different classifier, will not
affect the models performance in the polarity task.

5.4.2 Sentence boundaries

Good sentiment summarization systems should not only have good
classification accuracy but also produce readable outputs (Meng et al.,
2017). In order to achieve this goal our system outputs the same
sentence it takes as input. Looking at the output we found sentences
that were difficult to understand on their own. The corpus used
for developing the system was already pre-processed as described in
Section 2.1, and the sentences were already split. We fed the sentences
one by one respecting the segmentation that was done when creating
the corpus. This meant that any errors made during sentence splitting
carried over to our output. For example sentence 5.4.2:

(5.18) Detaljnivået er også i en helt annen liga enn hva tilfellet er for X
Performance, noe du ser i 100%-beskjæringene nederst.
The level of detail is also in a completely different league than the
case for X Performance, which you see in the 100% crops at the
bottom.

Was split into 5.19 and 5.20:

(5.19) Detaljnivået er også i en helt annen liga enn hva tilfellet er for X
The level of detail is also in a completely different league than the
case for X

(5.20) Performance, noe du ser i 100%-beskjæringene nederst.
Performance, which you see in the 100% crops at the bottom.

While this issue does not directly affect the overall performance
of the model, some of the sentences extracted can be difficult to
understand or interpret on their own.

5.5 Summary

The results presented in this chapter show that the convolutional
architecture outperforms the bag-of-words baseline in all tasks in terms
of accuracy and F1 scores. This was the case for both the automatically

88



labeled test set and the manually corrected one. These results are
consistent with the performance shown during development. The
relevance task had lower F1 scores than the polarity task. Because
relevance was the first task in our hierarchical model it also affected the
scores during end-to-end evaluation. Since we do not have gold standard
annotations for our dataset, a manual error analysis was performed in
a small sample of documents. In general the results observed during
the manual analysis were consistent with the scores obtained during
evaluation.

The sentences that constitute the final output of the model were
in general able to answer the question “What are the reasons that the
author of this review likes or dislikes the product?” (S.-M. Kim & Hovy,
2006, p. 483). However they did not always directly represent the same
content found in the pros and cons defined by the author. There is also
room for improvement when determining sentence boundaries during
pre-processing.

89



90



Chapter 6

Conclusion

In this thesis we have created a sentence identification system for
reviews in Norwegian. The system identifies sentences that are
relevant to the sentiment of the review and classifies each sentence as a
positive or negative standpoint about the object of the review. Our work
differs in important ways from previous studies regarding keyphrase
extraction because relevant sentences for reviews are a combination
of opinions and facts. Thus, identifying sentiment bearing sentences
constitutes a distinct problem from subjective opinionated sentence
identification or keyphrase extraction. Additionally the system also
classifies the sentiment polarity of each relevant sentence. We divided
our main task of identifying sentiment bearing sentences into two
sub-tasks, which we called relevance and polarity. Both tasks were
formulated as sentence-level binary classification problems.

Furthermore, we have created three datasets of labeled sentences
from Norwegian reviews where each sentence is labeled according to
its relevance towards the review’s overall opinion and its polarity. We
were the first to utilize the pros/cons corpus, a corpus consisting on
professional reviews from the website DinSide.no where each review is
annotated with keyphrases divided into positive and negative phrases.
These phrases are referred to as pros and cons. Our hypothesis is that
these pros and cons provide a good summary of the reviews’ sentiment.
We used these pros and cons as distant supervision to automatically
label each sentence from the corpus.

We built upon the work done by S.-M. Kim and Hovy (2006) to
generate our dataset. In order to determine if a sentence was relevant
or not our labeling process checked if the words from a keyphrase
were present in a sentence. We dubbed this process matching. We
experimented with different strategies to match sentences to cons or

91



pros. We also extended the matching process by compiling a list of
all the pros and a list of all the cons from all reviews, called global
keyphrases, and checked for matching against these global lists.

The most successful strategy was ordered overlap, where all the
words from a pro or a con must be present in the sentence and must
appear in the same order. This strategy worked better when the global
keyphrases were used. The resulting datasets were named after each
of the tasks, namely relevance, polarity and end-to-end. The relevance
dataset has each sentence labeled as “relevant” or “not relevant” as
a representation of the overall sentiment toward the product being
reviewed. The polarity dataset contains only “relevant” sentences and
each sentence was labeled as a “pro sentence” or a “con sentence”, due
to the fact that they represent the same content as the pros and cons of
the review.

The end-to-end dataset is different from the previous two because
it contains three labels. Sentences are labeled as “not relevant”, “pro
sentence” and “con sentence”. In other words, these are the labels for
the complete sentence identification task without being divided into our
two sub-tasks.

In chapter 3 we detailed the creation of these datasets for our tasks.
Even though the result is not as robust as a human-annotated dataset,
it is a good alternative as a starting point for languages that lack labeled
data for sentiment-related tasks. A subset of documents from each
of the test sets was manually corrected, eliminating false positives, in
order to create test sets that were closer to a gold standard. This process
showed that 80.93% of the sentences were labeled correctly in terms of
both relevance and polarity.

Our matching strategies for automatic labeling struggled with
sentences that matched with both pros and cons. However, manual
inspection revealed that these sentences were also difficult for us to
classify under one of the two categories. There is a non-negligible degree
of subjectivity when determining if a sentence like “Sono PlayBase gir
deg praktisk, men ikke fantastisk lyd til stua.” (Sono PlayBase gives
you practical, but not amazing sound for the living room) is positive or
negative. Still, we show that excluding these ambiguous sentences from
the dataset provides a good dataset for relevance and sentiment polarity
classification with little data loss.

We established strong baselines based on neural network architec-
tures and analyzed the performance of these models both on the dataset

92



as a whole and also for each product category separately. Finally, we
fine-tuned a convolutional neural network and explored a wide range
of values for each hyperparameter in order to determine which had the
highest impact. Our results show that well performing configurations
for other sentiment datasets are not necessarily optimal for our dataset.

We showed how the task of identifying sentiment bearing sentences
can be split into two sub-tasks, which we called relevance and polarity
classification. Even though most machine learning methods can tackle
the problem as one task our results indicate that different parameters
are better suited for each sub-task. We explored different model
architectures for each task, and our baseline model used a feed-forward
neural network with bag-of-words as its input.

We also experimented using fastText word embeddings as our input
in order to better account for out of vocabulary tokens. Each sentence
was represented as the averaged sum of the word vectors, a strategy
also known as a continuous bag-of-words. Different pre-trained word
embeddings were used to evaluate the effect of using word embeddings
as input representations. Randomly initialized embeddings that were
tuned during training were also used. The bag-of-words feed-forward
network was a strong baseline that performed well above simple non-
trained baselines. The non-trained baselines used were a majority
class classifier and a stratified classifier, a classifier that makes random
predictions based on the distribution of labels on the training set.

A convolutional neural network classifier was also implemented.
We performed a thorough exploration of the hyperparameter space
focusing primarily on the number of filters and the filter region size.
Other parameters such as the number of feature maps, regularization
strategies and different embeddings as input representations were also
explored. Most of our findings match other reports of hyperparameter
tuning for sentence sentiment classification found in the literature.
The best performing models for each of the sub-tasks used different
filter region sizes and different number of feature maps, showing that
it was beneficial to divide the larger task and tune different models
individually. The convolutional model outperformed all other models,
including the bag-of-words baseline.

The final evaluation confirmed the results obtained during develop-
ment. The confusion matrices showed that determining whether a sen-
tence is relevant to the authors opinion of the product was more difficult
than classifying relevant sentences as positive or negative. Our results

93



also showed that our system performed well in the smaller product cat-
egories of the dataset, indicating that the models managed to generalize
reasonably well for product categories that constituted less than 1% of
the dataset. Our results were positive considering that we did not have
direct access to gold labels to train our models.

Our manual analysis showed that, in general, the system outputs
sentences that provide a good indication of the reasons why the review’s
author likes or dislikes a product. One shortcoming was that not all the
identified sentences matched directly with the pros and cons written by
the authors. For some of the reviews our model failed to recognize some
sentences that we believed to be “easy cases” of relevant sentences, such
as: “Vanskelig å bruke skjermen” (difficult to use the screen). On the
other hand, most of the pro and con sentences identified were found to
be informative and useful summaries.

6.1 Future work

A sentence identification system like the one presented in this thesis
can be used as part of an automatic summarization system for reviews.
Additionally the sentences extracted by our model can complement
content-based recommender systems, different kinds of information
retrieval systems and document categorization systems. Our system
can also help simplify the task of creating fine-grained annotations for
sentiment analysis by filtering out the sentences that are relevant to
annotate.

Identifying positive and negative sentences can be specially useful
for online reviews written by users to complement opinion mining
systems. Online stores can use these sentences to provide short
summaries to their users based on large amounts of reviews to make
the content more readable and easier to comprehend.

We have found the optimal values for several hyperparameters
of a convolutional neural network classifier for each of our sub-
tasks. However, exploring the different interactions between all of the
hyperparameter space was beyond the scope of this project. Using the
ranges that we have identified for each parameter in isolation, more
sophisticated methods for hyperparameter tuning can be used such as
random search or Bayesian optimization frameworks.

Extensions to our proposed convolutional architecture can also be
made by adding multiple channels for different kinds of inputs. Due to

94



time and resource constraints we limited our inputs to word lemmas. It
would, however, be interesting to explore different channels using word
surface forms or part of speech tags. A natural next step would also be
to use hierarchical convolutions to create intermediary representations
for sentences.

Recurrent neural networks have shown promising results in many
NLP tasks. It would be interesting to see how recurrent networks
perform in both the relevance and polarity classification tasks in
comparison to convolutional architectures. One of the advantages of
our approach is that if the recurrent models outperform ours in only one
of the tasks both types can be used in conjunction to produce a better
end result. Additionally both convolutional and recurrent architectures
could be combined by having first a one-dimensional convolution with
pooling over a sentence as a feature extractor and then feed the
consolidated features to a recurrent network.

As mentioned in Section 5.4.2 a possible improvement for the pre-
processing portion of our experimental setup would be to have better
defined sentence boundaries to avoid using incomplete sentences as
inputs. In this project we utilized the pre-split sentences from NoReC
without any additional processing. The phrase boundaries for the pros
and cons from the pros/cons corpus could also be improved, as the
inconsistent use of punctuation, among other things, made it difficult to
extract individual keyphrases from the “pros/cons section” of the review.

Finally, our setup could be transformed from a sentence identifica-
tion task into a pure keyphrase extraction task. Instead of classifying
each sentence independently, a different approach for task 1, relevance,
could be that the model receives the whole review as its input and at-
tempts to extract relevant phrases from the text. The selected phrases
can then be classified as negative or positive individually, as we did in
task 2, polarity.

95



96



References

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SENTIWORDNET
3.0: An Enhanced Lexical Resource for Sentiment Analysis and
Opinion Mining. In Proceedings of Language Resources and
Evaluation Conference (p. 5).

Berend, G. (2011). Opinion Expression Mining by Exploiting Keyphrase
Extraction. In Proceedings of 5th International Joint Conference
on Natural Language Processing (pp. 1162–1170). Retrieved from
http://www.aclweb.org/anthology/I11-1130

Berend, G., & Vincze, V. (2012, July). How to Evaluate Opinion-
ated Keyphrase Extraction? In Proceedings of the 3rd Work-
shop on Computational Approaches to Subjectivity and Sentiment
Analysis (p. 5). 99–103: Association for Computational Linguis-
tics. Retrieved from http://dl.acm.org/citation.cfm?id=
2392963.2392984

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research, 13(Feb),
281–305. Retrieved 2019-04-13TZ, from http://www.jmlr.org/
papers/v13/bergstra12a.html

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016, July). Enrich-
ing Word Vectors with Subword Information. arXiv:1607.04606
[cs]. Retrieved 2019-04-08TZ, from http://arxiv.org/abs/
1607.04606 (arXiv: 1607.04606)

Branavan, S. R. K., Chen, H., Eisenstein, J., & Barzilay, R. (2009).
Learning Document-Level Semantic Properties from Free-text
Annotations. Journal of Artificial Intelligence Research 34,
34, 569–603. Retrieved from https://dblp.org/rec/bib/
journals/corr/BranavanCEB14 doi: 10.1613/jair.2633

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014, June). Learning Phrase Rep-
resentations using RNN Encoder-Decoder for Statistical Machine
Translation. arXiv:1406.1078 [cs, stat]. Retrieved 2018-05-14TZ,
from http://arxiv.org/abs/1406.1078 (arXiv: 1406.1078)

Chollet, F., et al. (2015). Keras. Retrieved from https://keras.io
Fares, M., Kutuzov, A., Oepen, S., & Velldal, E. (2017). Word

vectors, reuse, and replicability: Towards a community repository
of large-text resources. In Proceedings of the 21st Nordic
Conference on Computational Linguistics, NoDaLiDa, 22-24 May
2017, Gothenburg, Sweden (pp. 271–276). Linköping University

97

http://www.aclweb.org/anthology/I11-1130
http://dl.acm.org/citation.cfm?id=2392963.2392984
http://dl.acm.org/citation.cfm?id=2392963.2392984
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://dblp.org/rec/bib/journals/corr/BranavanCEB14
https://dblp.org/rec/bib/journals/corr/BranavanCEB14
http://arxiv.org/abs/1406.1078
https://keras.io


Electronic Press, Linköpings universitet.
Firth, J. R. (1935). The Technique of Semantics. Transactions

of the Philological Society, 34(1), 36–73. Retrieved 2019-04-
01TZ, from https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1467-968X.1935.tb01254.x doi: 10.1111/j.1467
-968X.1935.tb01254.x

Goldberg, Y. (2017). Neural network methods for natural language
processing (Vol. # 37). San Rafael, California.

Harris, Z. S. (1954). Distributional Structure. WORD, 10(2-3), 146–
162. Retrieved from https://doi.org/10.1080/00437956
.1954.11659520 doi: 10.1080/00437956.1954.11659520

Hasan, K. S., & Ng, V. (2014). Automatic Keyphrase Extraction: A
Survey of the State of the Art. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers) (pp. 1262–1273). Association for Computational
Linguistics. Retrieved 2018-03-20TZ, from http://aclweb
.org/anthology/P14-1119 doi: 10.3115/v1/P14-1119

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014, June). A
Convolutional Neural Network for Modelling Sentences. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers) (pp. 655–665).
Baltimore, Maryland: Association for Computational Linguis-
tics. Retrieved 2019-04-01TZ, from https://www.aclweb.org/
anthology/P14-1062 doi: 10.3115/v1/P14-1062

Kim, S.-M., & Hovy, E. (2006). Automatic identification of pro
and con reasons in online reviews. In Proceedings of the
COLING/ACL on Main Conference Poster Sessions (pp. 483–
490). Association for Computational Linguistics. Retrieved
2018-03-20TZ, from http://portal.acm.org/citation.cfm
?doid=1273073.1273136 doi: 10.3115/1273073.1273136

Kim, S. N., Medelyan, O., Kan, M.-Y., & Baldwin, T. (2010, July).
SemEval-2010 Task 5 : Automatic Keyphrase Extraction from
Scientific Articles. In Proceedings of the 5th International
Workshop on Semantic Evaluation (pp. 21–26). Uppsala, Sweden:
Association for Computational Linguistics. Retrieved 2018-04-
10TZ, from http://www.aclweb.org/anthology/S10-1004

Kim, S. N., Medelyan, O., Kan, M.-Y., & Baldwin, T. (2013,
September). Automatic keyphrase extraction from scientific
articles. Language Resources and Evaluation, 47(3), 723–742.
Retrieved 2018-06-22TZ, from https://link.springer.com/
article/10.1007/s10579-012-9210-3 doi: 10.1007/s10579
-012-9210-3

Kim, Y. (2014, August). Convolutional Neural Networks for Sentence
Classification. arXiv:1408.5882 [cs]. Retrieved 2019-03-21TZ,
from http://arxiv.org/abs/1408.5882 (arXiv: 1408.5882)

Koppel, M., & Schler, J. (2006). THE IMPORTANCE OF
NEUTRAL EXAMPLES FOR LEARNING SENTIMENT.
Computational Intelligence, 22(2), 100–109. Retrieved

98

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-968X.1935.tb01254.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-968X.1935.tb01254.x
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
http://aclweb.org/anthology/P14-1119
http://aclweb.org/anthology/P14-1119
https://www.aclweb.org/anthology/P14-1062
https://www.aclweb.org/anthology/P14-1062
http://portal.acm.org/citation.cfm?doid=1273073.1273136
http://portal.acm.org/citation.cfm?doid=1273073.1273136
http://www.aclweb.org/anthology/S10-1004
https://link.springer.com/article/10.1007/s10579-012-9210-3
https://link.springer.com/article/10.1007/s10579-012-9210-3
http://arxiv.org/abs/1408.5882


from https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1467-8640.2006.00276.x doi: 10.1111/
j.1467-8640.2006.00276.x

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images,
speech, and time-series. In M. A. Arbib (Ed.), The handbook of
brain theory and neural networks. MIT Press.

Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-
and-paraphrase paradigm. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume
1 (pp. 161–169). Singapore: Association for Computational
Linguistics. Retrieved 2018-03-20TZ, from http://portal.acm
.org/citation.cfm?doid=1699510.1699532 doi: 10.3115/
1699510.1699532

McCulloch, W. S., & Pitts, W. (1943, December). A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4), 115–133. Retrieved 2019-03-29TZ,
from https://doi.org/10.1007/BF02478259 doi: 10.1007/
BF02478259

Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., & Chi, Y.
(2017, April). Deep Keyphrase Generation. arXiv:1704.06879
[cs]. Retrieved 2018-04-06TZ, from http://arxiv.org/abs/
1704.06879 (arXiv: 1704.06879)

Merrouni, Z. A., Frikh, B., & Ouhbi, B. (2016, October). Automatic
keyphrase extraction: An overview of the state of the art. In 2016
4th IEEE International Colloquium on Information Science and
Technology (CiSt) (pp. 306–313). doi: 10.1109/CIST.2016.7805062

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, January).
Efficient Estimation of Word Representations in Vector Space.
arXiv:1301.3781 [cs]. Retrieved 2019-04-01TZ, from http://
arxiv.org/abs/1301.3781 (arXiv: 1301.3781)

Miller, G. A. (1995, November). WordNet: A Lexical Database for
English. Commun. ACM, 38(11), 39–41. Retrieved 2018-06-22TZ,
from http://doi.acm.org/10.1145/219717.219748 doi: 10
.1145/219717.219748

Paulus, R., Xiong, C., & Socher, R. (2017, May). A Deep Reinforced
Model for Abstractive Summarization. arXiv:1705.04304 [cs].
Retrieved 2018-04-06TZ, from http://arxiv.org/abs/1705
.04304 (arXiv: 1705.04304)

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vec-
tors for Word Representation. In Empirical Methods in Natural
Language Processing (EMNLP) (pp. 1532–1543). Retrieved from
http://www.aclweb.org/anthology/D14-1162

See, A., Liu, P. J., & Manning, C. D. (2017, April). Get To
The Point: Summarization with Pointer-Generator Networks.
arXiv:1704.04368 [cs]. Retrieved 2018-04-06TZ, from http://
arxiv.org/abs/1704.04368 (arXiv: 1704.04368)

Stadsnes, C. (2018). Evaluating Semantic Vectors for Norwegian
(Master’s thesis). Retrieved 2019-03-18TZ, from https://www

99

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2006.00276.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2006.00276.x
http://portal.acm.org/citation.cfm?doid=1699510.1699532
http://portal.acm.org/citation.cfm?doid=1699510.1699532
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/1704.06879
http://arxiv.org/abs/1704.06879
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/219717.219748
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1705.04304
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
https://www.duo.uio.no/handle/10852/61756
https://www.duo.uio.no/handle/10852/61756


.duo.uio.no/handle/10852/61756
Straka, M., & Hajic, J. (2016). UDPipe: Trainable Pipeline for Pro-

cessing CoNLL-U Files Performing Tokenization, Morphological
Analysis, POS Tagging and Parsing. In Proceedings of the Inter-
national Conference on Language Resources and Evaluation (pp.
4290–4297).

Sullivan, T. (2008). Pro, Con, and Affinity Tagging of Product Reviews.
Stanford Technical Report, 14.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014, September). Sequence to
Sequence Learning with Neural Networks. In Advances in neural
information processing systems (pp. 3104–3112). Retrieved 2018-
05-14TZ, from http://arxiv.org/abs/1409.3215 (arXiv:
1409.3215)

Velldal, E., Øvrelid, L., Bergem, E. A., Stadsnes, C., Touileb, S.,
& Jørgensen, F. (2018). NoReC: The Norwegian Review
Corpus. In Proceedings of the International Conference on
Language Resources and Evaluation (pp. 4186–4191). Retrieved
from http://www.lrec-conf.org/proceedings/lrec2018/
pdf/851.pdf

Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning,
C. G. (1999). KEA: Practical Automatic Keyphrase Extraction. In
Proceedings of the Fourth Association for Computing Machinery
Conference on Digital Libraries (pp. 254–255). New York, NY,
USA: ACM. Retrieved 2018-06-17TZ, from http://doi.acm
.org/10.1145/313238.313437 doi: 10.1145/313238.313437

Yu, N., Huang, M., Shi, Y., & zhu, x. (2016, December). Prod-
uct Review Summarization by Exploiting Phrase Properties. In
Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers (pp. 1113–1124).
Osaka, Japan: The COLING 2016 Organizing Committee. Re-
trieved 2018-04-06TZ, from http://aclweb.org/anthology/
C16-1106

Zhang, Y., & Wallace, B. (2017, November). A Sensitivity Analysis of
(and Practitioners’ Guide to) Convolutional Neural Networks for
Sentence Classification. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers) (pp. 253–263). Taipei, Taiwan: Asian Federation
of Natural Language Processing. Retrieved 2019-03-21TZ, from
http://www.aclweb.org/anthology/I17-1026

Řehůřek, R., & Sojka, P. (2010, May). Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frameworks (pp. 45–50).
Valletta, Malta: ELRA.

100

https://www.duo.uio.no/handle/10852/61756
https://www.duo.uio.no/handle/10852/61756
http://arxiv.org/abs/1409.3215
http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf
http://doi.acm.org/10.1145/313238.313437
http://doi.acm.org/10.1145/313238.313437
http://aclweb.org/anthology/C16-1106
http://aclweb.org/anthology/C16-1106
http://www.aclweb.org/anthology/I17-1026

	Introduction
	Overview

	Background
	The corpus
	Related Work
	Used Corpora
	Classification
	Neural networks
	Word embeddings
	Convolutional Neural Networks
	Neural sequence to sequence models
	Evaluation

	Summary

	Creating a relevance dataset
	Keyphrases from pros/cons
	Automatic matching
	Exact match
	Ordered overlap
	Full Bag-of-words overlap
	Partial Bag-of-words overlap
	Global keyphrases

	Manual annotation
	Summary

	Relevance and polarity classification
	Matching algorithm as a Baseline
	Feed-forward baseline
	Implementation details
	Accounting for randomness
	Pre-processing
	Feature representation
	Bag-of-words
	Continuous bag-of-words
	Baseline results

	Convolutional neural network models
	Pooling strategies
	Filters
	Baseline CNN results
	Effect of word embeddings
	Performance by product category

	End to end experiments
	Hyperparameter tuning
	Filter region size
	Number of feature maps
	Regularization
	Static vs Dynamic embeddings
	Best configurations

	Summary

	Final evaluation
	Relevance classification
	Polarity classification
	End-to-end results
	Manual analysis
	Error analysis
	Sentence boundaries

	Summary

	Conclusion
	Future work


