
 

 

Low-cost CTD Instrument  

 
Arduino based CTD for autonomous 

measurement platform 

 
Jonas Auråen 

 

 

 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Master Thesis  
Department of Physics, University of Oslo   

 
UNIVERSITETET I OSLO  

 
01.04.19 

 

 

 



II 

 

  



III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Jonas Auråen  

2019 

Low-cost CTD Instrument - Arduino based CTD for autonomous measurement platform  

Department of Physics, University of Oslo 

 http://www.duo.uio.no/ 

Trykk: Reprosentralen, Universitetet i Oslo 

http://www.duo.uio.no/


IV 

 

Abstract 

This thesis describes the development of a low cost CTD instrument intended for use on an 

Autonomous Survey Vessel (ASV). The vessel will travel at water surface level, stop at 

regular intervals and release a sensor probe to do water profile measurements along a water 

column. The probe will primarily measure conductivity temperature and depth, and store 

these on an internal SD card. The probe is Arduino based and will also have wireless 

capability for communication while at surface level. The budget constraints of this project 

requires a low cost alternative of a normally very expensive instrument to be developed. The 

project is also an attempt at contributing to the efforts of those trying to make CTD 

instruments orders of magnitude cheaper then professional engineering equipment. 
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1 Introduction 

Small automated vehicles doing automated measurements is an emerging trend especially in 

ocean research. Instead of using large and expensive research ships that can only be at one 

place at a time, one has started making smaller vessels that can be sent out in greater numbers 

to gather data. This thesis is a project within a greater project containing multiple master 

thesis with the end goal of making a surface vessel able to stop with regular intervals and do 

automatic water profile measurements. The task will be to make a simple lightweight and 

affordable sensor device, that can be suitable for use on an autonomous vessel.  

Primarily this data is intended to assist sonar and echosounder equipment, to correct for 

refraction and absorption effects of sound waves. But there is also a large demand among 

researchers for cheaper oceanographic instruments in general. Another goal of this thesis is to 

contribute to the efforts of those trying to make cheap open source oceanographic instruments 

that are orders of magnitude cheaper then what is currently being offered.  

The premise of this thesis is to prototype a CTD device at a fraction of the price of a 

commercial device, based on a number of existing projects. The idea is not to build all the 

individual parts from scratch but too combine multiple pre-existing efforts, like modular 

Arduino components, and open source sensors into a complete functioning CTD. The project 

will use the knowledge from similar attempts, like the OpenCTD project [20], Anwar Nazih 

Shabans Sound Speed Profiler [7] and attempt to improve upon them, while also 

experimenting with some novel ideas. The pre-existing projects serve as proof of what works 

and what doesn’t, and lessons are taken from these to lessen the burden of trial and error in 

this project. Hopefully this can contribute to the long term goal of creating ultra-low-cost 

open source instruments capable of replacing professionally manufactured equipment. 

. 

 

.  

 

 

 

 

 

Figure 1 Project overview 
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2 What is a CTD 

A CTD is one of the most common instruments in the oceanographer’s arsenal.  It is a 

collection of different sensors that take measurements collected by a control unit, combines 

them, and produce various other parameters. The letters CTD is an acronym for Conductivity, 

Temperature, and Depth, though in reality it does not measure depth, but rather pressure to 

calculate depth. The CTD control unit can also often do other things like communicate 

wirelessly with a surface vessel, receive GPS position, store data on a memory device, etc. 

Differences in salinity, temperature, and depth are the primary parameters that distinguish 

different water masses. There are large amounts of existing datasets containing CTD 

measurements from lakes and oceans around the world, that can be used to observe long term 

changes in climate and ocean conditions.  A CTD can be used in a variety of ways. One way 

is to let the instrument ascend or descend in a water column, resulting in a vertical profile of 

the water. This gives a snapshot of the changes in the different layers of the water column. 

CTDs can also be deployed stationary and monitor changes at a fixed point over time, or they 

can be dragged horizontally to show anomalies in the horizontal plane. 

Several parameters can be derived from the main three measurements made by a CTD. For 

example, measurements of conductivity, temperature, and pressure can be combined to 

calculate salinity. Pressure and temperature can be used to calculate depth, and temperature, 

salinity, and depth can be used to calculate sound speed. 

2.1 Conductivity 

Conductivity is a measure of the degree of which a material is capable of conducting 

electricity. In water this is closely related to the amount of ions dissolved in the fluid. An Ion 

is an atom or molecule that has either a positive or negative electrical charge, meaning either 

a surplus or deficit of electrons as opposed to protons. These ions come from electrolytes, 

which are salts and inorganic materials that dissolve into positively or negatively charged 

ions (cations or anions). Even though the water will become increasingly conductive with the 

addition of extra ions, it will remain electrically neutral, since the electrolytes will split into 

equal amounts of cations and anions. Conductivity is usually measured in milli- or micro 

Siemens per centimeter but can sometimes also be measured in Ohms per centimeter. One 

Siemens is the reciprocal of one ohm (S = 1/Ω). The standard way of reporting conductivity 
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is to report the conductivity measurement at 25° C or corrected to 25° C. This is called the 

specific conductance. The temperature of water will affect conductivity and will have to be 

corrected for this to be compared. Conductivity is not the same as conductance. Conductance 

depends on the length of the conductor and is measured in Siemens or Ohms. Conductivity on 

the other hand is the conductance across a specified length (usually 1 cm) and is measured in 

siemens per centimeter. 

2.1.1 Salinity 

Salinity is a term that refers to the concentration of dissolved salts in water. These salts 

dissolve into ions that are usually the largest contributor to the conductivity of water. 

 

Figure 2 The most common ions in seawater ]15] 

Measuring the salinity directly is problematic, as you cannot simply evaporate the water and 

measure the remaining salt. Chloride ions will disappear in the process. What is more 

common is to do a conductivity measurement and then assume the salinity based on the 

known relationship between conductivity and salinity in a known standard, such as seawater.  

The resulting assumption is given in PSU or practical salinity units. Seawater has a fairly 

uniform mineral profile. The most common ions in seawater are chloride , sodium, 

magnesium, calcium , potassium and bromine. A Salinity calculation based on a normal 

seawater mineral profile will give accurate results in most areas, though some exceptions 

exist. In freshwater this will vary a lot more and is largely dependent on the surrounding 

landmass. Freshwater usually has a higher bicarbonate ratio while seawater has greater 

sodium and chloride concentrations [15]  

There are several different units in use to measure salinity. The old standard was to use either 

parts per thousand or grams/kilogram (1 ppt = 1 g/kg) or in some freshwater sources, mg/L. 

Now the most common unit is the unitless PSU, which is most likely to be used in database 

archives. In 2010 a new standard was introduced called absolute salinity, or TEOS-10. This is 

also the SI unit of salinity but is rarely used unless extra precision is needed. 
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2.1.2 Conductivity and temperature 

The conductivity of water will increase as 

the temperature increases. A 1°C increase 

in temperature will typically result in a 2-

4% increase in conductivity. This is due 

to increase in ionic mobility as well as the 

increased solubility of many salts and 

minerals. 

Because of this dependency water 

conductivity is measured as specific 

conductivity, with measurements made at 

or corrected to a standardized 

temperature, usually 25°C. 

 

 

 

2.2 Temperature 

Temperature is another very important feature of water. It can be measured by many different 

measurement principles but in a CTD this is usually done by a thermistor or a digital IC 

sensor. Temperature has a major impact on biological activity and growth of aquatic 

organisms in water. Up to a point, higher water temperatures correspond to more biological 

activity. Most water-based organisms are cold-blooded and unable to regulate their core body 

temperature. They have preferred temperature ranges and are sensitive to variations in 

temperature going too high or too low. Water chemistry is also influenced by temperature. 

The rate of chemical reactions, like the uptake of oxygen in water, will generally increase 

with higher temperature [14].  

Figure 3 Temperature dependency of conductivity[15] 
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Temperature also changes water density. The denser water will sink and settle in layers of 

water with similar temperature. This effect is called thermal stratification. In lakes during 

summer the surface layer will be heated by sunlight causing a large temperature difference 

between the upper and lower layers of the water. This leaves the layers rigid since liquids 

with large difference in density don’t mix as easily. In autumn when the weather cools down 

again and the water layers become more uniform, a lot more upward and downward mixing 

of water can happen. This is important for all marine ecosystems as the dissolved oxygen and 

nutrients from the surface gets mixed into the deeper waters. When the water is thermally 

stratified, the bottom layers can become anoxic, or contain zero dissolved oxygen. Water 

reaches its maximum density at 4℃. [13]  

 

Water has a higher thermal capacity then air and will heat up or cool down much slower. This 

can act as a temperature capacitor for surrounding land masses. Coastal areas often have 

milder winters and cooler summers, whereas inland locations can have much larger 

variability between summer and winter  

2.3 Pressure 

Pressure is usually measured by a pressure gauge that detect changes in the shape of a coil of 

wire or tube of fluid due to outside pressure. It measures the amount of density, or total 

weight of water over the sensor. The relationship between pressure and depth are very closely 

related, so a pressure sensor is usually able to calculate depth pretty accurately. In stationary 

CTDs, an accurate pressure sensor can be used to detect tidal cycles and wave cycles 

 

Figure 4Mixing of water layers in different seasons [12] 
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2.4 Turbidity 

Turbidity is an often hard to measure optical property of water. It is the total amount of 

particles suspended in the water and determines the visibility in the water body. More 

suspended solids mean hazier/cloudier water. This is often measured by optical devices 

emitting light and monitoring the amount of scatter due to collisions with solid particles in 

the water. Typically, these particles are silt, clay, algae, plankton or any other type of finely 

divided matter. Turbidity can be used to determine the drinkability of water or can be used as 

an indicator of pollution. High turbidity is a sign of unhealthy water. It can provide shelter 

and sustenance for pathogens and lead to outbreaks of waterborne diseases if left untreated. 

The unit of measurement is Nephelometric Turbidity Units or NTUs.  

2.4.1 CTD data and sonar 

Perhaps the most important aspects of the CTD with respects to this project are those that 

relate to the sonar. Several projects in the hydroacoustic research group at the University of 

Oslo use echo sounders, sonars and hydrophones for detecting features of objects located 

under water. The main intention of the proposed automated surface vehicle carrying the CTD 

will be to collect data to aid the sonar equipment. There are several ways CTD data can help 

to interpret and to aid the deployment of sonar equipment. Primarily this has to do with 

absorption and sound speed in water. 

2.4.2 Absorption 

When sound moves through water, the acoustic energy is lost through the process of 

absorption. The intensity of a sound wave decreases with the distance along the propagation 

path. There is a large frequency dependent difference in absorption in different types of 

water. For example, the absorption in seawater at frequencies between 5 and 50 kHz is 30 

times higher than in distilled water (Urik,1983, p.104). Several mechanisms contribute to this 

effect. First there are viscous losses that occur, both in fresh and salty water. Viscosity causes 

friction that converts acoustic energy into heat and is a direct loss of energy to the medium.  
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Rayleigh’s expression: 

𝛼 =
16𝜋2𝜇𝑠

3𝜌𝑐3
 

Is an attempt to express the absorption effects of viscosity through an absorption coefficient. 

In this equation α is the absorption coefficient, 𝜇𝑠 the shear viscosity, 𝜌 the density, c the 

sound velocity and f the frequency.  

But viscosity by itself does not 

account for all the differences in 

absorption at different 

frequencies. Several other effects 

have been observed that affect this 

process. Other prominent 

contributors are the molecular 

relaxation of certain minerals and 

compounds. Molecular relaxation 

is a pressure-induced process 

which dissociates ions from 

molecules. For example, the 

magnesium molecule can under the varying 

pressure of a sound wave dissociate or re-associate its constituent ions, changing the 

absorption coefficient of the water. This effect only occurs below a frequency threshold,  as 

the molecular relaxation takes a certain amount of time to manifest. At higher frequencies, 

the sound pressure cycles too fast for the relaxation to occur. In the 2-500 kHz range the 

magnesium sulphate is the main cause of absorption, and at the lower frequencies boric acid 

become a contributing factor[1].  

 

 

 

Figure 5 Absorption coefficients in sea water according to the Fisher-

Simmons expression [4] 
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The exact relationship between these effects and the absorption rate is still not perfectly 

understood, and there are several different equations trying to describe it. One such is the 

Fisher-Simmons expression [2]:           

𝛼 = 𝐴1𝑃1 (
𝑓2

𝑓1
2 + 𝑓2

) 𝑓1 + 𝐴2𝑃2 (
𝑓2

𝑓2
2 + 𝑓2

) 𝑓2 + 𝐴3𝑃3𝑓2 

Where the terms 𝐴1, 𝐴2, 𝐴3, 𝑓1, 𝑓2 are functions of temperature and 𝑃1, 𝑃2, 𝑃3 are functions 

of pressure. The three parts of the equations describe the contribution of boric acid, 

magnesium sulfate and viscosity respectively. (Urik,1983, p.105). Note that all the required 

measurements for the calculation of the absorption coefficient can be acquired by a CTD. 

Knowing the absorption factor is important for sonar because the rate of absorption is the 

limiting factor that determines the highest useful frequency for object detection at a given 

range.  CTD data can help determine what frequencies can be used at what ranges, when 

setting up sonar equipment. For example, the absorption rate in fresh water is relatively small 

up to about 200kHz, since little molecular relaxation occurs. This means that higher 

frequencies then what could be used in seawater, can be used at the same maximum range of 

detection in freshwater 

2.4.3 Sound speed 

Sound speed can also be determined from 

CTD data. The velocity of molecules 

increases with higher temperatures, and 

the density and salinity of the water 

makes the sound waves travel faster as 

the wave vibrates with more molecules. 

This is important for sonar applications 

because sound refracts when it changes 

speed. If a sonar transmits horizontally, 

the sound waves will bend because the 

sound speed changes with depth. A near 

horizontally aligned sound beam 

experiencing decreasing temperature 
Figure 5 Physical basis of Snell’s law [11] 
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with depth will bend downwards since 

the lower part of the wave-front will 

travel in colder water with slower 

sound speed. In the pictures you can 

see the sound wave illustrated as a 

ray, changing direction when it 

changes speed. If the gradient is 

negative, like it often is in the upper 

layers the sound waves are bent 

downward. If the gradient is positive, 

as it is in deep ocean where the pressure 

causes the sound to travel faster, the 

waves are bent upwards.  

Temperature is the dominant variable 

affecting sound speed in the upper few 

hundred meters of water, though in 

some polar regions varying levels of 

salinity can also play an important part. 

Pressure starts being important deeper 

in the ocean, where the temperature 

stabilizes.  

A typical sound speed profile in 

seawater will look like the figure on the 

right. The sea is divided into several 

layers. At the top there is the surface 

layer, which will be influenced by daily 

and local changes in wind and weather. Then 

there is the seasonal thermocline, where the 

temperature steadily declines with depth. This 

is characterized by a negative sound speed 

gradient. In the summer this will be more 

pronounced than in the winter.  

Figure 6 Sound Speed Gradients [10] 

Figure 7 Typical ocean velocity profile divided into layers [1] 



10 

 

 

Below this is the main thermocline, where the temperature continues to decline, but is only 

slightly affected by the seasons. Finally, there is the deep isothermal layer, where the 

temperature stays fairly constant and the increases in pressure will lead to a positive sound 

speed gradient 

For sonar this has significant implications. The ocean will have an upper layer where it has 

the potential to trap acoustic energy. The surface layer will often contain an isothermic mixed 

layer. Instead of having a stable negative temperature gradient, like the water below it, the 

mixing of heated surface water and cooler water from below can lead to several meters where 

the temperature gradient is neutral. This in turn can lead to a positive sound speed gradient as 

the pressure increases with depth. The point where the sound speed gradient turns negative is 

called the Sonic Layer Depth and can cause an upper duct where the sound waves sent from a 

fixed point will bend upwards or downwards from the layer, causing a shadow zone where 

detection is difficult.   

2.4.4 Calculating sound speed from CTD data 

Several attempts have been made to describe the behavior of sound speed in water. Even 

though it seems to depend entirely on salinity, temperature and depth, (the exception being 

contaminants such as air bubbles and biological organisms), the relationship between these 

are extremely complicated. Most equations are based on extensive measurements done in 

controlled environments with varying levels of temperature, salinity and pressure. Complex 

Figure 8 Surface Duct Shadow Zone [10] 
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polynomials are then created to best fit the measurements. The international standard 

equation, or UNESCO equation, for sound speed is made by Chen and Milero [3]. It has later 

been recalculated by Wong and Zhu [5] following the adoption of the International 

Temperature Scale in 1990. The equation looks like this: 

 

Where T is temperature in Celsius, S is salinity in Practical Salinity Units, and P is pressure 

in Bar. The A’s and C’s are numerical coefficients given by a table 

 

Table 1 UNESCO equation table of coefficients [6] 

  

This equation is one of the more comprehensive equations, both in terms of range of validity 

and computational requirements. The equation is valid in the range of 0 to 40 ℃ in 

temperature, 0 to 40 parts per thousand for salinity, and 0 to 1000 bar for pressure. Other 
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equations like the Del Grosso equation is similarly comprehensive but has a more restricted 

range of validity. It is preferred by many authors since the UNESCO equation has a number 

of known flaws. For example, there have been several experiments proving that the UNESCO 

equation will give incorrect values under high pressure conditions [9]. 

In addition to these there are several simpler equation made for practical use, but with 

restrictions in range of validity and reduction in accuracy:

 

Table 2 Other expressions for speed of sound in water [7] 
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3 Open Source Oceanographic 

Instruments 

Monitoring the oceans and fresh waters is an important goal for a multitude of reasons. The 

ocean, more so than land masses, are deeply impacted by increasing carbon dioxide 

emissions from human activities. The changes in water temperature, acidification and 

deoxygenation of water leads to changes in oceanic circulation and chemistry that can 

threaten the biological ecosystems underwater, as well as cause unpredictable and destructive 

weather events on land. In a study of the Virginia Institute of Marine science it is estimated 

that the decline in ocean health can cost the global economy $428 billion per year by 2050, 

and 1.979 trillion by 2100 [27]. These are critical environmental processes happening 

underwater that needs to be monitored and understood, and to do this a vast amount of data 

and measurements are needed. The cost of such ventures is currently what is prohibiting this 

from happening at the scale that is needed. The measurement sites are often remote and the 

ocean is a harsh environment that requires specially tailored equipment and technology 

Usually robust equipment mounted on elaborate mooring systems or research ships are 

deployed, but these are tremendously expensive and the equipment can be bulky and 

dangerous to handle. The technological developments in areas such as GPS and autonomous 

vehicles has opened up the possibility of newer and smarter ways of doing this, and with 

other developments in consumer electronics greatly decreasing costs and increasing 

availability of products one could expect a wave of cheaper and smarter underwater 

instruments to be at hand. This however has yet to occur. The arena is still dominated by 

professional engineering companies, creating expensive solutions for small scale use. Daniel 

P. Langis (2015) of the California State Maritime Academy lists three reasons why the 

developments of ultra-low-cost instruments have failed to materialize.: 

1. Many individuals have made attempts at portions of ultra-low-cost sensor 

development (such as conducting studies on individual low-cost sensors) but little 

work has been done to propose an end-to-end solution that would make them a 

reality.  A complete solution must consider how to integrate complex issues such as 

product development, data quality, testing, calibration, maintenance, and user 

interaction – all while driving down total cost (Blanchard, 2008, p.10).   

2. The instrumentation industry is dominated by a limited number of commercial 

companies who have a strong hold on the market.  Those companies create first-rate 

products and do provide reliable end-to-end solutions for the issues above.  Although 
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expensive, the costs for oceanographic instruments are incorporated into budgets as 

the price of conducting research; programs also have large amounts of capital 

already invested in instruments.  These factors reduce pressure and create a 

justifiable reluctance to develop and adopt new technologies.  

3. Organizational processes and traditions are very hard to change.  The adoption of 

any revolutionary practice may redefine processes, alter job responsibilities, and 

create internal disruptions which require significant organizational change.  The 

development of ultra-low-cost sensors must also consider how the technology will be 

utilized and provide time and recommendations for adopting new (Langis,2015, p.5) 

 

To better understand how low-cost instrumentation could be applied in oceanography it is 

useful to understand the strengths and weaknesses of the current available approaches. This is 

addressed in a document published by The National Academy of Science Committee where 

they list problems associated with the current infrastructure of ocean research and detail 

trends and strategies for the coming two decades in this area.  

3.1.1 Ships  

Research ships can be equipped with numerous gadgets and instruments and can deploy 

mooring systems to remain on sites for remote observation. They have a distinct advantage 

over other platforms in their versatility and mobility, but they are also increasingly costly. In 

the US, according to the National Ocean Council’s Federal Oceanographic Fleet Status 

Report (2013, p. 20) “Fuel costs have increased some 400% since 2003, aging vessels 

require higher maintenance costs, personnel costs for salaries and training are increasing, 

and new safety and environmental standards are becoming more stringent” (National Ocean 

Council, 2013, pp. 19-20). The consequence is that the ships available are used less, and that 

researchers are actively searching for alternate methods of doing measurements to reduce 

ship time  

3.1.2 Moorings 

Mooring systems are instruments mounted on a cable traversing from an anchor element at 

the ocean floor to a buoy at the surface level. The surface element often contains satellite 

communication and tracking devices. The equipment is transported by ships and can stay on 

the same spot for a long time, sometimes providing comparable data sets going decades back 
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in time. These will still be useful in the coming decades for their high frequency fixed 

location data, but their mobility, their complexity, and the cost and safety concerns of their 

deployment make them unsuitable for the type of mass measurements that other platforms 

could provide. 

3.1.3 Autonomous vehicles  

Autonomous vehicles carrying instruments is a new approach made possible by GPS and 

satellite technology. These can be UAVs, gliders with expendable CTDs or self-sustaining 

floating devices. The ARGO is an example of such a device that has been implemented in a 

global program that has already 

revolutionized ocean data 

measurement. Argo is an 

international collaboration that 

collects temperature and salinity 

data from the upper 2000 meters of 

the global oceans. Currently about 

3200 floats are in use, with another 

800 being deployed per year[17]. 

The data is gathered from an 

autonomous float that spends most 

of the time submerged at a parking 

depth. At this depth it is neutrally 

buoyant which means it has a density equal to the surrounding water. At every 10 days or so 

the float will pump fluid into an external bladder and gradually rise to the surface while 

collecting measurement data. When it surfaces it transmits the data to a satellite before it 

submerges again. Each float is designed to do about 140 cycles and last about 4 years. The 

construction cost for one device is about 15 000 $ and about twice that with operating costs. 

This is still fairly expensive and is expected to rise, as the ARGO program has several new 

upgrades planned such as new biological sensors, chemical sensors and Iridium 

communication. The National Ocean Council [16] summarizes that:  

In the past two decades, use of floats, gliders, ROVS, AUVS, and scientific seafloor 

cables has increased; use of ships, drifters, moorings, and towed arrays have 

remained stable; and use of HOVs has declined. Based on these trends, utilization and 

Figure 11 How Argo floats work [17] 
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capabilities for floats, gliders, ROVs, AUVs, ships, and moorings will continue to 

increase for the next 20 years, and HOV use is likely to remain stable. Ships will 

continue to be an essential component of ocean research infrastructure; however, the 

increasing use of autonomous and unmanned assets may change how ships are used. 

(2011, p. 31) 

3.1.4 Low cost instrumentation projects 

While there are a number of exciting technological advancements in oceanographic 

equipment, there is still a widely recognized need for less expensive instrumentation. The 

spatial resolution of data can be greatly increased and models used for prediction can be 

significantly improved by having a large number of discrete measurements available. This 

will most likely be resolved by creating a large network of low-cost instruments that are 

orders of magnitude cheaper then what they are today. The National Ocean Council[16] 

thinks such a development is imminent. In their report they write:  

Circa 1990, there were only a few 8-bit microprocessor systems with sufficiently low 

power consumption for autonomous deployments, and they had volatile solid-state 

memory and limited computational power and data storage. In 2010, processors with 

orders-of-magnitude-higher computational power can navigate systems, command 

sensors and actuators, adapt missions, and retain gigabytes of data in robust solid-

state memory. There have been parallel improvements in power availability, including 

the transition from alkaline to lithium batteries. (National Ocean Council, 2011, p. 

28-29) 

 

3.1.5 The Arduino Platform 

One way to take advantage of the consumer-driven advancements in microelectronics is to 

utilize the Arduino platform. Arduino is an open source platform that consists of a physical 

programmable circuit board and an Integrated Development Environment (IDE). The board 

has programmable digital and analog I/O ports and can communicate to other devices using 

standardized protocols such as UART, I2C and SPI. The main advantages of the Arduino 

platform is its price point and its large array of available add-on modules and components. 

Since the platform is open source there is also a very large online community and a wide 

variety of sample code and projects for support. Daniel Langis argues in his paper “An 
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Implementation Strategy for Low-Cost Sensors” that Arduino is a very suitable platform for 

the development and rapid evolvement of new low-cost sensors. He writes: 

Despite its low cost, the Arduino is a highly versatile platform which can be used to 

interface with almost any type of modern integrated circuit, such as Analog-to-Digital 

Converters, memory cards, real-time clocks, or power switching devices.  As for 

oceanographic research, it is equally feasible to connect a full suite of oceanographic 

sensors to a single Arduino controller.  If individual low-cost sensors for 

oceanographic measurements can be developed, the Arduino is an ideal platform for 

integrating multiple sensors into successful low cost instruments (Langis,2015, p.15). 

There are also disadvantages that should be addressed. For example, The Arduino is not 

optimized for power consumption. This is important in long-term deployment in remote 

locations, where battery capacity is a limiting factor. There are also limitations in the built in 

features of the Arduino board. Like the lack of storage such as an SD card, lack of a real-time 

clock and a low-quality ADC with a limited sampling rate and a resolution of only 10 bit. 

These flaws can be corrected for however, by using external modular components, like an 

OpenLog SD card logger, or an Adafruit 16-bit ADC. 

3.2 Oceanography for everyone and OpenCTD 

The OpenCTD project is a part of the Oceanography for Everyone community. They describe 

themselves as an opensource community of hardware developers, scientists and ocean 

stakeholders, that are making and sharing alternatives to expensive scientific equipment. The 

equipment is meant for citizen scientists interested in doing marine monitoring, fishermen 

exploring new tools to understand their catch or ocean enthusiast seeking new ways to 

interact with the sea” [18] 

The equipment includes the Niskin3D, a 3D printable bottle that allows users to take discrete 

water samples at specific depths or in specific environmental conditions, designed to be 

integrated with the OpenROV which an open source project by a team of engineers in the San 

Francisco Bay area is. The BeagleBox, which is a single-board 3D printed robust field laptop 

designed to fit into a pelican case. And the OpenCTD which is a low-cost open-source 

instrument for measuring conductivity, temperature and depth creating a vertical water 

column profile. 
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The OpenCTD is a collection of sensors controlled by an Arduino microcontroller, contained 

in a watertight package made from a PVC pipe. It also contains a battery and a SD card for 

storing data. The battery is sufficient for 40 hour of use. It uses the DS18B20 Temperature 

Sensor, the MS5803-14BA pressure sensor and the Atlas scientific K=1.0 conductivity kit. 

The package is a regular PVC pipe cut into size and with a 3D printable lid to be fastened 

with glue. It has a GitHub page with construction instructions , and several field test logs, 

documenting its performance. OpenCTD was initially designed by Andrew Thaler, Kersey 

Sturdivant, and Russell Neches from Virginia Institute of Marine Science and Duke 

University’s Nicholas School of the Environment.  

3.3 Other similar projects 

There are several other attempts at making low cost CTDs 

3.3.1 Design of Sound Speed Profiler 

Is a master thesis by Anwar Nazih Shaban , and is a previous attempt to tackle the same 

problems as this thesis. It is using a self-made conductivity sensor, the DS18B20 temperature 

sensor and the MS5803-14BA pressure sensor. The device is controlled by an Arduino UNO 

microcontroller, and can communicate using a Bluetooth chip called BlueSMiRF Silver. The 

data measured is logged on a memory card using Openlog[7]. 

3.3.2 Inexpensive Expendable Conductivity Temperature and Depth 

(CTD) Sensor 

Is a paper from the Florida Institute of Technology attempting to make an expendable CTD at 

an affordable price. The project describes the construction of a CTD cartridge to be launched 

over the side of a vessel or from a drone that can do measurements over a 10 meter water 

column. The cost of each unit would be about 982 dollars and would consist of 5 primary 

electronic systems: a GPS chip, a memory card for data logging, wireless communication, 

and a Pic Chip microcontroller. The CTD is made with the atlas conductivity sensor, a 

wireless chip called the XBee that uses the ZigBee wireless protocol, and a data logging 

system called OpenLog. [19] 
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4 Sensors 

A very important part of making this water profiler is choosing the right sensors. When 

choosing sensors there are several considerations to be made. This could be finding a suitable 

packaging or ensuring the sensor has adequate response time, and that the accuracy is 

sufficient. Usually the sensors will have a specified degree of uncertainty listed in its 

datasheet. But since the primary purpose of the water profiler will be to measure sound speed, 

which will be calculated using a complicated formula from three different sensors, the impact 

of the uncertainty of the different sensors is not always apparent. As a pre-purchase activity, 

several sensors were researched, and an excel sheet with the different sound speed formulas 

were made, experimenting with plugging in upper and lower values of a sensors listed 

measurement uncertainty, and seeing how they affected the formula output. 

4.1  Sensors researched 

 Atlas 

conductivity 

sensor 

Gravity 

conductivity 

sensor 

Adafruit 

Thermistor 

DS18B20 MS5803-

14BAPressure 

sensor 

Listed uncertainty +/- 2% psu 

in seawater 

+/- 5% psu in 

seawater 

+-1% of 10k 

ohm at 25℃  

or ~+/- 

0,25℃ 

+/- 0,5℃ +/-20 mbar 

Reference value 35 psu 35 psu 15℃ 15℃ 4 meters (1.415 

bar) 

Uncertainty range in 

soundspeed  using 

Mackenzie formula 

1,97 m/s 4,96 m/s 0,97 m/s 1,93 m/s ~0 m/s 

Uncertainty range in 

soundspeed  using 

Medwins formula 

1,98 m/s 4,96 m/s 0,997 m/s 1,99 m/s ~0 m/s 

 

Some observations made: 

-The pressure sensor barely affected the sound speed formula result in the 0-30 meter depth 

range.   

-The difference in accuracy of the temperature sensors has a small impact on the sound speed 

calculation (+-0,05% of the final value). Although only two are listed here most others are in 

the same range. 
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-The choice of conductivity sensor seems to affect the final results slightly more ( +/-0,166% 

of final value) and there is also a larger difference between the two options.  

4.2 Temperature sensors 

When choosing a temperature sensor there are several factors to take into consideration. 

These include temperature range, accuracy, response time, stability, linearity, and sensitivity. 

For this specific application one could also add having a package that supports high pressure 

underwater situations, and ease of use with Arduino. If this is to be used in an open source 

project an easy setup procedure and limited need for instructions would be a plus. 

The most common types of temperature sensors are: RTDs, Thermocouples, Thermistors, 

Digital thermometer ICs, Analog thermometer ICs 

4.2.1 RTDs 

RTDs (resistive temperature detectors) consist of a coil of wire wrapped around a core of 

glass or ceramics. The wire is typically made of platinum or copper. As with the thermistor 

the RTD will change its resistance value with changes in temperature in a predictable 

manner. The RTDs can achieve high precision and have low drift over time. They can operate 

in a large range of temperatures, but have slower response time then for example the 

thermistor. 

4.2.2 Thermocouple 

A thermocouple sensor takes advantage of a phenomenon called the Seebeck effect. This is 

when a temperature difference between two different electrical conductors produce a voltage 

difference between the two elements. This is usually realized with two wires of different 

metals, joined in one end and separated at the other. The magnitude of the voltage difference 

between the wires then determine the temperature. Different combinations of metals are used 

for different applications. For example, Copper/Constantan is more accurate in lower 

temperatures then Iron/Constantan, which is a more common cheaper version. These are solid 

and cheap sensors that see a wide variety of use in the industry. They are however, often not 

the most accurate sensors, and they tend to drift over time. 
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4.2.3 Thermistor 

A thermistor is named as such because it is a thermal resistor. It is made of a material 

typically a ceramic or polymer that changes its resistance dependent on the temperature. They 

typically have a smaller operating range then the other sensors, but are often very accurate 

and have a smaller response time. They can be either a NTC or a PTC type sensor, negative 

or positive temperature coefficient, which determines if the resistance increase or decrease as 

the temperature increases. A Thermistor response is not linear and need to be linearized in the 

intended temperature range before use. 

4.3 Digital or analog thermometer ICs 

There are a number of temperature sensor ICs with various working mechanisms and various 

features that could be used with Arduino. 

4.3.1 DHT11 and DHT22 

These sensors are very common in Arduino projects. They are small and cheap ICs that 

measure humidity and temperature. The temperature is measured with a thermistor. The chip 

contains some simple analog to digital conversion that yields a one-wire digital output. The 

interface is not dallas one-wire compatible, so each sensor needs its own pin on the 

microcontroller. There are some significant drawbacks with these chips. You can only sample 

the temperature once every second for the DHT11, or once every two seconds for the 

DHT22. The accuracy is also not particularly good, +-2 degrees for the DHT11 and ±0.5°C 

for the DHT22. 

4.3.2 LM35DZ 

The LM35DZ is a semiconductor temperature sensor. The basic working mechanism is to 

exploit the current and temperature characteristics of transistors.  Two identical transistors are 

exposed to different currents and the difference in voltage outputs will be proportional to the 

temperature of the transistors.  What is special about this IC is that it offers a pre-calibrated 

analog output voltage proportional to the temperature in degrees centigrade as opposed to 

absolute temperatures in kelvin. The accuracy of this sensor is typically ±0.5°C. 
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4.3.3 TMP36 

The TMP36 is very similar and often interchangeable with the LM35DZ. It offers an analog 

output in degrees centigrade, but has slightly worse out of the box accuracy at ±1-2°C. The 

sensor is made to function on less than 50µA and therefore have very low self-heating. 

4.3.4 DS18B20 

The DS18B20 is a semiconductor temperature sensor with a digital output. It uses the Dallas 

1-wire interface, which means that several sensors can operate on the same data line. This is 

useful if you want to have networks of sensors connected to the same microcontroller. The 

output data has a programmable resolution of 9-12 bits. The IC is powered either through a 

dedicated power line or through the data line (Parasitic Power Mode). In this mode the IC 

only requires two wires to function. This sensor also comes in a waterproof package, and is 

very often used in DIY projects that measure the temperature of liquids. In both the Sound 

Speed Profiler and the OpenCTD project a waterproofed DS18B20 has been used. The 

drawbacks are the stated ±0.5°C uncertainty in accuracy and the slow response time due to 

the large metal packaging. 

4.4 Conductivity sensors 

4.4.1 Atlas Scientific conductivity sensor 

Atlas Scientific sells a set containing a 

conductivity probe, a circuit, and two calibration 

liquid solutions. The probe comes in three variants 

with different cell constants, K=0.1, K=1.0 and 

K=10. The cell constant, K, is the distance in cm 

between the probe’s electrodes divided by the 

surface area of the electrodes in cm^2. These have 

different accuracy ranges, so the K=0.1 is better at 

getting accurate reading in low conductivity 

conditions. This is because when the electrodes 

are placed closer together or made larger, the cell constant, K, will be less than one. This will 

raise the conductance and produce a value more easily interpreted by the instrument.  

Figure 6 Different conductivity probe types [22] 
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Conductivity = Conductance x Probes cell constant (K) 

OR Conductivity = Electrical Current/Voltage x Distance/Area 

The circuit included with the probe can interpret the data and report the readings as total 

dissolved solids (ppm), practical salinity units(psu) or Siemens per centimeter (µS/cm. It also 

has temperature compensation feature, and can communicate with other devices through I2C 

or UART protocols [22] 

4.4.2 Gravity conductivity sensor 

The gravity conductivity sensor is from the DFRobot gravity series. The series is a collection 

of sensors and other electronics that are intended to be open-source and modular, so you can 

combine them for various DIY projects. The set contains a K=1 probe a signal conversion 

board, several calibration solutions and connectors. The listed accuracy of the set is +/- 5% 

psu in seawater, or about twice as much as the atlas sensor. 

4.5 MS5803-14BA 

The MS5803-14BA pressure sensor is a 

MEMS device, or a microelectromechanical 

system device, with moving parts between 1 

and 100 micrometers in size. It claims an 

accuracy of 0,2 mbar or a depth resolution of 1 

cm. The sensor can communicate with any 

microcontroller using the I2C or SPI interface. 

There is also an onboard temperature sensor, 

and different operating modes, optimizing for 

either current consumption or conversion 

speed. The sensor elements are surrounded by 

a antimagnetic steel cap and is covered in a gel 

membrane that protects it against 30 bar water 

pressure.  The breakout version is an open 

source hardware product made by Sparkfun. They have broken out all the pins needed for 

Figure 7 MS5803-14BA pressure sensor with protective gel coating [23] 
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Arduino, and included a GiThub and guide section with instructions, Arduino libraries and 

example code.[23] 

4.6 DFRobot Turbidity Sensor 

The DFRobot sensor is based on the 

Tyndall effect . which describes the 

scattering of light by suspended 

particles in a fluid. The higher 

number of particles the more light 

will be scattered. The sensor 

measures the amount of particles in 

the water by sending a light beam to 

an opposing light detector. The 

particle density is then a function of 

the light reflected into the detector.   

The figure on the right is the 

circuit inside the probe. It has a 

photo transmitter diode (Photo 

TR) emitting light, and a receiver 

transistor registering the scatter. 

Ri and Ro are pull-down resistors. 

Pin 4 supplies 5v to the circuit 

and pin 1 is the signal readout. 

The figure below is the circuit 

schematic. It is a dual amplifier 

circuit which amplifies the signal 

from the probe since the Arduino 

data pins require 20mA to 

function. Toggling the SW1 

switch puts the circuit in digital mode, which is a binary output that goes high when the 

signal reaches an adjustable threshold value. This value is set by an on-board potentiometer   

Figure 9 Turbidity probe schematic [21] 

Figure 8 DFRrobot Turbidity sensor  
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Figure 10 Turbidity circuit schematic 
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5 The Final Setup 

Finally a setup was established based on the openCTD package solution. The figure below is 

an illustration of the components chosen and all the different projects that collaborated into 

making the finished CTD. 

 

 

 

5.1 Microcontroller 

Originally a Qduino mini microcontroller was used, which is a lightweight Arduino 

microcontroller. This is the controller used in the OpenCTD project, and is a very low power 

unit that can be sustained for long times on battery power. This unit malfunctioned, and a 

switch was made to the more common Arduino UNO. Finally since the project expanded 

Figure 11 Illustration of the different projects contributing to the construction of the CTD 
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further, the need for additional hardware UART connections necessitated an upgrade to the 

Arduino Mega. This also solved a long running problem of getting the OpenLog SD card 

module and Bluesmirf Bluetooth to function at the same time.  

5.2 Bluesmirf Silver 

Bluesmirf Silver is a Bluetooth modem for Arduino by Sparkfun. It is a Breakout version of 

the RN-41 module. Bluetooth is a wireless technology standard that uses low power radio 

waves to transmit data on a frequency of around 2.45 GHz. This is in the ISM band of 

frequencies set aside for the use of industrial, scientific and medical devices. Bluetooth 

devices avoid interfering with other systems by transmitting very weak signals of about 1 

milliwatt. Phones for comparison can transmit signals up to 3 watts in strength. This limits 

the range to about 10 meters, but at the same time limits interference from other systems. 

Another way Bluetooth avoids interference is by a method called spread-spectrum frequency 

hopping. This means a device will use 79 different random frequencies within a designated 

range, hopping from one to another. A Bluetooth device will change frequencies about 1600 

times a second. This ensures that if interference occurs it only does so in a tiny fraction of a 

second. Bluetooth uses a “piconet” topology, where it forms a small network of 1 master and 

up to 7 slaves. The master can transmit data to one other device in the network at any given 

time, and will typically switch from slaves in round-robin fashion, while the slaves are in 

listen mode. In the CTD probe the Bluesmirf chip is placed in a slot through the 3d printed lid 

and covered in epoxy with only the antenna protruding to the outside of the CTD. 

 

5.3 OpenLog 

The Arduino Uno does not have a lot of onboard memory. It has three different pools of 

memory: the Flash memory where the Arduino sketch is stored. This is about 32k bytes, 

where 0.5k is used for the bootloader. The SRAM which is where the sketch creates and 

manipulates variables when its running. This is 2k bytes of volatile memory which means the 

stored data will be lost when power is turned off. lastly there is 1k bytes of EEPROM which 

is a memory space that programmers can use to store long term information. Naturally some 

external storage is needed. There are several options available, most of these involves either 



28 

 

an extra SD card module, or a connection with a computer either through USB or wireless. 

Since this will be deployed underwater, connection with a computer will be difficult.  

For this project a serial data logger called OpenLog was inherited from a previous project. 

OpenLog is an opensource data logger chip that connects to the microcontroller over a serial 

connection. It holds a 16GB SD card for storage. 

5.4 Improvements over past projects 

-This version of the CTD has a working quality EC sensor, which is a basic requirement of 

any CTD. The Sound Speed Profiler never achieved a sufficiently accurate EC measurement. 

-Both the OpenCTD and the Sound Speed Profiler used the DS18B20 sensor which is a 

digital IC inside a large steel casing. This larger casing makes the sensor respond very 

slowly. Moving from one water bath to another, from about 40℃ to 20℃, it required 25 

seconds to stabilize at the new temperature. In the field, this would require really slow casts 

to acquire good readings. The thermistors in epoxy requires only about 5 seconds to 

completely stabilize in the same setup.  

-The openCTD has no wireless communication 

-A Bluetooth setup was present in the Sound Speed Profiler, but the implementation was 

flawed. The Bluetooth chip was placed inside the package and would only transmit the data 

real time. This would not work in the field since Bluetooth does not carry through water. a 

new implementation was made, where the antenna of the sensor was placed through a slit in 

the 3d printed lid, so it can transmit when at the surface. Code was then added to be able to 

send commands through the Bluetooth module to the Arduino. The sensor can now receive a 

start command through Bluetooth, start logging, store the measurements on the Openlog 

module, and resurface. When surfaced communication can be restored and a command can be 

sent to the Arduino to send the the data stored in the SD card over Bluetooth. This allows 

continuous use without opening the package and manually retrieving the SD card, which is 

operating procedure in both the OpenCTD and the Sound Speed Profiler. The ability to send a 

start command at an appropriate time, also prevents the storage of large amounts of trash 

data, since it won’t need to run continuously. This was an issue reported in the use of the 

OpenCTD where continuous logging led to large chaotic data logs.  
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-The Arduino UNO was upgraded to an Arduino Mega for the multiple hardware UART 

support. This was to correct an issue from the Sound Speed Profiler, where running several 

UART connections on the UNO, which has only one UART port and had to emulate others 

using the software serial library, led to crashes and unpredictable behavior. This upgrade 

increases stability in the simultaneous use of the Bluetooth module and the OpenLog module, 

and allows for the easy expansion of Atlas PH and dissolved oxygen sensors in future 

improvements. These are two UART sensors that was considered included, but ultimately cut 

due to costs. 

- The inclusion of a DFRrobot Turbidity sensor.  

- The inclusion of a Kalman filter, to attempt to improve thermistor readings through sensor 

fusion and a prediction model of the hysteresis effect 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 The finished probe 
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5.5 Cost of the project 

The budget for this project was limited by the 

budget allotted to each master program at the 

University of Oslo, so cost was a significant 

issue. The listed price of the CTD ended up at 

about 384 $, though several components were 

inherited from a previous project. The low 

price of many of the components are from 

Chinese web retailers, where electronics can 

be bought very reasonably. The Conductivity 

sensor is by far the costliest sensor in the 

CTD, but it was made a priority. This was 

because of reading about other projects 

problems with creating a working 

conductivity sensor, the importance of an 

accurate reading for a reliable sound speed 

profile, and its proven application in similar 

projects. There are several other sensors of 

interest that were cut due to costs. Notably 

two Atlas Scientific dissolved oxygen and PH 

sensors. These might be included to the next 

iteration of the CTD which is in the works in another master thesis. The price of 3d printed 

parts is not included in this list, and neither is the PCB board and components. These costs 

are negligible, but does require some expensive equipment, like a 3d printer and access to an 

electronics lab. 

 

 

Parts Price $ 

Arduino Mega 30 

Pressure sensor MS5803_14ba 59.95 

Openlog (SD card reader) 14,95 

Bluesmirf silver (Bluetooth) 24,95 

DFRobot Turbidity sensor 9,90 

Atlas EC kit 215 

3 inch acrylic glass tube 5 

Waterproof USB port 3 

Micro USB to USB cable 2.99 

Type A to type B USB cable 1.99 

4 thermistors in epoxy 3.99 

Mobile power bank 12 
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6 Calibrating and preparing the 

sensors 

6.1 Atlas conductivity sensor 

The default mode of the circuit is UART mode. I2C communication is possible, but the 

protocol is considerably more complex, and somewhat changes the behavior of the chip. For 

this project the UART port is already in use from both the Openlog chip and the Bluetooth 

chip, in addition to the USB port for uploading code. So it is necessary to switch to I2C. 

Instead of the UART “continuous mode” that gives measurements on a regular interval, you 

have to send the “R” command for a single reading every time you want to take a 

measurement. After the command the circuit needs 600ms processing time before it replies.  

A conductivity measurement is also significantly influenced by the temperature. Conductivity 

will increase about 2% per ℃. For the values taken at different temperatures to be 

comparable a compensation has to be made to show what the value would be at a reference 

temperature (usually 25℃). The physical causes for this dependency lies in the relationship 

between electrical conductivity, diffusion coefficients and the viscosity of water. There are 

several formulas describing this relationship. For example 𝐸𝐶25 =
𝐸𝐶

0.889∗
10

𝐴
𝐵⁄   

Where the parameters A and B are: 

A = 1.37023 (t – 20) + 8.36·10-4 (t – 20)2  

B = 109 + t  

𝐸𝐶25 is the conductivity at 25℃, EC is the measured 

conductivity and t is the temperature in ℃. A more 

common linear approximation is 

 
𝐸𝐶

𝐸𝐶25
= 1 + 𝑎(𝑡 − 25)  

Where a is temperature compensation factor. Several values of a are recommended in 

different literature. Groundwater textbooks often assume a 2% increase of EC per 1◦C, which 

Figure 13 Difference between linear and non-linear temperature 

compensation models [32] 
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leads to a factor of 0.02, while geophysicists commonly use a factor of 0.025 [31]. The chart 

on the right shows the difference between the non-linear model, and the linear model with 

two different compensation factors. As is apparent, the linear model is fairly accurate in the 

range of 0 to 30℃ which is the usual operating range of most CTDs.  

These calculations can be done internally within the Atlas sensor circuit if you supply an 

external temperature measurement, or they can be done in post processing using the raw 

conductivity and temperature measurements.  

6.1.1 Calibrating the sensor 

Calibrating the sensor is done by uploading a 

calibration sketch to the Arduino and sending  

commands through the serial monitor interface in 

the Arduino IDE.  The instructions and 

commands are detailed in the Atlas EC kit 

datasheet. Either a two point or three point 

calibration is possible, with one point being a dry 

measurement or zero point. Calibration fluids are 

included in the EC kit, one at 12880µS and 

another at 80000 µS. The operating range of the 

Arduino CTD will be around 0 to 40000 µS. Extra 

care must be taken to ensure the temperature of 

the fluid is exactly 25℃, or the values on the 

bottle will have to be recalculated. 

 

6.2 DFRobot Turbidity Sensor 

This sensor has an analog output voltage that can be interpreted by the Arduino ADC. But 

exactly how this relates to the unit of measurement, the NTU, is not entirely clear. The 

sensors wiki page gives some clues however. The graph on top shows an appropriation of the 

Figure 14 EC calibration fluids 
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relationship between the voltage and the 

NTUs. The one on the bottom shows that 

there is also a temperature dependence. 

Fluctuations in water temperature can 

affect the electronic components, causing 

a measurement error. There also seems to 

be some variation between sensors. Using 

the formula in the graph on the sensor 

used in this project gave a large value of 

NTUs in clear water, where this should be 

zero.  The proper way to calibrate a 

turbidity sensor would be to obtain 

calibrating fluids with known NTU 

values, note the probe voltage outputs 

at each calibrating point, and do a 

curve fit approximation to cover the 

whole voltage range. This has not 

been attempted in this project, since 

calibrating fluids are very expensive, 

and the sensitivity of the sensor are no where near what is required for use in a CTD.  

6.3 Thermistors 

The thermistor is a temperature sensitive resistor. The Adafruit Thermistor in Epoxy is a 

10000 ohm resistor with +-1% ohm listed uncertainty. This means that the thermistor is 

calibrated to be 10 000 ohms +- 100 ohms at 25 ˚C. Since the microcontroller cannot read 

resistance directly the thermistor is connected in series with a 

10k resistor, making a voltage divider circuit. When measuring 

the output voltage between the resistors, the voltage will 

change as the thermistor resistance changes. The voltage 

divider equation is: 

 

Figure 15 The relationship between turbidity and voltage [24] 

Figure 16 Output voltag at different temperatures [24] 

Figure 17 Thermistor in a voltage divider 

connected to an arduino 



34 

 

Where: 

 

 

On an Arduino Mega there are several analogue input pins. These pins have an Analog to 

Digital Converter (ADC), that converts an analog voltage to a digital value. The ADC on 

Arduino Mega has a 10-bit resolution which 

means it can detect 2^10 or 1024 discrete 

analog levels. They working mechanism of 

an ADC is to charge up an internal capacitor 

and measure the time it takes to discharge 

across an internal resistor. The 

microcontroller then measures the number of 

clock cycles before the capacitor is 

discharged. So typically, the Arduino ADC 

will receive a voltage between 0 and 5v and 

translate it to a similarly scaled number 

between 0 and 1023.  

All the analog ports share the same ADC. Every time a conversion is made, the MUX selects 

which pin to read (A0-A5) and charges up the sample and hold capacitor C1. The Switch 

(SW1) then switches C1 over to the ADC where it discharges over an internal resistor. 

During the testing of the CTD, the voltages on the pins where interfering with each other, IE 

heating up one thermistor would influence the other. This is because the high impedance of 

the thermistor circuits leaves a low amount of current flowing into the ADC and switching 

between thermistors too quickly doesn’t leave the sample and hold capacitor enough time 

fully discharge. A fix for this issue is to add a short delay in code between readings. 

 

 



35 

 

6.4 Temperature Sensor Response Time 

One of the major issues of both the Sound Speed Profiler and the OpenCTD is the response 

time of the temperature sensor. In one field test where the OpenCTD was tested alongside a 

SeaBird Model 911 plus CTD onboard the research ship Blue Heron, Andrew Thaler makes a 

note afterwards that:  

“Casts need to be slow. On the order of 0.15 m/s slow. The temperature probes are not fast.” 

[20] 

Likewise in Anwar Nazih 

Shabans [7] Sound Speed 

Profiler project a test was done 

raising and lowering the 

temperature sensor, where the 

sensor would record a very 

different temperature on the 

way down than at the very same 

depth on the way up. This due to hysteresis effects, or slow 

sensor response.  The cast speed in Shabans test is also 

fairly slow, at about 0,12m/sec on the way down and 

0,18m/sec on the way up.  

It is unclear why the DS18B20 waterproofed sensor has 

been chosen in these projects, but it is probably because it is 

an easily setup device in an already waterproofed steel 

casing package. This packaging is also why it is so slow. 

Peaksensors a manufacturer of temperature sensors notes on 

their website that: 

Sensor speed is dominated by the thermal mass of a sensor. Robustness is the counter 

to speed of response. This balance requires a compromised decision that has to made 

in regards to which criteria is more important to the end user. This is because it is 

difficult to create a robust probe with a fast response time – the sensor sheathing and 

other protection elements that are required required to improve robustness has a 

significant effect on response time [28] 

Figure 18 Sound Speed Profiler temperature hysteresis effect [7] 

Figure 19 Sensor element inside casing of 

DS18B20 
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So for a project like this, where the fairly quick changes in temperature needs to be recorded, 

the compromise probably should lean towards a smaller less robust sensor. One such 

candidate is the cheap thermistors by Adafruit covered in a thin layer of epoxy. These are 

very small and should perform much faster, but are also fairly fragile. So extra thought would 

need to go into their placement and packaging. 

To quantify the difference between the responses of the DS18B20 and the thermistor in 

epoxy, two water baths, one with a temperature of about 20 degrees and one with about 40 

degrees were placed on a table. One thermistor and one waterproofed DS18B20 were placed 

in one of the baths and then rapidly moved over to the other, while the microcontroller logged 

a temperature sample every second.  

 

 

 

 

 

 

 

 

 

Figure 20 Temperature response test setup 
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The graph shows the large difference in sensor response time. While the reading from the 

steel cased sensor used 27 second to come within two degrees of the final value and 45 

seconds to reach a stable temperature, the thermistor used about 3 and 5 seconds to do the 

same. Note that they differ in temperature values, most likely because the factory calibration 

of the thermistor was off. The somewhat accurate out of the box calibration and easy digital 

readout of the DS18b20 is perhaps a reason why it is often chosen for projects of this nature. 

6.5 Thermistor calibration 

The different thermistor resistance values will correspond to temperature values in a very 

predictable but non-linear way. Usually the thermistor manufacturer will supply accurate 

tables that show the resistance value for each specific temperature. You can also use the 

Steinhart-Hart equation which is a mathematical approximation of the same relationship. The 

error in the Steinhart–Hart equation is generally less than 0.02 °C in the measurement of 

temperature over a 200 °C range The equation is: 

 

 

Figure 21 Temperature response time comparison 
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Where T is the temperature, R is the resistance and A, B and C are the Steinhart-Hart 

coefficients. The coefficients are found by taking precise measurements at specific 

temperatures, say 20 ˚C, 25 ˚C and 30 ˚C, and solving three simultaneous equations. A 

further simplification is to use the B parameter equation: 

 

 

This is the Steinhart-hart equation where  

𝐴 =  
1

𝑇0
−

1

𝐵
ln(𝑅0) , 𝐵 =

1

𝐵
 𝑎𝑛𝑑 𝐶 = 0 

T0 and R0 is the temperature and resistance at the 

reference temperature, usually 25 ˚C. This version 

of the formula only requires the input of one term, 

the B-parameter often supplied by the 

manufacturer, and can be considered accurate over smaller temperature ranges.  

In the first stages of testing the CTD the B-parameter supplied from Adafruit were used in the 

Arduino code to convert the ADC readings to a temperature value. This calibration turned out 

to be accurate in temperatures near 25 ˚C, but unreliable in lower temperatures closer to 0 ˚C. 

The CTD needs to be accurate in this range as well, since the normal operating range will be 

around 0-25 ˚C. Instead a 3-point calibration was performed. This requires three resistance 

readouts at three known temperature values. The first attempt was using a container of 

melting ice for an accurate 0 ˚C point , assuming an accurate factory calibration at 10000 

ohm for a 25 ˚C point, and using a DS18b20 for an approximate 12 ˚C point. Later a 

calibration was done by doing a cast alongside a commercial CTD, logging the resistance 

values and calculating new coefficients with the corresponding commercial CTD temperature 

values. The coefficients can be found by solving the the three simoultaneous equations: 

Figure 22 Typical Steinhart-Hart thermistor curve [25] 
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7 The Package 

The packaging containing the sensors 

and electronics needs to be solid and 

watertight. In the Sound Speed Profiler 

project a custom made casing was made 

from a tube of plexiglass, with a lid and 

supporting beams on the side that 

functioned as a closing mechanism. 

There were some issues with 

waterproofing in this design, and also a 

vulnerability too pressure. When the 

inside of the tube is filled with air, the 

package will collapse when going deep 

enough. 

The OpenCTD project uses a simpler package made out of a PVC pipe 

and a 3d printable lid and sensor outlets on one end, and a gripper plug 

on the other. The plug allows for opening and closing the package while 

still remaining waterproof. A gripper plug is a plug used by plumbers to 

temporarily close an open tube. It’s a rubber plug that expands when you 

turn a wing nut bolt which can withstand a fair amount of pressure when 

tightened 

The package is also tested under various amount of pressure, so it is 

known to give in at about 25 meter depth. [20] If it is to be used even 

deeper the package needs to be filled with mineral oil, or other non-conductive 

fluid.  

A modified version of The OpenCTD package was used in this project. 

Instead of a PVC pipe a transparent plexiglass tubing was used instead.  A lot 

of work also went into 3d modeling of the sensor outlet lid. The changes 

involve making protruding cylinders to hold the very small thermistors. These 

cylinders have a tiny hole in them to let the wires through and are filled with 

epoxy. The reason for placing them a distance from the lid is to avoid having 

Figure 23 Sound Speed Profiler packaging [7] 

Figure 24 Gripper Plug 

Figure 25 OpenCTD package 

[20] 
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them measure water trapped in the pocket created by the lid and the protective sleeve of the 

package, and also to avoid any temperature interference form the package and the other 

sensors. Bolt holes were also made to fasten the 

pressure sensor to the lid. In the OpenCTD 

design the sensor is only fastened by glue, and 

was vulnerable to be pushed in from outside 

pressure Several iterations were made to correct 

flaws and make the fit right. The first drafts 

were made using a Ultimaker 2+ 3d printer 

using PLA filament. PLA filament is one on the 

most common filaments for desktop printer use. 

These versions had “stringing” errors which is excess 

plastic strings in corners and hollow areas. They were 

also very porous and not suited for underwater use.  

Later a Dimension Elite printer was used using ABS+ 

filament. ABS+ is another common filament that is 

more resistant to high temperature and is less brittle 

then PLA. This yielded a better lid, but still not one that 

was fully watertight. The solution was to prepare the lid 

with acetone vapor. Acetone dissolves the ABS+ 

filament and can be used to smoothen and harden the outer layer of a 3D print. This will also 

deform the print slightly and one has to be careful not to overdo the application. It is possible 

to dip the print in liquid acetone, but using the vapors is a slower and more predictable 

approach. 

 A setup was made where the plastic lid was placed at the bottom of a container with paper 

dipped in acetone fastened to the roof of the container with magnets. This because the vapor 

is heavier than air and will gather near the container floor. A protective layer of glass is 

placed between the paper and the print to avoid acid dripping. 

The sensors were then carefully placed inside their sockets and fastened by a two-component 

epoxy. The epoxy used is a Scotch-Weld 2216 B/A Epoxy, which is a very viscous adhesive 

that is suitable for bulky application like filling gaps or potting containers. The sensor heads 

and components were covered in tape to avoid adhesive splatter. The lid was then potted into 

Figure 26 Several versions of the 3D printed lid 
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the plexiglass cylinder. This is when the lid is placed at the far end of the cylinder, and the 

cylinder is filled from the inside with a layer of adhesive. This application is done with a 

syringe.  

Before potting the lid several holes were drilled in the 

sensor area of the cylinder. This is to ensure circulation 

of water inside the protective sleeve covering the 

sensors. When drilling a piece of wood was carved to 

support the cylinder from the inside and prevent the 

cylinder from cracking. 

7.1  PCB design  

After settling for a final wiring configuration, a PCB 

was designed to make the setup more compact. The 

PCB is a two-layer FR4 produced by Elab at UIO. It has 

pin rows to fit into the socket of the Arduino mega, as 

well as sockets for the Openlog module and atlas EC circuit modules, and pin rows to 

connect to the various wires coming from the sensor lid. All other wiring, resistors and 

capacitors are integrated into the PCB.   The 

design was made in several iterations in 

CADSTAR. Some issues encountered was for 

example dealing with the pin spacing of Arduino. 

On most Arduinos there is an irregular spacing 

between pins 7 and 8 that needs to be accounted 

for. This is due to an oversight in the original 

design of Arduino, that has been kept to retain 

compatibility with older modules and expansions. 

The tight spacing of the cylinder made the 

connector placement challenging and several 

reworks had to be done. Special USB B cables with shorter connector heads was bought and 

cut to be able to fit in the cylinder. The coax cable from the EC probe also had to be 

shortened and fitted with a new connector. 

Figure 27 Finished 3D printed lid with sensors protruding 

Figure 28 PCB routing Layout 
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8 Arduino program 

The figure on the right is a 

flow chart of the main part 

of the Arduino program. It 

illustrates a branched set of 

loops that receives a 

command from a Bluetooth 

interface, like the Serial 

Bluetooth Terminal app for 

Android or Putty for 

Windows and executes 

appropriate actions. 

Sending a “0” over the 

Bluetooth terminal will 

return a text menu with 

available commands.  

First all necessary 

variables and connections 

are initialized. Vectors and 

matrices used by the 

Kalman filter are 

initialized as arrays or two-

dimensional arrays. There 

is a delay after the 

initialization of the 

Openlog module to ensure 

it is ready to receive 

commands. Several 

functions, like the readFile, 

readDisk, and showFiles 

functions assumes the Openlog module is in command mode. The interval used between 

measurements is 1000ms. This is mostly due to the limitations of some of the sensors. In I2c 

Figure 29 Arduino sketch flowchart 
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mode the Atlas EC circuit requires 6000ms to process a measurement command, and another 

300ms to do a temperature compensation. The temperature compensation feature was present 

in earlier drafts of the code but removed later due to reports of faulty behavior in other 

projects. This may have been fixed in newer firmware releases from Atlas scientific. 

Currently only the pure conductivity measurement is reported, and the temperature 

compensation must be done in post processing. The delay between samples is handled with 

the native millis() function. As opposed to the delay() function this allows other tasks to be 

executed in the time between intervals. 

The program uses several slightly modified functions from example code provided by the 

GitHub repositories and guide sections attached to the open source hardware projects. They 

provide simplified methods of communicating and handling data from their circuits. The two 

functions below are taken from Sparkfuns Openlog GIThub. They send a command to the 

OpenLog circuit over UART and handles the response appropriately. They are modified to 

return the response to Bluetooth output instead of the primary serial output.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 readFile and readDisk  function Flowcharts 
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The logData function runs once for every 

measurement. It handles the I2c connection 

with the EC circuit and the pressure sensor. For 

the EC circuit all the commands are handled 

explicitly while the pressure sensor uses a 

simplified function given in an Arduino library 

available on the MS5803-14BA GIThub page. 

There are short delays added in between the 

analog readouts to ensure the ADC has enough 

time to do a proper sample. This is covered in 

the thermistor calibration section 

  

Figure 31 logData function flowchart 
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9 Kalman filter  

The Kalman filter was an experiment implemented to deal with the unknown performance of 

the thermistors. Several factors were of concern: their smaller size and apparent fragility, the 

addition of analogue circuitry and wiring, and the complications of packaging and insulating 

in epoxy. Because the thermistors were cheap, two extra sensors were included in the 

package. This adds redundancy in case of failures and allows for averaging if the sensors 

show individual inconsistencies. Also since hysteresis of the temperature sensor were one of 

the major issues with two similar projects, the OpencTD and the Sound Speed Profiler, a 

solution was sought to compensate for the effects of hysteresis. A Kalman filter is a versatile 

algorithm that can be utilized for these purposes. It is a way of combining multiple sources of 

input, like a mathematical prediction models of the system, different sensor measurements 

and prior knowledge of the system to a generate a statistically optimal estimate. There is also 

another temperature sensor embedded in the pressure sensor that could be used for these 

purposes. In the intended implementation it creates an estimate of the temperature that is a 

composite of several different sensor readings, the prior estimate of temperature, and a simple 

prediction model of the hysteresis effect.  

Prediction step: 

 𝑥̅𝑘 = 𝐹𝑥̂𝑘−1 

𝑃̅𝑘 = 𝐹𝑃̂𝑘−1𝐹𝑇 + 𝑄 

Update step: 

𝐾 = 𝑃̅𝑘𝐻𝑇(𝐻𝑃̅𝑘𝐻𝑇 + 𝑅)−1 

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾(𝑧𝑘 − 𝐻𝑥̅𝑘) 

𝑃̂𝑘 = (𝐼 − 𝐾𝐻)𝑃̅𝑘 

The above formulas are a representation of the general implementation of the Kalman filter. 

The sensor vector z would contain readings from three different sensors and the matrix R 

would contain their variance found by letting the sensors run in a stable temperature 

environment and calculating their variance in excel. The hysteresis compensation effect was 

attempted modeled by storing the rate of change in temperature for the previous 5 samples of 
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the CTD.  A single variable would be added to the temperature estimate that was weighted to 

be larger with a recent dramatic change in temperature, and lesser affected by changes further 

back in time. Several variations of the Kalman filter was attempted but ultimately the project 

never progressed to the point where the implementation could be properly tuned. 

9.1 Linear algebra on the Arduino 

To implement the Kalman filter on Arduino special libraries were required to carry out the 

Kalman formulas. Doing vector and matrix operations are not natively supported by the 

Arduino IDE. Originally an Arduino port for the Eigen library was used. This is a large 

library for C++ with support for many kinds of linear algebra operations. It also requires a lot 

of the very limited storage of an Arduino microcontroller. Instead a smaller library called 

BasicLinearAlgebra.h by Tom Steward was chosen. This is a simpler library with much 

smaller overhead. It can perform simple matrix arithmetic and a few more advanced 

operations like transpose and inverse operations. The matrix elements are stored in c-style 

arrays, and can with a little extra consideration be combined naturally in normal algebraic 

expressions 
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10 Results 

The Arduino CTD was field tested at Lysaker docks 

alongside a commercial CTD, a STD/CTD model 

SD204. The two CTDs were fastened together, 

attached to a rope and lowered by hand. The speed 

has been calculated from the SD204 data to be 

approximately 26 cm per second both descending and 

ascending. Three casts of 3,5, and 7 meters were 

done. Originally a deeper cast from the research ship 

“Trygve Braarud” was planned but fell through due 

to logistical reasons. Ideally more tests, with more 

varied temperature and salinity profiles would be 

preferred. The measurements were exported by text 

file and compared to measurements on the SD card of 

the Arduino CTD. Some differences in units of 

measurements had to be accounted for. The 

conductivity measurements from the Arduino CTD is 

reported in un-temperature compensated µS/cm while 

the SD204 output is reported in Practical Salinity 

Units. There are probably ways of reporting the true 

conductivity measurement through the SD204 

computer interface, but this was not obtained while 

on site. Instead PSU values have been calculated 

from the Arduino CTD measurements in excel and 

compared in this way. The excel sheet formula is 

based on a salinity equation given in the paper 

Algorithms for computation of fundamental 

properties of seawater [30] . Some differences in 

calculation may have occurred. Likewise the pressure 

measurements of the SD204 were reported in meters below sea level instead of a pure 

pressure measurement in millibars. The formula used to calculate depth is 𝐷𝑒𝑝𝑡ℎ =
(𝑝−𝑝0)

𝑔∗100
  

Figure 32 SD204 Commercial CTD [26] 
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Where p is the pressure reading in millibars, 𝑝0 is the pressure at sea level and g is the 

acceleration due to gravity 

10.1 Salinity profile field test comparison 

 

Figure 33 Salinity Profile SD204 comparison 

Surprisingly there seems to be a hysteresis effect in both sensors reading different 

measurements on the way up then on the way down. This is surprising since the measurement 

pulse from the Atlas conductivity sensor is supposed to be instantaneous. This might be 

caused by the processing time of the Atlas EC circuit. It requires 600 ms from the time it 

receives a measurement command to return a reading. In this cast the CTD would have 

travelled 15cm in that time, and since this delay happens in both directions this could account 

for a 30cm offset between the ascending and descending reading at the same depth. This 

effect is present in both sensors, though more pronounced in the Arduino CTD. 
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The salinity profile of the Arduino CTD is clearly off from the profile of the SD204, though 

the curves are similar in shape. This might be caused by errors in calibration, or calculation. 

As a simple experiment, offsetting the Arduino CTD values by -6,5 PSU in the x direction 

and 31cm in the Y direction yielded this curve:

 

Figure 34 Salinity profile with offset 

  

The 6,5 PSU offset to account for the calibration error and 31cm offset since the two pressure 

sensors measured different maximum depths at 6,92 and 6,61 meters. This results in curves 

that closely follows one another with the exceptions of a divergence at 2 meters followed by 

another smaller in the other direction at 4 meters. This is likely caused by the fact that the two 

CTDs joined together had an uneven weight distribution and would slightly rotate when 

pulled through the water. This same effect is visible on the temperature charts. The offset 
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experiment is only a quick fix but shows promise that the conductivity sensor can perform 

well simply by getting the calibration right.  

 

10.2 Temperature profile field test comparison 

 

Figure 35 Temperature profile comparison 

 

At the start of the descent both sensors show signs of a strong hysteresis effect caused by the 

dramatic temperature difference from air to water. This could be corrected by simply letting 

the instruments adjust for a few seconds below surface level before starting the descent. It is 

interesting however since it clearly shows the difference in sensor response time. The SD204 
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is decidedly quicker to adjust. Another strange effect is that the Arduino CTD shows a 

persistent difference in temperature at the same depth. If caused by thermistor response time 

the descending and ascending temperature values at the same depth should converge fairly 

quickly since the temperature values stay uniform throughout most of the cast. 

 

Figure 36 Temperature comparison ascent 

Isolating the ascent you also see very similar curves, with some artifacts at 2 and 4 meters 

probably caused by rotation, but otherwise very little variation if corrected by an offset.  
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10.3 Kalman Filter Profile 

Figure 37 Kalman filter comparison 

The Kalman filter in this configuration actually adds to the delay of the sensor instead of 

compensating for it. This is because the other two worse performing thermistors are weighing 

the estimate down. There is very little stochastic variation in individual thermistor readings, 

the error is dominated by bias effects, making the top performing thermistor always be the 

best estimate. The compensation is first visible once the temperature stabilizes and the 

Kalman filter overshoots, predicting the temperature to continue its momentum. This effect 

will be smaller with a more frequent sampling interval.  
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11 Conclusions and future work 

Ultimately the project was successful in constructing a working low-cost CTD with wireless 

communication, with a clear improvement in temperature sensor response time over similar 

projects.  A last-minute field test was also performed successfully alongside a commercial 

CTD.   

An experiment was done to show the difference in response time between the Adafruit 

thermistor in epoxy and the DS18B20 digital temperature sensor. The stripped-down 

experiment in the lab showed a dramatic difference where the thermistor stabilized after an 

instant 20°C change in 5 seconds while the DS18B20 required 45 seconds to do the same. In 

the data from the field testing however it was noticed that the hysteresis effects were larger 

then should be expected from the lab tests, and larger than the hysteresis from the thermistors 

in the commercial CTD. This is most likely a coding problem, perhaps a delay in the reading 

of the pressure sensor, causing the temperature readings to be registered at the wrong depths. 

Father investigation is needed to correct this issue.  

Some other extended features were tested but with limited results. The turbidity sensor was 

an experiment of what was possible with a very cheap open source sensor which turned out to 

not be very useful in a CTD. It is at best useful as an indicator of very high turbidity water. A 

useful sensor for clear water use would have to be sensitive in the 0-100 NTU range, while 

the DFRrobot sensor combined with the Arduino ADC seems to have a minimum resolution 

of about 50 NTU, and will fluctuate hundreds of NTU in clear water. There are few other 

such sensors available for purchase, however there is a paper called “Low-Cost Turbidity 

Sensor for Low-Power Wireless Monitoring of Fresh-Water Courses” [29] detailing the 

construction of the exact sort of sensor that would be appropriate in a low cost CTD. Future 

work could perhaps include an attempt at recreating this sensor. 

The Kalman filter ultimately failed to be very useful since in practice, the best calibrated 

thermistor is always the best estimate. Little extra is to be gained from including information 

from the other two thermistors or the sensor embedded in the pressure sensor. The prediction 

model could if tuned correctly provide a slightly better hysteresis compensated estimate, but 

since the Arduino CTD has no real time communication ability this is probably better 

achieved in post processing. A much better estimate can be made with full knowledge of all 
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the measurement samples in the data set, for example by averaging the ascending and 

descending temperature value at the same depth of a water column. 

The robustness of the electronics is one of the main weaknesses of this project. The fragile 

nature of the PCB board and wiring setup combined with the tight spacing of the cylinder 

made for a lot of stability problems. The need to gently push the electronics together to make 

room for the gripper plug, as well as the need to pull it slightly outward to access the SD card 

or Arduino USB port causes wear on the solder joints and connectors that accumulates into 

fractures and breaks. This led to frequent failures and erratic behavior that was hard to 

troubleshoot and has made the CTD very unreliable in field testing. Future iterations should 

probably strive to make a more rigid setup, perhaps with a larger cylinder to allow for some 

flexibility while prototyping.  

The field testing, fine tuning, and user interaction considerations of the equipment is 

ultimately where there this project is lacking. For an instrument to be truly low cost it needs 

to consider the practicality and lifetime costs of a user’s interaction with it. Improvements 

should be made to create a robust instrument that require little maintenance and has routines 

for easy re-calibration. This is where most where most non-commercial efforts at making 

low-cost instruments fall short since the scope of these projects seldom reach into the final 

stages of product development. This thesis has hopefully made a mid-tier contribution to the 

collaborative effort of making an ultra-low cost CTD, with improvements over previous 

projects most notably in temperature response time and wireless capability. The Sensors also 

show promise of being able to closely follow the readings of commercial instruments, but 

more time spent calibrating and testing is needed to confirm this. Some experiments, like the 

Kalman filter and turbidity sensor turned out be of limited usefulness, but the ideas and hard-

learned lessons of this project may still be of aid to others. The next iteration of the sensor 

probe is currently underway by another master thesis at the University of Oslo 
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Appendix 

11.1  Arduino code 

unsigned long previousMillis = 0;        // for the millis function 

const long interval = 1000;            

#define SERIESRESISTOR 10000     

#define THERMISTORPIN1 A0  

#define THERMISTORPIN2 A1 

#define THERMISTORPIN3 A2 

#define THERMISTORPIN4 A3 

#define TEMPERATURENOMINAL 25 

#define THERMISTORNOMINAL 10000       

#define BCOEFFICIENT 3950 

float reading1; 

float reading2; 

float reading3; 

//turbidity variable 

float reading4; 

float tvoltage; 

float ntu; 

// conductivity sensor libraries and variables 

#include <Wire.h>                //enable I2C. 

#define address 100 

float EC_float = 0;   

char EC_data[48];    // A 48 byte character array to hold incoming data from the conductivity 

circuit.  
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char *EC;            // Character pointer for string parsing. 

byte received_from_sensor = 0;  // How many characters have been received. 

byte code = 0; 

 

//pressure sensor libraries and variables 

#include <MS5803_14.h>  

MS_5803 sensor = MS_5803(512); 

//matrix and vector libraries 

#include <BasicLinearAlgebra.h> 

using namespace BLA; 

 

void setup() { 

 Serial.begin(9600);   //start the serial monitor 

 Serial1.begin(9600);   //start bluetooth  

 Wire.begin();         //start i2c 

 sensor.initializeMS_5803(false); 

 Serial2.begin(9600);  

  

} 

 

void loop() {  

 // Menu variables 

 char val=6;         // variable to receive data from the serial port 

 char logging; 

 char character; 

 char fileName[12];  

 const byte numChars = 12; 
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 boolean newData = false; 

 static byte ndx = 0; 

 char endMarker = '#'; 

 char rc; 

 //kalman variables 

 float vartemp = 1.12184278324081E-05;   

 float voltage = 0.0; 

 BLA::Matrix<3,3> R; 

 R << 0.1, 0, 0, 

 0, 999, 0, 

 0, 0, 0.1;  

 BLA::Matrix<3> H; 

 H <<1,  

 1,  

 1;  

  

 BLA::Matrix<1,3> G; 

 G <<0,0,0;  

  

 BLA::Matrix<3> Z; 

 Z <<0,  

 0,  

 0;  

  

 BLA::Matrix<1> I; 

 I <<1;  
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 BLA::Matrix<1> Xe; 

 Xe <<0;  

 BLA::Matrix<1> Xp; 

 Xp <<0;    

 BLA::Matrix<1> Zp; 

 Zp <<0;  

 BLA::Matrix<1> P; 

 P <<1;  

  

 BLA::Matrix<1> Pc; 

 P <<0;  

 BLA::Matrix<1> varProcess; 

 P <<0.25;  

  

 BLA::Matrix<3,3> C; 

 float reading1 =0; 

 float reading2 =0; 

 float reading3 =0; 

  

 float v1=0; 

 float v2=0; 

 float v3=0; 

 float v4=0; 

 float v5=0; 

 float lastreading1=0; 

 float lastreading2=0; 

 float lastreading3=0; 
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 float Hys=0; 

 float steinhart1; 

 float steinhart2; 

 float steinhart3; 

 delay(500); 

 gotoCommandMode(); //Puts OpenLog in command mode 

 while(1){ 

  if( Serial1.available() )       // if data is available to read 

  {;} 

  val = Serial1.read();         // read it and store it in 'val' 

   

  if( val == '0' )               // if val = 0 show menu 

  { 

   delay(500);                  // waits for a second    

   Serial1.println("1 - Start logging"); 

   Serial1.println("2 - Stop logging"); 

   Serial1.println("3 - Retrieve data"); 

   Serial1.println("4 - SD Card info"); 

   Serial1.println("5 - View stored files"); 

  } 

  if( val == '1' )               // if val = 1 start logging 

  { 

   Serial1.read(); // empty the buffer 

   Serial1.println("Enter Filename and send # to confirm"); 

   while (newData == false){ 

     

    while (Serial1.available() > 0 && newData == false) { 
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     rc = Serial1.read(); 

      

      

     if (rc != endMarker) { 

      fileName[ndx] = rc; 

      ndx++; 

      if (ndx >= numChars) { 

       ndx = numChars - 1; 

      } 

     } 

     else { 

      fileName[ndx] = '\0'; // terminate the string 

      Serial1.println(fileName); 

      ndx = 0; 

      newData = true; 

     } 

    } 

   } 

    

   newData = false; 

   createFile(fileName);  

   delay(1000);                   

    

   logging='1'; 

  } 

  if( val == '2' )               // if '2' stop logging 

  {   
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   delay(1000);                  // waits for a second 

   Serial1.println("Stopping logging"); 

   logging='0'; 

   Serial2.write(26); 

   Serial2.write(26); 

   Serial2.write(26); 

  } 

   

  if( val == '3' )               // if '3' retrieve data 

  {     

    

   delay(1000);                  // waits for a second 

   Serial2.read(); // empty the buffer 

   Serial1.println("Retrieving data"); 

    

    

   readFile(fileName); //This dumps the contents of a given file to the 

serial terminal 

    

    

  }if( val == '4' )               // if '4' show SD card info 

  {   

    

   delay(1000);                  // waits for a second 

   readDisk(); 
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  } 

  if( val == '5' )               // if val = 5 show files 

  {    

    

   delay(1000);                  // waits for a second    

   readLs(); 

  } 

   

  unsigned long currentMillis = millis(); 

   

  if (currentMillis - previousMillis >= interval && logging=='1') { 

   previousMillis = currentMillis; 

    

    

   Wire.beginTransmission(address); // send conductivity measurement 

command 

   Wire.write('r'); 

   Wire.endTransmission(); 

    

    

    

   reading3 = analogRead(THERMISTORPIN3); 

   reading2 = analogRead(THERMISTORPIN2);      

   reading1 = analogRead(THERMISTORPIN1); 

    

   steinhart1=steinhart(reading1); 
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   steinhart2=steinhart(reading2); 

   steinhart3=steinhart(reading3); 

    

    

    

    

   Serial2.print(steinhart1); 

   Serial2.println(","); 

    

   Serial2.print(steinhart2); 

   Serial2.println(","); 

    

   Serial2.print(steinhart3); 

   Serial2.println(","); 

    

   reading4= analogRead(THERMISTORPIN4); 

   tvoltage = reading4 * (5.0 / 1024.0); // Convert the analog reading 

(which goes from 0 - 1023) to a voltage (0 - 5V): 

   ntu =-1115.78*tvoltage*tvoltage+3446*tvoltage+353;      

    

   sensor.readSensor(); 

    

   Serial2.print(sensor.pressure()); 

   Serial2.println(","); 

   Serial2.print(sensor.temperature()); 

   Serial2.println(","); 

    



64 

 

    

    

   delay(600); 

    

   Wire.requestFrom(address, 48, 1); //retrieve conductivity measurement 

   code = Wire.read();  

   if (Wire.available() > 0) { 

    received_from_sensor = Wire.readBytesUntil(13, EC_data, 48); 

    // Null terminate the data by setting the value after the final 

character to 0. 

    EC_data[received_from_sensor] = 0; 

   } 

   Wire.endTransmission(); 

   // Parse data, if EC_data begins with a digit, not a letter (testing ASCII 

values). 

   if ((EC_data[0] >= 48) && (EC_data[0] <=57)) { 

    parse_data(); 

   } 

    

    

    

    

   Serial2.print(EC_data); 

   Serial2.println(","); 
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   v5=v4; 

   v4=v3; 

   v3=v2; 

   v2=v1; 

   v1=steinhart1-lastreading1; 

   if(lastreading1 == 0){ 

    v1=0; 

   } 

   lastreading1=steinhart1; 

    

   Hys=v1*0.5+v2*0.3+v3*0.2+v4*0.1+v5*0.05; 

   if(Hys>1||Hys<-1){  

    Hys=0.1; 

   } 

    

   Z(0) = steinhart1+Hys; 

   Z(1) = steinhart2+Hys; 

   Z(2) = steinhart3+Hys; 

    

   // kalman process 

   Pc = P + varProcess; 

   C=H*Pc*~H+R; 

   G = (Pc*~H)*C.Inverse();    // kalman gain 

   P = (I-G*H)*Pc;    

   Xp = Xe; 

   Zp = Xp; 

   Xe = G*(Z-H*Zp)+Xp;   // the kalman estimate of the temperature 



66 

 

   delay(100);    

   Serial2.print(Xe(0));       

   Serial2.print(","); 

   Serial2.println(); 

   Serial2.println();    

   if(isnan(Xe(0))){ 

    Xe(0)=steinhart1; 

    v1=0; 

    v2=0; 

    v3=0; 

    v4=0; 

    v5=0; 

   }   

  } 

 } 

} 

float steinhart(float reading) { 

 // convert the value to resistance 

 reading = (1023 / reading)  - 1;     // (1023/ADC - 1)  

 reading = SERIESRESISTOR / reading;  // 10K / (1023/ADC - 1) 

 float result; 

 result = reading / THERMISTORNOMINAL;     // (R/Ro) 

 result = log(result);                  // ln(R/Ro) 

 result /= BCOEFFICIENT;                   // 1/B * ln(R/Ro) 

 result += 1.0 / (TEMPERATURENOMINAL + 273.15); // + (1/To) 

 result = 1.0 / result;                 // Invert 

 result -= 273.15;                         // convert to C   
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 return result;  

} 

 

 

void parse_data() { 

  

 EC = strtok(EC_data, ",");                   

  

} 

 

 

void createFile(char *fileName) { 

  

  

 Serial2.print("new "); 

 Serial2.print(fileName); 

 Serial2.write(13);  

  

  

  

 while(1) { 

  if(Serial2.available()) 

  if(Serial2.read() == '>') break; 

 } 

  

 Serial2.print("append "); 

 Serial2.print(fileName); 
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 Serial2.write(13); //This is \r 

  

  

 while(1) { 

  if(Serial2.available()) 

  if(Serial2.read() == '<') break; 

 } 

  

  

} 

 

void readFile(char *fileName) { 

  

  

 Serial2.print("read "); 

 Serial2.print(fileName); 

 Serial2.write(13); //This is \r 

  

 while(1) { 

  if(Serial2.available()) 

  if(Serial2.read() == '\r') break; 

 }   

  

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) { 

  while(Serial2.available()) { 

   char tempString[100]; 
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   int spot = 0; 

   while(Serial2.available()) { 

    tempString[spot++] = Serial2.read(); 

    if(spot > 98) break; 

   } 

   tempString[spot] = '\0'; 

   Serial1.write(tempString);  

   timeOut = 0; 

  } 

   

  delay(1); 

 } 

  

  

} 

 

 

void readDisk() { 

  

  

 Serial2.print("disk"); 

 Serial2.write(13);  

  

  

  

 while(1) { 

  if(Serial2.available()) 
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  if(Serial2.read() == '\r') break; 

 }   

  

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) { 

  while(Serial2.available()) { 

   char tempString[100]; 

    

   int spot = 0; 

   while(Serial2.available()) { 

    tempString[spot++] = Serial2.read(); 

    if(spot > 98) break; 

   } 

   tempString[spot] = '\0'; 

    

   Serial1.write(tempString);  

   timeOut = 0; 

    

  } 

   

  delay(1); 

 } 

  

  

} 

void readLs() { 

  

 Serial2.print("ls"); 
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 Serial2.write(13); //This is \r 

  

 while(1) { 

  if(Serial2.available()) 

  if(Serial2.read() == '\r') break; 

 }   

  

  

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) { 

  while(Serial2.available()) { 

   char tempString[100]; 

    

   int spot = 0; 

   while(Serial2.available()) { 

    tempString[spot++] = Serial2.read(); 

    if(spot > 98) break; 

   } 

   tempString[spot] = '\0'; 

    

   Serial1.write(tempString);  

   timeOut = 0; 

    

  } 

   

  delay(1); 

 } 
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} 

 

 

void gotoCommandMode(void) { 

  

 Serial2.write(26); 

 Serial2.write(26); 

 Serial2.write(26); 

  

  

 while(1) { 

  if(Serial2.available()) 

  if(Serial2.read() == '>') break; 

 } 

} 
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11.2 PCB routing Layout 
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11.3 PCB schematic 
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