

Low-cost CTD Instrument

Arduino based CTD for autonomous

measurement platform

Jonas Auråen

Master Thesis
Department of Physics, University of Oslo

UNIVERSITETET I OSLO

01.04.19

II

III

© Jonas Auråen

2019

Low-cost CTD Instrument - Arduino based CTD for autonomous measurement platform

Department of Physics, University of Oslo

 http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo

http://www.duo.uio.no/

IV

Abstract

This thesis describes the development of a low cost CTD instrument intended for use on an

Autonomous Survey Vessel (ASV). The vessel will travel at water surface level, stop at

regular intervals and release a sensor probe to do water profile measurements along a water

column. The probe will primarily measure conductivity temperature and depth, and store

these on an internal SD card. The probe is Arduino based and will also have wireless

capability for communication while at surface level. The budget constraints of this project

requires a low cost alternative of a normally very expensive instrument to be developed. The

project is also an attempt at contributing to the efforts of those trying to make CTD

instruments orders of magnitude cheaper then professional engineering equipment.

V

Contents
Abstract .. IV

1 Introduction .. 1

2 What is a CTD .. 2

2.1 Conductivity .. 2

2.1.1 Salinity ... 3

2.1.2 Conductivity and temperature .. 4

2.2 Temperature ... 4

2.3 Pressure .. 5

2.4 Turbidity .. 6

2.4.1 CTD data and sonar .. 6

2.4.2 Absorption .. 6

2.4.3 Sound speed .. 8

2.4.4 Calculating sound speed from CTD data ... 10

3 Open Source Oceanographic Instruments .. 13

3.1.1 Ships ... 14

3.1.2 Moorings .. 14

3.1.3 Autonomous vehicles ... 15

3.1.4 Low cost instrumentation projects ... 16

3.1.5 The Arduino Platform .. 16

3.2 Oceanography for everyone and OpenCTD .. 17

3.3 Other similar projects .. 18

3.3.1 Design of Sound Speed Profiler ... 18

3.3.2 Inexpensive Expendable Conductivity Temperature and Depth (CTD) Sensor 18

4 Sensors ... 19

4.1 Sensors researched ... 19

4.2 Temperature sensors .. 20

4.2.1 RTDs .. 20

4.2.2 Thermocouple ... 20

4.2.3 Thermistor .. 21

4.3 Digital or analog thermometer ICs .. 21

VI

4.3.1 DHT11 and DHT22 .. 21

4.3.2 LM35DZ ... 21

4.3.3 TMP36 .. 22

4.3.4 DS18B20 .. 22

4.4 Conductivity sensors.. 22

4.4.1 Atlas Scientific conductivity sensor ... 22

4.4.2 Gravity conductivity sensor ... 23

4.5 MS5803-14BA... 23

4.6 DFRobot Turbidity Sensor .. 24

5 The Final Setup .. 26

5.1 Microcontroller .. 26

5.2 Bluesmirf Silver ... 27

5.3 OpenLog .. 27

5.4 Improvements over past projects ... 28

5.5 Cost of the project.. 30

6 Calibrating and preparing the sensors .. 31

6.1 Atlas conductivity sensor... 31

6.1.1 Calibrating the sensor ... 32

6.2 DFRobot Turbidity Sensor .. 32

6.3 Thermistors .. 33

6.4 Temperature Sensor Response Time ... 35

6.5 Thermistor calibration ... 37

7 The Package ... 39

7.1 PCB design .. 41

8 Arduino program .. 42

9 Kalman filter .. 45

9.1 Linear algebra on the Arduino ... 46

10 Results .. 47

10.1 Salinity profile field test comparison ... 48

10.2 Temperature profile field test comparison ... 50

10.3 Kalman Filter Profile ... 52

11 Conclusions and future work.. 53

Appendix .. 55

VII

11.1 Arduino code .. 55

11.2 PCB routing Layout ... 73

11.3 PCB schematic ... 74

References .. 75

1

1 Introduction

Small automated vehicles doing automated measurements is an emerging trend especially in

ocean research. Instead of using large and expensive research ships that can only be at one

place at a time, one has started making smaller vessels that can be sent out in greater numbers

to gather data. This thesis is a project within a greater project containing multiple master

thesis with the end goal of making a surface vessel able to stop with regular intervals and do

automatic water profile measurements. The task will be to make a simple lightweight and

affordable sensor device, that can be suitable for use on an autonomous vessel.

Primarily this data is intended to assist sonar and echosounder equipment, to correct for

refraction and absorption effects of sound waves. But there is also a large demand among

researchers for cheaper oceanographic instruments in general. Another goal of this thesis is to

contribute to the efforts of those trying to make cheap open source oceanographic instruments

that are orders of magnitude cheaper then what is currently being offered.

The premise of this thesis is to prototype a CTD device at a fraction of the price of a

commercial device, based on a number of existing projects. The idea is not to build all the

individual parts from scratch but too combine multiple pre-existing efforts, like modular

Arduino components, and open source sensors into a complete functioning CTD. The project

will use the knowledge from similar attempts, like the OpenCTD project [20], Anwar Nazih

Shabans Sound Speed Profiler [7] and attempt to improve upon them, while also

experimenting with some novel ideas. The pre-existing projects serve as proof of what works

and what doesn’t, and lessons are taken from these to lessen the burden of trial and error in

this project. Hopefully this can contribute to the long term goal of creating ultra-low-cost

open source instruments capable of replacing professionally manufactured equipment.

.

.

Figure 1 Project overview

2

2 What is a CTD

A CTD is one of the most common instruments in the oceanographer’s arsenal. It is a

collection of different sensors that take measurements collected by a control unit, combines

them, and produce various other parameters. The letters CTD is an acronym for Conductivity,

Temperature, and Depth, though in reality it does not measure depth, but rather pressure to

calculate depth. The CTD control unit can also often do other things like communicate

wirelessly with a surface vessel, receive GPS position, store data on a memory device, etc.

Differences in salinity, temperature, and depth are the primary parameters that distinguish

different water masses. There are large amounts of existing datasets containing CTD

measurements from lakes and oceans around the world, that can be used to observe long term

changes in climate and ocean conditions. A CTD can be used in a variety of ways. One way

is to let the instrument ascend or descend in a water column, resulting in a vertical profile of

the water. This gives a snapshot of the changes in the different layers of the water column.

CTDs can also be deployed stationary and monitor changes at a fixed point over time, or they

can be dragged horizontally to show anomalies in the horizontal plane.

Several parameters can be derived from the main three measurements made by a CTD. For

example, measurements of conductivity, temperature, and pressure can be combined to

calculate salinity. Pressure and temperature can be used to calculate depth, and temperature,

salinity, and depth can be used to calculate sound speed.

2.1 Conductivity

Conductivity is a measure of the degree of which a material is capable of conducting

electricity. In water this is closely related to the amount of ions dissolved in the fluid. An Ion

is an atom or molecule that has either a positive or negative electrical charge, meaning either

a surplus or deficit of electrons as opposed to protons. These ions come from electrolytes,

which are salts and inorganic materials that dissolve into positively or negatively charged

ions (cations or anions). Even though the water will become increasingly conductive with the

addition of extra ions, it will remain electrically neutral, since the electrolytes will split into

equal amounts of cations and anions. Conductivity is usually measured in milli- or micro

Siemens per centimeter but can sometimes also be measured in Ohms per centimeter. One

Siemens is the reciprocal of one ohm (S = 1/Ω). The standard way of reporting conductivity

3

is to report the conductivity measurement at 25° C or corrected to 25° C. This is called the

specific conductance. The temperature of water will affect conductivity and will have to be

corrected for this to be compared. Conductivity is not the same as conductance. Conductance

depends on the length of the conductor and is measured in Siemens or Ohms. Conductivity on

the other hand is the conductance across a specified length (usually 1 cm) and is measured in

siemens per centimeter.

2.1.1 Salinity

Salinity is a term that refers to the concentration of dissolved salts in water. These salts

dissolve into ions that are usually the largest contributor to the conductivity of water.

Figure 2 The most common ions in seawater]15]

Measuring the salinity directly is problematic, as you cannot simply evaporate the water and

measure the remaining salt. Chloride ions will disappear in the process. What is more

common is to do a conductivity measurement and then assume the salinity based on the

known relationship between conductivity and salinity in a known standard, such as seawater.

The resulting assumption is given in PSU or practical salinity units. Seawater has a fairly

uniform mineral profile. The most common ions in seawater are chloride , sodium,

magnesium, calcium , potassium and bromine. A Salinity calculation based on a normal

seawater mineral profile will give accurate results in most areas, though some exceptions

exist. In freshwater this will vary a lot more and is largely dependent on the surrounding

landmass. Freshwater usually has a higher bicarbonate ratio while seawater has greater

sodium and chloride concentrations [15]

There are several different units in use to measure salinity. The old standard was to use either

parts per thousand or grams/kilogram (1 ppt = 1 g/kg) or in some freshwater sources, mg/L.

Now the most common unit is the unitless PSU, which is most likely to be used in database

archives. In 2010 a new standard was introduced called absolute salinity, or TEOS-10. This is

also the SI unit of salinity but is rarely used unless extra precision is needed.

4

2.1.2 Conductivity and temperature

The conductivity of water will increase as

the temperature increases. A 1°C increase

in temperature will typically result in a 2-

4% increase in conductivity. This is due

to increase in ionic mobility as well as the

increased solubility of many salts and

minerals.

Because of this dependency water

conductivity is measured as specific

conductivity, with measurements made at

or corrected to a standardized

temperature, usually 25°C.

2.2 Temperature

Temperature is another very important feature of water. It can be measured by many different

measurement principles but in a CTD this is usually done by a thermistor or a digital IC

sensor. Temperature has a major impact on biological activity and growth of aquatic

organisms in water. Up to a point, higher water temperatures correspond to more biological

activity. Most water-based organisms are cold-blooded and unable to regulate their core body

temperature. They have preferred temperature ranges and are sensitive to variations in

temperature going too high or too low. Water chemistry is also influenced by temperature.

The rate of chemical reactions, like the uptake of oxygen in water, will generally increase

with higher temperature [14].

Figure 3 Temperature dependency of conductivity[15]

5

Temperature also changes water density. The denser water will sink and settle in layers of

water with similar temperature. This effect is called thermal stratification. In lakes during

summer the surface layer will be heated by sunlight causing a large temperature difference

between the upper and lower layers of the water. This leaves the layers rigid since liquids

with large difference in density don’t mix as easily. In autumn when the weather cools down

again and the water layers become more uniform, a lot more upward and downward mixing

of water can happen. This is important for all marine ecosystems as the dissolved oxygen and

nutrients from the surface gets mixed into the deeper waters. When the water is thermally

stratified, the bottom layers can become anoxic, or contain zero dissolved oxygen. Water

reaches its maximum density at 4℃. [13]

Water has a higher thermal capacity then air and will heat up or cool down much slower. This

can act as a temperature capacitor for surrounding land masses. Coastal areas often have

milder winters and cooler summers, whereas inland locations can have much larger

variability between summer and winter

2.3 Pressure

Pressure is usually measured by a pressure gauge that detect changes in the shape of a coil of

wire or tube of fluid due to outside pressure. It measures the amount of density, or total

weight of water over the sensor. The relationship between pressure and depth are very closely

related, so a pressure sensor is usually able to calculate depth pretty accurately. In stationary

CTDs, an accurate pressure sensor can be used to detect tidal cycles and wave cycles

Figure 4Mixing of water layers in different seasons [12]

6

2.4 Turbidity

Turbidity is an often hard to measure optical property of water. It is the total amount of

particles suspended in the water and determines the visibility in the water body. More

suspended solids mean hazier/cloudier water. This is often measured by optical devices

emitting light and monitoring the amount of scatter due to collisions with solid particles in

the water. Typically, these particles are silt, clay, algae, plankton or any other type of finely

divided matter. Turbidity can be used to determine the drinkability of water or can be used as

an indicator of pollution. High turbidity is a sign of unhealthy water. It can provide shelter

and sustenance for pathogens and lead to outbreaks of waterborne diseases if left untreated.

The unit of measurement is Nephelometric Turbidity Units or NTUs.

2.4.1 CTD data and sonar

Perhaps the most important aspects of the CTD with respects to this project are those that

relate to the sonar. Several projects in the hydroacoustic research group at the University of

Oslo use echo sounders, sonars and hydrophones for detecting features of objects located

under water. The main intention of the proposed automated surface vehicle carrying the CTD

will be to collect data to aid the sonar equipment. There are several ways CTD data can help

to interpret and to aid the deployment of sonar equipment. Primarily this has to do with

absorption and sound speed in water.

2.4.2 Absorption

When sound moves through water, the acoustic energy is lost through the process of

absorption. The intensity of a sound wave decreases with the distance along the propagation

path. There is a large frequency dependent difference in absorption in different types of

water. For example, the absorption in seawater at frequencies between 5 and 50 kHz is 30

times higher than in distilled water (Urik,1983, p.104). Several mechanisms contribute to this

effect. First there are viscous losses that occur, both in fresh and salty water. Viscosity causes

friction that converts acoustic energy into heat and is a direct loss of energy to the medium.

7

Rayleigh’s expression:

𝛼 =
16𝜋2𝜇𝑠

3𝜌𝑐3

Is an attempt to express the absorption effects of viscosity through an absorption coefficient.

In this equation α is the absorption coefficient, 𝜇𝑠 the shear viscosity, 𝜌 the density, c the

sound velocity and f the frequency.

But viscosity by itself does not

account for all the differences in

absorption at different

frequencies. Several other effects

have been observed that affect this

process. Other prominent

contributors are the molecular

relaxation of certain minerals and

compounds. Molecular relaxation

is a pressure-induced process

which dissociates ions from

molecules. For example, the

magnesium molecule can under the varying

pressure of a sound wave dissociate or re-associate its constituent ions, changing the

absorption coefficient of the water. This effect only occurs below a frequency threshold, as

the molecular relaxation takes a certain amount of time to manifest. At higher frequencies,

the sound pressure cycles too fast for the relaxation to occur. In the 2-500 kHz range the

magnesium sulphate is the main cause of absorption, and at the lower frequencies boric acid

become a contributing factor[1].

Figure 5 Absorption coefficients in sea water according to the Fisher-

Simmons expression [4]

8

The exact relationship between these effects and the absorption rate is still not perfectly

understood, and there are several different equations trying to describe it. One such is the

Fisher-Simmons expression [2]:

𝛼 = 𝐴1𝑃1 (
𝑓2

𝑓1
2 + 𝑓2

) 𝑓1 + 𝐴2𝑃2 (
𝑓2

𝑓2
2 + 𝑓2

) 𝑓2 + 𝐴3𝑃3𝑓2

Where the terms 𝐴1, 𝐴2, 𝐴3, 𝑓1, 𝑓2 are functions of temperature and 𝑃1, 𝑃2, 𝑃3 are functions

of pressure. The three parts of the equations describe the contribution of boric acid,

magnesium sulfate and viscosity respectively. (Urik,1983, p.105). Note that all the required

measurements for the calculation of the absorption coefficient can be acquired by a CTD.

Knowing the absorption factor is important for sonar because the rate of absorption is the

limiting factor that determines the highest useful frequency for object detection at a given

range. CTD data can help determine what frequencies can be used at what ranges, when

setting up sonar equipment. For example, the absorption rate in fresh water is relatively small

up to about 200kHz, since little molecular relaxation occurs. This means that higher

frequencies then what could be used in seawater, can be used at the same maximum range of

detection in freshwater

2.4.3 Sound speed

Sound speed can also be determined from

CTD data. The velocity of molecules

increases with higher temperatures, and

the density and salinity of the water

makes the sound waves travel faster as

the wave vibrates with more molecules.

This is important for sonar applications

because sound refracts when it changes

speed. If a sonar transmits horizontally,

the sound waves will bend because the

sound speed changes with depth. A near

horizontally aligned sound beam

experiencing decreasing temperature
Figure 5 Physical basis of Snell’s law [11]

9

with depth will bend downwards since

the lower part of the wave-front will

travel in colder water with slower

sound speed. In the pictures you can

see the sound wave illustrated as a

ray, changing direction when it

changes speed. If the gradient is

negative, like it often is in the upper

layers the sound waves are bent

downward. If the gradient is positive,

as it is in deep ocean where the pressure

causes the sound to travel faster, the

waves are bent upwards.

Temperature is the dominant variable

affecting sound speed in the upper few

hundred meters of water, though in

some polar regions varying levels of

salinity can also play an important part.

Pressure starts being important deeper

in the ocean, where the temperature

stabilizes.

A typical sound speed profile in

seawater will look like the figure on the

right. The sea is divided into several

layers. At the top there is the surface

layer, which will be influenced by daily

and local changes in wind and weather. Then

there is the seasonal thermocline, where the

temperature steadily declines with depth. This

is characterized by a negative sound speed

gradient. In the summer this will be more

pronounced than in the winter.

Figure 6 Sound Speed Gradients [10]

Figure 7 Typical ocean velocity profile divided into layers [1]

10

Below this is the main thermocline, where the temperature continues to decline, but is only

slightly affected by the seasons. Finally, there is the deep isothermal layer, where the

temperature stays fairly constant and the increases in pressure will lead to a positive sound

speed gradient

For sonar this has significant implications. The ocean will have an upper layer where it has

the potential to trap acoustic energy. The surface layer will often contain an isothermic mixed

layer. Instead of having a stable negative temperature gradient, like the water below it, the

mixing of heated surface water and cooler water from below can lead to several meters where

the temperature gradient is neutral. This in turn can lead to a positive sound speed gradient as

the pressure increases with depth. The point where the sound speed gradient turns negative is

called the Sonic Layer Depth and can cause an upper duct where the sound waves sent from a

fixed point will bend upwards or downwards from the layer, causing a shadow zone where

detection is difficult.

2.4.4 Calculating sound speed from CTD data

Several attempts have been made to describe the behavior of sound speed in water. Even

though it seems to depend entirely on salinity, temperature and depth, (the exception being

contaminants such as air bubbles and biological organisms), the relationship between these

are extremely complicated. Most equations are based on extensive measurements done in

controlled environments with varying levels of temperature, salinity and pressure. Complex

Figure 8 Surface Duct Shadow Zone [10]

11

polynomials are then created to best fit the measurements. The international standard

equation, or UNESCO equation, for sound speed is made by Chen and Milero [3]. It has later

been recalculated by Wong and Zhu [5] following the adoption of the International

Temperature Scale in 1990. The equation looks like this:

Where T is temperature in Celsius, S is salinity in Practical Salinity Units, and P is pressure

in Bar. The A’s and C’s are numerical coefficients given by a table

Table 1 UNESCO equation table of coefficients [6]

This equation is one of the more comprehensive equations, both in terms of range of validity

and computational requirements. The equation is valid in the range of 0 to 40 ℃ in

temperature, 0 to 40 parts per thousand for salinity, and 0 to 1000 bar for pressure. Other

12

equations like the Del Grosso equation is similarly comprehensive but has a more restricted

range of validity. It is preferred by many authors since the UNESCO equation has a number

of known flaws. For example, there have been several experiments proving that the UNESCO

equation will give incorrect values under high pressure conditions [9].

In addition to these there are several simpler equation made for practical use, but with

restrictions in range of validity and reduction in accuracy:

Table 2 Other expressions for speed of sound in water [7]

13

3 Open Source Oceanographic

Instruments

Monitoring the oceans and fresh waters is an important goal for a multitude of reasons. The

ocean, more so than land masses, are deeply impacted by increasing carbon dioxide

emissions from human activities. The changes in water temperature, acidification and

deoxygenation of water leads to changes in oceanic circulation and chemistry that can

threaten the biological ecosystems underwater, as well as cause unpredictable and destructive

weather events on land. In a study of the Virginia Institute of Marine science it is estimated

that the decline in ocean health can cost the global economy $428 billion per year by 2050,

and 1.979 trillion by 2100 [27]. These are critical environmental processes happening

underwater that needs to be monitored and understood, and to do this a vast amount of data

and measurements are needed. The cost of such ventures is currently what is prohibiting this

from happening at the scale that is needed. The measurement sites are often remote and the

ocean is a harsh environment that requires specially tailored equipment and technology

Usually robust equipment mounted on elaborate mooring systems or research ships are

deployed, but these are tremendously expensive and the equipment can be bulky and

dangerous to handle. The technological developments in areas such as GPS and autonomous

vehicles has opened up the possibility of newer and smarter ways of doing this, and with

other developments in consumer electronics greatly decreasing costs and increasing

availability of products one could expect a wave of cheaper and smarter underwater

instruments to be at hand. This however has yet to occur. The arena is still dominated by

professional engineering companies, creating expensive solutions for small scale use. Daniel

P. Langis (2015) of the California State Maritime Academy lists three reasons why the

developments of ultra-low-cost instruments have failed to materialize.:

1. Many individuals have made attempts at portions of ultra-low-cost sensor

development (such as conducting studies on individual low-cost sensors) but little

work has been done to propose an end-to-end solution that would make them a

reality. A complete solution must consider how to integrate complex issues such as

product development, data quality, testing, calibration, maintenance, and user

interaction – all while driving down total cost (Blanchard, 2008, p.10).

2. The instrumentation industry is dominated by a limited number of commercial

companies who have a strong hold on the market. Those companies create first-rate

products and do provide reliable end-to-end solutions for the issues above. Although

14

expensive, the costs for oceanographic instruments are incorporated into budgets as

the price of conducting research; programs also have large amounts of capital

already invested in instruments. These factors reduce pressure and create a

justifiable reluctance to develop and adopt new technologies.

3. Organizational processes and traditions are very hard to change. The adoption of

any revolutionary practice may redefine processes, alter job responsibilities, and

create internal disruptions which require significant organizational change. The

development of ultra-low-cost sensors must also consider how the technology will be

utilized and provide time and recommendations for adopting new (Langis,2015, p.5)

To better understand how low-cost instrumentation could be applied in oceanography it is

useful to understand the strengths and weaknesses of the current available approaches. This is

addressed in a document published by The National Academy of Science Committee where

they list problems associated with the current infrastructure of ocean research and detail

trends and strategies for the coming two decades in this area.

3.1.1 Ships

Research ships can be equipped with numerous gadgets and instruments and can deploy

mooring systems to remain on sites for remote observation. They have a distinct advantage

over other platforms in their versatility and mobility, but they are also increasingly costly. In

the US, according to the National Ocean Council’s Federal Oceanographic Fleet Status

Report (2013, p. 20) “Fuel costs have increased some 400% since 2003, aging vessels

require higher maintenance costs, personnel costs for salaries and training are increasing,

and new safety and environmental standards are becoming more stringent” (National Ocean

Council, 2013, pp. 19-20). The consequence is that the ships available are used less, and that

researchers are actively searching for alternate methods of doing measurements to reduce

ship time

3.1.2 Moorings

Mooring systems are instruments mounted on a cable traversing from an anchor element at

the ocean floor to a buoy at the surface level. The surface element often contains satellite

communication and tracking devices. The equipment is transported by ships and can stay on

the same spot for a long time, sometimes providing comparable data sets going decades back

15

in time. These will still be useful in the coming decades for their high frequency fixed

location data, but their mobility, their complexity, and the cost and safety concerns of their

deployment make them unsuitable for the type of mass measurements that other platforms

could provide.

3.1.3 Autonomous vehicles

Autonomous vehicles carrying instruments is a new approach made possible by GPS and

satellite technology. These can be UAVs, gliders with expendable CTDs or self-sustaining

floating devices. The ARGO is an example of such a device that has been implemented in a

global program that has already

revolutionized ocean data

measurement. Argo is an

international collaboration that

collects temperature and salinity

data from the upper 2000 meters of

the global oceans. Currently about

3200 floats are in use, with another

800 being deployed per year[17].

The data is gathered from an

autonomous float that spends most

of the time submerged at a parking

depth. At this depth it is neutrally

buoyant which means it has a density equal to the surrounding water. At every 10 days or so

the float will pump fluid into an external bladder and gradually rise to the surface while

collecting measurement data. When it surfaces it transmits the data to a satellite before it

submerges again. Each float is designed to do about 140 cycles and last about 4 years. The

construction cost for one device is about 15 000 $ and about twice that with operating costs.

This is still fairly expensive and is expected to rise, as the ARGO program has several new

upgrades planned such as new biological sensors, chemical sensors and Iridium

communication. The National Ocean Council [16] summarizes that:

In the past two decades, use of floats, gliders, ROVS, AUVS, and scientific seafloor

cables has increased; use of ships, drifters, moorings, and towed arrays have

remained stable; and use of HOVs has declined. Based on these trends, utilization and

Figure 11 How Argo floats work [17]

16

capabilities for floats, gliders, ROVs, AUVs, ships, and moorings will continue to

increase for the next 20 years, and HOV use is likely to remain stable. Ships will

continue to be an essential component of ocean research infrastructure; however, the

increasing use of autonomous and unmanned assets may change how ships are used.

(2011, p. 31)

3.1.4 Low cost instrumentation projects

While there are a number of exciting technological advancements in oceanographic

equipment, there is still a widely recognized need for less expensive instrumentation. The

spatial resolution of data can be greatly increased and models used for prediction can be

significantly improved by having a large number of discrete measurements available. This

will most likely be resolved by creating a large network of low-cost instruments that are

orders of magnitude cheaper then what they are today. The National Ocean Council[16]

thinks such a development is imminent. In their report they write:

Circa 1990, there were only a few 8-bit microprocessor systems with sufficiently low

power consumption for autonomous deployments, and they had volatile solid-state

memory and limited computational power and data storage. In 2010, processors with

orders-of-magnitude-higher computational power can navigate systems, command

sensors and actuators, adapt missions, and retain gigabytes of data in robust solid-

state memory. There have been parallel improvements in power availability, including

the transition from alkaline to lithium batteries. (National Ocean Council, 2011, p.

28-29)

3.1.5 The Arduino Platform

One way to take advantage of the consumer-driven advancements in microelectronics is to

utilize the Arduino platform. Arduino is an open source platform that consists of a physical

programmable circuit board and an Integrated Development Environment (IDE). The board

has programmable digital and analog I/O ports and can communicate to other devices using

standardized protocols such as UART, I2C and SPI. The main advantages of the Arduino

platform is its price point and its large array of available add-on modules and components.

Since the platform is open source there is also a very large online community and a wide

variety of sample code and projects for support. Daniel Langis argues in his paper “An

17

Implementation Strategy for Low-Cost Sensors” that Arduino is a very suitable platform for

the development and rapid evolvement of new low-cost sensors. He writes:

Despite its low cost, the Arduino is a highly versatile platform which can be used to

interface with almost any type of modern integrated circuit, such as Analog-to-Digital

Converters, memory cards, real-time clocks, or power switching devices. As for

oceanographic research, it is equally feasible to connect a full suite of oceanographic

sensors to a single Arduino controller. If individual low-cost sensors for

oceanographic measurements can be developed, the Arduino is an ideal platform for

integrating multiple sensors into successful low cost instruments (Langis,2015, p.15).

There are also disadvantages that should be addressed. For example, The Arduino is not

optimized for power consumption. This is important in long-term deployment in remote

locations, where battery capacity is a limiting factor. There are also limitations in the built in

features of the Arduino board. Like the lack of storage such as an SD card, lack of a real-time

clock and a low-quality ADC with a limited sampling rate and a resolution of only 10 bit.

These flaws can be corrected for however, by using external modular components, like an

OpenLog SD card logger, or an Adafruit 16-bit ADC.

3.2 Oceanography for everyone and OpenCTD

The OpenCTD project is a part of the Oceanography for Everyone community. They describe

themselves as an opensource community of hardware developers, scientists and ocean

stakeholders, that are making and sharing alternatives to expensive scientific equipment. The

equipment is meant for citizen scientists interested in doing marine monitoring, fishermen

exploring new tools to understand their catch or ocean enthusiast seeking new ways to

interact with the sea” [18]

The equipment includes the Niskin3D, a 3D printable bottle that allows users to take discrete

water samples at specific depths or in specific environmental conditions, designed to be

integrated with the OpenROV which an open source project by a team of engineers in the San

Francisco Bay area is. The BeagleBox, which is a single-board 3D printed robust field laptop

designed to fit into a pelican case. And the OpenCTD which is a low-cost open-source

instrument for measuring conductivity, temperature and depth creating a vertical water

column profile.

18

The OpenCTD is a collection of sensors controlled by an Arduino microcontroller, contained

in a watertight package made from a PVC pipe. It also contains a battery and a SD card for

storing data. The battery is sufficient for 40 hour of use. It uses the DS18B20 Temperature

Sensor, the MS5803-14BA pressure sensor and the Atlas scientific K=1.0 conductivity kit.

The package is a regular PVC pipe cut into size and with a 3D printable lid to be fastened

with glue. It has a GitHub page with construction instructions , and several field test logs,

documenting its performance. OpenCTD was initially designed by Andrew Thaler, Kersey

Sturdivant, and Russell Neches from Virginia Institute of Marine Science and Duke

University’s Nicholas School of the Environment.

3.3 Other similar projects

There are several other attempts at making low cost CTDs

3.3.1 Design of Sound Speed Profiler

Is a master thesis by Anwar Nazih Shaban , and is a previous attempt to tackle the same

problems as this thesis. It is using a self-made conductivity sensor, the DS18B20 temperature

sensor and the MS5803-14BA pressure sensor. The device is controlled by an Arduino UNO

microcontroller, and can communicate using a Bluetooth chip called BlueSMiRF Silver. The

data measured is logged on a memory card using Openlog[7].

3.3.2 Inexpensive Expendable Conductivity Temperature and Depth

(CTD) Sensor

Is a paper from the Florida Institute of Technology attempting to make an expendable CTD at

an affordable price. The project describes the construction of a CTD cartridge to be launched

over the side of a vessel or from a drone that can do measurements over a 10 meter water

column. The cost of each unit would be about 982 dollars and would consist of 5 primary

electronic systems: a GPS chip, a memory card for data logging, wireless communication,

and a Pic Chip microcontroller. The CTD is made with the atlas conductivity sensor, a

wireless chip called the XBee that uses the ZigBee wireless protocol, and a data logging

system called OpenLog. [19]

19

4 Sensors

A very important part of making this water profiler is choosing the right sensors. When

choosing sensors there are several considerations to be made. This could be finding a suitable

packaging or ensuring the sensor has adequate response time, and that the accuracy is

sufficient. Usually the sensors will have a specified degree of uncertainty listed in its

datasheet. But since the primary purpose of the water profiler will be to measure sound speed,

which will be calculated using a complicated formula from three different sensors, the impact

of the uncertainty of the different sensors is not always apparent. As a pre-purchase activity,

several sensors were researched, and an excel sheet with the different sound speed formulas

were made, experimenting with plugging in upper and lower values of a sensors listed

measurement uncertainty, and seeing how they affected the formula output.

4.1 Sensors researched

 Atlas

conductivity

sensor

Gravity

conductivity

sensor

Adafruit

Thermistor

DS18B20 MS5803-

14BAPressure

sensor

Listed uncertainty +/- 2% psu

in seawater

+/- 5% psu in

seawater

+-1% of 10k

ohm at 25℃

or ~+/-

0,25℃

+/- 0,5℃ +/-20 mbar

Reference value 35 psu 35 psu 15℃ 15℃ 4 meters (1.415

bar)

Uncertainty range in

soundspeed using

Mackenzie formula

1,97 m/s 4,96 m/s 0,97 m/s 1,93 m/s ~0 m/s

Uncertainty range in

soundspeed using

Medwins formula

1,98 m/s 4,96 m/s 0,997 m/s 1,99 m/s ~0 m/s

Some observations made:

-The pressure sensor barely affected the sound speed formula result in the 0-30 meter depth

range.

-The difference in accuracy of the temperature sensors has a small impact on the sound speed

calculation (+-0,05% of the final value). Although only two are listed here most others are in

the same range.

20

-The choice of conductivity sensor seems to affect the final results slightly more (+/-0,166%

of final value) and there is also a larger difference between the two options.

4.2 Temperature sensors

When choosing a temperature sensor there are several factors to take into consideration.

These include temperature range, accuracy, response time, stability, linearity, and sensitivity.

For this specific application one could also add having a package that supports high pressure

underwater situations, and ease of use with Arduino. If this is to be used in an open source

project an easy setup procedure and limited need for instructions would be a plus.

The most common types of temperature sensors are: RTDs, Thermocouples, Thermistors,

Digital thermometer ICs, Analog thermometer ICs

4.2.1 RTDs

RTDs (resistive temperature detectors) consist of a coil of wire wrapped around a core of

glass or ceramics. The wire is typically made of platinum or copper. As with the thermistor

the RTD will change its resistance value with changes in temperature in a predictable

manner. The RTDs can achieve high precision and have low drift over time. They can operate

in a large range of temperatures, but have slower response time then for example the

thermistor.

4.2.2 Thermocouple

A thermocouple sensor takes advantage of a phenomenon called the Seebeck effect. This is

when a temperature difference between two different electrical conductors produce a voltage

difference between the two elements. This is usually realized with two wires of different

metals, joined in one end and separated at the other. The magnitude of the voltage difference

between the wires then determine the temperature. Different combinations of metals are used

for different applications. For example, Copper/Constantan is more accurate in lower

temperatures then Iron/Constantan, which is a more common cheaper version. These are solid

and cheap sensors that see a wide variety of use in the industry. They are however, often not

the most accurate sensors, and they tend to drift over time.

21

4.2.3 Thermistor

A thermistor is named as such because it is a thermal resistor. It is made of a material

typically a ceramic or polymer that changes its resistance dependent on the temperature. They

typically have a smaller operating range then the other sensors, but are often very accurate

and have a smaller response time. They can be either a NTC or a PTC type sensor, negative

or positive temperature coefficient, which determines if the resistance increase or decrease as

the temperature increases. A Thermistor response is not linear and need to be linearized in the

intended temperature range before use.

4.3 Digital or analog thermometer ICs

There are a number of temperature sensor ICs with various working mechanisms and various

features that could be used with Arduino.

4.3.1 DHT11 and DHT22

These sensors are very common in Arduino projects. They are small and cheap ICs that

measure humidity and temperature. The temperature is measured with a thermistor. The chip

contains some simple analog to digital conversion that yields a one-wire digital output. The

interface is not dallas one-wire compatible, so each sensor needs its own pin on the

microcontroller. There are some significant drawbacks with these chips. You can only sample

the temperature once every second for the DHT11, or once every two seconds for the

DHT22. The accuracy is also not particularly good, +-2 degrees for the DHT11 and ±0.5°C

for the DHT22.

4.3.2 LM35DZ

The LM35DZ is a semiconductor temperature sensor. The basic working mechanism is to

exploit the current and temperature characteristics of transistors. Two identical transistors are

exposed to different currents and the difference in voltage outputs will be proportional to the

temperature of the transistors. What is special about this IC is that it offers a pre-calibrated

analog output voltage proportional to the temperature in degrees centigrade as opposed to

absolute temperatures in kelvin. The accuracy of this sensor is typically ±0.5°C.

22

4.3.3 TMP36

The TMP36 is very similar and often interchangeable with the LM35DZ. It offers an analog

output in degrees centigrade, but has slightly worse out of the box accuracy at ±1-2°C. The

sensor is made to function on less than 50µA and therefore have very low self-heating.

4.3.4 DS18B20

The DS18B20 is a semiconductor temperature sensor with a digital output. It uses the Dallas

1-wire interface, which means that several sensors can operate on the same data line. This is

useful if you want to have networks of sensors connected to the same microcontroller. The

output data has a programmable resolution of 9-12 bits. The IC is powered either through a

dedicated power line or through the data line (Parasitic Power Mode). In this mode the IC

only requires two wires to function. This sensor also comes in a waterproof package, and is

very often used in DIY projects that measure the temperature of liquids. In both the Sound

Speed Profiler and the OpenCTD project a waterproofed DS18B20 has been used. The

drawbacks are the stated ±0.5°C uncertainty in accuracy and the slow response time due to

the large metal packaging.

4.4 Conductivity sensors

4.4.1 Atlas Scientific conductivity sensor

Atlas Scientific sells a set containing a

conductivity probe, a circuit, and two calibration

liquid solutions. The probe comes in three variants

with different cell constants, K=0.1, K=1.0 and

K=10. The cell constant, K, is the distance in cm

between the probe’s electrodes divided by the

surface area of the electrodes in cm^2. These have

different accuracy ranges, so the K=0.1 is better at

getting accurate reading in low conductivity

conditions. This is because when the electrodes

are placed closer together or made larger, the cell constant, K, will be less than one. This will

raise the conductance and produce a value more easily interpreted by the instrument.

Figure 6 Different conductivity probe types [22]

23

Conductivity = Conductance x Probes cell constant (K)

OR Conductivity = Electrical Current/Voltage x Distance/Area

The circuit included with the probe can interpret the data and report the readings as total

dissolved solids (ppm), practical salinity units(psu) or Siemens per centimeter (µS/cm. It also

has temperature compensation feature, and can communicate with other devices through I2C

or UART protocols [22]

4.4.2 Gravity conductivity sensor

The gravity conductivity sensor is from the DFRobot gravity series. The series is a collection

of sensors and other electronics that are intended to be open-source and modular, so you can

combine them for various DIY projects. The set contains a K=1 probe a signal conversion

board, several calibration solutions and connectors. The listed accuracy of the set is +/- 5%

psu in seawater, or about twice as much as the atlas sensor.

4.5 MS5803-14BA

The MS5803-14BA pressure sensor is a

MEMS device, or a microelectromechanical

system device, with moving parts between 1

and 100 micrometers in size. It claims an

accuracy of 0,2 mbar or a depth resolution of 1

cm. The sensor can communicate with any

microcontroller using the I2C or SPI interface.

There is also an onboard temperature sensor,

and different operating modes, optimizing for

either current consumption or conversion

speed. The sensor elements are surrounded by

a antimagnetic steel cap and is covered in a gel

membrane that protects it against 30 bar water

pressure. The breakout version is an open

source hardware product made by Sparkfun. They have broken out all the pins needed for

Figure 7 MS5803-14BA pressure sensor with protective gel coating [23]

24

Arduino, and included a GiThub and guide section with instructions, Arduino libraries and

example code.[23]

4.6 DFRobot Turbidity Sensor

The DFRobot sensor is based on the

Tyndall effect . which describes the

scattering of light by suspended

particles in a fluid. The higher

number of particles the more light

will be scattered. The sensor

measures the amount of particles in

the water by sending a light beam to

an opposing light detector. The

particle density is then a function of

the light reflected into the detector.

The figure on the right is the

circuit inside the probe. It has a

photo transmitter diode (Photo

TR) emitting light, and a receiver

transistor registering the scatter.

Ri and Ro are pull-down resistors.

Pin 4 supplies 5v to the circuit

and pin 1 is the signal readout.

The figure below is the circuit

schematic. It is a dual amplifier

circuit which amplifies the signal

from the probe since the Arduino

data pins require 20mA to

function. Toggling the SW1

switch puts the circuit in digital mode, which is a binary output that goes high when the

signal reaches an adjustable threshold value. This value is set by an on-board potentiometer

Figure 9 Turbidity probe schematic [21]

Figure 8 DFRrobot Turbidity sensor

25

Figure 10 Turbidity circuit schematic

26

5 The Final Setup

Finally a setup was established based on the openCTD package solution. The figure below is

an illustration of the components chosen and all the different projects that collaborated into

making the finished CTD.

5.1 Microcontroller

Originally a Qduino mini microcontroller was used, which is a lightweight Arduino

microcontroller. This is the controller used in the OpenCTD project, and is a very low power

unit that can be sustained for long times on battery power. This unit malfunctioned, and a

switch was made to the more common Arduino UNO. Finally since the project expanded

Figure 11 Illustration of the different projects contributing to the construction of the CTD

27

further, the need for additional hardware UART connections necessitated an upgrade to the

Arduino Mega. This also solved a long running problem of getting the OpenLog SD card

module and Bluesmirf Bluetooth to function at the same time.

5.2 Bluesmirf Silver

Bluesmirf Silver is a Bluetooth modem for Arduino by Sparkfun. It is a Breakout version of

the RN-41 module. Bluetooth is a wireless technology standard that uses low power radio

waves to transmit data on a frequency of around 2.45 GHz. This is in the ISM band of

frequencies set aside for the use of industrial, scientific and medical devices. Bluetooth

devices avoid interfering with other systems by transmitting very weak signals of about 1

milliwatt. Phones for comparison can transmit signals up to 3 watts in strength. This limits

the range to about 10 meters, but at the same time limits interference from other systems.

Another way Bluetooth avoids interference is by a method called spread-spectrum frequency

hopping. This means a device will use 79 different random frequencies within a designated

range, hopping from one to another. A Bluetooth device will change frequencies about 1600

times a second. This ensures that if interference occurs it only does so in a tiny fraction of a

second. Bluetooth uses a “piconet” topology, where it forms a small network of 1 master and

up to 7 slaves. The master can transmit data to one other device in the network at any given

time, and will typically switch from slaves in round-robin fashion, while the slaves are in

listen mode. In the CTD probe the Bluesmirf chip is placed in a slot through the 3d printed lid

and covered in epoxy with only the antenna protruding to the outside of the CTD.

5.3 OpenLog

The Arduino Uno does not have a lot of onboard memory. It has three different pools of

memory: the Flash memory where the Arduino sketch is stored. This is about 32k bytes,

where 0.5k is used for the bootloader. The SRAM which is where the sketch creates and

manipulates variables when its running. This is 2k bytes of volatile memory which means the

stored data will be lost when power is turned off. lastly there is 1k bytes of EEPROM which

is a memory space that programmers can use to store long term information. Naturally some

external storage is needed. There are several options available, most of these involves either

28

an extra SD card module, or a connection with a computer either through USB or wireless.

Since this will be deployed underwater, connection with a computer will be difficult.

For this project a serial data logger called OpenLog was inherited from a previous project.

OpenLog is an opensource data logger chip that connects to the microcontroller over a serial

connection. It holds a 16GB SD card for storage.

5.4 Improvements over past projects

-This version of the CTD has a working quality EC sensor, which is a basic requirement of

any CTD. The Sound Speed Profiler never achieved a sufficiently accurate EC measurement.

-Both the OpenCTD and the Sound Speed Profiler used the DS18B20 sensor which is a

digital IC inside a large steel casing. This larger casing makes the sensor respond very

slowly. Moving from one water bath to another, from about 40℃ to 20℃, it required 25

seconds to stabilize at the new temperature. In the field, this would require really slow casts

to acquire good readings. The thermistors in epoxy requires only about 5 seconds to

completely stabilize in the same setup.

-The openCTD has no wireless communication

-A Bluetooth setup was present in the Sound Speed Profiler, but the implementation was

flawed. The Bluetooth chip was placed inside the package and would only transmit the data

real time. This would not work in the field since Bluetooth does not carry through water. a

new implementation was made, where the antenna of the sensor was placed through a slit in

the 3d printed lid, so it can transmit when at the surface. Code was then added to be able to

send commands through the Bluetooth module to the Arduino. The sensor can now receive a

start command through Bluetooth, start logging, store the measurements on the Openlog

module, and resurface. When surfaced communication can be restored and a command can be

sent to the Arduino to send the the data stored in the SD card over Bluetooth. This allows

continuous use without opening the package and manually retrieving the SD card, which is

operating procedure in both the OpenCTD and the Sound Speed Profiler. The ability to send a

start command at an appropriate time, also prevents the storage of large amounts of trash

data, since it won’t need to run continuously. This was an issue reported in the use of the

OpenCTD where continuous logging led to large chaotic data logs.

29

-The Arduino UNO was upgraded to an Arduino Mega for the multiple hardware UART

support. This was to correct an issue from the Sound Speed Profiler, where running several

UART connections on the UNO, which has only one UART port and had to emulate others

using the software serial library, led to crashes and unpredictable behavior. This upgrade

increases stability in the simultaneous use of the Bluetooth module and the OpenLog module,

and allows for the easy expansion of Atlas PH and dissolved oxygen sensors in future

improvements. These are two UART sensors that was considered included, but ultimately cut

due to costs.

- The inclusion of a DFRrobot Turbidity sensor.

- The inclusion of a Kalman filter, to attempt to improve thermistor readings through sensor

fusion and a prediction model of the hysteresis effect

Figure 12 The finished probe

30

5.5 Cost of the project

The budget for this project was limited by the

budget allotted to each master program at the

University of Oslo, so cost was a significant

issue. The listed price of the CTD ended up at

about 384 $, though several components were

inherited from a previous project. The low

price of many of the components are from

Chinese web retailers, where electronics can

be bought very reasonably. The Conductivity

sensor is by far the costliest sensor in the

CTD, but it was made a priority. This was

because of reading about other projects

problems with creating a working

conductivity sensor, the importance of an

accurate reading for a reliable sound speed

profile, and its proven application in similar

projects. There are several other sensors of

interest that were cut due to costs. Notably

two Atlas Scientific dissolved oxygen and PH

sensors. These might be included to the next

iteration of the CTD which is in the works in another master thesis. The price of 3d printed

parts is not included in this list, and neither is the PCB board and components. These costs

are negligible, but does require some expensive equipment, like a 3d printer and access to an

electronics lab.

Parts Price $

Arduino Mega 30

Pressure sensor MS5803_14ba 59.95

Openlog (SD card reader) 14,95

Bluesmirf silver (Bluetooth) 24,95

DFRobot Turbidity sensor 9,90

Atlas EC kit 215

3 inch acrylic glass tube 5

Waterproof USB port 3

Micro USB to USB cable 2.99

Type A to type B USB cable 1.99

4 thermistors in epoxy 3.99

Mobile power bank 12

31

6 Calibrating and preparing the

sensors

6.1 Atlas conductivity sensor

The default mode of the circuit is UART mode. I2C communication is possible, but the

protocol is considerably more complex, and somewhat changes the behavior of the chip. For

this project the UART port is already in use from both the Openlog chip and the Bluetooth

chip, in addition to the USB port for uploading code. So it is necessary to switch to I2C.

Instead of the UART “continuous mode” that gives measurements on a regular interval, you

have to send the “R” command for a single reading every time you want to take a

measurement. After the command the circuit needs 600ms processing time before it replies.

A conductivity measurement is also significantly influenced by the temperature. Conductivity

will increase about 2% per ℃. For the values taken at different temperatures to be

comparable a compensation has to be made to show what the value would be at a reference

temperature (usually 25℃). The physical causes for this dependency lies in the relationship

between electrical conductivity, diffusion coefficients and the viscosity of water. There are

several formulas describing this relationship. For example 𝐸𝐶25 =
𝐸𝐶

0.889∗
10

𝐴
𝐵⁄

Where the parameters A and B are:

A = 1.37023 (t – 20) + 8.36·10-4 (t – 20)2

B = 109 + t

𝐸𝐶25 is the conductivity at 25℃, EC is the measured

conductivity and t is the temperature in ℃. A more

common linear approximation is

𝐸𝐶

𝐸𝐶25
= 1 + 𝑎(𝑡 − 25)

Where a is temperature compensation factor. Several values of a are recommended in

different literature. Groundwater textbooks often assume a 2% increase of EC per 1◦C, which

Figure 13 Difference between linear and non-linear temperature

compensation models [32]

32

leads to a factor of 0.02, while geophysicists commonly use a factor of 0.025 [31]. The chart

on the right shows the difference between the non-linear model, and the linear model with

two different compensation factors. As is apparent, the linear model is fairly accurate in the

range of 0 to 30℃ which is the usual operating range of most CTDs.

These calculations can be done internally within the Atlas sensor circuit if you supply an

external temperature measurement, or they can be done in post processing using the raw

conductivity and temperature measurements.

6.1.1 Calibrating the sensor

Calibrating the sensor is done by uploading a

calibration sketch to the Arduino and sending

commands through the serial monitor interface in

the Arduino IDE. The instructions and

commands are detailed in the Atlas EC kit

datasheet. Either a two point or three point

calibration is possible, with one point being a dry

measurement or zero point. Calibration fluids are

included in the EC kit, one at 12880µS and

another at 80000 µS. The operating range of the

Arduino CTD will be around 0 to 40000 µS. Extra

care must be taken to ensure the temperature of

the fluid is exactly 25℃, or the values on the

bottle will have to be recalculated.

6.2 DFRobot Turbidity Sensor

This sensor has an analog output voltage that can be interpreted by the Arduino ADC. But

exactly how this relates to the unit of measurement, the NTU, is not entirely clear. The

sensors wiki page gives some clues however. The graph on top shows an appropriation of the

Figure 14 EC calibration fluids

33

relationship between the voltage and the

NTUs. The one on the bottom shows that

there is also a temperature dependence.

Fluctuations in water temperature can

affect the electronic components, causing

a measurement error. There also seems to

be some variation between sensors. Using

the formula in the graph on the sensor

used in this project gave a large value of

NTUs in clear water, where this should be

zero. The proper way to calibrate a

turbidity sensor would be to obtain

calibrating fluids with known NTU

values, note the probe voltage outputs

at each calibrating point, and do a

curve fit approximation to cover the

whole voltage range. This has not

been attempted in this project, since

calibrating fluids are very expensive,

and the sensitivity of the sensor are no where near what is required for use in a CTD.

6.3 Thermistors

The thermistor is a temperature sensitive resistor. The Adafruit Thermistor in Epoxy is a

10000 ohm resistor with +-1% ohm listed uncertainty. This means that the thermistor is

calibrated to be 10 000 ohms +- 100 ohms at 25 ˚C. Since the microcontroller cannot read

resistance directly the thermistor is connected in series with a

10k resistor, making a voltage divider circuit. When measuring

the output voltage between the resistors, the voltage will

change as the thermistor resistance changes. The voltage

divider equation is:

Figure 15 The relationship between turbidity and voltage [24]

Figure 16 Output voltag at different temperatures [24]

Figure 17 Thermistor in a voltage divider

connected to an arduino

34

Where:

On an Arduino Mega there are several analogue input pins. These pins have an Analog to

Digital Converter (ADC), that converts an analog voltage to a digital value. The ADC on

Arduino Mega has a 10-bit resolution which

means it can detect 2^10 or 1024 discrete

analog levels. They working mechanism of

an ADC is to charge up an internal capacitor

and measure the time it takes to discharge

across an internal resistor. The

microcontroller then measures the number of

clock cycles before the capacitor is

discharged. So typically, the Arduino ADC

will receive a voltage between 0 and 5v and

translate it to a similarly scaled number

between 0 and 1023.

All the analog ports share the same ADC. Every time a conversion is made, the MUX selects

which pin to read (A0-A5) and charges up the sample and hold capacitor C1. The Switch

(SW1) then switches C1 over to the ADC where it discharges over an internal resistor.

During the testing of the CTD, the voltages on the pins where interfering with each other, IE

heating up one thermistor would influence the other. This is because the high impedance of

the thermistor circuits leaves a low amount of current flowing into the ADC and switching

between thermistors too quickly doesn’t leave the sample and hold capacitor enough time

fully discharge. A fix for this issue is to add a short delay in code between readings.

35

6.4 Temperature Sensor Response Time

One of the major issues of both the Sound Speed Profiler and the OpenCTD is the response

time of the temperature sensor. In one field test where the OpenCTD was tested alongside a

SeaBird Model 911 plus CTD onboard the research ship Blue Heron, Andrew Thaler makes a

note afterwards that:

“Casts need to be slow. On the order of 0.15 m/s slow. The temperature probes are not fast.”

[20]

Likewise in Anwar Nazih

Shabans [7] Sound Speed

Profiler project a test was done

raising and lowering the

temperature sensor, where the

sensor would record a very

different temperature on the

way down than at the very same

depth on the way up. This due to hysteresis effects, or slow

sensor response. The cast speed in Shabans test is also

fairly slow, at about 0,12m/sec on the way down and

0,18m/sec on the way up.

It is unclear why the DS18B20 waterproofed sensor has

been chosen in these projects, but it is probably because it is

an easily setup device in an already waterproofed steel

casing package. This packaging is also why it is so slow.

Peaksensors a manufacturer of temperature sensors notes on

their website that:

Sensor speed is dominated by the thermal mass of a sensor. Robustness is the counter

to speed of response. This balance requires a compromised decision that has to made

in regards to which criteria is more important to the end user. This is because it is

difficult to create a robust probe with a fast response time – the sensor sheathing and

other protection elements that are required required to improve robustness has a

significant effect on response time [28]

Figure 18 Sound Speed Profiler temperature hysteresis effect [7]

Figure 19 Sensor element inside casing of

DS18B20

36

So for a project like this, where the fairly quick changes in temperature needs to be recorded,

the compromise probably should lean towards a smaller less robust sensor. One such

candidate is the cheap thermistors by Adafruit covered in a thin layer of epoxy. These are

very small and should perform much faster, but are also fairly fragile. So extra thought would

need to go into their placement and packaging.

To quantify the difference between the responses of the DS18B20 and the thermistor in

epoxy, two water baths, one with a temperature of about 20 degrees and one with about 40

degrees were placed on a table. One thermistor and one waterproofed DS18B20 were placed

in one of the baths and then rapidly moved over to the other, while the microcontroller logged

a temperature sample every second.

Figure 20 Temperature response test setup

37

The graph shows the large difference in sensor response time. While the reading from the

steel cased sensor used 27 second to come within two degrees of the final value and 45

seconds to reach a stable temperature, the thermistor used about 3 and 5 seconds to do the

same. Note that they differ in temperature values, most likely because the factory calibration

of the thermistor was off. The somewhat accurate out of the box calibration and easy digital

readout of the DS18b20 is perhaps a reason why it is often chosen for projects of this nature.

6.5 Thermistor calibration

The different thermistor resistance values will correspond to temperature values in a very

predictable but non-linear way. Usually the thermistor manufacturer will supply accurate

tables that show the resistance value for each specific temperature. You can also use the

Steinhart-Hart equation which is a mathematical approximation of the same relationship. The

error in the Steinhart–Hart equation is generally less than 0.02 °C in the measurement of

temperature over a 200 °C range The equation is:

Figure 21 Temperature response time comparison

38

Where T is the temperature, R is the resistance and A, B and C are the Steinhart-Hart

coefficients. The coefficients are found by taking precise measurements at specific

temperatures, say 20 ˚C, 25 ˚C and 30 ˚C, and solving three simultaneous equations. A

further simplification is to use the B parameter equation:

This is the Steinhart-hart equation where

𝐴 =
1

𝑇0
−

1

𝐵
ln(𝑅0) , 𝐵 =

1

𝐵
 𝑎𝑛𝑑 𝐶 = 0

T0 and R0 is the temperature and resistance at the

reference temperature, usually 25 ˚C. This version

of the formula only requires the input of one term,

the B-parameter often supplied by the

manufacturer, and can be considered accurate over smaller temperature ranges.

In the first stages of testing the CTD the B-parameter supplied from Adafruit were used in the

Arduino code to convert the ADC readings to a temperature value. This calibration turned out

to be accurate in temperatures near 25 ˚C, but unreliable in lower temperatures closer to 0 ˚C.

The CTD needs to be accurate in this range as well, since the normal operating range will be

around 0-25 ˚C. Instead a 3-point calibration was performed. This requires three resistance

readouts at three known temperature values. The first attempt was using a container of

melting ice for an accurate 0 ˚C point , assuming an accurate factory calibration at 10000

ohm for a 25 ˚C point, and using a DS18b20 for an approximate 12 ˚C point. Later a

calibration was done by doing a cast alongside a commercial CTD, logging the resistance

values and calculating new coefficients with the corresponding commercial CTD temperature

values. The coefficients can be found by solving the the three simoultaneous equations:

Figure 22 Typical Steinhart-Hart thermistor curve [25]

39

7 The Package

The packaging containing the sensors

and electronics needs to be solid and

watertight. In the Sound Speed Profiler

project a custom made casing was made

from a tube of plexiglass, with a lid and

supporting beams on the side that

functioned as a closing mechanism.

There were some issues with

waterproofing in this design, and also a

vulnerability too pressure. When the

inside of the tube is filled with air, the

package will collapse when going deep

enough.

The OpenCTD project uses a simpler package made out of a PVC pipe

and a 3d printable lid and sensor outlets on one end, and a gripper plug

on the other. The plug allows for opening and closing the package while

still remaining waterproof. A gripper plug is a plug used by plumbers to

temporarily close an open tube. It’s a rubber plug that expands when you

turn a wing nut bolt which can withstand a fair amount of pressure when

tightened

The package is also tested under various amount of pressure, so it is

known to give in at about 25 meter depth. [20] If it is to be used even

deeper the package needs to be filled with mineral oil, or other non-conductive

fluid.

A modified version of The OpenCTD package was used in this project.

Instead of a PVC pipe a transparent plexiglass tubing was used instead. A lot

of work also went into 3d modeling of the sensor outlet lid. The changes

involve making protruding cylinders to hold the very small thermistors. These

cylinders have a tiny hole in them to let the wires through and are filled with

epoxy. The reason for placing them a distance from the lid is to avoid having

Figure 23 Sound Speed Profiler packaging [7]

Figure 24 Gripper Plug

Figure 25 OpenCTD package

[20]

40

them measure water trapped in the pocket created by the lid and the protective sleeve of the

package, and also to avoid any temperature interference form the package and the other

sensors. Bolt holes were also made to fasten the

pressure sensor to the lid. In the OpenCTD

design the sensor is only fastened by glue, and

was vulnerable to be pushed in from outside

pressure Several iterations were made to correct

flaws and make the fit right. The first drafts

were made using a Ultimaker 2+ 3d printer

using PLA filament. PLA filament is one on the

most common filaments for desktop printer use.

These versions had “stringing” errors which is excess

plastic strings in corners and hollow areas. They were

also very porous and not suited for underwater use.

Later a Dimension Elite printer was used using ABS+

filament. ABS+ is another common filament that is

more resistant to high temperature and is less brittle

then PLA. This yielded a better lid, but still not one that

was fully watertight. The solution was to prepare the lid

with acetone vapor. Acetone dissolves the ABS+

filament and can be used to smoothen and harden the outer layer of a 3D print. This will also

deform the print slightly and one has to be careful not to overdo the application. It is possible

to dip the print in liquid acetone, but using the vapors is a slower and more predictable

approach.

 A setup was made where the plastic lid was placed at the bottom of a container with paper

dipped in acetone fastened to the roof of the container with magnets. This because the vapor

is heavier than air and will gather near the container floor. A protective layer of glass is

placed between the paper and the print to avoid acid dripping.

The sensors were then carefully placed inside their sockets and fastened by a two-component

epoxy. The epoxy used is a Scotch-Weld 2216 B/A Epoxy, which is a very viscous adhesive

that is suitable for bulky application like filling gaps or potting containers. The sensor heads

and components were covered in tape to avoid adhesive splatter. The lid was then potted into

Figure 26 Several versions of the 3D printed lid

41

the plexiglass cylinder. This is when the lid is placed at the far end of the cylinder, and the

cylinder is filled from the inside with a layer of adhesive. This application is done with a

syringe.

Before potting the lid several holes were drilled in the

sensor area of the cylinder. This is to ensure circulation

of water inside the protective sleeve covering the

sensors. When drilling a piece of wood was carved to

support the cylinder from the inside and prevent the

cylinder from cracking.

7.1 PCB design

After settling for a final wiring configuration, a PCB

was designed to make the setup more compact. The

PCB is a two-layer FR4 produced by Elab at UIO. It has

pin rows to fit into the socket of the Arduino mega, as

well as sockets for the Openlog module and atlas EC circuit modules, and pin rows to

connect to the various wires coming from the sensor lid. All other wiring, resistors and

capacitors are integrated into the PCB. The

design was made in several iterations in

CADSTAR. Some issues encountered was for

example dealing with the pin spacing of Arduino.

On most Arduinos there is an irregular spacing

between pins 7 and 8 that needs to be accounted

for. This is due to an oversight in the original

design of Arduino, that has been kept to retain

compatibility with older modules and expansions.

The tight spacing of the cylinder made the

connector placement challenging and several

reworks had to be done. Special USB B cables with shorter connector heads was bought and

cut to be able to fit in the cylinder. The coax cable from the EC probe also had to be

shortened and fitted with a new connector.

Figure 27 Finished 3D printed lid with sensors protruding

Figure 28 PCB routing Layout

42

8 Arduino program

The figure on the right is a

flow chart of the main part

of the Arduino program. It

illustrates a branched set of

loops that receives a

command from a Bluetooth

interface, like the Serial

Bluetooth Terminal app for

Android or Putty for

Windows and executes

appropriate actions.

Sending a “0” over the

Bluetooth terminal will

return a text menu with

available commands.

First all necessary

variables and connections

are initialized. Vectors and

matrices used by the

Kalman filter are

initialized as arrays or two-

dimensional arrays. There

is a delay after the

initialization of the

Openlog module to ensure

it is ready to receive

commands. Several

functions, like the readFile,

readDisk, and showFiles

functions assumes the Openlog module is in command mode. The interval used between

measurements is 1000ms. This is mostly due to the limitations of some of the sensors. In I2c

Figure 29 Arduino sketch flowchart

43

mode the Atlas EC circuit requires 6000ms to process a measurement command, and another

300ms to do a temperature compensation. The temperature compensation feature was present

in earlier drafts of the code but removed later due to reports of faulty behavior in other

projects. This may have been fixed in newer firmware releases from Atlas scientific.

Currently only the pure conductivity measurement is reported, and the temperature

compensation must be done in post processing. The delay between samples is handled with

the native millis() function. As opposed to the delay() function this allows other tasks to be

executed in the time between intervals.

The program uses several slightly modified functions from example code provided by the

GitHub repositories and guide sections attached to the open source hardware projects. They

provide simplified methods of communicating and handling data from their circuits. The two

functions below are taken from Sparkfuns Openlog GIThub. They send a command to the

OpenLog circuit over UART and handles the response appropriately. They are modified to

return the response to Bluetooth output instead of the primary serial output.

Figure 30 readFile and readDisk function Flowcharts

44

The logData function runs once for every

measurement. It handles the I2c connection

with the EC circuit and the pressure sensor. For

the EC circuit all the commands are handled

explicitly while the pressure sensor uses a

simplified function given in an Arduino library

available on the MS5803-14BA GIThub page.

There are short delays added in between the

analog readouts to ensure the ADC has enough

time to do a proper sample. This is covered in

the thermistor calibration section

Figure 31 logData function flowchart

45

9 Kalman filter

The Kalman filter was an experiment implemented to deal with the unknown performance of

the thermistors. Several factors were of concern: their smaller size and apparent fragility, the

addition of analogue circuitry and wiring, and the complications of packaging and insulating

in epoxy. Because the thermistors were cheap, two extra sensors were included in the

package. This adds redundancy in case of failures and allows for averaging if the sensors

show individual inconsistencies. Also since hysteresis of the temperature sensor were one of

the major issues with two similar projects, the OpencTD and the Sound Speed Profiler, a

solution was sought to compensate for the effects of hysteresis. A Kalman filter is a versatile

algorithm that can be utilized for these purposes. It is a way of combining multiple sources of

input, like a mathematical prediction models of the system, different sensor measurements

and prior knowledge of the system to a generate a statistically optimal estimate. There is also

another temperature sensor embedded in the pressure sensor that could be used for these

purposes. In the intended implementation it creates an estimate of the temperature that is a

composite of several different sensor readings, the prior estimate of temperature, and a simple

prediction model of the hysteresis effect.

Prediction step:

 𝑥̅𝑘 = 𝐹𝑥̂𝑘−1

𝑃̅𝑘 = 𝐹𝑃̂𝑘−1𝐹𝑇 + 𝑄

Update step:

𝐾 = 𝑃̅𝑘𝐻𝑇(𝐻𝑃̅𝑘𝐻𝑇 + 𝑅)−1

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾(𝑧𝑘 − 𝐻𝑥̅𝑘)

𝑃̂𝑘 = (𝐼 − 𝐾𝐻)𝑃̅𝑘

The above formulas are a representation of the general implementation of the Kalman filter.

The sensor vector z would contain readings from three different sensors and the matrix R

would contain their variance found by letting the sensors run in a stable temperature

environment and calculating their variance in excel. The hysteresis compensation effect was

attempted modeled by storing the rate of change in temperature for the previous 5 samples of

46

the CTD. A single variable would be added to the temperature estimate that was weighted to

be larger with a recent dramatic change in temperature, and lesser affected by changes further

back in time. Several variations of the Kalman filter was attempted but ultimately the project

never progressed to the point where the implementation could be properly tuned.

9.1 Linear algebra on the Arduino

To implement the Kalman filter on Arduino special libraries were required to carry out the

Kalman formulas. Doing vector and matrix operations are not natively supported by the

Arduino IDE. Originally an Arduino port for the Eigen library was used. This is a large

library for C++ with support for many kinds of linear algebra operations. It also requires a lot

of the very limited storage of an Arduino microcontroller. Instead a smaller library called

BasicLinearAlgebra.h by Tom Steward was chosen. This is a simpler library with much

smaller overhead. It can perform simple matrix arithmetic and a few more advanced

operations like transpose and inverse operations. The matrix elements are stored in c-style

arrays, and can with a little extra consideration be combined naturally in normal algebraic

expressions

47

10 Results

The Arduino CTD was field tested at Lysaker docks

alongside a commercial CTD, a STD/CTD model

SD204. The two CTDs were fastened together,

attached to a rope and lowered by hand. The speed

has been calculated from the SD204 data to be

approximately 26 cm per second both descending and

ascending. Three casts of 3,5, and 7 meters were

done. Originally a deeper cast from the research ship

“Trygve Braarud” was planned but fell through due

to logistical reasons. Ideally more tests, with more

varied temperature and salinity profiles would be

preferred. The measurements were exported by text

file and compared to measurements on the SD card of

the Arduino CTD. Some differences in units of

measurements had to be accounted for. The

conductivity measurements from the Arduino CTD is

reported in un-temperature compensated µS/cm while

the SD204 output is reported in Practical Salinity

Units. There are probably ways of reporting the true

conductivity measurement through the SD204

computer interface, but this was not obtained while

on site. Instead PSU values have been calculated

from the Arduino CTD measurements in excel and

compared in this way. The excel sheet formula is

based on a salinity equation given in the paper

Algorithms for computation of fundamental

properties of seawater [30] . Some differences in

calculation may have occurred. Likewise the pressure

measurements of the SD204 were reported in meters below sea level instead of a pure

pressure measurement in millibars. The formula used to calculate depth is 𝐷𝑒𝑝𝑡ℎ =
(𝑝−𝑝0)

𝑔∗100

Figure 32 SD204 Commercial CTD [26]

48

Where p is the pressure reading in millibars, 𝑝0 is the pressure at sea level and g is the

acceleration due to gravity

10.1 Salinity profile field test comparison

Figure 33 Salinity Profile SD204 comparison

Surprisingly there seems to be a hysteresis effect in both sensors reading different

measurements on the way up then on the way down. This is surprising since the measurement

pulse from the Atlas conductivity sensor is supposed to be instantaneous. This might be

caused by the processing time of the Atlas EC circuit. It requires 600 ms from the time it

receives a measurement command to return a reading. In this cast the CTD would have

travelled 15cm in that time, and since this delay happens in both directions this could account

for a 30cm offset between the ascending and descending reading at the same depth. This

effect is present in both sensors, though more pronounced in the Arduino CTD.

49

The salinity profile of the Arduino CTD is clearly off from the profile of the SD204, though

the curves are similar in shape. This might be caused by errors in calibration, or calculation.

As a simple experiment, offsetting the Arduino CTD values by -6,5 PSU in the x direction

and 31cm in the Y direction yielded this curve:

Figure 34 Salinity profile with offset

The 6,5 PSU offset to account for the calibration error and 31cm offset since the two pressure

sensors measured different maximum depths at 6,92 and 6,61 meters. This results in curves

that closely follows one another with the exceptions of a divergence at 2 meters followed by

another smaller in the other direction at 4 meters. This is likely caused by the fact that the two

CTDs joined together had an uneven weight distribution and would slightly rotate when

pulled through the water. This same effect is visible on the temperature charts. The offset

50

experiment is only a quick fix but shows promise that the conductivity sensor can perform

well simply by getting the calibration right.

10.2 Temperature profile field test comparison

Figure 35 Temperature profile comparison

At the start of the descent both sensors show signs of a strong hysteresis effect caused by the

dramatic temperature difference from air to water. This could be corrected by simply letting

the instruments adjust for a few seconds below surface level before starting the descent. It is

interesting however since it clearly shows the difference in sensor response time. The SD204

51

is decidedly quicker to adjust. Another strange effect is that the Arduino CTD shows a

persistent difference in temperature at the same depth. If caused by thermistor response time

the descending and ascending temperature values at the same depth should converge fairly

quickly since the temperature values stay uniform throughout most of the cast.

Figure 36 Temperature comparison ascent

Isolating the ascent you also see very similar curves, with some artifacts at 2 and 4 meters

probably caused by rotation, but otherwise very little variation if corrected by an offset.

52

10.3 Kalman Filter Profile

Figure 37 Kalman filter comparison

The Kalman filter in this configuration actually adds to the delay of the sensor instead of

compensating for it. This is because the other two worse performing thermistors are weighing

the estimate down. There is very little stochastic variation in individual thermistor readings,

the error is dominated by bias effects, making the top performing thermistor always be the

best estimate. The compensation is first visible once the temperature stabilizes and the

Kalman filter overshoots, predicting the temperature to continue its momentum. This effect

will be smaller with a more frequent sampling interval.

53

11 Conclusions and future work

Ultimately the project was successful in constructing a working low-cost CTD with wireless

communication, with a clear improvement in temperature sensor response time over similar

projects. A last-minute field test was also performed successfully alongside a commercial

CTD.

An experiment was done to show the difference in response time between the Adafruit

thermistor in epoxy and the DS18B20 digital temperature sensor. The stripped-down

experiment in the lab showed a dramatic difference where the thermistor stabilized after an

instant 20°C change in 5 seconds while the DS18B20 required 45 seconds to do the same. In

the data from the field testing however it was noticed that the hysteresis effects were larger

then should be expected from the lab tests, and larger than the hysteresis from the thermistors

in the commercial CTD. This is most likely a coding problem, perhaps a delay in the reading

of the pressure sensor, causing the temperature readings to be registered at the wrong depths.

Father investigation is needed to correct this issue.

Some other extended features were tested but with limited results. The turbidity sensor was

an experiment of what was possible with a very cheap open source sensor which turned out to

not be very useful in a CTD. It is at best useful as an indicator of very high turbidity water. A

useful sensor for clear water use would have to be sensitive in the 0-100 NTU range, while

the DFRrobot sensor combined with the Arduino ADC seems to have a minimum resolution

of about 50 NTU, and will fluctuate hundreds of NTU in clear water. There are few other

such sensors available for purchase, however there is a paper called “Low-Cost Turbidity

Sensor for Low-Power Wireless Monitoring of Fresh-Water Courses” [29] detailing the

construction of the exact sort of sensor that would be appropriate in a low cost CTD. Future

work could perhaps include an attempt at recreating this sensor.

The Kalman filter ultimately failed to be very useful since in practice, the best calibrated

thermistor is always the best estimate. Little extra is to be gained from including information

from the other two thermistors or the sensor embedded in the pressure sensor. The prediction

model could if tuned correctly provide a slightly better hysteresis compensated estimate, but

since the Arduino CTD has no real time communication ability this is probably better

achieved in post processing. A much better estimate can be made with full knowledge of all

54

the measurement samples in the data set, for example by averaging the ascending and

descending temperature value at the same depth of a water column.

The robustness of the electronics is one of the main weaknesses of this project. The fragile

nature of the PCB board and wiring setup combined with the tight spacing of the cylinder

made for a lot of stability problems. The need to gently push the electronics together to make

room for the gripper plug, as well as the need to pull it slightly outward to access the SD card

or Arduino USB port causes wear on the solder joints and connectors that accumulates into

fractures and breaks. This led to frequent failures and erratic behavior that was hard to

troubleshoot and has made the CTD very unreliable in field testing. Future iterations should

probably strive to make a more rigid setup, perhaps with a larger cylinder to allow for some

flexibility while prototyping.

The field testing, fine tuning, and user interaction considerations of the equipment is

ultimately where there this project is lacking. For an instrument to be truly low cost it needs

to consider the practicality and lifetime costs of a user’s interaction with it. Improvements

should be made to create a robust instrument that require little maintenance and has routines

for easy re-calibration. This is where most where most non-commercial efforts at making

low-cost instruments fall short since the scope of these projects seldom reach into the final

stages of product development. This thesis has hopefully made a mid-tier contribution to the

collaborative effort of making an ultra-low cost CTD, with improvements over previous

projects most notably in temperature response time and wireless capability. The Sensors also

show promise of being able to closely follow the readings of commercial instruments, but

more time spent calibrating and testing is needed to confirm this. Some experiments, like the

Kalman filter and turbidity sensor turned out be of limited usefulness, but the ideas and hard-

learned lessons of this project may still be of aid to others. The next iteration of the sensor

probe is currently underway by another master thesis at the University of Oslo

55

Appendix

11.1 Arduino code

unsigned long previousMillis = 0; // for the millis function

const long interval = 1000;

#define SERIESRESISTOR 10000

#define THERMISTORPIN1 A0

#define THERMISTORPIN2 A1

#define THERMISTORPIN3 A2

#define THERMISTORPIN4 A3

#define TEMPERATURENOMINAL 25

#define THERMISTORNOMINAL 10000

#define BCOEFFICIENT 3950

float reading1;

float reading2;

float reading3;

//turbidity variable

float reading4;

float tvoltage;

float ntu;

// conductivity sensor libraries and variables

#include <Wire.h> //enable I2C.

#define address 100

float EC_float = 0;

char EC_data[48]; // A 48 byte character array to hold incoming data from the conductivity

circuit.

56

char *EC; // Character pointer for string parsing.

byte received_from_sensor = 0; // How many characters have been received.

byte code = 0;

//pressure sensor libraries and variables

#include <MS5803_14.h>

MS_5803 sensor = MS_5803(512);

//matrix and vector libraries

#include <BasicLinearAlgebra.h>

using namespace BLA;

void setup() {

 Serial.begin(9600); //start the serial monitor

 Serial1.begin(9600); //start bluetooth

 Wire.begin(); //start i2c

 sensor.initializeMS_5803(false);

 Serial2.begin(9600);

}

void loop() {

 // Menu variables

 char val=6; // variable to receive data from the serial port

 char logging;

 char character;

 char fileName[12];

 const byte numChars = 12;

57

 boolean newData = false;

 static byte ndx = 0;

 char endMarker = '#';

 char rc;

 //kalman variables

 float vartemp = 1.12184278324081E-05;

 float voltage = 0.0;

 BLA::Matrix<3,3> R;

 R << 0.1, 0, 0,

 0, 999, 0,

 0, 0, 0.1;

 BLA::Matrix<3> H;

 H <<1,

 1,

 1;

 BLA::Matrix<1,3> G;

 G <<0,0,0;

 BLA::Matrix<3> Z;

 Z <<0,

 0,

 0;

 BLA::Matrix<1> I;

 I <<1;

58

 BLA::Matrix<1> Xe;

 Xe <<0;

 BLA::Matrix<1> Xp;

 Xp <<0;

 BLA::Matrix<1> Zp;

 Zp <<0;

 BLA::Matrix<1> P;

 P <<1;

 BLA::Matrix<1> Pc;

 P <<0;

 BLA::Matrix<1> varProcess;

 P <<0.25;

 BLA::Matrix<3,3> C;

 float reading1 =0;

 float reading2 =0;

 float reading3 =0;

 float v1=0;

 float v2=0;

 float v3=0;

 float v4=0;

 float v5=0;

 float lastreading1=0;

 float lastreading2=0;

 float lastreading3=0;

59

 float Hys=0;

 float steinhart1;

 float steinhart2;

 float steinhart3;

 delay(500);

 gotoCommandMode(); //Puts OpenLog in command mode

 while(1){

 if(Serial1.available()) // if data is available to read

 {;}

 val = Serial1.read(); // read it and store it in 'val'

 if(val == '0') // if val = 0 show menu

 {

 delay(500); // waits for a second

 Serial1.println("1 - Start logging");

 Serial1.println("2 - Stop logging");

 Serial1.println("3 - Retrieve data");

 Serial1.println("4 - SD Card info");

 Serial1.println("5 - View stored files");

 }

 if(val == '1') // if val = 1 start logging

 {

 Serial1.read(); // empty the buffer

 Serial1.println("Enter Filename and send # to confirm");

 while (newData == false){

 while (Serial1.available() > 0 && newData == false) {

60

 rc = Serial1.read();

 if (rc != endMarker) {

 fileName[ndx] = rc;

 ndx++;

 if (ndx >= numChars) {

 ndx = numChars - 1;

 }

 }

 else {

 fileName[ndx] = '\0'; // terminate the string

 Serial1.println(fileName);

 ndx = 0;

 newData = true;

 }

 }

 }

 newData = false;

 createFile(fileName);

 delay(1000);

 logging='1';

 }

 if(val == '2') // if '2' stop logging

 {

61

 delay(1000); // waits for a second

 Serial1.println("Stopping logging");

 logging='0';

 Serial2.write(26);

 Serial2.write(26);

 Serial2.write(26);

 }

 if(val == '3') // if '3' retrieve data

 {

 delay(1000); // waits for a second

 Serial2.read(); // empty the buffer

 Serial1.println("Retrieving data");

 readFile(fileName); //This dumps the contents of a given file to the

serial terminal

 }if(val == '4') // if '4' show SD card info

 {

 delay(1000); // waits for a second

 readDisk();

62

 }

 if(val == '5') // if val = 5 show files

 {

 delay(1000); // waits for a second

 readLs();

 }

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval && logging=='1') {

 previousMillis = currentMillis;

 Wire.beginTransmission(address); // send conductivity measurement

command

 Wire.write('r');

 Wire.endTransmission();

 reading3 = analogRead(THERMISTORPIN3);

 reading2 = analogRead(THERMISTORPIN2);

 reading1 = analogRead(THERMISTORPIN1);

 steinhart1=steinhart(reading1);

63

 steinhart2=steinhart(reading2);

 steinhart3=steinhart(reading3);

 Serial2.print(steinhart1);

 Serial2.println(",");

 Serial2.print(steinhart2);

 Serial2.println(",");

 Serial2.print(steinhart3);

 Serial2.println(",");

 reading4= analogRead(THERMISTORPIN4);

 tvoltage = reading4 * (5.0 / 1024.0); // Convert the analog reading

(which goes from 0 - 1023) to a voltage (0 - 5V):

 ntu =-1115.78*tvoltage*tvoltage+3446*tvoltage+353;

 sensor.readSensor();

 Serial2.print(sensor.pressure());

 Serial2.println(",");

 Serial2.print(sensor.temperature());

 Serial2.println(",");

64

 delay(600);

 Wire.requestFrom(address, 48, 1); //retrieve conductivity measurement

 code = Wire.read();

 if (Wire.available() > 0) {

 received_from_sensor = Wire.readBytesUntil(13, EC_data, 48);

 // Null terminate the data by setting the value after the final

character to 0.

 EC_data[received_from_sensor] = 0;

 }

 Wire.endTransmission();

 // Parse data, if EC_data begins with a digit, not a letter (testing ASCII

values).

 if ((EC_data[0] >= 48) && (EC_data[0] <=57)) {

 parse_data();

 }

 Serial2.print(EC_data);

 Serial2.println(",");

65

 v5=v4;

 v4=v3;

 v3=v2;

 v2=v1;

 v1=steinhart1-lastreading1;

 if(lastreading1 == 0){

 v1=0;

 }

 lastreading1=steinhart1;

 Hys=v1*0.5+v2*0.3+v3*0.2+v4*0.1+v5*0.05;

 if(Hys>1||Hys<-1){

 Hys=0.1;

 }

 Z(0) = steinhart1+Hys;

 Z(1) = steinhart2+Hys;

 Z(2) = steinhart3+Hys;

 // kalman process

 Pc = P + varProcess;

 C=H*Pc*~H+R;

 G = (Pc*~H)*C.Inverse(); // kalman gain

 P = (I-G*H)*Pc;

 Xp = Xe;

 Zp = Xp;

 Xe = G*(Z-H*Zp)+Xp; // the kalman estimate of the temperature

66

 delay(100);

 Serial2.print(Xe(0));

 Serial2.print(",");

 Serial2.println();

 Serial2.println();

 if(isnan(Xe(0))){

 Xe(0)=steinhart1;

 v1=0;

 v2=0;

 v3=0;

 v4=0;

 v5=0;

 }

 }

 }

}

float steinhart(float reading) {

 // convert the value to resistance

 reading = (1023 / reading) - 1; // (1023/ADC - 1)

 reading = SERIESRESISTOR / reading; // 10K / (1023/ADC - 1)

 float result;

 result = reading / THERMISTORNOMINAL; // (R/Ro)

 result = log(result); // ln(R/Ro)

 result /= BCOEFFICIENT; // 1/B * ln(R/Ro)

 result += 1.0 / (TEMPERATURENOMINAL + 273.15); // + (1/To)

 result = 1.0 / result; // Invert

 result -= 273.15; // convert to C

67

 return result;

}

void parse_data() {

 EC = strtok(EC_data, ",");

}

void createFile(char *fileName) {

 Serial2.print("new ");

 Serial2.print(fileName);

 Serial2.write(13);

 while(1) {

 if(Serial2.available())

 if(Serial2.read() == '>') break;

 }

 Serial2.print("append ");

 Serial2.print(fileName);

68

 Serial2.write(13); //This is \r

 while(1) {

 if(Serial2.available())

 if(Serial2.read() == '<') break;

 }

}

void readFile(char *fileName) {

 Serial2.print("read ");

 Serial2.print(fileName);

 Serial2.write(13); //This is \r

 while(1) {

 if(Serial2.available())

 if(Serial2.read() == '\r') break;

 }

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) {

 while(Serial2.available()) {

 char tempString[100];

69

 int spot = 0;

 while(Serial2.available()) {

 tempString[spot++] = Serial2.read();

 if(spot > 98) break;

 }

 tempString[spot] = '\0';

 Serial1.write(tempString);

 timeOut = 0;

 }

 delay(1);

 }

}

void readDisk() {

 Serial2.print("disk");

 Serial2.write(13);

 while(1) {

 if(Serial2.available())

70

 if(Serial2.read() == '\r') break;

 }

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) {

 while(Serial2.available()) {

 char tempString[100];

 int spot = 0;

 while(Serial2.available()) {

 tempString[spot++] = Serial2.read();

 if(spot > 98) break;

 }

 tempString[spot] = '\0';

 Serial1.write(tempString);

 timeOut = 0;

 }

 delay(1);

 }

}

void readLs() {

 Serial2.print("ls");

71

 Serial2.write(13); //This is \r

 while(1) {

 if(Serial2.available())

 if(Serial2.read() == '\r') break;

 }

 for(int timeOut = 0 ; timeOut < 1000 ; timeOut++) {

 while(Serial2.available()) {

 char tempString[100];

 int spot = 0;

 while(Serial2.available()) {

 tempString[spot++] = Serial2.read();

 if(spot > 98) break;

 }

 tempString[spot] = '\0';

 Serial1.write(tempString);

 timeOut = 0;

 }

 delay(1);

 }

72

}

void gotoCommandMode(void) {

 Serial2.write(26);

 Serial2.write(26);

 Serial2.write(26);

 while(1) {

 if(Serial2.available())

 if(Serial2.read() == '>') break;

 }

}

73

11.2 PCB routing Layout

74

11.3 PCB schematic

75

References

[1] Urik,R. (1983) Principles of underwater sound. 3rd. edition. Westport: McGraw-Hill.

[2] Fisher, F., & Simmons,V. (1977) Sound absorption in Sea Water. Journal of Acoustic

Society America

[3] C-T. Chen and F.J. Millero, (1977) Speed of sound in seawater at high pressures. Journal

of Acoustic Society America

 [4] Leighton, Timothy & C P Evans, R. (2007) Studies into the Detection of Buried Objects

(Particularly Optical Fibres) in Saturated Sediment. Part 2: Design and Commissioning of

Test Tank. ISVR Technical Report No 310

[5] Wong, G.S.K. & Zhu, S. (1995) Speed of sound in seawater as a function of salinity,

temperature and pressure J. Acoust. Soc. Am.

[6] National Physical Laboratory (2000) Underwater Acoustics -Technical Guides - Speed of

Sound in Sea-Water. Retrieved from http://www.comm-

tec.com/library/technical_papers/speedsw.pdf

[7] Shaban, A (2017) Design of sound speed profiler -Water Parameter Sensor (Master thesis)

University of Oslo

[8] Langis, D. P. (2015). Arduino Based Oceanographic Instruments: An Implementation

Strategy for Low-Cost Sensors.

[9] C Leroy, Claude & Robinson, Stephen & Goldsmith, M. (2008). A new equation for the

accurate calculation of sound speed in all oceans. The Journal of the Acoustical Society of

America.

[10] Naval Postgraduate School Department of Oceaonography (2014) Ocean Accoustics.

Retrieved from https://www.oc.nps.edu/~bird/oc2930/acoustics/

[11] McGraw-Hill Concise Encyclopedia of Physics. (2002) Refraction of waves. Retrieved

from https://encyclopedia2.thefreedictionary.com/Refraction+of+waves

http://www.comm-tec.com/library/technical_papers/speedsw.pdf
http://www.comm-tec.com/library/technical_papers/speedsw.pdf

76

[12] RMB Environmental Laboratories, inc. (2018) Stratification and Mixing. Retrieved from

https://www.rmbel.info/primer/stratification-and-mixing/

[13] Ocean Networks Canada (2014) Instrument overview CTD. Retrieved from

http://www.oceannetworks.ca/sites/default/files/pdf/learning/community_observatories/instru

ment_overivew_CTD_19Aug2014.pdf

[14] LakeAccess. (2006) Lake Temperature. Retrieved from

http://www.lakeaccess.org/russ/temperature.htm

[15] Fondriest Environmental, Inc. (2014, 3. March) Conductivity, Salinity and Total

Dissolved Solids. Fundamentals of Environmental Measurements. Retrieved from

https://www.fondriest.com/environmental-measurements/parameters/water-

quality/conductivity-salinity-tds/

[16] National Ocean Council. (2013). Federal Oceanographic Fleet Status Report

[17] Argo. (2017). How Argo floats work. Retrieved from

http://www.argo.ucsd.edu/How_Argo_floats.html

[18] Oceanography for Everyone. (2015) Oceanography for everyone. Retrieved from

http://oceanographyforeveryone.com/

[19] Wood, S, & Pardis, R. (2013). Inexpensive Expendable Conductivity Temperature and

Depth (CTD) Sensor.

[20] Thaler, A. & Sturdivant, K. (2013). Oceanography for Everyone - The OpenCTD.

Retrieved from http://www.rockethub.com/projects/26388-oceanography-for-everyone-

theopenctd#description-tab

[21] Sigdel, B. (2017) Water Quality Measuring Station. Helsinki Metropolia University of

Applied Sciences

[22] Atlas scientific (2019) EZO-EC Datasheet. Retrieved from https://www.atlas-

scientific.com/_files/_datasheets/_circuit/EC_EZO_Datasheet.pdf

https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/
https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/
http://www.argo.ucsd.edu/How_Argo_floats.html
http://oceanographyforeveryone.com/
http://www.rockethub.com/projects/26388-oceanography-for-everyone-theopenctd#description-tab
http://www.rockethub.com/projects/26388-oceanography-for-everyone-theopenctd#description-tab
https://www.atlas-scientific.com/_files/_datasheets/_circuit/EC_EZO_Datasheet.pdf
https://www.atlas-scientific.com/_files/_datasheets/_circuit/EC_EZO_Datasheet.pdf

77

[23] Sparkfun (2019) MS5803-14BA Pressure Sensor Hookup Guide. Retrieved from

https://learn.sparkfun.com/tutorials/ms5803-14ba-pressure-sensor-hookup-

guide?_ga=2.44228262.381375694.1555257905-1139013887.1523364757

[24]DFRrobot (2017) Turbidity Sensor Wiki. Retrieved from

https://www.dfrobot.com/wiki/index.php/Turbidity_sensor_SKU:_SEN0189

[25] Thinksrs (2014) Calibrate Steinhart-Hart Coefficients for Thermistors Retrieved from

https://www.thinksrs.com/downloads/pdfs/applicationnotes/LDC%20Note%204%20NTC%2

0Calculator.pdf

[26] SAIV A/S (2010) OPERATING MANUAL for STD/CTD model SD204 with Sound

Velocity & Optional Sensors Retrieved from:

http://station.saivas.net/manuals/SD204%20manual_total.pdf

[27] Virginia Institute of Marine Science. (2012). What is the monetary value of a healthy

ocean? Retrieved from: www.sciencedaily.com/releases/2012/03/120322100417.html

[28] Peak Sensors (2011) Thermal Response and Temperature Sensors. Retrieved from

https://www.peaksensors.co.uk/blog/thermal-response-temperature-sensors/

[29] Wang, Y. & Rajib, S. & Collins, C. & Grieve, B. (2018) ,Low-Cost Turbidity Sensor for

Low-Power Wireless Monitoring of Fresh-Water Courses, in IEEE Sensors Journal

[30] Fofonoff, N.P. & Millard Jr, R.C. (1983) Algorithms for the computation of fundamental

properties of seawater. Paris, France, UNESCO, UNESCO Technical Papers in Marine

Sciences

[31] Hayashi, M. (2004). Temperature-Electrical Conductivity Relation of Water for

Environmental Monitoring and Geophysical Data. Inversion Environ Monit Assess

[32] Aquion (2018). Temperature Compensation for Conductivity. Retrieved from:

http://www.aqion.de/site/112

https://learn.sparkfun.com/tutorials/ms5803-14ba-pressure-sensor-hookup-guide?_ga=2.44228262.381375694.1555257905-1139013887.1523364757
https://learn.sparkfun.com/tutorials/ms5803-14ba-pressure-sensor-hookup-guide?_ga=2.44228262.381375694.1555257905-1139013887.1523364757
https://www.dfrobot.com/wiki/index.php/Turbidity_sensor_SKU:_SEN0189
https://www.thinksrs.com/downloads/pdfs/applicationnotes/LDC%20Note%204%20NTC%20Calculator.pdf
https://www.thinksrs.com/downloads/pdfs/applicationnotes/LDC%20Note%204%20NTC%20Calculator.pdf
http://station.saivas.net/manuals/SD204%20manual_total.pdf
http://www.sciencedaily.com/releases/2012/03/120322100417.html
http://www.aqion.de/site/112

