
 

Converting nonrelativistic dark matter to radiation

Torsten Bringmann*

Department of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway

Felix Kahlhoefer†

Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,
D-52056 Aachen, Germany

Kai Schmidt-Hoberg‡

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

Parampreet Walia§

Department of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway

(Received 16 April 2018; published 30 July 2018)

Dark matter in the cosmological concordance model is parametrized by a single number, describing the
covariantly conserved energy density of a nonrelativistic fluid. Here we test this assumption in a model-
independent and conservative way by considering the possibility that, at any point during the cosmological
evolution, dark matter may be converted into a noninteracting form of radiation. This scenario
encompasses, but is more general than, the cases where dark matter decays or annihilates into these
states. We show that observations of the cosmic microwave background allow us to strongly constrain this
scenario for any conversion time after big bang nucleosynthesis. We discuss in detail, both from a Bayesian
and frequentist point of view, in which sense adding large-scale structure observations may even provide a
certain preference for a conversion of dark matter to radiation at late times. Finally we apply our
general results to a specific particle physics realization of such a scenario, featuring late kinetic decoupling
and Sommerfeld-enhanced dark matter annihilation. We identify a small part of parameter space
that both mitigates the tension between cosmic microwave and large-scale structure data and allows
for velocity-dependent dark matter self-interactions strong enough to address the small-scale problems of
structure formation.
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I. INTRODUCTION

There is overwhelming evidence for the existence of dark
matter (DM) in our Universe from various astrophysical
and cosmological observations. While many of its particle
physics properties are completely unknown, the amount of
DM at the time of recombination has been precisely
determined through observations of the cosmic microwave
background (CMB) [1]. The corresponding DM relic
abundance is typically assumed to have been set early
on, at temperatures comparable to the DM mass in the
most commonly considered scenario of thermally produced
DM particles [2,3], such that the comoving DM density
is constant throughout the subsequent cosmological
evolution.

In this work we analyse how cosmological observa-
tions constrain deviations from the simple picture of a
comovingly constant DM density. An interesting example
for a possible underlying mechanism is if all or a part of
the DM is unstable. If the decay products are standard
model (SM) states such as electrons or photons, a
scenario of this type will be strongly constrained by a
variety of cosmological and astrophysical probes (see
e.g., [4–6]). It is however an interesting possibility that
the decay products are new massless or very light states
in the dark sector, such that effectively a fraction of DM
is converted into relativistic “dark” radiation (DR) [7–15].
Such a conversion has received some interest lately as it
has been argued to alleviate a possible tension between
measurements of the CMB and large scale structure
(LSS) observables [15–21].
A second example in which the comoving dark matter

density can change is if the DM annihilation rate becomes
relevant at late times, which may happen if the annihilations
experience a sufficiently strong Sommerfeld enhancement
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[22–27]. Yet another case where DMmay be converted into
DR is given by merging primordial black holes emitting
gravitational waves [28,29], a scenario currently receiving a
lot of interest due to the observations by advanced LIGO
[30]. We note that also ordinary astrophysical processes can
convert matter into radiation, but only at rates below the
sensitivity of (near) future observation [31].
In this work we employ data from the CMB as well as

LSS observables to constrain the possibility of DM being
converted into DR in a model-independent way. Clearly the
amount of DM which is allowed to be converted into DR
will depend on the time of this conversion, given that the
relative contributions of matter and radiation to the overall
energy density change as the Universe evolves. Also the
rate of this conversion is expected to have an impact on
the constraints. We will concentrate on conversion times
well after the end of primordial nucleosynthesis, as
sufficiently early transitions can always be mapped onto
a cosmology with a constant additional radiation compo-
nent, ΔNeff > 0.1

This article is structured as follows: In the next section
we will discuss how we implement the DM-DR transition.
In Sec. III we will discuss the effects on the CMB as well as
the resulting constraints, while Sec. IV is devoted to the
discussion of low redshift observables. In Sec. V we will
map our general constraints to the case of Sommerfeld
enhanced annihilation, before we conclude in Sec. VI.

II. CONVERTING DARK MATTER TO
DARK RADIATION

As motivated in the introduction, our aim is to quantify
in rather general terms (i) how much DM can be converted
to DR, as well as how this depends on the (ii) time and

(iii) rate of this conversion. Phenomenologically we are
thus interested in a steplike transition in the comoving DM
density as shown in the left panel of Fig. 1 where, at least
for the moment, we choose to remain completely agnostic
about the underlying mechanism that causes such a tran-
sition. Nevertheless, we emphasize that the parametrization
is sufficiently general to capture a range of interesting
scenarios, such as the case of a decaying DM subcomponent
(indicated by a black dotted line in Fig. 1) and Sommerfeld-
enhanced DM annihilations. The latter case will be the
subject of Sec. V, wherewewill discuss in detail how tomap
the underlying particle physics parameters onto the effective
parametrization discussed in this section.

A. Evolution of background densities

In the following, we will adopt a simple parametric form
for the DM density ρχðaÞ as shown in Fig. 1, namely

ρχðaÞ ¼
ρ0χ
a3

�
1þ ζ

1 − aκ

1þ ða=atÞκ
�
: ð1Þ

Here a denotes the scale factor of the Friedman-Robertson-
Walker (FRW) metric, ρ0χ ≡ ρχð1Þ the DM density today,
and the three parameters ðζ; at; κÞ directly relate to the
points (i)–(iii) raised above. Specifically, the comoving DM
density decreases in total by a factor of 1þ ζ, the transition
is centered at a ¼ at, and the parameter κ determines how
fast the transition occurs.
This parametrization enables us in particular to under-

stand which properties of DM-DR conversion are con-
strained observationally. For example, we will see below
that for a conversion after recombination constraints are
largely independent on when and how quickly the tran-
sition occurs, but mostly depend only on the total amount
of DM converted to DR. A similar observation was
previously made for the case of a subdominant component

FIG. 1. Left panel. Evolution of comoving DM density for the steplike transition described by Eq. (1), for a transition redshift of
at ¼ 10−3, a conversion factor of 1þ ζ ¼ 1.1 and, as indicated, four values of the parameter κ characterizing the steepness of the
transition. For comparison, we also show the case of decaying DM (dotted line), assuming that a fraction ζ=ð1þ ζÞ of the initial DM
abundance decays with a rate Γ ¼ 0.15Heq. Right panel. Resulting evolution of the comoving DR density as given in Eq. (5). This
assumes that there is no additional (e.g., constant) source of DR and, for the translation to ΔÑeff as defined in Eq. (6), we have here
chosen ρ0χ to agree with the value of Ω0

χh2 ¼ 0.1198 measured by Planck.

1BBN constraints of a possible DM-DR conversion have
recently been studied in Ref. [32].
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of DM decaying into DR [15], and our findings generalize
this result. Conversely, for a very early transition, we find
constraints to depend only on the total amount of DR
produced, which can be described by the effective number
of neutrino species Neff . For transitions around matter-
equality, on the other hand, the constraints can no longer be
understood in terms of these simple limiting behaviors, and
depend in a more complicated way on when and how
quickly the conversion takes place.
As already stressed, the phenomenological parametriza-

tion suggested above allows to capture a significant range
of cosmologically interesting scenarios. For example, we
find that the case of a decaying DM subcomponent can be
accurately described by setting κ ¼ 2 and choosing at such
that the Hubble expansion rate at the transition is compa-
rable to the decay rate. Sommerfeld-enhanced annihila-
tions, on the other hand, can be accurately matched by
setting κ ¼ 1 (see Sec. V).
By assumption, we demand that this transition occurs

because DM is being converted to radiation. The rates of
change of the comoving DM and DR densities must thus be
of equal size, and opposite in sign:

1

a3
d
dt
ða3ρχÞ ¼ −

1

a4
d
dt
ða4ρϕÞ: ð2Þ

Alternatively, we can write this statement in terms of
coupled Boltzmann equations for the two fluid compo-
nents:

dρχ
dt

þ 3Hρχ ≡ −Q ð3Þ

dρϕ
dt

þ 4Hρϕ ¼ Q; ð4Þ

whereH ¼ _a=a is the Hubble rate andQ > 0 describes the
(momentum-integrated) collision term. In this formulation,
being agnostic about the underlying mechanism of the DM
to DR transition simply means, as indicated, that we start
from Eq. (1) and view Eq. (3) as a definition for Q—rather
than determining ρχ from a given collision term.
We can now obtain the DR energy density by integrating

Eq. (2), with the boundary condition ρϕða → 0Þ ¼ 0. This
leads to

ρϕðaÞ¼ ζ
ρ0χ
a3

ð1þaκt Þ
ðaκþaκt Þ

×

�
ðaκþaκt Þ2F1

�
1;
1

κ
;1þ1

κ
;−

�
a
at

�
κ
�
−aκt

�
; ð5Þ

where 2F1 denotes the ordinary hypergeometric functions.
Let us stress that the above solution for the DR energy
density ρϕðaÞ does not explicitly depend on the form of H,
which is one of the advantages of our parametrization for

ρχðaÞ. This implies that also the transition from radiation to
matter domination is fully and consistently covered in this
approach (at least at the level of the evolution of back-
ground densities). In the right panel of Fig. 1, we show how
the DR density evolves, according to Eq. (5), for the ρχðaÞ
scenarios plotted in the left panel. To facilitate comparison
with the literature, we also indicate the amount of DR in
terms of an effective number of additional neutrino species,
by defining

ΔÑeffðaÞ≡ ρϕðaÞ
ρ1νðaÞ

¼ 8

7

�
11

4

�
4=3 ρϕðaÞ

ργðaÞ
; ð6Þ

where the last equality is only valid for sufficiently late
times (after e� annihilation). For ρϕ ∝ a−4, this reduces to
the standard definition of the effective number of additional
neutrino species,ΔÑeff → ΔNeff , typically used to describe
a (comovingly) constant contribution of DR. In the scenar-
ios that we describe here, the comoving DR density is not
constant (but saturates for a ≫ at if κ > 1).
We note that the large range of transition histories that

we consider here essentially also includes the case of
decaying DM, which much of the literature has focused on
so far. To illustrate this, we include in the same figure the
case of a 2-component DMmodel, where one component is
stable and the other decays (dotted lines). To make the
comparison more straightforward for the purpose of this
figure, we have adjusted the decaying component to make
up a fraction ζ=ð1þ ζÞ of the initial DM density and tuned
the decay rate Γ such that the total DM density intersects
with the other curves at a ¼ at.
Let us conclude the discussion of how the DM and DR

densities evolve in our transition scenarios by showing in
Fig. 2 the induced effect on the expansion rate of the
Universe. For the purpose of this figure, we compute the
Hubble rateH2 ¼ 8πGρ=3 by fixing the density parameters
for the various components to the mean ΛCDM values
resulting from the Planck TTTEEEþ lowP analysis [1],
taking Ω0

χh2 ¼ 0.1198 to correspond to the DM density
today, and compare it to the Hubble rate in the ΛCDM case
that is obtained for ζ → 0. During radiation domination, as
seen in the left panel, the Hubble rate starts to be visibly
affected as soon as the additional comoving DM density
compared to its value today, ζρ0χ , contributes sufficiently to
the total energy density; for the small values of ζ shown
here, this happens not much earlier than the transition at
a ¼ at. The largest deviation of the Hubble rate occurs at
a ∼ at during matter domination, or somewhat earlier
during radiation domination (right panel). As indicated
by the thin orange lines, furthermore, the DR density
always starts to change the Hubble rate only at later times;
as expected, its relative impact (compared to that of DM), is
largest if the transition takes place during radiation domi-
nation (and then, for κ ¼ 2 and κ ¼ 4, mimics the impact of
a constant ΔNeff after equality, cf. the black dotted line).
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B. Perturbations

In order to study the impact of our modified cosmo-
logical scenario on CMB and LSS observables, we must
not only account for the modified evolution of the back-
ground densities, but also include the effect of perturba-
tions. In synchronous gauge [33], the perturbed line
element of the FRW metric is given by

ds2 ¼ gμνdxμdxν ¼ a2½−dτ2 þ ðδij þ hijÞdxidxj�; ð7Þ

where τ is the conformal time and hij are the metric
perturbations (we will denote its trace as h≡ hii).
The above form of the line element leaves a residual

gauge freedom, which we remove by working in comoving
synchronous gauge (as also used, e.g., in CAMB [34,35]). In
this gauge, the DM fluid remains at rest and its four-
velocity is thus given by uχμ ¼ að1; 0Þ just as in the
unperturbed case. The full DM and DR energy momentum
tensors are then of the form

Tχ
μν ¼ ρχu

χ
μu

χ
ν; ð8Þ

Tϕ
μν ¼ 4

3
ρϕu

ϕ
μu

ϕ
ν þ ρϕ

3
gμν þ Πϕ

μν; ð9Þ

where uϕμ ¼ að1; vϕÞ denotes the DR four-velocity, and ρχ
and ρϕ now refer to the full (perturbed) energy densities.

Πϕ
μν describes the anisotropic stress of the DR component,

i.e., perturbations away from the perfect fluid form (as, e.g.,
caused by free-streaming).
As before, we demand that any decrease in DM is fully

compensated by an increase in DR. Covariant conservation
of energy thus implies ∇νðTχ

μν þ Tϕ
μνÞ ¼ 0, which we can

formally split and rewrite as

∇νTχ
μν ¼ −∇νTϕ

μν ≡ −Quχμ; ð10Þ

where ∇μ denotes the covariant derivative with respect to
the full (perturbed) metric gμν given in Eq. (7). To leading
order, as expected, this simply reproduces Eqs. (2)–(4).
Demanding the DM density to evolve as in Eq. (1) thus
provides the same definition of Q ∝ ζ at leading order.
At next order in the perturbed quantities, the DM part of

Eq. (10) becomes

δ0χ þ
1

2
h0 ¼ a

ρχ
ðQδχ − δQÞ: ð11Þ

Here, the prime 0 denotes a derivative with respect to
conformal time and δχ ¼ δρχ=ρχ is the usual dimensionless
perturbation in the DM density. The perturbation δQ to Q
would, in analogy to the leading order result, be defined by
an extension of our ansatz in Eq. (1) to include perturba-
tions. The minimal option for such an extension, in some
sense, is that the perturbations only affect the volume
expansion (and hence not the comoving DM density). In
other words, one would have to replace only the leading
factor in Eq. (1),2

ρχ ¼
ρ0χ

ðaþ ah=6Þ3
�
1þ ζ

1 − aκ

1þ ða=atÞκ
�
: ð12Þ

Such an ansatz for the DM density implies δ0χ ¼ − 1
2
h0, as

can easily be verified, and is hence equivalent to setting

δQ≡Qδχ : ð13Þ

While we will adopt this choice in the following, for
simplicity, we stress that it is model-dependent and a full

FIG. 2. Left panel. Evolution of Hubble rate for the same scenarios as shown in Fig. 1, compared to the ΛCDM Hubble rate Hζ¼0

(which in our scenarios is obtained for ζ ¼ 0), Right panel. Impact of changing at on the Hubble rate, for κ ¼ 2. Orange (thinner) lines
indicate the impact of the produced DR alone. For the at ¼ 5 × 10−6 case we show, for comparison, also how the Hubble rate is affected
by a constant DR contribution, characterized by a constant ΔNeff (black dotted line).

2A simple heuristic way of seeing this is to consider the
determinant of the spatial part of the metric, det gij ¼
a6 exp Tr lnðδij þ hijÞ. Expanding to first order, the “perturbed”
scale factor is thus given by ðdet gijÞ1=6 ¼ að1þ h=6Þ.
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discussion is beyond the scope of this work. We will,
however, get explicitly back to this issue in Sec. V when we
try to motivate Q from the collision term in the Boltzmann
equation for a specific scenario (rather than by directly
postulating the evolution of the DM density). In general, it
is worth noting that any deviation from Eq. (13) must be
proportional to Q which, as we will see, is strongly
constrained already from the evolution of the background
densities (unless at is very small—in which case the scale
of the horizon, and hence of any perturbation that can be
affected, is much smaller than what can be probed by the
CMB). For the case of decaying DM, furthermore, Eq. (13)
is exactly satisfied [15].
To first order in the perturbed quantities related to DR, on

the other hand, Eq. (10) takes the form

δ0ϕ þ
2

3
h0 þ 4

3
θϕ ¼ −

a
ρϕ

ðQδϕ − δQÞ; ð14Þ

θ0ϕ þ
1

4
∇2δϕ þ

1

2ρϕ
∇4Πϕ ¼ −

a
ρϕ

Qθϕ: ð15Þ

Here, ∇2 is the Laplacian operator, δϕ ≡ δρϕ=ρϕ is defined
in analogy to the DM case, and θϕ ≡ ∂iviϕ is the scalar part
of the DR velocity. In the second equation, we have as usual
only considered the scalar part of ∇νTϕ

iν, by taking its
divergence, because the vector part of the perturbations
only have decaying modes. This is the reason why only the
scalar part of the anisotropic stress enters, defined as
Πϕ;scalar

ij ≡ ð∂i∂j − 1
3
δij∇2ÞΠϕ. We implement this part as

for an additional neutrino species, where Πϕ arises due to
the effect of free-streaming [36].
Let us point out that forQ ¼ 0 Eqs. (14) and (15) simply

describe the standard way of including noninteracting
relativistic degrees of freedom, e.g., in the form of (sterile)
neutrinos, and for the choice of δQ made in Eq. (13) we
recover exactly the case of decaying dark matter (assuming
an appropriate choice ofQ, cf. Fig. 1). We reiterate that we
expect a small effect from including perturbations because
Q (and hence δQ) is already strongly constrained from the
evolution of the background densities.

III. GENERIC EFFECTS ON THE COSMIC
MICROWAVE BACKGROUND

A. Changes in the temperature anisotropy spectrum

The spectrum of the CMB is sensitive to the amount of
matter and radiation from timescales starting at around
recombination until late times (e.g., through lensing
effects). In addition, even earlier epochs may be con-
strained if they leave an imprint at later times such as an
extra DR component. Let us start the discussion of CMB
constraints by an evaluation of the possible imprints of the
scenario described in Sec. II on the CMB spectrum.

The ΛCDM model is described by only six parameters,
whichmay be chosen as (i) the amount of baryonsΩbh2 and
(ii) dark matter Ωχh2, the (iii) approximate angular size of
the sound horizon θMC,

3 the (iv) reionization optical depth τ,
the (v) amplitude of scalar perturbations lnð1010AsÞ and the
(vi) scalar spectral index ns. Given that the ΛCDM
cosmology provides an excellent fit to the CMB data, any
deviations should be very tightly constrained.
To calculate CMB as well as LSS observables, we use a

modified version of the publicly available Boltzmann code
CAMB

4 [34,35]. In particular we have implemented the
nonstandard time evolution of energy densities of DM
and DR according to Eqs. (1) and (5) to investigate and
constrain the imprints of our scenario on the CMB. As
described in Sec. II B, furthermore, we treat DR as an extra
neutrino species.
As discussed in the last section, the qualitative features

of the DM to DR conversion depend on the time at as well
as the rate κ of the conversion. To capture the relevant
effects for the different regimes, we consider three different
transition times at ¼ 5 × 10−6, 5 × 10−4 and 5 × 10−2 as
well as two different conversion rates κ ¼ 2 and 1=2. The
transition times are chosen such that we cover radiation
domination as well as matter domination before and after
recombination, while the choices of κ describe, respec-
tively, a fast and a slow conversion scenario.
To illustrate the effect on the CMB spectrum we fix five

of the six ΛCDM parameters to their Planck 2015
TTTEEEþ low-P [1] mean values, i.e., Ωbh2 ¼ 0.02225,
100θMC ¼ 1.04077, τ ¼ 0.0790, lnð1010AsÞ ¼ 3.094 and
ns ¼ 0.9645. The DM density is naturally evolving within
our scenario and we fix Ωχh2 such that for any κ, ζ and at
we haveΩχh2 ¼ Ωχh2jΛCDM at zrec ≡ 1100, i.e., we require
the same amount of DM as inferred for the ΛCDM model
around recombination. This choice essentially ensures that
the first peak of the CMB spectrum resembles that of the
ΛCDM model and therefore agrees well with observations.
We show the TT spectra of our scenario as well as the
fractional difference from the usual ΛCDM paradigm, with
parameters fixed in the way just described, in the left panel
of Fig. 3. In the right panel of Fig. 3, for comparison, we
show the spectra for the same values of our model
parameters (κ, at, ζ), but with the ΛCDM parameters fixed
to the respective best-fit values in these scenarios.
Let us begin our discussion with a couple of simple

observations: For a rather quick transition (κ ¼ 2) which
happens rather early ðat ¼ 5 × 10−6Þ, the transition will be
complete before the onset of matter domination and thus the
only significant change compared to the ΛCDM case is due

3The parameter, θMC is used in COSMOMC [37,38] and is an
approximate measure of the angular size of the sound horizon at
the surface of last scattering. See http://cosmologist.info/
cosmomc/ or Ref. [39] for details.

4http://camb.info
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to a remaining extra component of DR from the conversion.
Given that the conversion takes place during radiation
domination where the DM energy density is sub-leading,
rather large values of ζ are consistent with data (for the
chosen value of ζ ¼ 2.5 we obtain ΔÑeffð1Þ ≃ 0.42). Once
the conversion is complete the comoving energy density of
DRwill remain constant.We thus expect thismodel to have a
spectrum which is very similar to the ΛCDM case with a
constant additionalΔNeff ¼ 0.42.We illustrate this casewith
a dashed black line in the plot. As expected the spectrum is
almost identical, and only very small differences are visible
for high values of l, which are most sensitive to early times.
We have confirmed that for even earlier transition times the
two cases are indistinguishable. For a very slow transition
(κ ¼ 0.5) on the other hand, a significant part of the matter
density will be converted to radiation much later, implying
that a larger fraction of the initialmatter densitywill end up in
radiation such that the effect on theCMBwill be significantly
larger, which can also clearly be seen in Fig. 3. We therefore
expect this case to be much more strongly constrained. For
very late transitions, ðat ¼ 5 × 10−2Þ, the cosmic history is
the same as for the ΛCDM case until recombination. We
accordingly observe that the spectrum resembles theΛCDM
case for high multipoles as expected.
A more detailed understanding of the different effects on

the power spectra requires knowledge about the evolution
of the different energy densities Ωi. Given that we fix the
value ofΩχh2 ¼ Ωχh2jΛCDM at z ¼ zrec (for the left panel in
Fig. 3) while having at the same time a somewhat increased
value of h due to the extra radiation component, Ωχ will be
correspondingly smaller. Requiring the Universe to remain
flat,

P
Ωi ¼ 1, the energy density within some other

components needs to be increased to compensate the
decrease in Ωχ . The way in which the different components

change depends on which parameters we keep fixed in the
analysis. For instance fixing θMC as we have done in the left
panel of Fig. 3 will lead to an enhancement in ΩΛ, because
the enhancement of the Hubble rate prior to recombination
decreases the size of the sound horizon at the surface of last
scattering rs, which implies a simultaneous decrease of the
angular distance to the last scattering surfaceDA in order to
keep θMC fixed. The required decrease in DA in turn is
achieved by increasing the vacuum energy ΩΛ. Overall this
will lead to an enhanced late time integrated Sachs Wolfe
(LISW) effect, that is (relatively speaking) more power on
very large scales (small values of l).
As these types of effects strongly depend on what we

keep fixed, we will refrain from describing the changes of
the temperature anisotropies compared to the ΛCDM case
in more detail. To construct the bounds on the model
parameters in the next section, all ΛCDM parameters will
be varied, allowing for a partial compensation of the effects
of the matter to radiation transition. This partial compen-
sation can already be anticipated by comparing the left and
right panels of Fig. 3.

B. CMB constraints

In this section, we will constrain our model with CMB
observations. The concrete data set that we use for this
purpose, with likelihoods as implemented in the publicly
available Markov Chain Monte-Carlo (MCMC) code
COSMOMC [37,38], we will denote as follows

(i) CMB: Planck TTTEEEþ lowTEB [40]
At this stage, in particular, we do not add information from
the Planck lensing power spectrum reconstruction [41]
because this effectively adds a measurement implicitly
related to the matter power spectrum (which wewill discuss
in more detail in the next section).

FIG. 3. Lensed TT spectra for transition rates of κ ¼ 2 (green) and κ ¼ 1=2 (orange) for three different transition times at ¼ 5 × 10−6,
5 × 10−4, 5 × 10−2 for fixed ΛCDM parameters (left) and for the respective best-fit points (right). For comparison we show the ΛCDM
spectrum (solid black line) as well as ΛCDMþ ΔNeff (dashed black line) for comparison with the early transition case. In the bottom
panels we show the fractional difference between the different scenarios and the ΛCDM case. See text for the remaining parameter
values of the models used to obtain these spectra.
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In order to explore the parameter space of our model, we
modify COSMOMC to communicate our additional model
parameters to the modified CAMB version described above.
We run chains using the fast/slow sampling method
[38,42], as recommended for a large parameter space.
We assume the chains to be converged if the Gelman-
Rubin criterion (R) [43] satisfies R − 1 < 0.01. Along with
a large number of Planck nuisance parameters, we scan
over the six ΛCDM parameters with flat priors as follows:

Ωbh2 ∈ ð0.01; 0.1Þ; Ω0
χh2 ∈ ð0.01; 0.5Þ

100θMC ∈ ð0.8; 2Þ; τ ∈ ð0.01; 0.2Þ
lnð1010AsÞ ∈ ð2; 4Þ; ns ∈ ð0.8; 1.2Þ: ð16Þ

Let us first have a look at very early transitions. In this
case, as discussed above, CMB constraints on our model
should be equivalent to those for a model with constant
ΔNeff (at least for large values of κ, since for κ ≤ 1 the
comoving DR energy density does not saturate, cf. Fig. 1).
To check this expectation, we fix at ¼ 10−7 and scan over
the six ΛCDM parameters and ζ ≥ 0 (with a flat prior). For
comparison with the constant ΔNeff case, we use the
default COSMOMC/CAMB implementation with Neff as a
free parameter in addition to the ΛCDM parameters. For
this scan we have set the (flat) prior for Neff to be greater
than 3.046, in order to be comparable to the prior choice for
our model parameter ζ.
In Fig. 4, we show the marginalized 1D posterior

probability density functions (pdfs) for ΔÑeffðarecÞ that
result from the CMB likelihood, for κ ¼ 0.5, 1, 2, 4. For
κ ¼ 2, 4, the posteriors are indeed similar to the case of a
constant ΔNeff (shown as a black dashed line). The
discrepancy at larger values of ΔÑeffðarecÞ can be traced
back to how the Helium abundance YHe enters in the CMB
code. Concretely, YHe is a derived parameter that depends
not only on the baryon density but also on the DR density at
the time of big bang nucleosynthesis (BBN), because a
nonzero value of the latter affects the Hubble expansion rate
during that time [44,45]. In our case, unlike for a constant
ΔNeff , there is no DR present during BBN because we
always assume that the DM to DR transition occurs only
much later. We checked explicitly that we get exact
agreement between our κ ¼ 2, 4 limits and constant
ΔNeff , up to 99% C.L., if we use a numerical value of
YHe as calculated from ΔÑeffðBBNÞ ¼ ΔÑeffðtodayÞ.
Lastly, let us mention that these limits also agree to a
good approximation with the Planck limits on a constant
Neff [1]—though such a comparison should be taken with a
grain of salt given that those limits are based on a slightly
different prior choice (allowing for ΔNeff < 0) than what
we have adopted here.
We now turn to the CMB constraints when scanning

freely over our model parameters. For this, we choose a flat
prior on log at, constraining the scan to −7 ≤ log10 at ≤ −1

in order to focus on the case where BBN constraints are
negligible (lower bound) and to ensure that we can neglect
the effect of structure formation and still treat the pertur-
bations at the linear level (upper bound). We note that the
upper bound here is somewhat optimistic in this respect, so
results presented for at ≳ 10−2 should be interpreted with
care (what actually matters is of course not the value of at,
but whether the transition is largely completed while
perturbations still are at the linear level, cf. Fig. 1). For
ζ we choose a more complicated prior to optimize the
sampling efficiency of the Metropolis-Hastings algorithm
implemented in COSMOMC. Concretely, in anticipation of
our results, we choose a prior for ζ that corresponds to a flat
prior on ΔNtoday

eff for at < 10−4 and a prior that is flat in ζ
itself for at > 10−4. Since for fixed at and fixed cosmo-
logical parameters ΔNtoday

eff is directly proportional to ζ, the
two regions are expected to smoothly connect to each other
at at ¼ 10−4.5

We show our results in Fig. 5, as a function of at, both
expressed in terms of limits on log10 ζ (left panel) and in
terms of limits on log10 ΔÑeff today (right panel). For the
sake of our later discussion, let us stress that these are
Bayesian limits constructed in the standard way, i.e., curves
of constant 2D (marginalized) posterior probabilities chosen
such that the integral over the enclosed area (which includes

FIG. 4. Marginalized 1D posterior pdfs for ΔÑeffðarecÞ, nor-
malized such that the maximum value is 1, using the CMB data
set only. The solid lines are for κ ¼ 0.5, 1, 2, 4 with fixed
at ¼ 10−7. Note that for κ ¼ 2, 4, but not for smaller values of κ,
we have ΔÑeffðarecÞ ¼ ΔÑtoday

eff , cf. Fig. 1. For comparison, we
also include the standard case of a constant ΔNeff ≥ 0 (dashed
black line). The vertical lines indicate the corresponding
95% C.L. limits. For a constant ΔNeff , our limit is in good
agreement with the Planck limit of 0.35 [1] (obtained with a flat
prior on ΔNeff that, unlike in our case, also allows ΔNeff < 0).

5The normalization of the posterior pdfs are independent in the
two regions, so one needs to apply an appropriate rescaling before
the two regions can be connected. To minimize the impact of
numerical inaccuracies, we require that the maxima of the
respective posterior pdfs agree at the transition.
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the point of maximum pdf) results in 0.95 and 0.99,
respectively. For very small values of at, as discussed above,
we expect that the CMB cannot distinguish between our
model and the case of a constantΔNeff . This implies that the
bound on ζ, as a function of at, must simply be inversely
proportional to the total amount of DR that is created prior to
recombination. For a fast transition (κ ¼ 2 and κ ¼ 4) the
latter is roughly proportional to the ratio of the amount of
converted DM to the total amount of radiation, which in turn
is proportional to ζat. This explains the approximate ζ ∝
a−1t slope visible in the figure.
Closer inspection reveals that the simple requirement

of a fixed total amount of DR just before recombination
indeed gives a qualitatively very good description of the
limits for at ≲ 10−3. We note that the limits in this range
can also be reproduced, within reasonable accuracy, just
by using the fact that the CMB peak positions are tightly
constrained observationally.6 For large values of at, on
the other hand, the constraints are less and less affected
by the additional radiation component and rather driven
by the reduced CDM component—which explains why
the maximally allowed value of ζ becomes almost
independent of at at very late times. Physically, it is
a combination of various mechanisms that sets the
constraints in this case, with the ISW effect becoming

more and more relevant with increasing at. While we
refrain from attempting a detailed discussion here, we
therefore expect that simple prescriptions for estimating
these constraints are likely to fail. For example, demand-
ing the peak positions not to change (which gave a very
good estimate of the full results for at ≲ 10−3) would
result in constraints that are too strong and feature a
qualitatively wrong dependence on at.
The discussion in the preceding paragraph has focused on

a qualitative understanding of the constraints on ζ shown in
the left panel of Fig. 5.With the additional input from Fig. 1,
it is straightforward to achieve a similar understanding
concerning the qualitative shape of the constraints onΔNeff
as presented in the right panel of Fig. 5. In particular, the fact
that these constraints are flat for small values of at should
not come as a surprise given that in this limits our model is
expected to be indistinguishable from the case of a constant
ΔNeff . Quantitatively, however, the situation is less clear at
first sight. In particular we infer from the right panel of
Fig. 5 that for κ ¼ 2, 4 and small at values of ΔN

today
eff ≳

0.7–0.8 are excluded at 95% C.L. The reason for the
difference between this value and the bound ΔNtoday

eff ≲
0.4 inferred fromFig. 4 is that herewe consider the posterior
pdf as a function of log10 ΔN

today
eff rather thanΔNtoday

eff , which
disfavors small values of log10 ΔN

today
eff and hence introdu-

ces an overall bias toward larger values.
The prior dependence of the bounds shown in Fig. 5makes

it difficult to interpret them in amodel-independentway.After
all, at and ζ are only effective parameters introduced to

FIG. 5. 95% C.L. (dotted lines) and 99% C.L. (solid lines) Bayesian limits from CMB only; the colored region above each line is
excluded. Left panel. Constraints on the amount of converted DM, cf. Eq. (1). Right panel. Constraints on the amount of DR today,
expressed in terms of ΔÑeff as given in Eq. (6). For both cases, we adopted a flat prior on ΔNtoday

eff for at < 10−4, and a flat prior on
ζ for at > 10−4.

6Technically we checked that we can roughly reproduce these
limits by allowing the angular size of the sound horizon close to
recombination, θ�, to vary within observational bounds [39], in
analogy to what was done in Ref. [27].
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describe the evolution of the DM density, and the appropriate
priors may depend sensitively on how this effect is realized in
a more fundamental theory. Away to avoid this ambiguity is
to consider frequentist rather than Bayesian exclusion limits.
This is possible in a rather straightforward manner thanks to
the following two observations: First, since we consider flat
priors on log10 at and ζ (or equivalentlyΔN

today
eff for small at),

the marginalized posterior as a function of these two
parameters is directly proportional to the marginalized like-
lihood. Second, since all parameters apart from at and ζ (or
ΔNtoday

eff ) are very well constrained by the CMB, the margin-
alized likelihood is expected to be similar to the profile
likelihood (where for each value of at and ζ, or ΔNtoday

eff , all
other parameters have been fixed to their best-fit value) [46].
We can therefore use the posterior probability to construct
approximate profile likelihood ratios.
To construct frequentist upper bounds on the amount of

DM that can be converted into DR, we determine the values
of at and ζ that give the best fit to the data, i.e., that
maximize the posterior probability. For the data sets that we
study in this section there is at most a very mild preference
for nonzero ζ, so that we typically find ζbest ≈ 0. We then
consider the test statistic

t ¼ −2Δ logL ≈ −2 log
�

pðζ; atÞ
pðζbest; at;bestÞ

�
; ð17Þ

where p denotes the posterior probability. We expect that
for random fluctuations in the data, t will approximately

follow a χ2 distribution with two degrees of freedom. We
thus can exclude parameter points with t > 5.99 (t > 9.21)
at 95% (99%) C.L.
We show the resulting estimate of frequentist exclu-

sion limits on ζ in the left panel of Fig. 6. By
construction, the frequentist exclusion limits follow
lines of constant posterior probability and therefore
have the same shape as the Bayesian exclusion limits
shown in Fig. 5. In other words, the difference between
the frequentist and the Bayesian exclusion limits is the
confidence level associated to a specific posterior prob-
ability, i.e., frequentist exclusion limits correspond to
Bayesian exclusion limits at a different confidence level.
More specifically, we find the frequentist exclusion
limits to be somewhat stronger.
The advantage of using frequentist exclusion limits is

illustrated in the right panel of Fig. 6, which shows
the bounds on ΔNeff calculated from the frequentist
exclusion limits on ζ for κ ¼ 2 and κ ¼ 4. The only
cosmological parameter required to perform this translation
is Ωχh2. Ideally, ΔNeff should be calculated using the
respective best-fit value of Ω0

χh2 for each value of at and ζ.
However, given the precision of CMB constraints on this
combination of DM density and expansion rate during
recombination, it is sufficient to simply require Ωχh2 ¼
Ωχh2jΛCDM at zrec ≡ 1100.
In contrast to the bounds on ΔNeff shown in the right

panel of Fig. 5, the bounds derived from the frequentist
exclusion limits on ζ do not depend on the choice of priors

FIG. 6. 95% C.L. (dotted lines) and 99% C.L. (solid lines) approximate frequentist constraints from CMB only; the coloured region
above each line is excluded. Left panel. Constraints on the amount of converted DM. Right panel. Constraints on the amount of DR
today, expressed in terms of ΔÑeff . For comparison we indicate the frequentist 95% C.L. bound on ΔÑeff obtained from a scan with flat
prior on ΔNeff and at ¼ 10−7 (derived from the 1D posterior shown in Fig. 4).
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for ζ and at.
7 As a result, the bounds on ΔNeff obtained for

small at are much closer to the frequentist bounds derived
from the 1D posterior shown in Fig. 4 (based on at ¼ 10−7

and a flat prior on ΔNeff ), which gives ΔNeff < 0.29 for
both κ ¼ 2 and κ ¼ 4 (indicated by the black dashed line).
We will therefore from now on focus on frequentist
exclusion limits. The corresponding Bayesian exclusion
limits can be found in the Appendix.

IV. GENERIC IMPRINTS ON LOW-REDSHIFT
OBSERVABLES

Let us now turn to the implications of converting DM to
DR for low-redshift observables. We will focus here on the
two most important late-time effects, namely a modified
expansion rate and a change of the linear matter power
spectrumPðkÞ. The former is somethingwebriefly discussed
already in Sec. II A, cf. Fig. 2. Such a late-time enhancement
of theHubble ratemay in principle help to reconcile a known
discrepancy between low- and high-redshift observables
[39,47–49]. In terms of possible physics realizations, such
an option has so far mostly been discussed in terms of a
constant DR (or subdominant hot DM) contribution [45,50–
54] or decayingDMscenarios [15–18,20,21]. Bymaking the
connection to our more general conversion scenario from
DM to DR, we will revisit this question in a broader context.
Before doing so, however, let us briefly discuss the

expected imprint on PðkÞ. To this end, we show in the left
panel ofFig. 7how the linearmatter power spectrumchanges,
with respect to theΛCDMcase, for the sameset of benchmark
models (andΛCDMparameters) thatwe considered in the left
panel of Fig. 3. Note that the full nonlinear power spectrum

would be needed tomake ameaningful comparison to data for
large values of the wave number k. For the present study we
will therefore mostly limit ourselves to discussing the
parameter combination σ8Ω0.3

m , for which direct measure-
ments exist [55] and towhich mainly intermediate values of k
contribute, which are largely unaffected by nonlinear dynam-
ics.8 Specifically, σ8 can be expressed as

σ28 ¼
1

2π2

Z
∞

0

dkk2PðkÞW2ðkR8Þ; ð18Þ

whereWðxÞ ¼ 3j1ðxÞ=x is the Fourier transform of the top-
hat window function, j1 is the first spherical Bessel function
and R8 ≡ 8h−1 Mpc. Requiring the integration range to
contribute 99% to the value of σ8, we find 0.025h Mpc−1≲
k≲ 0.5h Mpc−1, whichwe indicate by the nonshaded region
in Fig. 7.
We first observe that on large scales, the spectrum is

enhanced for our models. This is due to a larger value of
ΩΛ, which enhances and shifts the spectrum towards larger
scales [15,56]. Secondly, for the range relevant for σ8, we
observe the spectrum to be suppressed. This is partially
explained by a pure free streaming effect of the additional
DR component (see the dotted line indicating the case of a
constant ΔNeff ), and partially by the fact that perturbations
evolve slightly different in our model than in ΛCDM, see
Sec. II B).
So far, we have included only CMB data in our

discussion. In this section we extend our analysis to
post-CMB cosmology by including the following data sets:

FIG. 7. Linear matter power spectrum for the same set of benchmark models that we considered in Fig. 3. The range of wavenumbers
that is not shaded gives the dominant contribution to σ8. Left panel. ΛCDM parameters fixed to best-fit values from CMB only (as in left
panel of Fig. 3). Right panel. ΛCDM parameters fixed to best-fit values from CMBþ Lensingþ HSTþ PC. Here the difference plot is
still normalized to the ΛCDM power spectrum shown in the left panel.

7We observe some residual prior dependence due to the way in
which the parameter space is sampled, which leads to a less
efficient exploration of the tails for the case of logarithmic priors.

8Note that the procedure used to infer the observational value
of σ8Ω0.3

m assumes a ΛCDM cosmology, and properly accounting
for the different cosmology considered here may lead to some
deviations. To fully address this issue is beyond the scope of our
analysis.
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(ii) CMBþ Lensing: Same as CMB, with Planck lens-
ing power spectrum reconstruction [41], using like-
lihoods as implemented in COSMOMC

(iii) HST: Direct measurements of the Hubble rate H0 ¼
73.24� 1.74 km= sec =Mpc by the Hubble space
telescope [49]

(iv) PC: Measurement of the power spectrum normali-
zation, σ8ðΩm=0.27Þ0.30 ¼ 0.782� 0.010, from the
Planck Clusters [55].

In the right panel of Fig. 7, we show how the matter power
spectrum changes when using best-fit values of ΛCDM
parameters from a simultaneous fit to all these data sets
rather than CMB alone. On scales relevant for σ8, this
mostly has the effect of slightly increasing the power with
respect to what is shown in the left panel of the same figure.
This is due to the fact that for fitting the CMB spectrum of
the model to the data, a smaller DM density of our model
needs to be compensated by a larger As. Overall we thus
typically expect a slightly larger value of σ8 in our scenario,
as compared to the ΛCDM case. While this seemingly
further increases the discrepancy between CMB and low-
redshift observables, we will see that the simultaneous
decrease in Ωm overcompensates this effect, allowing for a
slight alleviation of the observed tension.
In Fig. 8, we provide a first illustration of the tension in

low- and high-redshift observables mentioned above. The
left panel, in particular, contrasts the ΛCDM best-fit region
in theH0 versus σ8ðΩm=0.27Þ0.30 plane obtained fromCMB
data only (red contours) with the direct measurements of
these quantities by HST (cyan band) and PC (orange band).
The blue contours show the preferred region in this plane
when combining all these data sets. (the green contours
result when also adding the Planck lensing power spectrum
reconstruction [41]). The incompatibility between the differ-
ent data sets is clearly visible and is in particular reflected in
the fact that the red and blue ellipses do not overlap.
The right panel of Fig. 8 demonstrates howour conversion

scenario may help to mitigate this discrepancy. For this
purpose we show how the best-fit regions shift for specific
values of our model parameters (κ ¼ 1, at ¼ 10−1.5,

ζ ¼ 0.06). We note that such an efficient DM conversion
would appear firmly excluded by the CMB limits shown in
Fig. 5, but we will discuss below how adding large-scale
structure data strongly relaxes those constraints (and,
depending on the choice of priors, even prefers such large
values of ζ, see the Appendix). For this model point, we find
that the red ellipse, corresponding to the parameter region
preferred by the CMB alone, moves downward and to the
right, such that it overlapswith the blue ellipse obtained from
combining all data sets at 95% C.L.
We can qualitatively understand this effect by recalling that

Ωχh2 is tightly constrained at recombination. The decreasing
DM component of our model at later times thus implies that
we have to simultaneously increase the Hubble rate in order
to remain compatible with CMB data. At the same time, the
total matter density Ωm ¼ Ωχ þ Ωb also decreases, which
shifts σ8ðΩm=0.27Þ0.30 downwards, even though σ8 increases
slightlywith respect to theΛCDMcase (seeFig. 7). Including
lensing (green contours) slightly enhances the tension with
the σ8 measurement again, but does not change the picture
qualitatively. We finally checked that adding baryon acoustic
oscillations measurements from the galaxy surveys in
Refs. [57–59] would not affect the left panel of Fig. 8, but
shift the blue contour in the right panel slightly to the left (to
the point where the 1σ contour does not quite overlap any
more with the 1σ band of the H0 measurement).
Since our model of DM conversion clearly has the

potential to reduce the tension between CMB and LSS
data, we can expect that the inclusion of the latter will also
significantly modify the constraints discussed in Sec. III. In
the left panel of Fig. 9 we demonstrate this for the case of
κ ¼ 1. The most prominent change compared to the bounds
obtained from CMB data only is that constraints for large at
are substantially weaker. This is a direct consequence of the
fact that in this region (and for ζ ∼ 10−2) our model actually
gives a better fit to data than ΛCDM (mostly by increasing
the Hubble rate, as already indicated in Fig. 8). At the same
time, the limits for small values of at strengthen because
CMB and LSS independently constrain a constantΔNeff . In
the right panel of Fig. 9 we show the limits from CMBþ

FIG. 8. Best fit regions for ΛCDM (left panel) and our model with κ ¼ 1, ζ ¼ 0.06 and at ¼ 10−1.5 (right panel). The orange and cyan
bands indicate the direct measurements of σ8ðΩm=0.27Þ0.3 ¼ 0.78� 0.01 [55] and H0 ¼ 73.24� 1.74 [49] respectively.
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Lensingþ HSTþ PC for different choices of κ. In each
case we observe a substantial weakening of the constraints
for large at compared to the limits obtained from CMB data
only (see Figs. 5 and 6).
At this stage the obvious question arises whether our

model of DM conversion only reduces the tension between
CMB and LSS data, or whether one may even claim
positive evidence for this model based on LSS data.
From the frequentist perspective the preference is at the
∼2σ level and hence not very significant. We indicate in
the right panel of Fig. 9 the parameter region preferred
by the combination of CMB and LSS data at 68% C.L.9

From a Bayesian perspective, as discussed in more detail in
the Appendix, the signal preference depends strongly on
the adopted prior.

V. SOMMERFELD-ENHANCED
DARK MATTER ANNIHILATION

In this section we discuss DM with Sommerfeld
enhancement as an interesting scenario in which a fraction

of DM is converted into DR over a well-defined period of
time. The basic idea is that DM particles interact with each
other via a mediator particle with mass small compared to
the DMmass,mmed ≪ mχ . The exchange of light mediators
then generates a potential that modifies the wave function
of DM particles, leading to an enhancement of the DM self-
annihilation cross section ðσvÞ0 at small velocities [60,61]:

σv ¼ SðvÞðσvÞ0: ð19Þ

As long as the Sommerfeld factor is small, SðvÞ ≈ 1,
the annihilation rate of a given DM particle decreases
rapidly with decreasing redshift as the number density of
DM particles decreases: Γann ¼ σvρχ=mχ ∝ a−3. Since the
Hubble rate decreases more slowly (proportional to a−2 or
a−3=2 during radiation domination and matter domination,
respectively), DM annihilations become less and less
important in the late Universe.
This situation can be reversed in the presence of a large

Sommerfeld enhancement. As we will discuss in more
detail below, in certain regions of parameter space one finds
SðvÞ ∝ v−2 for small velocities. As long as DM particles
are in local thermal equilibrium, their velocity is
v ∝ T1=2

χ ∝ a−1=2. After the DM particles have kinetically
decoupled from the heat bath, however, their momenta
simply redshift as v ∝ a−1, such that Γann ∝ a−1. In this
case, the annihilation rate decreases more slowly than the
Hubble rate and DM annihilations become increasingly

FIG. 9. Left panel: Approximate frequentist constraints for our conversion scenario with κ ¼ 1, resulting from CMBþ Lensingþ
HSTþ PC compared to the constraints obtained from CMB only (identical to the corresponding line in Fig. 5). The regions above the
solid lines are excluded at 99% C.L. For CMB only we also show the 95% C.L. exclusion limit (dotted), while for CMBþ Lensingþ
HSTþ PC we find a ∼2σ “signal” preference and show the preferred parameter region at 68% C.L. (dashed). Right panel: Frequentist
exclusion limits at 99% C.L. on the amount of converted DM from CMBþ Lensingþ HSTþ PC for different choices of κ.

9To construct this parameter region, we again use the test
statistic defined in Eq. (17). The preferred parameter region at
68% C.L. is then given by the requirement t < 2.28. We refrain
from attempting an exact reconstruction of the 2σ contour, which
would require a higher sampling efficiency. This parameter
region is similar also in the other cases shown in the right panel
of Fig. 9, except for κ ¼ 1=2, where the preference is slightly less
than 2σ and hence the 1σ region is somewhat larger.
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important. This leads to a second period of DM annihila-
tion after the classical chemical freeze-out [24,25]. As a
result, the comoving DM density may change appreciably
at late times. For even smaller velocities, the Sommerfeld
factor saturates and the DM annihilation rate reverts to its
usual scaling proportional to a−3, so that the comoving DM
density again becomes constant.

A. Model setup

To be more specific, we consider the case of a Dirac
fermion DM particle χ coupled to a vector mediator Vμ:

L ⊃ gχ χ̄γμχVμ: ð20Þ
The dominant DM annihilation channel in this setup is
the s-wave process χχ̄ → VV, for which one finds, in the
limit of vanishing relative velocity and mediator mass,
ðσvÞ0 ¼ πα2=m2

χ with α ¼ g2χ=ð4πÞ.10 Although the medi-
ators produced in DM annihilations could themselves act
as DR, we assume that they subsequently decay into even
lighter particles, such as sterile neutrinos. The advantage
of such a setup is that the resulting interactions between
DM and DR can significantly delay the kinetic decou-
pling of DM [62] (while at the same time avoiding strong
CMB constraints on visible decays [63]). Rather than
specifying the coupling between the mediator and DR,
however, we introduce here the kinetic decoupling
temperature Tkd as an additional free parameter to keep
the discussion more model-independent. In Sec. V E we
will briefly get back to the range of decoupling temper-
atures that would be expected in the simplest extension to
the model specified in Eq. (20), and otherwise refer to
Ref. [64] for a detailed discussion of how late kinetic
decoupling can be achieved in general.
The exchange of vector mediators generates the Yukawa

potential

VðrÞ ¼ αe−rmmed

r
: ð21Þ

The Sommerfeld factor can be calculated analytically by
approximating the Yukawa potential with a Hulthén poten-
tial, giving [60,61,65]

S ¼
2πα sinh

�
6mχv
πmmed

�

v

�
− cos

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mχα

π2mmed
− 9m2

χv2

π4m2
med

r �
þ cosh

�
6mχv
πmmed

�� : ð22Þ

We display this Sommerfeld enhancement factor in Fig. 10
as a function of mmed for fixed values of mχ , α and v.
In the limit of vanishing velocities, one finds that the

denominator becomes very small if

mmed ≈
6mχα

π2n2
ð23Þ

for some integer n. To quantify how close a specific
parameter point is to such a resonance, we define

δ≡
				mmed −mðnÞ

med

mðnÞ
med

				≡
				1 − π2n2mmed

6mχα

				; ð24Þ

where mðnÞ
med is the value of mmed at the nth resonance and n

is chosen to minimize δ. The inset in Fig. 10 shows the
Sommerfeld factor as a function of δ for n ¼ 2.
If δ is sufficiently small, δ ≪ 1=ðnπÞ, one finds that the

Sommerfeld factor for small velocities, v ≪ α=ðn2πÞ, can
be written as

SðvÞ ¼ 4α2

n2v2 þ α2δ2
: ð25Þ

The quality of this approximation can be inferred from the
black dashed line in the inset of Fig. 10. We conclude that
the Sommerfeld factor begins to grow as 1=v2 until
v≲ vsat ≡ αδ=n, at which point the Sommerfeld factor
saturates at S ≈ 4=δ2.
An additional subtlety is that the Sommerfeld factor

obtained from the naive solution of the Hulthén potential
can become so large that the annihilation cross section
violates unitarity at very small velocities. To avoid this
unitarity violation for very small δ, we follow the prescrip-
tion from Ref. [66] and consider the modified Sommerfeld
factor

SðvÞ ¼ 4α2

n2ðvþ vcÞ2 þ α2δ2
ð26Þ

with vc ¼ α4=ð4n2Þ.

FIG. 10. Sommerfeld enhancement factor S as a function of
mmed for fixed values of mχ , α and v. If the mediator mass
satisfies Eq. (23) for some integer n the enhancement can be very
large. In the inset we zoom into one specific resonance (n ¼ 2) by
replacing mmed with δ as defined in Eq. (24). For comparison we
also show the approximation of the Sommerfeld enhancement
factor given in Eq. (25), which is valid for δ ≪ 1=ðnπÞ and
v ≪ α=ðn2πÞ.

10Similar results are found for the case of scalar DM. The case
of a scalar mediator, on the other hand, is qualitatively different,
as the annihilation into a pair of mediators is a p-wave process.
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We emphasize that while Eq. (26) provides a very good
approximation to the Sommerfeld factor close to resonance
at small velocities, it does not yield the correct description
for large velocities or far away from a resonance. However,
as argued above, DM annihilations will not be important in
these regimes anyways, so that a more detailed modelling of
the Sommerfeld factor is unnecessary for our purposes. We
also note that theway inwhichwe implement the restoration
of unitarity for small δ is only approximate. While it ensures
that the Sommerfeld factor does not exhibit unphysical
behavior for v → 0, we expect a more detailed calculation to
yield slightly different results for finite velocities.

B. Evolution of dark matter density

For the purpose of calculating DM annihilation rates, we
are interested in the thermally averaged annihilation cross
section

hσvreli ¼ hSðσvrelÞ0i ¼ hSiðσvrelÞ0; ð27Þ

where we have made use of the fact that ðσvÞ0 is
independent of velocity. To calculate the thermal average,
we assume that the DM velocity distribution is given by a
Maxwell-Boltzmann distribution with an effective temper-
ature Teff :

fðvrelÞ ¼
ffiffiffiffiffiffiffi
x3eff
4π

r
v2rel exp

�
−
v2relxeff

4

�
; ð28Þ

where we have introduced the dimensionless temperature
xeff ¼ mχ=Teff . We note that the above ansatz is automati-
cally satisfied for parameter combinations close to a
resonance because the same light mediator that causes
the Sommerfeld enhancement also guarantees very efficient
DM self-interactions [25].
In order to proceed, we need to express xeff as a function

of the scale factor a. For this purpose, we assume that DM
particles are no longer in kinetic equilibrium with the

thermal bath. Denoting the temperature and scale factor of
kinetic decoupling by Tkd and akd, respectively, we find

Teff ¼ Tkd
a2kd
a2

¼ T2
0

Tkd
a−2; ð29Þ

where T0 is the present-day photon temperature.11 We
conclude that the thermally averaged Sommerfeld factor is
proportional to a2 for a≲ asat ≡ T0=ðvsat

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tkdmχ

p Þ and
becomes constant for larger scale factors.
We show the corresponding DM annihilation rate Γann in

comparison to the Hubble rate in the left panel of Fig. 11 for
mχ ¼ 250 GeV, α¼10−2, n¼10, δ¼10−5 and Tkd¼1keV,
corresponding to a mediator mass of mmed ≈ 13 MeV (the
value of α was chosen such as to roughly result in the correct
relic density from standard thermal freeze-out). For this
choice of parameters the Sommerfeld factor saturates around
a ∼ 10−3, staying significantly below the Hubble rate.
To calculate the change of DM density resulting from

this annihilation rate, we need to solve the Boltzmann
equation

dρχ
dz

ð1þ zÞHðzÞ − 3ρχHðzÞ − 1

2
hσvreli

ρ2χ
mχ

¼ 0 ð30Þ

FIG. 11. Left panel. Hubble expansion rate (solid line) compared to the annihilation rate of a given DM particle (dashed line) with
mχ ¼ 250 GeV, α ¼ 10−2, n ¼ 10, δ ¼ 10−5 (corresponding to a mediator mass mmed ≈ 13 MeV) and kinetic decoupling temperature
Tkd ¼ 1 keV. Right panel. Resulting DM density evolution for the same parameter point as in the left panel (dashed line), compared to
the phenomenological transition scenarios introduced in Sec. II for at ¼ 7.2 × 10−4 and ζ ¼ 0.075 (solid lines; see also Fig. 1).

11Here we have made two additional assumptions. First we
assume for simplicity that the temperature of the dark sector is the
same as the temperature of the visible sector. Relaxing this
assumption and introducing the temperature ratio of the two
sectors as an additional free parameter does not change our results
qualitatively. Second we assume that DM annihilations do not
change the temperature of the dark sector. This is not necessarily
a good approximation, since in the presence of Sommerfeld
enhancement, DM particles with small velocities have higher
probability to annihilate, leading effectively to an increase of the
DM velocity dispersion. In principle, this effect can be included
by solving a set of coupled differential equations [25]. However,
as long as the relative change of the DM density is small, we can
neglect the resulting change in the dark sector temperature.
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with the boundary condition

ρχðzCMBÞ ¼ Ωχρcð1þ zCMBÞ3; ð31Þ

where zCMB ¼ 1100 is the redshift at recombination and
Ωχ ¼ 0.1198=h2 and ρc ¼ 1.054 × 10−5h2 GeV=cm3 are
the present-day DM abundance and critical density inferred
from CMB observations under the assumption of ΛCDM.12

The factor of 1=2 in front of the last term in Eq. (30)
accounts for the fact that DM consists of Dirac particles; in
other words, ρχ refers here to the total density of both χ and
χ̄ and thus has the samemeaning as in the previous sections.
The solution of this equation is shown in the right panel of
Fig. 11 for the same choice of parameters as on the left
(black dashed line). We also show for comparison the DM
density as a function of redshift for the phenomenological
parametrization introduced in Sec. II. We find that for κ ¼ 1
(orange line) the model is very similar to the numerical
solution of the Boltzmann equation, while for the other
values of κ the transition looks quite different.

C. CMB and LSS constraints

We just concluded that late-time DM annihilations with
resonant Sommerfeld enhancement provide a good exam-
ple for the model discussed in the previous sections with
κ ¼ 1. We can therefore use the constraints obtained for
that phenomenological model to place bounds on models
with resonant Sommerfeld enhancement. In order to
determine whether a specific parameter point is allowed
or excluded by cosmological data, we thus need to
determine the values of at and ζ that provide the best fit
to the numerical solution of the Boltzmann equation and
then compare these values to the frequentist bounds shown
in Fig. 9 (concretely, we determine at as the scale factor
where half of the conversion has happened). Using fre-
quentist bounds has the crucial advantage that we do not
need to specify priors for the particle physics parameters of
the model we consider. Moreover, even if priors for the
particle physics parameters could be motivated, these
would likely translate to nontrivial priors on at and ζ,
meaning that the Bayesian limits derived in the previous
section could not be directly applied.
From the discussion in the previous subsection, this

translation toat and ζ can be done for arbitrary combinations
of mχ , α, n, δ and Tkd that satisfy the following conditions:

(i) The parameter point lies in the resonant re-
gime: δ ≪ 1=ðnπÞ.

(ii) Kinetic decoupling happens before the Sommerfeld
factor saturates: Tkd ≫ mχv2sat.

(iii) The DM annihilation rate stays significantly below
the Hubble rate even for a ≈ asat, so that the total

relative change of the DM density remains
small: ζ ≲ 1.

While the last requirement is not strictly necessary, it
becomes computationally very challenging to accurately
calculate the evolution of the DM density for ζ > 1 due to
the need to account for changes in the temperature of the
dark sector. As we will see below, parameter regions with
ζ > 1 are either robustly excluded or phenomenologically
uninteresting, so that we do not consider these regions in
more detail.
In the following, we will impose one additional require-

ment, namely that α is chosen in such a way that the DM
abundance predicted from thermal freeze-out coincides
with the solution of Eq. (30) for very early times, i.e.,
a ≪ asat. This requires solving the Boltzmann equation
iteratively until a self-consistent solution is found.13 We
note that such an iterative procedure is particularly impor-
tant for the parameter region where unitarity restoration
plays a role, because in this case the saturated Sommerfeld
factor is proportional to α−6.
A final complication arises from the onset of nonlinear

structure formation around znl ≈ 50. At this point the DM
particles decouple from the Hubble flow, and their relative
velocities start to increase. As a result the Sommerfeld
enhancement factor drops and the comoving DM density
very quickly becomes constant for z≲ znl, even if the
Sommerfeld factor has not yet saturated. In this case, the
functional form introduced in Eq. (1) no longer provides a
good description of the redshift dependence of the DM
density for a ≳ at (when choosing at as the scale factor
where half of the conversion has happened). However, as
seen in Fig. 9, if the conversion of DM to DR happens
sufficiently after recombination, constraints are largely
insensitive to the precise redshift dependence and only
limit the total amount of DM converted. We can therefore
continue to use the phenomenological parametrization from
above even in this regime. The cutoff of DM annihilations
by non-linear structure formation can be shown to impose
at ≳ 7 × 10−3 in our model.
Our results are summarized in Fig. 12 for n ¼ 2 (top

row), n ¼ 10 (middle) and n ¼ 50 (bottom row). In the left
column we fix Tkd ¼ 0.2 keV and vary δ, in the right
column we fix δ ¼ 10−6 and vary Tkd. The solid (dashed)
lines in each panel indicate combinations of mχ and δ
corresponding to constant ζ (constant at). The yellow
shaded region in each panel indicates the region of
parameter space excluded by the constraints derived in
this work, while the green shaded regions indicate the
region favored by combining CMB and LSS data (as also

12There is some arbitrariness in the choice of zCMB, but since
we focus on the case where the DM density changes only slightly,
the precise choice of zCMB does not affect our results.

13Following Ref. [67] we approximate the Sommerfeld en-
hancement factor during freeze-out by calculating the Sommer-
feld factor for v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πTfo=mχ

p
, where the freeze-out temperature

Tfo as a function of DM mass is taken from Ref. [68].
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shown in Fig. 9). The parameter regions that violate one or
more of our basic conditions (i)-(iii) are shaded in grey.
As expected, and as directly visible in the left panel of the

figure, CMB and LSS data can only probe our model in the
case of very small values of δ, i.e., for parameter regions
rather close to a resonance. Interestingly, for each value of n,
and a given kinetic decoupling temperature, only a finite
range of DM masses is excluded and preferred, respectively;
these mass ranges move to larger values with increasing n.
We note that the upper value of the excluded DMmass range
is driven by the saturation of the Sommerfeld enhancement
for very small velocities and δ, so this is where the improve-
ment of Eqs. (25) and (26) is most relevant. Increasing Tkd, as
in the right column, has the effect of lowering the DM mass
preferred by the data; the range of excluded DM mass is
increased. We will soon see, however, that too small DM
masses inevitably lead to an unacceptably large DM self-
scattering rate, so in practice it is not very interesting to
consider kinetic decoupling temperatures much larger than
1 keV in this model.

D. Discussion

Let us briefly return to the treatment of perturbations
in our conversion scenario. In Sec. II B we argued that this
is necessarily model-dependent, i.e., not uniquely deter-
mined by the choice of parameters ðκ; ζ; atÞ that describe
the evolution of the background densities. Concretely we
have so far always adopted the minimal option stated in
Eq. (13), i.e.,

δQ=Q ¼ δχ : ð32Þ
For the case studied in this section the situation is different,
because the conversion rate Q is associated to a concrete
microphysics process, so that the Boltzmann equation
directly determines the form of δQ. The case of off-
resonance Sommerfeld enhancement was discussed e.g.,
in Ref. [26], but the fully general case is rather involved.
Wewill therefore estimate the impact of perturbations using
a simplified treatment based on heuristic arguments.
For annihilation processes with two DM particles in the

initial state, we have Q ∝ hσviρ2χ , and thus

δQ ¼ ∂Q
∂hσvi δhσvi þ

∂Q
∂ρχ δρχ ¼

δhσvi
hσvi Qþ 2Qδχ : ð33Þ

For σv ∝ v−1, the perturbation δhσvi at large scales is given
by δhσvi ¼ hσvi h

6
[26]. Following the heuristic arguments

given in that reference, this can be generalized to δhσvi ¼
βhσvi h

6
for a cross section scaling with velocity as σv ∝ v−β.

Since we are mostly interested in parameter combinations
very close to a resonance, where σv ∝ v−2 this motivates us
to change the prescription for perturbations to

δQ=Q ¼ δχ →
1

3
hþ 2δχ : ð34Þ

This enters in both the evolution equation for DM perturba-
tions, Eq. (11), and in those for the DR perturbations,
Eqs. (14) and (15).
In Fig. 13 we demonstrate that this change hardly affects

the frequentist limits and preferred region for the κ ¼ 1
model. This confirms our expectation from Sec. II B that
the impact of perturbations should typically be small,
implying that one generally can directly adopt the results
shown in the previous sections (in particular Figs. 5 and 9).
We stress, however, that this remains a model-dependent
statement, which in principle has to be checked on a case-
by-case basis (as we have done here).
Let us finally briefly discuss the case that the dark sector

(i.e., DM and DR) is colder than the visible sector during
thermal freeze-out, ξ≡ Tdark=Tvis < 1. Such a situation
occurs naturally if the two sectors only interact with each
other at very high temperatures but then evolve independ-
ently. In fact, it is probably necessary to have ξ < 1 in order to
avoid an unacceptably large contribution to Neff from DR
(see, e.g., Ref. [64]). A nontrivial temperature ratio has three
effects: it reduces the value of α required to reproduce the
observed DM relic abundance, it reduces the velocity of DM
particles for a given temperature of the visible sector, and it
leads to earlier kinetic decoupling (see below). In combina-
tion, these three effects result in a larger Sommerfeld factor at
early times but smaller saturationvalue, implying in particular
that the saturation happens earlier [27]. A quantitative
discussion of the resulting changes requires more specific
assumptions and is thus beyond the scope of this work.

E. Impact on small scales

The model that we have studied in this section has a
number of further interesting properties, which allow us to
extend the discussion of Fig. 12 to additional cosmological
and astrophysical observables. First of all, an interaction as
given in Eq. (20) inevitably mediates a strong DM self-
interaction for the light mediators that we consider here.
In the resonant regime, the self-interaction cross section can
again be calculated by approximating the Yukawa potential
by aHulthén potential. Close to a resonance (i.e., for δ ≪ 1),
the phase shift from the scattering process is very close to
π=2 and one therefore obtains the simple expression

σT ¼ 16π

m2
χv2rel

: ð35Þ

For mχv=mmed ≳ 1, corresponding to n2v=α≳ 1, the
Hulthén approximation becomes inaccurate and a better
solution is obtained by fitting to numerical solutions of the
Schroedinger equation. We adopt the parametrization for
this classical regime from Ref. [69], noting that in this case
the momentum transfer cross section scales approximately
as σT ∝ ðn=mχÞ3−4.
In all panels of Fig. 12 we indicate the parameter regions

hσTi=mχ > 10 cm2=g, where hσTi denotes the velocity-
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FIG. 12. Constraints on DM with Sommerfeld enhancement as a function of mχ and δ (left) and as a function of mχ and Tkd (right).
The different rows correspond to different resonances, i.e., different choices of n. The second y-axis in each panel indicates
the mediator mass mmed corresponding to mχ for the specific resonance, cf. Eq. (23).
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averaged momentum transfer cross section for a typical
relative velocity of 30 km=s. This parameter region is
robustly excluded by bounds from dwarf spheroidal gal-
axies and low-surface-brightness galaxies [70–72] and
simply corresponds to an upper bound on the DM mass
that only depends on n. It is worth noting that DM self-
interactions with somewhat smaller cross sections, and
correspondingly larger DM masses, have been independ-
ently invoked [62,73–79] to mitigate a number of long-
standing small-scale problems of structure formation,
namely the cusp-versus-core [80–82] and the too-big-to-fail
problem [83,84] (as well as, more recently, the diversity
problem [79,85,86]). As can be seen in the figure, such self-
interaction rates can relatively easily be accommodated in
our model for parameter values that also are favoured by the
CMBþ LSS data—in particular for large values of n.
As already mentioned, these strong constraints from DM

self-interactions imply rather small kinetic decoupling
temperatures when compared to standard WIMP candi-
dates. Such a late kinetic decoupling introduces a small-
scale cut-off in the matter power spectrum similar to warm
DM [87]. Thus, Tkd cannot be too small without being in
conflict with Lyman-α forest observations. In the right
column of Fig. 12 we therefore also show a rough estimate
of this bound, Tkd ≳ 0.1 keV [64,88]. Kinetic decoupling
temperatures close to this bound may lead to the suppres-
sion of small-scale structure and thereby alleviate yet
another long-standing small-scale issue of ΛCDM cosmol-
ogy, namely the missing satellites problem [89–91] (see

however [88,92,93] for recent discussions of this issue).
Figure 12 thus suggests that this is possible in the same
parameter region that is favored by large-scale data and DM
self-interactions at dwarf galaxy scales—(almost) indepen-
dent of which resonance, n, is considered.
At this point, however, we should recall that Tkd is not

really a free parameter but is in principle uniquely deter-
mined by the DM particle model. The simplest possibility
would be to couple the mediator Vμ not only to DM but also
to DR, with a coupling gϕ ¼ ηgχ . This results in [64]

Tsimp
kd ∼ 0.3 keV × η−1=2ξ−3=2

�
mχ

TeV

�
−1=4

�
mmed

MeV

�

∼ 0.7 keV

�
n
100

�
2

× η−1=2ξ−3=2
�

mχ

TeV

�
7=4

; ð36Þ

where ξ denotes the temperature ratio of dark to visible sector.
This clearly shows that it is in practice difficult to achieve late
kinetic decoupling formediator masses above theMeV scale.
Combining this insight with the self-interaction bounds
shown in the right column of Fig. 12, we conclude that this
affects resonant annihilation for small n.
On the other hand, we make the interesting observation

that for TeV-scale DM and “high” resonances, with n≳ 50,
it is in fact rather straightforward to simultaneously alleviate
the missing satellites and other small-scale problems, and at
the same time reduce the H0 and σ8 tensions. Given that we
adopted a rather minimal model set-up, this is an intriguing
result. The fact that (various combinations of) these tensions
between observations and the cosmological concordance
model can be simultaneously addressed for similar models
has been pointed out before [27,62,73,74,88,94,95]; here we
confirmed those claims, adding the first full combined
analysis of CMB and LSS data in this context.

VI. CONCLUSIONS

The cosmological concordance model rests on the some-
what bold assumption that the comoving DM density
remains exactly constant while the Universe expands in
volume by more than 20 orders of magnitude. In this article
we have quantified how strongly deviations from this
scenario are constrained observationally. In order to do
so in as model-independent and conservative a way as
possible, we have assumed a range of phenomenological
transition scenarios (see Fig. 1) where DM is converted into
a non-interacting form of radiation.
We find that all scenarios where the DM density is

reduced by more than a few percent after matter-radiation
equality are in strong tension with CMB observations (see
Fig. 5). For earlier transitions, on the other hand, a much
larger fraction of DM can be converted; this is expected
given that the relative contribution of DM to the total energy
budget is correspondingly smaller. Adding low-redshift
observables to the analysis relaxes the late-time constraints,

FIG. 13. Solid lines show the 99% C.L. approximate frequentist
limits and dotted lines the 68% C.L. preferred parameter
region for our conversion scenario with κ ¼ 1, resulting from
CMBþ Lensingþ HSTþ PC. The orange and green areas result
from our standard treatment of perturbations and are identical to
those shown in the right panel of Fig. 9. The blue lines and area
result when changing this prescription as stated in Eq. (34).
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cf. Fig. 9, allowing up to around 10 percent of DM to be
converted during matter domination.
The reason for the weakening of the CMB constraints is

that a late conversion from DM to DR reduces the well-
known tension between these essentially incompatible data
sets. We discussed in detail in what sense this implies
positive evidence for such a transition scenario, concluding
that, from a frequentist perspective, the preference is rather
mild. We stressed, however, that a Bayesian analysis would
come to a very different conclusion for a prior choice that
puts special emphasis on late-time conversions (see the
Appendix).
We argued that our parametrization of possible transition

scenarios from DM to DR is very general and encompasses
those previously discussed in the literature, in particular the
case of decaying DM (see again Fig. 1). Another interesting
application would be primordial black hole DM, where
merger events inevitably transform part of the black hole
mass to DR in the form of gravitational waves. In the last
part of this work, Sec. V, we have discussed in detail yet
another scenario that can be mapped to our general para-
metrization, namely DM coupled to DR via light mediator
particles. For specific values of the mediator mass,
cf. Fig. 12, this implies a strongly enhanced DM annihi-
lation rate at late times that can mitigate the above-
mentioned tension between CMB and large-scale structure
data. Remarkably, as we have also discussed, such a simple
scenario could simultaneously alleviate the most pressing
ΛCDM problems at small scales.

Turning this around, there is a surprising variety of
astrophysical and cosmological observations that allow to
test such a simple particle model even though it is almost
fully confined to a dark sector, with negligible couplings to
the Standard Model. The constraints derived in this work
are thus not only of general interest, in the sense that they
quantify how well one of the basic assumptions of the
cosmological concordance model is tested observationally,
but can very concretely help to test and discriminate a
variety of (particle) DM models.
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APPENDIX: BAYESIAN EXCLUSION LIMITS

In this Appendix we complement the discussion in
Sec. IV with a Bayesian perspective on our general con-
version scenario. We start by showing in Fig. 14 the
Bayesian exclusion limits corresponding to the approximate

FIG. 14. Left panel: 95% C.L. (dotted lines) and 99% C.L. (solid lines) Bayesian limits for our conversion scenario with κ ¼ 1,
resulting from CMBþ Lensingþ HSTþ PC. For comparison we also show the constraints obtained from CMB only (identical to the
corresponding line in Fig. 5). Right panel: Bayesian limits on the amount of converted DM from CMBþ Lensingþ HSTþ PC for
different choices of κ; the colored region above each line is excluded.
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frequentist exclusion limits shown in Fig. 9. These limits are
obtained using flat priors on log at and ζ (for at > 10−4) or
ΔNtoday

eff (for at < 10−4). In contrast to the ∼2σ preference
for our model found in the frequentist approach, a Bayesian
model comparison actually favors ΛCDM, as the parameter
region inwhich the extendedmodel is preferred overΛCDM
is much smaller than the parameter region in which the

model is strongly disfavored. This conclusion nevertheless
depends strongly on the priors assumed for our effective
description and could bemodified in a setupwhere favorable
values of at and ζ occur naturally.
In Fig. 15 we provide a supplementary perspective on

our discussion so far, which also illustrates the point just
made. We show the marginalized 1D and 2D posteriors for

FIG. 15. Marginalized 2D and 1D posteriors resulting from CMBþ Lensingþ HSTþ PC for our conversion scenario with κ ¼ 1,
with closed contours indicating 68%, 95% and 99% C.L., respectively. The white contours (in the 2D plots) and grey lines (in the 1D
plots) are for CMB only.
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our model parameters as well as the ΛCDM parameters
most relevant in our context, namelyH0, σ8 and Ωm. We do
so both for CMB only (grey lines and white contours) and
CMBþ Lensingþ HSTþ PC (black lines and colored
contours), respectively. Here, we have fixed κ ¼ 1 and
chosen a flat prior for ζ; for log10 at we have chosen a flat
prior between −3 and −1, thus zooming in on the most
relevant parameter region. For such a prior choice we see a
clear signal preference in the ζ vs log10 at plane, once we
add LSS data, which can directly be compared to Fig. 9.
It is also illuminating to see the correlation of our model

parameters with the cosmological observables considered
here. For example, it becomes obvious that the degeneracy
between matter density and Hubble rate is not broken when
adding LSS data. This motivates previous statements that
Ωχh2 is very well constrained both in ΛCDM and in our

scenario, and confirms our qualitative discussion of
Fig. 8. There we argued that a larger Hubble rate at late
times not only helps to reconcile direct measurements ofH0

but automatically, due to this degeneracy, the direct
measurement of the parameter combination σ8Ω0.3

m as well.
As a result of combining essentially incompatible data sets,
the parameters that have been marginalized out are thus
pushed towards values that reduce the tension between
CMB and LSS data. In our case, as can explicitly be seen in
the corresponding 2D posteriors in Fig. 15, this independ-
ently results in large values for at and ζ. Let us stress again
that these conclusions are prior dependent; allowing
log10 at to extend to much smaller values, for example,
fully erases the preference for a signal around at ∼ 10−2.5

and ζ ∼ 0.03.
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