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A novel mathematical approach has been developed to complete the inversion of the Biot-Savart

law in one- and two-dimensional cases from measurements of the perpendicular component of the

magnetic field using the well-developed Magneto-Optical Imaging technique. Our approach, espe-

cially in the 2D case, is provided in great detail to allow a straightforward implementation as

opposed to those found in the literature. Our new approach also refines our previous results for the

1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed

by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of

Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique,

which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account

for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demag-

netising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 supercon-

ducting thin film, we show that the procedure employed is effective. Published by AIP Publishing.
https://doi.org/10.1063/1.5012588

I. INTRODUCTION

Magnetic imaging techniques are increasingly prevalent

in many fields of science and medicine, as they can be used

to determine the properties of materials and provide powerful

medical diagnostic tools through non-contact, non-destructive

measurements. Such techniques in physics and materials

science research include but are not limited to Magnetic

force microscopy;1 SQUID (Superconducting Quantum

Interference Device) microscopy,2,3 as well as the more

recent invention of SQUID-on-tip microscopy, whereby a

nanoSQUID is fabricated on a quartz tip;4,5 Magneto-optical

imaging (MOI) for ferromagnetic and superconducting mate-

rials,6,7 and its dynamic version for rapid imaging of transient

current effects;8,9 lHall-probe microscopy;6,11–14 bitter deco-

ration;15 scanning magnetoresistive microscopy;16 scanning

electron microscopy with polarization analysis (SEMPA);17

and electron holography.18

In medical and biological applications, such techniques

include optical magnetic imaging of living cells,19 magnetoen-

cephalography (MEG) of brain activity,20–22 magnetocardiog-

raphy (MCG) for magnetic heart signals,20,23 and Magnetic

Resonance Imaging (MRI) for producing images of soft tissues,

organs, body, and brain.24 MRI has become a valuable tech-

nique for medical diagnostics and biomedical research with a

large number of important developments, such as functional

Magnetic Resonance Imaging (fMRI) of human brains25,26 and

Magnetic Resonance Elastography measuring the mechanical

properties of soft tissues of the brain.27

The MEG/MCG image reconstruction is largely based on

the solution to the inverse problem.20 The similar inverse prob-

lem of the Biot-Savart law also allows the calculation of plane

current components from magnetic field measurements of a

sample. This is particularly useful for superconductors and thin

films,7–10,28 ferromagnetic and superconducting hybrids,29,30

and even magnetic flux quanta (Abrikosov vortices).3

In practice, methods of magnetic field detection via mag-

netometers often measure only the out-of-plane z-component

of the magnetic field extending from a sample. This adds

complexity to the inversion problem since two current com-

ponents, Jx and Jy, must be determined from only one field

component, Bz. Several solutions to this problem have been

proposed over the years. However, the conditions of applica-

bility have varied. For example, Roth et al.33 solved the prob-

lem considering that the magnetic field sensor was placed at a

finite distance from the sample which is much larger than the

sample thickness, which considerably simplified the approach

but reduced its accuracy. Johansen et al. initially solved the

non-contact problem only in a long strip 1D case.31 A more

general solution to the problem was devised by Jooss et al.,
which takes into account the finite distance to the detector,

the sample thickness, and solves the problem in 2D.32

A new and simpler method for solving the inverse prob-

lem is described in this paper, and the final result is consis-

tent with Jooss’ solution. This new approach requires neither

Green’s function integral identities32 nor Topelitz matricesa)Author to whom correspondence should be addressed: pan@uow.edu.au
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for numerical solutions to the Biot-Savart law.34 Instead,

computation of the integral kernel is carried out directly by

using properties of the Bessel functions of the first kind and

the Laplace transform.

Though a magnetic field is applied solely in the z-direc-

tion, in-plane magnetic fields exist at the finite measurement

distance in MOI due to the bending of magnetic fields around

the superconducting sample by the demagnetising effect. To

account for this, a technique was proposed by Johansen

et al.,35 and later described by Laviano et al.36 for the 2D

case. This 2D technique involves computing the x and y
components of the magnetic field from the calculated current

in the film, and then re-calculating the currents from the new

field distribution in an iterative procedure. This procedure

was streamlined and verified by testing it on magneto-optical

images of high quality YBa2Cu3O7–d (YBCO) thin films. It

appears to be effective, but may produce noticeable artefacts

on the corrected images of field and current if over-applied

due to the internal LabVIEW Fast Fourier Transform (FFT)

routine used in our iterations.

The accuracy of any correction technique is vital to the

practice of MOI, since it can avoid calculation of misleading

current distributions. Such techniques could also lead to

higher resolution image reconstructions for determination of

local electrodynamic quantities, allow more accurate deter-

mination of properties such as local current-carrying capac-

ity,7,31,33,36,37 and refine MEG/MCG image reconstruction

for the human brain in response to demand for single-cell

resolution.38–40

II. THEORY

In detecting the magnetic field around superconducting

samples, the magneto-optical imaging technique measures

the local z-component of the magnetic field at each point in a

Faraday-active indicator film,9 which is placed at a finite dis-

tance h above the sample. In our experimental setup, h is

taken to be the distance between the top of the sample and

the bottom of the indicator film (Fig. 1) and is estimated

from the sample and film roughness, and the thickness of

the reflective layer on the indicator film as also considered

in.8,28,31,32 Furthermore, there also exist in-plane fields (Bxy),

which contribute to the currents created within the sample.

The indicator film is also sensitive to these field components.

Such in-plane fields are caused by the bending of the imposed

magnetic field around the sample due to the demagnetising

effect, and due to the stray fields from each vortex bending

outward as they reach the height of the indicator film.

Figure 1 schematically shows a thin superconducting

sample with a magneto-optical indicator film on top of it. An

applied magnetic field bends around the superconductor due

to screening of the magnetic field. This demagnetising effect

is shown by the curved arrows on both sides of the sample in

Fig. 1(a). A vortex has exponentially diverging stray fields

above the sample12,41 [shown schematically by arrows below

and above the vortex in Fig. 1(a)], which overlap for a large

number of vortices at the distance where the indicator film is

located. As a result, the in-plane field Bxy and out-of-plane

field Bz components exist at the measurement height since

the direction of the magnetic field lines are at some angle to

the z-axis.

When a magnetic field is present at a point on the indica-

tor film, the local magnetic moment is perturbed by an angle

/ as shown in Fig. 2. Consideration of the geometry in Fig. 2

allows us to write the interaction energy, Eint, of the indicator

film in the presence of an applied magnetic field with a non-

zero z-component as in Ref. 36, Eq. (3.1)

Eint ¼ EAð1� cos /Þ þ BMs 1� cos ða� /Þ½ �; (1)

FIG. 1. (a) Bending of the imposed magnetic field (bold curved arrows)

around a superconducting sample due to the demagnetising effect and

spreading of the stray field above vortices. (b) Visualisation of the inverse

problem in one dimension.

FIG. 2. When there is no applied field in the z-direction, the spontaneous

magnetisation vector lies in the plane of the film. A non-zero z-component

of the applied field perturbs the magnetisation vector by an angle /, giving

it a non-zero z-component.

123906-2 Zuber et al. J. Appl. Phys. 123, 123906 (2018)



where EA is the anisotropy energy, Ms is the value of the

spontaneous magnetisation, and a is the angle formed

between the magnetic induction B and the xy-plane.

To find an expression for the equilibrium magnetisation,

an angle / is determined such that the interaction energy is a

minimum. This angle represents the balance between the

magnetocrystalline anisotropy and the tendency to align with

the external magnetic field.31 Hence, computing the deriva-

tive of Eq. (1) with respect to / and showing it has second

derivative always positive, gives

/ ¼ tan�1 Bz

BA þ Bxy

� �
; (2)

defining the following: EA

Ms
¼ BA as the magnetic anisotropy

field and Bxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB � x̂Þ2 þ ðB � ŷÞ2

q
¼ B cos a.

The polarisation of light incident on the indicator film is

rotated by the Faraday effect. In the MOI setup, polarised

light is applied to the indicator film parallel to the film’s opti-

cal axis. Therefore, the angle of rotation aF is proportional to

the magnetisation along the light propagation direction,

allowing us to use the Faraday rotation law

aF ¼ CMs sin /; (3)

where C is an experimental constant dependent on the indica-

tor film thickness. After rotation the light passes through an

analyser at a fixed angle h with respect to the polariser.

Invoking Malus’ law then gives the intensity at the analyser as

I ¼ I0 þ Imax cos2ðaF þ hÞ: (4)

The light intensity is then measured employing a camera,

and the magnetic field can be determined directly from the

measured light intensity. This light intensity can be used to

calculate currents in a superconducting film placed under-

neath (Fig. 1). We consider this problem quantitatively in the

Subsections III A and III B.

However, it is worth mentioning that the magnetic field

varies along the z-axis due to the magnetic field bending as

shown by the field lines [bold curved arrows in Fig. 1(a)]. In

particular, within the indicator film, the light intensity

becomes an integral quantity over the indicator film thickness,

commonly ranging from a few hundred nanometers to a few

microns.42 This effect has never been taken into account and

is also not considered in our work due to a somewhat arbitrary

choice of the parameter h as discussed above. This choice ulti-

mately makes any quantitative assessment of this integral

quantity carry some degree of uncertainty, resulting in some

error in the absolute values of calculated currents. This is a

limitation of this type of analysis. However, the impact on the

results can be minimised by ensuring the smallest possible h
and employing as thin indicator films as practical.

III. THE INVERSE PROBLEM

The inverse problem is the problem of calculating cur-

rents from magnetic field measurements of a thin film super-

conductor placed in a homogeneous perpendicular magnetic

field. Since magnetic field values are used to calculate cur-

rent in a non-local manner, the Biot-Savart law is always

taken as the starting point of the problem.

A. The inverse problem in 1D

The solution to the 1D inverse problem depicted in Fig. 1

has been done Johansen et al.31 We re-derive it here with a

somewhat different approach and more details. It is to allow a

simplified practical implementation for research, visualisa-

tion, or quality control purposes.

The sheet is taken to be thin so that Jz¼ 0, and since we

are only considering the 1D case, Jx¼ 0 here too. For the

currents, the sheet thickness, d, is taken to be small com-

pared to the height of the detector above the sheet, h: d� h.

Hence, in the application of the Biot-Savart law, the sheet

current is given by

JyðxÞ ¼
ðd

0

jðx; zÞdz; (5)

where j(x, z) is the local current density caused by current

moving in the y-direction producing a magnetic field in the

xz-plane.

An application of the Biot-Savart law in 1D gives

Bzðx0Þ ¼
l0

2p

ð1
�1

x� x0

h2 þ ðx� x0Þ2
JðxÞdx: (6)

Prior to taking the Fourier transform of the inhomogeneous

Fredholm integral equation of the first kind above observe

that the kernel

Kðx; x0Þ ¼ x� x0

h2 þ ðx� x0Þ2
¼ Kðx� x0Þ; (7)

is translational invariant, so a convolution in the x-plane can

be applied. Hence, the Fourier transform of Eq. (7) where

x0 ! kx yields

~BzðkxÞ ¼
l0

2p
~KðkxÞ~JðkxÞ: (8)

Now, obtaining an expression for J(x)—the current

value at the small region of current not the x-ordinate of the

magnetometers position (x0)—and using the inversion theo-

rem gives

l0JðxÞ ¼
ð1
�1

~BzðkxÞ
~KðkxÞ

eikxxdkx: (9)

In order to compute the Fourier transform of the integral ker-

nel, it can be shown

~KðkxÞ ¼
ð1
�1

x0

h2 þ x02 e�ikxx0dx0 ¼ �ipsgnðkxÞe�hjkxj; (10)

where sgn(x) is the sign function. A proof is provided in

Appendix A.

Before discretisation of the integral can take place, the

functions in the integrand must be transformed into those

123906-3 Zuber et al. J. Appl. Phys. 123, 123906 (2018)



which can be represented by an infinite series. So, using

Eq. (10)

l0JðxÞ ¼
ð1
�1

~BzðkxÞ
�ipsgnðkxÞe�hjkxj

eikxxdkx: (11)

However, noting that the transfer function is given by
1

~KðkxÞ
, it is evident that components with high frequency will

be highly amplified, since by Eq. (10)

1

~KðkxÞ
/ ehjkxj: (12)

Such components are to be removed. Hence, a low pass filter

should be included in the analysis so that components with

jkxj � Kc are cut out, where Kc is a cut-off frequency.

Including this cut-off frequency gives

l0JðxÞ ¼
ð1
�1

ðKc

�Kc

eikxxBzðx0Þe�ikxx0

�ipsgnðkxÞe�hjkxj
dkxdx0: (13)

By defining

AðnÞ ¼
ðKc

�Kc

eikxn

�ipsgnðkxÞe�hjkxj
dkx; (14)

Eq. (13) may be written as

l0JðxÞ ¼
ð1
�1

Aðx� x0ÞBzðx0Þdx0: (15)

The following solution to Eq. (14) is given in Ref. 31:

AðnÞ ¼ n 1� ekch cos ðKcnÞ
� �

þ heKch sin ðKcnÞ
h2 þ n2

; (16)

however, it lacks a small numerical factor of � 2
p, which we

re-introduce after careful mathematical analysis, as follows:

AðnÞ ¼
ðKc

�Kc

eikxn

�ipsgnðkxÞe�hjkxj
dkx

¼ i

p

ð0

�Kc

ekxðin�hÞ

�1
dkx þ

ðKc

0

ekxðhþinÞ

1

" #

¼ �i

p
ine�Kcðin�hÞ � inþ he�Kcðin�hÞ

h2 þ n2

"

þ ineKcðinþhÞ � in� heKcðinþhÞ

h2 þ n2

�

¼ 2

p
n eKch cos ðnKcÞ � 1
� �

� heKch sin ðnKcÞ
h2 þ n2

;

[ AðnÞ 6¼ n 1� ekch cos ðKcnÞ
� �

þ heKch sin ðKcnÞ
h2 þ n2

: (17)

With such an integral kernel, A(n), the integral in Eq.

(15) is discretised since magnetic flux is measured in discrete

pixel-sized units. For this process, D¼ p/Kc was defined as

the unit length, then the x-coordinates were discretised as:

x¼ nD and x0 ¼ n0D, and finally h¼ tD, where t is simply the

film thickness under the change of variables.

The infinite sum representing the revised version of Eq.

(15) was calculated to be

l0JðnÞ ¼ � 2

p

X
n0

n� n0

t2 þ ðn� n0Þ2
1� ð�1Þn�n0ept

p
2Bzðn0Þ:

(18)

Hence, the 1D inverse problem has been solved. A dis-

crete sum is obtained here to represent the current density

given the magnetic field values. However, this solution was

not consistent with previous literature due to the aforemen-

tioned small factor of � 2
p.

Therefore, the current appears to flow in the opposite

direction and has a slightly smaller amplitude by a factor of

2/p, compared to the result in Ref. 31. The true “Current

Direction” is shown in Fig. 1(b) along the x-axis.

B. The inverse problem in 2D

The inverse problem in two dimensions was analysed

using a novel approach, which somewhat resembles that

given by Jooss et al.32 It is however unique, since instead of

using Green’s functions to evaluate the Fourier transform of

the integral kernel, it is represented as a Hankel transform

for which the Bessel function and Laplace transform identi-

ties can then be used to compute the transform.

To derive a formula for Jx(x, y) and Jy(x, y) as a function

of Bz, we start with the continuity condition for the sheet cur-

rent density

r � Jðx; yÞ ¼ 0: (19)

It assumes that there is no current flowing in the z-direction

of the sheet since it is thin.

We then define a scalar function g(x, y) by the relation

Jðx; yÞ ¼ r � ẑgðx; yÞ; (20)

which is consistent with the continuity equation (19). To

alleviate the freedom of gauge choice, the Coulomb gauge

condition can be applied so that g(x, y) is totally defined as

the local magnetisation and is the potential function for the

current density.

Using the new expression for J(x, y) in the integrand

given by the Biot-Savart law, we obtain

BzðrÞ ¼
l0

4p

ð
V

ẑ
r� ẑgðx; yÞ½ � � ðr� r0Þ

jr� r0j3
d3r0; (21)

where r is the position we measure the field being produced

from position r0 and the volume element d3r0 ¼ dx0dy0dz0. Note

once again that we are only able to measure the z-component of

the magnetic field, hence the unit vector in the integrand.

Now, it is left to compute the integrand in a form, where

the convolution theorem for Fourier transforms can be

applied. It can be shown using vector calculus identities that

BzðrÞ¼�
l0

4p

ð
V

2ðz� z0Þ2�ðx�x0Þ2�ðy� y0Þ2

ðx� x0Þ2þðy� y0Þ2þðz� z0Þ2
h i5

2

gðx0;y0Þd3r0:

(22)
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Taking into account the finite thickness of the sample (d), we

integrate z0 over the domain �d
2

to d
2
. Now in taking the

Fourier transform of the x0 and y0 integrals (since we may

swap the order of integration so as to only transform the inner

integrals, then integrate the result over the z0 domain); map-

ping the spatial variables x and y to the frequency variables kx

and ky, respectively; applying the convolution theorem in the

xy-plane; and noting that we are always measuring the field at

a constant height h above the surface of the sample, hence

z¼ h, we obtain

~Bzðkx; ky; h; dÞ ¼ �
l0

4p

ðd
2

�d
2

� F 2ðh� z0Þ2 � x2 � y2

x2 þ y2 þ ðh� z0Þ2
h i5

2

8><
>:

9>=
>;~gðkx; kyÞdz0:

(23)

To compute the Fourier transform shown above, we

claim that

F 2ðh� z0Þ2 � x2 � y2

x2 þ y2 þ ðh� z0Þ2
h i5

2

8><
>:

9>=
>; ¼ 2pke�kðh�z0Þ; (24)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. This claim may be re-written using the

inversion theorem as

2ðh� z0Þ2 � x2 � y2

x2 þ y2 þ ðh� z0Þ2
h i5

2

¼ 2pF�1 ke�kðh�z0Þ½ �: (25)

The proof of the claim is given in Appendix B.

Hence, the magnetic field detected becomes

~Bzðkx; ky; d; hÞ ¼ �
l0

4p

ðd
2

�d
2

e�kðh�z0Þ2pk~gðkx; kyÞdz0: (26)

Now, we can assume that ~gðkx; kyÞ is not dependent

on z0 because we assume that the current only flows in the

xy-plane

~Bzðkx; ky; d; hÞ ¼ �
l0

2
~gðkx; kyÞke�kh

ð d
2

�d
2

ekz0dz0

¼ �l0 ~gðkx; kyÞe�khsinh
kd

2

� �
: (27)

The only subsequent analysis to be performed is to

transform Eq. (27) into a form to which an inverse Fast

Fourier Transform (FFT) algorithm can be applied resulting

in a current map of the sample. We make use of the defini-

tion of the function g(x, y)

Jðx; yÞ ¼ r � ẑgðx; yÞ ¼ @ygðx; yÞ;�@xgðx; yÞ; 0
� �

; (28)

~Jxðkx; kyÞ ¼ �iky ~gðkx; kyÞ; (29)

~Jyðkx; kyÞ ¼ ikx ~gðkx; kyÞ; (30)

and the continuity equation

kx
~Jxðkx; kyÞ þ ky

~Jyðkx; kyÞ ¼ 0: (31)

Finally, we can obtain expressions for both components

of the current as functions of physical variables and the mag-

netic field detected in the z-direction by using Eqs. (27),

(29), and (30)

~Jxðkx; kyÞ ¼
iky

l0

ekhcosech
kd

2

� �
~Bzðkx; ky; h; dÞ; (32)

~Jyðkx; kyÞ ¼
�ikx

l0

ekhcosech
kd

2

� �
~Bzðkx; ky; h; dÞ: (33)

Both of the above equations can have the FFT algorithm

applied to them so that the values of Bz obtained can be used to

calculate Jx and Jy and hence obtain a current map of the super-

conductor. Thus, solving the inverse problem and ending with

final equations consistent with those derived by Jooss et al.32

Another method for solving the inverse problem in 2D

was developed by Roth et al.33 In contrast to the method

considered above, this method does not take into account the

finite height of the magnetometer above the sample; hence, it

assumes detection of the magnetic field directly at the sam-

ple surface. Mathematically, it differs in that the integral ker-

nel after a Fourier transform is computed directly from the

Biot-Savart law for all components of the magnetic field.

Since this method does not take into account typical experi-

mental conditions, it is considered to be inaccurate. Hence,

our method described above is employed for subsequent

analysis in this work.

IV. IN-PLANE CORRECTION

The intensity at the analyser in the equilibrium position

in a magneto-optical imaging apparatus is found by substitut-

ing Eqs. (2) and (3) into (4), the result gives

I ¼ I0 þ Imax cos2 CMsBzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBA þ BxyÞ2 þ B2

z

q þ h

2
4

3
5: (34)

It has been common practice to take Bxy¼ 0 for simplic-

ity, however, that leads to an interpretation of MOI data that

may not be physically accurate.32,33 Such an assumption

causes an un-physically higher electrical current (increasing

with sample thickness) to be observed.36

Therefore, the in-plane correction procedure was pro-

posed36 in order to form a relationship between the apparent

magnetic field at the detector assuming Bxy¼ 0 (henceforth

written as Bzj0) and the field at the detector including the in-

plane effects.

Below, we scrutinize the in-plane correction proposed

by Laviano et al.36

Using Eq. (34), we write an expression for Bz

Bz

BA þ Bxy
¼ tan sin�1

cos�1

ffiffiffiffiffiffiffiffiffiffiffiffi
I � I0

Imax

r !
� h

CMs

2
664

3
775

8>><
>>:

9>>=
>>;: (35)

With the assumption that Bxy¼ 0, this equation becomes

123906-5 Zuber et al. J. Appl. Phys. 123, 123906 (2018)



Bzj0
BA
¼ tan sin�1

cos�1

ffiffiffiffiffiffiffiffiffiffiffiffi
I � I0

Imax

r !
� h

CMs

2
664

3
775

8>><
>>:

9>>=
>>;: (36)

Combining Eqs. (35) and (36) gives

Bz ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
BA

2
4

3
5

Bzj0: (37)

This neatly presented equation is used in an attempt to pro-

duce better approximations of Bz from known Bzj0;Bx, and

By values while taking BA as a constant. It was proposed36

that an iterative procedure be carried out, with corrected val-

ues of magnetic field at every point on the sample deter-

mined by applying the following algorithm:

(i) Use BðnÞz to find JðnÞx ðx; yÞ and J
ðnÞ
y ðx; yÞ using an FFT

algorithm on the Eqs. (32) and (33), and starting with

Bð0Þz ¼ Bzj0;

(ii) Calculate BðnÞx ðx; yÞ and B
ðnÞ
y ðx; yÞ from JðnÞx ðx; yÞ and

J
ðnÞ
y ðx; yÞ;

(iii) Calculate Bðnþ1Þ
z using

Bðnþ1Þ
z ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
ðnÞ
x 2þ B

ðnÞ
y 2

q
BA

2
4

3
5

Bzj0; (38)

(iv) Assign Bðnþ1Þ
z ¼ BðnÞz , and go to (i), unless the differ-

ence between successive iterations is suitably small.

To complete stage (ii) of the algorithm proposed above,

equations for Bx and By in terms of Bzj0, are determined using

the inversion techniques previously presented.

By considering again the 2D inversion problem, but

now solving for Bx and taking into account the finite height

of the detector

Bxðx; y; z; hÞ ¼
l0

4p
�
ð d

2

�d
2

ð1
�1

ð1
�1

� Jyðx0; y0Þðh� z0Þdx0dy0dz0

ðx� x0Þ2 þ ðy� y0Þ2 þ ðh� z0Þ2
h i3

2

;

(39)

which can be Fourier transformed with an application of the

convolution theorem to gain an integral kernel with a deriva-

tive identical to the negative of that in (24). Hence, employ-

ing the claim in (24) then integrating gives

~Bxðkx; ky; hÞ ¼
l0

2p

ðd
2

�d
2

ðh� z0Þ e
�
ffiffiffiffiffiffiffiffiffi
k2

xþk2
y

p
ðh�z0Þ

h� z0
~Jyðkx; kyÞdz0;

(40)

which can be integrated to find

~Bxðkx; ky; d; hÞ ¼
l0e�kh

k
~Jyðkx; kyÞsinh

kd

2

� �
: (41)

Similarly, for ~By

~Byðkx; ky; d; hÞ ¼ �
l0e�kh

k
~Jxðkx; kyÞsinh

kd

2

� �
: (42)

These are the expressions used in Ref. 36 for the calculation

of Bx and By, but simpler expressions may be found by substi-

tution of Eq. (32) into (42) and (33) into (41). This leads to

~Bx ¼
ikx

k
~Bz; (43)

~By ¼
iky

k
~Bz: (44)

These equations may be used in step (ii) of the algorithm

to provide a streamlined correction procedure that remains

analytically identical.

V. EXPERIMENTAL VERIFICATION

This in-plane correction technique was applied to a num-

ber of magneto-optical images. The results are presented for a

3 mm2 YBCO thin film. All images tested were acquired using

the MOI technique and the apparatus described in Ref. 8. The

sample is cooled to a temperature of 4 K in a Janis continuous-

flow helium cryostat. The YBCO films used have been grown

using the pulsed laser deposition technique.43,44 Their typical

Jc ’ 3� 1010 A/m2 at T¼ 77 K and Tc ’ 91.0 6 0.5 K.

After appropriate calibration, the grey-scale value of each

pixel in the acquired MO images was converted to a magnetic

field value. The resultant images, along with Eqs. (32) and

(33), were used to calculate current maps. Finally, the correc-

tion procedure was applied, using the algorithm discussed in

Sec. IV, taking the anisotropy field to be BA¼ 80 mT.31 The

number of iterations of this technique was varied, and the

effect on the resultant images was observed. Note that each

Fourier transform was required to be discreet in the experi-

mental case, as the measurements were discrete for each pixel.

The results of the correction procedure are presented in

Figs. 3(b)–3(e). The desired reduction of currents at the

edges of the sample is clearly seen in the disappearance of

the bright border around the sample in the current images.

This border is present in the right image of Fig. 3(a), but

absent in all other current images [Figs. 3(b)–3(e)]. This is

evidence that the effects of in-plane fields have been success-

fully removed.

However, an undesired effect has also emerged when the

number of iterations is>5: a series of non-physical bright and

dark fringes are seen close to the edges of the sample in both

the field and current images [Figs. 3(d)–3(e)], with approxi-

mately one additional fringe arising with each iteration. These

non-physical fringes are seen most clearly when no high-

frequency filtering is applied during the current calculation

procedure. The use of a Hanning filter with an empirically cho-

sen cut-off frequency Kc, is commonly used to remove high-

frequency noise from the calculated current maps31,32 and

smooths out these fringes. This is shown in Fig. 4, but it is

clear [especially from parts (c) and (d) of this figure] that

the influence of this artefact cannot be completely removed

through filtering. The artefact appears and builds up only

upon repetitive application of the iteration procedure starting

from the 6th iteration. Each iteration step involves internal

LabVIEW FFT and then inverse FFT routines, hence the arte-

fact can be attributed to the discrete nature of these routines

and associated binning factor (data quantisation) in numerical
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image processing. The binning factor of the centered Fourier

spectrum gets larger and larger with each iteration step and

would be expected to produce an ever increasing number

of fringes with an ever larger spatial period, making them

visible (exactly what occurs upon increasing the number of

iterations). Smoothing the fringes upon filtering is another

expected behaviour, again pointing at the problem with these

FFT routines.

VI. CONCLUSION

The inverse problem for finding the current distribution

in superconducting thin films from magnetic field measure-

ments in a plane above the film has been uniquely solved for

both the one- and two-dimensional cases. A new method for

computation of the integral kernel in the 2D case has been

devised which involves reducing the problem to a Laplace

transform of a Bessel function of the first kind. The deriva-

tions are provided in great detail to enable a straightforward

implementation, as opposed to those available in the litera-

ture with limited information.

In the 2D case, the solution was found to be consistent

with that previously determined in Refs. 32 and 33 although

the use of Green’s function identities were not required

whilst still taking into account the finite height of the mag-

netisation above the surface.

FIG. 3. Calculated values of the magnetic field (left) and current density

(right) in the sample (a) without any correction (the left image is the original

magneto-optical image), and after (b) 1, (c) 5, (d) 10, and (e) 100 iterations

[Eq. (38)]. No high-frequency filtering is applied.

FIG. 4. Calculated values of the magnetic field (left) and current density

(right) in the sample after (a) 1, (b) 5, (c) 10, and (d) 100 iterations [Eq.

(38)], with high-frequency filtering using a Hanning window.
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In the 1D case, it was found that the calculated current

appears to flow in the opposite direction and has a slightly

smaller amplitude by a factor of 2/p, compared to the result in

Ref. 31. Otherwise, the solution is fully consistent with Ref. 31.

For the in-plane field correction procedure proposed in

Ref. 36, the equations used to calculate the x and y compo-

nents of the magnetic field at the detector [Eqs. (43) and

(44)] were simplified slightly for our new approach, which is

provided in every detail to enable straightforward implemen-

tation. The final equation and correction algorithm are fully

consistent with the result obtained in Ref. 36.

Experimental verification of our approach is efficient. The

correction procedure does effectively remove the unwanted

influence of in-plane field components with no more than 5

iteration steps required. The optimal images are obtained with

only 3–5 iterations. Due to the internal LabVIEW FFT routine,

the artefacts in the form of fringes appear in the field and cur-

rent mapping after>5 iteration steps, which, if done with a

FFT routine having a smaller binning size, should not occur

up to a large number of iteration steps.

A possible improvement to the presented in-plane

correction technique might be to consider the magnetic

anisotropy field as non-constant across the sample due to its

micro-geometry or to account for these in-plane fields in a

different way such as by deriving a modified Biot-Savart

inversion procedure that avoids iterative calculations.34
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APPENDIX A: PROOF OF THE FOURIER TRANSFORM
OF 1D INTEGRAL KERNEL

Proof of Eq. (10)

Consider

Fðe�hjx0 jÞ ¼
ð1
�1

e�hjx0 je�ikxx0dx0

¼
ð0

�1
eðh�ikxÞx0dx0 þ

ð1
0

e�ðhþikxÞx0dx0

¼ 2h

h2 þ k2
x

() e�hjx0 j ¼ F�1 2h

h2 þ k2
x

� �
By the inversion theorem

¼ 1

2p

ð1
�1

2h

h2 þ k2
x

eikxx0dkx

() p
h

e�hjkxj ¼
ð1
�1

e�ikxx0

h2 þ x02 dx0: (A1)

Now, swapping the roles of x0 and kx and letting kx! –kx gives

@

@kx

p
h

e�hjkxj
� �

¼ @

@kx

ð1
�1

e�ikxx0

h2 þ x02 dx0

 !

() � ipsgnðkxÞe�hjkxj ¼
ð1
�1

x0

h2 þ x02 e�ikxx0dx0:

Hence,

F x0

x02 þ h2

� �
¼ ~KðkxÞ ¼ �ipsgnðkxÞe�hjkxj: (A2)

Q.E.D.

APPENDIX B: PROOF OF THE FOURIER TRANSFORM
OF 2D INTEGRAL KERNEL

Proof of the claim (25)

To prove the claim (25), first notice that the integral kernel

Kðkx; kyÞ ¼ ke�kðh�z0Þ; (B1)

is radially symmetric. Hence, following the theorem of

Hankel transforms, the co-ordinate system is changed using

the following substitutions:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; (B2)

kx ¼ k cos h; ky ¼ k sin h) k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
; (B3)

where k, r 2 [0,1), and h 2 [0, 2p]. The standard change of

double integrals to polar coordinates gives dkxdky¼ kdkdh
and by writing z ¼ h� z0 for simplicity, the right-hand side

of Eq. (25) becomes

1

2p

ð1
0

ð2p

0

ke�kzeikr coshkdkdh ¼ 1

2p

ð1
0

k2e�kz

ð2p

0

eikr coshdkdh:

(B4)

The Bessel function integral relation is then applied to

the inner integral ð2p

0

eia cos hdh ¼ 2pJ0ðaÞ; (B5)

where J0(a) is the Bessel function of the first kind of order 0.

Therefore

1

2p

ð1
0

ð2p

0

ke�kzeikr coshkdkdh¼
ð1

0

k2e�kzJ0ðkrÞdk: (B6)

Note, this integral represents the Laplace transform of the

Bessel function multiplied by k2 and multiplied in the argu-

ment by k. The integral can therefore be computed by finding

the Laplace transform of the differential equation that defines

this Bessel function, then using a frequency shift and a domain

shift to account for the argument of kr and the multiplication

by k2, respectively,ð1
0

e�kzJ0ðkÞdk ¼ L J0ðkÞ½ �: (B7)
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As stated above, the right-hand side of Eq. (B7) is equiv-

alent to computing the Laplace transform of the differential

equation whose solution is J0(k)

L xðy00 þ yÞ þ y0
� �

¼ Lð0Þ ; (B8)

since this is the equation that defines the Bessel function.

The linearity and differentiation properties of the Laplace

transform and normalisation properties of the Bessel func-

tions are used to obtain

LðJ0ÞðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p ; (B9)

which is the well-known result for the Laplace transform of

the Bessel function of the first kind of order 0.

Since the integrand involved the Laplace transform of

the function k2J0ðrkÞ, time scaling, and general frequency

domain differentiation properties of the Laplace transform

can be used to give

L k2J0ðkrÞ
� �

¼ 1

r

d2

dz2
LðJ0Þ

z

r

� �� �

¼ 1

r

d2

dz2

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p
� �

¼ 2z2 � r2

ðr2 þ z2Þ
5
2

: (B10)

Hence

[

ð1
0

e�kðh�z0Þk2J0ðkrÞdk ¼ 2ðh� z0Þ2 � x2 � y2

x2 þ y2 þ ðh� z0Þ2
h i5

2

; (B11)

verifying Eq. (25) under the prescribed change of co-ordinates,

which corresponds to the original claim.

APPENDIX C: PROOF OF THE INTEGRAL
REPRESENTATION OF THE BESSEL FUNCTION

Proof of the Integral Relation (B5).

First, let us consider the integral expression

1

p

ð1

�1

eiztð1� t2Þ�
1
2dt: (C1)

Replacing the exponential in the integrand by its Taylor series

expression

1

p

X1
n¼0

ðizÞn

n!

ð1

�1

ð1� t2Þ�
1
2tndt: (C2)

If n is an odd integer, the function in the integrand is

odd, hence integrating it over symmetric limits results in 0.

So without loss of generality, it is possible to define n¼ 2k
for k 2 Z, then since the integrand is now an even function

2

p

X1
k¼0

ðizÞ2k

ð2kÞ!

ð1

0

ð1� t2Þ�
1
2t2kdt: (C3)

Under the change of variable u¼ t2

1

p

X1
k¼0

ðizÞ2k

ð2kÞ!

ð1

0

ð1� uÞ�
1
2uk�1

2du: (C4)

Recalling the definition of the Beta function

Bðx; yÞ ¼
ð1

0

tx�1ð1� tÞy�1dt ¼ CðxÞCðyÞ
Cðxþ yÞ ; (C5)

Eq. (C4) can be re-written as

1ffiffiffi
p
p
X1
k¼0

ðizÞ2k

ð2kÞ!

C k þ 1

2

� �
k!

: (C6)

Legendre’s duplication formulae can be used to obtain

an expression for C k þ 1
2

	 

C k þ 1

2

� �
¼ Cð2kÞ

ffiffiffi
p
p

CðkÞ22k�1
: (C7)

Substitution of the above relation into Eq. (C6) gives

1

p

ð1

�1

eiztð1� t2Þ�
1
2dt ¼ 1

p

X1
k¼0

ð�1Þk

ðk!Þ2
z

2

� �2k

¼ J0ðzÞ (C8)

since the series expression derived is identical to the series

expression for the Bessel function (J0(z)) of the first kind of

order 0.

Letting t ¼ cos ðhÞ in the equation above

1

p

ðp

0

eiz cos ðhÞdh ¼ J0ðzÞ: (C9)

Then, by the p-periodicity of the integrand, an extension

of the limits of integration to h 2 [0, 2p] gives double the

result in Eq. (C9)ð2p

0

eiz cos ðhÞdh ¼ 2

ðp

0

eiz cos ðhÞdh: (C10)

Finally, using Eq. (C10) to write Eq. (C9) in terms of

the limits h 2 [0, 2p], the result is found

1

2p

ð2p

0

eiz cos hdh ¼ J0ðzÞ: (C11)
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