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The interplay between competing short-range (SR) and long-range (LR) interactions can cause nontrivial
structures in phase diagrams. Recently, horn-shaped unusual structures were found by Monte Carlo simulations
in the phase diagram of the Ising antiferromagnet (IA) with infinite-range ferromagnetic-like (F) interactions
[Phys. Rev. B 93, 064109 (2016); 96, 174428 (2017)], and also in an IA with LR interactions of elastic
origin modeling spin-crossover materials [Phys. Rev. B 96, 144425 (2017)]. To clarify the nature of the
phases associated with the horn structures, we study the phase diagram of the IA model with infinite-range
F interactions by applying a variational free energy in a cluster mean-field (CMF) approximation. While the
simple Bragg-Williams mean-field theory for each sublattice does not produce a horn structure, we find such
structures with the CMF method. This confirms that the local thermal fluctuations enabled by the multisite
clusters are essential for this phenomenon. We investigate in detail the structure of metastable phases in the
phase diagram. In contrast to the phase diagram obtained by the Monte Carlo studies, we find a triple point, at
which ferromagnetic-like, antiferromagnetic-like, and disordered phases coexist, and also six tristable regions
accompanying the horn structure. We also point out that several characteristic endpoints of first-order transitions
appear in the phase diagram. We propose three possible scenarios for the transitions related to the tristable
regions. Finally, we discuss the relation between the triple point in this phase diagram and that of a possible
lattice-gas model, in which solid, liquid, and gas phases can coexist.

DOI: 10.1103/PhysRevB.98.144402

I. INTRODUCTION

The interplay between competing short-range (SR) and
long-range (LR) interactions causes complex orderings in
many physical systems. Recently, an unusual “horn structure,”
which is surrounded by ferromagnetic-like (F) spinodal lines,
disorder (D) spinodal lines, and a critical line, was found in the
phase diagram of the Ising antiferromagnet (IA) with infinite-
range F interactions [1,2]. A similar horn structure was found
in an elastic-interaction model with antiferromagnetic-like
(AF) SR interactions, modeling spin-crossover (SC) materi-
als [3]. This suggests that such unusual structures are universal
in models with competing SR and LR interactions and may be
realized in real (experimental) systems including SC materi-
als.

SC materials show colorful ordered structures and switch-
ing phenomena induced by temperature change, pressure
variation, light irradiation, etc. [4–24]. In these materials,
the SR interactions and the LR interactions of elastic origin
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compete. SC materials have attracted much attention due
to their potential applications to memory devices, sensors,
etc. It has been pointed out that elastic interactions play
an important role in cooperativity for SC materials, and
studies with microscopic elastic interaction models have been
performed [3,25–40].

The difference of molecular sizes between the high spin
(HS) and low spin (LS) states that characterize SC materials
causes local lattice distortions, which lead to effective LR
elastic interactions. A variety of orderings originate from the
interplay between direct SR and effective LR interactions of
elastic origin. The LR interaction induced by lattice elasticity
is important in the one-step F-like transition between the LS
and HS phases with a second-order (continuous) or first-order
(discontinuous) transition. The mean-field universality class is
realized in the second-order transition [26,32,34].

Some SC materials exhibit two-step phase transitions
[41–48]. The elastic interaction model with AF SR inter-
actions enables us to classify various types of two-step SC
transitions between F uniform HS or LS phases and AF
checkerboard phases, in which a second-order or first-order
transition occurs in each step [3,34]. Unlike in the one-step F
transition between the LS and HS phases, the SR interactions
are essential in second-order (continuous) transitions between
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the AF and F phases. The Ising universality class is realized in
these transitions. In contrast, the LR interaction is significant
in first-order (discontinuous) transitions between the AF and
F phases. A new type of two-step SC transition is realized if
the horn structures appear [3].

The simplification of the LR interaction obtained by
replacing the elastic interaction with infinite-range F
interactions causes a qualitatively similar cooperative
nature of the bulk properties [1,2,38]. The IA model with
infinite-range F interactions is therefore better suited for
clarifying detailed features of phase diagrams. The usual
Bragg-Williams (BW) mean-field (MF) theory for each
sublattice does not produce such unusual horn structures,
even when the infinite-range F interaction is relatively strong
[1]. However, Monte Carlo (MC) methods produce such
structures [1,2]. This suggests that thermal fluctuations are
essential for the generation of the unusual structures. The
infinite-range F interaction is essentially MF in nature, and
thus the F order is quite robust against thermal fluctuations.
In contrast, the AF Ising interaction is of short range, and we
expect that the ordering caused by these interactions should
be strongly affected by thermal fluctuations.

In the MC studies the “horn region” is identified as a
region surrounded by F spinodal lines, D spinodal lines,
and a critical line [1–3]. The critical points were determined
by the Binder fourth-order cumulant method [49]. However,
larger error bars for the locations of the crossing points in
the Binder plots for different system sizes were observed in
the higher field region [2], and it is difficult to identify if
they indicate second-order transitions or more complex phase
relations.

In order to understand the mechanisms underlying the gen-
eration of unusual phase structures, including horn structures,
it is important to study how such structures appear as thermal
fluctuations are introduced into the system. In the present
study, we therefore investigate the phase diagram for the IA
model with infinite-range F interactions by a kind of cluster
MF (CMF) theory [50–57], which takes into account the SR
fluctuations within a finite, multisite cluster. The AF ordering
requires the use of two sublattices [51,56], and the structure
of the phase diagram is determined by evaluating the free-
energy landscape of the model by the variational principle
[50,53,55,56,58,59]. The resulting phase diagrams contain
various metastable phases. In particular, we find six regions
in which one of the three phases, AF, F, or D, is globally
stable, and the other two are metastable. Such “tristable”
regions were not found in the MC studies. We discuss the
characteristic features of the multistability of the metastable
phases and present possible new scenarios for the associated
phase transitions.

The rest of this paper is organized as follows. In Sec. II
the model and method are presented. The CMF theory is
developed, and the free energy and its variational equations
are derived. Section III is devoted to the results and discussion.
The details of the phase diagram are shown, focusing on the
multistability. In Sec. IV we give discussion and summary.
The distinctions between the variational parameters of the
variational MF method and the order parameters of the system
are discussed in the Appendix.

II. MODEL AND METHOD

A. Model

We study a model which consists of SR and LR interac-
tions,

H = H1 + H2, (1)

where H1 is the nearest-neighbor S = 1/2 Ising antiferromag-
net on a square lattice,

H1 = J
∑
〈i,j〉

σiσj . (2)

Here, σi = ±1, J > 0 induces a staggered order, and 〈i, j 〉
denotes summation over nearest-neighbor pairs. H2 gives the
infinite-range F and Zeeman interactions,

H2 = − A

2N

(
N∑

i=1

σi

)2

− H

N∑
i=1

σi. (3)

B. Free energy

We construct a variational free energy Fv by applying the
Bogoliubov inequality [56,58,59],

F � Fv = FCMF + 〈H − HCMF〉. (4)

Here H is the exact Hamiltonian and HCMF is the cluster
mean-field (CMF) Hamiltonian defined below. The CMF free
energy is defined as

FCMF = − 1

β
ln ZCMF, (5)

where ZCMF = Tre−βHCMF , and

〈X〉 ≡ 1

ZCMF
TrXe−βHCMF . (6)

We emphasize that the statistical average is taken with
HCMF instead of H. Here β is the inverse temperature:
β = 1

kBT
.

The BW MF approximation fails to reproduce the horn
structure, which requires the effects of SR fluctuations to be
included into the model. For this purpose, we divide the lattice
into NC equivalent clusters, each of which has a size of L × L

(see Fig. 1). The total system size is N = NC × L × L. Then,
H1 is rewritten as

H1 =
NC∑

iC=1

J

⎛
⎝ ∑

〈i,j〉iC
σiσj + 1

2

4L∑
〈〈i,k〉〉iC

σiσk

⎞
⎠. (7)

Here 〈i, j 〉iC denotes a nearest-neighbor pair with both sites
in the iCth cluster, and 〈〈i, k〉〉iC a nearest-neighbor pair at the
border of the cluster, i.e., site i belongs to the iCth cluster and
site k to a neighboring cluster.
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i kk’

FIG. 1. A cluster which consists of L × L sites (blue and red
filled circles) embedded in a system with NC clusters. Open circles
denote neighboring sites in neighboring clusters. Each site in the
cluster belongs to sublattice A (blue) or B (red) in the bipartite lattice
of the system. The indices i and k are used in Eqs. (8)–(27). Site k′

in a cluster is equivalent to site k in a neighboring cluster.

We focus on the interactions at the border between two
clusters, e.g., the interaction between sites i and k in Fig. 1,
which is approximately given by

σiσk � σi〈σk〉 + 〈σi〉σk − 〈σi〉〈σk〉. (8)

Here we replace the average of border site 〈σk〉 by variational
parameter x (y) on sublattice A (B). The same replacement is
performed to 〈σi〉. Thus, for sites i and k on sublattices B and
A, respectively,

σiσk � σix + yσk − xy, (9)

and for sites i and k on sublattices A and B, respectively,

σiσk � σiy + xσk − xy. (10)

Then we construct a CMF Hamiltonian for H1 as follows:

H1,CMF(x, y) = J

NC∑
iC=1

⎛
⎝ ∑

〈i,j〉iC
σiσj +

2L∑
〈〈i,k〉〉iC ,i∈A,k∈B

1

2
(σiy + xσk − xy) +

2L∑
〈〈i,k〉〉iC ,i∈B,k∈A

1

2
(σix + yσk − xy)

⎞
⎠

= J

NC∑
iC=1

⎛
⎝ ∑

〈i,j〉iC
σiσj +

2L∑
〈〈i,k〉〉iC ,i∈A

σiy +
2L∑

〈〈i,k〉〉iC ,i∈B

σix − 2Lxy

⎞
⎠, (11)

where i ∈ A (B) means that i belongs to sublattice A (B). Here
∑

〈〈i,k〉〉iC ,i∈A σiy, etc. means that the summation is taken over
pairs at borders between site i and neighboring site k whose average 〈σk〉 is replaced by y, etc.

Noting the relation 〈σiσk〉 = 〈σi〉〈σk〉 for sites i and k that belong to different clusters, we obtain

〈H1 − H1,CMF(x, y)〉 = JNC

⎛
⎝ 2L∑

〈〈i,k〉〉iC ,i∈A

1

2
(〈σi〉〈σk〉 − 2y〈σi〉) +

2L∑
〈〈i,k〉〉iC ,i∈B

1

2
(〈σi〉〈σk〉 − 2x〈σi〉) + 2Lxy

⎞
⎠. (12)

In the practical calculation, 〈σk〉 in a neighboring cluster is replaced by 〈σk′ 〉 at equivalent site k′ in the iCth cluster (see Fig. 1),
i.e., 〈σk′ 〉 = 〈σk〉.

Next, we construct a CMF Hamiltonian for H2. H2 is rewritten as

H2 = − A

2N

⎛
⎝ NC∑

iC

L2∑
i

σi

⎞
⎠

⎛
⎝ NC∑

jC

L2∑
j

σj

⎞
⎠ − H

NC∑
iC

L2∑
i

σi . (13)

By the replacements

L2∑
i

L2∑
j

σiσj =
L2/2∑
i∈A

L2/2∑
j∈A

σiσj +
L2/2∑
i∈A

L2/2∑
j∈B

σiσj +
L2/2∑
i∈B

L2/2∑
j∈A

σiσj +
L2/2∑
i∈B

L2/2∑
j∈B

σiσj , (14)

L2/2∑
i∈A

L2/2∑
j∈A

σiσj �
L2/2∑
i∈A

L2/2∑
j∈A

(σix + xσj − x2), (15)

L2/2∑
i∈A

L2/2∑
j∈B

σiσj �
L2/2∑
i∈A

L2/2∑
j∈B

(σiy + xσj − xy), (16)
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L2/2∑
i∈B

L2/2∑
j∈A

σiσj �
L2/2∑
i∈B

L2/2∑
j∈A

(σix + yσj − xy), (17)

and

L2/2∑
i∈B

L2/2∑
j∈B

σiσj �
L2/2∑
i∈B

L2/2∑
j∈B

(σiy + yσj − y2), (18)

we have

L2∑
i

L2∑
j

σiσj � L2

2

L2∑
i

σi (x + y) + L2

2

L2∑
j

(x + y)σj − (x + y)2L4/4. (19)

Then we obtain a CMF Hamiltonian H2,CMF(x, y) for H2 as

H2,CMF(x, y) = − A

2N

NC∑
iC

NC∑
jC

⎛
⎝L2

2

L2∑
i

σi (x + y) + L2

2

L2∑
j

(x + y)σj − (x + y)2L4/4

⎞
⎠ − H

NC∑
iC

L2∑
i

σi

=
NC∑
iC

⎛
⎝−A

2

L2∑
i

σi (x + y) + A

8
L2(x + y)2 − H

L2∑
i

σi

⎞
⎠. (20)

It is noted that the following relation holds:

〈H2 − H2,CMF(x, y)〉 = −NC
A

2L2

⎛
⎝ L2∑

i

〈σi〉
⎞
⎠

⎛
⎝ L2∑

j

〈σj 〉
⎞
⎠ + NC

A

2

⎛
⎝(x + y)

L2∑
i

〈σi〉 −
(

x + y

2

)2

L2

⎞
⎠ (21)

Finally, the CMF Hamiltonian is given by

HCMF(x, y) = H1,CMF(x, y) + H2,CMF(x, y)

= H̃CMF(x, y) +
NC∑

iC=1

(
−2JLxy + A

8
(x + y)2L2

)
, (22)

where

H̃CMF(x, y) ≡
NC∑

iC=1

⎡
⎣J

⎛
⎝ ∑

〈i,j〉iC
σiσj +

2L∑
〈〈i,k〉〉iC ,i∈A

σiy +
2L∑

〈〈i,k〉〉iC ,i∈B

σix

⎞
⎠ − A

2
(x + y)

L2∑
i

σi − H

L2∑
i

σi

⎤
⎦. (23)

Noting that 〈H − HCMF(x, y)〉 = 〈H1 − H1,CMF(x, y)〉 + 〈H2 − H2,CMF(x, y)〉, we have the variational free energy

Fv = − 1

β
ln Tr exp(−βHCMF) + 〈H − HCMF〉

= − 1

β
ln Tr exp(−βH̃CMF) + NC

⎛
⎝ 2L∑

〈〈i,k〉〉iC ,i∈A

1

2
J (〈σi〉〈σk〉 − 2y〈σi〉)

+
2L∑

〈〈i,k〉〉iC ,i∈B

1

2
J (〈σi〉〈σk〉 − 2x〈σi〉) − A

2L2

L2∑
i

〈σi〉
L2∑
j

〈σj 〉 + A

2
(x + y)

L2∑
i

〈σi〉
⎞
⎠. (24)

C. Variational equations

The variational equations for the free energy are given by

∂xFv(x, y) = 0 and ∂yFv(x, y) = 0, (25)
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and it follows that

− 1

β
∂x ln Z̃ + J

2

2L∑
〈〈i,k〉〉iC ,i∈A

((∂x〈σi〉)〈σk〉 + 〈σi〉∂x〈σk〉 − 2y∂x〈σi〉)

+ J

2

2L∑
〈〈i,k〉〉iC ,i∈B

((∂x〈σi〉)〈σk〉 + 〈σi〉∂x〈σk〉 − 2〈σi〉 − 2x∂x〈σi〉)

− A

L2

L2∑
i

〈σi〉∂x

L2∑
i

〈σi〉 + A

2

L2∑
i

〈σi〉 + A
x + y

2
∂x

L2∑
i

〈σi〉 = 0 (26)

and

− 1

β
∂y ln Z̃ + J

2

2L∑
〈〈i,k〉〉iC ,i∈A

((∂y〈σi〉)〈σk〉 + 〈σi〉∂y〈σk〉 − 2〈σi〉 − 2y∂y〈σi〉)

+ J

2

2L∑
〈〈i,k〉〉iC ,i∈B

((∂y〈σi〉)〈σk〉 + 〈σi〉∂y〈σk〉 − 2x∂y〈σi〉)

− A

L2

L2∑
i

〈σi〉∂y

L2∑
i

〈σi〉 + A

2

L2∑
i

〈σi〉 + A
x + y

2
∂y

L2∑
i

〈σi〉 = 0, (27)

where

Z̃ = {Tr exp[−βH̃CMF(x, y)]}1/NC . (28)

The simultaneous solutions of these equations correspond to the stationary points of the variational free-energy landscape
(minima, maxima, and saddle points).

We solve these variational equations numerically by the Newton-Raphson method. In each iteration step for solving the
equations, we calculate Z̃NC , 〈σi〉, etc. with the use of x and y obtained in the previous step. The simultaneous solutions for x

and y are obtained as converged values.
It should be noted that in solving the equations a transfer-matrix method is adopted to perform the summation over the 2L2

states for the trace. We have to repeat the calculation many times, and in the following analysis, we study up to L = 8, which
can be done in a realistic computational time.

III. RESULTS AND DISCUSSION

Hereafter we take J as the unit of energy and H, A, T ,
etc. are given in units of J .

A. Ground states

In this subsection we discuss the ground-state diagram for
the model on a bipartite lattice with coordination number z.
In the rest of the paper we only consider a square lattice, for
which z = 4.

At T = 0 we can calculate stable phases explicitly in the
limit N → ∞ [1,2]. The per-site energy in the field H of
the fully ordered AF phase is given by EAFM/N = −z/2.
That of the fully ordered F phase parallel to the field (F+)
and that antiparallel to the field (F−) are given by E+/N =
z/2 − A/2 − H and E−/N = z/2 − A/2 + H , respectively.
Thus, the transition field between the the AF and F+ phases
is Hc+ = z − A/2, and that between the AF and F− phases
is Hc− = −z + A/2. If A > 2z, the F phases are the ground
states, while if 0 � A < 2z the AF phase is the ground state
between Hc+ = z − A/2 and Hc− = −z + A/2. Here we

focus on the region A < 2z = 8 for z = 4 as in our previous
paper [1].

Beside the fields at which the ground state changes (i.e., the
first-order phase transition points), the limits of the metastable
phases are also important. The limit of the metastability is
estimated by calculating the field at which the excitation
energy needed to nucleate a droplet of the equilibrium phase
becomes zero. The excitation energy for a single flip from
the F− phase is �E = −2z − 2H + 2A, and the upper limit
of H for the metastable F− phase is H = −z + A. Thus
the metastable region of the F− phase exists in the region
Hc− = −z + A/2 < H < −z + A, and that of the F+ phase
in the region Hc+ = z − A/2 > H > z − A by symmetry.
The excitation energy for a single down-spin flip from the AF
phase is �E = 2z − 2H , and H = z is the upper limit for
the metastable AF phase. The metastable AF phase for H > 0
exists in the region Hc+ = z − A/2 < H < z and that for
H < 0 in the region −z < H < Hc− = −z + A/2 by sym-
metry. The ground-state diagram with z < A < 2z is depicted
in Fig. 2. Hereafter we set A = 7.9 and z = 4. In this case
Hc+ = z − A/2 = 0.05 and F− and AF spinodal points are
located at H = −z + A = 3.9 and H = z = 4, respectively.
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Az +−Az −z−

AF phase F+ phase

H
z+cH−cH

F- phase

Metastable AF

Metastable F-

Metastable F+

Metastable AF

FIG. 2. Ground-state diagram for the model on a bipartite lattice
with coordination number z and z < A < 2z.

B. Phase diagram

The overview of the phase diagram at higher temperatures
for A = 7.9 and L = 6 is shown in Fig. 3. This value of the
long-range interaction strength A is used for all the numerical
results in this paper. The phase diagram is symmetric about
the T axis with an exchange between FM+ and FM−, and
only the region H � 0 is shown. We note that the horn
region in the phase diagram, which is not realized in the
Bragg-Williams (BW) MF phase diagram (Fig. 1 in Ref. [1]),
appears at relatively high temperatures. This indicates that the
effect of the thermal fluctuations for systems with an interplay
between competing SR and LR interactions can cause unusual
structures in the phase diagram. Details of the horn structure in
the phase diagram at higher temperatures are shown for L = 6
[Figs. 4(a)–4(d)].

1. Variational parameter space

Here we identify the phases in the space of the variational
parameters, (x, y). In Fig. 5 we schematically show the loca-
tions of the global free-energy minima at T = 2.98, indicated
by the symbols: filled circle, diamond, square, and open circle
in Fig. 4(a).

Decreasing the temperature at H = 0 causes a separa-
tion of the D phase [(x, y) = (0, 0)] into the AF phases,
(x, y) = (δ,−δ) or (−δ, δ). Equation (3) does not contribute

AF spinodal

T

H

F- spinodal
Coexistence

Critical

FIG. 3. Overview of the phase diagram of the CMF model with
z = 4 and A = 7.9 for L = 6.

to the AF ordering at H = 0, and the critical tempera-
ture at H = 0 corresponds to that of the pure Ising model.
Namely, Tc = z = 4 in the BW MF theory, while the ex-
act value is Tc � 2.269 [60]. Here, the critical temperature
Tc = 3.035 in the CMF model is closer to the exact Tc

than the BW MF critical point. At H = 0 and T = 2.98,
(x, y) = (±0.2781,∓0.2781) are given by red filled circles
in Figs. 4(a) and 5.

If the field is increased up to H = 0.05, these points
move to the blue closed diamonds, located at (x, y) =
(0.2884,−0.2023), (−0.2023, 0.2884). These minima repre-
senting the AF phase persist in the region below the line
AQSU in the phase diagram. Above the line, the stability of
the AF phase vanishes, and the stable phases are uniformly
magnetized phases, located on the line y = x in Fig. 5.
Regarding the characteristics of the horn structure, there are
two distinguishable phases on the line of y = x: the D phase
with a small x(= y), e.g., (x, y) = (0.1259, 0.1259) at H =
0.11, and the F+ phase with a large x(= y), e.g., (x, y) =
(0.6847, 0.6847) at H = 0.19, which are given by the open
square and circle in Fig. 4(a), respectively.

2. Characteristics of the horn structure

The D and F+ phases have the same symmetry but they
are separated by a first-order phase transition. The point P is
the critical point between F+ and D phases [Figs. 4(a) and
4(b)]. The coexistence line between the F+ and D phases is
located around the middle between the F+ and D spinodal
lines, which is consistent with a very recent MC study [2]
by the macroscopically constrained Wang-Landau method
[61–63]. The location of the coexistence line was very close to
that of the D spinodal line when the mixed start method was
applied to identify it in a previous study by an importance-
sampling MC method [1], but the present observation supports
that the coexistence line PC is located in the middle of the
horn. The shape of the horn structure PWS is similar to that of
the MC study for A = 7 in Fig. 5(b) in Ref. [2]. Here points
W and S are the intersections between lines AU and PV and
between AU and PR, respectively.

We find differences in the phase diagram between the CMF
and MC studies. In contrast to the MC studies [1,2], tristable
regions with one globally stable and two metastable phases
are seen using the CMF method. We find a tricritical point Q
and a triple point C [see Eq. (29)] in the CMF method. The
points Q and W are closely located here but are independent.
In principle, point Q can be a point on line AS (see Sec. III D).
The line WS is identified as a critical line in the MC studies,
but due to the multistability it is not in the CMF study. The
green line PV is the limit of the metastable F+ phase, and
the blue line PR is the limit of the metastable D phase. The
line QR is also a limit of metastability (spinodal) of the D
phase. The point R is a characteristic point of the border of
the metastable D phase. Between lines QS and QR, a first-
order phase transition line between the metastable D and AF
phases exists, which is drawn by the black dotted line Qα [see
Figs. 4(c) and 4(d)].

On the dotted line Qα the free energy of the D phase
[Fv(D)] and that of the AF phase [Fv(AF)] are the same,
i.e., Fv(D) = Fv(AF). It should be noted that the dotted line
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FIG. 4. The phase diagram of the CMF model for L = 6. (a) A horn region and its vicinity at relatively high temperatures. (b) The
equilibrium phase diagram for (a). (c) Tristable regions and their vicinity. (d) Magnified detail of the tristable regions. See Fig. 6 for magnified
detail around point C.

terminates at the point α where the local minimum of the free
energy for the D phase disappears. This type of special point
is one of the characteristics of the phase diagram with tristable
regions.

The coexistence line between the F+ and D phases is given
by a line on which Fv(F+) = Fv(D), which connect points
P, C, and γ (Fig. 6). In the same way the coexistence line
between the F+ and AF phases is given by a line on which
Fv(AF) = Fv(F+), which is given by the line GCβ [Figs. 4(d)
and 6]. At points β and γ , the local minima for the AF and
D phases disappear, respectively, and these points are also
special points.

Numerically we find that the three lines, Qα, Pγ , and Gβ,
cross at a single point, C, in agreement with Gibbs’ Phase
Rule. At this crossing point, the free energies of all the three
phases are the same, i.e.,

Fv(F+) = Fv(AF) = Fv(D) at point C. (29)

The point C is the triple point of the phase diagram.

3. Tristable regions in the phase diagram

Now we characterize the tristable regions QRS, in which
six regions exist, characterizing the relative stability of the
three phases.

Region I: Fv( D) < Fv (AF) < Fv(F+). The D phase is
stable, the AF phase is metastable, and the F+ phase is
secondary metastable. It is surrounded by line QβC.

Region II: Fv(AF) < Fv(D) < Fv(F+). The AF phase is
stable, the D phase is metastable, and the F+ phase is sec-
ondary metastable. It is surrounded by line Qγ C.

Region III: Fv(F+) < Fv (AF) < Fv( D). The F+ phase
is stable, the D phase is metastable, and the AF phase is
secondary metastable. It is surrounded by line RECα.

Region IV: Fv(F+) < Fv( D) < Fv (AF). The F+ phase
is stable, the AF phase is metastable, and the D phase is
secondary metastable. It is surrounded by line SBCα.

Region V: Fv( D) < Fv(F+) < Fv (AF). The D phase
is stable, the F phase is metastable, and the AF phase is
secondary metastable. It is surrounded by line βBC (small
region).

Region VI: Fv (AF) < Fv(F+) < Fv( D). The AF phase
is stable, the F+ phase is metastable, and the D phase is
secondary metastable. It is surrounded by line γ EC (small
region).

C. Free-energy contour plots for tristable regions

The analysis of contour plots of the free energy is helpful
to understand the multistability of the model. For tristable
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FIG. 5. Locations in x and y of global minima of
Fv for different values of H at T = 2.98; (x, y ) =
(±0.2781, ∓0.2781) at H = 0 (red filled circles) and
(x, y ) = (0.2884, −0.2023), (−0.2023, 0.2884) at H = 0.05 (blue
filled diamonds), indicating the AF phase; (x, y ) = (0.1259, 0.1259)
at H = 0.11 (open square) corresponding to the D phase; and
(x, y ) = (0.6847, 0.6847) at H = 0.19 (open circle), corresponding
to the F+ phase.

phases three types of local minima, i.e., AF, F, and D phases,
exist. To see this situation, we study tristability in regions
III and IV. In Fig. 7 we show contour plots of the per-site
free energy, Fv/N , in the x-y plane at (T ,H ) = (2.82, 0.149)
in region III. On a rough scale [Fig. 7(a)], we can see
minima only for AF and F+. The stable F+ phase is lo-
cated at (x, y) = (0.7550, 0.7550), and the metastable AF
phase is located at (x, y) = (0.5623,−0.4022) [and (x, y) =
(−0.5623, 0.4022)] in Fig. 7(a). However, in the magnified
diagram [Fig. 7(b)], we find another local minimum located
at (x, y) = (0.2078, 0.2078), which corresponds to the sec-
ondary metastable D phase.

T

H

C

β

B

E
γ

VI

V

II

I

III

IV

FIG. 6. Magnified detail for regions V and VI in the tristable
regions.

Although three local minima exist, we see that the energy
barrier between the D and AF phases is much smaller than
that between the F and AF phases—at most on the order of the
separation between the contours in Fig. 7(b), i.e., �Fv/N ∼
9 × 10−5. Therefore, we expect that the metastability of the
D phase will be very difficult to detect by MC methods. An
alternative rendition of the free-energy landscape shown in
Fig. 7 in terms of the sublattice magnetizations is discussed
in the Appendix.

We also depict the contour plot at (T ,H ) =
(2.854, 0.1530) in region IV in Fig. 8. Here the stable
phase is F+ as well, located at (x, y) = (0.7383, 0.7383)
[Fig. 8(a)], but the metastable D phase, located at
(x, y) = (0.2306, 0.2306) in a magnified plot in Fig. 8(b),
and the secondary metastable AF phase, located at
(x, y) = (0.4899,−0.2762) [and (−0.4899, 0.2762)] in
a magnified plot in Fig. 8(c), are also realized. Here the
energy barrier between the D and AF phases is much smaller
than that between the F and AF phases.

D. L dependence

To see the dependence on L, we study the phase diagram
for L = 8, given in Fig. 9. The horn region is depicted in
Fig. 9(a). Figure 9(b) is the phase diagram only for the
equilibrium phases. Figures 9(c) and 9(d) are magnified plots
for the tristable regions. Tristable regions are also found here
(regions V and VI are very narrow and not shown), and the
diagram is qualitatively the same as that for L = 6. However,
some quantitative changes are found. The critical point (T �
2.956) for L = 8 is closer to the exact value T � 2.269 than
that for L = 6. For larger L, it should approach the exact
value. Comparing Figs. 4(a) and 9(a) on the same scale, the
horn region for L = 8 is significantly larger than for L = 6.
This change is understood as follows.

The thermal fluctuations more strongly affect the SR in-
teraction for larger L, which leads to stabilization of the D
phase rather than the AF phase. Thus the location of the
phase boundary between the D and AF phases will shift to the
low-temperature side. On the other hand, the LR interaction is
less affected by the thermal fluctuations and it approaches the
MF interaction for larger L.

The main concern is the existence of the tristable regions in
the limit L → ∞. We compare Figs. 9(c) and 4(c) on the same
scale, and find that regions I and II become smaller for the
larger L, while regions III and IV still exist in a wide range.
For larger systems sizes (L), the first-order transition (line
Qα) between the AF and D phases may be reduced. However,
there is a possibility that the metastabilities of the AF and D
phases, especially in regions III and IV, exist for larger L.

From the above-mentioned considerations, we may give
three possible scenarios for the horn structure and its vicinity
in the phase diagram.

Scenario 1. The transition between the D and AF phases
is of second order and that between the metastable D and
metastable AF phases is also of second order.

Scenario 2. The transition between the D and AF phases
for line QC is of (weak) first order, and that between the
metastable D and metastable AF phases (line Cα) is also of
first order.
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FIG. 7. (a) Contour plot of the per-site free energy in the x-y plane at (T , H ) = (2.820, 0.1490) in region III in the cluster MF model for
L = 6. (b) Magnified detail of the plot around the secondary metastable D phase in the region of the white square in (a).

Scenario 3.The transition between the D and AF phases is
of second order, in which there is no triple point (points B,
C, and E become one point), and the transition between the
metastable D and metastable AF phases is of second order on
line CQ and of first order on line Qα.

Scenario 1 is the conclusion in the MC studies [1,2], while
scenario 2 corresponds to the result of the present study. The
tricritical point Q is located closely to point W in the present
study, but in principle point Q can be a point on line AS, and
scenario 3 is a possible speculation from the present study

FIG. 8. (a) Contour plot of the per-site free energy in the x-y plane at (T , H ) = (2.854, 0.1530) in region IV in the cluster MF model for
L = 6. (b) Magnified detail of the plot around the metastable D phase in the region of the upper white square in (a). (c) Magnified detail of the
plot around the secondary metastable AF phase in the region of the lower white square in (a).
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FIG. 9. The phase diagram of the CMF model for L = 8. (a) A horn region at relatively high temperatures and its vicinity. (b) The
equilibrium phase diagram for (a). (c) Tristable regions and the vicinity. (d) Magnified detail of the tristable regions. Comparing with Fig. 4,
we note that the horn region for L = 8 is significantly larger than for L = 6.

and the MC studies. If point Q coincides with point C, the
transition between the D and AF phases is of second order
and that between the metastable D and metastable AF phases
is of first order. If point Q coincides with point α, points Q, R,
and S become one point and tristable regions disappear. Line
QS becomes a critical line and it corresponds to scenario 1.

It will be practically impossible to distinguish between
scenarios 1, 2, and 3 by MC studies for finite systems.
However, the cause of larger error bars in the Binder plot for
the transition between the metastable D and metastable AF
phases in the MC studies [2], especially at higher fields, might
possibly be attributed to scenario 2 or 3.

Figures 5 and 14 in the MC study [2] show that between
the parameter A = 7 and A = 8 the relation of the location
between the critical line and the F− (and F+) spinodal
lines changes at lower fields, although the equilibrium phase
diagram is qualitatively the same except at H = 0. There,
point A in Fig. 4(a) is located lower than point V. There is
a critical value of A between 7 and 8, defined as Ac. Here we
have studied the case of A = 7.9 because the horn structure
appears more easily than for A = 7 and can be studied by the
CMF method. Thus, rigorously, the above scenarios can be
applied for A < Ac in the thermodynamic limit.

IV. DISCUSSION AND SUMMARY

We studied the phase diagram of the IA model with in-
finitely long-range F interactions with the cluster mean-field
method. Evaluating the variational free energy and solving
the variational equations of the free energy with the use of
the transfer-matrix method, we presented detailed structures
of the phase diagram, including tristable regions for AF, F,
and D phases.

In contrast to the simple BW mean-field (MF) theory
for two sublattices, applied to this model in Ref. [1], we
observed unusual horn structures similar to those obtained
in MC studies [1–3]. We found that the interplay between
the thermal fluctuations of the SR interaction enabled by the
multisite clusters and the mean-field nature caused by the LR
interaction is an essential requirement for the realization of
such unusual structures.

For larger L in the CMF method, thermal fluctuation ef-
fects are included up to a range comparable to the system size.
The fluctuation effects from the SR interactions are important
for the stabilization of the D phase versus the AF phase,
resulting in the shift of the critical line and line QC to the
lower temperature side. On the other hand, the LR interaction
is more robust against the fluctuations, especially for larger
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L, and the spinodal lines are stabilized by the LR interaction.
These competing effects cause the tricritical points observed
in the BW MF phase diagram [1] to decompose into the un-
usual horn structures seen by both the CMF and MC methods.

At H = 0, the total magnetization is zero and the system is
equivalent to the Ising antiferromagnet which has the critical
temperature T � 2.27 on the square lattice. This value should
be realized in the large L limit. Indeed, we found that for
larger L the phase boundary between the AF and D phases
shifts to lower temperatures in the direction of the exact value.
On the other hand, the phase boundary of the F+ and D
phases shifts to the higher field side, and the temperature of
the critical point (the merging point of the phase boundaries
of the metastable F+ and D phases), i.e., the top of the
horn structure, changes relatively little. Therefore, the horn
region expands with increasing L. In the MC studies [1,2],
the MF critical points are located at (H, T ) � (0.56, 2.61) for
A = 7, while the critical temperature at H = 0 is significantly
lower at T � 2.27, resulting in prominent horn structures. We
expect the locations of the horn regions in the CMF phase
diagram to approach those of the MC phase diagram for larger
L.

We investigated in detail the phase boundaries around the
horn regions and found six tristable regions located closely
to the horn regions. The MC studies [1–3] presented four
different bistable regions around the horn regions, i.e., the D
phase with the metastable F+ phase, the F+ phase with the
metastable D phase, the AF phase with the metastable F+
phase, and the F+ phase with the AF metastable phase. The
six tristable regions seen in the present CMF study were not
identified, and the boundary between the AF and D phases
(line AS) was classified as a critical line. On the other hand, a
tricritical point Q and a triple point C were found in the CMF
study, as well as three characteristic points, α, β, and γ , at
which the D phase, the AF phase, and the D phase become
unstable, respectively. This tristability might be the cause of
the larger error bars in the Binder plots in the higher-field
region in the MC study [2].

As the size dependence of the phase diagram suggested, if
the tricritical point Q approaches point α, points B, C, and
E become the same point, and the line AQC is the critical
line. This point (C) is the endpoint of the first-order transition
between the AF and F+ phases and also that between the D
and F+ phases, which is a characteristic point in the phase
diagram with three order parameters.

Here, we propose three possible scenarios for the phase
transitions associated with the horn structure. However, the
metastability between the AF and D phases is weak and it
would be difficult to detect the tristable regions by finite-size
MC studies.

The phase diagram with the triple point could be regarded
as a lattice model of three phases of materials, e.g., the gas,
liquid and solid. So far, for the gas-liquid phase transition
the ferromagnetic Ising model is used while for the liquid-
solid phase transition an AF Ising model is used. However,
lattice models for the full three phases are not known to
our knowledge. The present model suggests that a lattice-gas
model with short-range AF interactions and rather long-range
F interactions may have a phase diagram including a triple
point.
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APPENDIX: FREE ENERGY VERSUS SUBLATTICE
MAGNETIZATIONS

In the variational MF approximation used here, stationary
points of the free energy are obtained as the simultaneous
solutions of the variational equations, Eq. (25). The variables
x and y are thus not order parameters of the system, but rather
variational parameters. An example of the nonlinear and non-
monotonic dependence on x and y of the magnetization on the
A sublattice, here defined as

mA = 2

L2

L2/2∑
i∈A

〈σi〉, (A1)

is given in Fig. 10. mB is defined analogously with a sum
over the B sublattice. A contour plot for mB is obtained
from the one for mA by reflection about the y = x fer-
romagnetic axis. In this appendix we use the parameters
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FIG. 10. Contour plot showing the dependence of the A sub-
lattice magnetization mA on the variational parameters, x and y.
The parameters are A = 7.9 with (T , H ) = (2.820, 0.149) and L =
6. The dependence on x is monotonic but nonlinear, while the
dependence on y is nonmonotonic. The nonmonotonicity in the y

direction is caused by the LR interactions. It is not present for the
pure Ising antiferromagnet, in which A = 0.
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FIG. 11. Contour plots showing Fv/N vs the sublattice magnetizations, mA and mB, analogous to those shown vs x and y in Fig. 7.
(a) Shown over (mA,mB) ∈ [−1,+1] × [−1, +1]. (b) Shown over the restricted region, (mA, mB) ∈ [0,+0.5] × [0, +0.5]. The very shallow
minimum corresponding to the secondary metastable D phase is clearly visible at this magnified scale.

A = 7.9, (T ,H ) = (2.820, 0.149), and L = 6, corresponding
to the tristable region III in the phase diagram shown in
Fig. 4(d).

Contour plots of the per-site variational free energy Fv/N

vs mA and mB are shown in Fig. 11. The parameters are the
same as in the contour plots of Fv/N vs x and y in Fig. 7. As
seen from Fig. 10, varying x and y over the range [−1,+1]
does not cause the sublattice magnetizations to vary over this
full range. As a result, the contour plot in Fig. 11(a) covers a
rhombus embedded in the [−1,+1] × [−1,+1] square with
its long axis in the ferromagnetic direction mB = mA and its

short axis in the antiferromagnetic direction mB = −mA. The
nonmonotonicity of mA with respect to y and of mB with
respect to x also cause narrow, multivalued regions of Fv/N

along the edges of the rhombus in this representation. The
global minimum corresponding to the stable F+ phase, and
the two local minima corresponding to the metastable AF
phases are clearly seen in Fig. 11(a). In the magnified plot,
Fig. 11(b), the shallow local minimum corresponding to the
secondary metastable D phase is also seen, as well as the
saddle points separating it from the metastable AF and stable
F+ phases.
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