
Evaluation of Bare Metal CPU
and Memory Performance of the
Unikernel IncludeOS and Ubuntu

Martin Kot

Thesis submitted for the degree of
Master in Network and System Administration

30 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Evaluation of Bare Metal CPU
and Memory Performance of the

Unikernel IncludeOS and
Ubuntu

Martin Kot

© 2019 Martin Kot

Evaluation of Bare Metal CPU and Memory Performance of the Unikernel
IncludeOS and Ubuntu

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

General purpose operating systems are widely in use for running many
different applications on a big selection of hardware. Such an operating
system must be quite complete in order to provide virtual memory,
scheduling, services etc. for any application. They are designed with
multitasking in mind, being able to run several tasks simultaneously,
utilizing scheduling and time sharing. Any running application may at
any time be interrupted if resources are requested by a different process.
This will usually happen because of an interrupt or context switch from
kernel to user mode, and can result in uneven performance.

A unikernel operating system is a different approach. It is just a single
binary with only a single application running in kernel mode without any
additional bloat. A lot of the general purpose software is not needed
when running a virtual machine. This makes a unikernel OS a fast
and lightweight option to general purpose operating systems for virtual
machines.

The aim of this thesis is to compare the CPU and memory performance
of a unikernel-based operating system and a general purpose operating
system when running on bare metal and not on virtual machines. The goal
is to avoid the operating system noise which is known to occur when using
general purpose operating systems. In this case the comparison was done
between the IncludeOS unikernel and Ubuntu Linux.

i

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 High Frequency Trading 2

1.2 Problem statement . 2

2 Background 5

2.1 Bare Metal . 5

2.2 Virtualization . 5

2.3 Unikernels . 6

2.4 IncludeOS . 8

2.5 Real Time Operating Systems 10

2.6 Related Work . 11

3 Approach 13

3.1 Compiling IncludeOS . 13

3.2 Running IncludeOS on bare metal 17

3.2.1 RDTSCP . 21

4 Results 23

4.1 Prerequisites for hardware and OS configuration 23

4.2 CPU bound experiments . 24

4.3 Memory experiments . 32

5 Discussion 39

6 Conclusion 43

Appendices 47

iii

A Source code 49

iv

List of Figures

2.1 A traditional virtualized setup showing both a unikernel and
a general purpose operating system 7

2.2 Comparison of a unikernel and a general purpose operating
system running directly on hardware (bare metal) 8

2.3 IncludeOS build system . 9

2.4 The experimental bare metal setup with IncludeOS uniker-
nel and Linux running directly on Intel hardware 10

3.1 Dell iDRAC - launch virtual console 19

3.2 Dell iDRAC - map a virtual CD-rom 20

4.1 Configuration of CPU frequency and power management in
the Dell BIOS setup. 23

4.2 The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when running a CPU bound workload. Results from 1 million
experiments. 25

4.3 The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when running a CPU bound workload. The results from the
first 500 experiments are shown. 26

4.4 Histogram of the noise of Linux and IncludeOS when running a CPU
bound workload. Results from 1 million experiments. 27

4.5 Histogram of the noise of IncludeOS with interrupts turned off when
running a CPU bound workload. Results from 1 million experiments. . . 28

4.6 Number of CPU cycles used for a CPU bound calculation of prime
numbers. 29

4.7 Occurrence of short delays between 400 and 2000 cycles for a CPU bound
calculation of prime numbers. 30

4.8 Occurence of medium sized delays between 2000 and 6000 for a CPU
bound calculation of prime numbers. 30

4.9 Occurrence of delays larger than 6000 cycles for a CPU bound calculation
of prime numbers. 31

v

4.10 Percentage of execution time spent in delays larger than 400 cycles for a
CPU bound calculation of prime numbers. 31

4.11 The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when copying between two arrays. Results from 1 million
experiments. 32

4.12 The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when copying memory. The results from 500 selected
experiments are shown. 33

4.13 Histogram of the noise of Linux and IncludeOS when copying between
two arrays. Results from 1 million experiments. 34

4.14 Histogram of the noise of IncludeOS with interrupts turned off when
copying between two arrays. Results from 1 million experiments. 35

4.15 Number of CPU cycles used when copying between two arrays. 35

4.16 Occurence of short delay events between 400 and 2000 cycles when
copying between two arrays. 36

4.17 Occurence of medium sized delay events between 2000 and 6000 when
copying between two arrays. 36

4.18 Occurence of delay events larger than 6000 cycles when copying between
two arrays. 37

4.19 Percentage of execution time spent in delays larger than 400 cycles when
copying data from one array to another. 37

4.20 Percentage of execution time spent in delays larger than 2000 cycles when
copying data from one array to another. 38

vi

List of Tables

vii

viii

Preface

Acknowledgments

First of all, a huge thanks to my supervisor and mentor, Hårek Haugerud.
This thesis would never become a reality without his long term support,
technical knowledge, guidance, care and kindness. A truly great person,
both as a scientist, and with fantastic people skills.

A big thanks to my friends and my sister for all their care and support,
and not giving up on me.

I would also like to thank the administration at UiO and OsloMet for
this chance and making it possible to complete.

ix

x

Chapter 1

Introduction

Today most operating systems in use are general purpose operating
systems. They try to cater for all kinds of purposes and must support a
huge variety of hardware. In general, such an operating system has a lot
of bloat and many running services. This will affect the performance if the
objective is to just run a single application to solve a task as efficiently as
possible.

1.1 Motivation

A general purpose operating system like Linux is unable to satisfy the
requirements of applications needing immediate response time. Examples
of such applications are trading algorithms, self-driving cars, aviation and
aerospace systems etc. In Linux an application might be delayed because
of kernel interrupts, paging, system services and other processes with a
higher priority. Linux is known to have issues like unpredictable latencies
and limited support for real-time scheduling [1].

In comparison a unikernel like IncludeOS is highly specialized and
runs only a single task in a single thread. There are no other OS duties
or interrupts to worry about. The assumption is that this will result in
improved efficiency and fewer delays in completing application tasks.

How consistent is the response time compared with Linux? One
way to analyze this is by testing CPU and memory performance. For
applications like high frequency trading, the extra cost and possible delays
due to virtualization should be avoided. Normally, unikernels are used
in virtualized environments. The focus on efficiency in the design of
a unikernel makes it a promising candidate as an operating system for
applications in need of fast response and execution also when running
directly on hardware. This is often described as running on bare metal,
which means without virtualization of any kind.

1

1.1.1 High Frequency Trading

High Frequency trading (HFT) is a type of algorithmic trading. This
typically involves high speeds, high turnover rates and a huge volume
of stocks exchanged in a very short amount of time [2]. There are
a few definitions of HFT, but typically they make use of extremely
sophisticated algorithms and deploy them in short-term investments not
humanly executable [3]. In order for an HFT to be effective, proprietary
trading strategies carried out by computers in fractions of a millisecond
are employed. HFT is often regarded as the primary form of algorithmic
trading in finance [4] The most profitable company will in general be the
one with the fastest hardware and the best trading algorithms [5] In general
the competition in HFT is not from humans, but from other companies
employing the same strategy. The typical algorithms and optimizations
are therefore proprietary.

HFTs require low latency combined with high frequency programming.
In almost all cases an HFT is run on a UNIX variant, typically Linux.
Even if Linux is traditionally tuned to support a large number of running
processes and to fairly provide each process a share of resources, it can be
tuned in different ways. An HFT will typically require just one application
running with the least amount of overhead for context switching and
lowest possible latency from a very fast network link. Additionally, I/O
speed should be prioritized more than memory usage, for instance by
keeping databases in memory, cached up front etc. A unikernel is a type of
an operating system that runs just a single task and nothing more. This
should make it more suitable and efficient to run just the required task
without interruptions and sharing resources with competing processes. In
theory this should result in both better performance and noise.

1.2 Problem statement

Until recently the IncludeOS unikernel has been developed in order to run
in a virtualized environment. In this case IncludeOS may use virtualized
drivers and there has not been any need for developing drivers for all
kinds of physical devices. When running directly on hardware, like most
operating systems normally do, drivers for the actual hardware at hand are
needed. Since no hardware drivers for IncludeOS have yet been developed,
this study concentrates on comparing the performance of the CPU and
memory of an Intel server. In these cases there is no need for hardware
drivers and performance tests may be run using the existing version of
IncludeOS. This leads to the first of the two research questions for this
thesis:

What are the differences in performance of the CPU and memory when
running workloads on a server controlled by the IncludeOS unikernel
compared to the case where the same server hardware is controlled by

2

the Ubuntu operating system?

In both cases the systems are running directly on the server hardware
and they carry out the exact same computations.

Our hypothesis is that the Linux kernel occasionally will perform
operations related to scheduling, paging and other duties which a general
purpose operating system has to deal with, and that this will result in
variances in the performance of applications running on the system. Our
second research question has two parts:

To what extent do the performance results vary when very short
CPU and memory operations are performed a large number of
times? To what extent do delays in the execution of workloads of
the multipurpose operating system occur compared to the unikernel
system?

3

4

Chapter 2

Background

2.1 Bare Metal

The definition of bare metal is physical hardware, and software being
executed directly on it. Traditionally this has been the main way of running
operating systems and applications, all the way from the earliest computers
to sharing resources on a mainframe running UNIX. Computing hardware
with good performance was quite expensive, but due to Moore’s law and
big leaps in performance vs. cost ratio, at one point in time it became
apparent that commodity server and desktop hardware could easily run
several operating systems simultaneously by utilizing a concept called
virtualization. This is a viable option as most computers stay idle for
long periods, wasting resources. Virtualization has come a long way,
and in some cases the performance is almost equivalent to real hardware.
Providing that the CPU has virtualization extensions, it is well supported in
both different operating systems and platforms. However, it is undeniable
that bare metal hardware might still yield better performance, especially
for time critical applications like high frequency trading. At least this is the
assumption.

2.2 Virtualization

Virtualization is a way of presenting virtual, rather than a physical, version
of something. This could be both computer hardware, storage devices and
networking. It is a layer of abstraction enabling a single computer to run
multiple operating systems at the same time, each seeing its own virtual
hardware subsystem. Quite often the terms host and guest are used: the
host being the physical hardware with the software running directly on
it, and the guest(s) being the virtualized hardware/software. The layer of
abstraction is called a hypervisor, which is a piece of low level software
usually responsible for creating the virtual machines and sharing resources
like processing, memory etc.

5

Originally the typical classification of the hypervisors was either as
Type 1 or Type 2

• Type 1 hypervisor: a bare metal hypervisor that runs directly on a
host’s hardware, often beneath the operating system

• Type 2 hypervisor: an application or process executed in the host
operating system

The type definitions were created decades ago, and do not really apply to
modern virtualization. Modern hypervisors like Xen, KVM and VMware
are both type 1 and type 2 hypervisors. Both Xen and KVM have support
in the Linux kernel turning the host into a type 1 hypervisor, but the host is
still a fully usable operating system with VMs running as processes making
it type 2.

2.3 Unikernels

Typically a standard operating system consists of a large kernel and user
space tools with libraries. The operating system is developed with good
support for different hardware (eg. drivers and modules) with time sharing
between different processes in mind. This involves context switching and
being able to react on interrupts (like input from a keyboard, network
or I/O). While this makes the system great for running many different
applications at once and out of the box, it imposes an overhead and a lot
of unneeded functionality when all that is required is a single application.
Unikernels are specialized library operating systems. A library operating
system is a self contained entity with just a single purpose. Instead of
making use of existing operating system features, providing libraries and
modules, you start in the other end by creating an application first, then
wrapping an operating system around it. Essentially you link and compile
an application with just the necessary functions from the required libraries,
then add a boot loader. The result is an operating system that boots and
runs just a single application in kernel mode. There is no time-sharing,
multi-threading, unused libraries or modules to worry about. Just the bare
minimum for a single threaded application.

A unikernel is not a new invention, already in 1995 the Exokernel [6]
was a description of a similar approach. The term unikernel, however, was
invented fairly recently in a paper by Madhavapeddy et. al. [7], where
MirageOS is presented as a modern library operating system for the cloud.
With the development of virtualization and good support for it in both
hardware and the operating systems, it is now very easy to deploy VMs in
the cloud. However, it is very common that VMs run a general operating
system with just a single application, and the unikernel has become a viable
option to make efficient use of resources. Since a unikernel is a very small
binary with extremely fast start-up times, it is very easy to scale VMs

6

horizontally by executing thousands of small instances very quickly and
efficiently.

Application

Application

General Purpose
Operating System

Hardware HardwareHardware

Hypervisor Hypervisor

Unikernel

Figure 2.1: A traditional virtualized setup showing both a unikernel and a
general purpose operating system

A typical setup is shown in Fig. 2.1, with the hypervisor running
a virtual operating system on top of it. This has been a very common
configuration for many years, as it has become quite simple to deploy VMs.
Unikernels are very often made with virtualization in mind. The emphasis
here is to show the larger overhead and resource usage from a general
purpose operating system compared with a unikernel.

A progression from the virtual environment is shown in Fig. 2.2. In
this case both operating systems run directly on hardware. This is to
remove any bottlenecks imposed by a hypervisor, to improve both latency
and resource usage. For the general purpose operating system this is
a standard configuration, but for a typical unikernel a new and more
complex scenario. A unikernel is an OS made from ground up, not being
based on existing operating systems. Drivers and hardware support must
be coded from scratch.

7

Application

Application

General Purpose
Operating System

Hardware Hardware

Unikernel

Figure 2.2: Comparison of a unikernel and a general purpose operating
system running directly on hardware (bare metal)

2.4 IncludeOS

IncludeOS [8] is a library operating system with minimal system require-
ments. This was a research project started by Alfred Bratterud at Oslo
University College (now Oslo Metropolitan University), but is now a stan-
dalone project developed by the independent company IncludeOS AS [9].
IncludeOS is designed from the ground up as an efficient single-tasking
operating system for virtualized environments. It is developed in C++ and
aims to support C/C++ applications, referred to as services. A typical ser-
vice starts with #include <os> and this will include a tiny operating sys-
tem at link-time. The resulting binary links in just the required OS object
files with a boot-loader and a ready to run image file that supports modern
hypervisors. An overview of the IncludeOS build system is shown below
in Fig. 2.3

IncludeOS can run fully virtualized on both KVM, VirtualBox and
VMWare. The main development and testing are done on KVM and
VMWare Fusion/ESXi. This makes it possible to run IncludeOS virtualized
both on a single desktop or server, but also easily in the cloud like
OpenStack or Google Compute Engine [10].

The unikernel is developed in modern C++, in contrast to some other
unikernels like MirageOS (OCaml) and OSv (Java) [11]. One of the main
principles of the C++ language is the zero-overhead principle [12] and this

8

Figure 2.3: IncludeOS build system

is also an essential part of the IncludeOS model. It has full C++ language
support when compiled with clang 5 (or later) and the standard library
from LLVM. A compiled unikernel is only about 2.5 MB and boots in 0.3
seconds, in special cases it can even boot in 10 ms (with the Solo5/uKVM
from IBM). A ”Hello World!” program in IncludeOS barely uses 8.45 MB
of memory, while a minimal instance on Linux in OpenStack is around
300 MB .[8] The purpose is to use a library to add the required functions
at link time, generating a single service. In essence an application or
service is added with the necessary operating system components to create
an ”operating system” image. This is in contrast to a general purpose
operating systems which must provide all the necessary libraries and a lot
of functionality in order to run any kind of applications.

In contrast, the resulting IncludeOS image contains only the necessary
bits including a boot loader. The result is a single threaded unikernel
running just a single service. There is no framework for virtual memory,
multithreading, huge stacks and context switches. The whole focus is to
run just a single application. There are no interrupts, the OS itself is event
based. Modern hypervisors provide scheduling and sharing of resources,
it is unnecessary to add another abstraction layer in the OS itself. Although
very small, IncludeOS can still take advantage of multiple CPUs/cores and
has support for threading. The hardware support is mainly for VMs using
the Virtio framework, there is no need to include drivers for a wide range
of devices. Recent development has enabled limited support for ”bare

9

metal” hardware. On physical hardware IncludeOS is very much a real
time operating system (RTOS), since the latency is very predictable with no
interrupts and pre-emption.

stream.cpp

stream.cpp

Ubuntu 16.04

Dell R630 - Intel Xeon
E5-2699

Dell R630 - Intel Xeon
E5-2699

IncludeOS

Figure 2.4: The experimental bare metal setup with IncludeOS unikernel
and Linux running directly on Intel hardware

Figure 2.4 shows the experimental setup with both IncludeOS and
Linux running on bare metal Intel hardware. The idea is to show the
large resource usage by a GPOs compared with IncludeOS, even though
the figure does not scale correctly. In reality IncludeOS memory footprint
is typically just 1/35 of Linux for smaller applications [8].

Another great aspect of IncludeOS is security. The application is
small and runs only in kernel mode and the hypervisor already provides
good separation. Furthermore, the service is immutable and cannot be
changed without being recompiled, which results in a very limited attack
surface. With the advent of Internet of Things (IoT), security is even more
important. But in order to still allow for a smooth update of services,
IncludeOS includes the LiveUpdate feature. It is a way to update the
service ”on the fly” by saving state before replacing the old instance
without any interruptions.

2.5 Real Time Operating Systems

Real Time Operating Systems (RTOS) are made for time critical application.
An operating system like this is made with guarantees that a process will

10

complete or respond in a given time frame. Often used in the health
industry, aviation, cellular networks and other time critical applications.
Linux can be used as an RTOS, but since it is a general operating system
with complex scheduling algorithms, interrupts and aiming for good pre-
emptive multitasking and responsiveness it is not ideal for this kind of
applications. In addition, a GPO is in constant change, and the state is
unpredictable. It requires quite a lot of tweaking and knowledge to set up
properly to behave as a RTOS. A unikernel is very static by default and
much more predictable for this kind of use.

Another aspect is that a RTOS implies overhead. Guaranteeing that
a process will complete a response within a given time frame means
that other processes must be interrupted to let the guarantee be fulfilled.
The guaranteed response time is the primary objective for a RTOS, not
performance. For high performance, Linux is often an option, and it
is being used in HFT. This often yields adequate performance, but the
trade off here might be increased delays and noise due to unexpected
interruptions and context switches. As opposed to RTOS, Linux has
no response time guarantees and occasionally OS operations like paging
may lead to relatively long glitches where the processing of the service
is paused. However, a unikernel like IncludeOS may provide both
high performance and low latency by avoiding interrupts from the OS
performing its regular tasks.

2.6 Related Work

Several papers investigate how to reduce the system noise in High
Performance Computing environments. A HPC system distributes a single
task amongst a large number of CPU cores. Since each core is dedicated
to this one task, it is beneficial to let this task run with the least amount
of interruption from local timer interrupts. Those are often used for
accounting, system time, preemption and scheduling.

Both [13] and [14] discuss how to reduce system noise in the Linux
kernel. Here the definition of noise is any delay or interruption that comes
from the kernel, and does not originate from the application itself. A point
is made that the traditional way of pinning an application to a CPU will
still let it be interrupted by system processes which are not pinned and can
be scheduled to run on any CPU. They describe a solution with dedicated
CPUs for the OS and applications, and the isolcpus Linux kernel option
to disable SMP load balancing and prevent scheduling of any user-threads
and kernel tasks/system services on the isolated cores. However, this does
not prevent kernel threads and daemons to still be migrated to one of the
isolated CPUs.

Additionally they show a modification of the Linux kernel for tickless
operation to disable any timer interrupts on CPUs running the application,
and designate specific OS cores for system critical clock ticks.

11

12

Chapter 3

Approach

The purpose of the experiments was to test the performance of both
IncludeOS running on bare metal and Linux on the same hardware.
Compiling and running code on Linux is straightforward, while it is a
bit more challenging for IncludeOS. It is even harder to make IncludeOS
run on bare metal, as it was initially designed for running in a virtualized
environment only. With help from the designer of IncludeOS, Alfred
Bratterud, we were able to build an ISO-image and load it on a server.
In order to make the experiments as realistic as possible, we chose to
run the experiments on a Dell PowerEdge R630 Rack Server with two
Intel Xeon E5-2699 processors each containing 20 hyperthreading cores.
An essential part of the project was to measure the time spent by the
experiment workloads and the RDTSCP processor instruction that returns
the number of cycles since the last reset was used for this purpose.

3.1 Compiling IncludeOS

The first step was to get hold of the IncludeOS source code and compile an
ISO image with the STREAM benchmark. When running the experiments
an IncludeOS version from an experimental branch updated in February
2017 was used. This revision of IncludeOS was compiled using g++ and
could be executed successfully on bare metal. Later changes in the code
requires a recent version of the Clang compiler, and for some reason the
changes in the source code made it impossible to get any output on bare
metal. To check out exactly the same revision from the repository, one can
use the following git commands:

$ git clone https://github.com/fwsGonzo/IncludeOS/ ~/IncludeOS

$ git reset --hard b5087124aae0dd468434d7e60212fb5ff2571a0b

IncludeOS was then compiled without setting any CC or CXX variables
in the shell, which led to g++ being used as the default compiler. The
variable $INCLUDEOS_PREFIX must point to where the compiled binaries

13

and libraries will be installed. In addition it is a good idea to modify
the path and add $INCLUDEOS_PREFIX/bin to it. An install.sh script is
provided with IncludeOS that will execute the required steps in order to
get a working IncludeOS environment.

A typical example of an IncludeOS service is shown below. This is
the file service.cpp which is the main source file of an IncludeOS image.
The code shows that the OS part of the program is literally included at
the beginning. The file stream.cpp contains the actual workload and is
compiled separately.

$ export INCLUDEOS_PREFIX=~/includeos/

$ export PATH=$PATH:$INCLUDEOS_PREFIX/bin

$ cd ~/IncludeOS && ./install.sh

To measure the memory performance the STREAM memory bench-
mark [15] was used. It is already included as an example project in the
IncludeOS-directory. The followning is the file service.cpp which defines
the IncludeOS service. It literally includes the OS-part needed to build a
combination of the service and a kernel into a single executable.

// This file is a part of the IncludeOS unikernel - www.includeos.org

//

// Copyright 2015 Oslo and Akershus University College of Applied Sciences

// and Alfred Bratterud

//

// Licensed under the Apache License, Version 2.0 (the "License");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

#include <os>

#include <iostream>

void Service::start()

{

printf("Running STREAM benchmark\n");

extern int stream_main();

stream_main();

}

The goal of the thesis was to find differences in performance and latency
when compared to compiling and running the same stream.cpp code
using Linux. One important option only possible using IncludeOS was
to turn off interrupts. This was in order to run the workload as efficiently
as possible on physical hardware. IncludeOS was tested with and without
this feature and it was done by simply adding an instruction using inline
assembly in the service.cpp source code of IncludeOS.

14

printf("Turning off interrupts (asm(\"cli\")\n");

asm("cli");

A simple way to test the benchmark in a virtual machine is to build and
execute it using the IncludeOS boot command. Adding verbose output will
also tell us something about the compiler flags being used. It is essential to
compile the STREAM binary with exactly the same options in Linux to get
a fair comparison.

$ cd ~/IncludeOS/examples/STREAM

$ boot -cv .

The following is the part of the output from the boot -cv . command
containing the c++ flags

> /usr/bin/c++ -DARCH=\"x86_64\" -DARCH_x86_64

-DINCLUDEOS_SINGLE_THREADED -DPLATFORM=\"x86_pc\"

-DPLATFORM_x86_pc -D_LIBCPP_HAS_NO_THREADS

-I/home/martink/includeos/includeos/api/posix

-I/home/martink/includeos/includeos/x86_64/include/libcxx

-I/home/martink/includeos/includeos/x86_64/include/newlib

-I/home/martink/includeos/includeos/x86_64/include

-I/home/martink/includeos/includeos/api

-I/home/martink/includeos/includeos/include

-I/home/martink/includeos/include -MMD -msse3

-mfpmath=sse -m64 -fstack-protector-strong

-DOS_TERMINATE_ON_CONTRACT_VIOLATION -D_GNU_SOURCE

-DSERVICE="\"stream_example\""

-DSERVICE_NAME="\"STREAM Memory Benchmark Service\""

-Wall -Wextra -nostdlib -fno-omit-frame-pointer -c

-std=c++17 -o CMakeFiles/service.dir/service.cpp.o

-c /home/martink/IncludeOS/examples/STREAM/service.cpp

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

We noticed that the compiler flags did not use any optimization mode, like
-O2. This switch had to be added to get reasonable performance. This can
be either done globally for compiling all IncludeOS projects, or locally for
just a single project.

globally in a cmake-file included by all projects

cat ~/includeos/includeos/post.service.cmake

set(OPTIMIZE "-O2")

or locally an option can be added to CMakeLists.txt

in the same directory as source code for the service

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2")

After adding the option to CMakeLists.txt just for the STREAM-project, it
was then recompiled. The compile output from boot -cv . was then like
this:

15

> /usr/bin/c++ -DARCH=\"x86_64\" -DARCH_x86_64

-DINCLUDEOS_SINGLE_THREADED -DPLATFORM=\"x86_pc\"

-DPLATFORM_x86_pc -D_LIBCPP_HAS_NO_THREADS

-I/home/martink/includeos/includeos/api/posix

-I/home/martink/includeos/includeos/x86_64/include/libcxx

-I/home/martink/includeos/includeos/x86_64/include/newlib

-I/home/martink/includeos/includeos/x86_64/include

-I/home/martink/includeos/includeos/api

-I/home/martink/includeos/includeos/include

-I/home/martink/includeos/include -MMD -msse3

-mfpmath=sse -m64 -fstack-protector-strong

-DOS_TERMINATE_ON_CONTRACT_VIOLATION -D_GNU_SOURCE

-DSERVICE="\"stream_example\""

-DSERVICE_NAME="\"STREAM Memory Benchmark Service\""

-Wall -Wextra -nostdlib -fno-omit-frame-pointer -c

-std=c++17 -O2 -o

CMakeFiles/service.dir/service.cpp.o -c

/home/martink/IncludeOS/examples/STREAM/service.cpp

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The output shows that the compiler options for g++ now include the -O2
flag. When successfully built, a resulting IncludeOS binary should appear
in the build directory. In our case it was named build/stream_example

This binary can be run directly in a virtualized environment, like qemu.
The boot command can be run directly to execute a qemu environment with
parameters specified an JSON-file, usually vm.json in the project directory

root@intel1:~/IncludeOS/examples/STREAM# cat vm.json

{

"mem" : 4096,

"cpu" : {"model": "host"}

}

These options will make the boot command create a qemu VM with
the specified amount of memory and the CPU model passthrough feature
- essentially by identifying the CPU in the VM as exactly the same as
on the physical hardware. A simple test of the benchmark is done by
just executing boot ., but in general if only a compilation is required
and executing qemu is unnecessary, then the appropriate command is just
boot -b .

Sample output when running IncludeOS with STREAM in a qemu vm:

martink@intel1:~/IncludeOS/examples/STREAM$ boot .

....

....

....

Found /home/martink/includeos/includeos/chainloader Type: ELF 32-bit

LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped

[WARNING] Running with sudo

16

[sudo] password for martink:

==

IncludeOS v0.9.3-5077-gb508712 (x86_64 / 64-bit)

+--> Running [STREAM Memory Benchmark Service]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Running STREAM benchmark

-------------------------------------------------------------

STREAM version $Revision: 5.10 $

-------------------------------------------------------------

This system uses 8 bytes per array element.

-------------------------------------------------------------

Array size = 10000000 (elements), Offset = 0 (elements)

Memory per array = 76.3 MiB (= 0.1 GiB).

Total memory required = 228.9 MiB (= 0.2 GiB).

Each kernel will be executed 100000 times.

-------------------------------------------------------------

3.2 Running IncludeOS on bare metal

The next step was to run the IncludeOS binary on physical hardware. To
make it run on bare metal is not trivial, since writing drivers from ground
up is a huge effort. Being an OS developed completely from scratch, where
the main objective is to run it virtualized in the cloud, it is reasonable
to spend the effort on virtualized drivers. Virtualized hardware is quite
generic in its nature, making it possible to maintain just a few drivers.
This is in contrast with bare metal, where the amount of drivers is virtually
unlimited.

First of all, the hardware support of IncludeOS is limited to serial and
VGA output. However, VGA is not desirable for parsing output. One
option could be to send the benchmark data through the network, but
IncludeOS has no hardware support for any physical network cards, it only
supports Virtio and vmxnet3 drivers used for virtualization. Networking
on physical hardware would require an IncludeOS network driver written
from scratch for just the specific hardware. In addition, even with
networking available, some extra setup for a network/server application
is necessary.

However, IncludeOS has support for output to a serial console and this
is enabled by default. The Dell server used in the experiments is configured
with out-of-band-management [16]. Most hardware manufacturers use
various names for such devices, Dell refers to it as iDRAC. Essentially
this is a small device with its own cpu, controller and networking that
works independently of the server, with its own physical connection and
IP address. In broad terms, a tiny computer controls the server, providing
services like management of the hardware, monitoring and remote access
with a full view of the server monitor, keyboard input, remote shutdown
and reboot etc. The iDRAC itself can be accessed through a web interface
making it convenient to manage the server. In addition iDRAC has a very

17



useful feature for serial console redirection, making it possible to access the
serial port over a network.

Another useful feature provided by the iDRAC is booting from virtual
hardware. By uploading a CD-ROM or removable disk image in the web
interface, the server can then boot from it remotely. This makes running
different tests much easier, everything can be done remotely without
physically swapping the server’s disks or images.

Using IncludeOS’ multiboot support, Qemu/KVM can boot directly
without a boot loader. On bare metal a boot loader is necessary, and one
option is to use GRUB boot loader. A utility named grub-mkrescue is
provided with GRUB, which assists with the creation of a bootable CD-
ROM image (ISO) from a directory that contains the binary to be booted. If
the utility is installed, the process can automated with a simple script.

grub-mkrescue expects a special directory structure to create an ISO
from. This can be done with mkdir -p iso/boot/grub. The IncludeOS
binary is copied to the iso/boot/ sub directory, and a simple GRUB
configuration file is placed in the iso/boot/grub/ directory. This process
is described in the GRUB manual [17]

The GRUB configuration file configures GRUB to boot a single menu
entry and specifies the timeout to 0, speeding up the boot process.

# cat iso/boot/grub/grub.cfg

set default=0

set timeout=0

menuentry "IncludeOS/STREAM 100 times" {

multiboot /boot/stream_example

}

Once an IncludeOS binary is compiled, it is copied over to the
iso/boot/ directory. The next step is to run grub-mkrescue to create a
bootable ISO with the content. The ISO-file is transferred to a desktop
computer, and then uploaded through the iDRAC web interface. A small
helper script to simplify the process:

#! /bin/bash

cp build/stream_example iso/boot/

grub-mkrescue -o inc.iso iso

scp -4 inc.iso user@desktop.example.com:~/

Once the ISO-file is copied back to a desktop computer, it is uploaded
through the iDRAC web interface. The next step is to launch a Virtual

18



Console from the web interface. This can simply be done from the overview
screen in iDRAC, and choosing launch a Virtual Console, as shown in Fig.
3.1. The same server overview screen can be used to reboot the server.
There are more ways to achieve this, like through IPMI.

Figure 3.1: Dell iDRAC - launch virtual console

In Fig. 3.2 an ISO image is uploaded from a local computer, and this
image is mapped as a virtual CD-ROM. The server can then be rebooted
and started up from this image.

It is also possible to map a virtual CD-ROM image from the shell. This
is convenient for a totally headless operation. Dell provides management
utilities as part of their OpenManage software. For Ubuntu a utility called
vmcli is provided as part of OpenManage. The software can be quite easily
installed from Dell’s Linux repositories [18] For remote mapping only the
package srvadmin-idrac-vmcli was necessary. Typical usage is like this:

$ vmcli -r idrachost -u user -p pass -c /home/martink/inc.iso

The image remains mapped as long as the utility is running. Further
management of the server from the shell was necessary, since the server
was to be rebooted several times and benchmark results fetched through
a redirected serial console. One solution is to use IPMI. Intelligent
Platform Management Interface [19] is an open standard for out-of-band-
management, monitoring, logging and recovery. It is supported by
most large system vendors and provides management and monitoring
independently of the host CPU, firmware and operating system. Being
standardized, it can be applied across different hardware. There is an open
source utility named ipmitool for managing and configuring devices from

19



Figure 3.2: Dell iDRAC - map a virtual CD-rom

the shell.

Just a few commands were used, one for rebooting the server and
another one for activating the serial console. The communication is done
through SSL/TLS to the iDRAC, no further ports need to be opened in a
firewall. When omitting the password option -P, a password can be entered
interactively.

$ ipmitool -I lanplus -H idrachost -U user -P pass chassis power reset

$ ipmitool -I lanplus -H 192.168.0.120 -U root sol activate | tee log.txt

$ ipmitool -I lanplus -H 192.168.0.120 -U root sol deactivate

In the listing above a warm boot is performed, and serial console
(SOL) is activated. The console output is logged to log.txt. The STREAM
benchmark and other compiled C++ programs used in the experiments are
mostly run from the console and output text only. This is practical for later
parsing and statistical analysis.

Before performing a reboot, it is possible to set the boot device through
IPMI, which is very useful for comparing runs between a CD-ROM image
with IncludeOS and Linux. However, we just changed the boot sequence
making the server start up from an IncludeOS image if it was mapped, and
booting Linux otherwise.

20



3.2.1 RDTSCP

It was important to accurately measure how much time the processor
spends executing a given workload. In order to do this, the RDTSCP
assembly instruction was called before and after the workload instructions
of the code, giving the exact time used.

RDTSCP - Read Time-Stamp Counter and Processor ID is a processor
instruction that returns the number of cycles since the last reset. The
counter is incremented on every CPU cycle, even if the CPU is halted,
and the instruction puts it into the EDX:EAX register. It is described in
chapter 17.15 of the Intel® 64 and IA-32 Architectures Developer’s Manual:
Vol. 3B [20]. In general, most x86 CPUs implement the TSC instruction,
but RDTSCP is a serialized version of it that reads the timestamp from
the IA32_TSC register (into EDX:EAX) as well as a signature value from
the IA32_TSC_AUX register (into ECX) in an atomic way. This ensures that
no context switches occur when reading the values. This is important on
modern CPUs that support Out-of-branch-execution, as they differ from
the RDTSC instruction.

However, care has to be taken when using the instruction. First of all,
multicore CPUs have a different counter for each core, and those are not
in sync. Ensuring that the process is pinned to certain core/CPU is one
strategy. In addition, frequency scaling functions of the CPU should be
disabled. Intel ensures that the counter is incremented at a constant rate,
but this rate could differ from the core-clock to bus-clock ratio or maximum
resolved frequency set at boot time. Intel also states in chapter 18.18.2
that the maximum resolved frequency is not necessarily the same as the
processors base frequency. The TSC operate at close to the maximum non-
turbo frequency. The exact formula is given in chapter 18.18.3 of the Intel
manual.

21



22



Chapter 4

Results

4.1 Prerequisites for hardware and OS configuration

All the experiments were performed with the server running at maximum
CPU frequency with speedstep disabled. This was to ensure that all the
experiments were performed under the same conditions without varying
CPU speed and power management. Fig. 4.1 is an overview of the different
BIOS settings. The CPU was set to maximum frequency and with power

Figure 4.1: Configuration of CPU frequency and power management in the
Dell BIOS setup.

management disabled. All features like automatic adjustment of CPU
frequency like turbo boost were disabled, in addition to C1 power states
and making sure that memory ran at maximum frequency.

23



Linux may schedule processes to run on different CPUs. The isolcpus

kernel option was used to isolate cores from running processes, and
pinning the experiment to specified cores. This isolates the cores from
SMP load balancing and general scheduling algorithms of user-threads.
By using this feature no user processes and threads can be run on the
isolated cores, except the specified ones, although kernel threads and
system services may still be scheduled to run on those cores, like timer
interrupts and IRQ handlers.

4.2 CPU bound experiments

The first part of performance benchmarking was done with CPU bound
experiments running on both IncludeOS and Linux. The experiments
consisted of calculating the number of prime numbers below a given
number. A small assembly routine and a C++ program was written for
this purpose. The C++ program was used to run a specified number of
iterations, running the same experiment a large number of times. When all
the runs were done, the collected data with accompanying statistics were
printed to the screen.

The prime number calculations were done in the assembly routine to
avoid any kind of memory access – using registers only. This assures
that no memory usage at all takes place and the experiments measure
delays which are not caused by cache or memory operations. The elapsed
time was measured in cycles using the RDTSCP instruction to avoid
unnecessary instructions in between, and to avoid out-of-order execution.
In essence, the assembly routine was the real experiment and the main
program just a wrapper for automated execution.

#define RUNS 100

#define NTIMES 10000000

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <stdint.h>

// assembly routine for calculating prime numbers

// and measuring time in number of cycles

extern "C" {

uint64_t assum(int max);

}

int stream_main()

{

prime=22;

24



// Running experiment NTIMES

for (k=0; k<NTIMES; k++)

{

cycles[k] = assum(prime);

}

}

The code excerpt above is from the main program performing a
calculation in CPU cycles for all prime numbers below number 22. The
same experiment was executed 1 million times using IncludeOS, IncludeOS
with interrupts turned off and Linux.

Fig. 4.2 shows the result of this experiment where the number of cycles
of each of the experiments is recorded.

Figure 4.2: The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when running a CPU bound workload. Results from 1 million experiments.

The figure shows a similar output to the graphs with delays presented
in the [13] paper. The numbers for both IncludeOS and Linux are quite
consistent. Running on Linux gives the biggest spread in performance and
with the largest delays. This is due to operating system noise, like other
tasks running at the same time or interrupts. There is a minor deviation
with interrupts turned on for IncludeOS, but the deviation is always in the
same range and is very linear.

25



IncludeOS with interrupts turned off, shows a very linear performance
almost without any kind of delays, with just a handful of exceptions during
a million experiments. A closer look at how much time the CPU bound
experiments used is shown in in Fig. 4.3 which is a view zoomed in on
the results from the first 500 experiments. The graph shows the interval

0 100 200 300 400 500

90
0

95
0

10
00

10
50

Experiment sample number

C
P

U
−

C
yc

le
s

Linux

IncludeOS

IncludeOS without IRQ

Figure 4.3: The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when running a CPU bound workload. The results from the first 500 experiments
are shown.

where most of the values occurred when calculating prime numbers below
22, without the big delays. On average the experiments in Linux used
906.263 cycles, with a 90% confidence interval of +- 0.006, IncludeOS
with interrupts used 964.618 cycles, with a 90% confidence interval of
+- 0.003 and IncludeOS without interrupts used 880 CPU cycles with a
90% confidence interval of 0. Almost all the runs on IncludeOS without
interrupts were completed without any system noise. It is interesting to
note that Linux had overall slightly lower latency than IncludeOS with
interrupts.

The Fig. 4.4 is a histogram showing the frequency of CPU cycles spent
in both IncludeOS and Linux, and is the overall distribution showing
the noise of both Linux and IncludeOS. Even when completing 1 million
experiments, then by far most results were unaffected by system noise.
In order to show both the average results and delays in the same graph,
the vertical axis is logarithmic. Results with system noise are just a small
number of the total runs. However, as shown in the histogram, the larger
delays occurred only in Linux.

The results from IncludeOS without interrupts are worth a closer look,

26



2000 4000 6000 8000

1
10

0
10

00
0

10
00

00
0

Cycles

O
cc

ur
en

ce
s

1
10

10
0

10
00

10
00

00
10

00
00

0
1

10
10

0
10

00
10

00
00

10
00

00
0

Linux

IncludeOS

Figure 4.4: Histogram of the noise of Linux and IncludeOS when running a CPU bound
workload. Results from 1 million experiments.

and Fig. 4.5 shows the distribution of CPU cycles spent with this unikernel.
Here again the vertical axis is logarithmic, to emphasize that almost the
whole million of experiments ran at 880 cycles with literally just a handful
barely outside this number and for all practical concerns, no system noise.

The results from the varying lengths of prime number calculations can
be seen in Fig. 4.6. This figure shows that CPU cycles scale very linearly
with integer divisions when performing the CPU calculations for different
prime numbers. When looking at 84 integer divisions, it required 1000 CPU
cycles, and doubling the number of integer divisions results in 2000 CPU
cycles.

int stream_main()

{

for (prime=10; prime<39; prime +=4)

for (r=0; r<RUNS; r++)

{

// Running experiment NTIMES

for (k=0; k<NTIMES; k++)

{

cycles[k] = assum(prime);

}

}

}

The code sample above shows the prime number calculations for prime

27



880 900 920 940 960

1
10

0
10

00
0

10
00

00
0

Cycles

O
cc

ur
en

ce
s

1
10

10
0

10
00

10
00

00
10

00
00

0

IncludeOS without IRQ

Figure 4.5: Histogram of the noise of IncludeOS with interrupts turned off when running
a CPU bound workload. Results from 1 million experiments.

numbers below 39, starting at 10. In the first run, the upper limit was
10, sent as a parameter to assum(prime). This would calculate all prime
numbers below and including 10 and doing it 1 million times in 100 runs.
Then the upper limit was increased by 4, now running a longer calculation
and more CPU cycles spent but repeating it the same number of times.

The next three figures show the occurrences of delays for Linux and
IncludeOS with CPU bound calculations of prime numbers. The number
of delays is shown in conjunction with integer divisions, since integer
divisions is more appropriate to show the linearity of CPU cycles rather
than using just prime numbers on the x-axis. When looking at 4.7 the short
delays occurred only in IncludeOS with interrupts enabled, but the larger
delays in Fig. 4.8 and the very large delays in Fig. 4.9 appear only in Linux.
There were more or less no delays in IncludeOS without interrupts and this
is very consistent with the frequency of system noise shown in the earlier
histograms.

Fig. 4.10 shows the total percentage of time the CPU spends doing work
not related to the actual prime number calculation. This is obtained by
adding together all the events where there is a delay of 400 cycles or more.
These are considered to be some systematic kind of delay due to handling
interrupt events by the operating system. For Linux, almost all of these
delay events are part of delays larger than 2000 cycles. For IncludeOS, the
total amount of time spent in delays is a bit larger than Linux, except for
the very short jobs. But when there is a delay, it is always smaller than 2000
cycles. This is completely consistent with the results seen in the histogram

28



0 50 100 150 200 250 300 350
Integer divisions

0

500

1000

1500

2000

2500

3000

3500
C

P
U

 c
y
cl

e
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.6: Number of CPU cycles used for a CPU bound calculation of prime numbers.

of Fig. 4.4. However, the histogram was based on 1 million experiments,
while the averages which Fig. 4.10 are based on, is from 100 samples where
each sample is based on 10 million experiments.

29



0 50 100 150 200 250 300 350
Integer divisions

0

2000

4000

6000

8000

10000

12000

14000

16000

O
cc

u
rr

e
n
ce

 o
f 

sh
o
rt

 d
e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.7: Occurrence of short delays between 400 and 2000 cycles for a CPU bound
calculation of prime numbers.

0 50 100 150 200 250 300 350
Integer divisions

0

500

1000

1500

2000

2500

3000

3500

O
cc

u
rr

e
n
ce

 o
f 

m
e
d
iu

m
 d

e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.8: Occurence of medium sized delays between 2000 and 6000 for a CPU bound
calculation of prime numbers.

30



0 50 100 150 200 250 300 350
Integer divisions

0

100

200

300

400

500
O

cc
u
rr

e
n
ce

 o
f 

lo
n
g
 d

e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.9: Occurrence of delays larger than 6000 cycles for a CPU bound calculation of
prime numbers.

0 50 100 150 200 250 300 350
Integer divisions

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
e
rc

e
n
ta

g
e
 o

f 
d
e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.10: Percentage of execution time spent in delays larger than 400 cycles for a CPU
bound calculation of prime numbers.

31



4.3 Memory experiments

Memory experiments were done with small C programs based on the
STREAM memory benchmark [15]. Only one of the tests in the benchmark
was used, essentially just a function that copy the content of a small
array. The experiments were run 1 million times and elapsed time for each
experiment was again measured with the RDTSCP assembly instruction.

Fig. 4.11 shows the number of CPU cycles of a million experiments. The

Figure 4.11: The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when copying between two arrays. Results from 1 million experiments.

experiments were done by copying between arrays and the graph shows
that IncludeOS is very consistent when doing memory operations, the
number of CPU cycles is almost always the same. It takes somewhat longer
and more CPU cycles to perform the memory operations as compared with
the CPU bound experiments, this is as expected since accessing memory
must be accessed outside the CPU. Interesting to note that IncludeOS
with interrupts enabled, more or less always shows the same amount
of system noise, there is no change between two states as in the CPU
experiments. Every experiment just spends around 1000 cycles longer than
with interrupts turned off.

Fig. 4.12 is a zoomed in view of 500 selected experiments. The trend

32



of the number of cycles measured varies a bit and the picture may look
slightly different if choosing another 500 experiments.

40000 40100 40200 40300 40400 40500

10
75

10
80

10
85

10
90

10
95

11
00

Experiment sample number

C
P

U
 c

yc
le

s Linux

IncludeOS

IncludeOS without IRQ

Figure 4.12: The noise of Linux and IncludeOS compared to IncludeOS with interrupts
turned off when copying memory. The results from 500 selected experiments are shown.

The distribution of delays when doing memory operations is shown in
Fig. 4.13 and shows the time spent in cycles for both IncludeOS and Linux.
In order to show both the overwhelming amount of short delays and the
longer ones in the same graph, the scale is logarithmic. Very similar to
the CPU experiments shown in Fig. 4.4, the longer delays were only seen
in Linux, and in IncludeOS almost all the experiments used the average
amount of cycles without bigger spikes. Typically a larger delay in Linux
of 10.000 cycles may add almost 5 microseconds in execution time to an
already running calculation. In addition, Linux had the highest percentage
of execution time spend on large delays and this is shown in Fig. 4.20

A closer look at the distribution of delays in IncludeOS with interrupts
turned off is shown in 4.14, which shows an array copy operation
performed 1 million times for an array size of 800 bytes. With interrupts
turned off most of the experiments were done in around 1100 CPU cycles,
with some deviation around this number. Still the results were quite
consistent, just as when running the CPU bound experiments shown in
4.5 there are no large delays. The deviation in the memory experiments are
probably due to cache.

The figures below show the occurence of delays when performing
memory operations. Fig. 4.7 shows the occurrence of short delay events,
while Fig. 4.17 is about the occurence of medium sized events. The last
figure 4.18 show the occurence of delays larger than 6000 cycles, and those

33



2000 4000 6000 8000 10000

1
10

0
10

00
0

10
00

00
0

Cycles

O
cc

ur
en

ce
s

1
10

10
0

10
00

10
00

00
10

00
00

0
1

10
10

0
10

00
10

00
00

10
00

00
0

Linux

IncludeOS

Figure 4.13: Histogram of the noise of Linux and IncludeOS when copying between two
arrays. Results from 1 million experiments.

were only encountered in Linux.

Fig. 4.19 shows the total percentage of time that the CPU spends doing
work in delays when copying data between two arrays in memory. This
is obtained by adding together all the events where there is a delay of 400
cycles or more. As opposed to the case of CPU bound calculations, there are
now some delay events even when interrupts are turned off in IncludeOS.
This could be due to occasional cache misses forcing the CPU to wait for
more data.

When comparing these results to the results of Fig. 4.10, the large Linux
delays are roughly three times higher for memory based calculations. This
difference is probably due to both variances in cache performance and due
to paging in the Linux operating system.

When only showing delays of 2000 cycles or more in Fig. 4.20, there are
only Linux events and the results looks very similar to the results of Fig.
4.10. If only events of delays of more than 2000 cycles were shown in that
figure, only the Linux events would be present, as all IncludeOS events are
for less than 2000 cycles.

In Fig. 4.10 one can see that the percentage of Linux delays in this range
is quite similar when executing a CPU-bound workload. So it seems that
the amount of such long delays is independent of the type of application
run by the Linux operating system. Both memory-bound and CPU-bound
workloads lead to the same amount of OS-noise.

34



1050 1100 1150 1200 1250 1300

1
10

0
10

00
0

10
00

00
0

Cycles

O
cc

ur
en

ce
s

1
10

10
0

10
00

10
00

00
10

00
00

0

IncludeOS without IRQ

Figure 4.14: Histogram of the noise of IncludeOS with interrupts turned off when
copying between two arrays. Results from 1 million experiments.

25 50 100 200 400 800 1600 3200
array size/bytes

32

64

128

256

512

1024

2048

4096

8192

C
y
cl

e
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.15: Number of CPU cycles used when copying between two arrays.

35



25 50 100 200 400 800 1600 3200
array size

256

512

1024

2048

4096

8192

16384

32768
O

cc
u
re

n
ce

 o
f 

sh
o
rt

 d
e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.16: Occurence of short delay events between 400 and 2000 cycles when copying
between two arrays.

25 50 100 200 400 800 1600 3200
array size

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

O
cc

u
re

n
ce

 o
f 

m
e
d
iu

m
 d

e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.17: Occurence of medium sized delay events between 2000 and 6000 when
copying between two arrays.

36



25 50 100 200 400 800 1600 3200
array size

32

64

128

256

512

1024
O

cc
u
re

n
ce

 o
f 

la
rg

e
 d

e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.18: Occurence of delay events larger than 6000 cycles when copying between
two arrays.

25 50 100 200 400 800 1600 3200
array size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rc

e
n
ta

g
e
 o

f 
d
e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.19: Percentage of execution time spent in delays larger than 400 cycles when
copying data from one array to another.

37



25 50 100 200 400 800 1600 3200
array size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
e
rc

e
n
ta

g
e
 o

f 
d
e
la

y
s

Linux
IncludeOS
IncludeOS without IRQ

Figure 4.20: Percentage of execution time spent in delays larger than 2000 cycles when
copying data from one array to another.

38



Chapter 5

Discussion

Looking at the different results from both the CPU and memory experi-
ments, larger delays occur in Linux due to system noise. An unexpected
delay like this can be critical for time sensitive applications. For example,
in High Frequency Trading, delays of a few microseconds can result in a
lost opportunity to complete a transaction. In the experiments of a CPU-
bound process, the experiment corresponding to 84 divisions takes roughly
900 cycles to complete. From Fig. 4.10 one can see that in 0.07 percent of
the cases, when making such a calculation on Linux, there will be a delay in
the range 2000-6000 cycles. Given that such a transaction is performed by a
High Frequency Trading algorithm, then there is almost a chance of one per
thousand for a delay in the range of 2000 - 6000 cycles, which potentially
may make one out of a thousand transactions fail.

Taking into account the same hardware as the experiments were run on,
with a 2.2Ghz CPU being the same a 2.2× 109 cycles per second, then 1000
cycles takes

1000 cycles
2.2 ∗ 109cycles/seconds

= 0.45× 10−6seconds

Such a transaction would then take half a microsecond, and a delay
of 2000 - 6000 cycles would add 1 - 3 microseconds to the calculation
time of the transaction and this could mean that the competing algorithms
would win a round of trading. For IncludeOS there would be similar
delays, but they would all be less than 2000 cycles and hence less than a
microsecond. Shielding the algorithm from interrupts by turning interrupts
off in IncludeOS would avoid such delays completely.

Looking at the CPU bound experiments, IncludeOS with interrupts
turned off, shows a very linear performance almost without any kind of
delays, with just a handful of exceptions during a million experiments. The
CPU cycles scale very linearly with integer divisions when performing the
CPU calculations for different prime numbers. When looking at 84 integer
divisions, it required 1000 CPU cycles, and doubling the number of integer
divisions results in 2000 CPU cycles.

39



The number of delays is shown in conjunction with integer divisions,
since integer divisions is more appropriate to show the linearity of CPU
cycles rather than using just prime numbers on the x-axis. The short delays
occurred only in IncludeOS with interrupts enabled, but the larger delays
and the very large delays appear only in Linux. There were more or less no
delays in IncludeOS without interrupts and this is very consistent with the
frequency of system noise.

The memory experiments were done by copying between arrays and
IncludeOS is very consistent when doing memory operations, the number
of CPU cycles is almost always the same. It takes somewhat longer and
more CPU cycles to perform the memory operations as compared with
the CPU bound experiments, this is as expected since accessing memory
must be accessed outside the CPU. Interesting to note that IncludeOS
with interrupts enabled, more or less always shows the same amount
of system noise, there is no change between two states as in the CPU
experiments. Every experiment just spends around 1000 cycles longer than
with interrupts turned off.

Very similar to the CPU experiments, the longer delays were only seen
in Linux, and in IncludeOS almost all the experiments used the average
amount of cycles without bigger spikes. Typically a larger delay in Linux
of 10.000 cycles may add almost 5 microseconds in execution time to an
already running calculation. In addition, Linux had the highest percentage
of execution time spend on large delays.

In the memory experiments, there are now some delay events even
when interrupts are turned off in IncludeOS. This could be due to
occasional cache misses forcing the CPU to wait for more data.

With IncludeOS and interrupts turned off most of the memory experi-
ments were done in around 1100 CPU cycles, with some deviation around
this number. Still the results were quite consistent, just as when running
the CPU bound experiments, there are no large delays. The deviation in
the memory experiments are probably due to cache.

When comparing the large Linux delays to the CPU experiments and
percentage of delays, they are roughly three times higher for memory based
calculations. This difference is probably due to both variances in cache
performance and due to paging in the Linux operating system.

If only events of delays of more than 2000 cycles were shown, only the
Linux events would be present, as all IncludeOS events are for less than
2000 cycles. One can see that the percentage of Linux delays in this range
is quite similar when executing a CPU-bound workload. So it seems that
the amount of such long delays is independent of the type of application
run by the Linux operating system. Both memory-bound and CPU-bound
workloads lead to the same amount of OS-noise.

The large Linux delays are roughly three times higher for memory
based calculations, as compared with CPU based calculations. This
difference is probably due to both variances in cache performance and due

40



to paging in the Linux operating system.

It would be interesting to perform the tests on a very recent version of
IncludeOS, and compare the results with the Februrary 2018 version used
here. Many changes have been made to the codebase since then. Especially
the results with interrupts enabled may be a little different.

In addition, testing a Linux kernel with one of the CONFIG_NO_HZ*

options set might also be an interesting comparison to see how it affects
interrupts and possibly yields less noise. The different NO_HZ kernel options
are described in the Linux kernel documentation.

41



42



Chapter 6

Conclusion

Looking at the experiments, we can conclude that IncludeOS has a clear
reduction in system noise compared with Linux, both in CPU bound and
memory intensive applications. Although delays occur in IncludeOS with
interrupts enabled, they are much shorter, and virtually non-existent with
interrupts disabled.

Even with interrupts enabled, there is an essential reduction in system
noise when using IncludeOS, the delays are short and systematic, and
probably related to how IncludeOS deals with interrupts. However,
running IncludeOS with interrupts disabled results in very low latency and
almost no system noise at all. With Linux, interrupts are unavoidable, and
even when taking measures like dedicating CPUs solely to the operating
system, interrupts and system noise may appear due to SMP load balancing
and scheduling of kernel threads and interrupt handlers. The larger delays
were found in Linux during both CPU and memory bound experiments.
In some cases such a delay may add up to 5 microseconds to an already
running process, which may be unacceptable for time critical algorithms
like those used in HFT trading.

43



44



Bibliography

[1] Juri Lelli et al. “Deadline scheduling in the linux kernel”. In: Software:
Practice and Experience 46.6 (2016), pp. 821–839.

[2] Irene Aldridge. High-frequency trading: a practical guide to algorithmic
strategies and trading systems. Vol. 604. John Wiley & Sons, 2013.

[3] G Lins and T Lemke. “Soft Dollars and Other Trading Activities”. In:
The New Financial Industry. Alabama Law Review 2 (2016), p. 31.

[4] Tom C.W. Lin. “The new financial industry”. English. In: Alabama Law
Review 65.3 (2014), pp. 567–623. ISSN: 0002-4279.

[5] MIT Technology Review. Trading Shares in Milliseconds. 2009. URL:
https://www.technologyreview.com/s/416805/trading-shares-

in-milliseconds/ (visited on 01/21/2019).

[6] Dawson R Engler, M Frans Kaashoek, et al. Exokernel: An operating
system architecture for application-level resource management. Vol. 29. 5.
ACM, 1995.

[7] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems
for the Cloud”. In: SIGPLAN Not. 48.4 (Mar. 2013), pp. 461–472. ISSN:
0362-1340. DOI: 10.1145/2499368.2451167. URL: http://doi.acm.
org/10.1145/2499368.2451167.

[8] A. Bratterud et al. “IncludeOS: A Minimal, Resource Efficient Uniker-
nel for Cloud Services”. In: 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom). Nov. 2015,
pp. 250–257. DOI: 10.1109/CloudCom.2015.89.

[9] IncludeOS AS. URL: https : / / www . includeos . com (visited on
01/31/2019).

[10] IncludeOS project. Trading Shares in Milliseconds. 2019. URL: https:
//github.com/hioa-cs/IncludeOS (visited on 01/31/2019).

[11] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. “OS
v—Optimizing the Operating System for Virtual Machines”. In: Pro-
ceedings of USENIX ATC’14: 2014 USENIX Annual Technical Confer-
ence. 2014, p. 61.

[12] Bjarne Stroustrup. The C++ programming language. 4th ed. Addison-
Wesley, 2013, p. 10.

45

https://www.technologyreview.com/s/416805/trading-shares-in-milliseconds/
https://www.technologyreview.com/s/416805/trading-shares-in-milliseconds/
https://doi.org/10.1145/2499368.2451167
http://doi.acm.org/10.1145/2499368.2451167
http://doi.acm.org/10.1145/2499368.2451167
https://doi.org/10.1109/CloudCom.2015.89
https://www.includeos.com
https://github.com/hioa-cs/IncludeOS
https://github.com/hioa-cs/IncludeOS


[13] Hakan Akkan, Michael Lang, and Lorie Liebrock. “Understanding
and isolating the noise in the Linux kernel”. In: The International Jour-
nal of High Performance Computing Applications 27.2 (2013), pp. 136–
146.

[14] Hakan Akkan, Michael Lang, and Lorie M Liebrock. “Stepping to-
wards noiseless Linux environment”. In: Proceedings of the 2nd inter-
national workshop on runtime and operating systems for supercomputers.
ACM. 2012, p. 7.

[15] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Tech. rep. A continually updated technical re-
port. http://www.cs.virginia.edu/stream/. Charlottesville, Virginia:
University of Virginia, 2007. URL: http://www.cs.virginia.edu/
stream/.

[16] Wikipedia. Out-of-band management — Wikipedia, The Free Encyclope-
dia. 2019. URL: https://en.wikipedia.org/w/index.php?title=
Out-of-band_management (visited on 02/11/2019).

[17] GNU Project. Making a GRUB bootable CD-rom. 2019. URL: https://
www.gnu.org/software/grub/manual/grub/html_node/Making-a-

GRUB-bootable-CD_002dROM.html.

[18] Dell. Dell EMC OpenManage Ubuntu and Debian Repositories. 2019.
URL: http : / / linux . dell . com / repo / community / openmanage/
(visited on 02/14/2019).

[19] Wikipedia. Intelligent Platform Management Interface — Wikipedia, The
Free Encyclopedia. 2019. URL: https : / / en . wikipedia . org /

wiki/Intelligent_Platform_Management_Interface (visited on
02/14/2019).

[20] Intel. Intel® 64 and IA-32 Architectures Developer’s Manual: Vol. 3B,
chapter 17.15. URL: https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-

software- developer- vol- 3b- part- 2- manual.pdf (visited on
02/15/2019).

46

http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://en.wikipedia.org/w/index.php?title=Out-of-band_management
https://en.wikipedia.org/w/index.php?title=Out-of-band_management
https://www.gnu.org/software/grub/manual/grub/html_node/Making-a-GRUB-bootable-CD_002dROM.html
https://www.gnu.org/software/grub/manual/grub/html_node/Making-a-GRUB-bootable-CD_002dROM.html
https://www.gnu.org/software/grub/manual/grub/html_node/Making-a-GRUB-bootable-CD_002dROM.html
http://linux.dell.com/repo/community/openmanage/
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf


Appendices

47





Appendix A

Source code

Code Listing A.1: Making a bootable ISO
cd examples/STREAM/

vim stream . cpp # change from 100000 t o 10 rounds
boot . # b u i l d i n g and t e s t i n g

mkdir −p i s o /boot/grub
cp build/stream example i s o /boot/

c a t > i s o /boot/grub/grub . c fg

s e t d e f a u l t =0
s e t t imeout =30
# s e r i a l −−u n i t =0 −−s p e e d =9600
# t e r m i n a l i n p u t s e r i a l ; t e r m i n a l o u t p u t s e r i a l

menuentry ”IncludeOS/STREAM F i r s t s u c c e s s f u l vers ion ” {
multiboot /boot/stream example

}

grub−mkrescue −o i 1 . i s o i s o

scp i 1 . i s o mart ink@intel2 . vlab . cs . hioa . no : ˜ /

# E n t r i e s in CMakeLists . t x t

s e t (DRIVERS
disab le paging
vga output
vga emergency
# v i r t i o n e t # V i r t i o n e t w o r k i n g
# v i r t i o b l o c k # V i r t i o b l o c k d e v i c e
# . . . Others from IncludeOS / s r c / d r i v e r s
)

Code Listing A.2: prime.cpp
# define RUNS 100
# define NTIMES 10000000

# include <s t d i o . h>

49



# include <s t d l i b . h>
# include <math . h>
# include <s t d i n t . h>

extern ”C” {
u i n t 6 4 t assum ( i n t max ) ;

}

s t a t i c u i n t 6 4 t c y c l e s [NTIMES ] ;

i n t stream main ( )
{

i n t k , r ;

FILE * stream data = stdout ;

u i n t 6 4 t sum=0 , square =0;
i n t countA , countB , countC , countD , prime ;
double aver , var , sd , aSize , bSize , cSize , dSize , d ;
/ / f p r i n t f ( s t r e a m d a t a , ” S t a r t e r \n ” ) ;
f p r i n t f ( stream data , ”prime , NTIMES, aver , sdev , countA , aSize , countB , bSize , countC , cSize , countD , dSize\n” ) ;

for ( prime =10; prime<47; prime +=4)
for ( r =0; r<RUNS; r ++)

{
/ / Running e x p e r i m e n t NTIMES
for ( k =0; k<NTIMES ; k++)

{
c y c l e s [ k ] = assum ( prime ) ;

}
/ / S t a t s f o r e x p e r i m e n t :
aver = 0 ;
var = 0 ;
square = 0 ;
sum = 0 ;
aS ize = 0 ;
bSize = 0 ;
c S i z e = 0 ;
dSize = 0 ;
countA = 0 ;
countB = 0 ;
countC = 0 ;
countD = 0 ;
for ( k = 0 ; k < NTIMES ; k++) {

sum += c y c l e s [ k ] ;
square += c y c l e s [ k ] * c y c l e s [ k ] ;

}
aver = sum/ ( 1 . 0 *NTIMES ) ;
var = square / ( 1 . 0 *NTIMES) − aver * aver ;
sd = s q r t ( var ) ;

for ( k = 0 ; k < NTIMES ; k++) {
d = c y c l e s [ k ] − aver ;
i f ( d > 150 && d <= 400)

{
countA ++;
aSize += d ;

}

50



e lse i f ( d > 400 && d <= 2000)
{

countB ++;
bSize += d ;

}
e lse i f ( d > 2000 && d <= 6000)

{
countC ++;
c S i z e += d ;

}
e lse i f ( d > 6000)

{
countD ++;
dSize += d ;

}
}
i f ( countA > 0){ aSize = aSize / ( 1 . 0 * countA ) ; }
i f ( countB > 0){ bSize = bSize / ( 1 . 0 * countB ) ; }
i f ( countC > 0){ c S i z e = c S i z e / ( 1 . 0 * countC ) ; }
i f ( countD > 0){ dSize = dSize / ( 1 . 0 * countD ) ; }
f p r i n t f ( stream data , ”%d %d %.2 l f %.1 l f %d %.1 l f %d %.1 l f %d %.1 l f %d %.1 l f \n” , prime , NTIMES, aver , sd , countA , aSize , countB , bSize , countC ;

}

return 0 ;
}

Code Listing A.3: assum.s
. g l o b l assum

assum : # Standard

push %rbx
# %r di i s f i r s t param
mov %rdi ,% r11

rdtscp

s h l $32 ,%rdx # %edx conta ins l e f t 32 b i t s of counter
add %rdx ,% rax # %rax now conta ins 64 b i t counter
mov %rax ,% r10

# Payload , counting prime numbers , r e g i s t e r s only

# movl $30 ,%r8d # Count primes below t h i s number

movl $1 , %ebx
movl $0 , %r9d

s t a r t : # 1 −> MAX loop (num)
inc %ebx
cmpl %ebx ,%r11d # Unt i l f i r s t param
j e f i n i s h e d
movl $2 , %ecx

innerLoop :
movl $0 ,%edx
movl %ebx ,%eax
d i v l %ecx # eax/ecx , edx = reminder

51



cmpl $0 , %edx # compare , i s edx equal 0?
j e checkprime # prime i f cx=bx equal
i n c l %ecx
cmpl %ebx ,% ecx
j l e innerLoop

checkprime :
cmpl %ecx ,%ebx
j n e s t a r t

i n c l %r9d
jmp s t a r t

f i n i s h e d :
#movl %r9d , %eax

rdtscp

s h l $32 ,%rdx
add %rdx ,% rax # %rax now conta ins second reading
sub %r10 ,% rax # S u b t r a c t s f i r s t counter

pop %rbx

r e t # Cycles returned in rax

# not using cpuid , don ' t need push %rbx

Code Listing A.4: stream.cpp
# define STREAM ARRAY SIZE 12800
# define RUNS 100
# define NTIMES 10000000

# include <s t d i o . h>
# include <s t d l i b . h>
# include <math . h>
# include <s t d i n t . h>

extern ”C” {
u i n t 6 4 t assum ( i n t max ) ;

}

i n l in e u i n t 6 4 t t s c ( ) {

u i n t 6 4 t high = 0 , low = 0 ;
asm v o l a t i l e (

” rdtscp ; ”
: ”=d” ( high ) , ”=a” ( low )
:
: ” rcx ”

) ;

return ( ( high << 32) | low ) ;
}

# define STREAM TYPE u i n t 6 4 t
s t a t i c STREAM TYPE a [STREAM ARRAY SIZE ] ,

52



c [STREAM ARRAY SIZE ] ;
s t a t i c u i n t 6 4 t c y c l e s [NTIMES ] ;

i n t stream main ( )
{

i n t k , r ,m;
i n t a r r S i z e [ 1 0 ] ;
i n t j ;
FILE * stream data = stdout ;

u i n t 6 4 t sum=0 , square =0;
i n t countA , countB , countC , countD ;
double aver , var , sd , aSize , bSize , cSize , dSize , d ;
f p r i n t f ( stream data , ”MemSize , NTIMES, aver , sdev , countA , aSize , countB , bSize , countC , cSize , countD , dSize\n” ) ;

a r r S i z e [ 0 ] = 2 5 ;
a r r S i z e [ 1 ] = 5 0 ;
a r r S i z e [ 2 ] = 1 0 0 ;
a r r S i z e [ 3 ] = 2 0 0 ;
a r r S i z e [ 4 ] = 4 0 0 ;
a r r S i z e [ 5 ] = 8 0 0 ;
a r r S i z e [ 6 ] = 1600 ;
a r r S i z e [ 7 ] = 3200 ;
a r r S i z e [ 8 ] = 6400 ;
a r r S i z e [ 9 ] = 12800 ;
/ / Varying s i z e o f mem−a r r a y

/ / One i n i t i a l l o o p
/ / I n i t i a l i z i n g a r r a y
for ( j =0 ; j<STREAM ARRAY SIZE ; j ++) {

a [ j ] = 1 + j ;
c [ j ] = 2 + j ;

}
/ / Running e x p e r i m e n t NTIMES
for ( k =0; k<NTIMES ; k++)

{
c y c l e s [ k ] = t s c ( ) ;
for ( j =0 ; j<STREAM ARRAY SIZE ; j ++)

{
c [ j ] = a [ j ] ;
a [ j ] += 1 ;

}
c y c l e s [ k ] = t s c ( ) − c y c l e s [ k ] ;

}

for (m=0; m<10; m++)
{

for ( r =0; r<RUNS; r ++)
{

/ / I n i t i a l i z i n g a r r a y
for ( j =0 ; j<STREAM ARRAY SIZE ; j ++)

{
a [ j ] = 1 + j ;
c [ j ] = 2 + j ;

}
/ / Running e x p e r i m e n t NTIMES
for ( k =0; k<NTIMES ; k++)

{

53



c y c l e s [ k ] = t s c ( ) ;
for ( j =0 ; j<a r r S i z e [m] ; j ++)

{
c [ j ] = a [ j ] ;
a [ j ] += 1 ;

}
c y c l e s [ k ] = t s c ( ) − c y c l e s [ k ] ;

}

/ / S t a t s f o r e x p e r i m e n t :
aver = 0 ;
var = 0 ;
square = 0 ;
sum = 0 ;
aS ize = 0 ;
bSize = 0 ;
c S i z e = 0 ;
dSize = 0 ;
countA = 0 ;
countB = 0 ;
countC = 0 ;
countD = 0 ;
for ( k = 0 ; k < NTIMES ; k++) {

sum += c y c l e s [ k ] ;
square += c y c l e s [ k ] * c y c l e s [ k ] ;

}
aver = sum/ ( 1 . 0 *NTIMES ) ;
var = square / ( 1 . 0 *NTIMES) − aver * aver ;
sd = s q r t ( var ) ;

for ( k = 0 ; k < NTIMES ; k++) {
d = c y c l e s [ k ] − aver ;
i f ( d > 150 && d <= 400)

{
countA ++;
aS ize += d ;

}
e lse i f ( d > 400 && d <= 2000)

{
countB ++;
bSize += d ;

}
e lse i f ( d > 2000 && d <= 6000)

{
countC ++;
c S i z e += d ;

}
e lse i f ( d > 6000)

{
countD ++;
dSize += d ;

}
}
i f ( countA > 0){ aSize = aSize / ( 1 . 0 * countA ) ; }
i f ( countB > 0){ bSize = bSize / ( 1 . 0 * countB ) ; }
i f ( countC > 0){ c S i z e = c S i z e / ( 1 . 0 * countC ) ; }
i f ( countD > 0){ dSize = dSize / ( 1 . 0 * countD ) ; }
f p r i n t f ( stream data , ”%d %d %.2 l f %.1 l f %d %.1 l f %d %.1 l f %d %.1 l f %d %.1 l f \n” , a r r S i z e [m] ,NTIMES, aver , sd , countA , aSize , countB , bSiz ;

}

54



}
}

Code Listing A.5: runExp.sh
# ! / b in / bash

# t y p e =CPU # assembly−c o d e
type=MEM

k i l l a l l t a i l
exp=”${type}Runs100Iter10M4sl ice ”
d i r=”/root/IncludeOS/examples/STREAM”
f i l e =$dir/experiments/$exp . r es
f i l e I n t e l =$dir/experiments/ I n t e l $ e x p . re s

k i l l a l l ipmitool
s leep 2
t a i l −f /dev/n u l l | ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” s o l a c t i v a t e > $ f i l e 2> /dev/n u l l &

cp serviceIRQ . cpp s e r v i c e . cpp
boot −b .
cp build/stream example i s o /boot/
grub−mkrescue −o inc . i s o i s o
s leep 2
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s bootdev cdrom
k i l l a l l vmcli
s leep 10
k i l l a l l screen
s leep 2
screen −S vmcli −m −d /opt/ d e l l /srvadmin/bin/vmcli −r ddoslab . vlab . cs . hioa . no −u root −p ”pw” −c /root/IncludeOS/examples/STREAM
sleep 2
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s power c y c l e

s leep 200 # Now IncludeOS s h o u l d have s t a r t e d w r i t i n g

while [ 1 ]
do

ok=$ ( grep −−t e x t ” I n i t i a l i z i n g plugins ” $ f i l e )
i f [ ”$ok” ]
then

echo ” F i l e $ f i l e conta ins IncludeOS output , proceeds . . . . ”
break

else
k i l l a l l ipmitool
s leep 4
t a i l −f /dev/n u l l | ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” s o l a c t i v a t e > $ f i l e 2> /dev/n u l l &
s leep 4
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s power c y c l e
s leep 200 # Now IncludeOS s h o u l d have s t a r t e d w r i t i n g

f i
done

l i n e s =$ ( c a t $ f i l e | wc − l )
while [ 1 ]
do

s leep 120 # Takes some t ime t o b o o t
l i n e s 2 =$ ( c a t $ f i l e | wc − l )
i f ( ( $ l i n e s 2 == $ l i n e s ) )
then

echo ” F i l e $ f i l e stopped increas ing , proceeds . . . . ”
break

else
echo −n ” . ”
l i n e s = $ l i n e s 2

f i
done

cp serviceNoIRQ . cpp s e r v i c e . cpp
boot −b .
cp build/stream example i s o /boot/
grub−mkrescue −o inc . i s o i s o
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s bootdev cdrom
k i l l a l l vmcli
s leep 10
k i l l a l l screen
s leep 2
screen −S vmcli −m −d /opt/ d e l l /srvadmin/bin/vmcli −r ddoslab . vlab . cs . hioa . no −u root −p ”pw” −c /root/IncludeOS/examples/STREAM
sleep 2
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s power c y c l e

cd /root/IncludeOS/examples/STREAM/ i n t e l

i f [ ” $type ” = ”CPU” ]
then

./ as # Assembly c o m p i l i n g
e lse

./ c2
f i

55



l i n e s =$ ( c a t $ f i l e | wc − l )
while [ 1 ]
do

s leep 120 # Takes some t ime t o b o o t
l i n e s 2 =$ ( c a t $ f i l e | wc − l )
i f ( ( $ l i n e s 2 == $ l i n e s ) )
then

echo ” F i l e $ f i l e stopped increas ing , proceeds . . . . ”
break

else
echo −n ” . ”
l i n e s = $ l i n e s 2

f i
done

# IncludeOS f i n i s h e d

ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s bootdev disk
ipmitool −I lanplus −H ddoslab . vlab . cs . hioa . no −U root −P ”pw” c h a s s i s power c y c l e

while [ 1 ]
do

s leep 20
r es=$ ( ssh i n t e l 2 . vlab . cs . hioa . no uname 2> /dev/n u l l )
i f [ ” $res ” ]
then

break
f i

done

ssh −4 r o o t @ i n t e l 2 . vlab . cs . hioa . no /root/ s t o p S e r v i c e s . sh
s leep 10
scp −4 run r o o t @ i n t e l 2 . vlab . cs . hioa . no :
s leep 2
ssh −4 r o o t @ i n t e l 2 . vlab . cs . hioa . no ” t a s k s e t −c 10 /root/run > /root/l inux . re s ”
s leep 1
scp −4 r o o t @ i n t e l 2 . vlab . cs . hioa . no :/ root/l inux . re s $ f i l e I n t e l

echo ” Finished ! ”

56


	Introduction
	Motivation
	High Frequency Trading

	Problem statement

	Background
	Bare Metal
	Virtualization
	Unikernels
	IncludeOS
	Real Time Operating Systems
	Related Work

	Approach
	Compiling IncludeOS
	Running IncludeOS on bare metal
	RDTSCP


	Results
	Prerequisites for hardware and OS configuration
	CPU bound experiments
	Memory experiments

	Discussion
	Conclusion
	Appendices
	Source code

