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Chapter 1

Introduction

As the world of networking continues to move towards wireless solutions,
more and more challenges emerge as a result of using and patching up
older technologies that could not have anticipated either the scale or
circumstances of today’s realities in their design.

Mobile networks have specific challenges, particularly rapidly varying
bit rate and frequent high levels of transmission losses due to interference
in highly unpredictable signal conditions. Increasingly more mobile
bandwidth is having less and less effect, because delay has become a
critical factor limiting performance. Long Term Evolution (LTE) is a
standard for high-speed wireless communications for mobile networks,
more commonly marketed as 4G LTE, that addresses these challenges by
providing features such as lower data transfer latency and a simplified
system architecture with better and more robust support for a large number
of users.

While there is still room for improvement and with 5G on the horizon
for the near future, the system architecture and procedures that mobile
network standards like LTE use to tackle its own problems can also impose
underlying challenges for the network transport protocols that passes over
these mobile network systems. An essential attribute of the Tranmission
Control Protocol (TCP) protocol, one of the most used protocols in digital
network communications, is that its throughput performance relies on in-
order delivery of its data packets to a significant extent. As frequent
packet losses and re-transmissions are in the nature of mobile networks,
the current method of ensuring in-order delivery in respect to TCP is to use
a buffer for storing packets until losses have been repaired, causing delay.
With the rapid widespread deployment of TCP RACK (Linux, iOS and
Windows), this main assumption of in-order buffering on which mobile
data networking was built can be reassessed to allow the opportunity to
remove reordering delays and associated buffer memory.

In addition, there is thought that delay can be further reduced by using
technologies such as Active Queue Management (AQM) and Excplicit
Congestion Notification (ECN) to limit queuing delay in the network
elements.
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Figure 1.1: Current solution to HoL blocking through buffering

1.1 Hypothesis

TCP RACK is a loss detection algorithm that, instead of counting sequences
of duplicate acknowledgements, uses the notion of time for repair of packet
losses. While the most common approach is to count three duplicate ac-
knowledgements, RACK uses a time window of one-quarter of the Round
Trip Time (RTT), allowing out-of-order sequential reception. If any lost
packets do not arrive to fill the entire sequence by this time, the packet is
deemed lost. This radically alters a number of assumptions on which lower
layer protocols have been designed.

One such assumption is found on the link-layer, where buffering is used
to make sure that data segments are sent in sequentially correct order in re-
spect to loss detection algorithms at the transport-layer. This process of
reordering data segments causes Head-of-line blocking (HOL), illustrated
in figure 1.1. This problem can induce delay, and is implemented with the
assumption that the link must send the data in-order to upper-layer to work
in conjunction with the assumed sequence based loss detection algorithms.

The hypothesis is that while using TCP RACK, the assumption that
the link has to reorder data sequentially in the receive buffer can be rolled
back. Instead, the link will send data segments out-of-order to bypass HOL
blocking delay, and let the link resend any lost data segments in time to fill
any gaps in the TCP receive window within one-quarter on the RTT. The
proposed change from the current schematic in figure 1.1 in illustrated in
figure 1.2 below.
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Figure 1.2: Proposal: Bypass HoL blocking with RACK

1.2 Experimental Approach

In order to test the proposed hypothesis, we need to simulate a mobile net-
work with functionality that reaches the technological requirements and
specifications. Using the ns-3 network simulator, we can simulate the error-
prone wireless environment, and modify the simulators open-source files
to implement the desired forwarding scheme.

This thesis aims to solve the following problems:

1. Investigate the potential for forwarding IP packets out-of-order
during reorering procedures on the radio link layer, and further
measures to favor link-layer retransmissions.

2. Implement the desired scheme in a network simulator.

3. Simulate and compare the performance of a TCP Cubic flow using
the default link reordering scheme versus forwarding packets out-of-
order.

1.3 Limitations

The focus of this thesis is limited to a single TCP flow transversing the
simulated mobile network. While in reality such a flow would compete
with other flows in terms of bandwidth and queueing, the performance of
such other flows using different protocols in the proposed modified scheme
are not considered within the scope of this thesis.

The error models are limited to LTE induced errors, and assumed a
perfect link from the end of the mobile network to the remote host. This
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enhances the focus on the effect of radio spectrum errors, while limiting
the scope to not account for external transmission errors. To further the
focus on the proposed scheme, the TCP flow is limited to only transverse
one radio link on the network path.

Certain aspects such as data collection, implementations of specifica-
tions or Linux kernel version and protocol availability are to different de-
grees limited to the current version of the ns-3 simulator and its subprojects.

It is also noted that the concept of randomness in regard to error models
are limited to computed randomness variables that can never be truly
random and therefor not a perfect representation of random errors in the
real world.

1.4 Research Method

This thesis follows the design paradigm described in [10], which consists of
four steps to solve a given problem:

1. State requirements

2. State specifications

3. Design and implement the system

4. Test the system

The system designed and implemented in this thesis is a mobile
network simulator with a modified link repair scheme to forward TCP
packets out-of-order to bypass reordering delay. The simulated sender and
receiver are extended to use a real networking stack in order to enable the
required RACK loss detection algorithm.

1.5 Main Contributions

• A ns-3 network simulation program, simulating a mobile user
communicating with a remote server over a mobile network using
TCP and RACK.

• Modification of the ns-3 implementation of the RLC protocol to
forward complete IP packets out-of-order on the radio link.

• Modification to the ns-3 3GPP HTTP Applications to support using
the Linux kernel stack.

• Tools for simulator setup, execution and data analysis in the form of
various BASH and Python scripts.

• Extension to the current version of the LibOS Linux kernel library to
support the full RACK draft specifications in [33].

• Performance evaluation of reordering versus forwarding, including:
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1.6 Outline

The thesis consists of the following parts:

• Chapter 2: an overview of the technological background relevant to
the thesis.

• Chapter 3: describes the design of the hypothesis.

• Chapter 4: breaks down the implementation of the design.

• Chapter 5: shows the simulation results and evaluation.

• Chapter 6: summerizes the work and draws the final conslusion.

• Chapter 7: lists the future work to build on this thesis.
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Chapter 2

Background

Term Definition
Segment Unit of data in the Transport layer
Packet Unit of data in the Network layer
Frame Unit of data in the Link layer

SDU Service Data Unit in the LTE Radio protocol stack
PDU Protocol Data Unit in the LTE Radio protocol stack

Table 2.1: Cross-layer terminology used.

2.1 IP

The Internet Protocol (IP) is the principal protocol for networking, its
purpose is to relay packets through the network from the source to the
destination host. The protocol uses IP addresses to identify each host in the
network.

Internet Protocol version 4 (IPv4) is currently the most dominant
protocol in the internet. Its upgraded successor IPv6, which dealt with
the exhaustion of the IPv4 address space, is being deployed incrementally
deployed.

2.2 TCP

The Tranmission Control Protocol (TCP) protocol is a transport protocol
used for communication between applications, it complements the IP
protocol and thus the suite as a whole is often also called TCP/IP. Its
purpose is to provide reliability of data transfer through ordering and error
checking of packets.

File transferring, e-mail or browsing are examples of applications that
uses TCP for its reliability, re-transmitting any lost packets to ensure all
data is delivered. For purposes such as video streaming that is not as
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dependent as much on reliability, User Datagram Protocol (UDP) is a faster
alternative.

In essence, a TCP works by the communicating parties acknowledging
successfully transmitted packets. When a sender sends one or more
packets, the receiver must respond with an acknowledgement for each
packet received. When the sender does not receive an acknowledgement
for a packet, it means that there is a hole in the transmission and the packet
must be re-transmitted.

2.2.1 Congestion Control and Avoidance

As a statefull connection communicating back and fourth, TCP has limited
throughput as opposed to a stateless protocol like UDP which does not
regard reliability. In order to utilise the available bandwidth, TCP wants to
send as many packets as possible for each iteration, without congesting the
network causing these packets to be lost. If there are buffers on the network
route that are congested or does not have enough capacity to buffer a large
number of TCP packets, the buffer will overflow and the packets will be
dropped. In 1986, a congestion control algorithm was added to TCP to
enforce conservation of sending packets.[32]

Congestion controls works by keeping a Congestion Window (CWND)
variable at the sender which limits the amount of data TCP can send.[7]
When initiating a flow, TCP enters slow-start, which starts by sending one
packet and then exponentially increase the number of packets per Round
Trip Time (RTT).[32] At the first sign on congestion, normally by packet
loss, the CWND is reduced by half to compensate for the overshoot that
caused congestion. Now that a reasonable CWND size is determined, TCP
enters the state of congestion avoidance, conservatively probing for more
bandwidth by gradually increasing the CWND until a congestion signal
(packet loss) lowers it again. Some of these states are illustrated in figure
2.1.

One form of congestion signal in TCP is by using timers, for example is
a packet is not acknowledged before a timeout. Another congestion signal
highly relevant to this thesis is duplicate acknowledgements, or dup-acks.
An acknowledgement is considered a duplicate when[7]:

• The acknowledgement number is equal to the greatest acknowledge-
ment received on the given connection.

• The advertised window in the incoming acknowledgement equals
the advertised window in the last incoming acknowledgement.

in addition to erroneous properties like outstanding/no data or SYN
and FIN header bits being off.

Say by way of example a sender sends five packets in sequence, SN(1)
through SN(5), but SN(2) is lost in transmission. The receiver receives
SN(1) and responds with ACK(1), now expecting SN(2) next. However,
since SN(2) was lost the next two packets to be reveived are SN(3), SN(4)
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Figure 2.1: Graph showing different TCP states over time, from [24].

and SN(5). Since these sequence numbers are greater than the expected
sequence number, the receiver will regard these ad dup-acks and respond
with ACK(1) for each of the last three packets to signal that SN(1) was
the last packet that was received in-order. This will make the sender
count three dup-acks which is the standard threshold and trigger fast-
retranmission, in which the sender performs a re-transmission of what
appears to be the missing segment, without waiting for the re-transmission
timer to expire.[7] Different TCP algorithms have their own procedures for
handling congestion signals such as this, with the default being a state of
fast-recovery which waits for acknowledgement of the entire transmission
window.

The problem is that TCP cannot determine whether dup-acks are
caused by actual congestion or packet disordering.

2.2.2 Selective Acknowledgement (SACK)

Selective Acknowledgement (SACK) is an optional elements for TCP that
appends additional information to the otherwise ambiguous dup-ACK.
The limited information provided by dup-ACKs means a TCP sender can
only learn about a single lost packet per round trip time.[20] As a result,
other packets may end up being transmitted multiple times. If both end
systems support and enable the SACK option, each acknowledgement will
include a range of non-contiguous packets received. Figure 2.2 illustrates
an example similar to the previous one, where SN(2) is lost, but with SACK
informing which packets have been received out of order. This allows the
sender to re-transmit only SN(2) knowing the following sequence numbers
have been delivered, where otherwise it could not have know and would
have to send all packets starting from SN(2) again.
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Figure 2.2: Illustration of a TCP connection using SACK.[29]

DSACK is an extension to the SACK specification that enabled TCP to
report duplicate segments, which is otherwise not specified in the RFC.[19]

2.2.3 Recent Acknowlegment (RACK)

Recent Acknowlegment (RACK)[8] is a sender-only TCP loss detection al-
gorithm developed by Google, which uses the notion of time instead of the
conventional packet or sequence counts to detect losses for modern TCP
implementations. It supports per-packet timestamps and the Selective Ac-
knowledgement (SACK) option. It is intended to replace the conventional
dup-ACK threshold approach and its variants.

RACK is designed to, among other things, combat three common loss
and reordering patterns that has been observed in today’s Internet:

1. Lost re-transmissions. Traffic policers and burst losses often cause
re-transmissions to be lost again, severely increasing TCP latency.

2. Tail drops. Structured request-response traffic turns more losses into
tail drops. In such cases, TCP is application-limited, so it cannot send
new data to probe losses and has to rely on a Retransmission Timeout
(RTO).

3. Reordering. Link layer protocols or routers’ internal load-balancing
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can deliver TCP/IP packets out-of-order. The degree of such
reordering is usually within the order of the path round trip time.

RACK timestamps all transmitted and re-transmitted packets. It also
keeps a reordering window and a minimum RTT value which are calculated
based on the packet relative timestamps. When a packet is received out
of order, the packets sent chronologically before that were either lost or
reordered. In this case, RACK conducts time-based inferences instead
of inferring losses with packet or sequence counting approaches like the
standard TCP loss recovery mechanism[7] or Forward Acknowledgment
(FACK)[21]. Today’s prevalent reordering patterns and lost retransmis-
sions are making packet-counting approached more and more unreliable.
Maintaining a duplicate threshold can be difficult as it needs to be con-
stantly adjusted to allow big packets bursts and low enough to detect real
packet losses all using sequence space logic. Higher speed links and faster
technology in the Internet are also problematic for sequence counting, as
rapid volleys of packets can hit the DupThresh fast when there are gaps in
the sequence due to loss or reordering.

Where a DupThresh approach would deem a packet lost at for instance
three duplicate acknowledgements, RACK deems a packet lost if some
packet sent sufficiently later has been (S)ACKed. ’Sufficiently later’ is later
by one reordering window, for which the default is set to one quarter of
a Round Trip Time, min_rtt / 4, for which the minimum RTT is calculated
per packet acknowledgement. As of draft 01, the default is an algorithm
that adapts the reordering window to the reordering degree, but the draft
used in this thesis uses on quarter of the minimum RTT. For packets that
are reordered in the network, there is no need to initiate re-transmission if
the packets eventually arrive within the reordering window. The choice for
using one quarter of minimum RTT is because Linux TCP uses the same
factor in its implementation to delay early re-transmit to reduce spurious
loss detection in the prescience of reordering, in addition to that the authors
claim through experience that this works reasonably well.[8]

Say by way of example you want to transmit three packets SN(1), SN(2)
and SN(3), but reordering on the network path causes SN(3) to be delivered
first. If SN(1) and SN(2) arrive within min_rtt / 4 to fill the reordering win-
dow, they are not deemed lost. If they do however arrive ’sufficiently later’
after SN(3), they will be falsely deemed lost and initiate fast re-transmit.

While allowing a small degree of reordering is one of the key
innovations of RACK. It also has an advantage in being able to detect
losses of retransmissions that the conventional dup-ACK approaches do
not when there is an insufficient number of dup-ACKs to trigger fast
retransmission. Take SN(1), SN(2) and SN(3) again, this time the first
two are actually lost and SN(3) arrives. The receiver sends back a
SACK notifying the sender that SN(1) and SN(2) are missing, RACK then
eventually deems these lost and re-transmits them as R(1) R(2). Now re-
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transmission R(1) is lost again but R(2) arrives and is SACKed, RACK yet
again deems R(1) lost and re-transmits it again. Such lost retransmissions
are common with low rate limits.

Tail Loss Probe

In the world of congestion control, the worst case scenario is an RTO
which induces seconds of delay. While this can be avoided using the re-
transmission schemes previously presented, they rely on acknowledge-
ments of subsequent packets to investigate packet losses. This introduces
an important edge case, tail loss. When the tail (last few packets) of a trans-
mission is lost, there is not enough subsequent acknowledgements to indi-
cate a loss, which will lead to an RTO timeout. Tail Loss Probe (TLP)[12]
is a sender-only algorithm that allows the transport to recover tail losses
through fast recovery as opposed to lengthy re-transmission timeouts. TLP
works by repeating the last unacknowledged data segment (probe) with
an aggressive timer in order to force some feedback from the receiver. If a
tail segment was lost, the probe will feed back an acknowledgement to the
sender to signal that the tail segment was lost and allowing fast recovery
instead of an RTO timeout. An example is illustrated in figure 2.3.

TLP is a supplemental algorithm but works naturally well with RACK
to further reduce RTO recoveries. TLP gives RACK additional (S)ACKs to
detect losses and in turn RACK relaxes TLP’s requirement for using FACK
and re-transmitting the highest sequence packet.[8] Given the dramatic
delay from an RTO, good use of TLP is important. According to the
TLP specification[12]: measurements on Google Web servers show that
approximately 70% of retransmissions for Web transfers are sent after the
RTO timer expires, while only 30% are handled by fast recovery.

2.3 Long Term Evolution (LTE)

Long Term Evolution (LTE) is a standard for mobile broadband networks
for mobile devices and terminals, developed by the Third Generation
Partnership Project (3GPP). LTE evolved from the previous mobile network
architecture 3rd Generation (3G). The terms 4G and LTE are often
interchanged and can be a cause for confusion. The International
Telecommunication Union (ITU) intended for the term 4th Generation
(4G) to be used for system that meet certain requirements like peak
download speeds achieved in different environments etc, using their own
IMT-Advanced to model the target requirements. LTE did not meet these
requirements initially, and the engineering community came to describe it
as 3.9G.[11] Needless to say, this did not stop the markets from labelling
LTE as a 4G technology, and eventually the ITU gave in, allowing LTE to
be described as a true 4th Generation (4G) technology.
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Figure 2.3: RACK + TLP timeline from [9]

2.3.1 The need for LTE

There were various motivations for evolving the revolutionary and dom-
inant 3G system, such as latency issues and giving designers a fresh start
from complex 3G specifications as a result of keeping backward compati-
bility support for earlier devices.[11]

The leading motivation however that pushed the need for LTE was the
growth of mobile data. For many years, voice calls dominated the traffic
in mobile telecommunication networks. The growth of mobile data was
initially slow, but in the years leading up to 2010 its use started to increase
dramatically.[11] 2.4 shows how the increase in mobile data usage went to
overtake the more stable voice usage.

In the older systems like Global System for Mobile Communications
(GSM), voice calls were highly prioritises in the design ans data services
were only possible over the circuit switched connection, yielding very low
data rates. Later the Universal Mobile Telecommunication System (UMTS)
went to improve the data rates by emulating a circuit switched connection
for real time services and a packet switched connection for datacom
services in the access network, but data packets still relied upon the circuit
switched core in the form of allocating IP addresses from establishment and
release of data services.[22]

The LTE specifications by the 3GPP describes an evolved design of
the older GSM and UMTS systems into a system optimised for packet
switching with lower complexity and higher data rates whilst ensure the
continuity of competitiveness of the 3G system for the future.[22]
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Figure 2.4: Worldwide mobile network traffic and data 2007-2011.[13]
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Figure 2.5: Architecture of the evolved UMTS terrestrial radio access
network. [11]

2.3.2 LTE Architecture

There are three main components of the LTE architecture, the User Equip-
ment (UE), the uetran and the epc, each containing its own architecture
within to fulfil their purpose.

UE

The UE depicts the device that is communicating through the LTE mobile
network. It is typically illustrated as a mobile phone, which easily conveys
the aspect of mobility and hardware limitations of a UE. In order to
communicate with the mobile network, the UE uses the radio link, or
wireless transmissions, that are in range of a radio base station that serves
as a component of the next LTE component, the E-UTRAN.

E-UTRAN

The Evolved Universal Terrestrial Access Network (E-UTRAN) handles
radio communications between the UE and the EPC and just has one
component, the Evolved NodeB (eNB), which is the radio base station.
Multiple EPCs are used to extend coverage, and the UE only communicates
with one eNB at the time, then being the serving eNB. If the E-UTRAN
contains more than one eNB base station, the base stations can be
interconnected through the optional X2 interface. When a UE moves out
of range of one base station into the range of another, a process called
handover, the base stations can organise via the X2 interface to move the
user session between the two base stations. The data packets are sent from
the eNBs to the EPC via the S1 interface.
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Figure 2.6: Evolution of the system architecture from GSM and UMTS to
LTE. [11]

EPC

The Evolved Packet Core (EPC) is the last main component of acrshort-
lte, where data packets coming over the S1 interface from the E-UTRAN
is routed to the end of the LTE network and towards the destination end
system. The EPC broke free from the circuit switching ways of its prede-
cessors, and is purely based on the IP transport protocol for both real-time
and data services. A big factor that allowed the circuit switching core to be
replaced was Voice over IP (VoIP) which proved a reliable alternative for
real-time voice communications over a packet switched network.

Within the EPC there are again three main components, the Mobility
Management Entity (MME), the Serving Gateway (S-GW) and the Packet
Data Network (PDN) gateway (P-GW). The S1 link from the E-UTRAN
is split using two logical links, the S1-U for traffic going to the gateway
and S1-MME for signalling messages. The S-GW gateway acts as a router,
forwarding traffic fro the base stations to the P-GW via the S5/S8 interface.
The P-GW acts as the end point of the LTE network, connecting with the
internet using its SGi interface. The MME handles high-level operations
such as security issues or unrelated data streams. The MME only uses
signalling to manage its network elements.
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Figure 2.7: Main components of the EPC.[11]

2.3.3 LTE Air Interface

The OSI model standardises communication functions into layers, where
(logically) data flows down through the layers, and each layer is responsi-
ble for communicating with its corresponding layer on the receiving side.
For example application that wants to send a data to a destination host,
will send the data to the Transport layer where transport protocols such as
TCP or UDP are used to determine in what fashion the two parts should
communicate. Down towards the lower layers the Network layer handles
where the data should be sent or routed through the IP protocol, and the
Link layer and Physical layer undertake the physical addressing and actual
bit transmissions of the data.

In LTE Air Interface the physical and data link layers, also referred
to as layers 1 and 2 respectively, are different from those of their wired
counterparts. Layer 1 (PHY) divides data bulks up in smaller pieces that is
more manageable and safer to transmit over a wireless radio link, and layer
2 controls these low-level operations and offers functionality to resolve
transmission errors before data is forwarded to the Network layer. Also,
in the higher layers before entering layer 2 of the air interface, there is a
separation between the user plane and the control plane. The user plane is
where the actually data flows as in the OSI model described above, whereas
the control plane handles control signals used to manage the users session
with its serving base station in the LTE network. Altogether the layers
make up the Air Interface Protocol Stack, illustrated in 2.9, while layers 1
and 2 alone is referred to as the LTE Radio Protocol Stack.

LTE Channels

Data going through the LTE air interface may be grouped into different
channels, namely the Physical channels, Logical channels or the Transport chan-
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Physical channels
Physical Uplink Shared Channel (PUSCH) Uplink data transfer.
Physical Downlink Shared Channel (PDSCH) Downlink data transfer.
Physical Uplink Control Channel (PUCCH) Uplink control signals.
Physical Downlink Control Channel (PDCCH) Downlink control signals.
Transport channels
Uplink Shared Channel (UL-SCH) Uplink data transfer.
Downlink Shared Channel (DL-SCH) Downlink data transfer.
Logical channels
Dedicated Traffic Channel (DTCH) Transmission of user data.
Paging Control Channel (PCCH) Paging information.
Broadcast Control Channel (BCCH) Broadcats system information to users.
Dedcated Control Channel (DCCH) User specific information.
Common Control Channel (CCCH) Setting up new connections.

Figure 2.8: Main LTE channels.

nels. These channels are required to segregate different sorts of data in an
organised manner. The various channels types of each of these groups are
again sorted into categories of down link and up link, as well as broadcast-
ing, multi-casting, paging etc.

The physical channels are the main transmission channels that handles
user data and control signals, while the transport and logical channels are
used within the layer 2 protocols. For example when the RLC protocol has
data to send, it passes the data down to the MAC layer on a logical channel.
The MAC then sends this data as a transport block on a transport channel
to physical layer, which in turn encodes this data to signals and transmits
this data on a physical channel. The location of these channel groups are
pinpointed in figure 2.9.

Table 2.8 lists some of the most commonly referred to channels:

Radio Resource Control (RRC)

The RRC protocol is used by the UE and eNB as part of the control plane in
the air interface. The RRC manages different states of a connecting such as
being idle, connected or during handover, and configures the lower layers
accordingly using control signals. Functions include mobility, configura-
tion of point to point radio bearers and broadcasting system information to
higher control plane protocols that handle functions such as authentication.
While the RRC is mostly impartial regarding the data plane, it’s Quality of
Service (QoS) functions does affect resource scheduling on lower layers.
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Figure 2.9: Architecture of the air interface protocol stack.[11]
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Figure 2.10: Data flow through the LTE radio protocol layers, from[31]

2.4 LTE Radio Protocol Stack

Both user data coming from the user plane and control signals from the
Radio Resource Control (RRC) on the control plane pass through the
entire Radio Protocol Stack. The relevant functions of each the Packet
Data Convergence (PDCP), Radio Link Control (RLC), Medium Access
Control (MAC) and Physical layer are described below in order. Note that
transmitting in the context of all but the physical layers means to submit the
data to lower layers.

When data moves down the layers, each non-physical layer adds
its own header segment to the data in order to communicate with the
corresponding layer on the receiving side. A data packet that is received
from a higher layer is call a Service Data Unit (SDU), whereas when it has
added its own header to the SDU(s) it is called a Protocol Data Unit (PDU),
which is sent toward lower layers. The flow of data units through the LTE
radio protocol stack is illustrated in figure 2.10.

2.4.1 Packet Data Convergence (PDCP)

The Packet Data Convergence (PDCP) protocol ensures that handover
procedure is relatively seamless by preventing packet loss by sending
status reports between the old and new eNB. The PDCP layer makes sure
that packets pending transmission in one cell to terminal connection, are
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transmitted in the new cell to terminal connection. This way all packets
will be ensured to be delivered to the endpoint.[15]

PDCP also ensures that all packets are delivered in order up to higher
layers.[15]

Header Compression

Sending data over the air interface can be expensive in terms of time and
resources, so it is desirable to not send more then necessary. Large header
sizes can become a problem when reaching the PDCP layer, especially
when considering the large 128 bit address spaces for IPv6, and when
attached to each data packet the transmission of headers across become
a significant portion of the radio link bandwidth. To combat this, the PDCP
protocol takes use of the RObust Header Compression (ROHC)[27]. In
essence, ROHC sends the full header on the first transmitted packet, but
then only sends any differences in the header for later packets. This greatly
reduces the overall overhead of the user data.

2.4.2 Radio Link Control (RLC)

The Radio link control layer is a layer 2 protocol in the Air interface, located
below the PDCP layer and above the MAC layer with the responsibility of
transfering data between these two layers. Main RLC functions as specified
in [5] include error correction, in-sequence delivery of upper layer PDUs,
duplicance avoidance and reordering.

In comparison its neighbouring layers the PDCP and MAC, the RLC
hold a great responsibility in how to handle packets in regard to the
overall data flow. The only service RLC expects from the MAC layer
is data transfer, meaning RLC will have to account for any sequence
misordering as a result of HARQ operations on the MAC. However it
isn’t given that the end-to-end data flow favors the delay that would come
with reordering and error correcting procedures, and would rather benefit
from fast delivery of the delivered packets and discardment of those lost.
Therefore the RLC contains three modes of operation, Transparent Mode
(TM), Unacknowledged Mode (UM) and Acknowledged Mode (AM) each
of which use their own RLC entities found on this sublayer. The mode is
configured per session by the RRC.

Transmission Mode (TM)

In RLC TM, no header information is added by the TM entity (passing
transparently through the RLC layer). Typical usage of this mode includes
RRC and cell updates on logical channels like BCCH/PCCH/CCCH. It’s
architecture illustrated in figure 2.11 is very simple.
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Figure 2.11: Transmission Mode (TM) architecture, from [11]

Figure 2.12: Unacknowledged Mode (UM) architecture, from [11]

Unacknowledged Mode (UM)

RLC UM is the most simplistic of the two data transfer modes. Its
architecture illustrated in 2.12 shows the three main functions enabled
on this mode for both the transmitting and receiving entity. PDCP
PDUs coming from the PDCP are put in a transmission buffer. The RLC
communicated with the MAC layer through control signals and waits for
the MAC to report a transmisson opportunity on the link large enough to
send either one, multiple or segmented RLC SDUs. When such a payload
is prepared the RLC header is added to make a RLC PDU and is sent to the
link. On the receiver the RLC may recieve these RLC PDUs out of order due
to the Hybrid-Automatic Repeat Request (HARQ) retransmission scheme
on the link. Since the RLC needs to deliver the received RLC SDUs in order
to the PDCP, the received data units are buffered and reordered before they
are stripped of their RLC headers and possibly re-assembled if they are
segmented.

Acknowledged Mode (AM)

RLC AM implements the same functions as RLC UM but with much more
extended functionality. While RLC UM does reorder out-of-order PDUs
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Figure 2.13: Acknowledged Mode (AM) architecture, from [11]

received from the MAC it does not account for lost PDUs. The RLC AM
mode provides reliability by accounting for such losses by implementing
Automatic Repeat Request (ARQ) functionality to signal the transmitting
RLC AM entity that lost PDUs should be retransmitted. In order to front
the communication between the RLC AM transmitting and receiving entity,
RLC AM differentiates between data and control PDUs through setting a
dedicated bit in the RLC header. Data PDUs are handled as normal while
control PDUs are used for internal information. An RLC AM entity can re-
quest a stats PDU (type of control PDU) from the entity it is communicating
with by setting a polling bit in the header, which is done at regular intervals,
also called polling. The architecture of RLC AM is illustrated in figure 2.13.
In addition to the tranmission buffer, the RLC AM contains a re-transmit
buffer, where copies of transmitted PDUs are temporarily stored. If a con-
trol PDU signals that a data PDU must be retransmitted, it is extracted from
the retransmission buffer.

For applications using TCP for purposes like emails or web browsing,
RLC AM is desireable for the robustness and reliability provided by the
ARQ function. However this induces delay from the control overhad as
opposed to cutting your losses. For applications like video streaming or
voice using protocols like VoIP or UDP, RLC UM is much more desireable
for such RTT sensitive flows that would rather skip the ARQ.

RLC Automatic Repeat Request (ARQ)

The RLC ARQ uses much overhead from the control signaling as opposed
to other ARQs, but the principle of the error correcting scheme remains
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the same. The RLC ARQ is a case of a selective repeat ARQ, meaning that
lost frames will be selectively NACKed so that the transmitted only needs
to retransmit the selected ones as opposed to ARQ instances like Go-Back-
N or Stop-and-Wait where the transmitter needs to retransmit all frames
higher than the one that was last acknowledged. This is very similar to
TCP retranasmissions using Selective Acknowledgement (SACK) versus
cumulative acknowledgements.

As an example, a transmitting RLC AM entity has a sending window
of five and sends data PDUs with SN(1) to SN(5). Out of these five SN(3)
and SN(4) are lost in transmission, the receiving RLC AM entity acknowl-
edged the highest SN(5) but also sends a NACK for SN(3) and SN(4). The
tranmitter advances the sending window by two since it know SN(1) and
SN(2) were delivered, then retransmits SN(3) and SN(4) along with new
PDUs SN(6) and SN(7) since the window advanced.

One might wonder why HARQ reordering is done on the RLC layer and
not on the MAC layer itself. This is a key feature of the Evolved Universal
Terrestrial Access Network (E-UTRAN) architecture in LTE, in Universal
Terrestrial Access Network (UTRAN) reordering is done on the MAC layer.
The disadvantage of reordering on the MAC is additional buffering of
packets. Since the RLC already keeps track of sequence numbering and
uses transmission buffers, offloading such buffering from the MAC to the
RLC reduces the overall architecture complexity.

Segmentation and Concatenation

Complete PDCP PDUs in the transmission buffer go through the process
of segmentation or concatination if necessary before being transmitted.
Higher layer data unites such as IP packets and PDCP PDUs maintains
a "static" size of one packet per data unit, whereas the RLC is at the
mercy of link layer transmission opportunities in addition to the size of
the PDCP PDUs. When the quality of the radio link is good, there are
large transmission opportunities from the MAC and the RLC can send
multiple RLC SDUs and does so by concatenating them together into one
RLC PDU. When the quality of the radio link is poor, the transmission
opportunities may be smaller than the size of a PDCP PDU, and the RLC
needs to segment the RLC SDUs into incomplete segments and transmit
them, needing the receiver to re-assemble the segments back to a complete
SDU. This is illustrated in figure 2.10 from the previous section.

2.4.3 Medium Access Control (MAC)

The Medium Access Control (MAC) protocol, specified by the 3GPP in
[3], schedules transmissions that are carried out on the air interface and
controls the low-level operation of the physical layer.[11] Data is received
from the RLC layers in the form of MAC SDUs. These data units
can then be combined through multiplexing and reassembled through
demultiplexing, similar to the segmentation and concatination process
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on the RLC. Important features of the MAC layers include buffer status
reporting, multiplexing/demultiplexing of data units and transmission
scheduling.

Buffer Status

The MAC layers on an UE device needs to inform the base station of how
much data is available for transmission. It does so by sending a buffer status
report of the current state of the transmission buffers. This is done both
periodically, and for cases regarding the transmission buffers. A status
report is sent if new data becomes ready for transmission, a higher priority
channel has new data to send or for timeouts for pending transmissions.

Multiplexing and Demultiplexing

In similar fashion to the other layers, the MAC takes one or more RLC
PDUs as MAC SDUs and appends its header to make a MAC PDU for
transmission, displayed in figure 2.10. In addition to the MAC SDUs the
payload contains control elements, such as buffer status report, power
signals, timing advances etc. The MAC protocol data unit differs from that
of the other layer in that the payload may contain padding at the end, in
order to round the size of the data unit up to the current Transport Block
(TB) size. In addition each SDU in the payload is assigned its own header
that hold information of the logical channel the SDU originated from and
the its size.

Scheduling

The MAC uses a scheduling algorithm, for which there are many differ-
ent versions, to distribute the resources among the users. A base station
MAC scheduler needs to gather information about its UEs like buffer sta-
tus reports and Quality of Service (QoS) to decide how to distribute re-
source allocation. There is scheduling for uplink and downlink, where both
output values like transport block sizes permitted to UEs and modulation
schemes. MAC SDU sizes are calculated on the downlink scheduling.

Different MAC scheduling algorithms vary between acheived through-
put and fairness.[11] A high throughput scheduler will allocate resources
to UEs with high signal-to-noise ratios to allows them to utilize the high-
est data rates, maximizing cell throughput but aldo proves highly unfair
to UEs experiencing poor signal conditions. Schedulers aiming for fairness
such as a round-robin approach giveas each UE the same data rate, being
very fair but very inefficient in terms of cell throughput. Other algorithms
attempt to find a balance point inbetween these two extremes.

Hybrid-Automatic Repeat Request

The MAC performs error correction on the link, and does so very efficiently
through the Hybrid-Automatic Repeat Request (HARQ) mechanism. The
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following describes the HARQ operation and the concepts around it.

HARQ is a technique which combines features from Forward Error Cor-
rection (FEC) and Automatic Repeat Request (ARQ) [17]. FEC adds a code
word to the data. The code word is larger than the actual data, and the two
are intertwined in such a way that even when it arrives at the receiver with
errors the receiver is still able to extract the actual data from it. A modu-
lation scheme is needed to decide the comparative size of the code word
to the data, which makes an important tradeoff between throughput and
error management. Adding more bits for error checking reduced the avail-
able bandwith for the actual data but provides greated error correction,
and less bits for error checking gives more data bandwidth but reduces
the probability of correcting errors. Error management in ARQ checks for
errors but without the means to fix them. The ARQ takes the data and
computes a Cyclic Redundancy Check (CRC), a bit sequence based on the
data it was computed from. The CRC is attached to the data and transmit-
ted. At the receiver, the receiver calculates a CRC from the transmitted data
and compares it with the attached CRC. If any of the CRC bits are differ-
ent, the transmission has errors and a retransmission is requested. TODO:
UM vs AM "In HARQ, the actual data is encrypted with a FEC code, and
parity bits are sent upon request or immediately sent along with the mes-
sage when erroneous data is detected" [17]. In other words, HARQ detects
erros upon reception, identifies which parts of the data was erroneous and
retransmits only these missing bits instead of retransmitting the message
as a whole.

The HARQ operation is either synchronous or asyncrhonous. Syn-
chronous HARQ processes retransmissions periodically over a certain time
interval. Asynchronous HARQ retransmissions have no timing constraints
and are triggered via explicit signaling, giving better scheduling flexibility
at the expense of increased overhead due to signaling. HARQ can also
be either adaptive or non-apaptive. Adaptive HARQ dynamically adjusts
scheduling parameters such as code rate or resource allocation, allowing
the scheduler to properly adapt to the state of the radio link but again at
the expense of information overhead. Non-adaptive HARQ uses fixed sizes
and formats, having less overhead but may be sub-optimal for schedul-
ing. When the HARQ receives erronous data, the valid bits of the data
are buffered until the parity bits are retransmitted to be combined with
the buffered data. Chase combining is a type that uses less error-correcting
coding, correcting errors for good signal conditions, but in poor signal
conditions there are not enough error-correcting bits to repair the errors
and a retransmission is requested. Incremental redundancy uses more error-
correcting bits, but each retransmission contains multiple sets of code bits
from the same data bits, using different redundancy versions of the sets.
This makes it sufficent for the receiver to repair losses and retransmissions
are only made in poor signal conditions and if the data was not decoded
correctly.
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Figure 2.14: HARQ protocol with eight processes, from [17].

ACKs and NACKs are sent in the stop-and-wait fashion, waiting for
an (n)acknowledgement before proceeding, which induces delay. To
reduce delay, multiple HARQ processes can run in parallel, processing
one transport block each. There are eight HARQ processes in the uplink
and up to eight on the downlink. This is illustrated in figure 2.14. As a
result of using multiple unsynchronized HARQ processes, MAC SDUs may
be delivered out-of-order to higher layers. The RLC ensures in-sequence
delivey and accounts for this misordering.

2.4.4 Physical layer (PHY)

The layer 1 physical layer is the lower endpoint of the LTE protocol stack.
The LTE PHY is a highly efficient means of conveying both data and control
information between an enhanced eNodeB and mobile UE [35]. The physi-
cal layer needs to transmit data in a fashion that satesfies the QoS dictations
from the RRC on layer 3, as well as adapting to the quality of the channel.
While higher layers transport data in sequence of packets, LTE PHY trans-
ports data in frequence-domain to meet its requirements of efficiency and
resource distribution.

Since there usually are multiple UE devices connected to a eNB
base station, the LTE PHY uses functions like the Orthogonal Frequency
Division Multiplexing (OFDM) to communicate with several mobile
devices at the same time, while also being a powerful way to minimize
interference errors [11]. An Orthogonal Frequency Division Multiplexing
(OFDM) transmitter transmits a data stream over multiple sub-streams
instead of one single stream, each of these data sub-streams on a different
frequency. This helps protect the data from interference, as interference on
a given frequence will only affect one sub-stream and instead of knocking
out an entire single data stream. As OFDM divides the bandwidth in
frequency-domain, LTE frames are divided in time-domain. An LTE frame
has a length of 10ms and cosists of ten sub-frames, each of which with a
length of one ms [23]. This time-domain structure is illustrated in detail in
figure 2.15, and how this fits into the overview of the LTE stack in figure
2.10 from previously.

These alloted frequencies, also called sub-carriers, and time-domain data
slots are then scheduled using a Resource Block (RB), illustrated in figure
2.16. The LTE bandwidth is a result of how many RBs are allocated, which
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Figure 2.15: LTE frame structure, from [23]

can be up to 100 RBs.

2.5 Noise and Interference

Digital transmission over a wireless medium are prone to variable and of-
ten intense error rates and delay. From the source of the transmission an-
tenna and towards the destination receiver, signals are exposed to external
interference that can obstruct the encoded information. Atmospheric con-
ditions such as noise on the transmission channel or factors like path prop-
agation and fading due to large distances and blocking objects can cause
severe error rates for wireless links. While technologies like Wireless Local
Area Networks (WLAN) are susceptible to wireless induces errors, LTE and
Satellite are even more affected given the scale of factors such as distance
and mobility changes. Following are some of the key generic characteristics
of wireless systems.

2.5.1 Signal transmission and reception

The data in need of transmission are represented by bits. On the physical
layer these bits are encoded by a modulator into a radio wave signals. This
is done by computing the bits into symbols that represent the amplitude and
phase of the radio wave. On the receiver, the radio wave is picked up by
an analogue antenna and the symbol are extracted from the amplitude and
phase of the radio wave. However during symbol extraction it isn’t given
that the radio wave hasn’t been tampered with by noise of interference. For
distorted waves, the intended symbol may not be clear given the amplitude
and phase. With variable levels of confidence the receiver will have to
decide whether the symbol might be a 0 bit or a 1 bit. For heavy noise
and interference, the receiver might misinterpret a 0 bit for a 1 bit or vice
versa, causing errors.
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Figure 2.16: LTE downlink resource grid, from [35]
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Figure 2.17: LTE modulation schemes, from [11]

2.5.2 Modulation schemes

A modulation scheme converts the digital bits into the form of a radio
wave. The simplest example is to represent one bit per symbol, having
starting phases of 0◦ and more as a 0 bit and 180◦ and more as 1 bit. The
downside with this example is that is highly inefficient since transmission
delays can be costly, and it would be more efficient to represent more
bits per symbol. Figure 2.17 shows the modulation schemes used in
LTE, where the Quadrature Amplitude Modulation (QAM) schemes are
normal for data transmission. While a high number of bits per symbol
is desirable, it comes with a disadvantage of being highly error prone, as
noise affected radio waves can cause the receiver to misinterpret not just
on bit but a whole bit sequence. Because of this, LTE dynamically changes
its modulation scheme based on the condition of the radio link, using 64-
QAM when there is good signal conditions and schemes more tolerant to
errors like QPSK for poorer conditions.

2.5.3 Propagation

As a signal is emitted on the wireless link, the signal spreads out as it travels
away from the transmitter. This causes the received power of the signal to
be less than when it was when it was initially transmitted. The ratio of the
two is called the propagation loss, also called pathloss. The signal expands in
a spherical fashion, making the pathloss proportional to the radius2 [11].

Pathloss = Power(Transmitted)
Power(Received)

A signal can also be reflected or blocked by object along its path, which
affects the propagation loss.
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2.5.4 Fading

While an ideal signal travels straight from the transmitter to the receiver,
signals can reflect and "bounce" of to different paths and eventually end
up at the destination receiver. The receiver may therefore receive colliding
signals, that either reinforce each other as constructive interference or cancel
each other out as destructive interference. Destructive interference causes the
signal power to drop significantly, know as fading. Fading increases error
rates as the low power signals cause errors for the modulation scheme.

2.5.5 Metrics

Various metrics for measuring noise and interference is needed both for
performance analysis and channel quality indications for devices. The
following sections describe some measurement quantities used for LTE.

Noise Figure

Noise figure is a measure of how much a device (such an amplifier) degrades
the Signal to Noise Ratio (SNR). For radio signals that go through multiple
hops via amplifiers, the amplifiers will amplify he input signal but in the
process also the noise from the input signal in addition to the noise figure
of the device itself.[25]

Signal to Interference and Noise Radio (SINR)

The error rate depends on the Signal to Interference and Noise Radio
(SINR) at the receiver.
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Chapter 3

Design

3.1 Hypothesis

TCP deems a packet lost after a certain time with no delivery at all (RTO)
or after receiving a number of subsequent dup-ACKs. These cases have
to deem packet loss because the transport layer cannot ever know if the
packet was actually lost or not, and not just delayed by a re-transmission
or reordering. In contrast, the ARQ on the link layer can identify actual
losses and the exact causes such as congestion or re-transmission errors.
With the addition of RACK fast recovery to TCP, RACK reduces the risk
that a packet is deemed lost incorrectly due to reordering in contrast to
dup-ACKs. The link layer ARQ is better suited to deal with transmission
errors on poor radio link, but the ARQ process is a cause of reordering it-
self, requiring delay inducing reordering timers to avoid triggering false
packet loss assumptions at the transport layer.

This thesis proposes a scheme for RACK and link layer ARQ to
complement each other. RACK should ease the pressure on the ARQ
to satisfy in-order delivery by giving it more time to fix errors detected
on the link. In response, the ARQ needs to feed RACK with packets
to avoid triggering RACK timeouts, which can be done by immediately
forwarding complete packets out of order instead of holding them in
the transmission windows for reordering. In theory, this scheme hopes
to improve throughput and reduce latency for situations where packets
would otherwise be deemed lost.

3.1.1 Throughput

RACK reduces the number of spurious congestion reductions due to packet
reordering as opposed to using dup-ACKs. This also allows the ARQ more
time to repair losses, letting the ARQ reduce congestion reductions due to
actual transmission losses. Combined these two aspects should improve
throughput by avoiding unnecessary congestion windows reductions in
the TCP flow.
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3.1.2 Latency

On the link layer, forwarding packets out of order without waiting for
the ARQ to put them in order does not deliver the in sequence packets
to the application any faster. However, giving ARQ more time to repair
transmission losses reduces the delay that would otherwise occur as a
result of re-transmitting the packet end to end. This could be particularly
useful for short flows, given their completion time is more sensitive to
individual losses.

3.1.3 Applicability

In the standard dup-ACK scheme will deem that it needs to re-transmit a
packet earlier than RACK will, given the notion of time versus sequence
counting. So if a packet loss was in fact due to congestion in the network,
dup-ACK have re-transmitted the packet faster than RACK. But if the loss
was falsely deemed lost, RACK and ARQ will be the victor.

The proposed scheme is therefore aimed at networks that experience
a significant level of errors and reordering that will end up producing
false negatives for the TCP congestion control algorithm. Wireless systems
that deploy ARQ functionality are prime candidates for this, both due
to the erroneous nature of a radio link but also the cause of reordering
from the ARQ. This thesis focuses on simulating an LTE network, but this
theory could also be applied to other radio link systems such as Wi-Fi and
satellite.

3.2 Related Works

3.2.1 XLR8

The concept of forwarding buffered packets out of order using RACK is not
a new idea. It was proposed in XLR8: Accelerating Beyond 5G[23], which ad-
dressed the struggles of transport protocols like TCP or QUIC over radio
channels. The objective was to deliver enduring solutions to slow internet
protocol acceleration for better utilisation for a varying radio channel, and
to enable data flows to accelerate in constant time up to whatever peak rate
the underlying radio technology can deliver.

While the XLR8 proposal addresses a larger scope of TCP related
bottlenecks in LTE such as capacity variability and receive window, it also
addresses transmission losses as a significant reason for poor end to end
TCP performance, due to its inability to distinguish transmission losses
from congestion losses and HARQ timeout limitations.

XLR8 proposes to use Active Queue Management (AQM) to integrate
internal buffers for better control and to reduce the aggregated queuing
delay, illustrated in 3.1.
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Figure 3.1: a) Today; b) XLR8: Integrated Buffer Control and Active Queue
Management.[23]

As seen in figure 3.1, the in-order buffer is proposed removed and
immediately forward packets on the receiving side (proposed for 5G++).
XLR8 recognises the possibility of using RACK to comply with immediate
packet forwarding.

On the subject of RACK, XLR8 states that: ”It would seem that the
radio link cannot yet exploit this advance, because it will not be able to
depend on RACK being in use until it has become universally deployed
in TCP (and a similar approach in other reliable transports such as SCTP
and QUIC). This could take decades.”[23] However the proposal mandates
RACK for all transport protocols that use Low Latency, Low Loss, Scalable
Throughput (L4S). Today, RACK is enabled by default in Linux.

3.2.2 Improving TCP Performance Over Mobile Data Networks

Originally designed for fixed(wired) networks, TCP struggles to utilize the
throughput potential in 3G and LTE networks that have fundamentally
different properties then fixed ones. In recognizing this, [18] quantifies how
much TCP congestion control algorithms such as Cubic is able to effectively
utilize the bandwidth in mobile networks, and then proposed a protocol
optimisation for better bandwidth utilization without any modifications to
the TCP implementations or on the end-to-end hosts.

The first step is addressing the precise reasons as to why TCP struggles
in mobile networks. [18] outlines three main mobile network characteristics
that deviates from the TCP design: bandwidth fluctuations, traffic flow
scheduling and large link buffers. Varying bandwidth rates is a natural part
of wireless networks and makes it hard for TCP to adapt its transmission
rate precisely, even with no competing traffic flows. Mobile networks like
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Table 3.1: Comparison of TCP throughput performance in a LTE network,
from [18]

LTE uses MAC layer schedulers to schedule different user traffic flows.
In fixed networks, there is no such traffic scheduling in routers and TCP
has to enforce fair bandwidth sharing in bottleneck buffers. With base
stations already enforcing scheduling, it offloads this purpose from the
TCP protocol. Last but not least, base stations typically use large per-user
link buffers to support link layer re-transmissions and reduce packet losses
due to buffer overflows during large and rapid bandwidth fluctuations.[18]
This enabled TCP to send more bytes without causing buffer overflow.

The first experiments did in [18] was measuring the bandwidth
efficiency achieved for a set of selected TCP congestion control algorithms.
The results are shown in table 3.1, comparing the average TCP throughput
to the average UDP goodput. As seen from their results, the performance
is sub-optimal, 43.7% efficiency at best for Cubic. The proposed scheme
in [18] involves adding a mobile accelerator between the internet server
and the mobile network. This accelerator intercepts the TCP logic and
adds a more opportunistic flavor. Firstly, the original purpose for the
TCP receiver window was to avoid overwhelming slow receivers. With
todays relatively higher computing power in even mobile devices, the
accelerator opportunistically forwards packets regardless of the recever
window size (unless zero, at which point forwarding is suspended).
TCP sending rate is also by design very conservative in regard to its
congestion window. Instead, the accelerator disregards the congestion
window and does bandwidth estimation using ACK timings. To make a
long story short, [18] also proposed estimations in time-domain, in this
case using fixed intervals of seconds and acknowledgement timestamps.
Lastly, the accelerator allows the opportunistic transmission of new packets
during the recovery phase, where normally TCP suspends new packet
transmissions during this phase.

The end results concluded with a 97.6% bandwidth utilisation for
accelerated TCP Cubic in LTE, a 53.9% increase from the previous
experiments.
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3.2.3 Occupancy regulation for ARQ Re-ordering Buffer

Re-ordering delay on the RLC is a product of its error control scheme based
on selective-repeat ARQ. The receiving window has to be large enough to
buffer a large burst of packets, but also increases the occupancy at the re-
ordering buffer. In [28], the effects of windows sizes on RLC throughput
and performance is investigated, along with a proposed scheme to regulate
the re-ordering buffer occupancy.

[28] proposes to regulate the re-ordering buffer occupancy using a
threshold value. Packets arriving that are below the threshold value will be
placed in the re-ordering buffer and handled in a selective-repeat fashion
as normal. Packets that go over the threshold however (but still inside the
window) are handled using go-back-N instead, essentially discarding the
packet and wait for it to be re-transmitted.

With the approach in this thesis, there shouldn’t be an occupancy
problem, because it’s only buffering a few segments.

3.2.4 Limiting HARQ retransmissions in Downlink for Poor
Radio Link in LTE

While this project proposed to increase HARQ re-transmissions if needed,
[16] makes some arguments for limiting HARQ retransmissions for poor
radio link conditions.

While the HARQ is a powerfull tool for link layer repairs, it also
consumes radio resources through both scheduling and overhead of
the process. The proposal in [16] to reduce the maximum HARQ
retransmission threshold from 3 to 1 or 2 is justified by saving radio
resources. When there are multiple UEs communicating with a base
station, a UE with poor radio link quality will makes less use of the radio
resources compared to a UE with good radio link quality. If the UE with
poor radio link quality reduces its number of HARQ retransmissions it will
reduce its throughput but free resources that can be better utilized by the
other UE with good radio link quality. There is also the case of failure to
repair the transmission even after 3 HARQ retransmissions, in which case
those retransmissions are considered to be wasted. In regard to robustness
for the TCP protocol, failure to repair the transmission on the MAC can still
be recovered by the RLC ARQ.

In simulations testing error rates versus SNR for low CQI values, [16]
concludes that a HARQ retransmission threshold of 3 or higher does
does improve the error rate, but not substansially enough to justify the
unfairness in resource allocation that comes with it. As this thesis opens
for the opportunity to increase the HARQ retransmission threshold to give
the RLC ARQ more time to repair errors, it is noted that doing so could
negatively impact other UEs by taking more of the shared radio resources.
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3.2.5 Advice to link designers on link Automatic Repeat reQuest
(ARQ)

An optimal design for the protocol performance on one layer may be affect
protocol performance on other layers. For example, TCP designers need to
be aware that the IP protocol operates over a diverse range of underlying
subnetworks on its route. [14] outlines some important considerations
regarding link ARQs impact on the performance of higher layer TCP or
UDP protocols.

Perfect reliability is not required for IP networks for optimal perfor-
mance, and thus may drop packets due to a number of reasons like queu-
ing, faults etc. It has long been widely understood that perfect end-to-end
reliability can be ensured only at or above the transport layer, enter the end-
to-end principle.[26] ARQs on the link can be used to make the link comply
with the needs of the higher layer protocols such as reordering and delay,
to make sure these upper layers do not have their performance degraded
by link layer operations. [14] discusses the pros and cons of using different
ARQ implementations for transport protocol performance.

ARQs can be implemented with variable persistence. A perfectly
persistent (reliable) ARQ, which is the type implemented in the RLC ARQ
in LTE, provides reliable service to the upper layers, using high degrees
of reordering and retransmissions. If a the ARQ fails to retransmit a
lost frame, the ones that are received out-of-order are discarded instead
of forwarded in order to avoid inducing congestion avoidance signals at
higher layers. Such reliability comes at the expense of high end-to-end
delay, which can be desireable for TCP but not for non-reliable protocols
such as UDP. Non-reliable transport protocols instead benefit from ARQs
with lower persistence, with lower timeout thresholds for reduced delay
and less guarantees for reliable delivery. This poses a problem when using
multiple flows through the same ARQ, as different protocols on different
flows may require different implementation schemes.

In conclusion, [14] advises ARQ designers to consider the implications
of their design on the wider Internet, as it can be very hard to generalise
ARQ schemes for transport protocols, especially considering that there
may be multiple ARQs along the end-to-end network route. Also, the
approach of being able to identify flows at the link layer is noted, which
would enable ARQs to implement low persistancy but high-persistancy
mechanisms for TCP specifically. Algorithms to implement this remain an
area of research[14], and is also required to realise this project in its full
potential.

3.3 Proposed Scheme

The proposed scheme of using RACK with a modified link error-correcting
procedure aims at examining the measures of the effect this scheme will
have on the performance of a number of TCP flows in comparison to the
default schemes and congestion control algorithms. The design is not in-
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tended to be something complete that could be deployed immediately.
Rather, it’s purpose is to apply the previously presented idea to incre-
mentally focus more packet re-transmission instances from the end-to-end
transport protocols to the link protocols. Since the scope of the design of
this scheme is narrowed down to such an extent, it would be biased to com-
pare its results directly to default schemes that account for a much wider
scope and applicability. Therefore this section also addresses limitations
such as technical requirements and use cases that would be needed for this
scheme to truly level with comparative schemes.

The key modification required for the proposed scheme is packet
forwarding to bypass the delay from the HARQ reordering procedure.
Additionally, tuning of timers such as reordering timers and increasing re-
transmission thresholds are considered. Lastly technical requirements and
proposed solutions to extend the applicability of the scheme are discussed.

3.3.1 Immediate Forwarding

The end goal of this scheme is to make sure that complete IP packets are
immediately forwarded up to higher layers to reach the TCP protocol, by-
passing any HOL blocking. However these IP packets are encapsulated
into data units in lower layers going down the LTE protocol stack, meaning
that forwarding a lower layer data unit such as a MAC PDU could poten-
tially mean forwarding multiple IP packets, theoretically making all data
units from the IP layer and below candidates for forwarding. The problem
however arises regarding functions such as segmentation and multiplex-
ing, because there is no guarantee that a data unit on layer 2 or layer 1
are divided in line with the IP packets in the payload. Such data units
(PDUs) could instead contain incomplete IP packets as a result of segmen-
tation, and it would be counter-effective to immediately forward these as
they would cause errors for the network protocol and again for the remain-
ing parts of the IP packet.

Ideally, in the fashion of forwarding IP packets, one would want to for-
ward all PDUs. However looking down the LTE protocol stack, PDUs that
can realistically be forwarded can be identified. For a clear overview of
how the IP packets are packed through the LTE protocol stack, see figure
2.10 from the previous chapter. IP packets first arrive at the PDCP layer,
where they are PDCP SDUs put into PDCP PDUs. The PDCP compresses
the IP header using its ROHC procedure, but PDCP PDUs are still capable
of being forwarded since the decompression uses the COUNT value which
is composed of the PDCP SN [4], and the decompression of packets is not
halted by out-of-order sequencing.

PDCP PDUs, containing complete IP packets, are sent to the RLC as
RLC SDUs. The RLC layer may concatenate or segment this data, depend-
ing on whether the conditions of the radio link are good enough to carry
multiple RLC SDUs or so poor that an RLC SDU must be segmented over
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multiple RLC PDUs. Even if the signal conditions are good, RLC wants
to fill up its transmission opportunity and will segment parts of an RLC
SDU to utilise the remaining byte space allowed. This means that RLC
PDUs should not be immediately forwarded as a whole because they may
contain an incomplete RLC SDU and therefore incomplete IP packet. How-
ever if the RLC PDU contains one or more complete RLS SDUs, these
can be forwarded individually and incomplete RLC SDU segments can
be buffered until new segments make them complete. This requires man-
agement to make sure that the incomplete RLC SDU segments are reassem-
bled correctly in regard to its sequence number and whether the segment
is the first, last or even a middle part of the complete RLC SDU.

MAC PDUs containing MAC SDUs are already forwarded in the sense
that they are immediately shipped to the RLC when the MAC PDU is com-
plete because in E-UTRAN HARQ reordering is done at the RLC ARQ in-
stead of buffering locally on the MAC layer. Going deeper to the PHY layer,
the MAC PDU is re-assembled by the receiver by time-divided sub-frames.
These sub-frames could in theory contain complete IP packets, but because
of the time-domain there is no way to confirm that given the structural ar-
chitecture of the data units. Even if one could detect IP packets within the
sub-frames, forwarding these would break the entire structure of the LTE
protocol stack in regard to header data and packet control.

Immediately forwarding PDUs must therefore be limited to forwarding
completed RLC SDUs on the RLC layer up the the PDCP layer, with
mechanisms to correctly re-assemble incomplete RLC SDU segments.

3.3.2 Threshold Tuning

Reordering timers and re-transmission thresholds are by default set to val-
ues that are high enough to allow reordering but low enough not to cause
too much delay. The main limits in question are the RLC reordering timer
and the HARQ maximum re-transmission limit.

When the RLC receives a RLC PDU that is out-of-sequence, it starts
a reordering timer. While the reordering timer is running, any duplicate
RLC PDUs are discarded and positive or negative acknowledgement is
prohibited.[5] Any additional RLC PDUs that are received out-of-sequence
while the timer is running are buffered in the reception window. The timer
will continue to run until the expected SN arrives or until the timer expires.
If the expected SN arrives, the timer is cancelled and the expected RLC
PDU is delivered along with any packets of higher SN that fall in order.
This is illustrated in figure 3.2, where the RLC reordering timer waits for a
HARQ re-transmission.

If the timer expires, the RLC deems the expected PDU lost and start de-
livering the RLC SDUs that were buffered during the reordering timer. The
reason the reordering timer prohibits status reporting when running is to
give the HARQ more time for re-transmission before the RLC ARQ starts
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Figure 3.2: HARQ re-transmission with RLC reordering, from [34].

its own (slower) re-transmission. The RLC status prohibit timer must be
equal to the RLC reordering timer. If the reordering timer is higher than
the status prohibit timer, a status report could preemptively trigger a re-
transmission a the transmitter for a PDU that could have arrived within the
reordering timer anyways, wasting bandwidth resources. If the reordering
timer is lower than the status prohibit timer, PDUs that do need to be re-
transmitted after the reordering timeout will be further delayed as it needs
to wait for the status prohibit timeout.

This design proposed to increase the HARQ maximum re-transmission
limit and therefore the complementary RLC reordering and status prohibit
timers, with the purpose of shifting re-transmission delays closer to the
link and away from the higher transport layer. When increasing the HARQ
re-transmission limit, the RLC reordering timer should be high enough to
complement this limit, inducing higher worst case delays while putting
putting more trust in the HARQ than the RLC ARQ. The increases must
not be so high that they consequently add additional latency or jitter to the
end-to-end flow. Ideally one would want the HARQ to wait as long as it
needs to if there is in fact a re-transmission process in action, a limit must
be set for situations like radio link failure or excessively long duration of
interference.

3.3.3 PDCP reordering

The 3GPP specifications for PDCP in [4] states "in-sequence delivery of
upper layer PDUs at re-establishment of lower layers" as one of the
protocols functions. It will be no use disabling RLC reordering if the
PDCP layer still buffers packets into order. Although this is limited to re-
establishment of lower layers, which can be triggered by link failure or a
failed handover, such a case would void the effect of forwarding out-of-
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order RLC SDUs. During this process, PDCP keep a Reordering_Window
variable with a size half of the PDCP SN space. Disabling reordering in
this case could be done by for example disabling such functions that are
triggered by such sequencing. However, this project does not cover the
handover process, and as will be described in the next chapter the PDCP
implementation of the simulator does not support such a function. This
means that the experiments will automatically bypass this aspect, but it is
noted as a limitation. The RLC reordering scheme will still be in place and
out-of-sequence deliveries at the RLC will still trigger the reordering timer,
however the out-of-sequence RLC PDUs that are buffered are not held
until the reordering timeout or the reception of the expected SN. Instead,
completed RLC PDUs are inspected to look for complete RLC SDUs, which
are then individually forwarded. When the reordering timer times out or
the expected SN arrives and start sending packets in order, the completed
RLC SDUs buffered have already been forwarded.

3.3.4 RACK awareness

While immediate forwarding is designed to work for RACK, it would be
severely damaging for TCP flows that do not use RACK and does depend
on receiving packets in order. Therefore there needs to be a mechanism
for the RLC to differentiate between whether data packets should be for-
warded or reordered. This is another limitation that is not implemented
but is included as theoretical proposals.

One solution could be to peek at the available IP headers from the IP
packets stored in a packet payload. RACK compliant packets could be
identified using the ECN bits of the IP header, assuming that an end-to-
end connecting employing ECN also uses RACK. As the work on RACK
progresses, and is already enabled in Linux by default, this is not an
improbable assumption to make, although still not completely thorough.
These identified RACK data units can then be forwarded while others can
not. There is an additional problem with this method regarding the PDCP
header compression. If the PDCP compresses the IP headers, lower layers
are unable to inspect the IP headers. Disabling PDCP header compression
would solve this but is highly undesirable, since it would add severe
measures of overhead to the data transmission.

A better but more extensive solution could be to extend the LTE stack
functionality. For RACK compliant connections, the RRC which assigns
the RLC AM mode, could also configure the immediate forwarding scheme
either through additional control variables or a modified duplicate of the
AM mode. There would also have to be dynamic changes to the MAC
scheduler controlling the HARQ and the mac re-transmission threshold,
which could also be configured by higher layers. Packets can be identified
above the PDCP layer as they would be classified into the different bearers.
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Chapter 4

Implementation

4.1 NS-3

Network Simulator version 3 (NS-3) is an open-source network simulator
which is publicly available for research and educational purposes.[2] It is a
discrete-event simulator, meaning that it models all events in a simulated
system as a discrete sequence of events. Any event occurs within it’s own
time instance in which it marks any changes it imposes on the system be-
fore jumping to the next event.

The simulator, written in C++, revolves around creating and configur-
ing different nodes in the simulated network environment, which can rep-
resent any network entity such as user equipment, terminals, routers etc.
These nodes can be configured by using the ns3 Model Library, by for exam-
ple having a node resemble a smartphone by using the network module to
install the required devices and networking stacks and the mobility model
to map movement over time. Although a very powerfull tool, there are
still limitations in regard to support or functionality of some technological
specifications. However, being an open-source project allows users to im-
plement and adapt their own features or extensions to the already existing
ns3 implementation.

4.1.1 LTE Module

The ns3 LTE Module is used to simulate an LTE network. An overview of
the module is illustrated in figure 4.1. The module is a product of two main
components:

• LTE Model: includes the LTE Radio Protocol stack (RRC, PDCP, RLC,
MAC, PHY). These entities reside entirely within the UE and the eNB
nodes. This model simulates spectrum aspects that occurs on a radio
link such as interference. To accurately model packet scheduling and
interference, the model needs a granularity of one Resource Block
(RB).

• EPC Model: includes core network interfaces, protocols and entities.
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Figure 4.1: An overview of the LTE-EPC simulation model from [2]

These entities and protocols reside within the S-GW, P-GW and MME
nodes, and partially within the eNodeB nodes.

Together the LTE-EPC simulation model generates a network route
from a UE through whatever node is connected to the LTE gateway. Note
that in this model the S-GW and P-GW are combined into a single SG-
W/PGW node that hold the functionality of both. This eliminates the need
for the S5/S8 interface specified by the 3GPP, being the only major but
harmless deviation from the LTE specifications. The other interfaces and
protocols follow 3GPP specifications, even though the implemented code
might be tailored differently for the scope of the simulator but generating
the desired output. However some implementations of protocols may be
limited by only being partially implemented.

The S1-AP and S11 interfaces are used by the control plane of the
EPC model, used by the MME to control its connected base stations and
gateways. On the data plane, the X2 interface connects base stations which
in turn connect to the gateway using an S1-U interface. The eNB connects to
the UE endpoint over the radio link. The S1-U interface between the eNB
and the SGW/PGW encapsulates packets over GPRS Tunneling Protocol
(GTP), UDP and IP as done in real LTE systems.[2] The overall protocol
stack that a data packet transverses through the data plane from end to
end is illustrated in figure 4.2.

Propagation and Fading Models

There are many different propagation models available to produce pathloss
on the radio link. These models range from simple models such as
pure randomness and range models, to more complex models that model
environments or buildings. The pathloss is computed for downlink and
uplink separately, and only for communication between UE and eNB. The
Friis propagation loss mode is the default propagation model.

46



Figure 4.2: LTE-EPC data plane protocol stack, from [2]

Table 4.1: Delay profiles for E-UTRA channel models, from [6]

The fading loss model is based on precalculated fading traces. Such
traces can be generated with 3GPP specified models from [6], which uses
delay profiles in the form of a ’tapped delay-line’ characterised by a
number of taps at fixed positions on a sampling grid, which are further
characterised using delay spread and maximum delay spanned by the taps.
These profiles are then used in combination with a maximum Doppler
frequency to generate profiles such as the Extended Pedestrian A (EPA),
Extended Vehicular A model (EVA) and Extended Typical Urban model
(ETU), whose model parameters are shown in table 4.1. These models are
selected to represent low, medium and high delay spread environments. In
addition the ns3 fading model takes user speed as an important variable,
where typical values include 0 to 3 kmph for pedestrian scenarios and 30
to 60 kmph for vehicular scenarios, both being considered urban scenarios.
Three such models are provided by ns3:

• EPA: Pedestrian with speed 3 kmph.

• EVA: Vehicular with speed 60 kmph.

• ETU: Typical urban with speed 3kmph.
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Spectrum Model

The radio spectrum is modelled using the carrier frequency and transmis-
sion bandwidth. The spectrum model is the base for transmission speed
and error models when nodes communicate over a radio link. The spec-
trum model is assigned for every eNB, where different eNBs can have dif-
ferent spectrum models. A UE will automatically use the spectrum model
of the eNB it is currently attached to.

Data transmitted over the radio spectrum on the data plane (PDSCH
and PUSCH), are sent over resource blocks. The error model used over the
spectrum is therefore in terms of Code Block Error Rate (BLER). BLER per-
formance is modelled using BLER curves, that outputs the TB size given
the BLER, SINR and MCS.

There are also error models for the control plane, but for this project
this model will be disabled to ensure an ideal error free downlink/uplink
control channel for simplicity and to avoid tampering with the data error
model results.

HARQ

HARQ is implemented with Incremental Redundancy (IR) combined with
stop-and-wait processes, and is enabled by default. UL transmissions
are synchronous while DL transmissions are asynchronous as per the
standard. There are 8 HARQ processes on the MAC layer, controlled by a
specified MAC scheduler. These processes are illustrated in 4.3. The HARQ
implementation is active on both PHY and MAC layers, despite begin a
MAC layer technology. The PHY layers implements HARQ functionality
related to its layer to support decodification buffers for IR management.

The MAC schedulers that control the HARQ processes mostly revolve
around fairness among the UEs using the eNB, such as Round-Robin,
proportionality or token based schemes. Since this project is limited to one
UE node, the Maximum Throughput (MT) Scheduler is chosen to maximise
overall throughput of the eNB, since it is not a problem in this case that the
MT scheduler cannot provide fairness to UEs in poor channel conditions.

RLC

The RLC implementation includes a model for each of the three 3GPP
specified entities Transmission Mode (TM), Unacknowledged Mode (UM)
and Acknowledged Mode (AM). In addition, ns3 provides a Saturation
Mode (SM) model, an unrealistic model for simplified cases.

The implementation interfaces with the PDCP by using sending and
receiving PDCP PDUs through its Service Access Point (SAP). Similarly
the RLC interfaces with the lower MAC layer by sending/receiving RLC
PDUs, but in addition the MAC entity uses NotifyTxOpportunity to notify a
transmission opportunity to the RLC entity, and the RLC uses ReportBuffer-
Status to report the size of pending buffers in the transmitted peer. This
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Figure 4.3: LTE HARQ processes scheme, from [2]

project only uses of the Acknowledged Mode (AM) RLC.

The ns3 implementation of AM RLC uses the following three buffers:

• Transmission Buffer: queue with RLC SDUs delivered from the PDCP.
SDUs are silently dropped when the buffer size is full.

• Transmitted Buffer: queue with transmitted RLC PDUs that have not
yet been ACKed or NACKed.

• Retransmission Buffer: queue with RLC PDUs considered for retrans-
mission, meaning they have been NACKed or timed out.

When a RLC SDU is received from the upper PDCP layer, it is placed in
the transmission buffer and a report on the buffer status is sent to the MAC
for scheduling purposes. When the MAC scheduler sees a transmission
opportunity it notifies the RLC, which in turn creates an RLC PDU using
the buffered SDUs in the transmission buffer and copies the data to the
transmitted buffer before it is send to the MAC.

In the textitns-3 implementation, AM RLC generally wants to send ex-
actly one RLC PDU per transmission, even if the transmission opportunity
is large enough to hold an additional segment. When the transmission op-
portunity is smaller than the RLC PDU size, AM RLC will segment and
concatenate as needed to fill the opportunity. [5] specified that there is no
concatenation in the retransmission buffer. The ns3 implementation fol-
lows this by not supporting re-segmentation in the retransmission buffer
and rather waits for a sufficiently large transmission opportunity instead.

Currently the AM RLC implementation does not support the following
procedures in [5]:
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• Send an indication of successful delivery of RLC SDU.

• Indicate to upper layers that max retransmission limit has been
reached.

• SDU discard procedures.

• Re-establishment procedure.

PDCP

The PDCP implementation in ns3 is simple, and only features the
most basic functions needed from this layer. It supports the following
procedures in [4]:

• Transfer of data.

• Maintenance of PDCP SNs.

• Transfer of SN status.

Among the procedures not supported from [4] that relates to this project
are:

• In-sequence delivery of upper layer PDUs at re-establishment of
lower layers.

• Duplicate elimination of lower layer SDUs at re-establishment of
lower layer for RLC AM mapped radio bearers.

• Header compression and decompression of IP data flows during the
ROHC protocol.

• Duplicate discarding.

• Timer based discarding.

4.1.2 DCE

Direct Code Execution (DCE) is a framework for ns-3 that provides
facilities to execute, within ns-3, existing implementations of userspace
and kernelspace network protocols or applications without source code
changes.[1] For applications that are not already implemented in ns-3, DCE
can be used to to run applications on the Linux networking stack and have
its data traffic routed through the ns-3 simulator. This project uses the
currently latest version DCE-1.9.
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Linux Kernel library

DCE uses a kernel compiled as a library. A ns-3 simulation that needs its
application to use the Linux network stack does so by linking to this kernel
library. By default DCE comes with net-next-sim, a simplified and slightly
modified kernel that compiles into a kernel library that is compatible with
DCE. However net-next-sim is now deprecated and does not contain the
required networking code for this project, so instead its successor net-next-
nuse will be used, also called LibOS.

Most desirably one would want to use the latest version of the Linux
kernel. There is a work in progress to integrate ns-3 with the Linux kernel
library (LKL), which reuses the Linux kernel code more extensively, but as
stated in [30] it remains uncertain when this is finished.

4.2 Simulation Setup

The core simulation setup implements a single UE communicating with a
remote host over an LTE network.

The setup revolves around four nodes:

1. UE node

2. eNB node

3. SGW/PGW node

4. Remote host node

These nodes are installed and interconnected as needed to represent
their intended network entity, explained in more detail below. Figure 4.4
shows an overview of the simulation nodes in action, generated using
the ns-3 NetAnim module which traces all ns-3 nodes and their actions,
outputting an animation of the simulation in XML format. The images
representing the nodes are added for better visual representation.

4.2.1 User Equipment node

The UE node has a Linux networking stack installed, configuring network-
ing parameter such as congestion control algorithm from the simulation
parameters. LTE UE Net devices are install for communicating over a ra-
dio link, and is then attached to the eNB node. For network purposes, the
node is assigned an IP address and the Linux ip tables are configured for
routing to the remote host. Lastly the UE starts an iperf application, config-
ured as a client targeting the remote node IP address. The UE node uses a
constant position mobility model, and by default does not move through-
out the simulation, otherwise it moves at a constant velocity.
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Figure 4.4: NetAnim animation of the simulation setup.

4.2.2 Evolved NodeB node

The eNB node is initialised using the LTE module. This node is responsible
for modelling the radio environment, since when the UE node attached
itself it inherits these configurations. Simulation parameters can override
default values such as noise or spectrum properties. The eNB node sets the
desired pathloss and fading model from the simulation parameters, as well
as configuring the MAC scheduler.

4.2.3 SGW/PGW node

The gateway node attaches to the eNB node over the S1-U interface link.
Net devices are installed and IP address is assigned for IP routing. The
SGW/PGW node connects to the remote host node over a point-to-point
link. For the simulation results to focus on LTE aspects, the point-to-point
link from the gateway to the remote host is implemented as an error-free
100 Gigabit per second link to ensure that this is not the network bottleneck.

4.2.4 Remote host node

The remote host is similar to the UE node except from the LTE aspects.
The remote nodes uses the Linux stack with RACK enabled by default, net
devices for physical links and the point-to-point link to the gateway node.

4.2.5 Traces and Data Collection

The various devices installed on the nodes are enabled to output trace files
displaying LTE radio stack operations such as number of transmitted or
received bytes, delay, data unit sizes etc. Network packets are captured as
pcap files for those net devices that allow it. Before every simulation, an

52



ns-3 Flow Monitor is installed that hooks onto packet flows observed under
the simulation, outputting end-to-end statistics.

4.3 HARQ Re-transmission Limit

The HARQ retransmission limit in ns-3 is hard-coded to a constant of value
3, the 3GPP specified threshold. The different HARQ schedulers all have
their own implementations, all with the retransmission limit hard-coded.
To modify the retransmission limit, we must modify the scheduler flavor
that is being used in the main simulation program, which in this case is the
Time Domain Maximize Throughput scheduler.

The retransmission limit is implemented as a simple if -statement,
which drops a HARQ process if it triggers this case. In order to increase
the HARQ retransmission limit, the constant is simply changed to the
desired value. This is done for both instances of the if -statment, one
for the uplink function TdMtFfMacScheduler::DoSchedUlTriggerReq and the
downlink function TdMtFfMacScheduler::DoSchedDlTriggerReq.

The optimal solution to increase the retransmission limit would have
been to change the constant into a run-time attribute configured by the
main simulation program. However due to simplicity and time constraints,
several compiled versions of the simulator with different threshold values
from 3 to 8 were implemented.

4.4 RLC AM Immediate Forwarding

The implementation of immediate forwarding completed RLC SDUs is
done by modifying the ns-3 source code files for the receiver side of
the RLC AM, namely lte-rlc-am.cc and lte-rlc-am.h. The changes involve
modifications in of the void LteRlcAm::DoReceivePdu function, and the
addition of the voidLteRlcAm::Forward function which forwards complete
RLC SDUs and handles re-segmentation. Before describing the details, an
overview of the original code is presented as a basis for the modifications.

4.4.1 Original implementation

The original code starts by initialising all variables and timers as config-
ured by the RRC and default values. The core functions are DoReceivePdu,
which handles an RLC PDU received from the MAC, DoNotifyTxOpportu-
nity which is called by the MAC to signal an opportunity and Reassem-
bleAndDeliver that delivers buffered RLC SDUs from the receiver window.
PDCP PDUs (RLC SDUs) received from the PDCP are put into the trans-
mission buffer. When the MAC calls DoNotifyTxOpportunity that signals a
sufficiently large transmission opportunity, this function takes RLC SDUs
from the transmission buffer and packages them into an RLC PDU fitting
of the opportunity size and transmits it to the MAC. DoReceivePdu takes re-
ceived RLC PDUs and implements ARQ functionality. Both of these func-
tions differentiate between control PDUs and data PDUs, each with their
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own procedure. For each data RLC PDU received with the expected SN,
ReassembleAndDeliver takes each completed RLC PDU in the window with
a SN equal to or higher than expected one (m_vrR) and extracts complete
RLC SDUs. RLC SDU segments are temporarily kept until its match is
found, and discarded if not. This is done by keeping the reordering states
shown in 4.1.

Listing 4.1: lte-rlc-am.h reordering states

SequenceNumber10 m_vrH ; / / / < VR(H)

/ * *
* Counter s . See s e c t i o n 7 . 1 in TS 36 .322
* /

u i n t 3 2 _ t m_pduWithoutPoll ; / / / < PDU w i t h o u t p o l l
u i n t 3 2 _ t m_byteWithoutPoll ; / / / < b y t e w i t h o u t p o l l

/ * *

For example When a RLC PDU contains an RLC SDU segment, it stores
the segments in m_keepS0 and sets the state to WAITING_SI_SF. For the next
RLC PDU, if in sequence, will then concatenate its starting segment to the
stores one and deliver it as a complete RLC SDU, resetting the reassembling
state. If it is out of sequence, the kept segment is discarded and state reset.

RLC PDUs are stored in a data structure containing the sequence
number, byte segments and Boolean variable for whether the RLC PDU is
complete or not, given that a RLC PDU may be sent as multiple segments
if transmission opportunities are small.

4.4.2 Modification

Rewinding back to the design and motivation, this is where out-of-order
IP packets are delayed because out-of-sequence RLC PDUs are buffered in
the window waiting for a reordering timeout or another packet to move the
reception window. In order to forward out-of-sequence RLC PDUs, a few
additions are added to DoReceivePdu. In the original implementation, when
receiving a RLC PDU, the function first checks if the packet is a duplicate
or if its within the receiving window or not, in which it is discarded, and
whether the packet is complete or not. For a new RLC PDU that has passed
these tests, DoReceivePdu checks if the sequence number is the expected
one (m_vrR), and only if so does it initiates the procedure of delivering the
buffered packets. For this immediate forwarding scheme, another test case
is added for which the sequence number is higher than m_vrR, meaning
that at least this one packet is received out of order and forwarding should
take place. For every such out-of-order packet received, the forwarding
function Forward () is called, which iterates the window and forwards any
complete RLC SDUs it can find and re-assembling segments if possible.
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The forwarding function is described in detail later. In order to maintain
the core structure of the original code, RLC PDUs that have had all their
payload forwarded are not deleted from the window. When reordering
times out or the expected packet arrives, the RLC moves the windows in-
crementally delivering packets in order, but to avoid having the RLC try to
deliver a packet that has already been forwarded, and additional variable is
added to the RLC PDU data structure, m_delivered, marking it as forwarded.

It is noted that this may not necessarily be the most optimal approach
in regards to performance.

Listing 4.2: lte-rlc-am.h RLC PDU data structure

*
* \param packet the packet
*/

void ReassembleAndDeliver ( Ptr <Packet > packet ) ;

bool Forward ( SequenceNumber10 seqNumber ) ;

/ * *

PDUs marked as delivered do not invoke the delivery function
ReassembleAndDeliver, as it has already been processed with Forward. If
Forward has modified the RLC PDU by forwarding complete RLC SDUs but
been unable to re-assemble any remaining segments, it will have modified
the packet payload by removing the forwarded RLC SDUs, and only the
segment will remain in the packet payload under the normal delivery
procedure.
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Listing 4.3: lte-rlc-am.cc expected SN and out-of-order
forwarding

}

/ / − i f x = VR(R) :
/ / − i f a l l b y t e s egments o f t h e AMD PDU with SN = VR

(R) a r e r e c e i v e d :
/ / − up da t e VR(R) t o t h e SN o f t h e f i r s t AMD PDU

with SN > c u r r e n t VR(R) f o r which not a l l b y t e
s egments have been r e c e i v e d ;

/ / − up da t e VR(MR) t o t h e upda t ed VR(R) +
AM_Window_Size ;

/ / − r e a s s e m b l e RLC SDUs from any b y t e s egments o f
AMD PDUs with SN t h a t f a l l s o u t s i d e o f t h e r e c e i v i n g
window and in−s e q u e n c e b y t e s egments o f t h e AMD PDU
with SN = VR(R) , remove RLC h e a d e r s when do ing so and

d e l i v e r t h e r e a s s e m b l e d RLC SDUs t o upper l a y e r in
s e q u e n c e i f no t d e l i v e r e d b e f o r e ;

i f ( seqNumber == m_vrR )
{

std : : map <uint16_t , PduBuffer > : : i t e r a t o r i t =
m_rxonBuffer . f ind ( seqNumber . GetValue ( ) ) ;

i f ( i t != m_rxonBuffer . end ( ) &&
i t −>second . m_pduComplete )

{
i t = m_rxonBuffer . f ind ( m_vrR . GetValue ( ) ) ;
i n t f i r s t V r R = m_vrR . GetValue ( ) ;
while ( i t != m_rxonBuffer . end ( ) &&

i t −>second . m_pduComplete )
{

i f ( ! i t −>second . m_delivered )
{

NS_LOG_LOGIC ( " Reassemble and Del iver (
SN = " << m_vrR << " ) " ) ;

NS_ASSERT_MSG ( i t −>second . m_byteSegments .
s i z e ( ) == 1 ,

" Too many segments . PDU
Reassembly process
didn ’ t work " ) ;

ReassembleAndDeliver ( i t −>second .
m_byteSegments . f r o n t ( ) ) ;

}

m_rxonBuffer . erase ( m_vrR . GetValue ( ) ) ;

m_vrR++;
m_vrR . SetModulusBase ( m_vrR ) ;
m_vrX . SetModulusBase ( m_vrR ) ;
m_vrMs . SetModulusBase ( m_vrR ) ;
m_vrH . SetModulusBase ( m_vrR ) ;
i t = m_rxonBuffer . f ind ( m_vrR . GetValue ( ) ) ;

NS_ASSERT_MSG ( f i r s t V r R != m_vrR . GetValue ( ) ,
" I n f i n i t e loop in RxonBuffer " ) ;

}
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NS_LOG_LOGIC ( "New VR(R) = " << m_vrR ) ;
m_vrMr = m_vrR + m_windowSize ;

NS_LOG_LOGIC ( "New VR(MR) = " << m_vrMr) ;
}

}
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4.4.3 Forward ()

The Forward function is a modified version of the ReassembleAndDeliver
function. The original ReassembleAndDeliver function takes an RLC PDU
as argument and strips it of its RLC header. The header information is
used to correctly extract the RLC SDU segment(s) in the payload, putting
RLC SDUs and segments into a buffer. The framing information from the
RLC headers indicates whether the the payload contains segments that are
either the first part or the last part of a complete RLC SDU. If the payload
contains the first and last bytes of an already complete RLC SDU. Reassem-
bleAndDeliver has to account for a large set of cases, from the framing in-
formation to the re-assembling status and whether or not the RLC PDU is
in order. For example, if the previous call to the function found an incom-
plete segment which was kept for the next call to find its missing piece,
the next function call might contain such a segment but if the RLC PDU
was out-of-order these two segments cannot be concatenated because they
do not belong to the same RLC SDU, in which the kept segment has to be
discarded and re-assembly status updated. For each complete RLC SDU,
it is delivered directly to the PDCP using the Service Access Point (SAP),
namely ReceivePdcpPdu(Ptr < Packet > p).

Forward() is a recursive function. Instead of being a void function call
that only processes one RLC PDU, it transverses all the completed RLC
PDUs in the reception window each time it is called. To indicate the base
SN at which to start iterating the window, the function takes this sequence
number as an argument, which will be the expected SN (m_vrR) plus one.
Sequence slots in the window that are incomplete or marked as delivered
are simply skipped. The idea behind recursively iterating the out-of-order
RLC PDUs is for segment re-assembly, since a newly added RLC PDU
might contain segments that complete that of previously processes RLC
PDUs which had to keep those segments. Recursion also reduces some
complexity in regard to state variables. The recursion ends when there are
no more complete RLC PDUs to transverse in the reception buffer.

Instead of decisively removing the RLC header from the packet, For-
ward merely peeks at the information. This is because it is not given that
the packet is to be delivered or not, as it may contain segments that do not
have a complementary match in the reception window. Therefore a copy is
made of the original packet, and a copy is processed. If the copy success-
fully forwards all RLC SDUs, the original PDU is marked as delivered, and
if no changes took place, it is left intact in its original state. If some RLC
SDUs were forwarded but there are remaining segments, a new packet is
made by adding an updated RLC header to the remaining segments, and
the original packet is replaced by the updated one.
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Listing 4.4: Forward recursion

{
NS_LOG_LOGIC ( seqNumber << " i s OUTSIDE the r e c e i v i n g

window" ) ;
return f a l s e ;

}
}

bool
LteRlcAm : : Forward ( SequenceNumber10 seqNumber )
{

Ptr <Packet > packet = 0 ;

for ( u i n t 1 6 _ t i = seqNumber . GetValue ( ) ; i < m_vrH . GetValue
( ) ; i ++)

{
s td : : map <uint16_t , PduBuffer > : : i t e r a t o r i t =

m_rxonBuffer . f ind ( i ) ;
i f ( i t != m_rxonBuffer . end ( ) && i t −>second .

m_pduComplete &&
! i t −>second . m_delivered )

{
i f ( i == seqNumber . GetValue ( ) )

{
packet = i t −>second . m_byteSegments . f r o n t ( ) ;

}
e lse

{
keepS = 0 ;
Forward ( SequenceNumber10 ( i ) ) ;

}
break ;

}
}

The function returns a Boolean value to signal the calling function
whether the kept segment was delivered or not. This is demonstrated
in Listing 4.5 which is the case for a RLC PDU that has no last byte,
meaning it contains an incomplete segment at the end. First it iterates
the SDU buffer to forward any completed SDUs extracted. The "tail"
segment is temporarily stored and copied to the shared re-assembly pointer
keepS. However the function does not know if there are any in-order RLC
PDU(s) received that can complete the remaining part of this tail segment.
Therefore it starts the next recursive iteration at the desired sequence
number that can complete the segment. If the function returns true, it meas
the tail segment was successfully re-assembled and delivered by the next
iteration, and the packet can be marked as delivered. If it returns false,
either no such RLC PDU has been received or it was unable to re-assemble
the RLC SDU, in which case the tail segment much be kept. If in addition
to keeping the segment the counter variable (which counts delivered RLC
SDUs) is zero, no changes were made and the function should abort.
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Listing 4.5: RLC SDU re-assembly case

NS_LOG_DEBUG ( " ( 1 1 ) Forward SN( " << seqNumber .
GetValue ( ) << " ) Time : " << Simulator : : Now ( ) .
GetSeconds ( ) ) ;

m_rlcSapUser−>ReceivePdcpPdu ( * i t p ) ;
counter ++;

}

i t −>second . m_delivered = t rue ;
Forward ( seqNumber + 1 ) ;
return r e t v ;

case ( LteRlcAmHeader : : FIRST_BYTE | LteRlcAmHeader : :
NO_LAST_BYTE) :

while ( sdusBuffer . s i z e ( ) > 1 )
{

NS_LOG_DEBUG ( " ( 1 0 ) Forward SN( " << seqNumber .
GetValue ( ) << " ) Time : " << Simulator : : Now ( ) .
GetSeconds ( ) ) ;

m_rlcSapUser−>ReceivePdcpPdu ( sdusBuffer . f r o n t ( ) ) ;
sdusBuffer . pop_front ( ) ;
counter ++;

}
NS_LOG_DEBUG( " T a i l ( 1 ) " ) ;
ta i lSegment = sdusBuffer . f r o n t ( ) ;
sdusBuffer . pop_front ( ) ;
keepS = tai lSegment−>Copy ( ) ;

i f ( Forward ( seqNumber + 1 ) )
{

i t −>second . m_delivered = t rue ;
return true ;

}
e lse

{
keepS = 0 ;

Function calls that reach the very end of the function and has not return
either true or false, are cases where the packet is modified and must be
updated. At this point, any completed RLC SDUs have been forwarded,
and the only potentially remaining segments are the head segment and the
tail segment. A new RLC header is constructed in regard to whether there
are any head and/or tail segments, while also updating head information
such as length indicators. The new packet, the segment(s) and the new RLC
header, replaces the original packet pointer.

4.5 TCP

The LibOS library operating system contains most of the up-to-date net-
working code for TCP like the Cubic congestion control algorithm. Al-
though it also supports RACK, the implementation of RACK in LibOS is a
simplified version of the algorithm which does not fulfil the entirety of the
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[8] draft (draft 03). The current version is only used after recovery starts,
and does not detect the first loss.

In order to make use of the full power of RACK, its implementations
has to be updated. The current RACK implementation is replaced with the
RACK implementation from the Linux kernel library, which is a complete
implementation of the first RACK draft [33] (draft 01). In order to incorpo-
rate this version to LibOS, various TCP kernel networking files have to be
updated as well such as header files or acknowledgement procedures that
this RACK implementation depends on.

4.5.1 LibOS Modifications

The following directory tree lists the LibOS kernel files that were modified
to support the updated RACK version:

include
linux

tcp.h
net

inet_connection_sock.h
tcp.h

net
ipv4

tcp_cubic.c .3 tcp_input.c
tcp_recovery.c

linux/tcp.h contains the RACK data structure with information of the
most recently (s)acked Socket Buffer (SKB) that handles sent or received
packets. Associated RTT with microsecond granularity and ending TCP
sequence of the SKB is added to the data structure. In inet_connection_sock.h
a reordering timeout is defined and added to the function logic when
resetting the re-transmission timer. net/tcp.h replaces old flags and function
definitions from the old implementation to the new one. Also a rate sample
data structure is added for various timestamp and counter variables.
tcp_recovery.c is the RACK source code file and is entirely replaced with
the new version. tcp_input.c is a core file for the Linux TCP/IP protocol
suite. This file contains many additions from the newer LKL file to
the older one. These additions include RACK specific functions and
calls to these functions, integrating RACK into the overall logic and
procedures of TCP/IP. Some data structures and variables have been
updated or simplified in the newer LKL versions but remain active in
the LibOS version, therefore some tweak have been made in terms of
pointers and casting the correct variable types to make sure the new
RACK implementation is compatible with the older code. An example
would be the acknowledgement timestamp in the SKB structure which was
previously a pointer but in new version just a variable, so the same data is
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Figure 4.5: Main object size, from [2]

flowing where it should but the correct formats are integrated.

4.6 3GPP HTTP Applications

Often used for network simulations in ns-3 are applications like Bulk-
SendApplication or OnOffApplication which send data over a variable period
of time. These are suitable for simulating long flows for FTP-like traffic.

In order to simulate web traffic more realistically, the ThreeGp-
pHttpServer/Client applications simulates web browsing traffic using the
Hypertext Transfer Protocol (HTTP). The client models a web browser, re-
questing web pages from the corresponding server. Responding to client
requests, the server will send back either a main object(web page) or and
embedded object(media references by the web page, such as images).

4.6.1 Server

The server application accepts client requests, and keeps every connection
open until the client disconnects. The size of the objects sent to the client
are randomly determined (see 4.5) and an object may be split into multiple
packets due to network limitations. The MTU values used are either
536(low) or 1460(high).
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Figure 4.6: Embedded object size, from [2]

Figure 4.7: Reading time, from [2]
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4.6.2 Client

The client application open a connection to the server, and immediately
requests a main object. Once received, the main object is parsed to determine
which embedded objects to request. This parsing time of the main object
averages 0.1 seconds, and each request has a constant size of 350 bytes.
Once an embedded object is determined, it is requested from the server. The
next embedded object determined will not be requested until the first one is
completely received.

Once all objects are received, the client simulates reading time, where
no network traffic occurs. Once the reading time expires, another web page
is requested. Reading time is randomly determined but is a very long delay,
show in 4.7.
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Chapter 5

Results

5.1 Experiment setup

The following experiments simulates an UE device communicating with a
remote server over an LTE network, with multiple applications on the UE
device initiating TCP flows. On the radio link, RLC Acknowledged Mode is
used for the entire duration. Results using standard reordering on the RLC
ARQ will then be compared to the results using the unordered forwarding
implementation. Experiments are run with propagation and fading error
models that are partly based on distance, allowing errors to be induced to
increasing the UEs distance to the eNB.

Good and poor signal conditions are here defined by how the signal
conditions affect the RLC ARQ performance. For good signal conditions
there is little to no buffering on the RLC ARQ. For poor signal conditions
there is buffering on the RLC ARQ that allows the performance of the
immediate forwarding implementation to be exposed.
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5.2 Short dynamic flows

Using the 3GPP HTTP Client/Server applications, two clients are initiated
on the UE and starts to request Main/Embedded objects from the server at
the same time. The size of the objects are compared to the completion time
(delay from request to successful reception).

5.2.1 Good signal conditions

Figure 5.1: Average completion time of Web objects in good signal
conditions.

66



5.2.2 Poor signal conditions

Figure 5.2: Average completion time of Web objects in poor signal
conditions.
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5.3 Long flows

Three packet sink applications (A, B and C) on the same UE starts receiving
constant data from a server to simulate FTP-like traffic.

5.3.1 Poor signal conditions

Figure 5.3: Output of long flows in poor signal conditions.

Ordered Unordered
Application A 0.499542 0.487026
Application B 0.553513 0.555012
Application C 0.470535 0.487026

Table 5.1: Total bytes received for each application.
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5.4 Evaluation

For short dynamic flows, unordered forwarding displayed no significant
difference from ordered buffering. This was expected since there was lit-
tle reordering to be done on the RLC ARQ as retransmissions were rarely
required and quickly resolved in good signal conditions. In poor signal
conditions however, shown in Figure 5.2, there were minor differences be-
tween the two schemes. Although being mostly equal, unordered forward-
ing shows to reduce delay of the completion time for some of the smaller
object sizes. However, in the cases where unordered forwarding fails to re-
duce delay, it shows more delay.

Without more extensive experiments, it is not safe to assume any con-
sistent effect, but these results can hint to the risk factor of immediate for-
warding. If TCP packets arrive out-of-order at the receiver, and the RLC
ARQ manages to repair the error quickly, there can be improvements in the
average completion time of requested objects by reducing HOL blocking.
If however the lost TCP packet does not arrive in time, RACK will deem
the packet lost and initiate a costly retransmission on the transport layer.
In that case, if the packets had not been delivered to TCP unordered had
been buffered in the RLC ARQ, the induced delay of buffering might still
be smaller than a TCP retransmission.

Even though unordered forwarding was not aimed at improving long
flows, the experiments shown in Figure 5.3 was included to see if it
had any significant effect on their performance. Even in poor signal
conditions, performance was not significantly different between ordered
and unordered forwarding. In fact, unordered forwarding seems to have
distributed the received bytes more equally across the three applications.

5.5 Limitations

These results are very limited, and they hints more to trends than they
do properly quantify the effective results. The main reason for this is
the currently limited ability of this simulation setup to produce effective
simulations. One such problem is the LTE Radio protocol stack of the ns-3
simulation failing to handle high traffic loads, even when using the default
version without any modifications. There could be various reasons for
such unexpected behaviour or general rarities. Like DCE configured nodes
communicating with ns-3 configured nodes or changes to the 3GPP HTTP
applications to support the DCE Kernel stack, all required for the scope
of this project but pushing the limitations of how these components work
together. Ideas such as increasing the HARQ retransmission limit or timer
tuning left out due to the inability to produce good enough simulations for
these cases. Insufficient knowledge or misconfigurations may also be the
issue of course, anyhow more robust simulations are needed to produce
results to fully quantify the ideas presented in this project.
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Chapter 6

Conclusions

• Immediate forwarding on the RLC ARQ can reduce HoL blocking in
LTE networks, with the risk of not being able to fill gaps in the TCP
receiving window withing the RACK specified reordering time.

• RLC segmentation of PDUs limits the effect of immediate forwarding.
When the signal conditions are poor, small segmented RLC PDUs are
transmitted which can not be immediately forwarded until they form
a complete PDU.

• A high reordering timer on the RLC ARQ (10 ms in ns-3) is very
persistent a rarely causes any retransmissions on the transport layer.
While it may induce HoL blocking it is still a strong alternative to
immediate forwarding since it performs well and is very safe.

• Immediate forwarding with TCP RACK does not significantly im-
prove nor deteriorate the performance of long TCP flows in LTE net-
works.
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Chapter 7

Future Work

• Implement the idea of immediate forwarding for Wi-Fi, another error-
prone network environment.

• Test immediate forwarding versus TCP Bottleneck Bandwidth and
Round-trip propagation time (BBR) in the simulator, another protocol
favoring time over sequence counting.

• Investigate effect of reordering of re-establishment procedures as
specified by 3GPP.

• Investigate effect of a moving UE device, as opposed to stationary.

• Investigate ways to separate RACK-compliant flows within an LTE
network using L4S.

Project code: https://github.uio.no/magnuvau/Masters
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