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ARTICLE INFO ABSTRACT

Keywords: Background and purpose: Multimodal imaging is increasingly included in the assessment of prostate cancer pa-
Prostate carcinoma tients, and there is a need to study whether different techniques provide similar or complementary information.
Fluciclovine In the initial perfusion phase contrast agents and radioactive labelled tracers act as blood-pool agents and may
FMARCIBC show similar characteristics. The purpose of the current work was to compare time-activity- and time-con-

centration-curves (TCs) of dynamic '®F-fluciclovine ('®F-anti-1-amino-2-[F]-fluorocyclobutane-1-carboxylic
acid, FACBC) positron emission tomography (PET) and dynamic contrast-enhanced magnetic resonance imaging
(DCE MRI).

Materials and methods: Dynamic FACBC PET and DCE MRI were performed on 22 patients with intermediate or
high-risk prostate cancer within 23 days prior to robot-assisted laparoscopic prostatectomy. Index tumour was
delineated in the images using whole mount tissue sections as reference standard. Tumour TCs from PET and
MRI were compared visually and quantitatively by calculating correlation coefficients between the curves at
different time points after injection.

Results: For the first minute post injection, the mean correlation coefficient between the TCs from PET and MRI
was 0.92 (range; 0.75-0.99). After the first minute, MRI showed washout while PET showed plateau kinetics.
Conclusion: Dynamic FACBC and DCE MRI showed similar wash-in time curve characteristics. At later time
points, FACBC plateaued whereas MR contrast medium washed out. In DCE MRI, the usefulness of wash-in
information is well documented. Whether wash-in information from dynamic FACBC can provide added value
remains to be documented.

Uptake characteristics

1. Introduction

Prostate carcinoma is the most common type of cancer in men and
the second leading cause of cancer death in the Western world [1].
Prostate carcinomas are characterized by biological heterogeneous be-
haviour. While some tumours remain indolent for many years, others
progress rapidly to a life-threatening disease. Due to this heterogeneity,
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an increasing number of imaging modalities are included in the diag-
nostic work-up of these patients. There is a need to establish to what
extent different imaging modalities provide similar or complementary
information.

The discovery of angiogenesis as an essential step for tumour
growth has led to increasing interest in non-invasive assessment of tu-
mour vasculature. Blood perfusion, blood volume, and vascular
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permeability can be visualized through analyses of time-activity- and
time-concentration-curves (TCs) obtained by continuous acquisition of
2D or 3D image series during the uptake and clearance of a tracer or a
contrast agent. Dynamic contrast-enhanced magnetic resonance ima-
ging (DCE MRI) may be applied for prostate imaging as part of multi-
parametric MRI (mpMRI) for detection and characterization of tumour
foci [2-5]. The TC on DCE MRI after administration of a Gadolinium-
chelated contrast agent reflects the underlying tumour vasculature. The
three main characteristic TCs are persistently enhancing (type I curve),
plateau (type II curve) or washout (type III), with type III being most
suggestive of malignancy [4]. It has been reported that rate of uptake
obtained from the initial phase of DCE MRI may improve tumour de-
tection and differentiate low-grade from high-grade tumours [5,6].

18F.labeled fluciclovine (also known as anti-1-amino-2-[F]-fluor-
ocyclobutane-1-carboxylic acid (FACBC), brand name; Axumin) is a
new PET tracer that was recently approved by The Food and Drug
Administration (FDA) and The European Medicines Agency (EMA) for
use in patients with suspected prostate cancer recurrence. The uptake
mechanism of FACBC into cells is not fully understood, but it has been
reported to primarily be mediated by the two amino acid transporter
proteins ASCT2 and LAT1 [7,8]. The expression of ASCT2 and LAT1 is
linked to prostate cancer aggressiveness [9], and FACBC PET could thus
improve treatment stratification. Monitoring delivery and retention of
FACBC from the time of injection provide dynamic image series that
enable separation of perfusion [10,11] from more specific tracer dis-
tribution characteristics such as tracer-transport, binding and metabo-
lism.

In the initial perfusion phase contrast agents and radioactive la-
belled tracers act as blood-pool agents, whereas tissue distribution and
uptake depend on the chemical and biological properties of these
agents. A prostate cancer study with dynamic '8F-fluorodeoxyglucose
(FDG) PET/MR revealed a possible additional value of dynamic PET
[12]. There are some studies with dynamic FACBC PET/CT [13-18],
but only two have explored the early dynamic phase [16,17]. None of
these studies assessed if the dynamic information was similar to DCE
MRI. One dynamic PET/MR study with '®F-fluciclovine focused at
finding the optimal time point to detect prostate cancer, but did not
evaluate initial PET perfusion in detail and did not include DCE MRI
[19]. Comparison of perfusion characteristics from DCE MRI and dy-
namic FACBC PET is lacking.

Hypoxia is associated with treatment resistance to radiotherapy.
Accordingly, it could be beneficial to include perfusion information
from PET in dose painting. MpMRI including DCE is currently used in
clinical radiotherapy trials to guide focal boosting of prostate cancer
[20,21]. Reliable mapping and characterization of the resistant lesion
(s) within the prostate gland is a prerequisite for these strategies, and
perfusion information may complement the metabolic information from
PET.

The aim of the present study was to compare the TCs from DCE MRI
and dynamic '®F-FACBC PET for primary localized prostate carcinomas.

2. Material and methods
2.1. Study cohort

A total of 22 patients with intermediate or high-risk prostate car-
cinoma according to DAmico risk classification [22] referred to our
institution for robot-assisted laparoscopic prostatectomy (RALP) be-
tween February 2013 and May 2016 were included in this prospective
study. Patient and tumour characteristics are shown in Supplementary
Table 1. The median age of the study cohort was 67 years (range;
46-74). Prostate specific antigen (PSA) ranged from 4.6 to 37 ng/mL
(median; 8.9). Of the 22 patients, eight had Gleason score < 7b and 15
had tumour growth beyond the confines of the prostate (extracapsular
extension). Both MRI and PET were performed less than 23 days prior to
RALP. The mean time between MRI and PET was 5.4 days (range:
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1-14 days). The Regional Committees for Medical and Health Research
Ethics South East approved the study (REC 2010/1656). The study was
carried out in accordance with the Helsinki Declaration and all patients
provided written informed consent before study inclusion.

2.2. MRI

The MRI examinations were performed with a 1.5T MR scanner (GE
Horizon, GE Healthcare, Waukesha, Wisconsin) and a phased array
cardiac coil centred over the pelvis. The mpMRI examinations included
morphological and functional sequences according to international re-
commendations [2] (Supplementary Table 2). The transversal DCE
MR images were acquired with a 3D spoiled GE-Dixon sequence
(Time to echo (TE) =3.1ms, time to repetition (TR) = 5.8 ms,
field of view (FOV) = 240 X 240 mm?, acquisition/reconstruction
matrix = 160 X 160/256 X 256, number of slices = 10, voxel
size = 1.5 X 1.5 x 2.6 mm?, parallel imaging factor = 2). A total of 30
T1-weighted acquisitions were sequentially obtained with 11.4s tem-
poral resolution. Gadolinium contrast medium (gadoterate meglumine)
was injected as an intravenous bolus at the start of the fourth dynamic
scan through a peripherally placed cannula using an automatic injector
(0.2ml/kg body mass, 3ml/s flow rate, Dotarem® (279.3 mg/ml,
Guerbet, France)) and followed by 30 ml saline flush.

2.3. Dynamic '®F-fluciclovine PET

FACBC PET and computed tomography (CT) images were acquired
with a Biograph40 mCT (Siemens, Erlangen, Germany). The patients
fasted for at least four hours and voided the bladder before the ex-
amination. A helical CT scan (CareDose 4D eff. 82mAs, tube
voltage = 120kV, FOV = 78 cm, matrix size = 512 x 512, slice thick-
ness = 1.5 mm) of the pelvis for attenuation correction was followed by
intravenous bolus administration of 281-301 MBq FACBC and saline
flush of 10-20 ml. A 15 min list-mode PET acquisition of one bed po-
sition (axial FOV of 21.6 cm centred above the symphysis, PET ring
diameter FOV = 70 cm) was started before administration of FACBC.
The list-mode data was rebinned into image time frames of 15 s for the
first three minutes, 30 s for the next 1.5min, 2 min for the next, and
then 4 min for the remaining time. The images were reconstructed using
3D iterative ordered-subset expectation maximization (OSEM) with 2
iterations and 21 subsets, time of flight (TOF), point-spread function
(PSF)-correction, slice thickness 1.5 mm, matrix size 128 x 128, in-
plane reconstruction pixels size 5.5 mm X 5.5 mm, and a Gaussian post-
reconstruction convolution kernel with full width at half maximum
(FWHM) of 3 mm. All studies were transferred to a remote PC for fur-
ther analyses.

2.4. Robot-assisted laparoscopic prostatectonty

All patients underwent RALP with a three-armed robotic DaVinci®
system (Intuitive Surgical, Sunnyvale, CA, USA) with the surgical ap-
proach mainly based on the Vattikutti Institute technique [23]. The
median number of days between MRI and RALP was 4.4 days (range
0-23) and between PET and RALP 9.8 days (range 1-18).

2.5. Histopathological assessment of tissue sections from resected prostate
glands

The resected prostate was inked with three colours to identify left,
right, and posterior aspects and fixed in 10% buffered formaldehyde for
at least two days. Grossing was performed according to a standardized
protocol where total prostate with seminal vesicles was embedded [24].
The apex and the base of the prostate were cut as sagittal sections using
the cone method. The remaining body was cut into three to four mm
transverse slices and prepared as whole-mount sections. The sections
were stained with hematoxylin and eosin (HE) and examined by light



A.J. Tulipan et al.

* ) 30 sec
Z"'.?h“ »

5’%’&

Physics and Imaging in Radiation Oncology 7 (2018) 51-57

MR RSI
ANS

"o 1 2 3 4 5
Time post injection (minutes)

Fig. 1. Dynamic MRI (A), dynamic FACBC PET (B), uptake curves from MRI and PET (C) from the tumour outlined in the corresponding HE stain of the prostate gland

(D) for a patient with T3a, Gleason score 7b tumour.

microscopy by two experienced uropathologists (LV and AKL), blinded
to the imaging results. Histopathological assessment included staging
according to the 7th edition TNM classification [25] and determination
of Gleason score [26]. The index tumour was defined in descending
order as: tumour with extracapsular extension, the highest Gleason
score or largest extent. The index tumour was delineated by the pa-
thologist (Fig. 1D and Supplementary Fig. 1D).

2.6. Data analyses

An experienced MR prostate radiologist (KHH) [27,28] contoured
the index lesion in the MR images based on the pathologists’ delinea-
tions in the corresponding whole-mount HE-sections. The delineation
was guided by internal landmarks such as the urethra and ejaculatory
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ducts and relative distances from the midline, surgical capsule, and
outer prostatic margin [29]. Because the HE sections and the MR slices
never are identical the delineated ROI was defined as the union of the
tumour extent at histopathology and MRI. The internal obturator
muscles next to the prostate gland were also delineated to aid in the co-
registration of the images. All ROI files were saved for further proces-
sing as described below.

All image analyses were performed with in-house developed soft-
ware written in Interactive Data Language (IDL 8.4, Harris Geospatial
Solutions, Broomfield, USA) codes. MR, PET and CT images were im-
ported into IDL and all images were rebinned to a common isotropic
voxel size of 3mm X 3mm X 3mm. For the PET images, SUV was
calculated for each voxel by dividing the voxel concentration by the
injected activity per body weight. For the MR time series, relative signal
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intensity (RSI) images were constructed by taking the signal intensity
difference between time point i and the mean of the pre-contrast images
divided by the mean pre-contrast signal intensity. Here, it is assumed
that RSI is approximately proportional to the tissue concentration of
gadoterate meglumine [30,31]. Then, the PET images were linearly
interpolated to yield the same temporal resolution as the MR series. The
entire prostate gland was delineated in the MR images and this 3D
volume of interest (VOI) was transferred to the CT images. The VOI
from MR was manually shifted to match the prostate gland in the CT
images. The shift coordinates obtained from this matching was used to
bring the MR and the PET images into the same spatial coordinate
frame. In cases of misalignment of the prostate arising from patient or
bowel movement in the resulting PET/MR images, the PET space was
manually adjusted in 3D before further processing. With the image
series co-registered, the mean signal in the tumour ROI at MRI and PET
was extracted for each time point. The TCs were shifted so that the Oth
time point was the latest time point where no tracer was seen in the
tissue. The Pearson correlation coefficient was used to compare the TCs
from PET and MRI for individual patients.

Associations between FACBC uptake in the tumour in the initial
perfusion phase (45s post injection) and in the metabolic phase
(4-6 min post injection) were compared to PSA, pathological tumour
stage and Gleason score using correlation analyses. The significance
level was set to 5%.

3. Results

Fig. 1 and Supplementary Fig. 1 show axial images from dynamic
MRI and PET, the tumour TCs and the corresponding histological tissue
sections for two of the patients. In Fig. 1, the tumour was clearly dis-
tinguishable from the surrounding benign tissue at all time points for
MRI and PET. The TCs for both modalities showed an initial rapid wash-
in and a plateau curve (type II). The correlation coefficient between the
TCs for the two modalities was 0.92 for the initial five minutes post
injection (Fig. 1).

In the initial phase, the cohort-based mean TCs from DCE MRI and
FACBC PET both showed rapid wash-in (Fig. 2). After initial wash-in,
the MR contrast media was cleared from the tumour tissue whereas
FACBC was retained in the tumour.

In the early perfusion phase there was a strong and significant
correlation between FACBC uptake and MR contract agent uptake for
individual patients (mean; 0.92, range; 0.75-0.99, Fig. 3). At later time
points the correlations decreased and in the time interval from 1.5 to
5min post injection the mean correlation coefficient was 0.33 (range;
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Fig. 2. Population-based TCs from DCE MRI and '®F-FACBC PET SUV. The
cohort included 22 primary prostate tumours. Data are given as mean and
standard deviation.
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0.02-0.84) with the correlation being significant for only seven of the
22 patients. The mean correlation coefficient for these seven patients
was 0.60. There were no significant correlations between FACBC uptake
and PSA, pathological tumour stage and Gleason score (Fig. 4).

4. Discussion

In the present study we compared the TCs from dynamic FACBC PET
and DCE MRI for 22 primary prostate carcinomas. Both imaging mod-
alities showed highly similar initial wash-in. At later time-points, MR
contrast agent washed out, whereas FACBC was retained in the extra-
vascular compartment(s).

Due to physiological differences in the uptake of FACBC and MR
contrast agents, differences in kinetic characteristics were anticipated.
For blood pool agents without exchange between the vascular and the
extravascular space the TCs would resemble an arterial input function
with a rapid wash-in followed by a bi-exponential rapidly decaying
curve [32]. In the initial phase, both FACBC and gadoterate meglumine
act as blood pool agents confined within the vasculature, giving rise to
an initial rapid signal increase in the images. When the bolus reaches
the tissue, the tracer enters the extravascular extracellular space
through passive diffusion. For FACBC there may also be a component of
active transport across the endothelial lining of the vascular membrane
[33]. Following renal clearance, the diffusion of Gadolinium-contrast
was reversed and TC type II or III was observed for all except one tu-
mour. The build-up phase of FACBC starts at the same time as the peak
from the initial bolus infusion appears. FACBC is transported across the
endothelium and tissue cell membranes by passive diffusion and
mediated by the amino acid transporters ASCT2 and LAT1 [7,8]. FACBC
is not incorporated into proteins and is not metabolized significantly
[8]. The amino acid transport via LAT1 is expected to be a 1:1 exchange
[34], and thus the FACBC uptake in tumour tissue should decline with
time. However, the expected decrease in uptake was observed only in a
few of the patients. It has been reported that equilibrium occurs around
30 min after injection, and thus, our limited PET acquisition time could
explain why decrease was not seen in more patients [14,19]. Princi-
pally, the accumulation of a PET tracer can be seen as a sum of three
components: (1) A vascular component with TC characteristics similar
to what is seen in an artery, (2) an extravascular-extracellular compo-
nent and (3) an intracellular component. Accumulation in the in-
tracellular compartment may occur even if the intravascular and the
extravascular-extracellular components are diminishing. The observed
plateau curve indicates that FACBC accumulates and that there is not a
1:1 exchange with the extravascular-extracellular space.

In the initial perfusion phase, there was a strong correlation between
the TCs from DCE MRI and the TCs from dynamic FACBC PET. One may
speculate if the perfusion information can improve the performance of
FACBC PET. Dynamic FACBC PET would probably not improve the de-
tection of primary prostate cancer because DCE MRI (mainly reflecting
perfusion) has a minor role in this setting [3]. Also, the metabolic phase
of FACBC PET has shown limited accuracy [14,16]. In contrast, the initial
phase of dynamic FACBC PET might improve the detection of local re-
currences because DCE MRI has an essential role in this setting [35,36].
Moreover, static FACBC PET has shown promising results [37] and is
already approved by FDA and EAM for this indication.

The strengths of our study include short time between MRI, PET and
surgery, and the whole-mount tissue sections from radical prosta-
tectomy specimens as reference standard. Our study has several lim-
itations: The relatively small patient cohort limits the generalizability of
the study results. The MR and the PET images had different voxel sizes
and extensive downsampling and interpolation of the MR images were
performed to match the spatial resolution of the PET images. PET
images with smaller voxels were explored, but rejected due to low
number of counts in the different time frames. Large difference in
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Fig. 3. Pearson correlation coefficient (black bars) between tumour TCs from DCE MRI and dynamic FACBC PET for individual patients for 0-1.5 (A) and 1.5-5 min
post injection (B). Red bars represent the p-values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

spatial resolution between the modalities and low signal-to-noise ratio
of the PET images hampered comparison of spatial uptake hetero-
geneity. We therefore chose to compare the mean tumour TCs to
minimize the influence of measurement uncertainty. We manually
transferred the histopathologically defined tumour ROI to the MR
images, which introduce concerns. The HE-sections and the MR slices
are never identical. Our approach ensured that the ROI in the MR
images only comprised tumour, but the entire tumour was not ne-
cessarily included. For the comparison of the TCs, exact co-registration
of MRI and PET is probably more critical than matching of histo-
pathology and MRI.

In conclusion, in the initial phase after intravenous administration
the TCs from FACBC PET and DCE MRI both showed rapid wash-in. At
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later time points, FACBC accumulated in the extravascular compart-
ment(s), while the MR contrast medium washed out.
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Fig. 4. FACBC uptake against prostate specific antigen (PSA) (A), pathological tumour stage (pT) (B) and Gleason score (C). The metabolic phase (upper panel) and

the initial perfusion phase (bottom panel) of dynamic FACBC PET.
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