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Abstract 

Background: 

Breast cancer treatment has metabolic side effects, potentially affecting risk of cardiovascular disease 

(CVD) and recurrence. We aimed to compare alterations in serum metabolites and lipoproteins during 

treatment between recipients and non-recipients of chemotherapy, and describe metabolite profiles 

associated with treatment-related weight gain. 

Methods: 

This pilot study includes 60 stage I/II breast cancer patients, who underwent surgery and were treated 

according to national guidelines. Serum sampled pre-surgery and after 6 and 12 months was analysed 

by MR-spectroscopy  and mass spectrometry . 170 metabolites and 105 lipoprotein subfractions were 

quantified. 

Results: 

The metabolite- and lipoprotein profiles of chemotherapy recipients and non-recipients changed 

significantly  6 months after surgery (p < 0.001). Kynurenine, the lipid signal at 1.55-1.60ppm, 

ADMA, 2  phosphatidylcholines (PC aa C38:3, PC ae C42:1), alpha-aminoadipic acid, hexoses and 

sphingolipids were increased in chemotherapy recipients after 6 months. VLDL and small dense LDL  

increased after 6 months, while HDL decreased, with triglyceride enrichment in HDL and LDL. At 

baseline, weight gainers had less acylcarnitines, phosphatidylcholines, lyso-phosphatidylcholines and 

sphingolipids, and showed an inflammatory lipid profile. 

Conclusion: 

Chemotherapy recipients exhibit metabolic changes associated with inflammation, altered immune 

response and increased risk of CVD. Altered lipid metabolism may predispose for treatment-related 

weight gain. 
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Introduction 

Treatment for breast cancer includes surgery, and often also systemic therapies and radiation, 

all of which are associated with different side effects (1). For instance, chemotherapy may 

have acute toxic effects such as bone marrow suppression and mucositis, as well as various 

long-term effects. These may vary across different chemotherapeutics, for example  

cardiotoxicity for anthracyclines, and peripheral neuropathy and musculoskeletal pain for 

taxanes  (1-3). Breast cancer treatment has also long been associated with weight gain during 

treatment, and may also cause unfavourable changes in body composition, lipid profile and 

increase the risk of metabolic syndrome (4-6). Breast cancer survivors have increased risk of 

death from cardiovascular disease (CVD), with both chemotherapy and left-sided 

radiotherapy being associated with increased cardiovascular mortality (7, 8). Post-diagnosis 

weight gain and body fat increase has been associated with a worse prognosis and higher risk 

of regional recurrence (9, 10). Moreover, an unfavourable metabolic profile is associated with 

increased mortality and risk of recurrence in breast cancer patients (11, 12). The adverse 

metabolic side effects induced by breast cancer therapy may therefore affect breast cancer 

progression and overall survival. 

 

The mechanisms behind the metabolic side effects of breast cancer treatment are not clear. 

Suggested mechanisms for post-diagnosis weight gain include physical inactivity during 

cancer treatment, hormonal changes and changes in metabolic rate (13). More recent studies 

suggest inflammation and oxidative stress as potential mediators between chemotherapy and 

metabolic syndrome (4). A negative metabolic profile may impact disease progression and 

prognosis through several mechanisms. Increased adipose tissue may lead to increased 

production of estrogen, adipokines and other growth factors, leading to a pro-oncogenic 

environment (14). 
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Metabolomics is concerned with high-throughput identification and quantification of 

metabolites. Metabolic characterization of liquid biopsies, which reflect the systemic effects 

of the disease and treatment, are gaining increased interest (15-17). The metabolome 

comprises all low molecular-weight compounds in the human body, and reflects the dynamic 

interaction between the individual and the environment. Metabolomics can therefore provide 

insights into metabolic and physiological changes of pathobiological significance during 

cancer treatment. The aim of this pilot study was to characterize alterations in the metabolite- 

and lipoprotein profiles in serum samples of breast cancer patients undergoing treatment, and 

to characterize metabolic patterns predisposing for weight gain.  

 

Materials and methods 

Study population and study design 

This pilot study includes 60 breast cancer patients participating in a clinical study which 

includes physical exercise during breast cancer treatment. Patients were recruited between 

2011-2014 at the Cancer Centre, Oslo University Hospital (OUS), St. Olav University 

Hospital, Trondheim, and Vestre Viken HF, Drammen. The patients were included at the time 

of diagnosis with invasive breast cancer or/and ductal carcinoma in situ grade 3, verified by 

histology.  To be included in the study, the patients had to be between 35 and 75 years old. 

The intervention included 60 minutes of supervised high-intensity interval training and 

strength training twice a week, as well unsupervised exercise for 60 minutes twice a week. 

Patients were randomized to the intervention- or control group by menopausal status, and 

patients in the two groups were equally distributed in recipients and non-recipients of 

chemotherapy (49 % and 56%, respectively). Women with severe illness, including heart 

disease, uncontrolled diabetes, prior cancers, breast cancer with stage 3/distant metastases, or 



6 
 

prior bariatric surgery were excluded. All patients underwent surgical removal of the tumour, 

and subsequent treatment regime followed national guidelines from the Norwegian breast 

cancer group (18). The chemotherapy regimens used were either fluorouracil, epirubicine and 

cyclophosphamide (FEC) every third week for 6 cycles, or 4 cycles of either FEC followed by 

12 weeks of either docetaxel every third week or paclitaxel every week. The study was 

approved by The Regional Committee for Medical and Health Research Ethics (REK 

2011/500), and all patients gave informed written consent to participate.  

 

Assessment of clinical variables 

Clinical variables were assessed and venous fasting blood samples were taken three times: at 

baseline (the time of inclusion: 0-7 days before surgery), and six and 12 months after surgery. 

Weight and height were measured with participants wearing light clothing and no footwear.  

Weight was measured on an electronic scale, and rounded off to nearest 0.1 kg. Weight gain 

was defined as a weight increase of 1.5 kg or more after six months, as done previously by 

Keun et.al (19). Venous fasting samples were collected into serum tubes with no additives, 

and centrifuged at 3000 rotations per minute for 10 minutes approximately one hour after 

collection. The serum was stored at - 80° C until the time of analysis. HbA1c, triglycerides 

and HDL were measured in fresh sera at the Department of Clinical Chemistry, OUS, Ullevål 

(Roche Diagnostics/Cobas Integra 800- Cobas 8000, Mannheim, Germany, www.roche.com). 

LDL was calculated using Friedewalds formula. 

 

Magnetic resonance experiments 

Magnetic resonance spectroscopy (MRS)-analysis was performed for serum samples acquired 

at baseline and 6 and 12 months after surgery. The samples were slowly thawed at 4° C prior 

to the NMR analysis. 150 µl of serum was drawn from each sample, mixed with 150 µl of 

http://www.roche.com/
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buffer (D2O with 0.075mM Na2HPO4, 5mM NaN, 3,5mM TSP, pH 7.4), and analysed in 3-

mm NMR-tubes. NMR-analysis was performed on a Bruker Avance III Ultrashielded Plus 

600MHz spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany), equipped with a 

5mm QCI Cryoprobe. Data acquisition and sample handling was fully automated using a 

SampleJet with Icon-NMR on TopSpin 3.1 (Bruker BioSpin). Carr-Purcelli-Meiboom-Gill 

(CPMG) and NOESY spectra with water pre-saturation were acquired at a temperature of 37 

°C. The spectra were Fourier transformed to 128K after 0.3 Hz exponential line broadening.  

 

Further preprocessing and quantification was done in MATLAB R2013b (The Mathworks, 

Inc., Natick, MA, USA). Chemical shifts of CPMG spectra were references to the left peak of 

the alanine doublet at 1.47 ppm. The baseline was adjusted by setting the lowest point of each 

spectrum to zero. The spectra region between 0.29 and 8.53 ppm was normalized to equal 

total area after removal of the water residual peak at 4.33-5.13 ppm. Metabolites were 

assigned using Chenomx NMR suite 7.7 (Chenomx Inc., AB, Edmonton, Canada) and the 

Human Metabolome Database (HMDB). Metabolite peaks from normalized spectra were 

semi-quantified by integration. For metabolites with more than one resonance, either the mean 

or the resonance with minimum overlap was used. A total of 30 metabolites were semi-

quantified by peak integration (Supplementary Table 1), including two lipid signals from the 

lipid methyl (-CH3) protons (peak at 0.8-0.9 ppm) at the end of fatty acid chains, and lipid 

methylene (-CH2-) protons (peak at 1.55-1.60 ppm) arising from the protons from the β-

carbon, respectively, in fatty acids mainly from triglycerides and esterified cholesterol within 

the lipoprotein particles. These lipid signals are referred to as lipid1 and lipid2, respectively. 

A representative spectrum with annotated metabolite peaks is shown in Supplementary Figure 

1. 
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Lipoprotein subclassification was performed by Bruker BioSpin (Bruker IVDr Lipoprotein 

Subclass Analysis
TM

), based on 1D NOESY MR-spectra using a partial least-squares 

regression model (20, 21). Concentrations of cholesterol (CH), free cholesterol (FC), 

phospholipids (PL), and apolipoprotein-A1, A2 and B in plasma, as well as in each of the 

lipoprotein classes (VLDL, IDL, LDL and HDL) were estimated using a regression model 

developed by Bruker BioSpin. Additionally, each lipoprotein class was further subdivided 

into subfractions according to their density. VLDL was divided into VLDL1-6, LDL into 

LDL1-6, and HDL into HDL1-4, with increasing density, and their concentrations of 

triglycerides (TG), cholesterol (CH), free cholesterol (FC), phospholipids (PL), 

apolipoprotein-A1 (A1), A2 and B (AB) were estimated, yielding a dataset of 105 variables 

(Supplementary Table 2). Bruker has published prediction errors for the model in comparison 

to ultracentrifugation (22). VLDL6 was excluded from the analysis due to poor model 

reliability. Four-letter abbreviations were used. For example, estimated VLDL4 contents of 

apolipoprotein-A1 was named V4A1, and estimated total plasma triglycerides was named 

TPTG.  

 

Mass spectrometry experiments 

Targeted MS analyses were performed on samples from 53 patients taken at baseline and after 

six months, using an Acquity UPLC-1 Class system coupled to a Xevo TQS mass 

spectrometer (Waters, Milford, MA, USA). The AbsoluteIDQ p180 kit (Biocrates Life 

Sciences AG, Innsbruck, Austria) was used to quantify 188 different metabolites, which 

included acylcarnitines, amino acids, phospholipids, sphingolipids and biogenic amines. 

Amino acids and biogenic amines were measured through liquid chromatography mass 

spectrometry (LC-MS/MS), while the remaining metabolites were measured semi-

quantitatively by flow-injection analysis (FIA) mass spectrometry. Amino acids and biogenic 
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amines are given a three-letter abbreviation. Lipid side chains were labelled CX:Y, where X is 

the number of carbon atoms in the chain and Y is the number of double bonds. Metabolites 

which had more than 30% missing values or values below the limit of detection (LOD), were 

excluded from further analysis. This left a dataset of 140 metabolites (Supplementary Table 

2). Metabolite concentrations below the LOD were set to LOD/2. To remove outliers caused 

by instrumental errors, all metabolite concentrations more than 100 times greater than the 

median value for the metabolite in question were defined as missing values. The coefficients 

of variation (CoV) for the quality control measurements were below 15% for all but 5 

metabolites, which had CoVs of 15-25%. The CoVs, the number of measurements < LOD, 

and number of measurements > 100 times the median value in the data are shown in 

Supplementary Table 3. 

 

Statistical methods 

Multivariate modeling 

Multilevel OPLS-DA was applied to determine how metabolite levels changed over time in 

recipients and non-recipients of chemotherapy, respectively (23, 24). This method is useful 

for analysing longitudinal data with two multivariate measurements per subject, and can be 

considered a multivariate analogue of the paired t-test. If A is the matrix with measurements 

from baseline, and B is the matrix with measurements from six months/twelve months, then 

time point 1 is represented as A – B, and time point 2 is represented as B – A, in this way 

focusing the analysis on intrapatient variations. We then perform OPLS-DA to discriminate 

(A – B) from (B – A). Data from both 6 and 12 months were compared with baseline 

measurements, to characterize systematic time-related changes. OPLS-DA was performed on 

metabolite and lipoprotein profiles from baseline and six months in order to predict weight 

gain during treatment. 
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OPLS-DA models were validated using ten-fold cross validation with 20 iterations. For 

models where the data contained multiple measurements from each patient, 10% of the 

patients were left out during each iteration. The number of latent variables was chosen 

selecting the first local minimum in classification error. Average model sensitivity and 

specificity over 20 iterations were obtained. 

 

The statistical significance of the models was assessed by permutation testing. Here, the class 

labels are shuffled to resemble random classification. The p-value corresponds to the 

proportion of random classifications giving a result equal to or better than the original model. 

Permutations were repeated 1000 times, and p-values ≤ 0.05 were considered significant. 

During interpretation, OPLS-DA loadings were coloured according to variable importance in 

projection (VIP) score, showing the influence of each metabolite in the classification (25).  

 

Univariate statistics 

We tested for significant differences in age, menopausal status, tumour characteristics, 

endocrine therapy, radiotherapy, and chemotherapy using a 2-sample t-test for continuous 

variables, and Fisher’s exact test for categorical variables. Metabolites and lipoproteins were 

analysed by univariate statistics. The metabolites measured by MS and MRS were analysed 

using parametric tests, while non-parametric tests were used to analyse the lipoprotein 

subfractions due to non-normality. Linear mixed models analysis (LMM) was used for 

modelling time-related trends in individual metabolite concentrations between baseline and 

six months. LMM allows for missing values in paired analyses, ensuring utilization of all 

data. LMM was performed in R (version 3.4.3, R Foundation for Statistical Computing) using 

the NLME-package. Metabolite concentrations were log-transformed prior to LMM-analyses. 
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Changes in lipoprotein subfractions were assessed with Wilcoxon signed-rank tests for 

recipients and non-recipients of chemotherapy, respectively. Multiple testing correction was 

performed by false discovery rate (FDR) estimation for the data from MRS, MS and 

lipoprotein subfractions separately. 

 

MetaboAnalyst 3.0 was used for metabolic pathway analyses of the combined metabolomics 

data from MS and MRS. Pathway analysis integrates metabolite set enrichment analysis and 

pathway topology analysis, and may be used to detect subtle, consistent changes in metabolic 

pathways. Samples from six months were compared with baseline samples in chemotherapy 

recipients and non-recipients separately. In cases with duplicate metabolite measurements, the 

MS-measurements were used. The data were autoscaled prior to analysis. The pathway 

analysis was performed through a pathway enrichment analysis using a global test and a 

pathway topology analysis using a relative betweenness centrality measure. Only metabolites 

with IDs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) could be included, and 

several acylcarnitines, phosphatidylcholines and sphingolipids were therefore not included in 

the pathway analysis. 

Results  

Clinical characteristics 

An overview of the patient cohort, clinical characteristics and treatment are given in Table 1. 

There were significant differences in clinical characteristics between recipients and non-

recipients of chemotherapy (Table 1). Chemotherapy recipients had lower mean age, larger 

tumours, more nodal involvement and higher Ki67 levels, and were more likely to receive 

endocrine therapy. There were no significant differences in serum triglycerides (p = 0.62), 

LDL (p = 0.94), or HDL (p = 0.12) at baseline. Weight gainers had lower HDL at baseline (p 

= 0.002), but no significant differences were found in triglycerides (p = 0.40), LDL (p = 0.51).  
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Metabolic changes in patients receiving chemotherapy 

Multilevel OPLS-DA showed that the metabolite profile of chemotherapy recipients was 

significantly changed after six months (accuracy = 91.7%, pperm < 0.001).  The scores and 

loadings of the model (Figure 1A) showed that sphingolipids and lipid2 levels are increased 

after treatment, while most MRS-measured metabolites other than lipid2 were unchanged or 

decreased. When testing individual metabolites with LMM (Supplementary Table 2), 

kynurenine, alpha-aminoadipic acid (alpha-AAA), asymmetric dimethylarginine (ADMA), 

two phosphatidylcholines (PC aa C38:3, PC ae C42:1) and hexoses were significantly 

increased after correcting for multiple tests. MRS showed significant increase in lipid2, as 

well as decreases in 18 different metabolites, 14 of which remained significant after 

correcting for multiple tests. Multilevel PLS-DA of NMR-metabolites showed significant 

differences also between baseline and 12 months after surgery (accuracy = 75.0%, pperm < 

0.001). Score- and loading plots showed increased levels of acetate, lipid2 and proline 

betaine, and reduced levels of methionine, tyrosine, ornithine and citrate 12 months after 

surgery (Supplementary Figure 2). Pathway analysis by MetaboAnalyst showed that after 

FDR-correction, tryptophan metabolism was significantly altered after six months (q = 0.028, 

Figure 5, Supplementary Figure 3). 

 

Multilevel OPLS-DA showed that chemotherapy recipients experienced significant changes in 

lipoprotein profiles after six months of treatment (accuracy = 80.0%, pperm < 0.001). Score- 

and loading plots (Figure 2A) showed pronounced increases in lipids and apolipoproteins 

associated with VLDL, IDL and LDL5-6, especially triglycerides. Lipids and apolipoproteins 

associated with HDL-subfractions were decreased, with the exception of triglycerides, which 

were increased. Univariate tests showed a highly significant increase in total plasma 
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triglycerides, as well as lipids and apolipoproteins associated with VLDL, IDL, and LDL4-6 

after six months (Supplementary Table 2). Lipids and apolipoproteins in HDL2-4 decreased 

significantly, except for their triglyceride content, which was increased. These results 

remained significant after correcting for multiple tests. Standard laboratory measurements 

showed a significant increase in triglycerides (p = 0.002), a significant decrease in HDL (p = 

0.003), and no significant change in LDL (p = 0.327). Chemotherapy recipients still had a 

significantly different lipoprotein profile from baseline 12 months after surgery (accuracy = 

78.3%, pperm < 0.001). Score- and loading plots showed increases in lipids and apolipoproteins 

associated with LDL 5-6, as well as increases in VLDL- and HDL3-4-associated lipids and 

apolipoproteins (Supplementary Figure 4). 

 

Metabolic changes in patients not receiving chemotherapy 

During the six months after surgery, the metabolite profiles of patients not receiving 

chemotherapy also changed significantly (accuracy = 77.5%, pperm < 0.001). The score- and 

loading plots showed that most amino acids, biogenic amines and phosphatidylcholines 

increased, while levels of acylcarnitines, lipid1 and acetoacetate decreased (Figure 1B). 

Individual metabolite levels were tested with LMM, and only glutamate remained 

significantly increased after six months after correcting for multiple tests (Supplementary 

Table 2). After 12 months, there was no significant difference from the baseline MRS 

metabolite profile (accuracy = 64.3 %, pperm = 0.12). Pathway analysis by MetaboAnalyst did 

not yield any significantly altered metabolic pathways after FDR-correction. 

 

The lipoprotein profiles of patients not receiving chemotherapy had changed significantly six 

months after surgery (accuracy = 82.0%, pperm < 0.001) compared to baseline measurements. 

The score- and loading plots showed that most lipids and apolipoproteins in VLDL-
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subfractions increased (Figure 2B), except for V5FC and V5CH. Lipids and apolipoproteins 

associated with LDL-and HDL-subfractions decreased. Univariate tests also showed 

significant decreases in TPFC, TPA1, TPA2, IDAB, in addition to significant decreases in 

lipids and apolipoproteins associated with LDL2 and HDL 2-3, before, but not after correction 

for multiple tests. Standard laboratory measurements showed no significant changes in neither 

triglycerides, LDL nor HDL. Lipoprotein profiles in patients not receiving chemotherapy 

remained significantly different from baseline also after 12 months (accuracy = 73.8%, pperm < 

0.001). Score- and loading plots showed increases in most VLDL-associated lipids and 

apolipoproteins, and decreases in LDL and HDL-associated lipids and apolipoproteins. 

Triglycerides in LDL and HDL were less decreased than other lipoprotein contents 

(Supplementary Figure 4). 

 

Metabolite profile of patients with weight gain 

Patients who gained weight had a significantly different metabolite profile at baseline 

compared to patients who did not gain weight (accuracy = 65.9%, pperm = 0.019). Score- and 

loading plots showed that patients who later gained weight had lower levels of acylcarnitines, 

phosphatidylcholines, sphingolipids and lipid1 (Figure 3A). At baseline, univariate analyses 

showed that 3 acylcarnitines, 20 phosphatidylcholines and SM C24:1 had significantly lower 

levels in patients who later gained weight before, but not after correcting for multiple tests 

(Supplementary Table 2). 

 

We also found significant differences between the baseline lipoprotein profiles of patients 

who later gained weight and the patients who did not (accuracy = 66.3%, pperm = 0.008). 

Multivariate analysis by PLS-DA showed that patients who later gained weight had higher 

concentrations of VLDL- and IDL-associated lipids and apolipoproteins at baseline, and 
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lower concentrations of lipids and apolipoproteins in LDL1-3. and HDL1-3. Univariate tests 

showed significantly lower levels of lipids and apolipoproteins in HDL1-2 in patients gaining 

weight, as well as in total HDL, after correcting for multiple tests (Supplementary Table 2). 

 

Patients with weight gain had a significantly different metabolite profile compared to patients 

not gaining weight also after six months (accuracy = 66.1%, pperm = 0.014). Score- and 

loading plots showed that patients who had gained weight had higher levels of acylcarnitines, 

isoleucine and lipid2 (Supplementary Figure 5).  

 

After six months, there was no significant difference between the lipoprotein profiles of 

patients who gained weight, compared to patients who did not gain weight (pperm = 0.454). 

 

Discussion 

In this pilot study, we observed that distinct changes in metabolite- and lipoprotein profiles 

occur during breast cancer treatment, both for recipients and non-recipients of chemotherapy. 

Furthermore, patients who gained weight during treatment had a significantly different 

baseline metabolite- and lipoprotein profile from patients not gaining weight, and a 

significantly different metabolite profile six months after surgery. 

 

Kynurenine levels were increased six months after surgery in both patients receiving and not 

receiving chemotherapy (38% and 25% increases, respectively), but was only significant in 

chemotherapy recipients.  Kynurenines are synthesized from tryptophan by tryptophan-2, 3- 

dioxygenase (TDO), and by indolamine-2,3-dioxygenase 1 and 2 (IDO1/IDO2), which are 

induced by inflammation. Interestingly, tryptophan metabolism was also found to be 

significantly altered by MetaboAnalyst. Kynurenines have immunomodulating properties 
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suggested to contribute to the development of tumour immunoresistance (26). They may also 

contribute to the pathogenesis of some mental disorders, including depression, cognitive 

dysfunction and central fatigue, as well as metabolic and inflammatory disorders (27, 28). 

Chemotherapy-induced inflammation has been suggested to be a contributing factor to 

development of drug resistance, through inducing stromal production of cytokines and growth 

factors in the tumour (29). Kynurenine may therefore represent an additional route through 

which chemotherapy-induced inflammation may affect morbidity, cognition, and risk of 

recurrence in breast cancer patients. 

 

Levels of asymmetric dimethylarginine (ADMA) were increased six months after surgery in 

chemotherapy recipients. ADMA may contribute to vascular dysfunction through 

competitively inhibiting the oxidation of arginine to citrulline, thereby hindering nitric oxide 

production.  ADMA levels are elevated in various conditions associated with vascular 

dysfunction, such as diabetes (30), heart failure (31), preeclampsia (32), and  in inflammation  

(33), and has therefore been considered a potential biomarker for cardiovascular disease (34). 

ADMA has been shown to attenuate starvation-induced apoptosis in vitro, and is therefore 

suggested to contribute to blocking apoptosis in response to chemotherapy (35). Increased 

ADMA levels after chemotherapy could therefore lead to increased risk of both CVD and 

recurrence in breast cancer survivors. However, long term data on ADMA levels in breast 

cancer patients are lacking. A previous study on 19 patients with stage 2/3, lymph node-

positive breast cancer showed that ADMA levels decreased in breast cancer patients after 

chemotherapy with taxotere, epirubicin and cyclophosphamide (36). Contrary to this, ADMA-

levels have been shown to be chronically elevated in survivors of acute lymphoblastic 

leukaemia, suggesting an increased risk of cardiovascular disease (37). Thus, ADMA levels 

after breast cancer treatment need further investigation. 
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Alpha-AAA and hexose levels were significantly increased in chemotherapy recipients after 

six months. Alpha-AAA is a product of lysine degradation, and higher levels has suggested as 

a predictive biomarker for development of diabetes (38). Elevated hexose levels could not be 

explained by increased glucose levels, as neither glucose nor HbA1c were significantly 

elevated after six months in chemotherapy recipients. 

 

Chemotherapy recipients underwent significant changes in lipid metabolism during treatment. 

VLDL- and LDL5-6-associated lipids and apolipoproteins were increased, HDL- and LDL-

particles showed triglyceride enrichment, and levels of sphingolipids were increased. 

Additionally, chemotherapy recipients had increased lipid2-signals. Lipid2 originates from 

lipid methylene (-CH2-) protons within triglycerides and esterified cholesterol. In isolation, 

increased lipid2 may therefore suggest increased proportion of saturated fatty acids in serum. 

This could possibly result from oxidative stress from chemotherapy (39), causing selective 

degradation of polyunsaturated lipids, as these are more easily subject to peroxidation (40). 

An alternative hypothesis could be that unsaturated fatty acids may be consumed for 

membrane re-synthesis during chemotherapy-induced oxidative stress (41). 

 

Inflammation is known to cause changes in lipid metabolism, including increased levels of 

triglycerides/VLDL, decreased mean LDL-particle size, triglyceride enrichment of 

lipoproteins, and increased levels of sphingolipids and oxidized lipoproteins in serum (42). 

Sphingolipids are a class of lipids with important functions in cell structure and signalling, 

and have been implicated in the pathogenesis of metabolic syndrome (43). They originate 

from long-chain saturated fatty acids, and may be increased by a variety of stressors, 

including chemotherapy, oxidized LDL, and excess substrate (44-46). Elevated sphingolipids 
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is thought to contribute to chemotherapy cytotoxicity through potentiating signalling events 

that drive apoptosis, autophagy and cell cycle arrest (47), but may also contribute to insulin 

resistance (48). Chemotherapy has been shown to affect lipid profiles in breast cancer patients 

(5, 49, 50), causing increased LDL and reduced HDL. The observed changes in our study are 

consistent with inflammatory effects, and support the hypothesis that chemotherapy, in 

addition to producing desired cytotoxic effects, also may impair insulin sensitivity and 

increase atherogenesis. The residual elevation of small LDL-particles which remained 12 

months after therapy cessation may indicate a long-term effect on lipid profiles (51). 

 

Interestingly, the lipoprotein profiles of patients who did not receive chemotherapy were also 

affected, both 6 and 12 months after surgery. While VLDL-associated lipids and 

apolipoproteins were generally increased, the increase was smaller and more variable 

compared with chemotherapy recipients. Triglycerides were not increased, and LDL-

associated lipids and apolipoproteins were decreased, with no apparent pattern of triglyceride 

enrichment. This suggests that patients not receiving chemotherapy also undergo significant 

changes in lipoprotein profiles, which differ from those seen in chemotherapy recipients. This 

could be caused by other treatment modalities, such as radiation or endocrine therapy, or 

associated changes in lifestyle and exposures over the course of treatment. It is also possible 

that there is a metabolic effect of surgery, proportional to the tissue damage inflicted during 

the procedure. After 12 months, lipids and apolipoproteins in VLDL were  increased, while 

those associated with LDL and HDL were decreased, with the exception of triglycerides. 

These changes resembled those seen in chemotherapy recipients, but were not significant in 

univariate analyses, and no increase in triglycerides or small dense LDL-particles was seen. 
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Patients with increased risk of weight gain had lower levels of acylcarnitines (AC), lyso-

phosphatidylcholines (LPC), phosphatidylcholines (PC) and sphingolipids (SL) before 

treatment. Few studies have examined the association between these metabolites and risk of 

weight gain in humans. One study found that weight gain during treatment was associated 

with higher baseline lactate and alanine, as well as higher body fat (19). We could not 

reproduce this, possibly because we also included women not receiving chemotherapy. 

Reduced levels of PCs has been associated with  risk of abdominal weight gain and type 2 

diabetes (52, 53). PC supplementation has been  shown to alleviate diet-induced obesity and 

hepatic steatosis in mice (54), suggesting a protective role for these metabolites. LPCs have 

however shown contradicting associations with obesity; LPCs have been found to be 

decreased in obesity in several studies (55, 56), but were found to be increased in obese 

monozygotic twins compared to their non-obese twin (57). Twin studies allow for eliminating 

the influence of genetics, and increased LPCs in this study was therefore due to environmental 

factors. Decreased LPCs in future weight gainers may therefore be caused by genetic factors 

contributing to obesity.  

 

We found that patients at risk of weight gain had lower levels of ACs at baseline, and higher 

levels after six months. Acylcarnitines (AC) are produced to enable the transport of the fatty 

acyl groups past the mitochondrial membrane for β-oxidation (58). ACs are increased in 

obesity and type 2 diabetes, possibly due to excessive β-oxidation, which outpaces TCA-cycle 

capacity (59). ACs have also been found to increase in mice in response to diet high in fat and 

sugar, concurrently with systemic mitochondrial dysfunction and weight gain (60). ACs may 

therefore be reflective of the relationship between fatty acid availability, β-oxidation activity 

and oxidative phosphorylation. Mice with deficient lipolysis gain more weight in response to 

a high-fat diet, and in vitro adipocyte lipolytic activity has been found to be negatively 
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associated with weight gain in humans (61, 62). Decreased lipolysis might reduce availability 

of substrates, possibly explaining the global reduction in lipid substances observed in patients 

at risk for weight gain. However, studies relating plasma lipidome to lipolytic rate and risk of 

weight gain are needed. 

 

Weight gainers also had a significantly different lipoprotein profile at baseline, compared with 

non-weight gainers. This group had a similar lipoprotein profile to chemotherapy recipients, 

characterized by higher levels of VLDL-associated lipids and apolipoproteins, and lower 

levels of LDL1-3 and HDL1-3-associated lipids and apolipoproteins, with a triglyceride 

enrichment pattern in HDL. There is evidence that low-grade inflammation contributes to 

weight gain (63), which may explain why our patients displayed an inflammatory lipid profile 

at baseline, although no relation was seen after six months. 

 

Our study has some limitations. The time from cessation of chemotherapy to blood sampling 

may vary between patients. Because our patients went through multiple types of treatment, 

there is a potential for confounding. Because of small group sizes, we did not perform 

additional subgrouping based on type of chemotherapy, radiotherapy and endocrine therapy. 

We did not consider more rigorous validation procedures, such as double cross validation to 

be feasible for this group size. At the time of analysis, our patients were participating in a 

physical exercise intervention in which they were randomized to an intervention group or 

control group. Exercise is known to affect metabolic profile and inflammatory markers (64). 

However, as the two groups were randomized by menopausal status, and equally distributed 

in recipients and non-recipients of chemotherapy, we believe that the observed differences 

between the groups are not attributable to the intervention. The main strengths of the study are 
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the longitudinal design, which minimizes potential effects of baseline differences between 

treatment groups, and standardized sampling conditions, including fasting blood samples. 

 

In summary, our data suggest that serum metabolites and lipoprotein profiles are significantly 

affected during breast cancer therapy. Our findings suggest that chemotherapy recipients 

experience changes in lipid metabolism, leading to a transient inflammatory lipid profile 

consisting of high triglycerides, VLDL, increased small LDL, low HDL, triglyceride 

enrichment of LDL and HDL and increased sphingolipids. They also experienced increases in 

kynurenine and ADMA levels, which could possibly affect treatment response, risk of 

recurrence and cardiovascular health. These metabolic changes could potentially be connected 

to chemotherapy-induced oxidative stress and inflammation. While it is well established that 

chemotherapy reduces the risk of recurrence (65), it should be studied whether risk of 

recurrence is related to metabolite profile and the metabolic response to treatment. We also 

observe that weight gain during breast cancer treatment may be associated with decreased 

acylcarnitines, lyso-phosphatidylcholines, phosphatidylcholines and sphingolipids at baseline, 

suggesting alterations in lipid metabolism in these patients. Our findings need to be validated 

in larger studies. 
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