
Adaptive Network Flow
Parameters for Stealthy Botnet

Behavior

Machine Learning techniques for
providing perturbations to network flow

patterns

Torgeir Fladby

Thesis submitted for the degree of
Master in Informatics: Network and System

Administration
30 credits

Institutt for informatikk
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Adaptive Network Flow
Parameters for Stealthy

Botnet Behavior

Machine Learning techniques for
providing perturbations to network flow

patterns

Torgeir Fladby

© 2018 Torgeir Fladby

Adaptive Network Flow Parameters for Stealthy Botnet Behavior

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Machine-learning based Intrusion Detection and Prevention Systems (IDPS)
provide significant value to organizations because they can efficiently detect
previously unseen variations of known threats, new threats related to known
malware or even zero-day malware, unrelated to any other known threats. How-
ever, while such systems prove invaluable to security personnel, researchers have
observed that data subject to inspection by behavioral analysis can be perturbed
in order to evade detection [1].

We investigated the use of adversarial techniques for adapting the commu-
nication patterns between botnet malware and control unit in order to evaluate
the robustness of an existing Network Behavioral Analysis (NBA) solution. We
implemented a packet parser that let us extract and edit certain properties of
network flows and automated an approach for conducting a grey-box testing
scheme of Stratosphere Linux IPS (Slips). As part of our implementation, we
provided several techniques for providing perturbation to network flow param-
eters, including a Simultaneous Perturbation Stochastic Approximation (SPSA)
method, which was able to produce sufficiently perturbed network flow patterns
while adhering to an underlying objective function.

Our results showed that network flow parameters could indeed be perturbed,
which ultimately enabled evasion of intrusion detection based on the detection
models that were available for our IDS. Additionally, we demonstrated that it
was possible to combine evading detection with stochastic techniques for opti-
mization problems, effectively enabling adaptive network flow behavior.

1

Acknowledgement

First, I would like to express sincere gratitude to PhD student and supervi-
sor Anis Yazidi for extending his already long work hours whenever I needed
support, and to Associate Professor and supervisor H̊arek Haugerud, whose
commitment throughout this project has been invaluable. Whenever I needed
advice on writing, algorithms or relevant research, my supervisors made them-
selves available. Their support has made me feel like they truly wanted me
to succeed, which has been a major motivational factor when working on this
project.

Furthermore, I would like to thank Associate Professor Stefano Nichele for
triggering my curiosity when it comes to complex systems, machine learning and
Data Sciences. Associate Professor Kyrre Begnum also deserves recognition for
teaching me how to use and appreciate container technology for building scalable
and platform-independent solutions.

Author

Torgeir Fladby

2

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Problem Statement . 10

1.3 Thesis Structure . 11

2 Background 12

2.1 Intrusion Detection and Prevention 12

2.1.1 Detection methods and challenges 13

2.1.2 Anomaly detection and behavioral analysis 14

2.2 Stratosphere Linux IPS . 15

2.2.1 Behavioral Models and Detection Methods 15

2.3 Stochastic Optimization for Parameter Perturbation 18

2.3.1 Random Search . 18

2.3.2 Adaptive Random Search 19

2.3.3 Stochastic Hill Climbing 19

2.3.4 Stochastic Approximation 20

2.3.5 Learning Automaton . 21

3 Related Work 23

3.1 Adversarial Examples . 23

3.2 Taxonomy for adversarial examples 24

3.2.1 Threat model . 24

3.2.2 Perturbation . 26

3.2.3 Benchmark and robustness evaluation 27

3

4 Approach 28

4.1 Modifying existing packet captures 28

4.1.1 Objectives . 28

4.1.2 Changing packet capture timestamps 29

4.1.3 Generating network flow files 36

4.1.4 Procedures for parameter perturbation 36

4.1.5 Learning Automaton . 42

4.1.6 Container Environment 42

4.2 Semi-realistic Attack Scenario . 45

4.2.1 Objectives . 45

4.2.2 Container environment . 45

4.2.3 Argus configuration . 46

4.2.4 Adaptive C&C Trojan . 48

5 Results 49

5.1 Malicious Packet Capture Files 50

5.1.1 Zbot characteristics . 50

5.1.2 Cridex characteristics . 51

5.2 Modifying existing packet captures 53

5.2.1 Random threshold-based perturbation 53

5.2.2 Adaptive Step-size Random Search 56

5.2.3 Simultaneous Perturbation Stochastic Approximation . . 57

5.2.4 Simultaneous Perturbation Stochastic Approximation with
Learning Automaton . 58

5.3 Semi-realistic Attack Scenario . 61

6 Discussion and Future Research 61

4

6.1 Problem statement . 61

6.2 Related Work . 61

6.3 Approach . 62

6.3.1 Key Concepts and Class Structures 62

6.4 Experiments . 63

6.4.1 Code and Infrastructure Challenges 63

7 Conclusion 64

Appendices 65

A Dockerfile configuration for experiments on Stratosphere Linux
IPS 65

B Python2.7: change pcap timestamps.py 68

C Python2.7: perturbation optimizer.py 76

D Python2.7: la slips.py 82

5

Glossary

ADNIDS Anomaly Detection based Intrusion Detection System. 13

API Application Programming Interface. 9

APT Advanced Persistent Threat. 8

ASRS Adaptive Step-Size Random Search Algorithm. 19

C2 Command and Control. 9

DDoS Distributed Denial of Service. 9

DNS Domain Name System. 9

GAN Generative Adversarial Network. 23

GO Global Optimization. 18

HIDS Host-Based Intrusion Detection System. 12

HTTP Hypertext Transfer Protocol. 9

IDPS Intrusion Detection and Prevention System. 1

IDPS Intrusion Prevention System. 12

IDS Intrusion Detection System. 8

IoT Internet of Things. 9

IRC Internet Relay Chat. 9

LA Learning Automaton. 21

ML Machine Learning. 10

NBA Network Behavioral Analysis. 1

NIDS Network-Based Intrusion Detection System. 12

P2P Peer-to-Peer. 9

SA Stochastic Approximation. 20

SaaS Software as a Service. 9

SIEM Security Information and Event Management. 12

6

Slips Stratosphere Linux IPS. 15

SO Stochastic Optimization. 18

SPSA Simultaneous Perturbation Stochastic Approximation. 1

STF Stratosphere Testing Framework. 16

7

Chapter 1

1 Introduction

1.1 Motivation

The immense growth of the Internet has over the past three decades laid the
foundation for massive technological development in almost all modern indus-
tries. However, as digital solutions open up for opportunities for citizens and
organizations, the increased accessibility of intellectual property introduces an
arsenal of new risks. Advanced persistent threats (APTs) are more frequently
targeting critical infrastructure such as government systems, power grids, mo-
bile communication systems, critical manufacturing facilities, water supplies and
supply chain systems [2]. As businesses and organizations migrate services and
infrastructure to the cloud, and more frequently integrate with third-party so-
lutions, maintaining a responsible overview over data and communications in
internal networks becomes increasingly difficult [3]. As a result, companies and
nation states are forced to take the risk introduced by increased attack surface,
adaptive adversaries and response-driven cyber security into consideration when
conducting their daily business.

The last decade has seen a vast increase in the amount of new types of mal-
ware; approximately 8.4 million new malware variants were observed in 2017,
up from 0.13 million in 2007 [4]. This surge of emerging threats renders tradi-
tional signature-based intrusion detection and prevention tools less feasible for
protecting digital infrastructure against cyber attacks. Although cyber security
specialists and software vendors are disclosing and patching more vulnerabili-
ties than ever, there is a constant struggle to keep up with adversaries who are
trivially able to create new types of malware. Once a new type of malware is
disclosed, anti-virus software vendors must fetch a signature for it and patch
all signature-based Intrusion Detection System (IDS) software installed on their
customers’ infrastructure. Hence, due to the vast amount of new types of mal-
ware, relying on detection of known threats is not effective for organizations
whose threat actors are able to continuously adapt.

A key issue related to defending cyber infrastructure is the scale of which
new malware can be deployed. Once a new strain of malware is created, the
malware author(s) objective is often to infect as many entities as possible, and
organize them collectively, in order to gain as much momentum as possible when
conducting attacks against target systems. Networks consisting of computers
infected by malware with a particular set of network- and host-based properties
are known as botnets. Such networks are prepared to conduct malicious activities
at a large scale in order to abuse or disrupt the operation of its target’s services.

8

Modern botnets typically support a wide range of malicious activities that can
be issued on behalf of the infected host. Different malware is typically created
for different platforms; while some botnets target personal computers, other
might target IoT or Mobile devices [5].

Malware residing on infected hosts typically have the ability to perform a
wide range of passive or active attacks, usually as part of a standalone attack
against the user of the infected host, or as part of a collective effort to attack
other systems. Attacks against users of the specific host can include informa-
tion gathering, with the goal of acquiring information worthy of protection, or
excessive resource consumption, as a means to farm crypto-currencies [2] [4].
Attacks that include the infected host as part of a collective effort can con-
tribute to more large-scale efforts by propagating through established means
of communication (phishing through SMS, e-mail and/or chat-services), or by
letting the infected device contribute to Distributed Denial of Service (DDoS)
attacks [2] [6]. Botnets are typically organized a set of nodes in one of two
different network topologies [7] (albeit with sub-topologies): Centralized Com-
mand and Control (C2), in which one or more centralized, and possibly tiered,
command and control servers are used to control the infected units -, or decen-
tralized C2, where infected units typically organize, communicate and propagate
through Peer-to-Peer (P2P) networking protocols.

What most botnets have in common is the requirement of networking capa-
bilities to issue commands from C2 to infected host, or between infected hosts.
C2 communication has been implemented on a wide range of networking proto-
cols, including IRC, P2P, DNS, Tor hidden services and HTTP. Moreover, pop-
ular Internet services’ APIs, such as Twitter, Github, Pastebin, Telegram and
Instagram APIs have been abused for managing C2 communication [8] [5] [9].
Because such services encrypt their traffic, and because the use of encrypted
traffic in general has increased drastically over the last few years [2], network
analysis tools must use intrusion detection techniques that do not rely on eval-
uating the data that’s being transmitted. However, the fact that C2 communi-
cation can be implemented on top of such a wide range of networking services
could make malicious network traffic generated by infected units hard to sepa-
rate from benign traffic. Cisco’s 2018 Annual Cyber Security Report confirms
that malicious users more frequently conceal their malware’s communication in
channels hosted by legitimate applications, or by closely mimicking such network
traffic [2]. Additionally, the increase in use of distributed architectures such as
Software as a Service (SaaS) and IoT, in combination with increased use of
cloud-based Internet services, gives malicious users a larger attack surface. For
the aforementioned reasons, defense communities have started embracing more
advanced tools such as machine-learning and artificial intelligence systems that
show recent promising results when it comes to detecting malware with unknown
characteristics [10].

Because botnets often use complex C2 structures with multiple controlling

9

endpoints, have the potential to perform a large variety of different activities
and perform various complex attacks, they are difficult to precisely define. For
instance, hosts that are part of a botnet may install and use different layers
of services and malware while reporting to a large set of C2 communication
channels [11]. The complexity and variable behavior of botnets make signature-
based detection and prevention systems that rely on static or dynamic rule sets
more prone to false negatives, as they continously lag behind malware that
adapts it communicative behavior. In [11], Garcia et. al initiated the Malware
Capture Facility Project, with the goal of capturing a vast amount of botnet
behavioral patters. After analyzing a variety of such patterns, Garcia et. al
identified C2 communication channels as potentially defining characteristic of
botnets. By defining the behavior of a botnet through a chain of network flow
states based on Markov Chains, they were able to create a ”signature” of bot-
nets’ behaviors that relied on the malware communication’s periodicity rather
than traditional identifiers such as content of packet payloads. By comparing
the behavior of network flow patterns, Garcia et. al were able to detect other,
previously unseen, botnet behaviors [12]. Hence, this type of machine-learning
based approach to network behavior analysis is promising because the models
generated for a particular type of botnet communication may be used to detect
other types of malware with similar behavioral patterns.

According to [2], organizations rely heavily on Machine Learning (ML)-based
defense systems; as much as 34% of organizations queried in 2018 were com-
pletely reliant on the use of machine learning for defending their digital infras-
tructure [2]. Such systems provide significant value to organizations because
they can efficiently detect a range of known and unknown threats. However,
these systems are expensive, somewhat technologically immature and require
significant time and resources to implement and maintain [13]. While ML-based
systems prove invaluable to security personnel and indeed make it easier to de-
tect abnormal behavior in networks, it has been proven that such systems can
be misled into falsely classifying malicious network traffic as benign [14] [15].
This project aims to evaluate the robustness machine-learning based behavioral
analysis, and determine wheter adaptive malware can efficiently evade detection.

1.2 Problem Statement

The efficiency of IDS relies on several parameters, including positioning in the
network, configuration of preprocessors, event management and more impor-
tantly the techniques used for detection. A combination of signature detection,
anomaly detection and a variety of ML-based approaches are commonly used
in modern IDPS [16]. An example of a system which provides ML-based NBA
is Stratosphere Linux IPS (hereby referred to as Slips), an open source imple-
mentation of an NBA that uses Markov chains to generate models of malicious
network traffic over time. Slips provides IDS functionality by comparing these

10

models with live network traffic and determines whether the recorded network
flow behavior matches that of a malicious profile. This project aims to evalu-
ate Slips’ behavioral analysis capabilities with respect to its robustness against
adaptive network flow behavior. The basic question that we wish to resolve can
hence be formulated as the following:

• How can the behavior of malicious network traffic be altered to evade
detection by abehavioral analysis tool?

1.3 Thesis Structure

The report is divided into the following chapters:

• Introduction: A description of context, problem statement and scope.

• Background: A discussion on the theoretical and technological back-
ground that this thesis is based upon.

• Related Work: A summary of related research that demonstrates the
motivation to solve the problem statements.

• Approach: A structured overview of implementation strategies and code
that contribute to solving the problem statement.

• Result: A discussion about expectations of the work and an assessment
of the achievements.

• Discussion: A brief review of the implementation, approach, challenges
and future work.

• Conclusion: A summary of the work that was done and contributions
made to this project.

11

2 Background

In order to address the defense mechanisms and attack techniques that are
evaluated throughout this thesis, it is important to have an understanding of
the technology that these systems are based upon. Consequently, background
information and research relevant to IDPS and their underlying detection models
will be accounted for. Furthermore, key concepts behind the NBA tool Slips will
be explained, and the models Slips uses for detection will be elaborated upon.
Additionally, because we want to perform perturbation to a set of parameters,
we investigate a select set of optimization techniques that are relevant to such
procedures.

2.1 Intrusion Detection and Prevention

Intrusion detection is the process of monitoring network traffic and other events
in a network in order to analyze them for indications of malicious or abnormal
activity. IDSs are crucial for protecting the security of computer networks be-
cause they are responsible for detecting violations, incidents or direct threats
to the security policies that determine how information and systems should be
accessed. In general, one distinguishes between two different types of IDSs:

• Host IDS (HIDS): Resides on one or more hosts in a network, monitor-
ing dynamic behavior in file systems and processes to detect malicious or
abnormal activity.

• Network IDS (NIDS): Software that is strategically located on network
endpoints such as routers and gateways to monitor network traffic to and
from all entities in a network.

There are significant limitations as to what an IDS standalone provides of se-
curity because the system is only able to detect malicious behavior rather than
prevent it. However, the IDS provides highly valuable information to system
administrators and software that analyze data and/or provide active response
to identified incidents. Software with the ability to analyze, stop and/or block
malicious activity are called Security Information Evenent Management Sys-
tems (SIEMs). Such systems typically leverage advanced data analysis tools
that perform behavioral profiling and classification of network traffic. The in-
telligence generated by the SIEM can be transmitted to an incident response
team or an automated Intrusion Prevention System (IDPS) for active response.
The process of both detecting and acting upon violations of security policies is
IDPS, while the SIEM conducts security analysis on enterprise-scale networks.

12

2.1.1 Detection methods and challenges

For an IDS to provide timely and accurate information to an organization’s
SIEM, it must report and distinguish between a large variety of different at-
tacks in an efficient manner. Because of the large amount and variety of data
generated by today’s systems, an IDSs challenge is to minimize false positives
(benign behavior reported as malicious) and true negatives (undetected mali-
cious behavior). Consequently, the detection methods that are used for iden-
tifying threats are of significant importance, and must adapt to the behavior
of the systems’ adversaries. Generally, one distinguishes between two different
high-level types of detection techniques:

• Signature-based: Detection of attacks by looking for known patterns
(signatures) in static files, kernel behavior, network packets or known ma-
licious instruction sequences in network or process flows. Signature-based
detection techniques are typically not applicable to encrypted network
traffic and are often prone to true negatives when malicious, but previ-
ously unseen malware, is compared to a set of known signatures. However,
behavioral network flow analysis does take advantage of some signature-
based techniques in that the similarity between time- and size-related
parameters of previously recorded traffic plays a more significant role in
detection mechanisms than the actual data transmitted. Hence, behav-
ioral IDS can be applied to a network segment despite the communication
being encrypted because time-related parameters are not affected by en-
cryption.

• Anomaly-based: Detects unknown threats by classifying data flows in
the target domain and looking for abnormal activity. Machine learning
and behavioral analyses are used in order to create a model of benign
behavior - any significant deviation from the modeled behavior is consid-
ered anomalous. While some Anomaly Detection based NIDS (ADNIDS)
categorize network behavior as either malicious or benign, state-of-the-art
techniques attempt to categorize behavior into different classes of attack
techniques [17].

To be able to perform behavioral analysis, an ADNIDS must have an idea
of what types of network traffic are typical for the segment that it’s monitoring.
For digital infrastructure whose connected hosts employ a variety of different
services, and hence generates a vast amount of different network traffic patterns,
an ADNIDS cannot create a single profile for the entire segment and efficiently
detect anomalies. Rather, its system administrators must create behavioral pro-
files for each communication channel that captures the specific service’s unique
characteristics.

In order for an ADNIDS to scale properly and avoid significant false positive

13

rates, two main challenges typically arise when an efficient and accurate system
is to be implemented:

• Feature selection, i.e. identifying which subset of features in network traffic
are representative to the target domain is hard because it is imperative to
the accuracy and efficiency of the model that the significant features are
maintained while the irrelevant or redundant features are omitted [18].

• Correctly labeled and sufficient size of data set are common challenges,
usually because of the vast amount of data needed to be labeled manually.
The workload of labeling a data set increases vastly when the feature set
increases.

Feature selection is an extremely important element when solving ML-based
classification problems. The process of selecting the most relevant features aims
to reduce the complexity of models such that they can be interpreted by re-
searchers, reduce the training time and furthermore reduce the chances that
a model is overfitted. [19]. Additionally, it is not given that the features se-
lected for one class of attacks fits the patterns of other types of attacks because
attack techniques are continuously evolving. For this reason, feature selection
techniques can be described as a search technique for proposing new feature
subsets. Each subset is typically given a score, which is later taken into con-
sideration when searching for other subsets. Feature selection is however less
relevant for this project because we are mostly interested in the timing-aspect
of network flows.

2.1.2 Anomaly detection and behavioral analysis

NBA is a technique that can be used to enhance the performance of an ADNIDS
by monitoring live traffic and disclosing unusual actions or patterns in periodic-
ity that significantly deviate from normal behavior. NBA’s purpose in a cyber
defense system is to reduce the amount of resources required by system admin-
istrators in resolving network issues and detecting known or unknown threats to
the network. Hence, it is an enhancement to already established security infras-
tructure such as firewalls, antivirus or similar intrusion management software.
NBA gives network security analysts the ability to monitor what is is happening
in internal or external-facing network connections by aggregating data from a
variety of different hosts. Such data is typically analyzed and evaluated using
three different categories of rules:

• Anomaly Rules: Tests events and network traffic flows for changes in
short-term events compared against a longer time-frame. Typically reacts
to changes in network services or infrastructure.

14

• Threshold Rules: Tests events and network traffic flows for activity that
exceeds or are below specified sets of thresholds.

• Behavioral Rules: Detects rate or volume changes that occur in network
traffic flows over predefined seasons. A season is defined as the benchmark
time consumption for comparison with the traffic that is being evaluated.
The length of seasons can be automatically re-evaluated to better fit the
model of benign behavior.

In order to determine what portions of network flow is deviating from normal
behavior, an NBA must perform an offline comparison of live data where the
benign or malicious benchmark is evaluated with respect to the new data. Based
on seasonal parameters, offline analysis of network flows may vary significantly
in time consumption because malware may distribute its activity over longer
periods of time in an effort to evade detection.

2.2 Stratosphere Linux IPS

Stratosphere Linux IPS (Slips) is an open-source network flow analysis tool,
developed by Czech researchers Sebastien Garcia et. al [12]. The tool takes as
input network flows from a ra client and feed them to a set of network behavioral
models and detection algorithms. More specifically, the Slips program models
network flows as Markov chains by consuming parameters such as size, duration
and periodicity [20] of each flow. Based on the chain of states generated, each
flow is assigned a letter and a symbol that characterizes the behavior of the
connection in that specific state. Periodicity, duration, size and time differences
character representations are as listed in Fig. 1 [21]. Character representations
of duration between network flows are listed in Figure 2.

Figure 1: Character representation of network flow size in bytes and duration
of network flow

2.2.1 Behavioral Models and Detection Methods

Slips uses a set of symbols to represent the time between network flows (Fig.
2). By concatenating network flows represented as characters and symbols,

15

Figure 2: Symbol representations of time between network flows.

network administrators can gain insight into their network traffic by looking
at how periodic different network flows are. In the below example, we use
Stratosphere Testing Framework (STF) to generate a network flow file from a
packet capture file, in order to further analyze it using Slips. Figure 3 shows
how STF can utilize a packet-capture file to generate network flow and argus
files. Network flow data is extracted from the network flow files in order to
generate parameters for the models functionality, which generates a Markov
Chain for each network flow in the packet capture. The Markov Chain can be
used by Slips to determine similarities between the input pattern and malicious
patterns.

Figure 3: Generating datasets using stf

16

The packet capture used in Fig. 3 (2014-02-07 capture-win3.pcap) [22] con-
sists of 4 hours of Zeus malware communication between an infected host and
a C2 server. The connection flow of the malicious connection is evaluated as
highly periodic with small to medium network flow sizes and short durations be-
tween network flows. The sequence of network flows generated by the malware
is represented by STF in the following chain of characterizations:

44 .R+R.U. u . a . a . d . a . d . a . a . d . d . a . d . a . a . a . d . a . a . a . a . a . a . a . d .
d . a . a . a . a . a . a . a . a . a . a . d . d . a . a . d . a . d . a . a . d . d . a . a . a . a . a .
d . a . a . a . a . d . a . a . d . d . a . a . d . a . d . a . a . a . a . a . a . a . a . a . d . a . a .
a . a . d . a . a . d . a . a . a . a . a . d . a . a . a . d . a . d . a . a . a . a . a . d . a . a . d .
d . a . a . d . a . a . d . a . d . a (. . .)

When Slips has decided whether the input network flows represent benign
or malicious traffic, it offers active response simply by adding an iptables
firewall rule. Because this is the only feature of Slips that provides intrusion
prevention, and because time-consuming offline processing is required in or-
der to issue any countermeasures, one could argue that Slips by itself does
not provide functional intrusion prevention but rather acts as a complement
to additional security measures.

Slips’ detection algorithms use previously created models of known malicious
behavior to detect new suspicious connections in the network. First, models
for ground-truth network traffic are generated; these models form a baseline
for both normal and malicious behavior and are used as the benchmark for
comparison. When Slips captures network traffic, the network flows and their
characterizations are calculated and then compared to the known and verified
ground-truth models. If the input network flows match an existing model by a
given threshold, they are reported as malicious by the detection models and an
alert is raised [23].

The network flow periodicity implied by a given chain of states aids Slips
in identifying similarities between flow patterns, even if the size and duration
of network flows varies. The calculation of periodicity is a key aspect of Slips’
detection mechanism in that it is able to extract a piece of meta-data from
malicious behavior that malware authors may not be aware of. Given three
network connections with time stamps t1, t2, t3, in a particular network flow,
the flow’s periodicity is defined as the difference between t3− t2 and t2− t1 [11].
Hence, if an attacker can continuously and sufficiently vary the time between
connections, perturbation that affects the the periodicity evaluation of each
network flow may affect its representation as a chain of states.

17

2.3 Stochastic Optimization for Parameter Perturbation

In order to provide disturbance to network flow patterns, original patterns must
be observed, measured and provided as input to a function that returns a per-
turbed version of that data. Stochastic Optimization (SO) is a class of statistical
methods that can be used to generate random variables based on initial values.
In this project, such methods can be employed as a means to provide pertur-
bation for the network flow parameters flow size, duration and time until next
flow. SO methods aim to minimize or maximize an objective function when
there is a degree of randomness in input data. One could, for instance, define
an objective function as the problem of maximizing throughput in a system,
and use SO to provide parameters that solve that particular optimization prob-
lem. Given a valid objective function of the aforementioned sort, we may use
such a technique to provide optimal perturbation to continuous network flow
parameters.

SO has the advantage of being able to work with continuous data rather
than discrete. This is a suitable property when working with time units if we
interpret network flow duration measurements as continuous data. Since time
can be measured down to fractions of a second, we assume that we are working
with random continuous and generative input values. This subsection elaborates
on a select set of optimization strategies that have potential for use within our
problem domain.

2.3.1 Random Search

Random search is a simple direct SO search method that samples solutions from
the entire search space based on input variables from a uniform probability
distribution (i.e. equal probability of selecting any element in the distribution).
This Global Optimization (GO) search method does not require derivatives
to navigate the search space. Because Random Search selects variables from
a uniform distribution, the current sample is independent of those that have
been tried before. Random Search could provide a reasonable approximation of
the optimal solution, but does not scale well when the amount of dimensions
increases. The random search algorithm trials a randomly selected candidate
solution and adopts it as the best if it improves the result of the objective
function [24]:

18

Algorithm 1 Random Search Algorithm

1: procedure random search
2: Arguments : NumIterations, ProblemSize, SearchSpace
3: Output : Best
4: Init :
5: Best← ∅
6: for iteri ∈ NumIterations do
7: candidatei ← RandomSolution(ProblemSize, SearchSpace)
8: if Cost(candidatei) < Cost(Best)) then
9: Best← candidatei

10: end if
11: end for
12: return Best
13: end procedure

2.3.2 Adaptive Random Search

Adaptive Random Search, or Adaptive Step-Size Random Search (ASRS) is
an extension of the Random Search Algorithm designed to reduce the negative
impact of random step sizes and address the limitations of fixed step-sizes.
The key difference between Random search and ASRS is that ASRS trials a
large step-size and adopts the larger step-size if it yields a better result. This
approach to optimization both improves the performance of the algorithm and
enables evasion of local optima because smaller step-sizes are adopted if no
improvement is made after a pre-defined amount of time or iterations [25]. A
description of this algorithm can be read as pseudocode in Algorithm 8.

2.3.3 Stochastic Hill Climbing

In contrast to ASRS’ Global Optimization approach, the Stochastic Hill Climb-
ing Optimization Algorithm is a type of Local Optimization algorithm that
visits a random neighbour and then determines whether the neighbour config-
uration resulted in an improvement of the objective function or not. For this
algorithm to be used in a continuous domain, a step-size must be defined such
that a candidate’s neighbours can be identified. This algorithm converges, or
reaches a local optima, when no neighbour solutions offer improvement or equal
cost to the current solution. Because this algorithm should be repeated after
convergence to ensure that it has not found a local optima, it is less suited for
computations that require many feasible results because it frequently generates
overhead trials. The algorithm is quite similar to that of Random Search, ex-
cept it visits neighbours based on step-size instead of just a random vector and
defines its current vector as the best solution when the maximum number of

19

iterations is reached:

Algorithm 2 Stochastic Hill Climbing

1: procedure stochastic hill climbing
2: Arguments : itermax, P roblemSize, StepSize
3: Output : Current
4: Init : Current← RandomSolution(ProblemSize, StepSize)
5: for iteri ∈ itermax do
6: candidate← RandomNeighbour(ProblemSize, StepSize)
7: if Cost(candidate) ≥ Cost(Current)) then
8: Current← candidate
9: end if

10: end for
11: return Current
12: end procedure

This algorithm could be useful for improving the result of candidate solutions
generated by other algorithms.

2.3.4 Stochastic Approximation

Stochastic Approximation (SA) is a well-known procedure for finding roots of
equations when there are noisy measurements. SA uses noisy observations to
find the set θ of a function g where g(θ) = 0 [26]. The function g in this case
is however not the objective function, but rather the gradient of the expected
objective function f [27]:

g(θ) = ∇θf(θ) (1)

When g(θ) ≡ ∇θf(θ), the SA method finds the local optima of f for an un-
constrained decision set. The decision set of gradients is determined by trialing
noisy subgradient observations on g such that f(θ) = g(θi, ζi), where ζ is noise.
The next decision, θi+1 is then updated by moving a distance ai in the direction
opposite the gradient:

θi+1 = θi − gi(θi)× ai (2)

Since it is not given that network traffic has constructive generation, θi
cannot be observational data. The stochastic approximation function must then
use estimates of the gradient. This can be done by using the current decision,
θt as a starting point and adding a perturbation ejci, where ej is a vector with

20

all 0’s except for a 1 in the jth spot and ci is an iterator of perturbation sizes, or
gain sequences, that decreases toward a value between 0 and 1. In [28], Spall et.
Al generate an estimate of f by adding and subtracting a random perturbation
vector to get an estimate with two observations. The jth entry of the gradient
is then approximated by g(θi, ζi) [29], as

[g(θi, ζi)]j =
F (θi + ciej , ζi,1)− F (θi − ciej , ζi,2)

2ci
, (3)

, where ζi,1and ζk,2 is noise for each θk measurement. If this approach is
to be used for generating perturbations to network parameters, one would have
to replace the gradient ∇θ with a random perturbation vector and furthermore
determine the ideal values for gain sequences. Gain sequences are vital to the
performance of SA algorithms and must be determined in a case-to-case scenario
[28]. To solve this problem, one could run many trials and observe which gain
sequences perform well in the problem domain.

2.3.5 Learning Automaton

As a means to provide optimal configuration for an optimization problem, one
could employ a simple machine-learning based technique: A Learning Automa-
ton (LA) machine learning algorithm could be used to determine an optimal
combination of actions based on an initial set of allowable actions. The LA
could iteratively select inputs to the target environment, which after using those
parameters would return a stochastic response and a performance score. In the
case of parameter perturbation for evading intrusion detection, the stochastic
response could be whether the perturbed connections were detected as mali-
cious or not. The performance score could be similar to the objective function
used in the perturbation algorithm. If the stochastic response from the tar-
get environment was positive, the LA would reward that solution by increasing
the probability, p̂, that those parameters are again selected. If the stochastic re-
sponse is negative, the probability vector p̂ is left untouched and hence penalized
as other solutions gain positive feedback [30]. This algorithm for updating the
probability vector would then implement a reinforcement-based learning scheme
because it enables recurrence for good solutions. In [30], this was implemented
for an LA using the reward-inaction algorithm, which is a simplistic but effec-
tive approach in many scenarios. An LA that optimizes two parameters for a
variable environment can be formulated as the pseudo-code in Algorithm 3.

21

Algorithm 3 Learning Automaton

1: procedure Pursuit Learning Automaton
2: Arguments : itermax
3: Output : best index a, best index b
4: Init :
5: λ← 0.1
6: Na ← 100 Number of values in probability vector A
7: Nb ← 100 Number of values in probability vector B
8: amin ← Minimum value for a
9: amax ← Maximum value for a

10: bmin ← Minimum value for b
11: bmax ← Maximum value for b
12: A← {amin × i+ 1.0× (amax − amin)/Na for i ∈ {0, ..., Na}}
13: B ← {bmin × i+ 1.0× (bmax − bmin)/Nb for i ∈ {0, ..., Nb}}
14: PA ← {0.5 for i ∈ {0, ..., Na}}
15: PB ← {0.5 for i ∈ {0, ..., Nb}}
16: B ← 0 Value of best performance so far
17: Ia ← 0 best index for PA so far
18: Ib ← 0 best index for PB so far
19: E ← target environment
20: α← action for Environment E
21: γ(weights)← roulette selection function
22: for iter ∈ itermax do
23: indexa = γ(PA) . Roulette selection
24: indexb = γ(PB)
25: improvement← False
26: feasible← True
27: reward, feasible← E(a(indexa, indexb))
28: if reward > B ∧ feasible then . αiter(indexa, indexb) was better
29: B ← reward
30: improvement← True
31: Ia ← indexa
32: Ib ← indexb
33: end if
34: for i ∈ {0, ..., Na} do . Update weights for Pa
35: if i ≡ Ia then
36: P ia = P ia + λ× (1− P ia) . Increase probability of selecting P ia
37: else
38: P ia = P ia + λ× (0− P ia) . Decrease other indices accordingly
39: end if
40: end for
41: for i ∈ {0, ..., Nb} do . Update weights for Pb
42: if i ≡ Ib then
43: P ib = P ib + λ× (1− P ib)
44: else
45: P ib = P ib + λ× (0− P ib)
46: end if
47: end for
48: end for
49: return Ia, Ib
50: end procedure

22

3 Related Work

Techniques using machine learning to detect previously unseen malware have
been studied extensively throughout the last century; however, it is only in
recent years that adversarial machine learning as a tool for evading such systems
has gained significant attention. While many researchers attempt to improve
the performance and accuracy of their classification algorithms [31], evaluation
of machine learning based intrusion detection robustness has been studied far
less. Kos, Fischer and Song, et. al proved in [32] that small, but carefully
crafted, perturbations to original input images can mislead a neural network
classifier to produce incorrect output. Kos et. al used adversarial examples
to attack generative models, and were able to mislead neural networks trained
on MNIST [33], SVHN [34] and CelebA [35] datasets with high confidence by
feeding the target models with adversarial examples. The researchers showed
how to break the integrity of an ML-based image classifier, but Kos et. al more
importantly demonstrated how a generative adversarial model could be used to
attack neural networks trained on a range of different datasets.

The advancement of adversarial techniques that use machine learning to per-
turb input features has seen development in a range of other domains. Rigaki
et. al demonstrate the use of such techniques against the IPS domain by show-
ing that it is possible to use Generative Adversarial Networks (GANs) to mimic
network traffic, adapt malware communication and ultimately avoid detection;
in their case eliminating blockage of C2 network traffic. Papernot et. al [36] in
2016 showed how adversarial sample attacks against malware classifiers could
be constructed, and furthermore evaluated how defensive mechanisms could be
improved by training malware classifiers using data gathered from adversarial
training. In 2017, Papernot et. al expanded on their research by staging an
attack against a malware classifier that ultimately reached a misclassification
rate of up to 63%. There has also been research on measures to make systems
robust in order to counter adversarial machine learning attacks, both against
rule-based IDSs [37] [38] and against deep learning models [36] [39] [40]. In [41],
Yuan et. al investigate and summarize approaches for generating adversarial
examples, applications for adversarial examples and corresponding countermea-
sures. This section aims to elaborate on ML-based techniques for adversarial
examples, robustness improvement and adaptive malware to provide a basis for
the simpler methods used in this project.

3.1 Adversarial Examples

The goal of an attacker attempting to break a classification algorithm is to
either force arbitrarty misclassification or to achieve source-target misclassifi-
cation. While the former attempts to achieve any misclassification, regardless
of category, the latter attempts to map a set of adversarial input features to

23

a specific target class, ultimately breaking the target IDS’ integrity. In [41],
Yuan et. al survey a broad spectre of techniques exploiting deep learning mod-
els’ vulnerabilities to adversarial examples. Although the aforementioned paper
is mainly focused on image classification, it highlights crucial prerequisites and
components, and furthermore create a taxonomy for constructing and defending
against adversarial examples based on these. Yuan et. al describe the genera-
tion of an adversarial example X based on a benign sample x against a deep
learning model f as a box-constrained optimization problem:

min
X

X − xs.t.f(X) = L, f(x) = l, l 6= L,X ∈ [0, 1] (4)

, where l and L are the output labels of x and X, respectively. The objective
of this optimization problem is to find the minimal perturbation of sample x
(denoted ‖X − x‖) such that the input X is misclassified by the deep learning
model [41].

The model described by Yuan et. al in Fig. 1 is very relevant to this
project because it shows that a model used for generating adversarial ex-
amples can be applied to a wide range of problems, simply by changing the
objective function. Because the objective function can be a minimization
or maximization problem, we may create adversarial examples in the net-
work flow domain by perturbing parameters based on objectives such as
detection rate, throughput or magnitude of perturbation.

3.2 Taxonomy for adversarial examples

As previosly mentioned, Yuan et. al account for a taxonomy that they use
to analyze approaches for adversarial examples, which could also prove useful
in the context of this project. The taxonomy is based on three primary areas
of interest; threat model, perturbation to input parameters and benchmark
adversarial performance. This section will elaborate on the taxonomy by pulling
information from a larger variety of sources.

3.2.1 Threat model

Yuan et. al describes adversarial falsification as the desired result of feeding
an adversarial example to the target model. The two main categories are false
positive attacks; attacks that generate a negative (benign) sample misclassified
as a positive sample; and false negative attacks, where a positive (malicious)
sample is misclassified as negative and hence not detected by the trained model

24

[41]. As this projects mainly focuses on evading detection, false negative attacks
are of particular interest.

Adversary’s knowledge speaks to the amount of information an attacker has
about the target model, including data, hyper-parameters, architectures, num-
ber of layers, activation functions and model weights [41]. White-box attacks
have complete knowledge of all the aforementioned parameters; black-box at-
tacks are constructed under the assumption that the adversary has no such
knowledge. Malware authors usually have little or no access to the detailed
structures and parameters of the machine learning models used by IDS or mal-
ware detection systems, and can hence mostly perform black-box attacks in
real-life scenarios. When testing the robustness of live machine learning mod-
els, it is desirable to use black-box techniques in order to simulate a realistic
environment. White-box attacks are useful for testing the fundamentals of which
the model is built upon, often in order to test accuracy and performance [42].

Yuan et. al furthermore divide attacks in two different categories of adver-
sarial specificity that determine whether the adversarial example’s objective is
to classify as an arbitrary class or a specific class. While targeted attacks at-
tempt to misguide the victim model into mapping the adversarial example to a
specific output category, un-targeted attacks are content with being mapped to
any class. Un-targeted attacks have a larger attack space than targeted attacks
and are hence computationally easier to execute [41]. Un-targeted attacks are
useful when the goal is to evade detection, rather than forcing a specific action
from the victim model. Such attacks can be generated through a variety of
techniques:

• Running several targeted attacks and choosing the sample that has seen
success despite having the least amount of perturbation [41].

• Minimizing the probability of the adversarial example being correctly clas-
sified [41].

• Maximizing the distance between the probability of the adversarial output
prediction vector and the predicted class of the benign input, in order to
achieve an adversarial input that is classified as any label except the label
of the original benign input [43].

When generating adversarial examples to mimic network traffic, it is
not given that minimizing the difference between the original input and the
adversarial sample is desireable, as humans will likely not manually inspect
the content, nor be able to notice significant difference between adversarial
and benign network packets. However, properties related to loss functions
and minimal perturbation of parameters are fundamental concepts within
a variety of machine learning techniques, and is likely an important aspect

25

when using reinforcement-based learning techniques.

3.2.2 Perturbation

Perturbations to original input is a premise when constructing adversarial exam-
ples. Since adversarial examples should be imperceptible to humans or anomaly
detection systems, it is imperative that the adversarial examples are as close
to the original input as possible, while retaining the property of being misclas-
sified by the target model. Under the taxonomy, Yuan et. al analyze three
main aspects of perturbation measurement: perturbation scope, perturbation
limitation and perturbation measurements [41]:

• Scope: Individual and universal attacks differ significantly in their at-
tack surface; while the former generates different perturbations for each
clean input, the latter generates perturbations for an entire dataset. The
former is likely the most relevant for the purpose of this project because
perturbations must be based on generative network traffic.

• Limitations: Optimized perturbation and constraint perturbation are two
different approaches to setting the goal of the optimization problem (1);
while the former aims to minimize perturbations so humans cannot rec-
ognize the perturbation, the latter only requires the perturbation to be
small enough.

• Perturbation measurement: Yuan et. al measure the perturbation
of an adversarial example by calculating the Euclidean distance (p-norm)
in the p-dimensional Lp space. If x is the magnitude of perturbation by
p-norm distance, then:

xp = (

n∑
i=1

xi
p)

1
p

, which for p = 0, p = 2 and p = ∞ denotes the maximum absolute
column sum, Euclidean distance between adversarial example and original
sample, and the maximum change for all features in adversarial examples,
respectively [41]. The same formula holds for Wei et. al’s definition of
Degree of Change, which demonstrates the same properties [43]. The
magnitude of a perturbation is important because it can be used as a
factor in optimization problems that aim to minimize or maximize this
property.

Attack frequency significantly influences the perturbation process when con-
structing adversarial examples. Perturbations to a sample can be made either

26

once or multiple times. Some computationally heavy algorithms due to their
nature optimize their perturbations only once, such as many variants of rein-
forcement learning algorithms [41], and hence have a less sensitive magnitude
of perturbation. Adversarial models that perturb their examples multiple times
use a feedback loop to iteratively modify the input features with a higher degree
of detail, i.e. a smaller amount of modification to the individual parameters.
This multi-step process is typically repeated until the input is successfully mis-
classified, or a given threshold has been reached [43] [1]. Given a static target
model, the formula for adversarial untargeted multi-step perturbation of a be-
nign sample x is denoted as:

xtadv = xt−1
adv + θR(

βh(−→y adv, y∗)
βxt−1

adv

), t > 1 (5)

, where y* is the arbitrary class Cx and h() is a function that describes the
relationship between the prediction vector or loss function of the original input
or adversarial input in previous iteration. R() is a control function that decides
how the adversarial example should be modified, specifically by ensuring that
the new values are within the range of the given features’ limit values [43]. The
multi-step approach will receive less focus throughout this project because of
the overhead complexity it introduces [43].

3.2.3 Benchmark and robustness evaluation

Because different machine learning models are based on different datasets and
measure performance based on different hyperparameters, it is hard for re-
searchers to establish a general method for benchmarking the performance and
robustness of such systems. In order to get reliable results from adversarial ma-
chine learning techniques, researchers must train their models on widely used
datasets and test their adversarial techniques on well-known models. Bench-
mark evaluation is a challenge for this project because our approach to pa-
rameter perturbation is not based on commonly used techniques for adversarial
machine learning.

27

4 Approach

This chapter provides a high-level overview of the technical implementations
that were used to address the problem statements. Choices related to imple-
mentation, experiment setup and selection of algorithms are justified to sup-
port suggested solutions to the problem statements. As a means to approach
the problem statement, two high-level sets of experiments are proposed and
described in the sections of this chapter.

4.1 Modifying existing packet captures

In order to test whether perturbation of network flow parameters could assist
in evading behavioral analysis intrusion detection, a set of initial experiments
were conducted on existing malware capture datasets. It was desirable to see
if one could reliably alter Slips’ representation of network connections’ state
by altering the properties of packet capture files that has already been mod-
eled and labeled by the Stratosphere IPS team. Specifically, these experiments
aimed to alter properties that affect periodicity in network flows; duration of
connections, network flows and time between network flows are parameters that
affect this property [44]. The size of network flows also impact the state of
network flows and the probability that it matches a model labeled as malicious
- hence, this parameter was also included as part of the perturbation scheme.
Moreover, the size of network flows could be used as a component in a loss
function for an optimization scheme, making it an ideal parameter to include in
our approach. It is worth noting that the altered network packets should not be
subject to data loss, as that would conceptually strip the malicious capabilities
of the captured network packets. If network traffic which has previously been
observed, labeled and detected by Slips as malicious can be altered to evade
detection, without losing their malicious content, conducting other experiments
that perturb network flow properties would be justified.

4.1.1 Objectives

To reach the ultimate objective of confirming whether perturbation to network
flow parameters affect the probability that a malicious capture packet file is
misclassified as benign, some infrastructure and software had to be implemented:

• (1) A container configuration that installs Stratosphere Linux IPS, argus
and ra alongside all relevant dependencies to enable execution of experi-
ments on a platform that is trivial to deploy on any operating system.

• (2) Software that takes as input a packet capture file and a set of per-

28

turbation parameters. All relevant network flows must be identified, and
properties such as duration, size of network flow and time between cur-
rent flow and next flow must be computed. When all network flows and
other connections are identified and grouped, the argument perturbation
parameters must be applied to the relevant network flows. The program
must return the same connections, in the same order, but with timestamps
that are modified according to the input perturbation parameters.

• (3) A script that takes as input the packet capture file generated in (2) to
create a network flow file compatible with analysis in Slips.

• (4) A module that provides perturbation parameters to the program that
changes network flow properties of the selected pcap-files. A set of tech-
niques for computing perturbations are features of this module.

• (5) An implementation of a Learning Automata that enables a large set
of iterations to be computed over different configuration options of the
algorithm in (4). The goal of the Learning Automata is to find an optimal
configuration of parameters provided to the selected algorithm. The con-
figuration could, for instance, minimize the impact that perturbation has
to network flow durations, while ensuring that the entire network flow is
undetected by Slips. For each iteration, the probability that the Learning
Automata selects a feasible solution, must be increased.

4.1.2 Changing packet capture timestamps

Creating an algorithm for changing the timestamps of network flows in a packet
capture file according to a set of perturbation parameters required a highly
structured approach. First, it was important to establish a set of assumptions
that would serve as rules of implementation for this functionality:

• (1) The user that perturbs network parameters using knows which IP ad-
dresses are malicious. The user selects these IP addresses as target tuples
before parsing the packet capture, such that only the selected IPs are sub-
ject to perturbation of network flow characteristics. However, packets that
do not satisfy the condition of being in target tuples are indeed important
to retain and must be written back to the file unmodified.

• (2) A network flow is defined as a set of packets going from a distinct
combination of source port and source IP address to another distinct com-
bination of destination port and destination IP. Incoming packets to the
same IP and source port of the IP that initiated the connections, also
belongs to that same set of packets, regardless of whether the incoming
packet’s source port has changed. All packets that share these properties
belong in the same flow.

29

• (3) A network flow can consist of an arbitrary number of packets.

• (4) The duration of a network flow is defined as the time between the first
packet sent and the last packet sent within a particular network flow.

• (5) The time between network flows parameter is defined as the absolute
amount of time between the start of a particular network flow, and the
start of the next network flow which belongs to the same category of
target tuples.

• (6) Size of network flow is defined as the sum of the length in bytes of all
packets within a particular network flow.

• (7) Network flow throughput is defined as the amount of bytes sent through
all connections over a particular network flow.

• (8) Total throughput is defined as the total amount of bytes sent through all
connections in all flows that satisfy the condition of being in target tuples.

Class structures

We began by creating object-oriented data structures around the elementary
sets of network connections that occur in a packet capture, and implemented
these by creating the classes Packet and Flow. A Packet object consists of a
packet number that corresponds to the packet’s index in the packet capture file,
and a Scapy packet object, that contains all network packet frames up to - and
including - Layer 4, as defined in the OSI model [45]. The entire purpose of
the Packet class is to maintain the order of packets. A Flow object consists
of a considerably wider range of attributes and methods, some of which are
described below:

• Attributes: Source port, source IP, destination port, destination IP

• Attributes: t1, t2 and td ; timestamp of first packet in flow, timestamp
of last packet in flow and the time-delta of t2 and t1.

• Attribute: packets; a list of Packet objects belonging to this flow.

• Attribute: td list ; a list representing the time-delta between the packets
of this flow.

• Attribute: td fractions; a list of float numbers where 0 < number < 1,
which corresponds to each element in td list. Each float number estab-
lishes how much of the flow duration each time-delta in this flow retains.

• Attribute: time until next flow ; the amount of seconds until the next
flow occurs.

30

• Method: belongs in flow(packet); True if packet belongs in this flow.

• Method: add to flow(packet); adds a Packet object to this flow.

• Method: set flow(); Sets the values of t1, t2 and td. Usually called after
updating timestamps.

• Method: set timedeltas(); fills up the lists td list and td fractions. Usu-
ally called when a Flow object’s packet list is complete.

• Method: perturb duration(perturbation); perturbs the duration of the
flow by modifying timestamps according to value provided in argument
perturbation, and distributes the new timedeltas according to the initial
fractions provided in td fractions. Returns the amount of seconds that
were perturbed, a value which can be positive or negative.

• Method: incr timestamps(pert td next); increments the timestamp of all
packets in the flow. Updates t1, t2 and td. Returns the amount of seconds
that were incremented, a value which can be positive or negative.

For this project’s python implementation of the Flow class, see Appendix C.

Parsing the packet capture file

Before we could start manipulating timestamps in the given packet capture file,
some additional supporting data structure and metrics were necessary. The data
structure chosen for storing Flow and Packet objects was Python 2.7’s collec-
tions.deque. The procedure for parsing a packet capture file was implemented
as the following sequence of actions: We started by parsing the packet capture
file using Scapy’s rdpcap() method and created a Packet object for each Scapy
packet. Next, we identified which packets belonged to Flow objects, and which
connections should be considered single Packet objects. For each packet that
met the criteria of being part of a Flow object, we searched through our current
set of Flows to determine whether this packet met the criteria of belonging to
any of the flows. The Packet object was then put into its corresponding Flow
object, or added as a new Flow object if it did not belong to any existing flow.
If a Packet object did not meet the criteria of being in a Flow, it was simply
appended to the deque. When every packet in the packet capture file had been
parsed, the time-deltas for each flow were updated, and the set of flows was
returned.

Measuring time between network flows

In order to perturb time between the network flows, we had to know the ini-
tial time between these flows. We implemented a function that takes as input

31

the target IP address tuples and a deque containing Flow and Packet objects,
and set the time until next flow attribute to the correct value. When all Flow
objects’ attributes were updated, the flow was returned. Since we maintained
the order of Flow and Packet objects using a deque, we simply incremented
the deque index to get the next item. If the next item matched the criteria
of being the next flow for this target tuple, as described in Algorithm 4, we
set the correct value of time until next flow and incremented the queue counter
(This saved us for quite a few iterations). We were then able to obtain the
correct duration for each network flow time-delta in the current set of Flows
and Packet objects. The time between two network flows ttimei andttimei+1 that
belong to the same subset of target tuples can then be defined as ttimei+1 − ttimei .
The functionality of measuring time between network flows was implemented
as the method measure offline duration(target tuple, flows) in Appendix C. The
pseudocode for this procedure can be described as Algorithm 4, with a helper
procedure in Algorithm 5.

Algorithm 4 Setting time between flows

1: procedure measure time between flows
2: Arguments:
3: target tuples← The IP addresses subject to measurement
4: malware packets← Deque containing all Flow and Packet objects
5: init:
6: flows← parse pcap to deque(malware packets)
7: counter = 0
8: for flow ∈ flows do
9: if isInstance(flow, F low) then . flow is Flow object

10: if flow.src ip, flow.dst ip ∈ target tuples then
11: flow.next flow, flow.time until next flow =

get timedelta next flow in(flows, counter, (flow.src ip, flow.dst ip), f low)
12: counter+ = 1
13: end if
14: end if
15: end for
16: return flows
17: end procedure

The helper method get timedelta next flow in(flows, counter, tuple, flow) is
described in Algorithm 5:

32

Algorithm 5 Get timedelta between current for and next flow.

1: procedure get timedelta next flow in
2: Arguments:
3: deque← All Flow and Packet objects
4: index← Index of the flow we are currently processing
5: tuple← The (source IP, destination IP) tuple of interest
6: cur flow ← The flow object we are currently processing
7: Init:
8: found = False
9: counter = 1

10: while ¬found do
11: if index+ counter >= len(deque) then return None, 0
12: end if
13: next flow = deque[index+ counter]
14: if isInstance(next flow, F low) then . next flow is Flow
15: if next flow.src ip, next flow.dst ip ∈ target tuple ∧

next flow /∈ cur flow.packets ∧ next flow.packets[0].packet.time ≥
cur flow.packets[0].packet.time then

16: found← True return next flow, next flow.packets[0].time−
cur flow.packets[0].packet.time

17: end if
18: else if isinstance(next flow, Packet) then . next flow is Packet
19: if next flow.src, flow.dst ∈ target tuple ∧

next flow /∈ cur flow.packets ∧ next flow.packet.time ≥
cur flow.packets[0].packet.time then

20: found ← True return next flow, next flow.packet.time −
cur flow.packets[0].packet.time

21: end if
22: end if
23: counter+ = 1
24: end while
25: return None, 0
26: end procedure

Altering timestamps of network flows

Having access to the flows set generated by parsing the packet capture file and
measuring distances between flows, we were now able to implement the alter-
ation of Packet objects’ timestamps. The pseudocode in Algorithm 5 provides
a high-level description of the procedure used to perturb the timestamps of all
objects in the flows set. The Python implementation of this procedure is lo-
cated in Appendix C, as the method redefine stored network flows(target tuples,
evolving params, iterationNo, durations, flows).

33

The goal of this procedure was to generate a new set of Flow and Packet ob-
jects that contained the same packets as the ones located in the original packet
capture file. All Packet objects had to be written back to a pcap-file, ordered
by timestamp. Each packet in the set of parsed flows could now have their
timestamps modified to reflect those given by a set of perturbation parameters.
For the implementation of the timestamp modifier, it was detrimental that all
packets belonging to the same network flow were also modified. The implemen-
tation of the Flow class combined with the initial parsing of packets and identi-
fication of a flow’s next network flow, ensured that such a functionality was pos-
sible. We implemented the methods incr timestamps() and perturb duration()
for the Flow class to handle perturbation to td next flow and flow duration, re-
spectively. The incr timestamps() method, when called on the current flow’s
next flow attribute, scews the timestamps of all packets in the flow by ingesting
an argument which reflects the perturbation. The perturb duration() method,
when called on the current flow object, perturbs the duration of that flow by
multiplying the fractions of time-deltas between every packet in the flow and
distributes the new durations evenly between all the subjected packets.

Since we wanted to observe whether - and to what extent - perturbation
of network flow parameters have an impact on detection rate, we had to col-
lect data about the perturbations that we performed. We chose to collect data
at the perturbation stage of this experiment, and updated the source code ac-
cordingly. The data points that were subject to collection included throughput,
total bytes of perturbed network flows, total duration of perturbed network flows,
total perturbed packet capture delay, total increment excluding time between net-
work flows, total time between network flows increment, and finally the evolving
params used as inputs to the perturbation algorithm. The pseudocode for per-
turbing network parameters of all flows in a flow set can be seen in Algorithm
6.

34

Algorithm 6 Changing packet timestamps

1: procedure redefine stored network flows
2: Arguments:
3: target tuples← IP tuples subject to perturbation
4: evolving params← Adaptive parameters fed to perturbation algorithm
5: iterationNo← Iteration parameter from Learning Automata
6: flows← Set of Flow and Packet object subject to perturbation
7: init:
8: for flow ∈ flows do
9: if not isInstance(flow, F low) then . flow is Packet object

10: timestamp← flow.packet.time
11: end if
12: if isInstance(flow, F low) then
13: if flow.src ip, flow.dst ip ∈ target tuples then
14: t between = flow.time until next flow
15: pre perturbation = flow.packets[−1].packet.time
16: flow params = [flow.flowsize, flow.duration, t between]
17: pert = call perturbation algorithm(flow params, evolving params)
18:

negt = {∀elem‖elem ∈ pert ∧ elem ≥ 0} 6= pert

19: while negt do . Omit negative perturbations
20: pert = run spsa([flow.flowsize, flow.duration, t between])
21: negt = {∀elem‖elem ∈ pert ∧ elem ≥ 0} ≡ pert
22: end while
23: pert duration = pert[1]
24: pert t between = pert[2]
25: next t between = pert t between− t between
26: if len(flow.packets) > 1 then . This flow has a duration.
27: if flow.next flow 6= None then
28: flow.next flow.incr timestamps(next t between)
29: end if
30: flow.perturb duration(pert duration)
31: else . This flow consists of one Packet has no duration.
32: if flow.next flow 6= None 0 then
33: flow.next flow.incr timestamps(next t between)
34: end if
35: end if
36: end if
37: end if
38: end forreturn flows
39: end procedure

35

4.1.3 Generating network flow files

Slips can read traffic either from a live ra process or from a binetflow file. If we
were to choose the first option when testing our newly generated packet cap-
ture files, we would need to replay the newly generated packet capture file to a
network interface that ra was listening to. In order to get results in a reason-
able amount of time, the packet replay would need to be sped up significantly.
This would likely need to be integrated with Slips’ interpretation and parsing
of network flow records, which could be a cumbersome task. By choosing a
solution where we replay packets, the experiments we wished to conduct would
likely suffer significant delays, making the approach unfeasible with respect to
the time we had available. For that reason, we chose to generate binetflow files
from the packet capture files generated in change pcap timestamps.py. With
Argus and Ra clients configured correctly, and with ra.conf available in our Ex-
periments directory, we used the Python module stf.core.Dataset to genereate
a STF dataset, a biargus file and finally a binetflow file. The implementation
of this functionality is included in Appendix C, located in the method rede-
fine stored network flows.py(target tuples, evolving params, iterationNo, dura-
tions, flows).

4.1.4 Procedures for parameter perturbation

After the functionality for perturbing network flow parameters was implemented,
we wanted to evaluate to what extent the manipulation of these parameters af-
fected the detection rate of malware. Since Slips computes behavioral patterns
for network connections based on network flow size, network flow duration and
periodicity [44], we wanted to cause some manual disturbance of parameters
that affect these properties. If manual perturbations affected Slips’ detection
rate on a given malware capture, we wanted to repeat the experiment using
more scientific approaches where the goal was to minimize the perturbations’
negative impact on network connection delays. Finally, if we to some extent
were able to minimize the impact on connection delays, we wanted to adopt a
type of machine learning algorithm that optimize the parameters used with the
given algorithms.

An important aspect when generating random perturbations, and in partic-
ular for problems that utilize Stochastic Optimization, is the objective function.
Since we mainly focused on perturbing the periodicity of network flows, and
therefore did not perturb the size of network flows, perturbation to that vari-
able does not really impact our resulting packet capture in any way. However,
we could still use this variable in our objective function, whether the goal was
to reduce the amount of time used by malicious connections or, to make it as
similar to the original traffic as possible. Moreover, we can use the information
gained by the objective function as feedback to other optimization problems,

36

for instance as a means to generate parameters for a perturbation algorithm. If
we want to increase throughput, we may define our objective function as ŷ,

ŷi = argmin
D

flowsizei

flowDi
, (6)

where D is the product of the duration of the ith network flow and the time
until its next network flow.

In scenarios where it is desirable to minimize the difference in throughput,
the objective function may for instance minimize the euclidean distance between
the perturbed sample and the original input. The objective function ŷ could
then be denoted as the 2-norm distance between the two samples x and y, where
x is the observed data and y is its perturbed version:

ŷ = (
n∑

i=1

‖xi − yi‖2)1/2. (7)

Depending on what problem is to be solved, however, it is often hard to
obtain a direct gradient of the objective function, particularly if one has con-
tinuous or generative data. In such cases it could be a good idea to rely on
a technique that does not require measurements of the direct gradient of the
objective function.

Randomly generated threshold-based perturbations

This experiment was intended as an initial assessment of the effect that random
perturbation had to Slips’ detection and classification mechanisms. We created
an object of PerturbationOptimizer (see Appendix D) and called the method
random vector with threshold(thresholds) to receive our perturbation parame-
ters. The generation of a random perturbation vector is described in algorithm
7.

37

Algorithm 7 Getting threshold-based random perturbation parameters

1: procedure random vector with thresholds
2: Argument:
3: thresholds← 2D list of bounds for each parameter
4: init:
5: sizelower, sizeupper ← thresholds[0][0], thresholds[0][1]
6: durationlower, durationupper ← thresholds[1][0], thresholds[1][1]
7: t betweenlower, t betweenupper ← thresholds[2][0], thresholds[2][1]
8: vector = [rnd(sizelower, sizeupper),
9: rnd(durationlower, durationupper),

10: rnd(t betweenlower, t betweenupper)]
11: return vector
12: end procedure

By performing random perturbations to the network flow parameters, we
could gain insight into how Slips reacted when the time-aspect of malicious
traffic was altered. We investigated whether the newly generated packet capture
file was detected as malicious by Slips, and to what extent the new parameters
affected the periodicity of network flows.

Adaptive Step-Size Random Search Algorithm

The ASRS Algorithm [25] was implemented to take as input a set of boundaries
that defined the maximum amount of distance each step could take. Additional
inputs were perturbation factors for each parameter subject to perturbation, as
well as one factor for small step sizes and one factor for large step sizes. The
ASRS algorithm was implemented to trial a large step size for each iteration
and adopt the larger step size if it yielded a better result. The ASRS algorithm
is described using pseudo-code in Algorithm 8.

38

Algorithm 8 Adaptive Step-Size Random Search Algorithm

1: procedure adaptive random search
2: Arguments :
3: itermax ← Max amount of iterations for one session
4: bounds← 2D list representing bounds, i.e. problem size
5: init factorbytes ← initialization factor for the bytes parameter
6: init factorduration ← initialization factor for the duration parameter
7: init factorbetween ← initialization factor for the t between parameter
8: pertsmall ← perturbation factor for small step size
9: pertlarge ← perturbation factor for large step size

10: itermult ← how often step size is multiplied by pertlarge
11: max no impr ← Max amount of unsuccessful attempts before reducing step size
12: init:
13: step size = list()
14: step size.append((bounds[0][1]− bounds[0][0]) ∗ init factorbytes)
15: step size.append((bounds[1][1]− bounds[1][0]) ∗ init factorduration)
16: step size.append((bounds[2][1]− bounds[2][0]) ∗ init factorbetween)
17: current, count = {}, 0
18: current[”vector”] = random vector(bounds)
19: current[”cost”] = objective function(current[”vector”], step size)
20: while iter ≤ itermax do
21: big stepsize = large step size(iter, step size, s factor, l factor, itermult)
22: step, big step = take steps(bounds, current, step size, big stepsize)
23: good cost small step = step[”cost”] <= current[”cost”]
24: good cost big step = big step[”cost”] <= current[”cost”]
25: if good cost small step ∨ good cost big step then
26: if big step[”cost”] ≤ step[”cost”] then
27: step size, current = big stepsize, big step
28: else
29: current = step
30: end if
31: count = 0
32: else
33: count+ = 1
34: if count ≥ max no impr then
35: step size = [x/s factorforxinstep size]
36: end if
37: end if
38: iter+ = 1
39: end while
40: return current
41: end procedure

This algorithm was implemented according to the description in [25] and

39

modified to include the perturbation of three parameters. The implementation
was written in Python 2.7 and added as a function to the class PerturbationOp-
timizer (see Appendix D).

Simultaneous Perturbation Stochastic Approximation

Simultaneous Perturbation Stochastic Approximation (SPSA) is an algorithm
used to solve challenging optimization problems where it is difficult or impossible
to obtain a gradient of the objective function [28]. In our case, it was not possible
to know the gradient of a certain configuration because we did not know whether
the flow would be classified as malicious or not at the time of perturbation.
SPSA, in contrast to optimization algorithms that work with discrete noise-free
data, relies on two separate measurements of the objective function to obtain
an approximation of the gradient, regardless of the number of parameters being
optimized. This ”two-step”, simultaneous approach is desirable for solving our
optimization problem because the data we attempt to provide perturbations for,
while trying to reach a particular objective for each iteration, is both continuous
and noisy. SPSA is applicable to a variety of problems within engineering and
social sciences, but must be adapted to fit each use case. We chose to implement
SPSA because of its versatility with respect to different optimization problems
and objective functions, such that we may extend functionality at a later point
if desirable.

The goal of SPSA in our case is to minimize the loss function ŷ(θ), where
the loss function is a scalar-valued measurement of performance, and theta is
the vector of parameters to be perturbed. SPSA starts by iterating from an
initial guess of theta, a vector which in our case is based on measurements of a
network flow. We can then obtain measurements ȳ(θ) of the loss function ŷ(θ)
by adding noise to the initial loss function:

ȳ(θ) = ŷ(θ) + ζ, (8)

where ζ is the added noise. When we have exact measurements, however,
adding noise is not necessarily desirable. We implemented support for two
different objective functions, namely throughput maximization and Euclidean
Distance minimization and slightly increased the noisiness of the value by adding
a random variable chosen from a gaussian distribution of 0±0.1 to θ. The SPSA
algorithm was implemented by completing the following steps:

We selected initial values for α, γ, c, a, n and the vector β as 0.602, 0.101,
1, 1, 1000 and [0.1, 0.9], respectively. Then, we defined two iterators, or gain
sequences, as

40

ai =
a

(β[1]× (i+ 1))α
, for i ∈ {0, ..., n} (9)

and

ci =
c

(β[0]× (i+ 1) ∗ 0.5)γ
, for i ∈ {0, ..., n}. (10)

The gain sequences were created so that they would not produce values of θ̂
with excessively large magnitude of perturbation.

Furthermore, we generated an initial Simultaneous Perturbation Vector δ0
by selecting one Bernoulli-value for each parameter subject to perturbation,
such that δ0 = [±1,±1,±1]. Bernoulli-values were selected due to the require-
ments stated in [28] Section III. A. We then started iterating over SPSA with
n iterations. For each iteration k, we computed the following [28]:

• Two objective function evaluations: Two measurements of the loss
function ŷ(θ) based on the simultaneous perturbation around θ̂k. The

two perturbations were calculated as θ̂k1 = y(θ̂k + ck × δk) and θ̂k2 =

y(θ̂k − ck × δk), where ck is the gain sequence as defined in Formula 9.

• Simultaneous Perturbation Gradient Approximation: An approx-
imation to the unknown gradient g(θ̂k) as

gk(θ̂k) =
θ̂k1 − θ̂k2

2× ck
(11)

• Estimate update: The next estimate of θ̂, denoted as θ̂k+1 was then
computed as the difference between θ̂k and gk(θ̂k) × ak, where ak is the
kth element of our gain sequence a:

θ̂k+1 = θ̂k − gk(θ̂k)× ak (12)

• Termination: SPSA terminates if there is little change over several suc-
cessive iterates or the maximum number of iterations has been reached.
If these conditions are not met, k is incremented and a new iteration is
initiated.

41

The implementation of the SPSA algorithm was based on the GitHub Gist
user yantan16 ’s implementation of SPSA using python iterators [46]. The solu-
tion was first modified to meet the needs of this project and then integrated with
the python module perturbation optimizer.py, as seen in Appendix D. Guide-
lines for selection of gain sequences in [28] were used in an attempt to select
viable parameters for our implementation of the SPSA algorithm.

4.1.5 Learning Automaton

Since we did not know for sure what were the optimal parameters for creating
gain sequences while performing SPSA, we wanted to optimize this aspect of
our problem as well. We did this by implementing a Pursuit-based Learning
Automaton as described in [30] and based on the pseudo-code in Algorithm
3. The values β[0] and β[1] as seen in in formula 9 and 10, were subject to
optimization. In the implementation of the LA, they were given the minimum
and maximum thresholds of amin = 0.05, amax = 0.5 and bmin = 0.5, bmax =
0.1, respectively. We then defined two vectors with length N , containing 100
different configurations for the parameters a and b as A and B. Then we created
two additional vectors also with length N whose indices n were mapped to
probabilities that we selected the nth configuration of A and B, respectively.
For each iteration, the LA tried the action of SPSA on our environment with
different configurations for the vector β. Its ultimate goal was to maximize
throughput of network flows while remaining undetected by Slips.

4.1.6 Container Environment

Docker was the obvious choice of container engine selected for this task. A
baseline Dockerfile that could be used to configure a container with all exper-
iment code can be viewed in Appendix A. Following is a short description of
the most important components installed on each platform, along with a short
explanation to why they were necessary for the experiment:

• net-tools: Includes binaries such as netstat and ifconfig, which eases the
process of diagnosing potential networking issues.

• git: Enables us to fetch git resources.

• python2.7: The programming language that Slips is based upon. All
code is written in Python 2.7.

• iptables: The firewall that enables IP-blocking functionality in Slips. Not
relevant for the experiments conducted when modifying packet captures,
but necessary for Slips to compile and run.

42

• From Github: Stratosphere Linux IPS (branch: develop): Con-
tains Stratosphere Linux IPS along with the models used for detection.

• From Github: Stratosphere Testing Framework (branch: mas-
ter): Includes modules that enable us to generate biargus files and binet-
flow files. Also includes additional modules that are handy when gener-
ating statistics on network flow files.

• From Qosient: argus and argus-clients: Audit Record Generation
and Utilization System - required by Stratosphere Testing Framework to
generate and analyze flow records. Includes the binaries argus and ra,
which are vital components when using STF and Slips.

• wireshark-common, tshark, tcpdump, libpcap0.8-dev, flex, bi-
son, make, gcc, libncurses5-dev, libgeoip-dev, zlib1g-dev, libread-
line7, libreadline6-dev, libssd-dev, libwrap0-dev: dependencies of
argus and argus-clients.

• python-pip: Necessary for installing python packets.

• python-pip: prettytable, zodb, transaction, btrees, persistent-
pip: Python libraries that are dependencies of Slips and STF

• python-pip: scapy, numpy, matplotlib, pickle, pandas: additional
python libraries necessary for self-implemented code.

• python-tk: required to work with the python pandas module.

• adaptive random search.py: Implementation of adaptive random search
for simple parameter perturbation.

• change pcap timestamps.py: Implementation of the module that mod-
ified timestamps of packet capture files.

• spsa-slips.py: Implementation of Simultaneous Perturbation Stochastic
Approximation algorithm for parameter perturbation.

• la slips.py: Implementation of Learning Automaton for optimization of
alogrithmic parameters

In order to get a viable range of results, it was desirable to run the exper-
iments on an infrastructure that let us process multiple experiments simulta-
neously in isolated and independent environments. Docker Compose as a tool
to run multi-container Docker applications was the natural choice for this task,
and allowed us to scale with ease and take full advantage of the resources pro-
vided by the underlying platform. A Dockerfile with a select set of the above
dependencies and file inclusions was created for each experiment. Then, im-
ages were created for each experiment and considered ready to be deployed in

43

our multi-application environment. Having the file docker-compose.yml (Ap-
pendix B) available in our Experiments Directory, we ran docker-compose up
-d to boot an instance of all experiments. The amount of containers running
a particular experiment was then scaled up or down by issuing the command
docker-compose scale experiment-name=*number of desired active containers*.
The platform that we ran our experiments on was a virtualized Ubuntu 16.04
operating system with 16GB RAM and 8 Virtual CPUs. This host was running
a docker daemon, enabling containerization of experiments. We ran a total of
5 different experiments on the modification of existing packet captures. The
experiments were run as 5 different services in a Docker Compose cluster and
each service was scaled up to five units. After the services had completed their
tasks, data was collected from each container by running the script in Listing 1.

1 import docker

2 import collections

3

4 client = docker.from_env()

5 all_containers = client.containers.list(all=True)

6 relevant_containers = all_containers[:25]

7 container_dict = collections.defaultdict(list)

8

9 for i in relevant_containers:

10 print(i.labels)

11 if "random" in i.name:

12 container_dict["1-random-perturbation"].append(i)

13 elif "2-adaptive" in i.name:

14 container_dict["2-adaptive-stepsize"].append(i)

15 elif "3-simultaneous" in i.name:

16 container_dict["3-simultaneous-perturbation"].append(i)

17 elif "4-learning-automata" in i.name:

18 container_dict["4-learning-automata"].append(i)

19 elif "5-learning-automata-euclidean" in i.name:

20 container_dict["5-learning-automata-euclidean"].append(i)

21 for k, v in container_dict.items():

22 counter = 0

23 for i in v:

24 filename = i.name + ".tar"

25 f = open(filename, "wb")

26 bits, stat = i.get_archive("home/ubuntu/SlipsExperiments/data")

27 for chunk in bits:

28 f.write(chunk)

29 f.close()

44

4.2 Semi-realistic Attack Scenario

The experiments described in this section aimed to test the feasibility of be-
havioral analysis systems in a semi-realistic environment that has already been
compromised by an attacker. The attack scenario could be described as the
C&C stage of a read team exercise [47], where it is assumed that a malicious
entity already has compromised at least one host within a victim network, and
that privileges are escalated to the extent that attackers are able to install ar-
bitrary software on the host. During the C&C stage of a red team exercise, it is
detrimental that penetration testers do not give away that they have compro-
mised infrastructure on target systems. For that reason, when a communication
channel with the control server is to be established, it is desirable that the mal-
ware’s communication channel remains hidden from any IPS agents analyzing
traffic on internal or external network endpoints.

4.2.1 Objectives

Substantial digital infrastructure was required to simulate the semi-realistic en-
vironment and software that this experiment required. The technical aspects of
this set of experiments consisted of four main contributions:

• A portable, platform-independent container environment running digital
infrastructure and code needed to support the experiments conducted.

• Two Discord bots interacting with each other over the Internet that can
dynamically adapt network packet size, connection flow duration and
amount of seconds to wait before initiating a new connection flow. The
two discord bots implement the server and client functionality needed to
conduct C&C acitivity. This structure resembles that of a centralized C&C
architecture [6].

• Middleware that manages low-level network packet manipulation and com-
munication between discord bots and a malicious trojan.

• A perturbation algorithm that is able to continuously feed the C2 channel
with new network flow perturbation parameters.

4.2.2 Container environment

The technology used for creating a containerized environment is docker-compose
[48]. To simulate a minimal but realistic environment, we deployed two services,
both running Ubuntu 16.04 on kernels virtualized in Docker 18.06.1.

45

• argus-rdp-client resembles an organization’s workstation and runs a Re-
mote Desktop process for remote access to local resources. The host’s only
external-facing network interface is being monitored by an argus process
running on the host, transmitting network flow logs to port 561. The
owner of this workstation frequently uses a Discord client to communi-
cate with peers. RDPClient is also infected by the AdaptiveC2Trojan
trojan [49].

• ips1 is a service dedicated to collecting network flow logs in the organiza-
tion’s internal network and monitoring them for anomalous behavior. The
software that monitors network traffic is Slips. Security personnel in the
target organization have collected network flows from benign traffic and
used these to create models of what type of traffic should be considered
normal. More importantly, they have security personnel have recorded
data on the network traffic of malware typical to Discord, and use NBA to
detect any significant similarity between live network traffic and malicious
models. Hence, Slips’ behavioral models can detect suspicious activity in
Discord network flows over pre-defined periods of time.

Details for the configuration of the above-mentioned services can be found
in the GitHub repository for this project [50], but will not be included in this
report.

4.2.3 Argus configuration

The monitoring setup used for this project was highly simplified, but never-
theless suitable for the demonstrative purposes required to solve the problem
statement. Below are the configuration details for argus-rdp-client and ips1,
respectively.

argus-rdp-client

A comprehensive set of software components were required in order to run argus.
All software dependencies were installed as part of the Docker image that is used
for deployment of the infrastructure. Argus’ configuration was based on the
documentation provided by [51] and argus’ man page. The apt-binaries, external
tarballs, pip packages and configuration commands, as stated in Appendix F.X
were added to ubuntu-xrdp’s Dockerfile [52] and remain pre-installed on argus-
rdp-client ’s host. This configuration should install any binaries and packages
necessary for Argus to be able to run. Furthermore, the latest argus bundles
are pulled from their respective sources before they were configured, made and
installed.

46

argus-rdp-client by default exposes network flow logs on port 561, and a set
of additional metrics are specified in argus’ configuration file. Argus had to be
configured to transmit the network flow metrics we expected to receive on ips1.
The following configuration was set in /etc/argus.conf on argus-rdp-client to
meet those requirements:

ARGUS FLOW TYPE=” B i d i r e c t i o n a l ”
ARGUS FLOW KEY=”CLASSIC 5 TUPLE”
ARGUS ACCESS PORT=561
ARGUS INTERFACE=any
ARGUS FLOW STATUS INTERVAL=300
ARGUS MAR STATUS INTERVAL=60
ARGUS GENERATE RESPONSE TIME DATA=yes
ARGUS GENERATE PACKET SIZE=yes
ARGUS GENERATE JITTER DATA=yes
ARGUS GENERATE MAC DATA=yes
ARGUS GENERATE APPBYTE METRIC=yes
ARGUS GENERATE TCP PERF METRIC=yes
ARGUS GENERATE BIDIRECTIONAL TIMESTAMPS=yes
ARGUS CAPTURE DATA LEN=600
ARGUS FILTER OPTIMIZER=yes
ARGUS KEYSTROKE=” yes ”

If configured according to the above settings, Argus could then be run as a
daemon exposing network flows on port 561 by issuing the command argus -i
eth0 -d :

root@ce2628a055f4 : / home/ubuntu# argus −i e th0
ArgusAlert : 10 Nov 18 21 : 14 : 48 . 414642 s t a r t e d
ArgusAlert : 10 Nov 18 21 : 14 : 48 . 492937

ArgusGetInter faceStatus : i n t e r f a c e eth0 i s up

ips1

Ra was installed on ips1 according to the specification in [51]. On ips1, ra
was run as a program with its standard output piped to the Slips application.
The command ra -f StratosphereLinuxIPS/ra.conf -n -Z b | python slips.py -c
slips.conf -f models/ -d was issued in order for ra to listen to the network inter-
face eth0 on port 561, transmitting all network flow logs to the Slips application.
By applying the models specified in the models/ directory, Slips performs be-
havioral analysis on the incoming network flow data and determines whether it
matches an existing profile.

47

4.2.4 Adaptive C&C Trojan

The implementation of this project’s C2 malware resembled that of a simplified
centralized C&C architecture because the bot(s) attempted to establish their
communication channel with a limited amount of C2 servers. For the scenario
this project’s experiment is based upon, a set of assumptions were made:

• The attacker has already overcome initial infection, secondary infection
and connection phases and is at a stage of infection where the objective
is to maintain malicious C&C [6].

• Slips for network behavior analysis is the only IDPS mechanism that exists
in the network.

• The attacker has compromised a user of the popular communication ser-
vice Discord and may communicate over this channel with an arbitrary
peer.

• The attacker tolerates significant delay in communication with infected
hosts because network parameters related to time must be dynamically
adaptable.

Discord bots

The discord bots used for communication between C2 server and infected host
need to be able to perform a set of delay-tolerant core procedures:

• Client: Submit heartbeat message to C2 server and wait for a response
to confirm that it is online.

• Client: Retrieve an instruction set from the C2 server.

• Client: Retrieve perturbation instruction set from the C2 server. (Or
generate this set on the host, transmitting the perturbed parameters to
the server)

• Client: Execute instruction sets and provide feedback on the results.

• Client: For each communication flow, dynamically adjust relevant net-
work parameters.

• Server: Transmit partially fragmented instruction sets with perturba-
tions on time- and size related parameters according to payload received
from client.

48

Unfortunately, this is as far as we came with respect to a Semi-realistic
Attack Scenario. The ambition of implementing a bot whose behavior
changed based on perturbations to continuous network parameters was
somewhat out of reach based on the time available for this project. We
were able to implement some bot-like features over the Discord API, but
lacked the time necessary to produce code for adaptive botnet behavior,
middleware between the Discord API and trojan software and low-level
packet manipulation modules. Some additional thoughts on this part of the
project is provided in chapter 6.

5 Results

This section provides a short description of the experiments that were conducted
as part of this project and the results produced by each experiment. The exper-
iments were designed to provide data that reflected the performance of Slips,
or to serve as building blocks that justify other experiments conducted in this
project. Data collected from the experiments were stored as Pickle objects. The
graphs throughout this section are based on pickled objects and pandas data
frames. Figure 4 represents an overview of the experiments that were conducted
as part of this project.

Figure 4: Experiments conducted as part of this project.

A central part of the experiments involves measuring the performance of our
perturbation techniques by evaluating the magnitude of perturbation (See 3.2.2
- Perturbation measurement and 4.1.4 Formula 6, 7). The magnitude of pertur-
bation is defined as the Euclidean distance between the perturbed vector and
the observed vector in the time, flow size space. However, since we have two
values that affect the time space - namely duration and time between network
flows, and since we have objective functions that use the parameter size defined,
it is important to note that any change in size may also affect the magnitude
of perturbation, and for SPSA and LA also the time-related parameters. This

49

is important because it implies that there are dependencies between the size
parameter and time-related parameters despite the fact that we do not change
the actual size of network flows. Hence, the magnitude attribute does not nec-
essarily represent only the performance of the time-related perturbations.

5.1 Malicious Packet Capture Files

The network flow parsing procedure that was implemented as a core function-
ality of this project required an initial packet capture file as input. We selected
two different packet capture files from [53] whose malware show different C&C
behavior. The network flows generated by the two different types of malware
match models in Slips’ models/ directory and their behavior, if unmodified, is
hence evaluated as malicious. The two packet capture files that were subject to
processing were CTU25-3 (CTU25-3) [22] and CTU Malware Capture Botnet
108-1 (CTU108-1) [54]. The first packet capture file represents the C&C be-
havior of Zbot malware [55], which primarily consists of short DNS connections
between the IP addresses (10.0.2.103, 8.8.8.8). The second packet capture file
likely represent behavior associated with the Cridex Trojan [56], whose mali-
cious behavior is observed as connections between the IP addresses (10.0.2.107,
212.59.117.207) and (10.0.2.107, 91.222.139.45). These IP tuples were used as
values for the attribute target tuples in the implementation of packet parsing
procedures. In order to extract meaningful information from the results of our
experiments, an initial assessment of the two packet capture files will serve as a
benchmark for analysis.

5.1.1 Zbot characteristics

We added the original packet capture file from [22] to an STF dataset by nav-
igating to the StratosphereTestingFramework folder and issuing the command
python stf.py to open the STF console, followed by the command datasets -c
/home/ubuntu/SlipsExperiments/trials/2014-02-07 capture-win3.pcap to select
our packet capture file as part of a dataset. We then generated biargus and
binetflow files by issuing the command datasets -g, and a list of connections by
issuing connections -g. The connections related to the generated dataset could
then be displayed by issuing connections -L 0. From this overview, we observed
that there were a total of 2669 connections between the IP addresses 10.0.2.103
and 8.8.8.8. Furthermore, we were now able to investigate some behavioral char-
acteristics of the network flows belonging to those connections by issuing the
command connections -H 10.0.2.3-8.8.8.8-53-udp. We observed that 99.25% of
connections in this packet capture file had a duration of 0.01 seconds, depicted
as the screenshot in Figure 5:

50

Figure 5: Duration of connections in CTU25-3

To generate the models that STF uses when comparing incoming network
traffic with known malicious patterns, we may issue the STF console command
models -g. Since connections for the tuple 10.0.2.103-8.8.8.8-53-udp represented
a majority of connections in this packet capture, its state representation in
STF is quite long. By comparing the state representation values for the tu-
ple 10.0.2.103-8.8.8.8-53-udp in Figure 6 with the character representations in
Figure 1, we can see that the flows in these connections have short durations,
small- to medium network flow sizes and strong periodicity. Figure 6 is meant
to show a minimal representation of our subject tuple’s state, as represented in
the STF console.

Figure 6: State representation of 10.0.2.3-8.8.8.8-53-udp in CTU25-3.

This state matches a model in the Slips/models directory, namely the From-
Botnet-UDP-DNS-DGA-17 model, and the IP address 10.0.2.103 is for that
reason evaluated as malicious when the binetflow file is provided as input to
Slips.

5.1.2 Cridex characteristics

Due to the packet parser’s poor performance (See Section 4.1.2 - Parsing the
packet capture file), we chose to extract the first 1000 packets from this packet

51

capture file, if Slips was able to detect malicious behavior on the pcap’s binetflow
representation. As with Zbot, we added the sliced packet capture file for the
Cridex Trojan to an STF dataset in order to evaluate its baseline characteristics.
The new binetflow file was created and added to the trials/ directory as 2015-
03-09 capture-win7-first1k.pcap. By looking at its connections, we identified
two outlier connections as 10.0.2.107-212.59.117.207-8080-tcp and 10.0.2.107-
91.222.139.45-8080-tcp, responsible for 108 and 107 flows, respectively. Of a
total of 234 flows, the two outlier connections had 215 flows combined, as seen
in Figure 7.

Figure 7: Outlier connections

These IPs were chosen as candidates for the value of target tuples for exper-
iments using this packet capture file.

We confirmed that Slips was able to evaluate Cridex’ new binetflow file as
malicious by running the command python slips.py -c slips.conf -f models/ -r
/home/ubuntu/SlipsExperiments/trials/2015-03-09 capture-win7-first1k.binetflow
-e 5, as seen in Figure 8. The -e 5 option was added as an argument to slips.py
to display more detailed information about the model that triggered on our
binetflow file.

52

Figure 8: After analyzing the first 1000 packets of CTU108-1, the IP address
10.0.2.107 received the verdict malicious.

5.2 Modifying existing packet captures

5.2.1 Random threshold-based perturbation

A 2D python list representing thresholds for the random perturbation function
was defined as

[[flow.length - (flow.length * 0.2), flow.length + (flow.length *

0.2)], [flow.td - (flow.td*0.3), flow.td + (flow.td * 0.35)],

[td_next - (td_next*0.3), td_next + td_next*(0.25)]],

↪→

↪→

and provided as an argument to the random perturbation() function for each
flow subject to perturbation. Recall that the size parameter does not affect the
size of flows, but has an impact on magnitude. The packet capture from CTU25-
3 was provided as input to the packet parser. We ran a total of two iterations of
random threshold-based perturbation using this configuration. By investigating
the amount of flows per connection in the newly created binetflow files, we
observed no change from the initial network flow capture (See 5.1.1), as seen
in Figure 9. This was a strong indication that the packet parsing procedure
worked as expected.

53

Figure 9: Amount of network flows per connection after parsing and perturbing
network flow parameters on CTU25-3. The connection 10.0.2.103-8.8.8.8-53-
udp has Connection Number 28, with 2669 flows.

Furthermore, we observed that by using the perturbation thresholds defined
in p1, we produce a large amount of perturbation while not triggering any Slips
alerts. Table 1 represents an overview of the first 4 iterations of this experiment,
using different sets of threshold parameters. We observed that, by providing
considerable or only a slight amount random perturbation to each parameter,
we may evade detection.

Iter Detected Thresholds Duration Thresholds TD
0 Yes tlower = 0, tupper = 0 tlower = 0, tupper = 0
1 No tlower = 0.3, tupper = 0.35 tlower = 0.3, tupper = 0.25
2 No tlower = 0.03, tupper = 0.035 tlower = 0.03, tupper = 0.025
3 Yes tlower = 0.0003, tupper = 0.00035 tlower = 0.0003, tupper = 0.00025

Table 1: Varying thresholds for Random Perturbation

Since this packet capture file consists of a set of connections where most
packets belong to the same flow, a single perturbation to the flows object would
affect the timing of all other packets in that flow. CTU25-3 only contains one
malicious connection, so a perturbation to that flow object will affect almost all
the packets in the capture file.

By comparing the models generated from the initial CTU25-3 binetflow file

54

Figure 10: Magnitute of perturbation per flow for iteration 1

with the binetflow file from iteration 3, which was detected by Slips as malicious,
we observed that while the connections retained a high degree of periodicity,
they increased significantly in duration.

Furthermore, for each of the three runs that had their parameters perturbed,
we recorded the magnitude of all perturbations as the average Euclidean distance
between the perturbed connections and the original connections. The Euclidean
distance was calculated as the p-norm distance between the average of original
network flow parameters, and the perturbed version of those parameters.

Iter Mean Magnitude Detected Final Timestamp
0 0 True 5754.224
1 26.68 False 5752.725
2 2.78 False 5752.679
3 0.68 True 5752.954

Table 2: Magnitudes for perturbations with varying thresholds on CTU25-3

By looking at iteration 1, we observe that the magnitude of perturbation does
not necessarily correspond with a large change in the final perturbed duration,
because we select random values from around the initial values from a uniform
distribution. This could indicate that, by choosing to only select random values
from a uniform distribution, we will approximate the initial value in the long
run, which is not desirable if the goal is to reduce the level of periodicity of
network flow patterns.

55

Figure 11: Magnitute of perturbation per flow for iteration 3

5.2.2 Adaptive Step-size Random Search

Since ASRS is also threshold-based, we wanted to run a larger amount of itera-
tions using the same set of parameters as in Iteration 2 of 5.2.1, with the goal of
observing whether a slightly more intelligent way of selecting perturbation pa-
rameters could result in a smaller magnitude of perturbation. Furthermore, we
decided to run the SPSA algorithm with the Cridex dataset, such that we could
look at flows with some varying flow characteristics. We defined the following
2D python list:

[[flow.length - (flow.length * 0.2), flow.length + (flow.length *

0.2)], [flow.td - (flow.td*0.3), flow.td + (flow.td * 0.35)],

[td_next - (td_next*0.3), td_next + td_next*(0.25)]],

↪→

↪→

With respect to magnitude per flow, ASRS performed a lot better than
simple random variables. When using the same parameters as in Iteration 2 of
5.2.1, the average magnitude was 1.96, compared to the much higher 2.78 using
random thresholds.

By observing the magnitudes of perturbation per flow in Figure 12, we spot
one outlier network flow, with roughly 5 times the average value:

56

Figure 12: Magnitude of perturbation per flow for CTU108-1 using ASRS

Because ASRS bases perturbation on initial values and thresholds, it is very
likely that this is due a larg observational value.

The mean standard deviation of magnitude for CTU108-1 using ASRS was
measured to 1.60, while the mean variance was measured to 2.75.

If our goal is to minimize magnitude while remaining undetected, ASRS
provides us with a consistent improvement in performance because it yields a
smaller magnitude of perturbation while remaining undetected in all cases.

Iter Mean Magnitude Detected
0 0 True
1 20.68 False
2 1.96 False
3 0.41 False

Table 3: Magnitudes for perturbations with varying thresholds on CTU108-1

5.2.3 Simultaneous Perturbation Stochastic Approximation

This experiment did not require any bounds or thresholds in order to run the
perturbation algorithm. Using the static default parameters for the vector β as
[0.1, 0.9] to generate gain sequences, we ran a total of 50 iterations. We used

57

the objective function as stated in Formula 6 for maximizing throughput. All
solutions generated by the SPSA were feasible, i.e. not detected as Slips as
malicious. The mean of the mean magnitudes for all trials was 4.18, indicating
an increase compared to the ASRS algorithm. This is likely because we, for these
trials, used the objective function that attempted to maximize throughput by
minimizing duration of flows and the time between flows.

Figure 13: Magnitude of perturbation per flow for 4 iterations on CTU108-1
using SPSA with static gain sequence parameters.

We can observe from the graph in Figure 13 not only that the magnitudes
are more severe than when using the ASRS algorith, but that the variance
in magnitude is also significantly increased. We measured the mean standard
deviation and variance for all 50 iterations of this experiment to 4.78 and 2.18,
respectively. This could imply that the algorithm’s gain sequence parameters
are not sufficiently tuned to work with our solution.

5.2.4 Simultaneous Perturbation Stochastic Approximation with Learn-
ing Automaton

We deployed an experiment on our implementation of the LA by initializing 15
iterations on the Learning Automaton, first using the objective function stated
in Formula 6 for maximizing throughput. By looking at Figure 14, we ob-
serve that the magnitude of perturbation on average declines in the direction of
positive iterations, suggesting that the SPSA algorithm could receive improved

58

parameters over time.

Figure 14: 15 iterations over CTU108-1 using SPSA with dynamic gain sequence
parameters and a throughput-optimizing objective function.

However, we also observe a spike in magnitude on the last iteration, in-
dicating that the LA hit a roulette selection with corresponding parameters
that yielded a higher magnitude, i.e a reduced reward, for its iteration. If we
were to conduct an experiment with a significantly higher amount of iterations,
we would have been able to observe a much better overview of the effect that
dynamic gain sequence parameters had on the SPSA algorithm.

We ran a final experiment on the LA using SPSA with the Euclidean ob-
jective function as stated in Formula 7. We ran a total of 25 iterations and
observed the average magnitude of perturbation for each iteration as shown in
Figure 15.

59

Figure 15: 25 iterations over CTU108-1 using SPSA with dynamic gain sequence
parameters and a Euclidean distance-optimizing objective function

The average magnitude of perturbation in Figure 15 is significantly lower
than that of Figure 14. This is the expected result because the objective function
in this experiment aims to minimize magnitude for each SPSA iteration.

Objective Mean Var STD Iterations
Formula 6 3.472 0.284 0.533 15
Formula 7 2.220 0.236 0.486 25

Table 4: Two experiments using LA with SPSA for the objective functions
defined in Formula 6 and 7.

By inspecting the overview of mean, average and standard deviation for the
average magnitude in the two different experiments, we can see that the values
for mean and variance differ by roughly 16% and 8%, respectively. This is
not a significant amount of difference, particularly considering we ran different
amount of iterations for each experiment. We can not conclude on the best set
of parameters because we have not executed enough iterations on the LA.

60

5.3 Semi-realistic Attack Scenario

Unfortunately, due to lack of a feasible implementation, we were not able to
conduct any experiments on this matter. For that reason, no results are avail-
able.

6 Discussion and Future Research

6.1 Problem statement

We initially wanted to investigate whether one could perturb the network param-
eters of live network traffic and hence be able to practically confuse NBA. The
packet parsing procedures and their testing against Slips were initially meant
as short reconnaissance studies that would serve as justifying factors for further
experiments on the manner. However, as these initial investigations proved to
be more and more time-consuming, it became natural to make them the main
focus of this project. Implementing a tool to use intelligent perturbation tech-
niques for further testing of Slips could serve as an interesting topic for future
research, but would require significantly more time than what was available for
this project.

Additionally, a project of the above-mentioned nature would absolutely need
to focus more on how one could improve current solutions, an aspect this project
to some extent lacked. It is detrimental that security-related research has an
ultimate goal of hardening systems, which future research on this topic would
indeed require.

6.2 Related Work

Finding research and selecting topics for this section was not hard, but structur-
ing the vast amount of different information into a logical build-up with relevant
content was not trivial. Most of the research done on adversarial machine learn-
ing employed some sort of deep learning algorithm, which was out of scope for
this project. We extracted the information that was relevant to our problem
statement and attempted to apply it to our own approach, to the extent where
that was possible. For instance, the concept of providing perturbation to pa-
rameters was applicable to our problem domain, so we attempted to use those
same concepts on our own simplified model for parameter perturbation. Because
of the large amount of research done on adversarial deep learning systems, fu-
ture projects on the topic of evading behavioral IDS may choose an approach
where more advanced artificial intelligence is used as a tool for adapting network

61

parameters.

6.3 Approach

We started the coding of this project by building the elementary components of
the packet parsing functionality. We could have had an even more structured
approach in this regard, considering that the potential for improvement of the
final product’s run-time execution was significant.

6.3.1 Key Concepts and Class Structures

Flow class structure: We wanted to maintain a Flow class structure with
reduced complexity to ease the workload associated with the implementation.
For this reason, we chose to omit packets that were not IPv4 packets from Flow
objects. This implies that we categorize packets that are part of protocols such
as IPv6, ARP, DHCP, etc, as single packets not belonging to any Flow object.
We recognize that by choosing to exclude such packets from Flow objects, we
limited ourselves to only parse packet capture files whose malicious behavior
was generated by applications that only use the IPv4 protocol. When the logic
surrounding network flow objects was built, we based the concepts on Cisco’s
NetFlow standard and extracted the features that we wanted to use [57]. Ex-
cluded features of Cisco’s NetFlow standard included Ingress interface and IP
Type of Service. We ensured that we did not rely on these parameters while
parsing any of the files used in the experiments.

Flows set data structure: The data structure used when storing Flow and
Packet objects was not ideal. In fact, this remained a significant limitation to
the implementation of the packet parser because the operation of adding Packet
objects to their respective Flows was far too complex. The execution time of the
measure time between flows() method was T (n) ∈ O(n2), which rendered this
solution not feasible for large packet files. There was no good reason to choose
a deque as data structure, especially since we don’t use any of its properties.
If we had instead used a B-tree, using the Packet object’s PacketNo as search
index, we could reduce the packet parser’s complexity T (n) down to an improved
T (n) ∈ O(logn) execution time. Implementing this modification was desirable,
but not feasible due to time constraints.

Excluding the size parameter: There were a few reasons as to why we
chose not to include the size parameter for perturbation, despite the fact that
all perturbation algorithms support the operations. First of all, we wanted
a reduced complexity of the flow class when conducting the initial parsing.
Then, after looking into the effects that parameter perturbation of time-related
parameters had on the periodicity of flows, we decided it would be sufficient

62

to only cause perturbations to those. This also reduced the complexity of our
experiments, which was desirable given the limited scope of this project.

6.4 Experiments

6.4.1 Code and Infrastructure Challenges

Thanks to the brilliant features of Docker and Docker Compose, experiments
were trivial to launch. However, as we started running experiments, we quickly
discovered small bugs in our code that needed fixing in order to gain integrity
in results. This proved to be extremely time-consuming, and often resulted in
us having to re-implement existing code.

Due to computational exhaustion, we were not able to test our implemen-
tation on larger packet captures, effectively rendering us without results for
testing of malicious patterns that span over days, weeks or months.

The exclusion of the size parameter did to some extent affect the results
of our experiments because, by including that parameter when calculating Eu-
clidean distance, we could not use the magnitude (seconds) unit for axes de-
scriptions.

The LA concept was easy to implement but computationally hard to execute.
We initially wanted to run it for thousands of iterations, but because of time
limitations and the constant need to update the source code for improvement in
efficiency or data collection, we ended up executing fewer iterations than orig-
inally planned. However, we still believe that the LA serves its demonstrative
purpose of being able to optimize parameters for an SA algorithm.

63

7 Conclusion

The results of this thesis may contribute to increasing awareness around the
importance of comprehensive intrusion detection mechanisms for services that
require some degree of security. In a digital society where threats emerge faster
than their respective security measures, one may assume that malicious actors
and their software is trivially able to adapt to new environments. Information
Security specialists must ensure that their security software, and the models
they depend on, are at all times up to date and on-par with the current highest
standard. However, as we have shown in this project, security professionals
should also be careful not to blindly trust existing models.

We set out to answer how the behavior of malicious network traffic could be
altered, with the goal of evading detection by a behavioral analysis tool. While
we did not prove that evasion was possible for a live solution, we did conceptually
show that by creating a packet manipulation scheme supporting perturbations to
network flow parameters, we may perturb network flow patterns to effectively
evade NBA intrusion detection. Furthermore, we explored and implemented
different search techniques that provided perturbed versions of an initial set of
network flow parameters. Finally, we demonstrated how a simple reinforcement-
based ML method could be used as a tool to provide optimal parameters for
the perturbation algorithms that were implemented.

64

Appendices

A Dockerfile configuration for experiments on
Stratosphere Linux IPS

1 #

2 # Stratosphere IPS Dockerfile

3 #

4 # https://github.com/stratosphereips/StratosphereLinuxIPS

5 #

6 # Build with:

7 # docker build -t slips-experiments /path/to/Dockerfile/folder

8

9 # Pull base image.

10 FROM ubuntu:latest

11

12 ENV DEBIAN_FRONTEND noninteractive

13

14 # Install slips and argus client.

15 RUN \

16 apt-get update && \

17 apt-get install -y --no-install-recommends apt-utils

18 RUN \

19 apt-get update && \

20 apt-get install -y software-properties-common && \

21 apt-get install -y net-tools && \

22 apt-get install -y git && \

23 rm -rf /var/lib/apt/lists/* && \

24 apt-get update && \

25 apt-get install -y python2.7 && \

26 apt-get install -y iptables && \

27 mkdir /home/ubuntu

28 WORKDIR /home/ubuntu/

29 RUN \

30 git clone --single-branch -b develop

https://github.com/stratosphereips/StratosphereLinuxIPS.git

&& \

↪→

↪→

31 git clone

https://github.com/stratosphereips/StratosphereTestingFramework↪→

32 RUN \

33 apt-get install -y wget && \

34 apt-get install -y curl

35 RUN \

65

36 curl https://qosient.com/argus/src/argus-3.0.8.2.tar.gz

--create-dirs -o /home/ubuntu/argus-3.0.8.2.tar.gz && \↪→

37 curl https://qosient.com/argus/src/argus-clients-3.0.8.2.tar.gz

--create-dirs -o /home/ubuntu/argus-clients-3.0.8.2.tar.gz↪→

38 RUN \

39 tar -xzvf /home/ubuntu/argus-clients-3.0.8.2.tar.gz -C

/home/ubuntu/ && \↪→

40 tar -xzvf /home/ubuntu/argus-3.0.8.2.tar.gz -C /home/ubuntu/

41 RUN \

42 apt-get update && \

43 apt-get install --fix-missing -y wireshark-common

44 RUN \

45 apt-get install -y tshark tcpdump libpcap0.8-dev flex bison &&

\↪→

46 apt-get install -y make && \

47 apt-get install -y vim && \

48 apt-get install -y build-essential gcc

49 RUN apt-get install -y libncurses5-dev libncurses5-dev

50 RUN apt-get install -y make libgeoip-dev zlib1g-dev libreadline7

libreadline6-dev libbsd-dev libwrap0-dev↪→

51 RUN sh /home/ubuntu/argus-3.0.8.2/configure

52 WORKDIR /home/ubuntu/argus-3.0.8.2/

53 RUN ./configure && make && make install

54 WORKDIR /home/ubuntu/argus-clients-3.0.8.2/

55 RUN ./configure && make && make install

56 RUN ls -la /home/ubuntu/argus-clients-3.0.8.2/

57 RUN apt-get install -y python-dateutil

58 RUN apt-get install -y python-pip

59 RUN pip install prettytable zodb transaction btrees persistent

scapy numpy matplotlib↪→

60 WORKDIR /home/ubuntu

61 RUN mkdir SlipsExperiments

62 WORKDIR /home/ubuntu/SlipsExperiments

63 RUN mkdir trials

64 ADD adaptive_random_search.py /home/ubuntu/SlipsExperiments/

65 ADD change_pcap_timestamps.py /home/ubuntu/SlipsExperiments/

66 ADD la_slips.py /home/ubuntu/SlipsExperiments/

67 ADD spsa_slips.py /home/ubuntu/SlipsExperiments/

68 ADD stf /home/ubuntu/SlipsExperiments/stf/

69 ADD pcaps/*.pcap /home/ubuntu/SlipsExperiments/trials/

70 RUN mkdir confs

71 RUN cp /home/ubuntu/StratosphereTestingFramework/confs/ra.conf

confs/↪→

72 RUN la_slips.py

73

74 \end{lstlisting}

66

75

76 \clearpage

77 \section{Docker Compose configuration: docker-compose.yml}

78

79 \begin{minted}[

80 gobble=4,

81 frame=single,

82 linenos]{yaml}

83 version: '3.7'

84 services:

85 1-random-perturbation:

86 build:

87 context: "./1 - Random Perturbations"

88 dockerfile: Dockerfile

89 image: 1-random-perturbation:latest

90 tty: true

91 entrypoint:

92 - python

93 - change_pcap_timestamps.py

94

95 2-adaptive-stepsize:

96 build:

97 context: "./2 - Adaptive Step-Size"

98 dockerfile: Dockerfile

99 image: 2-adaptive-random-search:latest

100 tty: true

101 entrypoint:

102 - python

103 - change_pcap_timestamps.py

104

105 3-simultaneous-perturbation:

106 build:

107 context: "./3 - Simultaneous Perturbation"

108 dockerfile: Dockerfile

109 image: 3-simultaneous-perturbation:latest

110 tty: true

111 entrypoint:

112 - python

113 - change_pcap_timestamps.py

114

115 4-learning-automata:

116 build:

117 context: "./4 - Learning Automata"

118 dockerfile: Dockerfile

119 image: 4-learning-automata:latest

120 tty: true

67

121 entrypoint:

122 - python

123 - la_slips.py

B Python2.7: change pcap timestamps.py

1 import time, sys, os, random

2 from scapy.all import *

3 from collections import deque

4 import perturbation_optimizer as po

5 import md5

6 from stf.core import dataset

7

8 import glob, os, re, subprocess, pickle

9

10 class Packet:

11

12 def __init__(self, init_packet, packetNo):

13 self.packetNo = packetNo

14 self.packet = init_packet

15

16 class Flow:

17 def __init__(self, init_packet):

18 self.t1 = init_packet.packet.time

19 self.t2 = None

20 self.td = None

21 self.length = len(init_packet.packet)

22 self.src_ip = init_packet.packet[IP].src

23 self.dst_ip = init_packet.packet[IP].dst

24 self.src_port = init_packet.packet[IP].sport

25 self.dst_port = init_packet.packet[IP].dport

26 self.ToS = None

27 self.packets = []

28 self.packets.append(init_packet)

29 self.td_list = []

30 self.td_fractions = []

31 self.time_until_next_flow = 0

32 self.next_flow = None

33

34

35 def get_duration(self):

36 return self.td

37

68

38 def belongs_in_flow(self, packet):

39 return (packet[IP].src == self.src_ip and packet[IP].dst

== self.dst_ip and packet[IP].dport == self.dst_port

and packet[IP].sport == self.src_port) or

(packet[IP].dst == self.src_ip and packet[IP].src ==

self.dst_ip and packet[IP].sport == self.dst_port)

↪→

↪→

↪→

↪→

40

41 def add_to_flow(self, packet):

42 self.packets.append(packet)

43 self.length += len(packet.packet)

44

45 def add_to_flow_not_IP(self, packet):

46 self.packets.append(packet)

47 self.length += len(packet.packet)

48

49 def set_flow(self):

50 self.t1 = self.packets[0].packet.time

51 self.t2 = self.packets[-1].packet.time

52 self.td = self.t2 - self.t1

53

54 def same_ips(self, flow):

55 return ((self.src_ip == flow.src_ip) and (self.dst_ip ==

flow.dst_ip))↪→

56

57 def set_timedeltas(self):

58 if len(self.packets) > 1 and self.td != None:

59 counter = 0

60 for packet in self.packets[1:]:

61 self.td_list.append(packet.packet.time -

self.packets[counter].packet.time)↪→

62 frac = self.td_list[counter]/self.td

63 self.td_fractions.append(frac)

64 counter +=1

65 else:

66 self.td = 0

67 self.td_list.append(0)

68 self.td_fractions.append(1)

69

70 def perturb_duration(self, perturbation):

71

72 if len(self.packets) == 1 or perturbation == 0:

73 return 0

74

75 counter = 1

76 pert_sum = 0

77

69

78 old = self.t2

79 pert_seconds = perturbation - self.td

80 for td_f in self.td_fractions:

81 print td_f

82 pert = pert_seconds * td_f

83 pert_sum += pert

84 if len(self.td_fractions) == counter:

85 self.packets[counter].packet.time += pert_seconds

86 else:

87 self.packets[counter].packet.time += pert_sum

88 counter +=1

89 self.set_flow()

90 return self.packets[-1].packet.time

91

92 def incr_timestamps(self, pert_td_next):

93 prev_time = self.packets[-1].packet.time

94 for packet in self.packets:

95 packet.packet.time += pert_td_next

96 print "The last packet in this flow was changed from

time: %f to %f" % (prev_time,

self.packets[-1].packet.time)

↪→

↪→

97 self.set_flow()

98 return self.packets[-1].packet.time - prev_time

99

100 def scew_flow_by(self, seconds):

101 for packet in self.packets:

102 packet.packet.time += seconds

103 self.set_flow()

104

105 def get_flow_size(self):

106 return self.length

107

108 def __str__(self):

109 return str(self.src_ip) + "\t" + str(self.src_port) +

"\t" + str(self.dst_ip) + "\t" + str(self.dst_port)↪→

110

111 def parse_pcap_to_deque(target_tuples, packets):

112 flows = deque()

113 counter = 0

114 prev_flow = None

115 print "Parsing scapy packet set..."

116 for packet in packets[1:]:

117 added_to_flow = False

118 cur_packet = Packet(packet, counter)

119 if IP in packet:

70

120 if ((packet[IP].src, packet[IP].dst) or

(packet[IP].dst, packet[IP].src)) in

target_tuples:

↪→

↪→

121 cur_flow = Flow(cur_packet)

122 if len(flows) != 0:

123 for flow in flows:

124 if isinstance(flow, Flow) and not

added_to_flow:↪→

125 if flow.belongs_in_flow(packet):

126 flow.add_to_flow(cur_packet)

127 added_to_flow = True

128 break

129 if not added_to_flow:

130 flows.append(cur_flow)

131 else:

132 flows.append(cur_flow)

133 else:

134 flows.append(cur_packet)

135 else:

136 flows.append(cur_packet)

137 counter +=1

138 print "Added packet set to flows."

139 print "Setting flow parameters..."

140 for i in flows:

141 if isinstance(i, Flow):

142 i.set_flow()

143 i.set_timedeltas()

144 return flows

145

146 def get_timedelta_next_flow_in(deque, index, tuple, cur_flow):

147 found = False

148 counter = 1

149 while not found:

150 if index + counter >= len(deque):

151 return None, 0

152 next_flow = deque[index+counter]

153 if isinstance(next_flow, Flow):

154 if next_flow.src_ip == tuple[0] and next_flow.dst_ip

== tuple[1] and (next_flow not in

cur_flow.packets and

next_flow.packets[0].packet.time >

cur_flow.packets[0].packet.time):

↪→

↪→

↪→

↪→

155 found = True

156 return next_flow,

next_flow.packets[0].packet.time -

cur_flow.packets[0].packet.time

↪→

↪→

71

157 elif isinstance(next_flow, Packet):

158 if (next_flow.packet.src == tuple[0] and

next_flow.packet.dst == tuple[1]) and (next_flow

not in cur_flow.packets and next_flow.packet.time

> cur_flow.packets[0].packet.time):

↪→

↪→

↪→

159 found = True

160 return next_flow, next_flow.packet.time -

cur_flow.packets[0].packet.time↪→

161 counter += 1

162 return None, 0

163

164 def measure_time_between_flows(target_tuple, malware):

165 flows = parse_pcap_to_deque(target_tuple, malware)

166 counter = 0

167 for flow in flows:

168 if isinstance(flow, Flow):

169 if(flow.src_ip, flow.dst_ip) in target_tuple:

170 flow.next_flow, flow.time_until_next_flow =

get_timedelta_next_flow_in(flows, counter,

(flow.src_ip, flow.dst_ip), flow)

↪→

↪→

171 counter +=1

172 return flows

173

174

175 def write_flows_to_pcap_ordered_by_time(flows, outfile):

176 tmp_flows_dict = {}

177 for flow in flows:

178 if isinstance(flow, Flow):

179 for i in flow.packets:

180 tmp_flows_dict[i.packet.time] = i.packet

181 else:

182 tmp_flows_dict[flow.packet.time] = flow.packet

183 print "Finished indexing Packets. Sorting Packets and

Flows..."↪→

184 od = collections.OrderedDict(sorted(tmp_flows_dict.items()))

185 print "Finished sorting Packets and Flows. Writing pcap..."

186 for k, v in od.iteritems():

187 wrpcap("trials/" + outfile, v, append=True)

188

189

190 def write_flows_to_pcap_ordered_by_number(flows, outfile):

191 tmp_flows_dict = {}

192

193 for flow in flows:

194 if isinstance(flow, Flow):

195 for i in flow.packets:

72

196 tmp_flows_dict[i.packetNo] = i.packet

197 else:

198 tmp_flows_dict[flow.packetNo] = flow.packet

199 print "Finished indexing Packets. Sorting Packets and

Flows..."↪→

200 od = collections.OrderedDict(sorted(tmp_flows_dict.items()))

201 print "Finished sorting Packets and Flows. Writing pcap..."

202 for k, v in od.iteritems():

203 wrpcap("trials/" + outfile, v, append=True)

204

205

206

207 def redefine_stored_network_flows(target_tuples, evolving_params,

iterationNo, flows):↪→

208 outfile = "2015-03-09_capture-win7-first1k-" +

str(iterationNo) + ".pcap"↪→

209 total_bytes = 0.0

210 total_duration = 0.0

211 total_duration_perturbation = 0.0

212 pert_incr = 0

213 pert_data = {}

214 optimizer = po.PerturbationOptimizer()

215

216 print "Altering duration of packets..."

217 counter = 0

218 for flow in flows:

219 original_timestamp = 0

220 if not isinstance(flow, Flow):

221 original_timestamp = flow.packet.time

222 else:

223 original_timestamp = flow.packets[-1].packet.time

224 if isinstance(flow, Flow):

225 if (flow.src_ip, flow.dst_ip) in target_tuples:

226 positive = True

227 td_next = flow.time_until_next_flow

228 pre_pert_tu = flow.time_until_next_flow

229 pre_pert_td = flow.td

230 pre_perturbation = flow.packets[-1].packet.time

231 total_loss = 0

232 pert, loss = po.run_spsa([flow.length, flow.td,

td_next], beta_vector=evolving_params)↪→

233 #omit negative perturbations

234 positive = all(i >= 0 for i in pert)

235 while not positive:

73

236 pert, loss = po.run_spsa([flow.length,

flow.td, td_next],

beta_vector=evolving_params)

↪→

↪→

237 pert_incr += 1

238 positive = all(i >= 0 for i in pert)

239 total_bytes+=pert[0]

240

total_duration_perturbation+=(pert[1]-flow.td)+(pert[2]-td_next)↪→

241 pert_td_next = pert[2]

242 pert_td = pert[2]

243 flow_incr = 0

244 if len(flow.packets) > 1:

245 # We may perturb duration

246 if flow.next_flow != None:

247 flow_incr =

flow.next_flow.incr_timestamps(pert_td-td_next)↪→

248 total_duration += flow_incr

249 new_timestamp =

flow.perturb_duration(pert[1])↪→

250 pert_data[counter] = [counter,

pert_td_next-td_next, pre_perturbation,

new_timestamp, flow_incr, pert,

[flow.length, pre_pert_td, pre_pert_tu]]

↪→

↪→

↪→

251 total_duration += flow.td

252 else:

253 # We may not pertub duration, only

time_until_next_flow and optionally byte

size

↪→

↪→

254 if flow.next_flow != None:

255 flow_incr =

flow.next_flow.incr_timestamps(pert_td-td_next)↪→

256 total_duration += flow_incr

257 total_loss += loss

258 new_timestamp = pre_perturbation

259 pert_data[counter] = [counter,

pert_td_next-td_next, pre_perturbation,

new_timestamp, flow_incr, pert,

[flow.length, pre_pert_td, pre_pert_tu]]

↪→

↪→

↪→

260 cur_packet = flow.packets[-1]

261 counter += 1

262 else:

263 cur_packet = flow.packets[-1]

264 pert_data[counter] = [counter, 0,

cur_packet.packet.time,

cur_packet.packet.time,

cur_packet.packet.time, [0,0,0], [0, 0, 0]]

↪→

↪→

↪→

74

265 counter += 1

266 else:

267 cur_packet = flow

268 pert_data[counter] = [counter, 0,

cur_packet.packet.time, cur_packet.packet.time,

cur_packet.packet.time, [0,0,0], [0, 0, 0]]

↪→

↪→

269 counter += 1

270

271

272

273 write_flows_to_pcap_ordered_by_time(flows, outfile)

274 print "Generating binetflow file.."

275 current_datasets = dataset.Datasets()

276

current_datasets.create("/home/ubuntu/SlipsExperiments/trials/"

+ outfile)

↪→

↪→

277 current_datasets.generate_argus_files()

278 print "Binetflow file generated."

279 throughput = 0.00001

280 if total_bytes > 0 and total_duration > 0:

281 throughput = total_bytes/(total_duration)

282 print total_bytes, total_duration

283 #Total throughput for the modified flows

284 return throughput, [total_bytes, total_duration_perturbation,

total_duration, pert_data, evolving_params], total_loss↪→

285

286

287 def test_binetflow_using_slips():

288 list_of_files = glob.glob("trials/*.binetflow")

289 latest_file = max(list_of_files, os.path.getctime)

290 try:

291 return subprocess.call("python

/home/ubuntu/StratosphereLinuxIPS/slips.py -f

/home/ubuntu/StratosphereLinuxIPS/models/ -d -r

/home/ubuntu/SlipsExperiments/" + latest_file[0],

shell=True)

↪→

↪→

↪→

↪→

292 except Exception as e:

293 return None

294

295 def was_feasible():

296 list_of_files =

glob.glob("/home/ubuntu/SlipsExperiments/logs/*")↪→

297 latest_file = max(list_of_files, os.path.getctime)

298 with open(latest_file[0], "r") as f:

299 line = f.read()

300 if "detected as malicious" in line:

75

301 theline = line

302 alert = theline.split("\n")[-1]

303 m = re.match(r'\d+', alert)

304 det = m.group(0)

305 print det

306 if det == '0':

307 return True

308 return False

C Python2.7: perturbation optimizer.py

1 import numpy as np

2 import random

3 from collections import deque

4 from itertools import islice, izip, tee, count

5

6

7 class PerturbationOptimizer:

8

9 def __init__(self,

10 problem_size = 2,

11 max_iter = 40,

12 bounds = [[300.0, 1200.0], [1000.0, 2000.0], [5000.0,

12000.0]],↪→

13 init_factor_bytes = 0.1,

14 init_factor_duration = 0.1,

15 init_factor_offline = 0.9,

16 s_factor = 1.2,

17 l_factor = 3.0,

18 iter_mult = 10,

19 max_no_impr = 10):

20

21 self.problem_size = problem_size

22 self.bounds = bounds

23 self.max_iter = max_iter

24 self.init_factor_bytes = init_factor_bytes

25 self.init_factor_duration = init_factor_duration

26 self.init_factor_offline = init_factor_offline

27 self.s_factor = s_factor

28 self.l_factor = l_factor

29 self.iter_mult = iter_mult

30 self.max_no_impr = max_no_impr

31

76

32

33

34 def run_spsa(self, vector=[204, 7.9, 50.1]):

35 run_spsa(vector)

36

37 def random_vector_with_thresholds(self, thresholds):

38 return [

39 (random.uniform(thresholds[0][0], thresholds[0][1])),

40 (random.uniform(thresholds[1][0], thresholds[1][1])),

41 (random.uniform(thresholds[2][0], thresholds[2][1]))

42]

43

44 def add_solutions_to_deque(self, amount):

45 for i in range(amount):

46 self.best_params.append(self.adaptive_random_search(

47 self.max_iter,

48 self.bounds,

49 self.init_factor_bytes,

50 self.init_factor_duration,

51 self.init_factor_offline,

52 self.s_factor,

53 self.l_factor,

54 self.iter_mult,

55 self.max_no_impr

56))

57

58 def objective_function(self, vector, pert_vector=None):

59 return (vector[2] + vector[1])/float(vector[0])

60

61 def random_vector(self, minmax):

62 """

63 Returns a random 2D vector that represents a step in a

random direction, based on thresholds.↪→

64 """

65 return [self.rand_in_bounds(minmax[i][0], minmax[i][1])

for i in range(len(minmax))]↪→

66

67

68 def rand_in_bounds(self, min, max):

69 return min + ((max-min) * random.uniform(0, 1))

70

71 def large_step_size(self, iter, step_size, s_factor,

l_factor, iter_mult):↪→

72 if iter > 0 and iter % iter_mult == 0:

73 return [x * l_factor for x in step_size]

74 return [x * s_factor for x in step_size]

77

75

76 def take_steps(self, bounds, current, step_size,

big_stepsize):↪→

77 step, big_step = {}, {}

78 step["vector"] = self.take_step(bounds,

current["vector"], step_size)↪→

79 step["cost"] = self.objective_function(step["vector"])

80 big_step["vector"] = self.take_step(bounds,

current["vector"], big_stepsize)↪→

81 big_step["cost"] =

self.objective_function(big_step["vector"])↪→

82

83 return step, big_step

84

85 def take_step(self, minmax, current, step_size):

86 position = current

87 for i in range(len(position)):

88 min_i = max(minmax[i][0], current[i]-step_size[i])

89 max_i = min(minmax[i][1], current[i]+step_size[i])

90 position[i] = self.rand_in_bounds(min_i, max_i)

91 return position

92

93 def adaptive_random_search(self,

94 max_iter=100,

95 bounds=[[300, 400], [1.0, 2.0], [5.0, 12.0]],

96 init_factor_bytes=0.1,

97 init_factor_duration=0.1,

98 init_factor_offline=0.9,

99 s_factor=1.2,

100 l_factor=3.0,

101 iter_mult=10,

102 max_no_impr=10):

103 """

104 Description:

105 Init function for the Adaptive Random Search

algorithm↪→

106

107 Args:

108 max_iter: the maximum amount of iterations one

session will conduct.↪→

109 bounds: 2D list representing the bounds for each

parameter on the form [[min_a, max_a], [min_b, max_b],

[min_c, max_c]]

↪→

↪→

110 init_factor_bytes: initialization factor for maximum

amount of bytes.↪→

78

111 init_factor_duration: initialization factor for

maximum duration of flow (ms)↪→

112 init_factor_offline: initialization factor for

maximum offline duration (ms)↪→

113 s_factor: factor for the small step size

114 l_factor: factor for the large step size

115 iter_mult: how often step_size should be multiplied

by l_factor. iteration % iter_mult == 0↪→

116 max_no_impr: how many attempts should be tried

unsuccessully before reducing the step_size by s_factor

fractions.

↪→

↪→

117 """

118 step_size = list()

119 step_size.append((bounds[0][1]-bounds[0][0]) *

init_factor_bytes)↪→

120 step_size.append((bounds[1][1] - bounds[1][0]) *

init_factor_duration)↪→

121 step_size.append((bounds[2][1] - bounds[2][0]) *

init_factor_offline)↪→

122 current, count = {}, 0

123 current["vector"] = self.random_vector(bounds)

124 current["cost"] =

self.objective_function(current["vector"], step_size)↪→

125

126 #print current["cost"]

127 #print current["vector"], current

128

129 for iter in range(max_iter):

130 big_stepsize = self.large_step_size(iter, step_size,

s_factor, l_factor, iter_mult)↪→

131 step, big_step = self.take_steps(bounds, current,

step_size, big_stepsize)↪→

132 #print step, big_step

133 # step, big_step are dictionaries that contain the

estimated cost for that step↪→

134 if step["cost"] <= current["cost"] or

big_step["cost"] <= current["cost"]:↪→

135 if big_step["cost"] <= step["cost"]:

136 step_size, current = big_stepsize, big_step

137 else:

138 current = step

139 count = 0

140 else:

141 count += 1

142 count = 0

143 if count >= max_no_impr:

79

144 step_size = [x / s_factor for x in step_size]

145 #print(" > iteration %d \t best=%f" % (iter+1,

current["cost"]))↪→

146 return current

147

148

149 class Bernoulli:

150 def __init__(self, r=1, p=3):

151 """

152 The bernoulli distribution of +/- 1 is the distribution

we choose for our delta-k vector↪→

153 This is in order to meet the requirements for the

algorithm as described in

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=705889,

↪→

↪→

154 in that uniform or normal random variables are not

allowed. Each variable should have 1/2 probability of

occurrence.

↪→

↪→

155 """

156 self.p = p

157 self.r = r

158

159 def __call__(self):

160 return [random.choice((-self.r, self.r)) for _ in

range(self.p)]↪→

161

162 def nth(iterable, n, default=None):

163 """Returns the nth item or a default value"""

164 return next(islice(iterable, n, None), default)

165

166

167 def y(theta):

168 """The loss function that returns seconds per Byte sent.

Adding noise to time_between_network_flows."""↪→

169 return ((theta[1] + theta[2]) / theta[0]) - ((theta[2] *

0.01) + random.gauss(0, 0.1))↪→

170

171 def identity(id):

172 return id

173

174 def SPSA(y, t0, a, c, delta, constraint=identity):

175 """

176 Creates an Simultaneous Perturbation Stochastic

Approximation iterator.↪→

177 y - a function of theta that returns a scalar

178 t0 - the starting value of theta

179 a - an iterable of a_k values

80

180 c - an iterable of c_k values

181 delta - a function of no parameters which creates the

delta vector↪→

182 constraint - a function of theta that returns theta

183 """

184 theta = t0

185

186 # Pull off the ak and ck values forever

187 for ak, ck in izip(a, c):

188 # Get estimated gradient

189 gk = estimate_gk(y, theta, delta, ck)

190

191 # Adjust theta estimate using SA

192 theta = [t - ak * gkk for t, gkk in izip(theta, gk)]

193

194 # Constrain

195 theta = constraint(theta)

196

197 yield theta # This makes this function become an iterator

198

199 def estimate_gk(y, theta, delta, ck):

200 '''Helper function to estimate gradient approximation'''

201 # Generate Delta vector

202 delta_k = delta()

203 # Get the two perturbed values of theta

204 ta = [t + ck * dk for t, dk in izip(theta, delta_k)]

205 #print "Perturbed t_a: "

206 #print ta

207 tb = [t - ck * dk for t, dk in izip(theta, delta_k)]

208 #print "Perturbed t_b: "

209 #print tb

210

211 # Calculate g_k(theta_k)

212 ya, yb = y(ta), y(tb)

213 #print "Result of y(ta): %f \t Result of y(tb): %f" % (ya,

yb)↪→

214 #print "Calculating G_k ..."

215 gk = [(ya-yb) / (2*ck*dk) for dk in delta_k]

216

217 return gk

218

219 def standard_ak(a, A, alpha, beta):

220 '''Create a generator for values of a_k in the standard

form.'''↪→

221 # Parentheses makes this an iterator comprehension

222 # count() is an infinite iterator as 0, 1, 2, ...

81

223 return (((a / ((k+1)*.5) ** alpha) + beta*alpha) for k in

count())↪→

224

225 def standard_ck(c, gamma, beta):

226 '''Create a generator for values of c_k in the standard

form.'''↪→

227 return (((c / ((k+1*0.5)) ** gamma) + beta) for k in

count())↪→

228

229

230 def run_spsa(init_theta, beta_vector=[0.1, 0.9], n=1000,

replications=40):↪→

231 dim = 3

232 theta0 = init_theta

233 c = standard_ck(c=1, gamma=0.101, beta=beta_vector[0])

234 a = standard_ak(a=1, A=100, alpha=0.602, beta=beta_vector[1])

235 delta = Bernoulli(p=dim)

236

237 # tee splits an iterator into n independent runs of that

iterator↪→

238 # iterators let us create a "lazy" list that we can just pop

values from.↪→

239 # this is a quite efficient way to do it

240 ac = izip(tee(a,n),tee(c,n))

241

242 losses = []

243 for a, c in islice(ac, replications):

244 theta_iter = SPSA(a=a, c=c, y=y, t0=theta0, delta=delta)

245 terminal_theta = nth(theta_iter, n) # Get 1000th theta

246 terminal_loss = y(terminal_theta)

247 losses += [terminal_loss]

248 return terminal_theta

D Python2.7: la slips.py

1 import change_pcap_timestamps as cpt

2 import random

3 import math

4 from datetime import datetime

5 import glob, os, re, subprocess, pickle

6 from scapy.all import *

7 import pandas as pd

8 import matplotlib.pyplot as plt

82

9 from matplotlib import style

10 import numpy as np

11 style.use('ggplot')

12

13 niterations = 100

14

15 target_tuples = [('10.0.2.107','212.59.117.207'),

('10.0.2.107','91.222.139.45')]↪→

16

17 lmba=0.1

18

19 N_a = 100

20 min_a = 0.5

21 max_a = 1

22

23 N_b = 100

24 min_b = 0.05

25

26 max_b = 0.5

27

28 A = [min_a+i*1.0*(max_a-min_a) / N_a for i in range(N_a)]

29 B = [min_b+i*1.0*(max_b-min_b) / N_a for i in range(N_b)]

30

31 P_A = [0.5 for i in range(N_a)]

32 P_B = [0.5 for i in range(N_b)]

33

34

35 """

36 def was_feasible():

37

38 list_of_files =

glob.glob("/home/ubuntu/SlipsExperiments/logs/*")↪→

39 latest_file = max(list_of_files, os.path.getctime)

40

41 with open(latest_file[0], "r") as f:

42 line = f.read()

43 if "detected as malicious" in line:

44 theline = line

45 alert = theline.split("\n")[-1]

46 m = re.match(r'\d+', alert)

47 det = m.group(0)

48 if det == '0':

49 return True

50 return False

51 """

52 def throughput_function(a, b, iter, flows):

83

53

54 tmp_flows = flows

55 throughput, data =

cpt.redefine_stored_network_flows(target_tuples, [b, a],

iter, tmp_flows)

↪→

↪→

56 res = cpt.test_binetflow_using_slips()

57 data.append(throughput)

58 if res == '0':

59 print "Successfully tested binetflow using Slips...

Checking if result is feasible"↪→

60 data.append(True)

61 else:

62 data.append(False)

63 return throughput, cpt.was_feasible(), data

64

65 def roulette_selection(weights):

66 totals = []

67

68 running_total = 0

69

70 for w in weights:

71 running_total += w

72 totals.append(running_total)

73

74 rnd = (random.random() * running_total)

75

76 for i, total in enumerate(totals):

77 if rnd < total:

78 return i

79

80 def init_la(n_iterations):

81

82

83 best_throughput_so_far = 0

84

85 best_index_a = 0

86 best_index_b = 0

87

88 allData = {}

89

90 filename = "data/slips_data_" +

datetime.now().strftime("%H_%M_%h_%m_%s") + ".dat"↪→

91

92

93 cridex =

rdpcap("/home/ubuntu/SlipsExperiments/trials/2015-03-09_capture-win7-first1k.pcap")↪→

84

94 cridex_target_tuple = [('10.0.2.107','212.59.117.207'),

('10.0.2.107','91.222.139.45'), ('91.222.139.45',

'10.0.2.107'), ('212.59.117.207', '10.0.2.207')]

↪→

↪→

95 flows = cpt.measure_time_between_flows(cridex_target_tuple,

cridex)↪→

96

97 allData["iteration_number"] = []

98 allData["feasible"] = []

99 allData["throughput"] = []

100 allData["total_bytes"] = []

101 allData["total_duration_perturbation"] = []

102 allData["pert_data"] = []

103 allData["total_duration"] = []

104 allData["evolving_params"] = []

105 allData["best_throughput_so_far"] = []

106 allData["current throughput"] = []

107 allData["best_index_a"] = []

108 allData["best_index_b"] = []

109 allData["improvement"] = []

110

111 tmp_flows = flows

112

113 for iter in range(n_iterations):

114 # Pick index for the value a according to probability

vector P_A↪→

115 index_a = roulette_selection(P_A)

116 # Pick index for the value b according to probability

vector P_B↪→

117 index_b = roulette_selection(P_B)

118

119 improvement = False

120 feasible = True

121

122 current_throughput, feasible, data =

throughput_function(A[index_a], B[index_b], iter,

flows)

↪→

↪→

123

124 if current_throughput > best_throughput_so_far and

feasible == True:↪→

125 print "The throughput was nice, and we were not

detected!"↪→

126 best_throughput_so_far = current_throughput

127 improvement = True

128 best_index_a = index_a

129 best_index_b = index_b

130

85

131 for index in range(N_a):

132 if index == best_index_a:

133 P_A[index] = P_A[index] + lmba*(1-P_A[index])

134 else:

135 P_A[index] = P_A[index] + lmba*(0-P_A[index])

136

137 for index in range(N_b):

138 if index == best_index_b:

139 P_B[index] = P_B[index] + lmba*(1-P_B[index])

140 else:

141 P_B[index] = P_B[index] + lmba*(0-P_B[index])

142

143 if iter % 10 == 0:

144 print "---"*10

145 print "---"*10

146 print "Probablity for choice of A", P_A

147 print "Probablity for choice of B", P_B

148 print "Best so far", best_throughput_so_far

149

150 allData["iteration_number"].append(iter)

151 allData["feasible"].append(feasible)

152 allData["throughput"].append(current_throughput)

153 allData["improvement"].append(improvement)

154 allData["total_bytes"].append(data[0])

155 allData["total_duration_perturbation"].append(data[1])

156 allData["pert_data"].append(data[3])

157 allData["total_duration"].append(data[2])

158 allData["evolving_params"].append(data[4])

159

allData["best_throughput_so_far"].append(best_throughput_so_far)↪→

160 allData["current throughput"].append(current_throughput)

161 allData["best_index_a"].append(best_index_a)

162 allData["best_index_b"].append(best_index_b)

163

164 flows = tmp_flows

165

166 stats = pd.DataFrame(allData)

167 iter_stats = stats.set_index('iteration_number')

168

169 stats.to_pickle("data/pandas-dataset-" +

datetime.now().strftime("%H_%M_%h_%m_%s") + ".pk1")↪→

170 with open(filename, 'wb') as output:

171 pickle.dump(allData, output, pickle.HIGHEST_PROTOCOL)

172

173 print "execution finished"

86

174 print "The perturbed pcap-file was feasible:",

allData["feasible"][-1]↪→

175 print "Final Probablity for choice of A", P_A

176 print "Final Probablity for choice of B", P_B

177 print "---"*10

178 print "---"*10

179 print "best index of A value ", best_index_a," which

corresponds to", A[best_index_a]↪→

180 print "best index of B value ", best_index_b," which

corresponds to", B[best_index_b]↪→

181 print "---"*10

182 print "Given these two best values, the Optimal found

throughput (max in all iterations so far) %f Bytes per

second" % (best_throughput_so_far)

↪→

↪→

183

184 init_la(niterations)

References

[1] Maria Rigaki and Sebastian Garcia. Bringing a gan to a knife-fight: Adapt-
ing malware communication to avoid detection. In 2018 IEEE Security and
Privacy Workshops (SPW), pages 70–75. IEEE, 2018.

[2] Cisco Systems Inc. Cisco 2018 Annual Cyber Security Report. https://

www.cisco.com/c/en/us/products/security/security-reports.html,
2018. [PDF; accessed 17-September-2018].

[3] McAfee. Navigating a Cloud Sky. https://www.mcafee.com/enterprise/
en-us/assets/reports/restricted/rp-navigating-cloudy-sky.pdf,
2018. [PDF; accessed 11-October-2018].

[4] Ralf Benzmüller. Malware numbers 2017. https://www.gdatasoftware.

com/blog/2018/03/30610-malware-number-2017, 2017. [Online; ac-
cessed 17-September-2018].

[5] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot: Mirai
and other botnets. Computer, 50(7):80–84, 2017.

[6] Ibrahim Ghafir, Jakub Svoboda, and Vaclav Prenosil. A survey on botnet
command and control traffic detection. 5:75–80, 10 2015.

[7] Ahmad Karim, Rosli Bin Salleh, Muhammad Shiraz, Syed Adeel Ali Shah,
Irfan Awan, and Nor Badrul Anuar. Botnet detection techniques: review,
future trends, and issues. Journal of Zhejiang University SCIENCE C,
15(11):943–983, Nov 2014.

[8] Github: jgamblin. Mirai source code, 2017.

87

[9] Technologyreview.com. Cybersecurity experts uncover dormant botnet of
350,000 twitter accounts, 2017.

[10] H. R. Zeidanloo, Mohammad Jorjor Zadeh Shooshtari, Payam Vahdani
Amoli, M. Safari, and M. Zamani. A taxonomy of botnet detection tech-
niques. In 2010 3rd International Conference on Computer Science and
Information Technology, volume 2, pages 158–162, July 2010.

[11] Garcia Sebastian. Botnets behavioral patterns in the network, 2014.

[12] Sebastian Garcia and Michal Pechoucek. Detecting the behavioral rela-
tionships of malware connections. In Proceedings of the 1st International
Workshop on AI for Privacy and Security, page 8. ACM, 2016.

[13] EY. Ey 20th global information security survey, 2018.

[14] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. Evading
machine learning malware detection. Black Hat, 2017.

[15] J. Kargaard, T. Drange, A. Kor, H. Twafik, and E. Butterfield. Defending it
systems against intelligent malware. In 2018 IEEE 9th International Con-
ference on Dependable Systems, Services and Technologies (DESSERT),
pages 411–417, May 2018.

[16] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel,
and Muttukrishnan Rajarajan. A survey of intrusion detection techniques
in cloud. Journal of network and computer applications, 36(1):42–57, 2013.

[17] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of
network anomaly detection techniques. Journal of Network and Computer
Applications, 60:19–31, 2016.

[18] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep
learning approach for network intrusion detection system. In Proceedings
of the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies (Formerly BIONETICS), BICT’15, pages
21–26, ICST, Brussels, Belgium, Belgium, 2016. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering).

[19] Wikipedia contributors. Feature selection — Wikipedia, the free encyclo-
pedia, 2018. [Online; accessed 24-September-2018].

[20] Wikipedia. Markov chains, 2018.

[21] Stratosphere IPS. Stf, 2018.

[22] Stratosphere IPS. Zbot-pcap, 2018.

[23] Stratosphere IPS. Stf technology, 2018.

[24] clerveralgorithms.com. Random search, 2015.

88

[25] clerveralgorithms.com. Adaptive step-size random search, 2015.

[26] Herbert Robbins and Sutton Monro. A stochastic approximation method.
In Herbert Robbins Selected Papers, pages 102–109. Springer, 1985.

[27] Colombia University Lauren A. Hannah. Stochastic optimization, 2014.

[28] J. C. Spall. Implementation of the simultaneous perturbation algorithm for
stochastic optimization. IEEE Transactions on Aerospace and Electronic
Systems, 34(3):817–823, July 1998.

[29] James C Spall et al. Multivariate stochastic approximation using a si-
multaneous perturbation gradient approximation. IEEE transactions on
automatic control, 37(3):332–341, 1992.

[30] Hamid Beigy and Mohammad Reza Meybodi. Utilizing distributed learning
automata to solve stochastic shortest path problems. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(05):591–615,
2006.

[31] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 108–125. Springer, 2008.

[32] Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for gener-
ative models. arXiv preprint arXiv:1702.06832, 2017.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[34] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsupervised feature
learning, volume 2011, page 5, 2011.

[35] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3730–3738, 2015.

[36] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick D. McDaniel. Adversarial perturbations against deep neural
networks for malware classification. CoRR, abs/1606.04435, 2016.

[37] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceed-
ings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 641–647. ACM, 2005.

89

[38] Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an ensemble of one-
class svm classifiers to harden payload-based anomaly detection systems.
In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages
488–498. IEEE, 2006.

[39] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learning
in adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pages 372–387. IEEE, 2016.

[40] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

[41] Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and Xiaolin
Li. Adversarial examples: Attacks and defenses for deep learning. arXiv
preprint arXiv:1712.07107, 2017.

[42] Weiwei Hu and Ying Tan. Generating adversarial malware examples for
black-box attacks based on GAN. CoRR, abs/1702.05983, 2017.

[43] Wenqi Wei, Ling Liu, Stacey Truex, Lei Yu, and Mehmet Emre Gursoy.
Adversarial examples in deep learning: Characterization and divergence.
arXiv preprint arXiv:1807.00051, 2018.

[44] Sebastian Garcia. Modelling the network behaviour of malware to block
malicious patterns. the stratosphere project: a behavioural ips. Virus Bul-
letin, number September, pages 1–8, 2015.

[45] Wikipedia. Osi model, 2018.

[46] yantan16. Simultaneous perturbation stochastic approximation using iter-
ators, 2018.

[47] Red Team Security Consulting. Red teaming methodology, 2018.

[48] Docker Inc. Docker compose, 2018.

[49] Torgeir Fladby. Discord malware, 2018.

[50] Torgeir Fladby. C2-stratosphere-evasion, 2018.

[51] NSM. Nsm-wiki, 2018.

[52] Daniel Guerra. Ubuntu-xrdp, 2018.

[53] Stratosphere IPS. Malware capture facility project, 2018.

[54] Stratosphere IPS. Cridex dataset, 2018.

[55] Symantec. Trojan.zbot, 2010.

[56] Symantec. Trojan.cridex, 2010.

[57] Wikipedia. Netflows, 2018.

90

