Energy Efficient Target Coverage
in Wireless Sensor Networks
Using Adaptive Learning

Jeevan Kunwar

Thesis submitted for the degree of
Master in Network and System Administration
30 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Energy Efficient Target Coverage
in Wireless Sensor Networks
Using Adaptive Learning

Jeevan Kunwar

© 2018 Jeevan Kunwar

Energy Efficient Target Coverage in Wireless Sensor Networks Using
Adaptive Learning

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Day by day innovation in wireless communications and micro-technology
has evolved in the development of wireless sensor networks. This tech-
nology is used in many application fields such as battlefield surveillance,
home security, healthcare supervision and many more. However, due to
the use of small batteries with low power this technology faces the issue
of power and target monitoring. There is much research done to over-
come these issues with the development of different architecture and al-
gorithms. In this thesis, a scheduling machine learning algorithm called
adaptive learning automata algorithm(ALAA) is used. It provides an ef-
ficient scheduling technique. Such that each sensor node in the network
has been equipped with learning automata, and with this, they can select
their proper state at any given time. The state of the sensor is either active
or sleep. The proposed algorithm results are obtained by doing several ex-
periments. For this experiments, different parameters are used to check the
consistency of the algorithm to schedule the sensor node such that it can
cover all the targets with the use of less power. The results obtained from
the experiments show that the proposed algorithm is an efficient way to
schedule the sensor nodes to monitor all the targets with use of less power.

On the whole, this thesis manages to achieve its goal by contributing
to the related research on wireless sensor networks with a new design of
a learning automata scheduling algorithm. The ability of this proposed
algorithm to use the minimum number of sensors to be in active state
verified to reduce the use of power in the network. Thus, achieving the
goal by enhancing the lifetime of wireless sensor networks.

Keywords—wireless sensor network, learning automata, sensors, targets, ma-
chine learning, minimum active sensors, adaptive learning automata algorithm,
coverage area

ii

Acknowledgement

First of all, I would like to express my profound gratitude to my supervisors Anis
Yazidi and Harek Haugerud for the enthusiastic encouragement, useful critiques,
dedication, and inspiration, which helped me while doing this thesis. I want to
take this opportunity to thank them and express how immensely important were
their lecture, weekly meeting, a suggestion for the completion of my master’s
thesis. The positive spirit from my supervisors has always encouraged me to
thrive more, work hard and realize my potential.

I would also like to thank Kyrre Begnum for his great lectures and notes on
recent technologies in our field of study. That helped me to do my research work
and be updated with modern technologies.

I would also like to extend my thanks to my friends and classmates for
giving me support, motivation and help in my study period. I sincerely gratitude
University of Oslo (UIO)and Oslo and Akershus University College (HiOA) for
providing quality education and infrastructures.

I would especially like to thank my family. My wife, Srijana Bishowkarma
who has been extremely supportive of me and encouraged me during my study.

Thanks for being patient, taking care and loving me always. My parents, who
deserve special thanks for their continued support and encouragement.

- Jeevan Kunwar

iii

iv

Contents

1 Introduction 1
1.1 An Overview Of Wireless Sensor Networks 1
1.2 Wireless sensor networks lifetime 2
1.3 Wireless sensor networks coverage Area 2
14 Problem Statement 4
1.5 Reportstructure 5

2 Background 7
2.1 Wirelesssensors 7
22 Machinelearning L L L L o 8

221 Supervised Learning 8
222 Unsupervised Learning 8
223 Reinforcement Learning 8
2.3 Learning Automata 9
24 Toolsused 10
241 Python 10
25 Relatedwork. 11
2.6 Proposed Algorithm 15
261 InitialPhase L. 15
262 LearningPhase 15
2.6.3 Target MonitoringPhase 16

3 Approach 17
31 Objective e 17
3.2 Experimental Environment 17
33 Technologies 17
34 ThePlan 18
3.5 Planned Experiments Lo o oL 18

3.5.1 Experimentone 19
352 ExperimentTwo 19
3.5.3 ExperimentThree. 19
354 ExperimentFour 19
35,5 ExperimentFive, 19
3.5.6 ExperimentSix 19
3.5.7 ExperimentSeven 19
3.6 Resultsof theexperiments 19
3.7 Constraints of theproject 20
371 TheSetup 20
372 Thetime 20
373 TheTechnology 20
3.8 Other Implementation 20
381 Script. 20

39 Expectedresults L oo L 21

4 Design 23
41 Overview e 23
42 Sensor Deployment 23
43 Target Deployment 25
44 Sensor and Target Deployment 27
45 Algorithm Description 28

5 Implementation And Result Analysis 33
51 ExperimentOne 33
52 ExperimentTwo 37
53 ExperimentThree L. 41
54 ExperimentFour 43
55 ExperimentFive, 46
5.6 ExperimentSix o o 48
57 ExperimentSeven 0oL 50

6 Discussion 55
6.1 Problemstatement 55
6.2 Algorithm and Experiment analysis 55

6.2.1 ExperimentOne 56
6.22 ExperimentTwo 56
6.2.3 ExperimentThree. 56
6.24 ExperimentFour 56
6.2.5 ExperimentFive 56
6.2.6 ExperimentSix 56
6.2.7 ExperimentSeven 56
6.3 Project 57
6.4 Errorsourcesand challenges. 57
6.4.1 Inconsistent results generation 58

7 Further work 59
71 Improvements, 59
72 Newfeatures. 59
73 Conclusion L L 59

Appendices 69

A Script For Experiment 1 71

B Script For Experiment 2 77

C Script Of Experiment 3 83

D Script Of Experiment 4 89

E Script Of Experiment 5 95

F Script Of Experiment 6 101

G Script For Experiment 7 107

Vi

List of Figures

1.1
1.2

2.1

4.1
4.2
4.3

5.1

52

5.3

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

Sensor node architecture [2] 2
(a)Sensors coverage with their targets and (b) Bipartite graph of
sensors and targets L L. 4
Projection of Learning automata and random environment associ-

ation [21] e 9
Sensor deployment with their coveragearea 25
Deployed targets in a area of 600mx600m 26

Sensor and target deployed in the same plane with sensor coverage
area. Here, sensor denoted by green towers and targets by red
towers. Target 1 is covered by sensor 5 and target 2 and 3 by senor 0 28

Blue line graph plot show results obtained by changing sensing
range of sensor from 150m to 600m with a step of 50m and there are
10 targets, 20 sensors deployed and red line graph plot show results
obtained by changing sensing range from 150m to 600m with a step
of 50m and by deployment of 15 targets and 20 sensors 35
One of the final simulation results of the experiment where 7 active
sensors are able to cover all the 15 targets. The sensing range is 200m. 36
Plot showing impact of increasing number of sensors on obtaining
the average number of minimum active senors in the experiment . 38
Plot showing the impact of increasing number of sensors by taking
15 targets and small sensing range of 100m to obtain average

minimum active senors in the experiment 38
Simulation result of the experiment showing the impact of the
density of sensorsinanetwork 0 0L 40
Plot showing impact of increasing number of targets on obtaining
average minimum active senors in the experiment 42
Simulation result on impact of target density on obtaining average
minimum active sensors 42
An extensive network consisting of 70 sensors and 50 targets with a
change of sensing range from 150m to600m 44

The result of a large network consisting of 50 targets and sensing
range of 300m with the increasing number of sensors from 70 to 80 45

Simulation result showing the impact of sensor density and sensing
range on obtaining average minimum active sensors in the large
network 45
Bar plot of the data obtained in Table 5.11 showing the effect of
decreasing value of learning parameter values 47
Simulation results of the experiment to investigate the impact of the
learning parameter of the Proposed learning automata algorithm. . 48
Plot showing graph of results from 2" method and brute force method 49

vii

5.14

5.15

5.16

5.17

Simulation result obtained after formulation of the experiment
using the Proposed learning automata algorithm and brute force
method
The plot of results obtained by Comparing proposed Adaptive
Learning Automata Algorithm (ALAA) with Learning Automata
Disjoint coverage set (LADSC) Algorithm and Result checking by
brute force method. Here 9 targets are used with the sensor between
9 to 25 with a sensing range of 100m.
The plot of results obtained by Comparing proposed Adaptive
Learning Automata Algorithm (ALAA) with Learning Automata
Disjoint coverage set (LADSC) Algorithm and checking results by
use of brute force method. Here 15 sensors and 10 targets are used
with varying sensing range between 45m and 110m
Simulation result obtained after formulation of the experiment us-
ing Proposed learning automata algorithm and LADSC algorithm
with a varying sensing range of sensors from 50m to 100m

viii

50

51

52

List of Tables

2.1

3.1

5.1

52

5.3

5.4

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

Related Paper,
Physical specification of system

Environment setup and the result obtained by varying sensing
range of sensors with the use of learning automata with 20 sensors
and10targets,
Environment setup and the result obtained by taking small values
of the sensing range of sensors with the use of learning automata
with 20 sensorsand 10 targets
This table show results obtained while taking 15 targets, 20 sensors
and by increasing the sensor sensing range from 150m to 600m . . .
This table show results obtained while taking 10 targets and sensing
range 300m with an increasing number of the sensor from 20 to 30 .
Tabulation of results obtained while taking 15 targets and sensing
range 100m with the increasing number of the sensor from 20 to 30
This table show results obtained while taking 15 targets and sensing
range 400m with the increasing number of the sensor from 20 to 30
This table show results obtained while taking targets between 4 and
26 with 30 sensors and sensing range of 100m
This table show results obtained while taking targets between 4 and
26 with 30 sensors and sensing range of 300m
This table show results obtained while taking 50 targets and 70
sensors by increasing the sensor sensing range from 150m to 600m

This table show results obtained while Increasing sensor number
from 70 to 80 with 50 targets and sensing range 300m
Observation table showing result of experiment after taking the
value of learning parameter lambda "A" as "A= 0.1", "A= 0.01" ,"A=
0.001" and "A= 0.0001" with sensors between 40 and 80 including 30
targets and sensing rangeis400m L.
Table showing experimental data set and the results obtained
after experimenting with the proposed learning automata al-
gorithm(ALAA) and brute force (2") method. Here, the number of
sensors deployed range from 10 to 20 with a step of 2 and sensing

range parameter value is 100m with the used number of targets is 9.

Comparing proposed algorithm with LADSC algorithm mentioned
in paper [7] and checking the correctness of the results by use of
brute force method with 9 targets and sensors between 9 and 25
with a sensing range of 100m
Comparing the proposed algorithm with LADSC algorithm men-
tioned in paper [7] and checking optimization result by using brute
force method with the deployment of 10 targets and 15 sensors with
varying sensing range from 50mto 100m

ix

34

34

35

37

39

39

41

41

43

43

46

49

51

Listings

4.1
4.2
4.3
Al
B.1
Ci1
D.1
E.1
F1

G.1

Sensor Deploymentcode, 23
Target deploymentcode 25
Sensor and target deploymentcode L. 27
Impact of sensing range of sensors 71
Impact of density of sensor by taking sensors between 19to 31 . . . 77
Code for impact of density of targets 83
Impact of sensor sensing range in large network 89
Impact of learning parameter 95
Comparison of result obtained from algorithm with brute force

method L 101

Code of algorithm that has been compared with proposed algorithm 107

xi

xii

Abbreviations

3D
ABC
ALAA
CDS
CPU
DLA
DSN
GCSC
GPS
LA
LADSC
LADSC

ML
MLCP

RL

Three Dimension

Artificial Bee Colony

Adaptive Learning Automata Algorithm
Connected Dominating Set

Central Processing Unit

Distributed Learning Automata
Directional Sensor Networks

Greedy Connected Set Coverage
Global Positioning System

Learning Automata

Learning Automata Disjoint Set Covers
Learning Automata Disjoint Set Cover
Number of targets

Machine Learning

Maximum Lifetime Coverage Problem
Number of sensor

Reinforcement Learning

xiii

Xiv

Chapter 1

Introduction

1.1 An Overview Of Wireless Sensor Networks

The development in the field of wireless communication is gradually increasing
day by day. Many devices and a lot of software are evolving with an increase
in the use of wireless technology. The most trending and popular field of
wireless technology is wireless sensor networks. This involves wireless networks
consisting of a large number of sensors deployed in a monitored area in a random
or deterministic manner and which can be auto-configured. These sensors are
small, low power, low cost and multi-functional devices with the ability to
communicate at a short distance. The sensors of the network consist of three major
components each for sensing, processing and communicating [1]. The evolution of
the wireless sensor network technology was first started when developing military
applications for monitoring surveillance of the battlefield. The development and
innovation of new methodologies in wireless sensor networks have increased the
field of its application, and it has been used in monitoring different fields such as
home, health care, temperature, disaster prevention, environmental monitoring,
pollution, etc.

Sensor networks consist of many embedded hardware devices as shown in
Figure 1.1. These hardware devices take part in the operation of the overall sensor
network. The following is a brief description of each component:

* Power Unit: This unit function is to provide power to all other units of the
sensor node.

¢ Processor Unit: The unit main task is to process the sensed data, scheduling
the task and control function of other hardware units of the sensor node.

* Radio Transceiver Unit: This unit function for doing wireless communica-
tion.

* Memory Unit: This unit contains a storage part of the sensor node, and it
contains both program memory and data memory.

¢ Sensor: This unit is small microcontroller chips which have a small size and
can function on small data rates.

* Geo-Positioning System (GPS): This unit provides location and time unit
of the deployed sensor nodes.

Sensor

Memory Processor f----- ! GPS |

Radio Transceiver

Power Unit

Figure 1.1: Sensor node architecture [2]

1.2 Wireless sensor networks life time

The power management factor is one of the keys concerning factor for the lifetime
enhancement of the wireless sensor network. Batteries that are used in a sensor
network are relatively small in size and having low power storage capacity. Those
batteries need either replacement or frequent recharging for continuous network
operation. However, this is impractical for the more extensive and complex sensor
networks. These will affect in a network lifetime. This network lifetime defined
as the time instant at which the network starts functioning to the time instant
where the desired coverage criteria are satisfied [15]. These give the idea that
minimization of energy usage results in extension of the lifetime of the wireless
sensor network.

Many research papers provide different ideas addressing the problem of
inefficient power consumption. They have proposed energy-aware routing,
energy-efficient data aggregation and dissemination, transmission power control
and nodes activity scheduling for efficient utilization of the energy[21]. These all
ideas conclude about maximizing network lifetime by fulfilling all the network
coverage requirements.

1.3 Wireless sensor networks coverage Area

Another area of wireless sensor networks is the coverage area. This area can have
been defined as the area within which a sensor node monitors and tracks the

specified target’s activities. Also, it is meant that each target should be monitored
by at least one of the sensor node continuously such that there is continuity in the
network operation. While doing this, there has been taken care of efficient energy
utilization. For this the nodes in the network have been kept in two modes, one
is active, and another is sleep mode. Here nodes in sleep mode do nothing, and no
energy is used, but the nodes in active mode monitor their environment or targets.
The network lifetime has been enhanced by scheduling the activity of each sensor
in active and sleep states [21].

This coverage problem can be divided into three parts. they are as follows [7]:

¢ Area Coverage:
This coverage includes monitoring of targets in the entire area of the
network.

¢ Target Coverage:
This coverage includes the idea of monitoring only certain targets within
the specified region of the network.

¢ Barrier Coverage:
Barrier coverage includes the idea of minimizing the probability of undetec-
ted penetration through the barrier.

There is much research done on coverage problem for designing energy
efficient wireless sensor network. For this many scheduling algorithms are
proposed to schedule the activity of sensor nodes. One of the scheduling methods
for energy efficient wireless sensor network is by using learning automata. This
mechanism provides the sensor node to learn their state and select its appropriate
state that is active or sleep for maximizing their battery lifetime.

In this, at the initial stage, the assumption has been made that all the sensor
nodes are in active mode and they are monitoring at least one targets. So, to make
the efficient network and battery usage minimum the sensor nodes are scheduled
with active and sleep mode. If the sensor node is not monitoring the target, then it
is provided with sleep mode of state, and if it is monitoring the target, the sensor
node is provided with an active mode of state. For this concept, the scheduling
algorithm using adaptive learning has been proposed. Where, each node are
equipped with a learning automata by which each node selects its state to one
of the modes, Active or sleep during the network operation. In sleep mode, a
node does not use energy, and when it is in the Active mode, it uses its energy.

Figure 1.2, shows the Venn diagram of sensors and targets with their bipartite
graph. There are four sensors S1, S2, S3, and S4 with their respective targets T1,
T2, T3, and T4. The circle with different color represents coverage of each sensor.
The bipartite graph shows the relationship between sensors and their number of
the covered targets.

; Sensor

A Target

s4 T3 Text

54 T4

(a)

Figure 1.2: (a)Sensors coverage with their targets and (b) Bipartite graph of
sensors and targets

1.4 Problem Statement

How to achieve energy efficient target coverage in a wireless sensor network using adaptive
learning

Let us consider that there are a set of M targets denoted by M = My, My, ..M
which are monitored by the set of sensor nodes N denoted by N = Ni, Ny,N,
and these two sets are deployed in an XxX area such that each sensor node covers
all targets. All sensor nodes have a fixed sensing range "R" in each experiment.
Also, there has been assumed that there are more sensor nodes than targets. It is
because to provide continues monitoring of targets in the sensor networks. That
helps in conserving energy and maximizing network lifetime. To schedule, the
sensor nodes scheduling algorithm has been proposed. That will provide the state
of sensor nodes. There are two states of sensor node one is Active, and another is
Sleep. If the target is within the range of the sensor node, then its state is active.
So, if the target is beyond the range of the sensor, then it is in a sleep state. In an
Active state, the sensor consumes some amount of energy while in sleep state it
does nothing. A target point M; within the range 1<=j<=M, is said to be covered
by the sensor node N; if it falls inside the range of one of the sensor nodes 1<=i<=N

[7]
The following notations are used in the project:
¢ N, number of sensors
* M, number of Targets
* XxX, area for deploying sensors and targets
* R, Sensing range of the sensor node
¢ T, active time period of both sensors and targets at initial state
e N, be the i sensor node in 1< i< N
* M, be the j targetin 1< j< M

The main objective is :

¢ To schedule the sensor node activity so as to achieve maximum network
lifetime.

For the sensor deployment there a set of M targets M = Mj, M, ..., M;, and N
sensor nodes N = Ny, Ny, ..., Nj; are taken in a X x X region. To achieve a maximum
lifetime sensor are deployed redundantly in such a manner that each sensor can
monitors at least one targets.

For the sensor scheduling, adaptive learning automata algorithm has been
used. This method will help sensor nodes to select their state according to
their probability vector without affecting the operation of the network. This
learning automata algorithm helps the sensor nodes to select their appropriate
state according to need of operation of network.To find the target coverage,
first euclidean distance between sensor node and targets has been calculated.
Comparing euclidean distance with sensor sensing range, the sensor checks the
target within their range. If the calculated Euclidean distance is less than sensing
radius "R" then the sensor is monitoring the target. At this time Sensor selects its
state to active state. Otherwise, it will be in a sleep state and remain inactive. In
the active state, sensor consumes some amount of energy and in a sleep state, it
consumes no energy.

After many iterations, proposed algorithm will select best active sensor nodes
among all the active nodes that are covering the maximum number of targets. And
this helps in minimizing the number of active sensors. This means that by the use
of less number of active senors there is use of less energy and thus overall network
energy is conserved and it leads to lifetime maximization.

This project will be solving following problems:

¢ How to observe the number of sensors that are active?

* How to schedule the sensor node for efficient energy conservation of the
wireless sensor network?

1.5 Report structure

¢ Introduction - section describes the problem and challenges of the thesis.

¢ Background - section includes basic theory and technical terms that are used
in the project.

* Approach - includes the approaches that are used to solve the problem
statement.

* Design - This section of the report contains Design of the project environ-
ment setup and algorithm used in the project.

¢ Implementation And Result Analysis - This part of the report contains about
design implementation and result obtained.

¢ Discussion - part contains how precise our result is obtained and also about
the unsolved tasks.

¢ Future work and conclusion - part contains what can be done to improve
and new ideas for improvement. Along with the short conclusion stating
about what has been obtained and what went wright and wrong.

Chapter 2

Background

2.1 Wireless sensors

In the present day, there is rapid progress in the field of wireless communication.
This field consists of many sub-fields among which one of the sub-fields is
wireless sensor network. This wireless sensor network includes of the sensor
devices, which are equipped with one or more sensors, one or more transceivers,
processing storage resources, and possible actuators. This device collects, stores
and process the environment information where they are deployed. So sensor
network is densely implemented with limited resources and dynamic topology.
Due to the limitation in size and weight of the sensors, there is the main issue in the
power scarcity problem. Power utilization of the sensor network is directly related
to lifetime enhancement and application performance of the sensor network.
So there is essential to optimize the energy used by sensor network operation.
Recently many research works have been done in the field of wireless sensor
network energy optimization.

To develop the sensor network as energy efficient network, power manage-
ment of sensor nodes can be done as follows:

1. Scheduling the nodes by using active and sleep mode.
2. Managing transmission range between the wireless nodes.

3. Using energy efficient routing and data gathering methods.

In this paper, the main focus has been on the node activity scheduling method
for target coverage problem. This method provides an efficient result with a
randomly deployed sensors that are monitoring the fixed list of targets. There is
some performance requirement such as routing connectivity, network coverage,
redundancy requirement, etc. which are used for scheduling nodes. For the
target coverage problem, here assumption has been made about that each node
radio range is capable of maintaining their route. So each target in the network is
covered by more than one sensor nodes where the redundant nodes are put into
sleep state without affecting the coverage.

In the past, many papers provide the idea of scheduling by dividing the sensor
nodes into disjoint subset covers by assuming that at some instant time unit one
set cover is active for monitoring the targets. This leads to the problem of disjoint
set cover problem.

This paper provides the idea of using the learning automata for scheduling
the activity of the sensor nodes without dividing them into disjoint sets. In this,
each sensor node is equipped with learning automata such that each node can
select their proper state whenever they need with the requirement of the network
operation.

2.2 Machine learning

The Machine learning (ML) was introduced in the late 1950’s as a technique for
artificial intelligence (AI)[4]. Due to diversity in the field of machine learning
application. There are many ideas evolved to apply this technique in different
fields of computer science. There is extensively use of machine learning techniques
from past. Many task can be done using the machine learning. For example it can
be used in performing task like regression, classification etc. Application area of
computer science like for speech recognition, biometric identification, computer
vision, image processing and many more are using machine learning techniques.
Many filed like mathematics, neuroscience, computer science are used to develop
machine learning algorithms.

The importance of machine learning is[3]:

1. To find the answer to the issues of knowledge forms and increase execution
of developed systems by the use of machine learning models.

2. To adopt a computational model for improving machine operation. For this
training data set are analyzed with their pattern and consistency.

The following are the types of machine learning algorithms

2.2.1 Supervised Learning

It is a predictive model.[5] Where, it provides the relationships and dependencies
between input, output and the system parameters. Based on this relationship
one can predict the output values for new data which it learned from the
previous datasets. This learning section includes a classification and regression
problem. [3]This learning algorithm is used to solve many challenges in wireless
sensor network such as media access control, security, and intrusion detection,
localization and object targeting, data integrity and fault tolerance, etc.

2.2.2 Unsupervised Learning

Learning has been done by the unlabeled test data. This type of learning is used
in pattern detection and descriptive modeling. By the use of pattern and rules,
this learning derives meaningful understanding to the data to the user. It includes
Clustering and Association rule as a main unsupervised learning algorithms [5].
The basic idea of this type of learning is to classify data into a group of similar sets.

2.2.3 Reinforcement Learning

This machine learning maximizes its performance by allowing its agent to select
state automatically form environment.[5] Agent learns its behavior through the
use of simple reward feedback signal. It uses a specific type of problem and its
solution to provide a Reinforcement learning algorithm. There is much application
of reinforcement learning algorithms. Some of them are computer played board
games (Chess, Go), robotic hands, Q-Learning, and self-driving cars, etc.

Machine learning in a wireless sensor network can be used for creating a
prediction model by the use of machine learning tools and algorithms. So also
by understanding themes and patterns of machine learning, users can implement
it in a wireless sensor network to get more flexibility.

2.3 Learning Automata

Learning automata are the model of machine learning. This model is the abstract
model that selects the appropriate action among the finite set of actions and
performs it in a random environment. Then with the help of the reinforcement
signal environment evaluates the selected action and responds to the automata.
To select the next action, automata first update its internal state from selected
action and signal is received. Thus, by following certain rule automata finds
the best output solution and to do this automaton continuously interact with the
environment to make the appropriate decision for suitable action.

c={cl,c2,...cr}

Environment (E)

{ala2._ar
{: } b={0,1}

Learning Automata (LA)

Figure 2.1: Projection of Learning automata and random environment
association [21]

Environment can be defined by the triple E = (a, b, c) where a, b, ¢ can be
defined as follows: a = ay, ay, ... , ar: represents a finite input set b= by, by, ... , by
represents the output setand c =c1, ¢, ... , ¢;: is a set of penalty probabilities

Each element c¢; of ¢ corresponds to one input of action 4;. An environment
contains three models. They are as follows:

¢ P-model:
This is the environment in which b can take only binary values 0 or 1

¢ (Q-model:
In this model, the environment allows finite output sets with more than two
elements that take values in the interval [0, 1].

¢ S-model:
In this model, the output of the environment is a continuous random
variable which assumes values in the interval [0, 1].

Also, learning automata are classified into fixed-structure stochastic and variable-
structure stochastic models.

[35]A learning algorithm can be defined as follows:

p(n+1) =Tlp(n),a(n),b(n)] 1)

Let a(k) and p(k) denote the action chosen at instant k and the action probability
vector on which the preferred action is based. The repetition equation shown
by 2.2 and 2.3 is a linear learning algorithm, which is used to update the action
probability vector p. Let a; (k) be the action chosen by the automaton at instant k.

pi(n+1) = pi(n) +a[l — p;(n)]

o 2.2)
piin+1) = (1 —a)p;(n)vj,j #i
when the taken action is rewarded by the environment (i.e.,b(n) = 0)and
Pi(i’l—Fl) = (1—b)p]'(1’l) (2.3)

piln 1) = L b (1= b)) # i

when the selected action is penalized by the environment (i.e.b(n) = 1)

Here, r is the number of actions taken and a and b denote the reward and penalty
parameters and determine the number of increases and decreases of the action
probabilities.The parameter p;(n) and p;(n) are the probabilities of action a; and
b; [51]. [35] For a = b, learning algorithm is called Linear Reward-Inaction(Lg_j)
algorithm,for b «a, it is called Linear Reward epsilon Penalty(Lg_p)algorithm,
and for b = 0, it is called linear reward—penalty(Lr_p)algorithm .

2.4 Tools used

Python programming language has been used in a project for the programming
part and the simulation part there is the use of Matplotlib module of python
program.

241 Python

Python[28] is a high-level programming language for general purpose program-
ming. It has a big library supporting different programming types. It is easy to
work with and also provide a great variety of possibilities. It helps the program-
mer to work quickly and efficiently integrate the system. It has an interpreter
that support a large number of operating systems. It also supports to develop
many graphical user interfaces. It has a feature like dynamic system and auto-
matic memory management capabilities. These features make it more popular
among the programmer. There is an observation of who the clear leader is, py-
thon. It is one of the reasons for using Python as the main programming language
in this thesis. The philosophy of Python is simple, as described in the document
Zen of Python[28], including the following lines:

¢ Beautiful is better than ugly

e Simple is better than complex

¢ Complex is better than complicated
* Readability counts

¢ Errors should never pass silently

10

2.5 Related work

Table 2.1 Related Paper

Year | Authors Issued Focused Approach Used

2004 | Chi-Fu Huang coverage in 3D space Eff1c1?nt polynomial time
algorithm

2005 | Michaela Cardei Disjoint set cover Linear programming
and greedy approach

. . MC-MIP
2005 | DING-zHU DU | maximum disjoint (Maximum Coverset-Mixed
set covers problem I .

nteger Programming)
PCL-Greedy Selection (GS)

2007 | Yingshu Li k-coverage Schedule and PCL-Greedy Adjustable(GSA)
algprithm
Artificial bee colony algorithm

. Sensor deployment article swarm optimization

2007 | S:Mini and Schecfulii,lg ?or sensor deplo;ment and
Heuristic for scheduling
Integer Programming,

2008 | Ionut Cardei Connected set cover Greedy approach and
Distributed and

Localized heuristic

Linear programming
based exponetial time

2010 | Maggie X, Cheng | k-coverage exact solution and
approximation algorithm
Coverage-guaranteed
network life time Distributed sleep
2012 | Guofang Nan et al and network coverage | wake scheduling
(CDSWS)
target coverage
2014 | Habib Mostafaei | and maximum LADSC algorithm
life time
Communication weighted greedy
coverace broblem cover, Optimized connected
. . yerage p coverage heuristic, Overlapped
2015 | Jiang Lei Shu of industry
. target and connected
wirelesssensor netowrk .
coverage and Adjustable
range set covers.
2018 | Dayong Ye et al saving energy of Self-adaptive .
each node sleep-wake-up scheduling
In [22] there is an explanation about management of target coverage problem.

That mentioned that there is a need to manage targets to get a maximum lifetime.
To do this paper has used a probabilistic coverage model which takes the distance
parameter for target coverage. This algorithm is based on the modified weighted
set cover. Which helps in organizing sensors into disjoint and non-disjoint set

11

covers.

In a wireless sensor network, there is a problem of selecting an appropriate
node that is covering targets. This concept of coverage-centric node selection
problem is formulated in [40]. To get the solution of the problem authors have
used coverage-centric active nodes selection (CCANS) algorithm. This algorithm
is based on the formation of the connected dominating set (CDS). The active nodes
of the network form the connected dominating set. This provides the backbone to
other nodes for sensing and communication purpose. Such that sensor node data
communication is processed through this route.

In [39] authors have discussed applying the sleep and awake schedule to the
low duty cycle wireless sensor networks. In this, they have taken in consideration
of the explicit effect of synchronization error for designing sleep and awake
schedule. To do this, they have divided their work into two parts. The first part of
the work provides sleep and awake schedule by use of an efficient search method.
Such that there is the use of minimum number of sensors for coverage. So in the
second part, they have mentioned finding the quality of service of the network as
a whole.

To enhance the lifetime of the wireless sensor network. Have to schedule the
activities of cover sets. These cover sets are the sets of sensor nodes that are
covering the number of targets. So for obtaining this cover sets, sensor node
should be deployed in a proper manner such that target coverage is achieved.
Authors in [19] provided heuristic and artificial bee colony algorithm to find the
network lifetime. So for sensor deployment, authors proposed two scheduling
techniques, heuristic, and an ant colony. By their experiments, authors provide
that their methods help in improving the network lifetime of the sensor networks.
In [21] there is the explanation of the solution to the cover set problem as
mentioned in the above paper. Here the authors explained the learning automata
algorithm. This algorithm is used to schedule the sensor activity of the nodes such
that the network lifetime is maximized.

There is much literature that can be found about the target coverage problem

of the wireless sensor networks. In [45] authors have discussed the target
coverage along with data collection problem in wireless sensor networks. This
data collection help for transmitting sensed data from nodes to the sink. By the use
of polynomial-time approximation and polynomial-time constant approximation
methods, the problems as mentioned earlier are analyzed. Experiments are done
by taking sensor with same sensing radius and transmission radius. So the result
of the paper show that it is NP-hard to find maximum lifetime by scheduling target
covers and data collection in wireless sensor networks.
The sensor communicates with its neighbor node to transfer information with
each other. To do this sensor use some amount of energy. However, for high
data rate transmission, it requires a large amount of energy. So this issue of the
sensor network should be considered for a network lifetime. For this [46] provides
the energy efficient pattern for high data rate communication in wireless sensor
networks without affecting the rate of sensing coverage.

In [6] the sensor nodes are organized into several maximal set covers. These set
covers are activated to monitor the targets, and other nodes remain in sleep mode
to save the energy. The main goal of the paper was to find the disjoint set for
energy conservation of the sensor network to increase the lifetime. they have used
two-heuristic approach for computing the sets by using the linear programming

12

and a greedy approach. The result shows that there is an increase in a lifetime with
an increase in target and sensing range with a specified number of targets. So if
there is a decrease in the number of targets, there is an increase in the number of
lifetimes.

A heuristic method for organizing sensor nodes into disjoint set covers is
mentioned in [32][23]. These disjoint set covers are activated successfully. Such
that the sensor set covers that are an active state only can monitor the targets and
other sensor sets go to low energy sleep mode. Also there use of Greedy connected
set coverage (CSC) heuristics algorithm in [32]. This method helps in increasing
the network operation lifetime in comparison to IP-CSC heuristic algorithm.

To obtain adequate target coverage sensors can be divided into cover sets. This
cover set is provided with some interval of time to monitor targets. However, this
solution is proved to be NP-complete. So to obtain coverage solution authors in
[26] has proposed for the centralized heuristic algorithm. This algorithm generates
cover sets that help in monitoring all the targets.

If there is a need to deploy the sensor nodes in a large area like for monitoring the
environmental risk. For this, the large number of sensor nodes has to be deployed.
So proper monitoring algorithm is needed to get better throughput. There is a
physics-based heuristic algorithm described in paper [38]. This algorithm helps
in placing the scalable sensor node efficiently to find the coverage of fixed targets
in wireless sensor networks. Paper has introduced the concept of virtual sensors.
This is used for moving and merging the sensors to get the minimum number of
target covering sensors.

To know the answer of question how to manage the schedule of a large amount of
sensor node deployed can be obtained in paper [41]. This paper provides the large
sensor deployment as the maximum lifetime coverage problem(MLCP). So by the
use of polynomial-time approximation algorithm authors provide the solution to
the mentioned problem.

In [11] k-coverage problem in a wireless sensor network is highlighted. This
k-coverage defines the user-defined area of sensor coverage where the sensor can
cover its targets. For this two algorithms were formulated in the paper. First
one is PCL-Greedy- Selection (GS) algorithm which deals with the sensors that
have fixed sensing range and belongs to disjoint subsets. Next is PCL-Greedy-
Selection-Adjustable (GSA) algorithm which deals with the sensor that belongs
to non-disjoint subsets and sensors with adjustable capabilities of their sensing
range. Comparing both algorithm paper concluded that the GSA algorithm is a
better algorithm to solve the k-coverage problem in wireless sensor networks.

Two algorithms linear programming-based exponential-time exact solution
and an approximation algorithm in [10] are used for maximizing the lifetime of
sensor networks. In linear programming based exponential time exact solution,
first the non-redundant set cover is obtained, and then the schedule for each
non-redundant set cover is computed. In approximation algorithm first, k-covers
are discovered. This K covers are the number of non-redundant set covers that
include most of the targets. Then the lifetime optimization is done by using
linear programming. To obtain k-coverage in dense sensor networks authors in
[14] has purposed an efficient approximation algorithm that finds the coverage
space within the logarithmic optimal. This distributed algorithm provides the best
solution to node optimization and helps to prolong the network lifetime.

How appropriate coverage strategies can be chosen for better performance of
the wireless sensor device in the industry has been addressed in [24]. For target

13

coverage problem, this paper proposed four algorithms. These four algorithms
were analyzed based on their network lifetime, coverage time, average energy
consumption, etc. Results are observed to select the appropriate algorithm to
optimize the coverage and connectivity of industrial wireless sensor network.

Heuristic scheduling for the sensor nodes and Artificial bee colony (ABC) al-
gorithm with Particle Swarm Optimization(PSO) for sensor deployment problem
is formulated in the paper [15]. By Comparing both purposed algorithm au-
thor concluded that to find the optimal locations the Artificial Bee Colony is a
good choice and for obtaining a maximum lifetime of the sensor network heuristic
scheduling is appropriate.

There is a connected set cover problem in wireless sensor networks. In

[25] there is a detail description about it. The goal of this paper is to find a
maximum number of set covers. Where activated set is connected to the base
station. The objective of the paper is fulfilled by using three solutions as an integer
programming based solution, a greedy approach, and a distributed and localized
heuristic.
There is a combination of two coverage and connectivity problem of wireless
sensor networks into one problem in paper [45]. To do this, each sensor node
is provided with a priority. For this, there is a use of Efficient Energy Coverage
and Connectivity(ECC/EC2) novel algorithm. Which is used to configure the
wireless sensor networks dynamically? And the result of the algorithm provides
a degree of coverage and connectivity. Also in [9] there is mention of the cover set
problem. This problem is formulated as a maximum cover set problem by using
the proposed Imperialist Competitive Algorithm (ICA) approach. This approach
is used to schedule the deployed sensor nodes such that they can monitor all the
targets in the network with maximizing the network lifetime.

In wireless heterogeneous sensor networks, there is also a coverage and
connectivity problem. To solve this problem in [12] authors provide two heuristic
solutions.Which are Remaining Energy First Scheme (REFS) and Energy Efficient
First Scheme (EEFS). For formulating these schemes paper first state the problem
as a connected set cover problem and then it states it as integer programming
constraints.

In Directional Sensor Networks (DSN), there is a problem of designing
the appropriate algorithm which provides coverage of all targets and their
connectivity to the sink. The paper [17] provides the idea of using the distributed
learning automata (DLA) algorithm to solve this problem. The author mentioned
that this algorithm schedule the sensor nodes to be active at each stage to cover all
the targets and send the sensed information to the sink node.

For maximizing the network lifetime of the wireless sensor network in [18]
there is the highlight of the critical target and critical sensor aspect. This critical
target is the targets that are covered by least number of sensors, and this sensor
is called critical sensors. To enhance the lifetime of the sensor networks author
proposed heuristic for selecting a minimum number of critical sensors. Also, this
sensor will cover critical targets for a longer time thus by including all the targets.

Paper [16] provide the answer to a question about how to monitor the coverage
problem in 3D space. The proposed solution is to use the efficient polynomial-time
algorithm. The coverage problem of sensor networks is formulated as a decision
problem. So all the sensor coverage area is monitored to find if all the targets fall
within the sensor nodes range.

14

In the case of the mobile target, it is difficult to find the exact coverage
and position of targets in large-scale wireless sensor networks. There is a trap
model for the solution. However, in real time Wireless sensor networks it is
difficult to implement. In a practical scenario, sensor sensing follows probabilistic
sensing mode. In [20]authors has proposed a probabilistic sensing model and
circular graph for detecting the mobile targets. They formulated probabilistic trap
coverage with maximum network lifetime problem. So circular coverage graph
for determining that if given sensor networks can provide the probabilistic trap
coverage or not.

2.6 Proposed Algorithm

The purpose algorithm in this paper is the Adaptive learning automata algorithm
for scheduling the sensor nodes. This algorithm helps in finding the best active
sensors that are monitoring the maximum targets. The flow of the algorithm
is divided into three phase which includes the initial stage, a learning phase,
and the target monitoring phase. The initial period starts with broadcasting the
message containing the information of the sensor node to its neighbors. It ends
with reply information from a neighbor and knowing the monitored targets. Then
the learning phase starts with selecting the state of a node by using learning
automata and ends by providing the appropriate probability vector value for the
entire operation. The final stage is the target monitoring phase — this starts with
selecting the best action of sensors using learning automata and ends by providing
a sensor to operate according to this best action. Each stage is described briefly in
the following part.

2.6.1 Initial Phase

In this phase, each node is equipped with the learning automata LA;. Which
help Sensor node to select their state to active or sleep. At first, each state of
the sensor node is provided with equal 0.5 probability. Then the sensor node
starts communication with its neighbor nodes by broadcasting the message. This
message contains id, number of neighbor it covers and its position. Then it waits
to receive a reply from the neighbor nodes. This network operation divided into
rounds which contains learning phase followed by target monitoring phase.

2.6.2 Learning Phase

This phase includes sensor nodes with learning automata. This learning
automaton helps the node to select one of the states from Active or sleep. Then
node sends its state message to its neighbors. It waits for a reply from its
neighbors. After receiving the reply sensor node do the following:

1. If LA, is active:
If its neighbor nodes cover the targets of the sensor node under its coverage,
then the sensor node decrease its probability of covering target by using
learning automata.

2. If LA; is sleep:
If its neighbor nodes also cover the targets of the sensor node under its
coverage. Then the sensor node increases its probability vector using
learning automata.

This learning phase continuous till the threshold value is meet and operation
exceeds the maximum time.

15

2.6.3 Target Monitoring Phase

In this phase, the sensor nodes select its state for the whole operation as an active
or sleep. For this, it selects from the higher probability action of the probability
vector of its learning automata if the probability value of active state is high then
the sensor selects its state as an active state and vice versa. Also in this phase, the
sensor monitors the target until it loses its all energy.

16

Chapter 3

Approach

The main focus of this chapter is to formulate an answer to the problem statement.
This chapter is divided into many steps, and each step gives a solution to add one
step forward to our projected goal.

3.1 Objective

The main objective of this thesis is to maximize the network lifetime of a wireless
sensor network by using the learning automata algorithm.

3.2 Experimental Environment

The experimental setup is done first by installing Pycharm integrated develop-
ment environment (IDE) in the system. This works as a front end for developing
the program. Different modules that are needed in the program are installed in
this environment. This is used as front-end to develop and analyze the code of our
project. For plotting graph of our result, there is the use of python GUI modules
as the graphical interface. This graph is used to analyze the results in the end. To
make this algorithm work many resources of the environment are used.

The following table shows the physical specification of the device in which the en-
vironment is setup:

Table 3.1 Physical specification of system

CPU: Intel(R) Core(TM) i7-6500 CPU @ 2.50GHz
Cores: 4
Os: Windows 10 Home 64-bit
Memory: 8GB

3.3 Technologies
Python programming script used for developing the workflow of the project. The

machine learning algorithm is implemented to schedule sensor nodes to select
their action of states. There is the use of draw.io to draw some diagrams in this

17

project. So for writing this report overleaf has been used and to do proofreading
of the writing part, Grammarly tool is used.

3.4 The Plan

Planning is important to reach every goal. So, this project work is planned into
many phases that are according to the requirement for achieving the goal of this
project work. So this work will be completed on given time instance.

At first, research and study of the project related work have been done. This
phase is of finding the related work as mentioned in our background chapter. Here
different approach that has been for solving problem-related to our task is found
out. With this research, there is a finding of the answer to our question about how
different paper has implemented machine learning in wireless sensor networks.

When the above task completed then phase the second start to create an
environment for the project. Here the environment means physical as well as the
technical part of the project.

The third phase of our plan starts with the implementation of an algorithm
for the project. In this project, the adaptive machine learning algorithm is used.
This algorithm help sensor nodes in our project to learn automatically about their
Action of their states. This states are Active and sleep state. Active state, the sensor
is monitoring a target, and in a sleep state, it is doing nothing. So the sensor is
using some amount of energy during Active state.

In the fourth phase, the results are obtained by the running experiments the of
the project. These experiments are done by varying the parameter of the project
to obtain results. There is a plan of doing five to seven experiments in this project.
Such that the potentiality of our implemented algorithm can be easily observed.

Finally, obtained results from the above case are evaluated and analyzed by
using graph and tables. These results are then discussed in detail in the discussion
chapter of the project. So later conclusion was made from the results obtained.

3.5 Planned Experiments

Planned experiments help in executing the solution of the project. Only the
experiments that are done in a proper setup will give valid results. To do this,
there should be the appropriate setup of the environment, interfaces, resources
available, etc. Such that algorithms can be implemented and obtained results from
the experiment can be tested thoroughly.

In this project, there is N_sensor and M_Targets deployed within the area of
600m x600m. Sensors deployed in each experiment has the same sensing range.
To schedule the sensor nodes, there is the use of learning automata algorithm. The
parameters that are used during the experiment period are defined as follows:

N_Sensor, It represents a total number of sensor that is using in the project. In
this project, between 4 and 90 sensor nodes are deployed to check the functionality
of the purposed algorithm.

M_Target, it represents the total number of targets to be covered by the sensor
node. In the project, the number of targets deployed is between 3 and 60

18

So to represent a range of the sensor, Range_sensor, It represents the sensing
range of the sensor. Its value ranges between 50 and 600.

LA is the learning automata algorithm that is used in the project. This helps
the sensor node to select their state. There are two states one is active, and another
is sleep.

3.5.1 Experiment one

Goal: Focus is on finding a minimum number of active sensors covering all targets
by using different values of the sensing range of sensors.

3.5.2 Experiment Two

Goal: Focus here is to check the effect of the varying number of sensor, with fixed
sensing range to get minimum active sensors.

3.5.3 Experiment Three

Goal: To find an impact of target density in finding minimum active sensors.

3.5.4 Experiment Four

Goal: To check the efficiency of proposed learning automata algorithm. This is
done by varying the parameter of the purposed algorithm. Here, A of the learning
automata algorithm is varied by residing € constant within the entire operation.

3.5.5 Experiment Five

Goal: To check the validity of the experimental results by creating a 2" binary
combination of sensors where n is the number of sensors that are used in the
experiment. Which is called a brute force method. For example from 3.5.1 the
value of n=10 is taken. So there will be 1024 possible binary combination of 10
sensors. From this combination, it extracts only the combination of active sensors
that are covering all targets. This is used to check the combination obtained is
correct or not. This brute force method creates all possible combination list of
active sensors. This list is compared with a previously obtained list for checking
the output of the proposed algorithm.

3.5.6 Experiment Six

Goal: To evaluate the effect of density of sensor and target on learning automata
operation.

3.5.7 Experiment Seven

Goal:To compare the efficiency of proposed learning automata with others work.

3.6 Results of the experiments

The results from the above experiments provide an answer about how efficient
is our purposed algorithm to meet our problem statement. This results of the
experiments are briefly described in the Implementation and result from the
analysis chapter of this thesis paper.

19

3.7 Constraints of the project

In project work, some constraints create a problem in the completion of the project
on time. This constraint may be due to time, environment set up or may be due to
some technical error, etc. This constraint should be taken into consideration while
doing project work.

3.71 The Setup

The setup constraints come when there is to modify the algorithms.

3.7.2 The time

A lot of research work is done before starting any project work. Such that the
authors can get some idea to do their project however If there is no idea of how
to search those related works and extract the required information. Then it will
difficult to do the project author to complete on time. So sometimes there is
difficulty in the technical part of the project which consumes time to find its
solution. So time constraints are a more challenging aspect to take into mind while
doing any project work.

3.7.3 The Technology

In the project python programming language is used. This programming language
is easy to implement. Many python modules that are needed in this project can
be easily used. However, sometimes there is difficulty to use the modules of
python to get desired results. It is due to the mismatch of a version of the python
interpreter that has been used and sometimes with logical errors.

3.8 Other Implementation

This includes the remaining part of the project that is used in the project. This part
describes the portion of the project that is not described in the above part. These
elements of the project help in doing the above experiments thoroughly.

3.8.1 Script

The script of the project is developed by using the Python programming language.
For this Pycharm is used as the Integrated Development Environment(IDE). This
script is divided into four parts for simplicity.

Script For Generating sensors

This part of the script is used to generate the number of sensors for the
project. Sensors are randomly deployed. So there is also a use of a script to check
redundancy of deployed sensors. Sensors are initially provided with their range.
Here the assumption is made that sensor interact with each other automatically.
In every iteration of the program, there is a change of sensor orientation because
of its randomness.

Script For Generating Targets

20

This part of the script generates the target of the project. Target is also
randomly deployed. So, redundancy check is formulated to avoid the duplication.
In this project, there is always less number of target deployed than sensors.

Script For Implementing Algorithm

Here the script for purposed learning automata algorithm is included. This
part of the script is used to schedule the sensor nodes to cover the target. So that
it provides the minimum number of active sensors where these active sensors are
the sensors that are covering targets. The probability vector of the active sensor
considers them for the next iteration. From the list of active sensors at the end, the
algorithm provides the best active sensors which are covering all the targets of the
network.

Script For Comparing Purposed Algorithm With Other Work

This part is used to evaluate our purposed algorithm results with the related
works algorithms.
3.9 Expected results
From our experiments and related work, the expected results can be assumed.
These results are obtained by doing tests. In this project, sensor, target and
learning automata have been used for formulating the problem statement of the

project. So the obtained results are analyzed and compared them with other
related works to find more fairness of our algorithm.

21

22

N

Chapter 4

Design

4.1 Overview

This chapter contains more detail about the environment setup an algorithm that
is used in this project. How design is implemented and formulated according to
the plan in approach chapter is going to be explained here. By the use of figures,
tables, and some scripts the design is more simply explained.

In this chapter, the design phase is divided into small subparts. This part is
used to explain the plans mentioned in the approach chapter. Which contains
about what are the circumstances es that is used to make the project complete.
There is an explanation about what standards and rule to take for the designing
our project according to the flow of plan.

4.2 Sensor Deployment

This includes a description of how sensors of the project are deployed and what
strategies are taken for this. There are many sensor nodes deployment models
such as uniform random, square Grid and Tri-hexagon tiling [49]. In his project
uniform, the random model is used. Such that the sensors are deployed randomly
in a rectangular area with the same sensing range. Here, the assumption of a
number of sensors is always greater than the number of deployed targets is made.
At the initial state, all sensors have an equal probability value of covering the
targets. The use of the proposed learning automata algorithm helps the sensor
node to learn their state automatically in each iteration depending upon its state
the probability value changes. The use of distance formula calculates the coverage
of the sensor network. This formula provides the distance between the sensor
node and the target of the network. If this obtained value is less than or equal to
sensor sensing range, then the sensor is covering the target. Otherwise, the target
is out of range of sensor node.

The following is a small script for deploying sensor node in network
randomly:

import random
from math import sqrt

5| import matplotlib. pyplot as plt

4

gridsize =600

5| Range_sensor= 100
6| N_sensors=20

23

M_Targets=10
x_sensor =[0]*N_sensors
y_sensor =[0]+N_sensors

)| x_targets =[0]+M_Targets

y_targets =[0]+M_Targets

for i in range(N_sensors):
x_sensor [i]=random.randint (0, gridsize)
y_sensor[i]=random.randint (0, gridsize)
print("sensor", i, "is at position", x_sensor[i],y_sensor[i])

x1 = x_sensor[i]

yl = y_sensor[i]

plt.text(xl = (1 + 0.01), y1 = (1 + 0.01), i, fontsize=12) #
code for ploting the points with text

plt.scatter(xl, yl1, 100, 'g”, "1’) # for scatter plot of
sensors
circle = plt.Circle ((x1, yl), Range_sensor, color="black”’,
fill=False) # this code is for drawing
circle coverage of sensor
fig = plt.gcf()
fig.gca().add_artist(circle)

7| plt . ylim (0, gridsize)
s| plt.xlim (0, gridsize)

plt.xlabel ('x — axis”)
naming the y axis

33| plt.ylabel(’y — axis”)

giving a title to my graph
plt.title ("Sensors”)

show a legend on the plot
#plt.legend ()

function to show the plot
plt .show ()

Listing 4.1: Sensor Deployment code

Here, in the above Listing 4.1the variable N_Sensors is the number of sensors
that are going to deploy. For example, in this script N_Sensors value is 20 with
sensing range 100 and a grid size of the network is 600m x600m. This value of
the sensor varies with the need of the experiment. The position of the sensor is
given by x_sensor[iland y_sensor[i] variable. This is the position of the sensor
inside x-axis and y-axis. To visualize this code in the graphical form, there is the
use of python graphical module called matplotlib.pyplot. The following Figure
4.1 shows the graphical representations of deployed sensors with their coverage
area.

In this Figure 4.1, green towers are the sensor and the black circle represents
the coverage area of each sensor with a sensing range of 100m.

24

Sensors 9

600 8

400

300

Yy - axis

200 ~

100 +

T T T T T
0 100 200 300 400 500 600
¥ - axis

Figure 4.1: Sensor deployment with their coverage area

4.3 Target Deployment

The target is deployed randomly as sensors in this project. Which have a random
position? The number of the deployed target is always less than deployed sensors.
Because of the assumption that defines there should be at least one sensor that
should cover the target. To deploy the targets the following code is used in this
project:

import random

from math import sqrt
import matplotlib.pyplot as plt
import numpy as np

gridsize =600

Range_sensor= 100
N_sensors=30

M_Targets=25

x_sensor =[0]*N_sensors
y_sensor =[0]+N_sensors
x_targets =[0]«M_Targets
y_targets =[0]« M_Targets

for j in range (M_Targets):

25

x_targets[j] =
y_targets[j] =

random.randint (0, gridsize)
random.randint (0, gridsize)

print("position of taget",j,"is",x_targets[j],y_targets[j])

plt.scatter (x_targets[j],y_targets[j],100,"'r","1")
plt.text(x_targets[j] = (1 + 0.01), y_targets[j] =

j, fontsize=12)

2| plt . xlim (0, gridsize)

plt.ylim (0, gridsize)
plt.show ()

(1 + 0.01),

Listing 4.2: Target deployment code

In Listing 4.2, the M_Targets represent the number of targets deployed. In this
project, this number ranges from 20 to 100.

600 -6 ﬁm
500 - 2

v 20 gz*l 13*2 \
400 4 23 A4 Ylf;r

721
300 P
9
200 - 8
s ¥ i
100 | N2 Y152
0 16

T T T T T
0] 100 200 300 400 500 600

Figure 4.2: Deployed targets in a area of 600m x 600m

In this figure 4.2 the red towers are the targets. The number of deployed targets

are 25.

26

4.4 Sensor and Target Deployment

Figure 4.3 show the plot of sensor and target deployed in an area of the
600mx600m grid. Here, 10 sensors and 5 targets are deployed to draw this
plot. And, the sensor is provided with a sensing range of 100m. The sensors
are represented by green towers and targets are represented by red towers. Black
circle around the sensor is their coverage area.

from numpy import random
import matplotlib.pyplot as plt
import numpy as np

N

5| gridsize = 600

o Range_sensor = 100

7| N_sensors = 10

s| M_Targets = 5

9| x_sensor = [0] = N_sensors

0| y_sensor = [0] * N_sensors

11| x_targets = [0] = M_Targets

2| y_targets = [0] = M_Targets

13| max_time = 10

14| for i in range(N_sensors):

15 x_sensor[i] = np.random.randint(0, gridsize)

16 y_sensor[i] = np.random.randint (0, gridsize)

17 print("sensor", i, "is at position", x_sensor[i],y_sensor[i])
18 x1 = x_sensor[i]

19 yl=y_sensor[i]

20 plt.text(x1 = (1 + 0.01), y1 = (1 + 0.01), i, fontsize=12) #
code for ploting the points with text

plt.scatter (x1, y1,100,’g’,’1")

NONN
I N

circle = plt.Circle((x1, yl), Range_sensor, color="black”’,
fill=False)

24 fig = plt.gcf()

25 fig.gca().add_artist(circle)

26
27| print("sensor", i, "is at position", x_sensor[i], y_sensor[i])
8 for j in range (M_Targets):

29 x_targets[j]= np.random.randint(0, gridsize)
30 y_targets[j]= np.random.randint(0, gridsize)
31 x2 = x_targets|[j]

32 y2= y_targets|[j]

34

plt.scatter(x2,y2,100,'r",’1")

37 plt.text(x2 = (1 + 0.01), y2 = (1 + 0.01), j, fontsize=12)
38 print("targets", j, "is at position ", x_targets[j], y_targets
LiD

| plt.legend ()

1| plt.ylim (0, gridsize)

a| plt.xlim (0, gridsize)

2| # naming the x axis

5| plt.xlabel(’'x — axis”)

4| # naming the y axis

55| plt.ylabel ('y — axis”)

46| # giving a title to my graph
7| plt. title ("Sensors”)

27

48
1| # show a legend on the plot
s0| # plt.legend ()

51

52| # function to show the plot

53| plt.show ()
Listing 4.3: Sensor and target deployment code
g Sensors
600 —
4
Y
500 A
400 ~
v
=
o 300 ~
Ty
200 ~
vl
100 -
0 T T T T T
0 100 200 300 400 500 600
X - axis

Figure 4.3: Sensor and target deployed in the same plane with sensor
coverage area. Here, sensor denoted by green towers and targets by red
towers. Target 1 is covered by sensor 5 and target 2 and 3 by senor 0

4.5 Algorithm Description

In this project, an adaptive learning algorithm is used. This algorithm helps in
scheduling the sensor nodes action state. There is two action state of the sensor
nodes. One is an active state, and another is sleep state. Inactive state sensor
node communicates with its neighbors and covers the targets. Where is sleep
mode sensor node do nothing? Also in case of energy usage, inactive state sensor
node consume more energy while in sleep state no energy is consumed. At the
initial state of the algorithm, every sensor is provided with an equal probability of
covering the targets.

28

This algorithm is divided into three phase:

¢ Initial Phase:

In this phase, all the sensor in the network is provided with learning
automata. This helps the sensor node to select its state to active or sleep. In
the initial stage, the probability of selecting the state is considered to be 0.5.
Sensor nodes in the project are considered to be autonomous. Which means
that they establish communication, transfer messages including their ID,
position, and list of covered targets with their neighbor node autonomously.
Such that they know which state to select at every condition. This phase is
followed by learning and target monitoring phase.

Algorithm 1 Initial phase
Input:

i Given, N number of sensors, M number of targets and R sensor
sensing range

ii a and € learning automata parameter
Output:
i Number of active sensors that cover the targets

START

Initialize the Network parameters
Calculate the distance between sensor and target
Determine the coverage and covered targets in the network
if (Rangeo fsensor >= distancebetweensenorandtarget) then
Set sensor mode to active and add them to list
of active sensors by using learning algorithm
else
Set sensor mode to sleep by learning algorithm
end if
iteration=iteration+1
while AllTargetcovered do
end while

* Learning phase

29

Algorithm 2 Learning phase

for N number of sensor in network do
for Each action of sensor node do
initial probability = 0.5
end for
end for
for i=0 to iteration do
for Every node in Network do
Node= choose random action
send action packet to neighbour nodes
receive action packet from all neighbour nodes
if Node action is Sleep and neighbour node could cover the target
then
Set the action mode of sender node to Sleep
Decrease the probability vector to cover
the target by using learning automata.
else
Increase the probability of sender node to cover the targets
end if
if Node action is Active and neighbour node could not cover the
target then
Then Set node mode to Active state
Increase the probability vector of
Learning automata to cover the targets
else
Go to sleep mode using learning automata
end if
end for
end for

30

In this phase, each sensor nodes are equipped with learning automata. At
first, the node is selected randomly. Using purposed learning automata
node select its state. Then it broadcast the message packet including its all
information to its neighbors. By listening to this message all neighbor node
reply to their state. Then the sender does the following actions:

— If selected Learning Automata state of sender node is active and

Replying Neighbour node is also active:

Then sender node changes its state to sleep by decreasing its probabil-
ity vector value for covering the target.

— If selected Learning Automata state of sender node is active and
Replying Neighbour node is also sleep:

Then the sender node will be in active state, and it will cover the target
in the network. And the probability vector of covering target will
increase.

This phase continuous till all the target of the network are covered. In every
round of operation, the active state sensor node probability is increased.

¢ Target monitoring phase:

Algorithm 3 Target Monitoring phase

for N number of sensor in network do
Select Best action()
if Best action()=Active then
Node state = Active
Current Coverage set= Current Coverage U Node
else
Node State = Sleep
end if
end for
Monitor the target till end of target monitoring phase

To start monitoring the target, each node selects their state according to their
probability vector of learning automata. Then the node with the active state
will begin tracking the target. When all target is monitored in the network,
then this phase ends with the starting of the initial stage and learning phase.

31

32

Chapter 5

Implementation And Result
Analysis

This chapter discusses the different implementation steps, results obtained, chal-
lenges and the different error sources that could have affected the experiments.

Also here proposed algorithm is evaluated, which is known as Adaptive
Learning Automata Algorithm (ALAA). The evaluation is done by conducting
some computer simulation of the network with sensors and targets deployed
randomly in the space of 600m x600m area.

For all the experiments following parameter are used:

* N, the number of sensors deployed randomly. Its value ranges between 10
and 80.

* M, the number of randomly deployed targets. Its value ranges between 4
and 60.,

* R, the sensing range of the sensor. Its value ranges between 50m and 600m.
* Experiment is done 1000 times to get a result.

* There is a use of random seed in the script. This helps in using the same
configuration for doing the experiments.

* Learning parameter

— Lambda(A), its value ranges between 0 .000 1 and 0.4

- Epsilon(e), its value remains constant, which is 0.01 for all experiment.

Among the parameters as mentioned earlier, only the parameters that need to
be tested are changed for the experiment, and other remains constant.

5.1 Experiment One

This experiment is done to find the impact of increasing sensing range of the
sensor to get minimum active sensors. Here, the main goal is to obtain as
minimum as possible active sensors that cover all the targets in the network. The
experimental setup with result is illustrated by Table 5.1 and Table 5.3. These
results are projected in Figure 5.1. This Figure 5.1, shows for 20 sensors and 10
targets with increasing value of sensing range. There is no effect of the number

33

of targets deployed for obtaining minimum active senors. This is because the
target are uniform randomly deployed in the network. And, even 15 target and 20
sensors are taken for experiment, there is a notable change in the results for getting
minimum active sensors.

Table 5.1 Environment setup and the result obtained by varying sensing
range of sensors with the use of learning automata with 20 sensors and 10
targets

Average Minimum

Range of Sensor (R) Active Sensor
150 4532
200 3.356
250 2.599
300 2.112
350 1.387
400 1.179
450 1.123
500 1.112
550 1.027
600 1.003

Table 5.2 Environment setup and the result obtained by taking small values
of the sensing range of sensors with the use of learning automata with 20
sensors and 10 targets

Average Minimum

Range of Sensor (R) Active Sensor
50 12.467
60 8.31
70 6.631
80 6.482
90 6.256
100 5.726

And, the Table 5.2 shows the impact of the smaller value of sensing range to
find minimum active sensors. From the results, one can observe that there is the
same pattern as the result as obtained by taking a more significant value of sensing
range.

So, a conclusion can be made that with an increasing range of sensor there is
a need for less number of the active sensor to cover the targets. The reason is that
with larger sensing range sensors can cover more targets. This means that With
the use of a less active sensor there is a use of less energy to monitor the target and
thus maximizing the lifetime of the deployed sensor network.

Figure 5.2 shows the simulation result. The green towers represent deployed
sensors, and red towers represent deployed targets. The black circle with a number
represents the sensors that are in active state and covering the target. And, sensors
that are in sleep state represented by yellow dotted coverage.

34

Table 5.3 This table show results obtained while taking 15 targets, 20
sensors and by increasing the sensor sensing range from 150m to 600m

Average Minimum

Range of Sensor (R) Active Sensor
150 5.958
200 3.788
250 2.552
300 2.125
350 1.625
400 1.198
450 1.122
500 1.042
550 1.040
600 1.02
7 T T
—o— N=20,M=10
5 —N=20, M=15
2 6 B
3
[«F]
2
g o |
g
o]
g 40 1
5
g
e 3| i
2
z
g 2 i
(o]
80
g
% 1 |
0 | | | | |
100 200 300 400 500 600

Sensing range

Figure 5.1: Blue line graph plot show results obtained by changing sensing
range of sensor from 150m to 600m with a step of 50m and there are 10
targets, 20 sensors deployed and red line graph plot show results obtained
by changing sensing range from 150m to 600m with a step of 50m and by
deployment of 15 targets and 20 sensors

35

600

500 A

400

300 ~

200 ~

100

T T T T T
0 100 200 300 400 500 600

Figure 5.2: One of the final simulation results of the experiment where 7
active sensors are able to cover all the 15 targets. The sensing range is 200m.

36

5.2 Experiment Two

Table 5.4 This table show results obtained while taking 10 targets and

sensing range 300m with an increasing number of the sensor from 20 to
30

Average Minimum

Number of sensor(N) Active Sensor

20 2.136
21 2.132
22 2.130
23 2.125
24 2.109
25 1.879
26 1.768
27 1.520
28 1.280
29 1.113
30 1.023

The goal of this experiment is to investigate the relationship between a number
of the sensor on obtaining minimum active sensors in the network. For this
number of the sensor is taken in between 20 and 30 with a step of 1. The results
obtained is included in Table 5.4, Table 5.6 and Table 5.5. The first two table include
result obtained by taking 10 and 15 targets with a sensing range of 300m and 400m.
And, next table includes 15 targets with a 100m sensing range of a sensor. The
obtained results are shown by Figure 5.3 which shows that with an increase in
the number of sensors leads to obtaining the minimum number of active sensors.
Also, with increasing the number of targets and sensing range, there is little effect
on the network. So, both curve is noticeably equal. This shows that with the
increase in the number of sensors there is a decrease in need of more active sensors.
Thus, this helps in maximizing the network lifetime.

The Table 5.5 represent the results obtained by use of small sensing range.
Figure 5.4 shows that with small sensing range there is need of more sensors to
cover the targets. But increase in the sensing range, results in a decrease in the
number of active sensors that are used for covering the target which shows the
same trend of results as it has been taken for larger values of sensing range shown
by Figure 5.3.

So, from this experiment one can see that how the increasing number of sensor
effect on obtaining minimum active sensors. Also, there is to notice that results are
in the same trend even there is selection of large or small sensing range.

37

3 I I
—eo— M=10, R=300
—— M=15, R=400

0.5} 1

Average number of minimum active sensor
—_
a1
T
|

0 | | | | | |
20 22 24 26 28 30

Number of sensor

Figure 5.3: Plot showing impact of increasing number of sensors on
obtaining the average number of minimum active senors in the experiment

I I
—e— M=15, R=100

751 1

Average number of minimum active sensor
(o)
3
T
|

5 | | | | | |
20 22 24 26 28 30

Number of sensor

Figure 5.4: Plot showing the impact of increasing number of sensors
by taking 15 targets and small sensing range of 100m to obtain average
minimum active senors in the experiment

38

Table 5.5 Tabulation of results obtained while taking 15 targets and sensing
range 100m with the increasing number of the sensor from 20 to 30

Average Minimum

Number of sensor(N) Active Sensor

20 7.168
21 7.120
22 6.972
23 6.832
24 6.721
25 6.287
26 6.176
27 6.143
28 6.111
29 5.835
30 5.439

Table 5.6 This table show results obtained while taking 15 targets and
sensing range 400m with the increasing number of the sensor from 20 to
30

Average Minimum

Number of Sensor (N) Active Sensor
20 2.145
21 2.140
22 2.135
23 2.120
24 2.110
25 1.967
26 1.830
27 1.549
28 1.420
29 1.347
30 1.102

39

600

500

400 -

300 ~

200

100 ~

T T T T T
0 100 200 300 400 500 600

Figure 5.5: Simulation result of the experiment showing the impact of the
density of sensors in a network

40

5.3 Experiment Three

This experiment is conducted to investigate the impact of the density of target in
obtaining average minimum active sensors in a network. To do this, the target is
taken between 4 and 26 with 30 sensors and sensing range of 100m. Figure 5.6

Table 5.7 This table show results obtained while taking targets between 4
and 26 with 30 sensors and sensing range of 100m

Average Minimum

Number of Target (M) Active Sensor
5 4.861
10 7.549
15 8.33
20 14.345
25 18.795

Table 5.8 This table show results obtained while taking targets between 4
and 26 with 30 sensors and sensing range of 300m

Average Minimum

Number of Targets (M) Active Sensor

5 2.261
10 2477
15 2.792
20 3.055
25 3.099

shows the result obtained after experimenting. From this result, one can see that
there is an inverse relationship between a number of target and average minimum
active sensors. This means that when there is an increase in the number of targets
than the more number of active sensor needed to cover them. But, there is the
effect of sensing range with the increasing number of targets.

41

20

18

16

14

12

10

Average number of minimum active sensor

—e— N=30, R=100
—— N=30, R=300

12

14

Number of targets

16

18

20

22

24

26

Figure 5.6: Plot showing impact of increasing number of targets on
obtaining average minimum active senors in the experiment

200

500

400

300 +

200 +

100

T
0] 100

T
200

T
300

T
400

T
500

200

Figure 5.7: Simulation result on impact of target density on obtaining

average minimum active sensors

42

5.4 Experiment Four

The primary goal of this experiment is to investigate the impact of sensing range
and sensor density in a vast network. An extensive system is defined as the
network where a large number of sensors and targets are deployed. At first,
the experiment is done by varying the range of sensor between 150m and 600m
with 70 sensors and 50 targets. Then, the next test is done by increasing the
density of sensors to evaluate the algorithm performance to obtain minimum
active sensors. The Table 5.9 and Table 5.10 shows the experimental setup and
the results achieved.

Table 5.9 This table show results obtained while taking 50 targets and 70
sensors by increasing the sensor sensing range from 150m to 600m

Average Minimum

Range of Sensor (R) Active Sensor
150 11.752
200 8.869
250 7.557
300 7.054
350 6.694
400 6.523
450 6.512
500 6.510
550 6.465
600 6.241

Table 5.10 This table show results obtained while Increasing sensor number
from 70 to 80 with 50 targets and sensing range 300m

Average Minimum

Number of Sensor (N) Active Sensor
70 2.145
71 2.140
72 2.135
73 2.120
74 2.110
75 1.967
76 1.830
77 1.549
78 1.420
79 1.347
80 1.102

The figure 5.8 shows the plot of the results from the Table 5.9. From the plot,
one can see that there is constant declination in the plot with an increase in sensing
range. This provides the effect of increasing sensing range of the sensor in a large
network. This is because With increasing sensing range the coverage area of sensor

43

T T T T
—e— N=70, M=50

. 12 .

2

=

3
z 10 2
g

[

g

E 8)
£

£

£

E

5 4f 1

o0

[

3
< L0 |

| | | | | | | |

| |
150 200 250 300 350 400 450 500 550 600
Sensing Range

Figure 5.8: An extensive network consisting of 70 sensors and 50 targets
with a change of sensing range from 150m to 600 m

increases. Larger the coverage area, there is a high probability that more target will
fall inside this range. Such that it can monitor the number of targets.

So, there is less number of sensor required to be in the active state for
monitoring the target. All other sensors that are not in the active state can go
to the sleep state to save their battery. And they can be used in the next round of
experiment.

From above results, one can conclude that with an increase in the sensing
range of sensor there is a decrease in the number of active sensors in the large
network. Figure 5.9, show plot of data from Table 5.10. It indicates that when
more sensors are deployed in a large network. Then there is more probability of
getting less active sensors to monitor the targets. To obtain this results one should
decrease the value of the probability parameter corresponding to an increase in
the number of sensors.

44

8 T T T
—— M=50, R=300

75 1

6.5 |- o

55 |

Average number of minimum active sensor
(o)}
T
|

4
68 70 72 74 76 78 80 82
Number of sensor

Figure 5.9: The result of a large network consisting of 50 targets and sensing
range of 300m with the increasing number of sensors from 70 to 80

600

.2 TB?

500 ~

400 ~

300 ~

200 ~

100 +

Figure 5.10: Simulation result showing the impact of sensor density and
sensing range on obtaining average minimum active sensors in the large
network

5.5 Experiment Five

The main goal of this experiment is to examine the relationship between the
learning parameter rate with minimum active sensors. In the proposed algorithm,
there are two parameters used. One is lambda (A), and another is epsilon (€). The
lambda "A" parameter of learning automata is varied to get the results.

To do this experiment, sensors between 40 and 80 are taken with 30 targets.
Every sensor is provided with a sensing range of 400m. Then, by taking the
different value of learning parameter lambda, "A" experiment is formulated. Here,
the value of lambda range from
"A=0.1", "A=0.01", "A= 0.001" and "A=0.0001". The results are tabulated in Table
5.11.

Table 5.11 Observation table showing result of experiment after taking the
value of learning parameter lambda "A" as "A= 0.1", "A= 0.01" ,"A= 0.001"
and "A= 0.0001" with sensors between 40 and 80 including 30 targets and
sensing range is 400m

A=0.1 A=0.01 A=0.001 A=0.0001
Lambda"A" Average Average Average Average
Number of Number Number Number Number

sensors of active of active of active of active
SeNsors Sensors Sensors Sensors

40 9.844 2.912 1.735 1.345

50 13.189 3.726 1.851 1.436

60 16.926 5.082 1.967 1.483 1

70 20.599 6.635 2.176 1.5081

80 24.049 7.576 2.078 1.526 V1

In Table 5.11 one can see the results obtained after experimenting. From
this observation, one can explain that there is a decrease in the requirement
of an average number of minimum active sensors while decreasing the value
of the learning parameter. But, with a reduction in the value of the learning
parameter, there is an increase in the number of iteration which gives more precise
results. This phenomenon leads to an increase in program execution time and high
memory usage. Another explanation is that if there is an increase in the number
of sensors, then there should be a decrease in learning parameter value to get the
best results.

The results of this experiment are shown in Figure 5.11, which shows a bar-
graph plot between the learning parameter versus the number of sensors. The
observation provides that if the number of sensors is increased in the deployed
environment, then a small value of learning parameter has to be taken to get good
results. This gives use of less active sensors to monitor all the targets.

This result provides an idea of obtaining good scheduling capacity of our
proposed algorithm. In another word, this decreasing value of learning parameter
value helps the proposed algorithm to schedule the sensor nodes activity more
efficiently. Which results, to use of minimum sensors and thus maximizes the
network lifetime. Also, it shows that for an extensive network with a large number
of sensors, there should be variation in the value of learning parameter to get the
best results.

46

25| 8

20 - .

15 8

10 — :

Average number of minimum active sensor

O_DD- _DDI_ O EEC o S |

T
40 40 50 50 60 60 70 70 80 80 80
Number of sensor
]DDA:OJDDA:001DDA=0001IIA=00001\

Figure 5.11: Bar plot of the data obtained in Table 5.11 showing the effect
of decreasing value of learning parameter values

So, the conclusion that is obtained from this result is that with a small amount
of learning parameter the proposed algorithm provides proper scheduling to
increase the network lifetime with an increase in the sensors network.

47

600

500 -

400

300 7

200 1

100

0 !) ¥Y "’/
0 100 200 300 400 500 600

(a) Result of taking small values
of learning parameter

600

500

400

300 A

200

100 4

T T T T T
o] 100 200 300 400 500 600

(b) Result of taking larger values
of learning parameter

Figure 5.12: Simulation results of the experiment to investigate the impact
of the learning parameter of the Proposed learning automata algorithm.

5.6 Experiment Six

The goal of this experiment is to check how correct are our results produced by our
proposed learning automata algorithm. For this, the experimental set up is done
by taking 9 targets and number of sensors ranging from 10 to 20. The sensing
range of all sensors is constant, and its value is taken 100m. Then, the experiment
starts by first finding the number of average minimum active sensors by using the
proposed learning automata algorithm. And, next with the same configuration
brute force testing is done. This brute force method produces 2" combination
of the deployed number of sensors. Here, "n" is the number of sensors used in
the experiment. From this combination, it results in only the combination of best
active sensors. Results from both methods are observed and compared to find the
best results.

48

Table 5.12 Table showing experimental data set and the results ob-
tained after experimenting with the proposed learning automata al-
gorithm(ALAA) and brute force (2") method. Here, the number of sensors
deployed range from 10 to 20 with a step of 2 and sensing range parameter
value is 100m with the used number of targets is 9.

Number of
Average Minimum Minimum
LI CED D) Active Sensor (ALAA) Active Sensor
(Brute force(2"))
10 6.450 5
12 5.671 5
14 5.197 5
16 5.066 5
18 5.076 5
20 5.155 5
7 T T T T T
—e— Learning Automata algorithm(ALAA)
§ —x— Brute force method(2")
§ 6.5 -
]
=
E
£ 6 |
5
£
=
g 55| .
hS
3
g 5r i
5
Z
]
&
5 45| 1
Z
4 | | | | | |
10 12 14 16 18 20

Number of sensor

Figure 5.13: Plot showing graph of results from 2" method and brute force
method

The Table5.12 provides the results obtained by formulating the experiment.
This result is plotted in Figure 5.13. From this, one can see that the results
obtained by the use of brute force method(2") and proposed learning automata
algorithm(ALAA) method. Brute force method gives the linear curve of results.
But, the results from the proposed learning algorithm first inclines to some extent,
and after that, it shows linear behavior. This provides the proof that brute force
gives optimal results than the proposed algorithm. And, thus it helps in finding

49

600

“=

500 1
400 A {‘ v
Tl
X x T
300 4 / \;‘_/
200 4 v

100 A

T T T T T
0 100 200 300 400 500 600

4] 160 260 360 4[‘)0 560 600
(a) Result of proposed (b) Result of brute
algorithm(ALAA) force method (2")

Figure 5.14: Simulation result obtained after formulation of the experiment
using the Proposed learning automata algorithm and brute force method

the efficiency of our proposed algorithm to meet our goal.

Figure 5.14 shows the results of this experiment. In the figure, green towers
are the sensors, and red towers are the targets. The sensors that are covering
the targets are denoted by the number, and black circles denote their coverage.
This result concludes that brute force gives an optimal solution than by the use of
proposed learning automata algorithm.

5.7 Experiment Seven

This experiment is performed to find the efficiency of the proposed learning
algorithm by comparing it with other algorithms. For this, LADSC scheduling
algorithm from Paper [7] is taken for comparing results of proposed learning
automata algorithm. These algorithms are compared first by using the density
of sensors and then by using a different range of sensors. The algorithms are
evaluated from their property of using the minimum number of best active sensors
and covering the targets. For the first comparison, there is a use of 9 targets
with sensors between 9 and 25 having a sensing range of 100m. And, the second
comparison is made with 15 targets, sensing range of sensor increase from 50m to
100m and the number of the sensor is 20.

Table 5.13 shows the number of active sensors under each algorithm as
mentioned in the table with their covered targets. Here, the effect of the density
of sensors to obtain an average number of minimum active sensors is evaluated
by using these algorithms for this sensor number increased from 10 to 24 with a
sensing range of 100m. The results obtained are projected in Figure5.15. From
these obtained results, it can be observed that our proposed scheduling algorithm
provides better results in comparison to LADSC algorithm for obtaining less
number of active sensors to monitor all the targets. Even in some case, the LADSC
algorithm gives the effect of using less active sensors, but it is unable to cover all
the target. So, it is less efficient than our algorithm. This provides the fact that our

50

Table 5.13 Comparing proposed algorithm with LADSC algorithm men-
tioned in paper [7] and checking the correctness of the results by use of
brute force method with 9 targets and sensors between 9 and 25 with a
sensing range of 100m

Number of

Sensor(N)

10
12
14
16
18
20
22
24

ALAA
Active Target
sensors covered
6.0 9.0
5.0 9.0
5.0 9.0
5.0 9.0
5.0 9.0
5.0 9.0
4.0 9.0
4.0 9.0

LDSC
Active Target
sensors Covered

7.0 9.0
7.0 9.0
6.0 8.0
6.0 9.0
4.0 7.0
6.0 9.0
5.0 9.0
5.0 9.0

Active
Sensors

== &= Q1 01 01 U1 O

Brute Force

Target
covered

O O © O O O O O

algorithm uses less amount of energy than LADSC algorithm and so it helps in
maximizing the lifetime of a sensor network. And, produce the optimized results.

7.5

Number of minimum active sensor
&
U

3.5

—o—

——

ALAA M=9, R=100
LADSC,M=9, R=100 |
—+— Brute force method,M=9, R=100

10

12

14

16

18

20

Number of sensors

Figure 5.15: The plot of results obtained by Comparing proposed Adaptive
Learning Automata Algorithm (ALAA) with Learning Automata Disjoint
coverage set (LADSC) Algorithm and Result checking by brute force
method. Here 9 targets are used with the sensor between 9 to 25 with a

sensing range of 100m.

51

Table 5.14 Comparing the proposed algorithm with LADSC algorithm
mentioned in paper [7] and checking optimization result by using brute
force method with the deployment of 10 targets and 15 sensors with
varying sensing range from 50m to 100m

Sensing

ALAA LDSC Brute Force

Range(R)

Active Target Active Target Active Target

sensors covered sensors Covered sensors covered
50 9.0 10.0 10.0 9.0 9 10
60 9.0 10.0 11.0 10.0 9 10
70 8.0 10.0 10.0 9.0 8 10
80 8.0 10.0 9.0 10.0 8 10
90 8.0 10.0 7.0 8.0 7 10
100 7.0 10.0 8.0 10.0 7 10

T T T
—o— ALAAN=15M=10
11 —x— LADSC,N=15M=10 |

—+— Brute force method,N=15M=10

10 +

Average Number of minimum active sensor
O
T

50 60 70 80 90 100
Sensing range

Figure 5.16: The plot of results obtained by Comparing proposed Adaptive
Learning Automata Algorithm (ALAA) with Learning Automata Disjoint
coverage set (LADSC) Algorithm and checking results by use of brute force
method. Here 15 sensors and 10 targets are used with varying sensing
range between 45m and 110m

Figure 5.16 shows the plot of the results obtained after formulating two
algorithms. From this figure, one can easily see the different pattern of the results.
In between this two algorithm, the proposed algorithm gives better results. Even
there at some point in the graph, the LADSC algorithm shows that they use less
active sensors. But in this condition they are not covering all the targets. But

52

600

¥ oo 4
SR GEnNE

400 v
! 400 -)’ﬁ 7
7
9

200{_ Y ool b v S
7,

v
v Y

T T T T T
0 100 200 300 400 500 600 0

T T T T T
0 100 200 300 400 500 600

(a) Result of proposed
algorithm(iLX ™ (b) Result of LADSC

Figure 5.17: Simulation result obtained after formulation of the experiment
using Proposed learning automata algorithm and LADSC algorithm with
a varying sensing range of sensors from 50m to 100m

our proposed algorithm is covering all the targets. So, it proofs that the proposed
algorithm is more consistence than LADSC algorithm.

Figure 5.17 shows that there is need of more sensors to cover all the target
when there is use of LADSC algorithm but proposed algorithm use less number of
active sensors. Thus, this result concludes that the proposed algorithm is capable
of obtaining optimized results.

53

54

Chapter 6

Discussion

This chapter discusses how the project is evolved and implemented. Along with
this, there is a discussion about the results obtained to find if this result meets our
project goal or not. And, if not then what errors occur to do so are also highlighted
in this chapter.

6.1 Problem statement

To start the project, there should be a goal. The problem statement of the project
provides this goal. Within the boundary of this goal, the project is done to get the
results. Our project problem statement is mentioned in section 1.4, the main goal of
this statement is to find energy efficient sensor network using learning automata
algorithm. The efficiency is measured by formulating different experiments. To
obtain the goal of the problem statement, there is a use of different parameters in
the network.

* N = Number of sensors

* M = Number of targets

* R =Sensing range

* LA = Learning Automata

* A, € = Learning Parameter

The results are obtained by varying density of sensor nodes and targets,
changing sensing range, increasing and decreasing learning parameter value and
comparing proposed algorithm results with others algorithm described in related

papers.

6.2 Algorithm and Experiment analysis

In this project, an adaptive learning automata algorithm is used to schedule the
sensor nodes. This algorithm provides sensor node for selecting their appropriate
state to cover the deployed targets. This algorithm is developed and deployed in
the python script. The main goal of the algorithm is to find a minimum number
of active sensors to cover all targets with maximizing the lifetime of the sensor
network as a whole. And, by using the sensing range and an increasing number
of sensors, it is compared with LADSC algorithm from paper [7] to show the
efficiency of our proposed algorithm.

55

The following is a brief discussion of experiments and result obtained by
formulating each of the experiments of the project.

6.2.1 Experiment One

This experiment is used to see the impact of increasing sensing range of the sensors
in the network. From the results obtained in Table 5.1 and Table 5.3, one can see
that there is the decreasing pattern of the average number of minimum active
sensors. This means that there is less number of active sensors in the network with
other being in sleep mode and saving battery power for later use. So, it justifies
our stated goal of the project.

6.2.2 Experiment Two

In this experiment impact the sensor, density is tested. From the results obtained in
Table5.4 and Table5.6, one can see that there is a decrease in the number of active
sensors with the increase in the density of sensors.Thus, satisfies the goal of the
project.

6.2.3 Experiment Three

In this experiment impact of targets deployed in the network for obtaining
minimum active sensor is investigated. From the results, the conclusion can be
made that there is an inverse relationship between the target and obtaining of
minimum active sensors.

6.2.4 Experiment Four

This experiment highlights the impact of the proposed algorithm in a larger
network. This is done both by increasing the number of sensing range as well
as a number of the sensor. From the results in 5.9 and 5.10, it proofs that even
in large networks there is the probability of obtaining energy efficient network is
high.

6.2.5 Experiment Five

This experiment is done to check the impact of learning parameter value on
the algorithm performance to get desired results. From the results obtained
in Table5.11 and Table5.12, one can say that to get precise results the value of
the learning parameter must be taken as smaller as possible with the increasing
number of a sensor.

6.2.6 Experiment Six

This experiment glance on the correctness of the results. To check this, there is the
use of brute force (2") method. The result shows that proposed algorithm produce
the correct results.

6.2.7 Experiment Seven

This experiment is formulated to check the efficiency of a proposed algorithm.
This is done by comparing the proposed algorithm with preceding algorithms that
are described in the related work section of the thesis. The results obtained show

56

that proposed algorithm outperforms similar algorithms in case of prolonging
network lifetime.

6.3 Project

There are many issues of the wireless sensor network to do research on. This
project is evolved to solve the issue of target coverage with energy conservation in
wireless sensor networks. Due to the use of low powered batteries in sensors there
is chance of energy issue. This issue effect in the lifetime of the sensor network as a
whole. For one who wants to know more about the energy issue in wireless sensor
networks can take a glance on the related work section of this thesis. This section
includes different research and methodology that are used to solve this problem.
Also, there is a description of how different algorithms are developed and used to
solve the issue of target monitoring to conserve energy.

From research paper findings, this thesis is formulated with the development
and design of infrastructure and learning automata algorithm to schedule the
sensor nodes to monitor the targets.

The proposed algorithm is designed to give as minimum as possible active
sensors to cover all targets. Such that there is the use of less number of sensor
nodes which need the use of less power. Which in other hand helps in preserving
some instance of the energy of the whole network. The consistency of the
proposed algorithm is evaluated by doing experiments and simulations. These
experiments are done by changing the values of a parameter of the proposed
algorithm. This is done to see the impact of these parameters in finding
appropriate results. The experimental results populated in table and graph in
implementation and result analysis section chapter 5 of this thesis provide proof
to the consistency of the proposed algorithm.

6.4 Error sources and challenges

This section discusses the errors that are encountered during the formulation of
experiments and trials taken to tackle this errors to reach the project goal. During
formulating this project there comes a lot of technical and logical problems. Some
problems are solved easily, and some take time to analyze them and find the
solution. These errors occur due to some misleading experimental setup and
scripts. With the help of my supervisor and the Google search engine, the solution
to the problem is found, and error is eliminated.

The first error is encountered while experimenting with the large network
while selecting the more significant value of learning parameter of the proposed
algorithm.

In this, when there is an increase in the network size, then there is a need for
a decrease in the value of the learning parameter. This is because larger network
converges fast with a smaller amount of learning parameter. Such that the results
that obtained may not be the exact solution that it should give. For the answer to
this problem there is the use of a smaller value of learning parameter in case of
large networks.

57

Second, is due to time limitation to complete the project. The target monitoring
phase by energy utilization is not formulated here. So, by obtaining the minimum
number of sensors, it is concluded that a minimum number of sensor utilize less
power to cover the targets and thus rest of the sensor hold their energy for later
use. And, thus the network lifetime is maximized.

6.4.1 Inconsistent results generation

Most of the results obtained in this project are consistency. But there is one case
where the project has to deal with inconsistent results. This case is of while
selecting the value of the learning parameter to implement the proposed algorithm
impact on the large network. When the experiment is started then if the selection
of learning parameter value is too large or too small that will not fit the experiment
then it will produce inconsistent results. For example, for the increased density of
sensor, there will be need of decreasing value of learning parameter. So, it will
give consistent results. Otherwise, our algorithm will give strange results.

Also, there is a problem on taking the smaller value of the learning parameter

because it takes them a too long time to get converge even though it generates
precise results.

58

Chapter 7

Further work

This chapter includes the suggestions for our current work. Furthermore,
improvements of the developed algorithms and models are suggested as future
work as an extension of this study. In this Chapter, suggestions to our current
work and list new features that can be implemented are included.

7.1 Improvements

This project deals with the concept of maximizing the lifetime of the wireless
sensor network by minimizing the use of sensors. In this project, there is the use of
Adaptive learning automata algorithm to formulate the experiments. Results are
obtained by doing many experiments. For each experiment, different parameters
value as per need is varied by keeping other parameters constant. This project is
capable of showing how efficient can be the network lifetime of wireless sensor
networks if there is consideration in using of minimum active sensors.

To get more precise results, the following improvements should be made in
this proposed algorithm:

* Learning parameter value should be chosen with respect to time and
property of the network.

* Novel Sensing range of the sensors should be selected.

7.2 New features

This section contains about what new feature in the project can be added?. The
first thing that one can add is the energy parameter to find network lifetime of the
wireless sensor network. Also, there can be made further improvements in the
learning algorithm with considering the appropriate rule set to obtain minimum
active senors. Next one is to make more comparison between other algorithms
that deal with target monitoring problem in the wireless sensor network. This
comparison can be made on the basis of working time, running time, learning rate
and also by varying size of terrains area.

7.3 Conclusion

This thesis focus on solving the energy issue of the wireless sensor network with
solving target coverage problem. For this, there is the design of architecture

59

and development of a machine learning algorithm. This algorithm is called
adaptive learning automata algorithm. The results obtained after formulation of
the experiments by using this algorithm has been analyzed to check for its validity
to meet the goals of the project. Also, it has been compared with other algorithms
included in related work section of the project to find efficiency of this algorithm.

This algorithm schedule sensors to save energy by providing a learning
concept. Such that they can select their state to be active or sleep autonomously.
And in the active state, sensors are assumed to cover the available targets using
some amount of energy. Many experiments and simulation are done to evaluate
the performance of the designed algorithm and architecture. The proposed
algorithm provides the methodology to find the minimum active sensors that are
covering all targets.

In another word it can be defined as by use of minimum active sensors,
there is a use of minimum energy of the network, and thus this concept helps
in conserving the energy in a wireless sensor network. So, this project addresses
the concept of energy efficient target coverage network.

This algorithm applies to both small and large wireless sensor networks.
But during the formulation of experiments in this type of network the learning
parameter value should be considered to get precise results. Sensing range of
the sensor has an equal impact on both types of networks. And, by comparing
related work algorithm with concerning sensing range and number of sensors, the
results show that our proposed algorithm gives efficient results than the selected
algorithm for comparison.

Finally, from all the experimental results thus obtained proof that the proposed
algorithm has justified the problem statement and reached the goal of the project.
So, one can say that this proposed algorithm can be used as a relevant method for
scheduling the sensor nodes while designing a practical sensor network.

60

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

Ian F. Akyildiz Weilian Su Yogesh Sankarasubramaniam and Erdal
Cayirci. “A Survey On Sensor network’. In: IEEE Communication
society 40.8 (Aug. 2002), pp. 102-114. 1SSN: 0163-6804. DOI: 10.1109/
MCOM.2002.1024422. URL: https:/ /ieeexplore.ieee.org/stamp /stamp.
jsp?tp=&arnumber=1024422.

Ganesh Khadsan. Wireless sensor network report. URL: https:/ /www.
slideshare.net/GaneshKhadsan/wireless-sensor-network-report.

Mohammad Abu Alsheikh Shaowei Lin Dusit Niyato and Hwee-
Pink Tan. ‘Machine Learning in Wireless Sensor Networks: Al-
gorithms, Strategies, and Applications’. In: IEEE COMMUNICA-
TION SURVEYS TUTORIALS, VOL. 16, NO. 4, FOURTH QUARTER
2014 (Apr. 2014). 1SSN: 1553-877X. DOI: 10 . 1109 / COMST . 2014 .
2320099. URL: https: / /ieeexplore . ieee . org / stamp / stamp . jsp ? tp =
&arnumber=6805162.

Taiwo Oladipupo Ayodele. Introduction to Machine Learning. URL:
http://cdn.intechweb.org/pdfs/10703.pdf.

David Fumo. Types of Machine Learning Algorithms You Should Know.
URL: https: / / towardsdatascience . com / types - of - machine - learning -
algorithms-you-should-know-953a082488617gi=a757b7001f4d.

Mihaela Cardei My T. Thai Yingshu Li Weili Wu. ‘Energy Efficient
Target Coverage In Wireless Sensor Networks’. In: IEEE Communica-
tion society (Aug. 2005). 1SSN: 0743-166X. DOI: 10.1109/INFCOM.2005.
1498475. URL: https://ieeexplore.ieee.org/abstract/document/1498475.

Habib Mostafaeil Mehdi Esnaashari and Mohammad Reza Meybodi.
‘A Coverage Monitoring algorithm based on Learning Automata for
Wireless Sensor Networks’. In: Cornell University Library (Sept. 2014).
URL: https://arxiv.org/ftp/arxiv/papers/1409/1409.1515.pdf.

Abdul Samad Ismail Hosein Mohamadi and Shaharuddin Salleh.
‘Solving Target Coverage Problem Using Cover Sets in Wireless
Sensor Networks Based on Learning Automata’. In: Wireless Personal
Communications March 2014, Volume 75, Issue 1, pp 447-463 (Mar.
2014). URL: https://link.springer.com/content/pdf/10.1007%2Fs11277-
013-1371-x.pdf.

61

https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/MCOM.2002.1024422
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1024422
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1024422
https://www.slideshare.net/GaneshKhadsan/wireless-sensor-network-report
https://www.slideshare.net/GaneshKhadsan/wireless-sensor-network-report
https://doi.org/10.1109/COMST.2014.2320099
https://doi.org/10.1109/COMST.2014.2320099
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805162
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6805162
http://cdn.intechweb.org/pdfs/10703.pdf
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861?gi=a757b7001f4d
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861?gi=a757b7001f4d
https://doi.org/10.1109/INFCOM.2005.1498475
https://doi.org/10.1109/INFCOM.2005.1498475
https://ieeexplore.ieee.org/abstract/document/1498475
https://arxiv.org/ftp/arxiv/papers/1409/1409.1515.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11277-013-1371-x.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11277-013-1371-x.pdf

[9]

[10]

[16]

Habib Mostafaei and Mohammad Shojafar. ‘A New Meta-heuristic
Algorithm for Maximizing Lifetime of Wireless Sensor Networks’.
In: Wireless Pers Commun (2015) 82:723-742 (Jan. 2014). URL: https:
//link.springer.com/content/pdf/10.1007%2Fs11277-014-2249-2.pdf.

Maggie X. Cheng and Xuan Gong. ‘Maximum lifetime coverage pre-
serving scheduling 105 algorithms in sensor networks’. In: Springer
Science+Business Media, LLC. 2010, Sept. 2010. URL: https:/ /link.
springer.com/content/pdf/10.1007%2Fs10898-010-9636-3.pdf.

Yingshu Li and Shan Gao. ‘Designing k-coverage schedules in
wireless sensor networks’. In: Springer Science+Business Media,
LLC. 2007, Mar. 2007. URL: https://link.springer.com /content /pdf/
10.1007%2Fs10878-007-9072-6.pdf.

Hung-Chang Chen Kuei-Ping Shih and Bo-Jun Liu. ‘Integrating Tar-
get Coverage and Connectivity for Wireless Heterogeneous Sensor
Networks with Multiple Sensing Units’. In: IEEE International Con-
ference on networks (2007). URL: http : / / tkuir . lib . tku . edu . tw /
dspace / retrieve / 80429 / Integrating % 20 Target % 20Coverage % 20and %
20Connectivity.pdf.

Deepak. S. Sakkari and T. G. Basavaraju. “Extensive Study on Cover-
age and Network Lifetime Issues in Wireless Sensor Networks’. In:
International Journal Of Computer Application (Aug. 2012). URL: http:
/ / citeseerx.ist.psu.edu /viewdoc /download 7doi=10.1.1.258.5823&rep=
repl&type=pdf.

M. Hefeeda and M. Bagheri. ‘Randomized k-Coverage Algorithms
For Dense Sensor Networks’. In: [EEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications (May 2007).
ISSN: 0743-166X. DOIL: 10.1109 /INFCOM . 2007 . 284. URL: https: / /
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4215866.

S. Mini Siba K. Udgata and Samrat L. Sabat. ‘Sensor Deployment
and Scheduling for Target Coverage Problem in Wireless Sensor
Networks’. In: IEEE Sensors Journal (Mar. 2007). URL: https: / /
ieeexplore.ieee.org/document/6637016.

Chi-Fu Huang Yu-Chee Tseng and Li-Chu Lo. ‘The Coverage Prob-
lem in Three-Dimensional Wireless Sensor Networks'. In: IEEE Global
Telecommunications Conference, 2004. GLOBECOM 04 (Jan. 2005). URL:
https:/ /ieeexplore.ieee.org/abstract/document/1378938.

Abdul Samad Ismail Hosein Mohamadi and Shaharuddhin Salleh.
‘Utilizing distributed learning automata to solve the connected target
coverage problem in directional sensor networks’. In: IEEE Sensors
Journal (Apr. 2013). URL: https:/ / www . sciencedirect. com / science /
article/pii/S0924424713001519.

62

https://link.springer.com/content/pdf/10.1007%2Fs11277-014-2249-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11277-014-2249-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10898-010-9636-3.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10898-010-9636-3.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10878-007-9072-6.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10878-007-9072-6.pdf
http://tkuir.lib.tku.edu.tw/dspace/retrieve/80429/Integrating%20Target%20Coverage%20and%20Connectivity.pdf
http://tkuir.lib.tku.edu.tw/dspace/retrieve/80429/Integrating%20Target%20Coverage%20and%20Connectivity.pdf
http://tkuir.lib.tku.edu.tw/dspace/retrieve/80429/Integrating%20Target%20Coverage%20and%20Connectivity.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.5823&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.5823&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.5823&rep=rep1&type=pdf
https://doi.org/10.1109/INFCOM.2007.284
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4215866
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4215866
https://ieeexplore.ieee.org/document/6637016
https://ieeexplore.ieee.org/document/6637016
https://ieeexplore.ieee.org/abstract/document/1378938
https://www.sciencedirect.com/science/article/pii/S0924424713001519
https://www.sciencedirect.com/science/article/pii/S0924424713001519

[18]

[22]

[23]

[24]

[26]

Satish Chand Manju and Bijender Kumar. ‘Maximising network
lifetime for target coverage problem in wireless sensor networks’. In:
IET Wireless Sensor Systems (June 2016), pp. 192-197. 1SSN: 2043-6394.
DOL: 10.1049 /iet-wss.2015.0094. URL: https: / /ieeexplore.ieee.org/
document/7763030.

R. S. Kittur and A. N. Jadhav. ‘Enhancement in Network Lifetime and
Minimization of Target Coverage Problem in WSN'. In: IEEE Sensors
Journal (Dec. 2017). DOI: 10.1109 /12CT .2017.8226308. URL: https:
/ /ieeexplore.ieee.org/document /7763030.

Junkun Li Jiming Chen and Ten H. Lai. “Trapping Mobile Targets in
Wireless Sensor Networks: An Energy-Efficient Perspective’. In: IEEE
Transactions on Vehicular Technology (Sept. 2013), pp. 3287-3300. ISSN:
1939-9359. DOI: 10.1109/TVT.2013.2254732. URL: https:/ /ieeexplore.
ieee.org/document /6488886.

Satish Chand Manju and Bijender Kumar. “Target coverage heuristic
based on learning automata in wireless sensor networks’. In: IET
Wireless Sensor Systems (Feb. 2018). ISSN: 2043-6386. DOI: 10.1049/iet-
wss.2017.0090. URL: http://digital-library.theiet.org /content/journals/
10.1049/iet-wss.2017.0090.

Dame DIONGUE Babacar DIOP and Ousmane THIARE. ‘Target
Coverage Management in Wireless Sensors Networks’. In: ICWiSe
2014, IEEE Conference on Wireless Sensors (Nov. 2014). URL: https://
www . researchgate . net / publication / 266129545 Target Coverage
Management in_Wireless Sensor Networks.

Mihaela Cardei and DING-ZHU DU. ‘Improving Wireless Sensor
Network Lifetime through Power Aware Organization’. In: Wireless
Network (Jan. 2005). 1SSN: 1022-0038. DOTI: https:/ /doi.org/10.1007 /
s11276-005-6615-6. URL: https:/ /link.springer.com /content /pdf/10.
1007%2Fs11276-005-6615-6.pdf.

Jiang Lei Shu Guangjie Han Li Liu Jinfang and Gerhard Hancke.
‘Analysis of Energy-Efficient Connected Target Coverage Algorithms
for Industrial Wireless Sensor Networks’. In: IEEE Transactions on
Industrial Informatics (Dec. 2015). ISSN: 1551-3203. DOI: 10.1109/TII.
2015.2513767. URL: https:/ /ieeexplore.ieee.org /stamp /stamp.jsp?tp=
&arnumber=7369957.

Ionut Cardei and Mihaela Cardei. ‘Energy-Effcient Connected-
Coverage in Wireless Sensor Networks’. In: International Journal Of
Sensor Networks (May 2008). 1SSN: 1748-1279. URL: http:/ / www .
inderscience.com/offer.php?id=18484.

Panayiotis Kotzanikolaou Dimitrios Zorbas Dimitris Glynos and
Christos Douligeris. ‘BGOP: An Adaptive Algorithm for Coverage
Problems in Wireless Sensor Networks’. In: European Wireless (Jan.
2007). URL: https:/ /www . researchgate.net / publication /250849540
BGOP _ An _ Adaptive _ Algorithm for Coverage Problems in
Wireless Sensor Networks.

63

https://doi.org/10.1049/iet-wss.2015.0094
https://ieeexplore.ieee.org/document/7763030
https://ieeexplore.ieee.org/document/7763030
https://doi.org/10.1109/I2CT.2017.8226308
https://ieeexplore.ieee.org/document/7763030
https://ieeexplore.ieee.org/document/7763030
https://doi.org/10.1109/TVT.2013.2254732
https://ieeexplore.ieee.org/document/6488886
https://ieeexplore.ieee.org/document/6488886
https://doi.org/10.1049/iet-wss.2017.0090
https://doi.org/10.1049/iet-wss.2017.0090
http://digital-library.theiet.org/content/journals/10.1049/iet-wss.2017.0090
http://digital-library.theiet.org/content/journals/10.1049/iet-wss.2017.0090
https://www.researchgate.net/publication/266129545_Target_Coverage_Management_in_Wireless_Sensor_Networks
https://www.researchgate.net/publication/266129545_Target_Coverage_Management_in_Wireless_Sensor_Networks
https://www.researchgate.net/publication/266129545_Target_Coverage_Management_in_Wireless_Sensor_Networks
https://doi.org/https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/https://doi.org/10.1007/s11276-005-6615-6
https://link.springer.com/content/pdf/10.1007%2Fs11276-005-6615-6.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11276-005-6615-6.pdf
https://doi.org/10.1109/TII.2015.2513767
https://doi.org/10.1109/TII.2015.2513767
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7369957
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7369957
http://www.inderscience.com/offer.php?id=18484
http://www.inderscience.com/offer.php?id=18484
https://www.researchgate.net/publication/250849540_BGOP_An_Adaptive_Algorithm_for_Coverage_Problems_in_Wireless_Sensor_Networks
https://www.researchgate.net/publication/250849540_BGOP_An_Adaptive_Algorithm_for_Coverage_Problems_in_Wireless_Sensor_Networks
https://www.researchgate.net/publication/250849540_BGOP_An_Adaptive_Algorithm_for_Coverage_Problems_in_Wireless_Sensor_Networks

[27]

[32]

[33]

[34]

Chi-Fu Huang and Yu-Chee Tseng. ‘The Coverage Problem in a
Wireless Sensor Network’. In: Mobile networks and application (Aug.
2005). I1SSN: 519-528. URL: https://link.springer.com /article /10.1007 /
s11036-005-1564-y.

Python software Foundation. welcome to Python.org. 2018-9-20. Jan.
2001. URL: https://www.python.org/.

Python(Programming Language). Pyhton. [online;accessed 11-October
2018]. URL: https:/ /en.wikipedia.org /wiki / Python (programming
language).

Norie Fu Vorapong Suppakitpaisarn Kei Kimura and Naonori
Kakimura. ‘Maximum Lifetime Coverage Problems with Battery
Recovery Effects’. In: Wireless Network (Feb. 2018). DOL: https://doi.
org/10.1016/j.suscom.2018.02.007. URL: https://www.sciencedirect.
com/science/article/pii/S2210537917300343.

Anantha Chandrakasan Wendi Rabiner Heinzelman and Hari Bal-
akrishnan. ‘Energy-Efficient Communication Protocol for Wireless
Microsensor Networks’. In: Proceedings of the 33rd Hawaii Inter-
national Conference on System Sciences - 2000 (). DOI: 10 . 1109 /
HICSS . 2000 . 926982. URL: https : / / pdfs . semanticscholar . org /
b383 / 4aed2c564d2dbeacf8c1b733dbe5c9c07bf. pdf 7 ga=2.76920341.
1450741646.1540913670-1443666054.1540913670.

Mohammad ali Jamali Navid Bakhshivand Mohammad Easmaeil-
pour and Davood Salami. “An energy-efficient algorithm for connec-
ted target coverage problem in wireless sensor networks’. In: 2010
3rd International Conference on Computer Science and Information Tech-
nology (Sept. 2010). DOI: 10.1109 /ICCSIT.2010.5563640. URL: https:
/ /ieeexplore.ieee.org/document/5563640.

D.Praveen Kumar Tarachand Amgoth & Chandra Sekhara Rao An-
navarapu. ‘Machine learning algorithms for wireless sensor net-
works: A survey’. In: Wireless Network (Sept. 2018). DOLI: https://doi.
org/10.1016/j.inffus.2018.09.013. URL: https://www.sciencedirect.com/
science/article/pii/S156625351830277X?dgcid=rss sd all.

Mohammad Reza Meybodi Habib Mostafaei and Mehdi Esnaashari.
‘A Learning Automata Based Area Coverage Algorithm for Wire-
less Sensor Networks’. In: Electronic Science And Technology (Sept.
2010). URL: https://s3.amazonaws.com /academia.edu.documents /
4889331 /2- JEST - HO67 - R20k ~ 200-205 .pdf ? AWSAccessKeyld =
AKIAIWOWYYGZ2Y53UL3A & Expires = 1539256731 & Signature =
6zpXoJDIxC48qYLcyNkRjJs % 2BZTo % 3D & response - content -
disposition = inline % 3B % 20filename % 3DA Learning Automata
Based Area Coverage.pdf.

KUMPATI S. NARENDRA and M. A. L. THATHACHAR. ‘Learning
Automata A Survey’. In: (July 1974). 1SsN: 0018-9472. DOI: 10.1109/
TSMC.1974.5408453. URL: https://ieeexplore.ieee.org /stamp /stamp.
jsp?tp=&arnumber=5408453.

64

https://link.springer.com/article/10.1007/s11036-005-1564-y
https://link.springer.com/article/10.1007/s11036-005-1564-y
https://www.python.org/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://doi.org/https://doi.org/10.1016/j.suscom.2018.02.007
https://doi.org/https://doi.org/10.1016/j.suscom.2018.02.007
https://www.sciencedirect.com/science/article/pii/S2210537917300343
https://www.sciencedirect.com/science/article/pii/S2210537917300343
https://doi.org/10.1109/HICSS.2000.926982
https://doi.org/10.1109/HICSS.2000.926982
https://pdfs.semanticscholar.org/b383/4aed2c564d2dbeacf8c1b733dbe5c9c07fbf.pdf?_ga=2.76920341.1450741646.1540913670-1443666054.1540913670
https://pdfs.semanticscholar.org/b383/4aed2c564d2dbeacf8c1b733dbe5c9c07fbf.pdf?_ga=2.76920341.1450741646.1540913670-1443666054.1540913670
https://pdfs.semanticscholar.org/b383/4aed2c564d2dbeacf8c1b733dbe5c9c07fbf.pdf?_ga=2.76920341.1450741646.1540913670-1443666054.1540913670
https://doi.org/10.1109/ICCSIT.2010.5563640
https://ieeexplore.ieee.org/document/5563640
https://ieeexplore.ieee.org/document/5563640
https://doi.org/https://doi.org/10.1016/j.inffus.2018.09.013
https://doi.org/https://doi.org/10.1016/j.inffus.2018.09.013
https://www.sciencedirect.com/science/article/pii/S156625351830277X?dgcid=rss_sd_all
https://www.sciencedirect.com/science/article/pii/S156625351830277X?dgcid=rss_sd_all
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://s3.amazonaws.com/academia.edu.documents/4889331/2-JEST-H067-R2ok_200-205_.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539256731&Signature=6zpXoJD9xC48qYLcyNkRjJs%2BZTo%3D&response-content-disposition=inline%3B%20filename%3DA_Learning_Automata_Based_Area_Coverage.pdf
https://doi.org/10.1109/TSMC.1974.5408453
https://doi.org/10.1109/TSMC.1974.5408453
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5408453
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5408453

[36]

[38]

[42]

M. A. L. Thathachar and P. S. Sastry. “Varieties of Learning Automata:
An Overview’. In: [IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS (Dec. 2002). 1SSN: 1941-0492. DOT: 10.1109/ TSMCB .
2002.1049606. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=1049606.

Mehdi Esnaashari and Mohammad Reza Meybodi. ‘Data aggrega-
tion in sensor networks using learning automata’. In: Wireless Net-
works (Apr. 2010). ISSN: 687-699. DOIL: 10.1007 /s11276-009-0162-5.
URL: https:/ /www.researchgate. net / publication /226905940 Data _
aggregation _in_sensor networks using learning automata.

Arouna Ndam Njoyal Christopher Thron Jordan Barry Wahabou
Abdou Emmanuel Tonye Nukenine Siri Lawrencia Konjel and
Albert Dipanda. ‘Efficient scalable sensor node placement algorithm
for fixed target coverage applications of wireless sensor networks’.
In: IET Wireless Sensor systems (Feb. 2017). 1SSN: 2043-6386. DOTI: 10.
1049 /iet-wss.2016.0076. URL: http://digital-library.theiet.org/content/
journals/10.1049/iet-wss.2016.0076.

Sonia Fahmy Yan Wu and Ness B. Shroff. ‘Optimal QoS-aware
Sleep/Wake Scheduling for Time-Synchronized Sensor Networks’.
In: 2006 40th Annual Conference on Information Sciences and Systems
(Jan. 2007). DOI: 10.1109/CISS.2006.286599. URL: https:/ /ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=4067940.

Yi Zou and Krishnendu Chakrabarty. “A Distributed Coverage- and
ConnectivityCentric Technique for Selecting Active Nodes in Wire-
less Sensor Networks’. In: IEEE TRANSACTIONS ON COMPUTERS,
VOL. 54, NO. 8 (Aug. 2005). URL: https:/ /ieeexplore.ieee.org /stamp/
stamp.jsp?arnumber=1453499.

Ling Ding Weili WU James Willson Lidong Wu, Zaixin Lu and
Wonjun Lee. ‘Constant-Approximation for Target Coverage Problem
in Wireless Sensor Networks’. In: 2012 Proceedings IEEE INFOCOM
(May 2012). 1SSN: 0743-166X. DOI: 10.1109 /INFCOM.2012.6195527.
URL: https:/ /ieeexplore.ieee.org/document/6195527.

Rohit Khajuria and Sumeet Gupta. ‘Energy optimization and lifetime
enhancement techniques in wireless sensor networks: A Survey’.
In: International Conference on Computing, Communication Automation
(July 2015). DOI: 10.1109/CCAA.2015.7148408. URL: https://ieeexplore.
ieee.org/document/7148408.

Halil Yetgin Kent Tsz Kan Cheung Mohammed El-Hajjar and Lajos
Hanzo. ‘A Survey of Network Lifetime Maximization Techniques
in Wireless Sensor Networks’. In: IEEE Communications Surveys
Tutorials (Jan. 2017). 1SSN: 1553-877X. DOI: 10.1109 / COMST . 2017 .
2650979. URL: https://ieeexplore.ieee.org/abstract/document/7812629.

65

https://doi.org/10.1109/TSMCB.2002.1049606
https://doi.org/10.1109/TSMCB.2002.1049606
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1049606
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1049606
https://doi.org/10.1007/s11276-009-0162-5
https://www.researchgate.net/publication/226905940_Data_aggregation_in_sensor_networks_using_learning_automata
https://www.researchgate.net/publication/226905940_Data_aggregation_in_sensor_networks_using_learning_automata
https://doi.org/10.1049/iet-wss.2016.0076
https://doi.org/10.1049/iet-wss.2016.0076
http://digital-library.theiet.org/content/journals/10.1049/iet-wss.2016.0076
http://digital-library.theiet.org/content/journals/10.1049/iet-wss.2016.0076
https://doi.org/10.1109/CISS.2006.286599
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4067940
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4067940
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1453499
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1453499
https://doi.org/10.1109/INFCOM.2012.6195527
https://ieeexplore.ieee.org/document/6195527
https://doi.org/10.1109/CCAA.2015.7148408
https://ieeexplore.ieee.org/document/7148408
https://ieeexplore.ieee.org/document/7148408
https://doi.org/10.1109/COMST.2017.2650979
https://doi.org/10.1109/COMST.2017.2650979
https://ieeexplore.ieee.org/abstract/document/7812629

[44] Muhammad Amir Khan Halabi Hasbullah Babar Nazir and Muhammad
Ali Khan. ‘Lifetime and coverage maximization technique for mobile
sensor networks’. In: 2014 International Conference on Computer and In-
formation Sciences (ICCOINS) (July 2014). DOI: 10.1109/ICCOINS.2014.
6868394. URL: https:/ /ieeexplore.ieee.org/document/6868394.

[45] Zaixin Lu Wei Wayne Li and Miao Pan. ‘Maximum Lifetime Schedul-
ing for Target Coverage and Data Collection in Wireless Sensor Net-
works’. In: IEEE Transactions on Vehicular Technology (May 2014). DOL:
10.1109 / TVT .2014 . 2322356. URL: https: / / ieeexplore . ieee . org /
document/6811184.

[46] Manh Thuong Quan Dao Ngoc Duy Nguyen Vyacheslav Zalyubovskiy
and Hyunseung Chool. ‘An Energy-efficient Coverage Pattern of
WSNs for High Rate Data Transmissions’. In: (). URL: http : / /
worldcomp-proceedings.com/proc/p2011/1CW8239.pdf.

[47] Ines Khoufi Pascale Minet Anis Laouiti and Saoucene Mahfoudh.
‘Survey of Deployment Algorithms in Wireless Sensor Networks:
Coverage and Connectivity Issues and Challenges’. In: International
Journal of Autonomous and Adaptive Communications Systems (IAACS)
(Dec. 2017). URL: https://hal.inria.fr/hal-01095749 /document.

[48] D.G.Anand H.G. Chandrakanth and M.N.Giriprasad. ‘An Efficient
Energy, Coverage and Connectivity (Ec2) Algorithm for Wireless
Sensor Networks’. In: International Journal of Computer Applications
(May 2012). URL: https : / / pdfs . semanticscholar . org / 0bll /
a9f09b62f1f93da0702c9cd5c07856211c00. pdf.

[49] Gayarti Devi and Rajeeb Sankar Bal. ‘Node Deployment Coverage in
Large Wireless Sensor Networks’. In: Journal of Network Communica-
tions and Emerging Technologies (INCET) (Feb. 2016). URL: https://pdfs.
semanticscholar.org/e735/8f29cc3118f3a3cb909ca002b177d1dcb3c9. pdf.

[50] Shaharuddin Salleh Hosein Mohamadi and Mohd Norsyarizad
Razali. ‘Heuristic methods to maximize network lifetime in direc-
tional sensor networks with adjustable sensing ranges’. In: Journal
of Network and Computer Applications (July 2014). URL: https://ac.els-
cdn.com /S1084804514001866/1-s2.0-S5S1084804514001866- main. pdf?
_ tid=c03e31c7-266a-4f91-90df- 7e33f4d1d521& acdnat=1541506491
a44021d55cd8f7bd5b8ef7d8f0268cdf.

[51] Valerio Persico Habib Mostafaei Antonio Montieri and Antonio
Pescapé. ‘A sleep scheduling approach based on learning automata
for WSN partial coverage’. In: Journal of Network and Computer
Applications (Dec. 2016). URL: https://www.sciencedirect.com/science/
article/pii/S1084804516303204.

[52] Zhifei Mao Guofang Nan Guanxiong Shi and Mingiang Li. "CDSWS:
coverage-guaranteed distributed sleep/ wake scheduling for wire-
less sensor networks’. In: EURASIP Journal on Wireless Communica-
tions and Networking (Dec. 2012). URL: https:/ /jwcn-eurasipjournals.
springeropen.com/track/pdf/10.1186/1687-1499-2012-44.

66

https://doi.org/10.1109/ICCOINS.2014.6868394
https://doi.org/10.1109/ICCOINS.2014.6868394
https://ieeexplore.ieee.org/document/6868394
https://doi.org/10.1109/TVT.2014.2322356
https://ieeexplore.ieee.org/document/6811184
https://ieeexplore.ieee.org/document/6811184
http://worldcomp-proceedings.com/proc/p2011/ICW8239.pdf
http://worldcomp-proceedings.com/proc/p2011/ICW8239.pdf
https://hal.inria.fr/hal-01095749/document
https://pdfs.semanticscholar.org/0b11/a9f09b62f1f93da0702c9cd5c07856211c00.pdf
https://pdfs.semanticscholar.org/0b11/a9f09b62f1f93da0702c9cd5c07856211c00.pdf
https://pdfs.semanticscholar.org/e735/8f29cc3118f3a3cb909ca002b177d1dcb3c9.pdf
https://pdfs.semanticscholar.org/e735/8f29cc3118f3a3cb909ca002b177d1dcb3c9.pdf
https://ac.els-cdn.com/S1084804514001866/1-s2.0-S1084804514001866-main.pdf?_tid=c03e31c7-266a-4f91-90df-7e33f4d1d521&acdnat=1541506491_a44021d55cd8f7bd5b8ef7d8f0268cdf
https://ac.els-cdn.com/S1084804514001866/1-s2.0-S1084804514001866-main.pdf?_tid=c03e31c7-266a-4f91-90df-7e33f4d1d521&acdnat=1541506491_a44021d55cd8f7bd5b8ef7d8f0268cdf
https://ac.els-cdn.com/S1084804514001866/1-s2.0-S1084804514001866-main.pdf?_tid=c03e31c7-266a-4f91-90df-7e33f4d1d521&acdnat=1541506491_a44021d55cd8f7bd5b8ef7d8f0268cdf
https://ac.els-cdn.com/S1084804514001866/1-s2.0-S1084804514001866-main.pdf?_tid=c03e31c7-266a-4f91-90df-7e33f4d1d521&acdnat=1541506491_a44021d55cd8f7bd5b8ef7d8f0268cdf
https://www.sciencedirect.com/science/article/pii/S1084804516303204
https://www.sciencedirect.com/science/article/pii/S1084804516303204
https://jwcn-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-1499-2012-44
https://jwcn-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-1499-2012-44

[53]

Dayong Ye and Minjie Zhang. ‘A Self-Adaptive Sleep/Wake-Up
Scheduling Approach for Wireless Sensor Networks’. In: IEEE
TRANSACTIONS ON CYBERNETICS (Mar. 2018). URL: https: / /
ieeexplore-ieee-org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=
7870667.

67

https://ieeexplore-ieee-org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=7870667
https://ieeexplore-ieee-org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=7870667
https://ieeexplore-ieee-org.ezproxy.hioa.no/stamp/stamp.jsp?tp=&arnumber=7870667

68

Appendices

69

Appendix A

Script For Experiment 1

i|import random

2| from math import sqrt

slimport matplotlib.pyplot as plt
i| from collections import Counter

6| gridsize=600

7| Range_sensor=150 # Take value from 50 to 600
8| N_sensors=20

ol M_Targets=10

10| x_sensor =[0]*N_sensors

11| y_sensor =[0]+N_sensors

2| x_targets =[0]«M_Targets

13| y_targets =[0]+M_Targets

15| randomseed=9001

18| random . seed (randomseed)

24 if (M_Targets >N_sensors):
25 print "error targets more than sensors'
26 exit ()

'

w|def Covering_sensors(xtarget, ytarget):

30 my_list =[]

31 for i in range(N_sensors):

) C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
**2)

33 if C<=Range_sensor:

34

35 my_list.append (i)

36

39 return my_list

40

71

66
67
68
69

70

@ON =

® ® ® ® © ® % ® 0 0 N N N N N NN N9
C X U R TR D RN R S 8 ® N TR

90

92

96

97

def Covered_targets(xsensor,ysensor):
my_list =[]

for j in range(M_Targets):
C= sqrt((x_targets[j]—xsensor)=*2 +(y_targets[j]—ysensor)
**2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by
", Xsensor, ysensor

my_list.append(j)

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

72

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])
129
130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])

132
133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

73

160
161
162
163
164
165
166
167
168
169
170

171

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.01# Learning Parameter
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

74

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

235

236

238

239

240
241

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

print "———————Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Numbe of occurence of element in list:", Counter(
all_active_sensor) # this counts the ocurence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

#print"Average of minimum active senors:", round(average,b2) # this
provide the result with two number after decimal

1

;" ,sum (number_iteration

print
print

n "

Listing A.1: Impact of sensing range of sensors

75

76

Appendix B

Script For Experiment 2

import random

from math import sqrt

import matplotlib.pyplot as plt
from collections import Counter

o W N =

6| gridsize=600

7| Range_sensor=100 # Put this value 100,300 and 450
3| N_sensors=20 # Take this value from 20 to 30

9| M_Targets=15

10| x_sensor =[0]*N_sensors

11| y_sensor =[0]+N_sensors

2| x_targets =[0]«M_Targets

13| y_targets =[0]+M_Targets

15| randomseed=9001

18| random . seed (randomseed)

20

21

»

24 if (M_Targets >N_sensors):

25 print "error targets more than sensors”

26 exit ()

28

w|def Covering_sensors(xtarget, ytarget):

30 my_list =[]

31 for i in range(N_sensors):

) C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
*%2)

33 if C<=Range_sensor:

34 #print ("target is covered")

35 my_list.append (i)

36

37 #else:

38 # print 'no target covered’

39 return my_list

40

77

66

70

@ON =

® ® 0 ® © N N N NN NN N9
1 kR O N =2 S 8 ® N Ul R

®
> G

87
88
89
90
91

92

94
95
96

97

def Covered_targets(xsensor,ysensor):

my_list =[]
#print "x tagets", x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=**2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

'

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

78

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])
129
130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])

132
133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

79

160
161
162
163
164
165
166
167
168
169
170

171

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.01# Learning Parameter
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

80

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

235

236

238

239

240
241

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

print "———————Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Numbe of occurence of element in list:", Counter(
all_active_sensor) # this counts the ocurence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

#print"Average of minimum active senors:", round(average,b2) # this
provide the result with two number after decimal

1

;" ,sum (number_iteration

print
print

n "

Listing B.1: Impact of density of sensor by taking sensors between 19 to 31

81

82

Appendix C

Script Of Experiment 3

i|import random

2| from math import sqrt

slimport matplotlib.pyplot as plt
i| from collections import Counter

6| gridsize=600

7| Range_sensor=100 # Take this value 100 and 300
8| N_sensors=30

9| M_Targets=15

10| x_sensor =[0]*N_sensors

11| y_sensor =[0]+N_sensors

2| x_targets =[0]«M_Targets

13| y_targets =[0]+M_Targets

15| randomseed=9001

18| random . seed (randomseed)

24 if (M_Targets >N_sensors):
25 print "error targets more than sensors'
26 exit ()

'

w|def Covering_sensors(xtarget, ytarget):

30 my_list =[]

31 for i in range(N_sensors):

) C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
**2)

33 if C<=Range_sensor:

34 #print ("target is covered")

35 my_list.append (i)

36

37 #else:

38 # print 'no target covered’

39 return my_list

40

83

66

70

@ON =

® ® 0 ® © N N N NN NN N9
1 kR O N =2 S 8 ® N Ul R

®
> G

87
88
89
90
91

92

94
95
96

97

def Covered_targets(xsensor,ysensor):

my_list =[]
#print "x tagets", x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=**2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

'

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

84

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])
129
130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])

132
133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

85

160
161
162
163
164
165
166
167
168
169
170

171

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.01# Learning Parameter
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

86

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

235

236

238

239

240
241

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

print "———————Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Number of occurrence of element in list:",Counter(
all_active_sensor) # this counts the occurrence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

#print"Average of minimum active senors:", round(average,b2) # this
provide the result with two number after decimal

1

;" ,sum (number_iteration

print
print

n "

Listing C.1: Code for impact of density of targets

87

88

o W N =

39

40

Appendix D

Script Of Experiment 4

random

from math import sqrt

import matplotlib.pyplot as plt
from collections import Counter

o| gridsize=600

Range_sensor=300 # Take this value to 300 and 450
N_sensors=70 # Take the values 70 to 80
M_Targets=50

x_sensor=[0]*N_sensors

y_sensor =[0]+N_sensors

x_targets =[0]xM_Targets

3| y_targets=[0]+M_Targets

5| randomseed=9001

random . seed (randomseed)

if (M_Targets >N_sensors):
print "error targets more than sensors'
exit ()

'

def Covering_sensors(xtarget, ytarget):
my_list =[]
for i in range(N_sensors):
C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
**2)
if C<=Range_sensor:
#print ("target is covered")
my_list.append (i)

#else:

print 'no target covered’
return my_list

89

66

70

@ON =

® ® 0 ® © N N N NN NN N9
1 kR O N =2 S 8 ® N Ul R

®
> G

87
88
89
90
91

92

94
95
96

97

def Covered_targets(xsensor,ysensor):

my_list =[]
#print "x tagets", x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=**2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

'

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

90

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])
129
130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])

132
133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

91

160
161
162
163
164
165
166
167
168
169
170

171

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.004# Learning Parameter
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

92

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

235

236

238

239

240
241

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

print "———————Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Numbe of occurence of element in list:", Counter(
all_active_sensor) # this counts the ocurence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

#print"Average of minimum active senors:", round(average,b2) # this
provide the result with two number after decimal

1

;" ,sum (number_iteration

print
print

n "

Listing D.1: Impact of sensor sensing range in large network

93

94

Appendix E

Script Of Experiment 5

import random

from math import sqrt

import matplotlib.pyplot as plt
from collections import Counter

o W N =

6| gridsize=600

7| Range_sensor=200 # Take this value from 50 to 400
s| N_sensors= 20 # Take the values 10 to 25

9| M_Targets=9

10| x_sensor =[0]*N_sensors

11| y_sensor =[0]+N_sensors

2| x_targets =[0]«M_Targets

13| y_targets =[0]+M_Targets

15| randomseed=9001

18| random . seed (randomseed)

20

21

»

24 if (M_Targets >N_sensors):

25 print "error targets more than sensors”

26 exit ()

28

w|def Covering_sensors(xtarget, ytarget):

30 my_list =[]

31 for i in range(N_sensors):

) C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
*%2)

33 if C<=Range_sensor:

34 #print ("target is covered")

35 my_list.append (i)

36

37 #else:

38 # print 'no target covered’

39 return my_list

40

95

66

70

@ON =

® ® 0 ® © N N N NN NN N9
1 kR O N =2 S 8 ® N Ul R

®
> G

87
88
89
90
91

92

94
95
96

97

def Covered_targets(xsensor,ysensor):

my_list =[]
#print "x tagets", x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=**2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

'

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

96

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])
129
130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])

132
133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

97

160
161
162
163
164
165
166
167
168
169
170

171

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.01 # Learning Parameter
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

98

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

235

236

238

239

240
241

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

2| print "——————————Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Numbe of occurence of element in list:", Counter(
all_active_sensor) # this counts the ocurence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

#print"Average of minimum active senors:", round(average,b2) # this
provide the result with two number after decimal

1

;" ,sum (number_iteration

print
print

n "

Listing E.1: Impact of learning parameter

99

100

Appendix F

Script Of Experiment 6

import random

from math import sqrt

import matplotlib.pyplot as plt
from collections import Counter

o W N =

6| gridsize=600

7| Range_sensor=200 # This value is constant

s| N_sensors=10 # This value ranges from 10 to 25
9| M_Targets=9

10| x_sensor =[0]*N_sensors

11| y_sensor =[0]+N_sensors

2| x_targets =[0]«M_Targets

13| y_targets =[0]+M_Targets

15| randomseed=9001

18| random . seed (randomseed)

20

21

»

24 if (M_Targets >N_sensors):

25 print "error targets more than sensors”

26 exit ()

28

w|def Covering_sensors(xtarget, ytarget):

30 my_list =[]

31 for i in range(N_sensors):

) C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
*%2)

33 if C<=Range_sensor:

34 #print ("target is covered")

35 my_list.append (i)

36

37 #else:

38 # print 'no target covered’

39 return my_list

40

101

66

70

@ON =

® ® 0 ® © N N N NN NN N9
1 kR O N =2 S 8 ® N Ul R

®
> G

87
88
89
90
91

92

94
95
96

97

def Covered_targets(xsensor,ysensor):

my_list =[]
#print "x tagets", x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=**2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

'

#else:
print ‘'no target covered’
return my_list

def Covered_target(xsensor,bysensor, x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)**2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by",
XSensor , ysensor
result=True

#else:
print 'no target covered’
return result

def Target_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:

active_sensors .append (1)
else

active_sensors .append (0)

return active_sensors
#Main code=

list_targets =[]
for j in range(M_Targets):

102

98
99 #list_covering_sensors = []
100
101 alreadythere=False

102 while (not alreadythere): # to avoid two targets at the same
point

103 x_targets[j] = random.randint(0, gridsize)

104 y_targets[j] = random.randint(0, gridsize)

105 if ([x_targets[j],y_targets[j]]) in list_targets:

106 alreadythere=True

107 #print x_targets[j],y_targets[j],"it is already there"

108 else:

109 #print "it is new"

110 alreadythere=False

111 list_targets .append ([x_targets[j],y_targets[j]])
112
113
114
115
116
117
18| list_sensors =[]

19| #The first M sensors should cover the first M targets
20| for i in range(M_Targets):

121

122 alreadythere=False

123 Covered=False

124 while ((not Covered)):

125 x_sensor[i] = random.randint(0, gridsize)

126 y_sensor[i] = random.randint(0, gridsize)

127

128 Covered=Covered_target(x_sensor[i],y_sensor[i],x_targets]|

i], y_targets[i])

129

130 #print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
131 list_sensors .append ([x_sensor[i],y_sensor[i]])
132

133
134
135
136
137| #The rest of sensors from M to N sesnors cover any thing
138
139| for i in range(M_Targets, N_sensors):

140
141 list_covering_targets = []

142

143

144 alreadythere=False

145 while ((len(list_covering_targets)==0) or (alreadythere)):
146 x_sensor[i] = random.randint(0, gridsize)

147 y_sensor[i] = random.randint(0, gridsize)

148 if ([x_sensor[i],y_sensor[i]]) in list_sensors:

149 alreadythere=True

150

151 else:

152

153 alreadythere=False

103

160
161
162
163
164
165
166
167
168
169

170

189
190
191
192

193
194
195

196

list_covering_targets =Covered_targets(x_sensor[i],
y_sensor[i])
list_sensors.append ([x_sensor[i],y_sensor[i]])

#Resetting the random number generator

all_active_sensor = []

number_iteration =[]

number_exp=1000

for t in range (number_exp):
myrandom = random.Random ()

LA = [0.5] * N_sensors

bestVal = 0
minimum_sensors = N_sensors
best_active_sensors_binary = [0] * N_sensors

lamda = 0.01# Learning Parameter (change this value)
epsilon = 0.01

converged = False

iteration=0
while (converged==False): # this loop runs till it satisfies
the condition

converged=True
active_sensors_binary=random_sol (LA, myrandom)

active_sensors_list =[]
for i in range(N_sensors):
if active_sensors_binary[i]==1:
active_sensors_list.append (i)

N_covered_targets=len (Target_coverd_by_active_sensors (
active_sensors_list))

number_active_sensors=len (active_sensors_list)
if (number_active_sensors<minimum_sensors) and (
N_covered_targets==M_Targets) :
minimum_sensors=number_active_sensors
best_active_sensors_binary= active_sensors_binary [:]
for i in range(N_sensors):
if LA[i]>=1—epsilon:
LA[i]=1

elif LA[i]<=epsilon:
LA[i]=0

104

209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226

227

235

236

238

239
240
241

242
243

elif (best_active_sensors_binary[i]==1):
LA[i]=LA[i]+lamdax*(1—-LA[i])

else:
LA[i]=LA[i]+lamda*(0—LA[1i])

for i in range(N_sensors): #This loop provide the
condition to Converse the program
if (LA[i]!'=1) and (LA[i]!=0):
converged=False

iteration=iteration+l
all_active_sensor .append (minimum_sensors)
number_iteration .append(iteration)

#print "minimumsensor:" , minimum_sensors

#This is for finding the sum of active sensors

"""sum = 0.0

for item in all_active_sensor:
sum = sum + item
Total_minimum_active_sensor = float(len(all_active_sensor))
average= sum / n"""

" "

print

print Final Result !

print"number of iterations in each experiment:", number_iteration

print"Number of Active sensors in each experiment:",
all_active_sensor

#print "Numbe of occurence of element in list:", Counter(
all_active_sensor) # this counts the ocurence of elements in
list

print"Average number of minimum active sensor per experiment:",
sum(all_active_sensor) /(number_exp=1.0)

print "sum of minimum number of sensors in all experiment:" ,sum(
all_active_sensor)

print"Average iteration of all experiment
) / (number_exp+1.0)

print"minimum value:",min(all_active_sensor)

print"max:" ,max(all_active_sensor)

#print"Average of minimum active senors:", round(average,2) # this
provide the result with two number after decimal

" "

1

;" ,sum (number_iteration

print
print

" "

Listing F.1: Comparison of result obtained from algorithm with brute force
method

105

106

Appendix G

Script For Experiment 7

)
S

import random
from math import sqrt
import matplotlib.pyplot as plt

o| gridsize=600

Range_sensor= 300
N_sensors=5

M_Targets=2
x_sensor=[0]*N_sensors
y_sensor =[0]+N_sensors
x_targets =[0]xM_Targets
y_targets =[0]«M_Targets
randomseed=9001

7| random . seed (randomseed)

LA=[0.5]*N_sensors

2| bestVal=0

mimimum_sensors=N_sensors
best_active_sensors_binary =[0]+N_sensors

lamda=0.01
epsilon=0.01
beta=0

;| converged=False

if (M_Targets>N_sensors):
print "error targets more than sensors'
exit ()

'

def Covering_sensors(xtarget, ytarget):

107

66

69
70
71
72
73

75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96

97

def

def

def

def

my_list =[]
for i in range(N_sensors):

C= sqrt((xtarget—x_sensor[i])=**2 +(ytarget—y_sensor[i])
**2)

if C<=Range_sensor:

my_list.append (i)
return my_list

Covered_targets(xsensor ,ysensor):
my_list =[]
#print "x tagets",x_targets
for j in range(M_Targets):

C= sqrt((x_targets[j]—xsensor)=*2 +(y_targets[j]—ysensor)
*%2)

if C<=Range_sensor:

#print "target", x_targets[j],y_targets[j]," coverd by

", Xsensor, ysensor

my_list.append(j)

#else:
print 'no target covered’
return my_list

Covered_target(xsensor,bysensor,x_target, y_target):
result=False
#print "x tagets", x_targets
#for j in range(M_Targets):
C= sqrt((x_target—xsensor)*+*2 +(y_target—ysensor)=x2)
if C<=Range_sensor:
#print "target", x_targets[j],y_targets[j]," coverd by
", Xsensor, ysensor
result=True

#else:
print 'no target covered’
return result

Targest_coverd_by_active_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:
target_covered= Covered_targets(x_sensor[i],y_sensor[i])
Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets
Targets_coverd_by_list_sensors(Active_Sensors):
Set_Covered_Targets=set ()
for i in Active_Sensors:

target_covered= Covered_targets(x_sensor[i],y_sensor[i])

Set_Covered_Targets.update(set(target_covered))

return Set_Covered_Targets

108

98
99
100
101
1(

2
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
1

©

120
121
122
123
124
125

126
127
128
129
130

def random_sol (LA, myrandom) :
active_sensors = []
for i in range(N_sensors):
r=myrandom . random ()
if r<LA[i]:
active=1
else:
active=0
#sign = randint(0,1)

if active==1:
active_sensors .append (1)
else
active_sensors .append (0)

return active_sensors

#Main code
list_targets =[]
for j in range(M_Targets):

#list_covering_sensors = []

alreadythere=False
while (not alreadythere): # to make sure each target is
coverged by at least one sensor
x_targets[j] = random.randint(0, gridsize)
y_targets[j] = random.randint(0, gridsize)
if ([x_targets[j],y_targets[j]]) in list_targets:
alreadythere=True
#print x_targets[j],y_targets[j],

'

"it is already
there"
else:
#print "it is new"
alreadythere=False
list_targets .append ([x_targets[j],y_targets[j]])

x2 = x_targets|[j]
y2 = y_targets|[j]
plt.scatter (x2, y2, color="red’)
plt.scatter(x2, y2, 100, 'g’, "A’)
plt.text(x2 = (1 + 0.01), y2 = (1 + 0.01), j,

fontsize=12)

list_sensors =[]

s|#The first M sensors should cover the first M targets

for i in range(M_Targets):

alreadythere=False
Covered=False

109

154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

190
191
192
193

194
195
196

197
198
199

200
201

while ((not Covered)):
x_sensor[i] random.randint (0, gridsize)
y_sensor[i] = random.randint(0, gridsize)
#print "here", x_sensor[i],y_sensor[i]
#if ([x_sensor[i],y_sensor[i]]) in list_sensors:
#alreadythere=True
Covered=Covered_target(x_sensor[i],y_sensor[i],
x_targets[i], y_targets[i])
#print x_targets[j],y_targets[j],"it is already

there"
#else:
#print "it is new"
#alreadythere=False
print i, x_sensor[i],y_sensor[i],x_targets[i], y_targets[i]
list_sensors .append ([x_sensor[i],y_sensor[i]])

#Covering_sensors (x_targets[i], x_targets[i])

#The rest of sensors from M to N sesnors cover any thing
for i in range(M_Targets, N_sensors):
list_covering_targets = []

alreadythere=False
while ((len(list_covering_targets)==0) or (alreadythere)):
x_sensor[i] = random.randint(0, gridsize)
y_sensor[i] = random.randint(0, gridsize)
if ([x_sensor[i],y_sensor[i]]) in list_sensors:
alreadythere=True
#print x_targets[j],y_targets[j],"it is already
there"
else:
#print "it is new"
alreadythere=False
list_covering_targets =Covered_targets(x_sensor[i
1, y_sensor[i])
#print "covered and not there ?", (
list_covering_targets==[]) and (not alreadythere)
#print "already there ?", not alreadythere
print "exited , sensor covering, ",6list_covering_targets
#print("sensor", i, "is at position", x_sensor[i],
y_sensor[i])
list_sensors .append ([x_sensor[i],y_sensor[i]])

#print "sensor", i, "is covering those targets",
list_covering_targets

x1 = x_sensor[i]
yl = y_sensor[i]
plt.text(x1 = (1 + 0.01), yl1 = (1 + 0.01), i, fontsize

=12) # code for ploting the points with text

plt.scatter(x1l, yl1, 100, 'r’, '1’) # for scatter plot of
sensors

circle = plt.Circle ((x1, yl), Range_sensor, color="b’, fill
=False) # this code is for drawing circle coverage of sensor

110

203 fig = plt.gcf()
204 fig.gca().add_artist(circle)

207| # plt.ylim (0, 100)
08| # plt.xlim (0, 100)

209

210l #Active_Sensors=[1]

211

212

213

24| #print "COVERGED TARGETS BY ACTIVE SET SENSORS",
Targest_coverd_by_active_sensors (Active_Sensors)

215

216

217

218

219| #Resetting the random number generator
220 myrandom = random.Random ()

221
| iteration=0

23| while (converged==False):
224

225 converged=True

226 active_sensors_binary=random_sol (LA, myrandom)

227

228 active_sensors_list =[]

229

230

231 for i in range(N_sensors):

232 Only_me_covering=False

233 sensor=[1i]

234 other_active_sensors=[k for k in active_sensors_binary
if k != i]

235 mytargets=Targets_coverd_by_list_sensors(sensor)

236 targets_of_others=Targets_coverd_by_list_sensors(
other_active_sensors)

237 if mytargets.intersection (targets_of_others):

238 Only_me_covering=False

239 else:

240 Only_me_covering=True

241

242 if active_sensors_binary[i]==1:

243 #print "Anis"

244 #print Only_me_covering

245 active_sensors_list.append (i)

246 if Only_me_covering==True:

247 LA[i]=LA[i]+betax(1—-LA[i])

248 #else:

249 # LA[i]=LA[1i]+lamdax(0—LA[i])

250 else :#Sensor inactive

251 if Only_me_covering==False :#Means other cover when
sleep

252 LA[i]=LA[i]+betax(0—LA[i])

253 #else:

254 | # LA[i]=LA[i]+lamda*(1—LA[i])

256

257

111

258

259 N_covered_targets=len(Targest_coverd_by_active_sensors(
active_sensors_list))

260

261 #print "random active", active_sensors_list, "covers a number
of targest =", N_covered_targets

262

263 number_active_sensors=len (active_sensors_list)

264 #for i in active_sensors_binary:

265| # if i==

266 | # number_active_sensors=number_active_sensors+1

267

268

269

270

271

272

273 #if (number_active_sensors<mimimum_sensors) and (
N_covered_targets==M_Targets) :

274| # mimimum_sensors=number_active_sensors

275| # best_active_sensors_binary= active_sensors_binary [:]

276

277

278 for i in range(N_sensors):

279 if LA[i]>=1—epsilon:

280 LA[i]=1

281

282 elif LA[i]<=epsilon:

283 LA[i]=0

284

285

286

287 for i in range(N_sensors):

288 if (LA[i]'=1) and (LA[i]!=0):

289 converged=False

290

291 iteration=iteration+1

292

293 print "best active", best_active_sensors_binary

294 print "mimimum_sensors", mimimum_sensors

295 print "LA vector", LA

296 print "iterations", iteration

297

28| plt.scatter (x_sensor, y_sensor, 100, "g", "1")

299

30| for i in range(N_sensors):

301 if best_active_sensors_binary[i]==1:

302 circle = plt.Circle ((x_sensor[i], y_sensor[i]),
Range_sensor, color="b’,fill=False) # this code is for
drawing circle coverage of sensor

303 fig = plt.gcf()

304 fig.gca().add_artist(circle)

305

306

s07| plt . scatter (x_targets , y_targets, 100, "r", "1")

so8| plt.ylim (0, gridsize)

s09| plt.xlim (0, gridsize)

s10| plt.show ()

112

Listing G.1: Code of algorithm that has been compared with proposed
algorithm

113

	Introduction
	An Overview Of Wireless Sensor Networks
	Wireless sensor networks life time
	Wireless sensor networks coverage Area
	Problem Statement
	Report structure

	Background
	Wireless sensors
	Machine learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Learning Automata
	Tools used
	Python

	Related work
	Proposed Algorithm
	Initial Phase
	Learning Phase
	Target Monitoring Phase

	Approach
	Objective
	Experimental Environment
	Technologies
	The Plan
	Planned Experiments
	Experiment one
	Experiment Two
	Experiment Three
	Experiment Four
	Experiment Five
	Experiment Six
	Experiment Seven

	Results of the experiments
	Constraints of the project
	The Setup
	The time
	The Technology

	Other Implementation
	Script

	Expected results

	Design
	Overview
	Sensor Deployment
	Target Deployment
	Sensor and Target Deployment
	Algorithm Description

	Implementation And Result Analysis
	Experiment One
	Experiment Two
	Experiment Three
	Experiment Four
	Experiment Five
	Experiment Six
	Experiment Seven

	 Discussion
	Problem statement
	Algorithm and Experiment analysis
	Experiment One
	Experiment Two
	Experiment Three
	Experiment Four
	Experiment Five
	Experiment Six
	Experiment Seven

	Project
	Error sources and challenges
	Inconsistent results generation

	Further work
	Improvements
	New features
	Conclusion

	Appendices
	Script For Experiment 1
	 Script For Experiment 2
	 Script Of Experiment 3
	Script Of Experiment 4
	Script Of Experiment 5
	 Script Of Experiment 6
	Script For Experiment 7

