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Abstract 
I	present	a	model	of	chiasma	interference	and	recombination	in	homo-	and	heterokaryotypes	and	a	
model	of	nonrandom	mating.	These	two	models	form	the	basis	of	a	general-purpose	deterministic	
multilocus	evolution	simulator,	which	I	use	to	show	how	chromosomal	inversions	can	enhance	and	
accelerate	reinforcement	in	various	scenarios.	I	conclude	that	an	inversion	can	initiate	a	snowball	
effect	of	increasing	pre-	and	postzygotic	isolation,	even	when	there	is	some	recombination	in	
heterokaryotypes.	
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1 Introduction 
When	hybrids	of	two	imperfectly	isolated	species	have	reduced	fitness,	there	can	be	selection	for	
preference	alleles	that	cause	their	bearer	to	prefer	mates	with	conspecific	traits	(Dobzhansky	1937).	
Once	a	contentious	topic,	such	reinforcement	of	prezygotic	isolation	has	in	later	decades	been	amply	
documented	in	the	wild,	and	it	is	now	widely	accepted	that	it	occurs	(Noor	1999,	Servedio	and	Noor	
2003).	A	key	insight	of	Felsenstein	(1981)	is	that	recombination	between	trait	indicator	loci	and	
postzygotic	isolation	loci	can	make	the	conspecific	trait	a	less	reliable	indicator	of	a	mate’s	fitness,	so	
that	the	advantage	of	preferring	it	is	diminished.	Accordingly,	theoretical	studies	have	shown	that	
reinforcement	occur	less	readily	when	recombination	between	pre-	and	postzygotic	isolation	loci	is	
high	(Felsentein	1981,	Servedio	and	Kirkpatrick	1997,	Servedio	2000,	Servedio	and	Sætre	2003).	
	 Chromosomal	inversions	partly	suppress	recombination	in	heterokaryotypes	(e.g.	Coyne	et	
al.	1991,	1993,	Navarro	and	Ruiz	1997,	Jaarola	et	al.	1998)	and	are	often	found	to	be	linked	to	loci	
involved	in	differentiation	of	alternative	mating	strategies	(Tuttle	et	al.	2016,	Lamichhaney	et	al.	
2016,	Wang	et	al.	2013),	local	adaptation	(Etges	and	Levitan	2004,	Sinclair-Waters	et	al.	2018)	and	
pre-	and	postzygotic	reproductive	isolation	between	species	or	subpopulations	(Noor	et	al.	2001,	
Feder	et	al.	2003,	Ayala	et	al.	2013,	Poelstra	et	al.	2014).	For	these	reasons,	it	has	been	suggested	
that	inversions	can	enhance	reinforcement	by	capturing,	and	reducing	recombination	between,	pre-	
and	postzygotic	isolation	loci	in	parapatry	(Tricket	and	Butlin	1994,	Dagilis	and	Kirkpatrick	2016).	
Models	of	this	process	that	incorporate	realistic	interactions	between	underdominance	and	
recombination	in	heterokaryotypes	have,	however,	not	yet	been	explored.	
	 Although	the	effects	of	chiasma	interference	on	underdominance	and	recombination	in	
inversion	heterokaryotypes	have	been	recognized	(Navarro	et	al.	1997),	general	mathematical	
expressions	of	gamete	proportions	are	lacking.	In	order	to	fill	this	gap,	I	will	in	chapter	2	of	this	
thesis	suggest	a	generalization	of	the	counting	models	of	chiasma	interference,	and	use	it	do	derive	
exact	expressions	of	gamete	proportions	in	homokaryotypes	and	inversion	heterokaryotypes	for	
two	types	of	chromosomal	inversions.	This	model	and	a	model	of	nonrandom	mating	(chapter	3)	
together	form	the	basis	of	a	general-purpose	deterministic	multilocus	evolution	simulator	that	
automatically	generates	and	numerically	solves	appropriate	recurrence	equations	based	on	the	
given	input.	The	program	is	quite	general,	and	can	in	principle	be	used	to	calculate	the	equilibrium	
state	of	any	system	that	can	be	expressed	in	terms	of	an	unbounded	set	of	subpopulations,	
chromosomes	and	loci,	with	any	pattern	of	migration	between	subpopulations,	any	environmental	
or	genotypic	fitness	interactions,	and	any	pattern	of	mating	that	corresponds	to	the	model	in	chapter	
31.	In	chapter	4,	I	will	use	it	to	show	how	chromosomal	inversions	can	enhance	and	accelerate	
reinforcement	in	a	variety	of	scenarios.	I	conclude	(chapter	5)	that	an	inversion	can	initiate	a	
snowball	effect	of	increasing	postzygotic	(Navarro	and	Barton	2003)	as	well	as	prezygotic	isolation,	
even	when	there	is	some	recombination	in	heterokaryotypes.	
	

                                                
1 I aim to publish an extended version of this program with a full user manual at some later time, but I have 
made the source code for the current version available as an online appendix, along with an example input file 
(online appendix and Appendix B, this volume). Note that although all the operations needed to run the 
simulations discussed in this text have been extensively tested, some of the remaining ones should be regarded 
as being at the beta stage at this moment. 
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2 Recombination in homo- and 
heterokaryotypes under a general model 
of chiasma interference 

 
2.1 Recombination and interference: terminology and 

introduction 
The	effect	of	chiasma	interference	on	recombination	in	homokaryotypes	is	extensively	discussed	in	
the	literature	(section	2.13),	but	the	results	are	rarely,	if	ever,	incorporated	into	evolutionary	
models.	For	inversion	heterokaryotypes,	little	work	has	been	done	apart	from	Navarro	et	al.’s	(1997)	
approximate	expressions	of	recombination	rates	for	a	maximum	of	two	loci	in	restricted	locations.	In	
this	chapter,	I	will	suggest	a	model	of	chiasma	interference	that	unifies	the	various	counting	
interference	models	(section	2.13)	into	a	single	framework,	and	use	it	to	derive	exact	expressions	for	
gamete	proportions	in	homo-	and	heterokaryotypes	for	an	indefinite	number	of	loci	at	any	location	
on	the	chromosome.	
	
2.1.1 Basic terminology 
Since	discussions	of	recombination	and	related	issues	risk	being	obfuscated	by	inconsistent	and	
ambiguous	terminology,	I	will	begin	this	chapter	by	carefully	laying	out	my	own.	A	tetrad	is	a	bundle	
of	four	chromatids,	originating	as	a	duplication	of	each	of	the	two	parental	homologues,	with	one	pair	
of	chromatids	denoted	sister	chromatids	if	they	are	derived	from	the	same	homologue	and	non-sister	
chromatids	if	they	are	not.	Exchanges	of	genetic	material	–	or	crossing	over	–	occur	as	a	series	of	
chiasmata	(singular	chiasma)	or	chiasma	events	distributed	along	the	tetrad	according	to	a	model	of	
chiasma	interference,	so	that	each	such	event	involves	two	non-sister	chromatids,	or,	equivalently,	one	
out	of	the	four	possible	non-sister	chromatid	pairs,	chosen	according	to	a	model	of	chromatid	
interference.2	A	chromatid	is	said	to	be	recombinant	or	show	recombination	in	a	given	interval	if	it	is	
involved	in	an	odd	number	of	chiasma	events	within	that	interval	(note	that	this	is	not	the	same	as	
saying	that	an	odd	number	of	chiasma	events	occur	within	the	interval),	and	to	be	non-recombinant	
or	show	non-recombination	in	the	opposite	case.	A	recombination	pattern	is	a	set	of	Boolean	
variables	that	represent	the	recombination	status	–	recombination	(1)	or	non-recombination	(0)	–	in	
each	of	the	𝔫	adjoining	and	non-overlapping	intervals,	so	that	if	the	set	of	all	intervals	–	the	region	of	
interest	–	is	{𝕚$, 𝕚&, 𝕚' … 𝕚𝔫)&},	then	we	can	denote	a	recombination	pattern	r	as	
	

𝒓 = {𝑟(𝕚$), 𝑟(𝕚&), 𝑟(𝕚')… 𝑟(𝕚𝔫)&)}	
	
where	
	

𝑟(𝕚) = 01, 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝕚
0, 𝑛𝑜𝑛 − 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝕚	

                                                
2 This is sometimes referred to as the four-strand model of recombination, to distinguish it from the simplified 
two-strand (sometimes one-strand) model that is implicit in most textbook accounts (see Speed 1995 for a 
discussion of these two models). Strand is here synonymous with chromatid. 
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Accordingly,	a	chromatid	is	said	to	show	or	have	recombination	pattern	r	if	the	presence	or	absence	
of	recombination	in	all	the	intervals	of	the	region	of	interest	correspond	to	r.	I	will	use	the	random	
vector	𝑹 = {𝑅(𝕚$), 𝑅(𝕚&), 𝑅(	𝕚')…𝑅(𝕚𝔫)&)}	to	represent	the	recombination	pattern	of	a	randomly	
chosen	chromatid,	so	that	I	can	write	e.g.	“the	probability	of	observing	a	chromatid	with	
recombination	pattern	r	is	p”	as	
	

Pr{𝑹 = 𝒓} = 𝑝	
	

or	“the	probability	of	observing	recombination	status	𝑟(𝕚)	in	interval	𝕚	is	p”	as	
	

Pr{𝑅(𝕚) = 𝑟(𝕚)} = 𝑝	
	
or	“the	probability	of	observing	recombination	in	interval	𝕚	is	p”	as	
	

Pr{𝑅(𝕚) = 1} = 𝑝	
	
For	notational	simplicity,	I	will	sometimes	use	the	shorthand	forms	𝑅C = 𝑅(𝕚C)	and	𝑟C = 𝑟(𝕚C)	when	
discussing	recombination	for	a	set	of	indexed	intervals.	
	 Meiosis	results	in	a	set	of	haploid	gametes	or	products	of	meiosis.	For	inversion	
homokaryotypes	–	chromosomes	that	are	not	heterozygous	for	a	chromosomal	inversion	–	all	
chromatids	have	an	equal	chance	of	becoming	a	gamete,	whereas	this	is	not	always	the	case	for	
inversion	heterokaryotypes,	as	we	shall	see.	A	gamete	can	be	represented	in	two	ways:	as	a	
recombination	pattern	(in	which	case	I	will	say	that	the	gamete	show	or	have	the	recombination	
pattern	in	question),	or	as	a	haplotype	–	a	set	of	alleles,	one	for	each	marker	or	loci	that	demarcate	
the	boundaries	between	intervals.	I	will	use	the	former	representation	in	this	chapter;	an	algorithm	
for	converting	to	the	latter	for	a	given	diploid	genotype	is	given	in	the	Chromosome_diplotype	
method	calculate_gamete_frequencies	in	the	main	program	(online	appendix).	
	 I	will	assign	directionality	to	the	region	of	interest	by	denoting	interval	𝕚$	as	the	the	leftmost	
interval	and	𝕚𝔫)&	as	the	rightmost	interval.	More	generally,	I	will	say	that	any	interval	𝕚D	is	positioned	
to	the	left	of	interval	𝕚E	if	x	<	y,	and	to	the	right	of	𝕚E	if	x	>	y.	Furthermore,	for	any	interval	𝕚D,	I	will	for	
0 < 𝑥 < 𝔫 − 1	denote	the	boundary	that	is	shared	with	𝕚D)&	as	the	left	boundary	of	𝕚D,	and	the	
boundary	that	is	shared	with	𝕚DH&	as	the	right	boundary	of	𝕚D.	In	the	special	case	of	𝕚$,	I	will	refer	to	
the	boundary	that	is	shared	with	𝕚&	as	the	right	boundary	of	𝕚$,	and	the	boundary	that	is	not	shared	
with	any	other	interval	as	the	left	boundary	of	𝕚$,	which	is	also	the	left	boundary	of	the	whole	region	
of	interest,	or	the	leftmost	boundary.	Similary,	in	the	special	case	of	𝕚𝔫)&	we	have	that	the	left	
boundary	is	the	one	shared	with	𝕚𝔫)',	and	the	right	boundary,	a.k.a	rightmost	boundary,	is	the	one	not	
shared	with	any	other	interval.	The	directionality	also	applies	to	events	within	and	between	
intervals,	so	that	I	will	say,	for	example,	that	a	chiasma	event	occur	to	the	left	of	another	chiasma	
event	if	the	former	occur	closer	to	the	left	boundary	within	the	same	interval	or	in	an	interval	closer	
to	the	leftmost	boundary,	and	vice	versa.	If	the	region	of	interest	is	defined	as	in	the	preceding,	then	
the	reversed	region	of	interest	is	the	same	region	redefined	so	that	the	meaning	of	left	and	right	is	
interchanged.	A	particular	calculation,	algorithm	or	analysis	is	then	said	to	be	direction	reversible	if	it	
gives	the	same	result	regardless	of	whether	it	is	performed	on	the	region	of	interest	or	on	the	
reversed	region	of	interest.	
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2.1.2 Chromatid interference 
To	get	from	a	model	of	chiasma	interference	–	determining	how	the	chiasma	events	are	distributed	
in	space	–	to	recombination	pattern	probabilities,	one	needs	to	assume	a	model	of	chromatid	
interference	–	determining	the	chromatid	involvement	probabilities	for	each	event.	If	a	given	
chromatid	pair	is	less	likely	to	be	involved	in	a	chiasma	event	if	it	was	involved	in	a	neighboring	
event,	we	say	that	there	is	positive	chromatid	interference,	and	in	the	opposite	case	(more	rather	than	
less	likely)	we	say	that	there	is	negative	chromatid	interference.	If,	on	the	other	hand,	the	
involvement	probabilities	are	independent,	we	say	that	there	is	no	chromatid	interference	or	
independent	chromatid	involvement.	The	evidence	for	chromatid	interference	is	inconsistent	and	
ambiguous	(Zhao	et	al.	1995b),	and	almost	all	models,	partly	for	this	reason	and	partly	for	reasons	of	
simplicity,	assume	independent	involvement.	I	will	here	do	so	as	well,	though	I	will	in	the	final	
section	suggest	a	simple	way	to	extend	one	of	my	algorithms	so	as	to	account	for	chromatid	
interference.	
 
2.1.3 Chiasma interference 
A	renewal	process	(see	Ross	2014,	chapter	7)	is	in	the	following	defined	as	a	stochastic	process	that	
represents	the	number	of	events	(of	a	given	type)	that	occur	in	an	interval	of	a	given	length,	when	
the	distances	between	neighboring	events	are	all	drawn	from	the	same	interarrival	distance	
distribution.	I	will	say	that	the	events	occur	independently	or	are	independent	if	the	probability	of	
observing	a	given	number	of	events	in	any	given	interval	is	independent	of	the	number	of	events	in	
all	other	disjoint	intervals.	The	renewal	process	that	possesses	this	attribute	is	known	as	the	Poisson	
process	(Ross	2014,	definition	5.2,	theorem	5.1,	proposition	5.1	and	section	5.2.2),	in	which	the	
interarrival	distance	distribution	is	exponential,	and	the	number	of	events	in	an	interval	of	a	given	
(genetic)	length	follows	a	Poisson	distribution,	so	that	
	

Pr{y	𝑒𝑣𝑒𝑛𝑡𝑠	𝑖𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝕚} =
𝑒)N𝜇E

𝑦! 	

	
where	𝜇	is	the	expected	(i.e.	average)	number	of	events	in	interval	𝕚.	If	the	chiasma	events	occur	
independently,	they	are	distributed	according	to	a	Poisson	process,	and	we	say	that	there	is	no	
chiasma	interference.	This	seems	to	be	the	case	in	some	organisms,	e.g.	Schizosaccharomyces	pombe	
(Munz	1994),	but	these	are	exceptional	(see	Berchowitz	and	Copenhaver	2010	for	a	review).	I	will	
refer	to	the	model	that	assume	no	chiasma	interference	as	the	Poisson	interference	model,	as	first	
described	in	Haldane	(1919).	If	chiasma	events	do	not	occur	independently	–	i.e.	if	the	probability	of	
observing	a	given	number	of	chiasma	events	in	one	interval	depends	on	the	number	of	chiasma	
events	in	a	disjoint	interval	–	we	say	that	there	is	chiasma	interference.	A	common	measure	of	the	
degree	of	interference	is	the	coefficient	of	coincidence	(Muller	1916,	Foss	et	al.	1993),	one	version	of	
which	is	defined	as	
	

𝐶(𝐿$, 𝐿&) =
Pr{𝑅(𝕚$) = 1, 𝑅(𝕚&) = 1}

Pr	{𝑅(𝕚$) = 1} Pr{𝑅(𝕚&) = 1}		

where	𝕚$	and	𝕚&	are	two	adjoining	intervals	of	genetic	length	𝐿$	and	𝐿&	(This	is	equivalent	to	S3	in	
Foss	et	al.	1993,	except	that	they	impose	the	additional	constraint	that	𝐿$ = 𝐿&).	Note	that	if	the	
chiasma	events	occur	independently,	then	Pr{𝑅(𝕚$) = 1, 𝑅(𝕚&) = 1} = Pr{𝑅(𝕚$) = 1} Pr{𝑅(𝕚&) = 1}		
and	𝐶(𝐿$, 𝐿&) = 1	for	all	values	of	𝐿$	and	𝐿&.	It	is	common	to	distinguish	between	positive	chiasma	
interference,	in	which	a	chiasma	in	one	location	impede	(i.e.	makes	less	likely)	the	generation	of	a	
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chiasma	in	a	nearby	location	(𝐶(𝐿$, 𝐿&)<1	for	small	𝐿$, 𝐿&),	and	negative	chiasma	interference,	in	
which	a	chiasma	in	one	location	facilitates	(i.e.	makes	more	likely)	the	generation	of	a	chiasma	in	a	
nearby	location	(𝐶(𝐿$, 𝐿&)>1	for	small	𝐿$, 𝐿&).	In	practice,	chiasma	interference	is	almost	always	
positive	and	gradually	decreasing	with	distance,	i.e.	𝐶(𝐿$, 𝐿&)	is	typically	close	to	zero	for	small	𝐿$, 𝐿&	
and	approaches	1	as	𝐿$, 𝐿&	are	increased	(Berchowitz	and	Copenhaver	2010,	Foss	et	al.	1993).	
	 The	existence	of	chiasma	interference	implies	that	the	information	that	a	chiasma	have	
occurred	in	one	location	on	a	chromosome	must	somehow	propagate	to	nearby	locations	where	it	
interferes	with	(i.e.	influences	the	probability	of)	the	generation	of	other	chiasmata.	I	will	refer	to	
this	information	as	the	interference	signal.	Exactly	how	the	interference	signal	manifests	itself	
physically	is	poorly	understood	(Hillers	2004,	Berchowitz	and	Copenhaver	2010);	suggestions	
include	a	hypothetical	polymer	that	grows	out	from	each	chiasma	(King	and	Mortimer	1990),	and	
the	build-up	and	release	(at	chiasma	locations)	of	physical	stress	along	the	chromosome	(Kleckner	et	
al.	2004,	Wang	et	al.	2015).	Foss	et	al.	(1993)	suggests	a	model,	henceforth	referred	to	as	the	pure	
counting	model,	where	intermediate	events	occur	independently	(i.e.	according	to	a	Poisson	
process)	along	the	chromosome,	but	each	such	event	is	subsequently	resolved	as	either	a	chiasma	
event	–	with	both	crossing	over	and	gene	conversion	–	or	what	I	will	refer	to	as	a	dummy	event	–	
with	gene	conversion	but	not	crossing	over	–	in	a	strict	sequence	so	that	there	are	always	m	dummy	
events	between	each	chiasma	event.	Letting	C	denote	an	intermediate	event,	Cx	a	chiasma	event	and	
C0	a	dummy	event,	the	counting	model	hence	postulate	that	for	m	=	2	the	sequence	
…CxC0C0CxC0C0CxC0C0…	will	be	repeated	along	the	span	of	the	region	of	interest.	This	implies	a	
chiasma	interarrival	distance	distribution	equal	to	the	sum	of	m+1	exponential	distributions	(m	
dummy	events	plus	one	chiasma	event);	in	the	literature	on	chiasma	interference,	this	distribution	is	
variously	referred	to	as	the	Gamma	distribution	(e.g.	Cobbs	1978,	McPeek	and	Speed	1995),	the	chi-
squared	distribution	(e.g.	Zhao	et	al.	1995a),	and	the	Erlang	distribution	(Nolan	2017).	Interference	
in	the	pure	counting	model	depends	on	genetic,	as	opposed	to	physical,	distance	and	is	always	
positive	(Lange	et	al.	1997)	and	stronger	for	higher	m	(Foss	et	al.	1993,	Navarro	et	al.	1997;	see	
figure	4.8,	chapter	4,	in	this	text).	Note	that	the	chiasma	events	occur	independently	if	m	=	0,	because	
then	all	(independent)	intermediate	events	are	resolved	as	chiasma	events.	The	Poisson	interference	
model,	in	which	there	is	no	chiasma	interference,	can	therefore	be	thought	of	as	a	special	case	of	the	
counting	model.		
	 There	are	two	ways	of	interpreting	the	pure	counting	model;	either	as	a	literal	description	of	
the	physical	manifestation	of	the	interference	signal	–	a	“machine	that	can	count”,	in	the	words	of	
Foss	and	Stahl	(1995)	–	or	as	a	mathematical	abstraction	that,	disregarding	gene	conversions,	
models	the	distribution	of	chiasma	events	without	making	any	claims	as	to	how	interference	actually	
works.	The	latter	interpretation	is	foreshadowed	in	the	mathematically	equivalent	models	of	Cobbs	
(1978)	and	Stam	(1979),	among	others	(see	McPeek	and	Speed	1995	for	a	brief	historical	overview).	
Foss	et	al.	(1993),	however,	clearly	favor	the	former	interpretation,	and	they	support	this	view	by	
presenting	a	remarkably	good	fit	between	the	predicted	and	observed	coefficients	of	coincidence	for	
Drosophila	and	Neurospora	when	m,	crucially,	is	independently	estimated	from	the	ratio	of	the	
number	of	gene	conversions	to	the	number	of	chiasmata	in	a	different	dataset.	Additional	evidence	
for	the	accuracy	of	the	pure	counting	model’s	prediction	of	the	distribution	of	chiasma	events	in	at	
least	some	species	is	given	in	Lande	and	Stahl	(1993),	Zhao	et	al.	(1995),	and	McPeek	and	Speed	
(1995).	One	prediction	of	the	literal	“machine	that	can	count”	interpretation	–	that	a	region	enclosed	
by	two	chiasma	events	will	be	enriched	for	gene	conversions	without	crossing	over	–	is,	however,	
not	fulfilled	in	Saccharomyces	cerevisiae	(Foss	and	Stahl	1995).	Stahl	et	al.	(2004)	and	Malkova	et	al.	
(2004)	suggest	that	this	discrepancy	is	due	to	the	presence	of	two	distinct	and	independent	types	of	
chiasmata,	with	and	without	interference,	in	S.	cerevisiae	and	some	other	organisms,	and	they	
provide	evidence	to	that	effect	(see	also	Berchowitz	and	Copenhaver	2010).	I	will	refer	to	the	
chiasma	interference	model	that	incorporates	the	none-interference	type	in	addition	to	the	
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interference	(counting)	type	of	chiasma	events	as	the	two-pathway	counting	model.	This	model	has	
proved	a	significantly	better	fit	to	data	from	e.g.	Arabidopsis	thaliana	(Copenhaver	et	al.	2002)	and	
humans	(Housworth	and	Stahl	2003),	compared	to	the	pure	counting	model.	Another	suggested	
generalization,	anticipated	in	Foss	et	al.	(1993),	is	the	Poisson-skip	model	of	Lange	et	al.	(1997),	in	
which	the	number	of	dummy	events	between	each	chiasma	event	is	drawn	from	a	probability	
distribution.	Among	the	advantages	of	this	model	is	that	allows	for	more	fine-tuned	modelling	of	
interference	strengths,	and	that	it	allows	for	negative	as	well	as	positive	chiasma	interference.	For	
clarity,	I	will	henceforth	refer	to	the	Poisson-skip	model	as	the	stochastic3	counting	model.	
	 In	keeping	with	the	deficiency	of	evidence	for	any	of	the	proposed	theories	(Hillers	2004,	
Berchowitz	and	Copenhaver	2010),	I	will	in	this	text	remain	agnostic	about	the	physical	
manifestation	of	the	interference	signal	and,	disregarding	gene	conversions	altogether,	treat	the	
dummy	events	as	useful	mathematical	abstraction	that	may	or	may	not	actually	correspond	to	sites	
of	gene	conversion	without	crossing	over.	On	that	basis,	I	will	now	suggest	a	further	generalization	
of	the	four	models	introduced	in	this	section	–	the	Poisson	model,	the	pure	counting	model,	the	two-
pathway	counting	model	and	the	stochastic	counting	model	–	which	I	will	refer	to	as	the	general	
counting	model	or	just	the	general	model	for	short.	
	
2.1.4 Outline of a general counting model of chiasma interference 
As	in	the	two-pathway	counting	model,	I	postulate	two	mutually	independent	chiasma-generating	
pathways.	The	type	I	pathway	is	without	chiasma	interference,	and	generate	only	type	I	chiasma	
events	according	to	a	Poisson	process.	The	type	II	pathway	is	(potentially)	with	interference,	and	
generate	type	II	intermediate	events	according	to	a	Poisson	process;	these	are	subsequently	resolved	
as	either	type	II	chiasma	events	or	type	II	dummy	events,	where	the	number	of	the	latter	following	
each	instance	of	the	former	is	drawn	from	a	user-defined	probability	distribution.	That	is,	the	type	II	
chiasma	events	occur	according	to	the	stochastic	counting	model.	It	will	be	convenient	to	give	the	
different	events	symbols	for	easier	reference,	in	particular	when	these	have	to	be	incorporated	into	
mathematical	expression.	In	the	following	I	will	denote	the	type	I	chiasma	events,	type	II	chiasma	
events,	type	II	dummy	events,	and	type	II	intermediate	events	as	𝑋U,	𝑋UU,	𝑂UU,	and	𝐶UU,	respectively	
(note	that	the	𝐶UU	events	comprises	the	union	of	all	𝑋UU	and	𝑂UU	events.).	The	union	of	all	chiasma	
events	of	either	type	will	be	denoted	𝑋,	and	the	union	of	all	events	–	the	intermediate	events	(without	
the	type	II	qualifier)	–	will	be	denoted	𝐶.	The	same	symbols	with	a	subscript	indicating	an	interval	
will	serve	as	random	variables	representing	the	number	of	the	event	in	question	within	that	interval.	
Hence,	I	can,	for	example,	write	“the	probability	of	observing	one	or	more	type	I	chiasma	events	in	
interval	𝕚	is	p”	as	Pr{𝑋𝕚U > 0} = 𝑝,	or	“the	expected	(i.e.	average)	number	of	type	II	intermediate	
events	in	interval	𝕚	is	l”	as	𝐸[𝐶𝕚UU] = l.	
	 In	the	homokaryotype	case,	the	general	model	can	be	described	by	three	user-defined	sets	of	
parameters.	𝝁 = {𝜇$, 𝜇&, 𝜇', … , 𝜇𝔫)&}	and	l = {l$,l&,l', … ,l𝔫)&}	are	the	expected	number	of	type	I	
chiasma	events	and	type	II	intermediate	events,	respectively,	in	each	of	the	𝔫	intervals,	so	that	𝜇C =
𝐸\𝑋𝕚]

U ^,	lC = 𝐸\𝐶𝕚]
UU^	𝑓𝑜𝑟	𝑘 = 0,1,2…𝔫 − 1.	Keep	in	mind	that	the	𝑋𝕚U	and	𝐶𝕚UU	events		are	both	Poisson	

distributed.	The	third	set	of	parameters	is	the	distribution	of	probabilities	for	observing	a	given	
number	of	consecutive	𝑂UU	events	following	a	𝑋UU	event.	I	will	call	this	distribution	the	intervening	
𝑂UUevents	distribution,	and	denote	it	𝜸 = {𝛾$, 𝛾&, 𝛾' …𝛾d},	so	that	𝛾e, 𝑓𝑜𝑟	𝑞 = 0,1,2…𝑚, ∑ 𝛾e = 1d

eh$ ,	
gives	the	probability	of	observing	q	consecutive	𝑂UU	events	following	a	𝑋UU	events,	or,	equivalently,	q	
intervening	𝑂UU	events	between	a	pair	of	𝑋UU	events.	One	cycle	hence	consists	of	one	𝑋UU	event	and	q	

                                                
3 The terms deterministic and stochastic are in this chapter used to differentiate between models based on 
probability distributions that respectively do have or do not have the full probability mass (= 1) distributed to a 
single value. All these models are deterministic in the sense that no random number generators are involved.  
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𝑂′′	events,	where	q	is	drawn	from	𝜸,	so	that	the	expected	total	number	of	𝐶UU	events	in	a	cycle	is	
∑ (𝑞 + 1)𝛾ed
eh$ .	I	will	assume	that	there	is	a	user-defined	finite	upper	limit,	m,	on	the	possible	

number	of	intervening	𝑂UU	events,	so	that	𝛾e = 0	𝑓𝑜𝑟	𝑞 > 𝑚.	These	three	sets	of	parameters	
unambiguously	determine	the	genetic	lengths	of	each	interval	in	units	of	Morgan	(or	centiMorgan),	
as	I	will	show	in	section	2.1.6.	Note	that	the	general	counting	model	is	equivalent	to	the	stochastic	
counting	model	in	the	special	case	where	𝜇C = 0	𝑓𝑜𝑟	𝑘 = 0,1,2…𝔫 − 1,	i.e.	when	there	are	no	type	I	
chiasma	events;	and	to	the	two-pathway	counting	model	in	the	special	case	where	𝛾d = 1, 𝛾e =
0	𝑓𝑜𝑟	𝑞 ≠ 𝑚,	i.e.	when	there	are	strictly	m	intervening	𝑂UU	events	between	all	consecutive	pairs	of	𝑋UU	
events.	The	parameters	for	the	general	model	in	homokaryotypes	is	summarized	in	table	2.1;	figure	
2.1	presents	the	general	model,	the	two-pathway	counting	model,	the	stochastic	counting	model,	the	
pure	counting	model,	and	the	Poisson	model	as	a	model	hierarchy	where	each	downwards	arrow	
pointing	from	model	a	to	model	b	indicate	which	parameters	you	have	to	restrict	(and	how)	in	
model	a	to	get	model	b	as	a	special	case.	I	will	in	this	text	sometimes	refer	to	all	these	collectively	as	
the	counting	models,	and	use	the	term	pure	counting	model	when	referring	specifically	to	the	model	
suggested	by	Foss	et	al.	(1993).	
	
Symbol Short description 
m The maximum number of 𝑂UU events between any 

two 𝑋UU events (implicit in g) 
g The intervening OUUevents distribution 
𝝁 The expected number of 𝑋Uevents for each interval 
l 
 

The expected number of 𝐶UUevents for each interval 
 

Table 2.1: Input parameters in the general interference model. 
 

 
Figure 2.1: The hierarchy of counting models.  
 
 
2.1.5 Stationarity in the general model 
In	the	following,	I	will	define	the	phase	at	any	location	on	a	tetrad	as	the	number	of	𝑂UU	events	
between	that	location	and	the	nearest	𝑋UU	event	to	the	right.	To	make	this	less	abstract,	you	can	
imagine	moving	along	the	tetrad	from	left	to	right	and	keeping	track	of	the	phase	by	counting	

General counting model

!" = 1

Two-pathway counting model

%& = 0, )** +

Stochastic counting model

%& = 0, )** + !" = 1

Pure counting model

Poisson model

, = 0
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downwards	for	each	𝑂UU	event	you	encounter.	When	you	reach	0,	you	know	that	the	next	𝐶UU	event	
will	be	a		𝑋UU	event,	and	when	you	pass	it,	you	immediately	draw	a	number	between	0	and	m	
according	to	the	intervening	𝑂UU	event	distribution	(𝜸),	which	gives	you	the	number	of	𝑂UU	event	
between	your	current	position	and	the	next	𝑋UU	event	to	the	right.	You	then	proceed	by	counting	
downwards	from	that	number,	until	you	reach	the	next	𝑋UU	event	and	draw	a	new	number	of	
intervening	𝑂UU	events,	and	so	on.	I	will	furthermore	define	𝑄𝕚n 	and	𝑄𝕚o 	as	random	variables	
representing	the	phase	at	the	left	and	right	boundary,	respectively,	of	interval	𝕚,	and	more	
generally	𝑄p	as	a	random	variable	representing	the	phase	at	a	location	a.	A	phase	distribution	is	now	
a	probability	distribution	that	gives	the	probabilities	of	observing	the	individual	possible	phases	at	a	
given	location.	The	type	I	events	do	not	affect	the	phase,	so	they	will	be	ignored	in	this	section.	
	 Now	observe	that	if	we	define	the	vectors4	
	

𝝅𝕚𝒍 = (Pr	{𝑄𝕚n = 0} Pr	{𝑄𝕚n = 1} Pr	{𝑄𝕚n = 2} … Pr	{𝑄𝕚n = 𝑚})	

𝝅𝕚𝒓 = (Pr	{𝑄𝕚o = 0} Pr	{𝑄𝕚o = 1} Pr	{𝑄𝕚o = 2} … Pr	{𝑄𝕚o = 𝑚})	

	
as	the	phase	distributions	at	the	left	and	right	boundary,	respectively,	of	interval	𝕚,	then	
	

𝝅𝕚𝒓 =s
𝑒llt

𝑐!

u

th$

𝝅𝕚𝒍𝑷t 	

	
where	𝑷	is	an	m+1,	m+1	matrix	with	(zero-indexed)	element	[i,j]	given	by	
			

𝑷[𝑖, 𝑗] = x
1, 𝑖 ≠ 0; 𝑗 = 𝑖 − 1
𝛾z, 𝑖 = 0;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

					𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑚	

	
and	

	
l = 𝐸[𝐶𝕚UU],	

	
For	example,	if	m=4,	then	
	

𝑷 =

⎝

⎜
⎛

𝛾$ 𝛾& 𝛾' 𝛾� 𝛾�
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0⎠

⎟
⎞
	

	
𝑷	is	a	transition	matrix	that	transform	the	phase	distribution	at	a	given	location	a	into	the	phase	
distribution	at	a	location	b,	when	there	is	one		𝐶UU	event	between	a	and	b,	and	𝑷𝒄	(the	matrix	
multiplication	of	c	instances	of	P)	is	the	transition	matrix	when	there	are	c	𝐶UU	events	between	a	and	
b.	Hence,	
	
(Pr	{𝑄𝕚o = 0|𝐶𝕚UU = 𝑐} Pr	{𝑄𝕚o = 1|𝐶𝕚UU = 𝑐} Pr	{𝑄𝕚o = 2|𝐶𝕚UU = 𝑐} … Pr	{𝑄𝕚o = 𝑚|𝐶𝕚UU = 𝑐}) = 𝝅𝕚𝒍𝑷t	

	
and	by	conditioning	on	the	number	of	𝐶UU	events	in	𝕚,	
	
                                                
4 See Appendix A for a note on vector and matrix notation 
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𝝅𝕚𝒓 =s
𝑒llt

𝑐!

u

th$

𝝅𝕚𝒍𝑷t 	

	
which	we	can	interpret	as	a	uniform	continuous	Markov	chain	with	imbedded	transition	matrix	P.	I	
will	now	define	the	stationary	phase	distribution,	𝝅 = (𝜋$ 𝜋& 𝜋' … 𝜋d), ∑ 𝜋ed

eh$ = 1,		as	the	
phase	distribution	that	satisfy	the	equation	
	

𝝅 =s
𝑒llt

𝑐!

u

th$

𝝅𝑷t 	

	
for	all	l ∈ ℝ�$.	That	is,	the	𝝅	for	which	𝝅𝕚𝒓 =	𝝅𝕚𝒍 = 𝝅	regardless	of	the	size	of	the	interval.	But	if	
𝝅𝕚𝒍 =	𝝅𝕚𝒓 	is	true	after	one	transition,	then,	by	induction,	it	is	true	after	any	number	of	transitions,	so	
	

𝝅 =s
𝑒llt

𝑐!

u

th$

𝝅𝑷t → 𝝅 = 𝝅𝑷	

	
which	means	we	can	find	𝝅	by	solving	the	equation	set	
	

𝝅 = 𝝅𝑷	

s𝜋e

d

eh$

= 1	

	
(the	latter	is	true	because	the	phase	probabilities	must	sum	to	1.)	This	gives	
	

𝜋$ = 𝜋$𝛾$ + 𝜋&	
𝜋& = 𝜋$𝛾& + 𝜋'	
𝜋' = 𝜋$𝛾' + 𝜋�	
						…	

𝜋d)' = 𝜋$𝛾d)' + 𝜋d)&	
𝜋d)& = 𝜋$𝛾d)& + 𝜋d	
𝜋d = 𝜋$𝛾d	

Or,	with	some	algebra,	
	

𝜋d = 𝜋$𝛾d	
𝜋d)& = 𝜋$(𝛾d + 𝛾d)&)	
𝜋d)' = 𝜋$(𝛾d + 𝛾d)& + 𝛾d)')	
…	
𝜋' = 𝜋$(𝛾d + 𝛾d)& + 𝛾d)' +⋯+ 𝛾')	
𝜋& = 𝜋$(𝛾d + 𝛾d)& + 𝛾d)' +⋯+ 𝛾' + 𝛾&)	
𝜋$ = 𝜋$(𝛾d + 𝛾d)& + 𝛾d)' +⋯+ 𝛾' + 𝛾& + 𝛾$)	

	
(Note	that	∑ 𝛾e = 1d

eh$ .)	By	summing	the	above	equations,	
	

s𝜋e

d

eh$

= 1 = 𝜋$ss𝛾e

d

ehC

d

Ch$

= 𝜋$s(𝑞 + 1)𝛾e

d

eh$
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so	
	

𝜋$ =
1

∑ (𝑞 + 1)𝛾ed
eh$

	

	
and	in	general	
	

𝜋C =
∑ 𝛾ed
ehC

∑ (𝑞 + 1)𝛾ed
eh$

						𝑓𝑜𝑟	𝑘 = 0,1,2,3…𝑚	

	
This	distribution	is	also	derived	(by	a	different	argument)	in	Lange	et	al.	(1997);	the	stationary	
phase	distribution	is	the	same	in	my	model	as	in	their	stochastic	counting	model,	because	the	type	I	
events	(that	are	lacking	in	the	latter	model)	do	not	affect	the	phase.	
	 The	stationary	phase	distribution	is	important	because	if	it	is	given	that	the	phase	
distribution	at	any	given	location	a	corresponds	to	this	distribution,	then	the	phase	distribution	at	
all	other	locations	b	also	corresponds	to	this	distribution	(if	this	is	not	clear,	think	of	the	left	
boundary	of	the	interval	𝕚	in	the	derivation	above	as	location	a	and	the	right	boundary	as	location	b).	
This	means	that	if	we	assume	stationarity,	then	all	regions	that	are	described	by	the	same	set	of	l,	s	
and	g	values	are	fungible,	regardless	of	their	position	on	the	tetrad.	It	also	means	the	left	and	right	
boundaries	of	any	interval	or	region	have	the	same	phase	distribution,	which	means	that	it	does	not	
matter	which	we	call	left	and	which	we	call	right.	This	makes	the	calculation	of	gamete	probabilities	
in	homokaryotypes	direction	reversible,	in	the	sense	defined	in	the	introduction.	
	 Cobbs’	(1978)	and	Stam’s	(1979)	early	analyses	of	(the	mathematical	equivalent	of)	the	pure	
counting	model	were	complicated	by	the	assumption	of	a	non-stationary	phase	distribution	(though	
they	both	considered	the	stationary	phase	distribution	as	a	special	case),	which	were	motivated	by	
Mather’s	(1938)	hypothesis	that	the	process	of	chiasma	generation	starts	at	the	centromere	and	
proceed	from	there	in	both	directions,	implying	that	the	phase	at	the	centromere	is	non-stationary.	
This	hypothesis	was	in	turn	motivated	by	early	results	indicating	that	the	interference	signal	is	
blocked	by	the	centromere,	meaning	that	chiasma	on	one	side	of	the	centromere	does	not	interfere	
with	chiasma	on	the	other.	However,	a	more	recent	analysis	by	Colombo	and	Jones	(1997)	indicate	
that	the	results	cited	by	Mather	are	merely	statistical	artefacts,	and	that,	in	contradiction	to	Mather’s	
predictions,	interference	does	in	fact	work	across	the	centromere	in	the	same	way	as	in	other	
regions.	This	leaves	it	unclear	exactly	how	and	where	the	process	of	chiasma	generation	starts;	or	as	
Colombo	and	Jones	(1997,	p.	226)	put	it,	“If	chiasma	formations	does	not	start	from	the	centromere,	
or	end	against	the	centromere,	where	does	it	start	from	or	end?	Or,	to	put	it	bluntly,	does	it	start	
from	anywhere?”	Given	that	we	do	not	know	the	answers	to	these	questions	(Hillers	2004,	
Berchowitz	and	Copenhaver	2010),	it	seems	to	me	that	assuming	a	stationary	phase	distribution,	as	
almost	all	more	recent	treatments	of	chiasma	interference	do,	is	as	plausible	and	parsimonious	as	
any	other	alternative.	I	will	therefore	do	so	in	the	rest	of	this	text.	The	predictions	of	a	stationary	and	
non-stationary	model	are	in	any	case	not	very	different	(Lande	and	Stahl	1993).	
 
2.1.6 Genetic distances 
The	terms	Morgan	and	centiMorgan	are	sometimes	subject	to	confusion	in	the	non-technical	
literature.	The	standard	definition,	as	used	in	e.g.	Lande	and	Stahl	(1993),	Foss	et	al.	(1993),	and	
Navarro	and	Ruiz	(1997),	is	that	an	interval	is	of	length	y	Morgans	(100𝑦	centiMorgans)	–	or,	
equivalently,	that	the	genetic	distance	between	the	two	boundaries	enclosing	the	interval	is	y	
Morgans	–	if	a	single	randomly	chosen	chromatid	is	on	average	involved	in	y	chiasma	events	within	
that	interval	(note	that	this	is	not	the	same	as	saying	that	y	chiasma	events	occur	within	the	
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interval).	Since	a	single	chiasma	event	always	strictly	involves	two	out	of	four	chromatids,	we	have	
that	
	

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝕚	𝑖𝑛	𝑀𝑜𝑟𝑔𝑎𝑛𝑠 =
1
2𝐸[𝑋𝕚] =

1
2
(𝐸[𝑋𝕚U] + 𝐸[𝑋𝕚UU])	

	
The	expected	number	of	𝐶UU	events	in	a	single	cycle	is	∑ (𝑞 + 1)𝛾ed

eh$ .	Since	there	per	definition	is	
always	exactly	one	𝑋UU	event	in	a	cycle,	
	

𝐸[𝑋𝕚UU] =
𝜆

∑ (𝑞 + 1)𝛾ed
eh$

	

	
and	accordingly	
	

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝕚	𝑖𝑛	𝑀𝑜𝑟𝑔𝑎𝑛𝑠 =
1
2�𝜇 +

𝜆
∑ (𝑞 + 1)𝛾ed
eh$

�	

	
where	

𝜇 = 𝐸[𝑋𝕚U], 𝜆 = 𝐸[𝐶𝕚UU]	
	
It	will	be	convenient	in	this	chapter	to	represent	the	length	of	the	intervals	as	𝐸[𝑋𝕚U],	𝐸[𝐶𝕚UU]	and	𝜸	
without	continuously	converting	to	and	from	units	of	Morgan.	You	can	use	the	equation	above	to	
make	your	own	conversions	whenever	you	see	fit.	
	
2.1.7 Mather’s equation 
The	following	useful	expression	was	first	proved	by	Mather	(1938),	and	so	is	commonly	referred	to	
as	Mather’s	equation:	
	

Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥} = 01/2, 𝑥 = 1,2,3…
0, 𝑥 = 0 	

	
and,	since	Pr{𝑅(𝕚) = 0|𝑋𝕚 = 𝑥} = 1 − Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥},		
	

Pr{𝑅(𝕚) = 0|𝑋𝕚 = 𝑥} = 01/2, 𝑥 = 1,2,3…
1, 𝑥 = 0 	

	
That	is,	the	probability	of	observing	recombination	in	interval	𝕚	given	the	number	of	chiasma	events,	
x,	in	that	interval	is	0	if	x	=	0	and	1/2	if	x	>	0.	It	follows,	as	Mather	also	noted,	that	
	

Pr{𝑅(𝕚) = 1} = sPr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥}Pr{𝑋𝕚 = 𝑥}
u

Dh$

	

= sPr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥}Pr{𝑋𝕚 = 𝑥}
u

Dh&

	

=
1
2sPr{𝑋𝕚 = 𝑥}

u

Dh&

	



 12 

=
1
2Pr

{𝑋𝕚 > 0}	

=
1
2
(1 − Pr{𝑋𝕚 = 0})	

	

and	
	

Pr{𝑅(𝕚) = 0} = 1 −
1
2
(1 − Pr{𝑋𝕚 = 0}) =

1
2
(1 + Pr	{𝑋𝕚 = 0})	

	
For	the	benefit	of	your	intuition,	I	will	include	here	a	simple	proof	of	Mather’s	equation,	different	
from	the	one	given	in	Mather	(1938),	but	similar	to	the	one	given	in	Cobbs	(1978).	I	first	postulate	
that	
	

Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥} = 𝒗𝟎𝑷D𝒘				𝑓𝑜𝑟	𝑥 = 0,1,2,3…	
	
where	
	

𝒗𝟎 = (1 0)	

𝑷 = �1/2 1/2
1/2 1/2�		

𝒘 = �01�		

	
To	see	why	this	equation	is	true,	let	{𝑀D}D∈ℤ�� 	be	a	stochastic	process	that	represent	the	
recombination	status	of	interval	𝕚	when	there	are	x	chiasma	events	in	𝕚.	If	there	are	no	chiasma	
events	in	𝕚,	then	all	chromatid	must	have	recombination	status	0	(i.e.	non-recombination),	so	

	
𝒗𝟎 = (1 0) = (Pr	{𝑀$ = 0} Pr	{𝑀$ = 1})	

	
We	can	now	interpret	𝑷	as	
	

𝑷 = �Pr	{𝑀DH& = 0|𝑀D = 0} Pr	{𝑀DH& = 1|𝑀D = 0}
Pr	{𝑀DH& = 0|𝑀D = 1} Pr	{𝑀DH& = 1|𝑀D = 1}� 					𝑓𝑜𝑟	𝑥 = 0,1,2…	

		
i.e.	𝑷	is	the	Markovian	transition	matrix	for	{𝑀D}D∈ℤ�� 	where	a	transition	correspond	to	a	chiasma	

event.	We	can	see	that	𝑷 = �1/2 1/2
1/2 1/2�	because	an	additional	chiasma	event	will	involve	a	randomly	

chosen	chromatid	with	probability	1/2,	and	given	that	the	chromatid	is	involved,	its	recombination	
status	will	flip	(go	from	0	to	1	or	1	to	0)	with	probability	1;	and	given	that	it	is	not	involved,	its	
recombination	status	will	stay	the	same	with	probability	1.	Hence,	
	

(Pr	{𝑀D = 0} Pr	{𝑀D = 1}) = 𝒗𝟎𝑷D					𝑓𝑜𝑟	𝑥 = 0,1,2…	
and	

Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥} = Pr{𝑀D = 1} = 𝒗𝟎𝑷D𝒘				𝑓𝑜𝑟	𝑥 = 0,1,2…	
	
Since,	as	we	can	confirm	by	simple	matrix	multiplication,	𝑷 = 𝑷',	it	follows	that	
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𝑷D = 𝑷D)'𝑷' = 𝑷D)'𝑷 = 𝑷D)�𝑷' = 𝑷D)�𝑷 = ⋯ = 𝑷' = 𝑷				𝑓𝑜𝑟	𝑥 = 1,2,3…	

	
so	

Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥} = 0𝒗𝟎𝑷𝒘, 𝑥 = 1,2,3…
𝒗𝟎𝑰𝒘, 𝑥 = 0 	

or	

Pr{𝑅(𝕚) = 1|𝑋𝕚 = 𝑥} = 01/2, 𝑥 = 1,2,3…
0, 𝑥 = 0 	

	
QED	
	
I	am	now	in	position	to	state	the	first	theorem,	which	gives	the	recombination	pattern	probabilities	
for	homokaryotypes	under	the	general	model.	
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2.2 Homokaryotypes 
2.2.1 Theorem 1: Recombination in homokaryotypes 
Assuming	stationarity	and	no	chromatid	interference,	the	probability	of	observing	recombination	
pattern	r	on	a	homokaryotypic	chromosome	under	the	general	chiasma	interference	model	is	given	
by	
	

Pr{𝑹 = 𝒓} = 𝝅� 𝑴𝕚](𝒓)
𝔫)&

Ch$

¢𝟏¤ 	

where	
	
𝝅 = (𝜋$ 𝜋& 𝜋' … 𝜋d)	

𝜋¥ =
∑ 𝛾ed
eh¥

∑ (𝑞 + 1)𝛾ed
eh$

		𝑓𝑜𝑟	𝑙 = 0,1,2…𝑚	

𝑴𝕚](𝒓) = ¦

1
2
𝑮𝕚], 𝑟(𝕚C) = 1

1
2𝑮𝕚] + 𝑯𝕚], 𝑟(𝕚C) = 0

								𝑓𝑜𝑟	𝑘 = 0,1,2…𝔫 − 1	

𝑮𝕚][𝑖, 𝑗] = 𝜓C(𝑖, 𝑗)𝑒)N𝒌 + �𝜓C(𝑖, 𝑗) + 𝛿{¬�z}
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! � (1 − 𝑒

)N𝒌)			𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑚	

𝜓C(𝑖, 𝑗) = s𝑏s𝛾e
lC
¬H&HHe)z𝑒)l]

(𝑖 + 1 + 𝑛 + 𝑞 − 𝑗)!

d

ehz

u

h$

	

𝑏 = ¦s𝑏e𝛾)&)e

)&

eh$

, 𝑛 = 1,2,3…

1, 𝑛 = 0

	

𝑯𝕚𝒌[𝑖, 𝑗] = ®
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! 𝑒

)N𝒌, 𝑖 ≥ 𝑗

0, 𝑖 < 𝑗
					𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑚	

𝛿{t°±¬²¬°} = 01, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑡𝑟𝑢𝑒
0, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒	

lC = 𝐸[𝐶𝕚]
UU]	

𝜇C = 𝐸[𝑋𝕚]
U ]	

	
Proof:	
We	can	interpret	element	i,j		of	𝑯𝕚𝒌 	as	
	

𝑯𝕚𝒌[𝑖, 𝑗] = Pr	{𝑋𝕚] = 0, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖}	
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i.e.,	element	i,j	is	equal	to	the	probability	of	observing	no	chiasma	events	(of	either	type)	in	𝕚𝒌	and	
phase	j	at	the	right	boundary,	given	phase	i	at	the	left	boundary,	which	in	the	case	𝑖 ≥ 𝑗	is	equivalent	
to	the	probability	of	observing	i	-	j	𝐶𝕚]

UU 	events	multiplied	by	the	probability	of	observing	0	𝑋𝕚𝒌
U 	events.	

If	𝑖 < 𝑗,	it	is	impossible	to	arrive	at	phase	j	without	at	least	one	𝑋UU	event	in	the	interval,	so	the	
probability	is	in	this	case	0.	We	can	similarly	interpret	element	i,j	of	matrix	𝑮𝕚𝒌as	
	

𝑮𝕚][𝑖, 𝑗] = Pr	{𝑋𝕚] > 0, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖}	
and	the	function	𝜓C(𝑖, 𝑗)	as	

𝜓C(𝑖, 𝑗) = Pr	{𝑋𝕚]
UU > 0, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖}	

	
To	see	why	this	is	so,	first	note	that	𝑏,	equivalent	to	𝑢	in	Lange	et	al.	(1997),	gives	the	probability	
that	the	n-th	𝐶UUevent	to	the	right	of	any	𝑋UUevent	is	also	a	𝑋UUevent;	as	in	Lange	et	al.,	it	is	derived	by	
recursively	conditioning	on	the	index	of	the	last	𝑋UU	event	before	the	n-th	𝐶UU	event,	with	the	base	
case	𝑏$ = 1.	Now	note	that	to	get	at	least	one	𝑋𝕚]

UU 	event	and	phase	j	at	the	right	boundary,	given	
phase	i	at	the	left	boundary,	one	must	observe	in	interval	𝕚C	(i	𝑂UU	events	to	get	to	the	first	𝑋UUevent)	
+	(the	first	𝑋UU	event)	+	(n	additional	𝐶UUevents	of	which	the	last	is	a	𝑋UU	event)	+	(q	-	j	additional	
𝑂UUevents,	where	q	is	the	number	of	𝑂UUevents	in	the	rightmost	cycle	of	the	interval,	to	end	up	in	
phase	j),	in	total	i	+	1	+	n	+	q	–	j		𝐶UU	events.	Hence,	by	summing	over	all	possible	values	of	n	and	q,	
	

𝜓C(𝑖, 𝑗) = s𝑏s𝛾e
lC
¬H&HHe)z𝑒)l]

(𝑖 + 1 + 𝑛 + 𝑞 − 𝑗)!

d

ehz

u

h$

= Pr	{𝑋𝕚]
UU > 0, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖}	

	
which	is	similar	to	the	1{zµ$}	term	in	equation	6	in	Lange	et	al.	(1997)	(though	note	that	my	‘phase’	is	
defined	differently	from	their	‘state’).	
	 By	conditioning	on	the	presence	(𝑋𝕚]

U > 0)	or	absence	(𝑋𝕚]
U = 0)	of	𝑋U	events	in	the	interval,	

	
Pr ¶𝑋𝕚] > 0, 𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ = Pr ¶𝑋𝕚]

UU > 0, 𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ Pr¹𝑋𝕚]
U = 0º + Pr ¶𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ Pr¹𝑋𝕚]

U > 0º 
	
Since	
	

Pr ¶𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ = Pr ¶𝑋𝕚]
UU > 0, 𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ + Pr ¶𝑋𝕚]

UU = 0, 𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸	

= 𝜓C(𝑖, 𝑗) + 𝛿{¬�z}
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! 	

and	

Pr¹𝑋𝕚]
U > 0º = (1 − 𝑒)µ𝒌)	

Pr¹𝑋𝕚]
U = 0º = 𝑒)µ𝒌		

we	now	have	that	
	

Pr ¶𝑋𝕚] > 0, 𝑄𝕚]o = 𝑗·𝑄𝕚]n = 𝑖¸ = 𝜓C(𝑖, 𝑗)𝑒)N𝒌 + �𝜓C(𝑖, 𝑗) + 𝛿{¬�z}
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! � (1 − 𝑒

)N𝒌) = 𝑮𝕚𝒌[𝑖, 𝑗]	

	
For	comparison,	my	𝑮𝕚𝒌 	and	𝑯𝕚𝒌 	are	for	the	general	model	what	∑ 𝑫𝒙(𝑦)u

Dh& 	and	𝑫𝟎(𝑦)	are	for	the	
pure	counting	model	in	Zhao	et	al.	(1995a),	what	∑ 𝑫(𝑥,𝑚, 𝑝, 𝑦)u

Dh& 	and	𝑫(0,𝑚, 𝑝, 𝑦)	are	for	the	two-
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pathway	counting	model	in	Copenhaver	et	al.	(2002)	and	what	𝑃(𝑡) − 𝑄¾(𝑡)	and 𝑄¾(𝑡) are	for	the	
stochastic	counting	model	in	Lange	et	al.	(1997),	with	various	notational	differences.	
	 From	Mather’s	equation,	we	can	deduce	that	
	

Pr ¶𝑅C = 1, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸ =
1
2Pr ¶𝑋𝕚] > 0, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸	

Pr ¶𝑅C = 0, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸ =
1
2Pr ¶𝑋𝕚] > 0, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸ + Pr ¶𝑋𝕚] = 0, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸		

	
so	
	

Pr ¶𝑅C = 𝑟C, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖¸ = 𝑴𝕚𝒌(𝒓)[𝑖, 𝑗]	
where	

𝑴𝕚](𝒓) = ¦

1
2
𝑮𝕚], 𝑟C = 1

1
2𝑮𝕚] + 𝑯𝕚], 𝑟C = 0

								𝑓𝑜𝑟	𝑘 = 0,1,2…𝔫 − 1	

	
If	we	assume	stationarity,	then	
	

Pr ¶𝑄𝕚�n = 𝑖¸ = 𝜋¬ 						𝑓𝑜𝑟	𝑖 = 0,1,2…𝑚	
	
so	
	

sPr¶𝑄𝕚�n = 𝑖¸ Pr ¶𝑅$ = 𝑟$, 𝑄𝕚�o = 𝑗|𝑄𝕚�n = 𝑖¸
d

¬h$

=s𝜋¬Pr ¶𝑅$ = 𝑟$, 𝑄𝕚�o = 𝑗|𝑄𝕚�n = 𝑖¸
d

¬h$

	

= Pr¹𝑅$ = 𝑟$, 𝑄𝕚�o = 𝑗º = ¿𝝅𝑴𝕚�(𝒓)À[𝑗]	

	
Since	𝑄𝕚]𝒓 = 𝑄𝕚]ÁÂ𝒍 	we	have	
	

Pr¹𝑅$ = 𝑟$, 𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗º =sPr ¶𝑅$ = 𝑟$, 𝑅& = 𝑟&, 𝑄𝕚Ân = 𝑖, 𝑄𝕚Âo = 𝑗¸
d

¬h$

	

=sPr ¶𝑅$ = 𝑟$, 𝑄𝕚Â𝒍 = 𝑖¸ Pr ¶𝑅& = 𝑟&, 𝑄𝕚Âo = 𝑗|𝑅$ = 𝑟$, 𝑄𝕚Ân = 𝑖¸
d

¬h$

	

=sPr ¶𝑅$ = 𝑟$, 𝑄𝕚𝟏𝒍 = 𝑖¸ Pr ¶𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗|𝑄𝕚𝟏𝒍 = 𝑖¸
d

¬h$

	

=sPr¹𝑅$ = 𝑟$, 𝑄𝕚𝟎𝒓 = 𝑖º Pr ¶𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗|𝑄𝕚𝟏𝒍 = 𝑖¸
d

¬h$

	

= �𝝅𝑴𝕚�(𝒓)𝑴𝕚Â(𝒓)� [𝑗]	
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(Note	that	Pr ¶𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗|𝑅$ = 𝑟$, 𝑄𝕚𝟏𝒍 = 𝑖¸ = Pr ¶𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗|𝑄𝕚𝟏𝒍 = 𝑖¸,	because	𝑅$	is	
irrelevant	if	the	phase	at	the	left	boundary	of	𝕚&	is	known.)	
	 Let	S1	be	the	statement	Pr¹𝑅$ = 𝑟$, 𝑅& = 𝑟&, 𝑄𝕚𝟏𝒓 = 𝑗º = �𝝅𝑴𝕚�(𝒓)𝑴𝕚Â(𝒓)� [𝑗],	and	assume	that	
the	induction	hypothesis	Sk-1	defined	as	
	

Pr¹𝑅$ = 𝑟$, 𝑅& = 𝑟&, … , 𝑅C)& = 𝑟C)&, 𝑄𝕚]ÃÂ𝒓 = 𝑗º = �𝝅𝑴𝕚�(𝑟)…𝑴𝕚]ÃÂ(𝑟)� [𝑗]	
	
is	true.	Now,		
	

Pr¹𝑅$ = 𝑟$, 𝑅& = 𝑟&, … , 𝑅C = 𝑟C, 𝑄𝕚]o = 𝑗º =sPr	{𝑅$ = 𝑟$, 𝑅& = 𝑟&, … , 𝑅C = 𝑟C, 𝑄𝕚]n = 𝑖, 𝑄𝕚]o = 𝑗}
d

¬h$

	

=sPr ¶𝑅$ = 𝑟$, … , 𝑅C)& = 𝑟C)&, 𝑄𝕚]n = 𝑖¸ Pr	 ¶𝑅C = 𝑟C, 𝑄𝕚]o = 𝑗|𝑅$ = 𝑟$, … , 𝑅C)& = 𝑟C)&, 𝑄𝕚]n = 𝑖¸	
d

¬h$

	

=sPr ¶𝑅$ = 𝑟$, … , 𝑅C)& = 𝑟C)&, 𝑄𝕚]n = 𝑖¸ Pr	 ¶𝑅C = 𝑟C, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖¸	
d

¬h$

	

=sPr¹𝑅$ = 𝑟$, … , 𝑅C)& = 𝑟C)&, 𝑄𝕚]ÃÂo = 𝑖º Pr	 ¶𝑅C = 𝑟C, 𝑄𝕚]o = 𝑗|𝑄𝕚]n = 𝑖¸	
d

¬h$

	

= �𝝅𝑴𝕚�(𝑟)…𝑴𝕚]ÃÂ(𝑟)𝑴𝕚](𝑟)� [𝑗]	

	
where	the	last	equality	follows	from	the	induction	hypothesis.	Since	𝑆&	is	true	and	𝑆C)& 	implies	𝑆C ,	is	
follows	that	𝑆𝔫)&	must	be	true.	Hence,	
	

Pr{𝑹 = 𝒓} =sPr	{𝑹 = 𝒓, 𝑄𝕚𝔫ÃÂo = 𝑗}
d

zh$

= 𝝅𝑴𝕚�(𝒓)𝑴𝕚Â(𝒓)𝑴𝕚Å(𝒓)…𝑴𝕚𝖓Ã𝟏(𝒓)𝟏
¤ 	

	
QED	
	
Nolan	(2017)	derives	a	closed-form	expression	for	the	recombination	pattern	probabilities	under	
the	counting	model.	Building	on	the	results	from	that	paper,	I	will	in	the	next	theorem	do	the	same	
for	the	more	general	two-pathway	counting	model.	
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2.2.2 Theorem 2: A closed-form version of the G matrices 
In	the	special	case	where	𝛾d = 1, 𝛾e = 0	𝑓𝑜𝑟	𝑞 ≠ 𝑚	(i.e.	the	two-pathway	counting	model),	the	
matrix	𝑮𝕚𝒌 	can	be	written	in	closed	form	as	
	

𝑮𝕚𝒌[𝑖, 𝑗] = 𝜓C(𝑖, 𝑗)𝑒)µ𝒌 + �𝜓C(𝑖, 𝑗) + 𝛿{¬�z}
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! � (1 − 𝑒

)µ𝒌)	

where	
	

𝜓C(𝑖, 𝑗) = 𝑒)l] Ç𝛿{¬�z} È𝑓¬)z,dH&(lC) −
lC
¬)z

(𝑖 − 𝑗)!É + 𝛿{¬Êz}𝑓dH&H¬)z,dH&
(lC)Ë	

𝑓Ì,e(l) =
1
𝑞s𝑒lt°Í	�

'Îz
e �cos	[lsin	 �

2𝜋𝑗
𝑞 �

e)&

zh$

−	
2𝜋𝑟𝑗
𝑞 ]							𝑓𝑜𝑟	𝑟 = 0,1,2…𝑞 − 1		

	
Proof:	
The	key	to	this	theorem	is	the	relation	
	

s
leCHÌ

(𝑞𝑘 + 𝑟)!

u

Ch$

=
1
𝑞s𝑒l ÔÕÖ�

'Îz
e �cos	[lsin	 �

2𝜋𝑗
𝑞 �

e)&

zh$

−	
2𝜋𝑟𝑗
𝑞 ]						𝑓𝑜𝑟	𝑟 = 0,1,2,3…𝑞 − 1	

	
which	is	derived	in	Erdelyi	(1955)	and	Nolan	(2017).	If	𝛾d = 1, 𝛾e = 0	𝑓𝑜𝑟	𝑞 ≠ 𝑚,	then		
	

𝜓C(𝑖, 𝑗) = s𝑏s𝛾e
lC
¬H&HHe)z𝑒)l]

(𝑖 + 1 + 𝑛 + 𝑞 − 𝑗)!

d

ehz

u

h$

	

	
reduces	to	
	

𝜓C(𝑖, 𝑗) =s
lC
t(dH&)HdH&H¬)z𝑒)l]

(𝑐(𝑚 + 1) +𝑚 + 1 + 𝑖 − 𝑗)!

u

th$

	

	
which	we	can	now	write	as	
	

𝜓C(𝑖, 𝑗) =s
lC
t(dH&)HdH&H¬)z𝑒)l]

(𝑐(𝑚 + 1) +𝑚 + 1 + 𝑖 − 𝑗)!

u

th$

	

= 𝛿{¬�z} �s
lC
t(dH&)H¬)z𝑒)l]

(𝑐(𝑚 + 1) + 𝑖 − 𝑗)!

u

th$

−
lC
¬)z𝑒)l]
(𝑖 − 𝑗)! ¢ + 𝛿{¬Êz} �s

lC
t(dH&)HdH&H¬)z𝑒)l]

(𝑐(𝑚 + 1) +𝑚 + 1 + 𝑖 − 𝑗)!

u

th$

¢	

= 𝑒)l] Ç𝛿{¬�z} ×𝑓¬)z,dH&(lC) −
lC
¬)z

(𝑖 − 𝑗)!Ø + 𝛿{¬Êz}𝑓dH&H¬)z,dH&
(lC)Ë	

where	
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𝑓Ì,e(l) = s
leCHÌ

(𝑞𝑘 + 𝑟)!

u

Ch$

=
1
𝑞s𝑒lÔÕÖ	�

'Îz
e �cos	[lsin	 �

2𝜋𝑗
𝑞 �

e)&

zh$

−	
2𝜋𝑟𝑗
𝑞 ]								𝑓𝑜𝑟	𝑟 = 0,1,2…𝑞 − 1	

	
(note	that	f	is	not	defined	for	r	≥	q)	
QED	
	
Theorem	2	provides	a	closed-form	version	of	the	two-pathway	counting	model.	In	the	special	case	
where	𝛾d = 1, 𝛾e = 0	𝑓𝑜𝑟	𝑞 ≠ 𝑚	and	µC = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘,	we	get	the	simple	counting	model,	and	
element	i,j	of	my	matrix	𝑮𝕚𝒌 	reduces	to	

	

𝑮𝕚𝒌[𝑖, 𝑗] = 𝑒)l] Ç𝛿{¬�z} È𝑓¬)z,dH&(lC) −
lC
¬)z

(𝑖 − 𝑗)!É + 𝛿{¬Êz}𝑓dH&H¬)z,dH&
(lC)Ë	

	
which	is	equivalent	to	(𝑫u(𝑢) − 𝑫𝟎(𝑢))[𝑖. 𝑗]	in	Nolan	(2017)	(though	note	that	his	‘phases’	are	
reversed	with	respect	to	mine,	and	that	his	m	is	equal	to	my	m+1.	Also	note	that	Nolan’s	equations,	
like	mine,	implicitly	assume	crossing	over	only	between	non-sister	chromatids,	his	claim	to	the	
contrary	notwithstanding).	If	we	in	addition	set	m	=	0,	then	the	chiasma	events	occur	independently,	
and	we	get	the	Poisson	model.	My	expression	now	reduces	to	
	

𝑃𝑟{𝑹 = 𝒓} = 𝑀𝕚](𝒓)
𝔫)&

Ch$

	

	
where	
	

𝑀𝕚](𝒓) = ¦

1
2
¿1 − 𝑒l]À, 𝑟(𝕚C) = 1

1
2 ¿1 + 𝑒

l]À, 𝑟(𝕚C) = 0
	

	
Note	that	𝑀𝕚](𝑟)	is	reduced	to	a	scalar.	Haldane	(1919)	previously	proved	the	relation	Pr{𝑅(𝕚) =

1} = &
'
¿1 − 𝑒l]À	(and	Pr{𝑅(𝕚) = 0} = 1 − Pr{𝑅(𝕚) = 1} = &

'
¿1 + 𝑒l]À	)	for	the	Poisson	model	by	

summing	the	probabilities	that	a	single	randomly	chosen	chromatid	is	involved	is	an	odd	number	of	
chiasma	events,	and	identifying	the	Taylor	series	expansion	for	sinus	hyperbolicus.5	It	also	follows	
directly	from	the	relation	𝑃𝑟{𝑅(𝕚) = 1} = &

'
(1 − Pr	{𝑋𝕚 = 0}),	which,	as	we	saw	previously,	follows	

from	Mather’s	equation.	Hence,	the	reduced	expression	above	tells	us	that	for	the	Poisson	model,	we	
can	calculate	the	probabilities	of	observing	𝑟(𝕚C)	for	each	interval	individually	and	then	simply	
multiply	the	results	to	get	the	probability	of	observing	the	full	pattern	r.	This	is	because	in	the	
Poisson	model	the	number	of	chiasma	events	in	each	interval	is	independent	of	the	number	of	
chiasma	events	in	all	other	intervals,	and	so	the	recombination	rates	are	also	independent.	This	is	a	

                                                
5 His derivation can be expressed in a single line as 	

𝑃𝑟{𝑅(𝕚) = 1} = 𝑒)
l
's

�l2�
')&

(2𝑛 − 1)!

u

h&

= 𝑒)
l
' sinh �

l
2� = 𝑒)

l
' Ç
𝑒
l
' − 𝑒)

l
'

2 Ë =
1
2 ¿1 − 𝑒

)lÀ 
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well-known	property	of	the	Poisson	interference	model,	and	the	main	reason	why	it	is	so	commonly	
used.	
 
2.2.3 Theorem 3: The coefficient of coincidence for the general model 
The coefficient of coincidence for the general model is given by 
 

𝐶(𝐿$, 𝐿&) =
1
2 (Pr{𝑅(𝕚$) = 1} + Pr{𝑅(𝕚&) = 1} − Pr{𝑅(𝕚$∩&) = 1})

Pr	{𝑅(𝕚$) = 1}Pr	{𝑅(𝕚&) = 1} 								(1)	

	
where	𝕚$∩&	is	the	interval	between	the	left	boundary	of	𝕚$	and	the	right	boundary	of	𝕚&,	and	
	

Pr{𝑅(𝕚) = 1} =
1
2Ç1 − 𝑒

)N𝕚 s𝜋e

d

eh$

s
𝑒)l𝕚l𝕚

t

𝑐!

e

th$

Ë , 𝑓𝑜𝑟	𝕚 = 𝕚$, 𝕚&, 𝕚$∩&									(2)	

l𝕚 = 𝐸[𝐶𝕚UU]	

	𝜇𝕚 = 𝐸[𝑋𝕚U]	

𝐸\𝐶𝕚�∩Â	
UU ^ = 	𝐸\𝐶𝕚�	

UU ^ + 𝐸\𝐶𝕚Â	
UU ^		

𝐸\𝑋𝕚�∩Â
U ^ = 𝐸\𝑋𝕚�

U ^ + 𝐸\𝑋𝕚Â
U ^	

	
Proof:	
Equation	(1)	follows	from	the	definition	of	𝐶(𝐿$, 𝐿&)	(section	2.1.3)	and	the	relation	
	

Pr{𝑅(𝕚$∩&) = 1} = Pr{𝑅(𝕚$) = 1	𝑋𝑂𝑅	𝑅(𝕚&) = 1}	
= Pr{𝑅(𝕚$) = 1} + Pr{𝑅(𝕚&) = 1} − 2Pr	{𝑅(𝕚$) = 1, 𝑅(𝕚&) = 1}	

	
(Foss	et	al.	1993).	To	get	equation	(2),	first	note	that		
	

Pr{𝑋𝕚 = 0} = Pr{𝑋𝕚U = 0} Pr{𝑋𝕚UU = 0}	
	
where	
	

Pr{𝑋𝕚U = 0} = 𝑒)N𝕚	

Pr{𝑋𝕚UU = 0} = s𝜋e

d

eh$

s
𝑒)l𝕚l𝕚

t

𝑐!

e

th$

		

	
The	latter	expression	sums	over	all	possible	phases	q	at	the	left	boundary	of	𝕚	weighted	by	their	
stationary	probabilities	(𝜋e),	and	multiplies	each	term	with	the	probability	of	observing	between	0	
and	q	𝐶UU	events	in	the	interval,	which	by	the	definition	of	phase	means	all	consecutive	𝐶UU	events	up	
to,	but	not	including,	the	first	𝑋UU	event.	Equation	(2)	now	follows	from	Mather’s	equation,	
	

Pr{𝑅(𝕚) = 1} =
1
2
(1 − Pr{𝑋𝕚 = 0})	
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	 When	𝐸\𝑋𝕚�
U ^ = 	𝐸\𝑋𝕚Â

U ^ = 0	and	𝛾d = 1	(pure	counting	model),	then	𝜋e =
&

dH&
	𝑓𝑜𝑟	𝑞 =

0,1,2…𝑚,	and	the	expression	reduces	to	
	

Pr{𝑅(𝕚) = 1} =
1
2Ç1 −s

1
𝑚 + 1

d

eh$

s
𝑒)l𝕚l𝕚

t

𝑐!

e

th$

Ë	

=
1
2Ç1 −s

𝑒)l𝕚l𝕚
t

𝑐!

d

th$

�
𝑚 + 1 − 𝑐
𝑚 + 1 �Ë	

=
1
2Ç1 −s

𝑒)l𝕚l𝕚
t

𝑐!

d

th$

�1 −
𝑐

𝑚 + 1�Ë	

	
which	is	Foss	et	al.’s	(1993)	expression	for	the	pure	counting	model.	When	in	addition	m=0,	
	

Pr{𝑅(𝕚) = 1} =
1
2 ¿1 − 𝑒

)lÀ	

and	
	

𝐶(𝐿$, 𝐿&) =
1
2 (Pr{𝑅(𝕚$) = 1} + Pr{𝑅(𝕚&) = 1} − Pr{𝑅(𝕚$∩&) = 1})

Pr{𝑅(𝕚$) = 1} Pr{𝑅(𝕚&) = 1} 	

=
¿1 − 𝑒)l𝕚�À + ¿1 − 𝑒)l𝕚ÂÀ − �1 − 𝑒)¿l𝕚�Hl𝕚ÂÀ�

¿1 − 𝑒)l𝕚�À¿1 − 𝑒)l𝕚ÂÀ
	

=
1 − 𝑒)l𝕚� − 𝑒)l𝕚Â + 𝑒)¿l𝕚�Hl𝕚ÂÀ

1 − 𝑒)l𝕚� − 𝑒)l𝕚Â + 𝑒)¿l𝕚�Hl𝕚ÂÀ
= 1	

	
showing,	as	expected,	that	for	the	Poisson	interference	model	the	coefficient	of	coincidence	is	always	
1	regardless	of	𝐿$	and	𝐿&.		
 
2.3 Inversion heterokaryotypes 
2.3.1 Chiasma inhibition 
During	meiosis	for	chromosomes	heterozygous	for	a	chromosomal	inversion,	the	inverted	region	
can	form	a	homosynaptic	inversion	loop	(figure	2.2)	inside	and	outside	of	which	the	formation	of	
chiasmata	is	partly	or	fully	inhibited	(Coyne	et	al.	1991,	1993,	Navarro	and	Ruiz	1997,	Jaarola	et	al.	
1998,	Anton	et	al.	2005,	Pegueroles	et	al.	2010,	del	Priore	and	Pigozzi	2015).	I	will	henceforth	define	
the	inhibition	factor	for	interval	𝕚C ,	denoted	𝑑C ∈ ℝ�$,	so	that	if	the	expected	number	of	𝑋U	and	𝐶UU	
events	in	interval	𝕚C	is	𝜇C	and	𝜆C ,	respectively,	in	a	homokaryotype,	then	the	corresponding	values	in	
a	heterokaryotype	are	𝑑C𝜇C	and	𝑑C𝜆C .	The	two	boundaries	of	the	inverted	region,	the	breakpoint	
boundaries,	can	for	our	purpose	be	thought	of	as	loci	that	serve	as	interval	boundaries	in	the	same	
way	that	other	loci	do,	so	that	e.g.	the	interval	between	the	left	breakpoint	boundary	and	the	
leftmost	loci	within	the	inverted	region	(or	the	right	breakpoint	boundary	if	there	are	no	loci	within	
the	inverted	region)	is	an	interval	in	the	same	respect	that	the	intervals	enclosed	by	two	non-
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breakpoint	loci	are.	Since	inversions	affect	the	rate	of	chiasma	generation	also	in	interval	outside	of	
the	inverted	region	(e.g.	Pegueroles	et	al.	2010),	dk	also	applies	for	such	intervals.	I	will	adopt	the	
convention	that	𝐸[]	always	refer	to	expectation	in	a	homokaryotype,	so	that	e.g.	𝐸[𝐶CUU]	and	𝑑C𝐸[𝐶CUU]	
gives	the	expected	number	of	type	II	intermediate	events	in	interval	k	in	a	homokaryoype	and	
heterokaryotype,	respectively.	This	notation	allows	different	intervals	within	and	outside	of	the	
inverted	region	to	be	experience	inhibition	to	different	degrees,	depending,	for	example,	on	their	
relative	distance	from	the	breakpoints.	If	𝕙	denotes	the	inverted	region,	{𝕚C}Ch$,&,'…𝔥)&	the	set	of	all	
intervals	within	the	inverted	region,	and	𝜇𝕙	and	𝜆𝕙	the	expected	number	of	𝑋U	and	𝐶UU	events,	
respectively,	in	the	region	corresponding	to	the	inverted	region	in	a	homokaryotype,	then	
	

𝑑𝕙 = s𝑑C

𝔥)&

Ch$

�
𝜇C + 𝜆C
𝜇𝕙 + 𝜆𝕙

�	

	
is	the	inversion	factor	for	the	inverted	region	as	a	whole,	which	is	equivalent	to	d	in	Navarro	and	
Ruiz	(1997).	From	the	degree	of	underdominance	(see	discussion	below)	of	mostly	laboratory-
induced	pericentric	inversions	of	different	genetic	lengths	in	a	large	Drosophila	dataset,	the	authors	
of	that	paper	estimated	that	a	𝑑𝕙	value	of	about	0.25	gave	the	overall	best	fit.	In	other	words,	the	
expected	number	of	chiasma	events	within	the	inverted	region	in	heterokarytypes	is	overall	about	a	
quarter	of	that	in	the	corresponding	region	in	homokaryotypes,	which,	as	they	point	out,	coincide	
with	the	independent	previous	estimate	of	Novitski	and	Braver	(1954),	also	for	Drosophila.	The	
authors	also	note,	however,	that	the	individual	𝑑𝕙	values	of	each	inversion	seem	to	depend	on	the	
genetic	length	of	the	inversion,	and	in	particular	that	chiasma	formation	is	perfectly	suppressed	
(𝑑𝕙 ≈ 0)	when	the	inversion	is	short,	a	point	to	which	I	will	return.	
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Figur 2.2: An inversion loop for a pericentric inversion. The lines with the same line type (dotted or dashed) are 
sister chromatids, and the circles represent the centromere. The X symbolizes a chiasmata, which involves the 
chromatids touched by the upper and lower arms of the X. Gametes that show recombination in the interval 
comprising the full inverted region are unbalanced, as illustrated here by gamete 2) and 4), which lack locus D 
and A, respectively. 
 

2.3.2 Interference across breakpoint boundaries 
When	calculating	recombination	pattern	probabilities	for	inversion	heterokaryotypes	with	more	
than	one	distinct	interval	within	the	inverted	region,	we	are	confronted	with	a	dilemma	that	to	my	
knowledge	is	not	explicitly	addressed	in	the	literature.	If	we	imagine	four	intervals,	𝕚$, 𝕚&, 𝕚', 𝕚�,	of	
which	one,	𝕚$,	is	to	the	left	of	the	inverted	region,	two,	𝕚&	and	𝕚',	is	inside	the	inverted	region,	and	
one,	𝕚�,	is	to	the	right	of	the	inverted	region,	then	their	order	from	left	to	right	will	be	𝕚$, 𝕚&, 𝕚', 𝕚�		in	
one	parental	homologue	but	𝕚$, 𝕚', 𝕚&, 𝕚�	in	the	other.	It	is	therefore	not	obvious	how	the	interference	
signal	generated	by	a	chiasma	in,	say,	interval	𝕚$,	will	travel	through	an	inversion	loop;	will	it	travel	
through	𝕚&	before	𝕚'	or	𝕚'	before	𝕚&	(figure	2.3)?	Will	it	somehow	split	up	and	travel	simultaneously	
through	𝕚&	and	𝕚'?	Will	it	continue	out	through	the	other	inversion	breakpoint	or	loop	around	and	
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somehow	cause	additional	interference	in	𝕚$?	At	our	current	state	of	knowledge,	these	questions	
have	no	obvious	answers.	One	possibility	is	that	the	interference	signal	is	simply	blocked	by	the	
inversion	breakpoints,	so	that,	in	our	example,	the	number	of	chiasmata	in	interval	𝕚&	is	dependent	
on	the	number	of	chiasmata	in	interval	𝕚'	(and	vice	versa),	but	independent	of	the	number	of	
chiasmata	in	intervals	𝕚$	and	𝕚�.	In	support	of	this	idea,	Gorlov	and	Borodin	(1995)	found	no	
evidence	of	chiasma	interference	from	one	loop	to	the	other	in	a	double	heterozygote	for	two	partly	
overlapping	inversions	in	mice,	possibly	because	the	synaptomenal	complex	is	initiated	
independently	inside	and	outside	of	the	inverted	region.	Mary	et	al.	(2016),	however,	did	find	
interference	from	one	side	of	an	inversion	to	another,	although	in	that	study	the	region	was	
prevented	from	forming	an	inversion	loop,	which	might	be	relevant.	As	more	research	is	needed	to	
settle	this	question	(see	chapter	5),	I	have	included	in	the	program	a	user-defined	parameter	𝛼	for	
which	the	value	1	indicate	normal	interference	across	breakpoint	boundaries,	and	0	indicate	no	
interference	across	breakpoint	boundaries,	i.e.	that	the	phase	distribution	is	reset	to	the	stationary	
probabilities	to	the	right	of	both	breakpoints	regardless	of	the	what	has	happened	to	the	left	of	those	
points.	When	𝛼 = 1,	the	program	will	assume	that	the	interference	signal	travels	in	either	of	the	two	
directions	illustrated	in	figure	2.3	with	equal	probability,	so	that	the	final	recombination	pattern	
probabilities	are	given	by	the	average	of	the	values	calculated	in	each	of	these	scenarios.	Note	that	
when	all	intervals	of	interest	are	located	inside	the	inverted	region,	the	results	for	𝛼 = 1	and	𝛼 = 0	
will	be	the	same.	
 
 

 
Figure 2.3: The problem of interference across breakpoint boundaries. Does the interference signal from a 
chiasma event (the x) in 𝕚$ go through 𝕚& (top) or 𝕚' (bottom)? Or is it blocked by the breakpoint boundaries? 
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2.3.3 Sterility in pericentric and paracentric inversion heterokaryotypes 
It	is	common	to	distinguish	between	pericentric	inversions,	which	include	the	centromere,	and	
paracentric	inversions,	which	do	not.	In	individuals	heterozygous	for	both	of	these	types	of	inversion,	
crossing	over	within	the	inverted	region	results	in	a	proportion	of	unbalanced	gametes	–	gametes	
that	do	not	have	the	full	set	of	genetic	material	(Figures	2.2,	2.7,	2.8,	2.9).	In	the	following,	all	such	
gametes	are	assumed	to	produce	inviable	zygotes	–	i.e.	the	program	automatically	assign	all	
offspring	inheriting	one	or	two	such	gametes	a	zygote	fitness	of	0	in	the	next	generation	–	and	the	
probability	of	observing	such	gametes	for	any	given	individual	or	genotype	will	be	referred	to	as	that	
individual	or	genotype’s	sterility.	In	the	rest	of	this	chapter,	I	will	derive	expressions	for	the	sterility	
and	recombination	pattern	probabilities	for	individuals	heterozygous	for	both	types	of	inversions.	
Since	the	mathematics	differ	between	the	two,	they	will	be	considered	in	turn.	
 
2.3.4 Terminology for pericentric inversions 
For	pericentric	inversion	heterokaryotypes,	I	will	divide	the	region	of	interest	into	three	subregions	
for	easier	reference.	The	left	region	is	the	region	comprising	all	intervals	to	the	left	of	the	inverted	
region,	the	inverted	region	is,	as	before,	the	region	comprising	all	intervals	captured	by	the	inversion,	
and	the	right	region	is	the	region	comprising	all	intervals	to	the	right	of	the	inverted	region.	These	
three	regions	will	be	denoted	𝕕,	𝕙	and	𝕣,	respectively,	so	that	e.g.	𝐸[𝐶𝕙UU]	and	𝑑𝕙𝐸[𝐶𝕙UU]	denotes	the	
expected	number	of	type	II	intermediate	events	in	the	inverted	region	as	a	whole	in	a	
homokaryotype	and	heterokaryotype,	respectively.	The	number	of	intervals	in	𝕕,	𝕙,	and	𝕣	will	be	
denoted	𝔡,	𝔥,	and	𝔯,	so	that	the	total	number	of	intervals	is	𝔫 = 𝔡 + 𝔥 + 𝔯.	As	before,	𝕚C	refer	to	zero-
indexed	interval	number	k	from	the	left	(one-indexed	interval	k	+	1),	so	from	the	preceding	we	can	
unambiguously	deduce	that	𝕚C, 𝑘 = 0,1,2…𝔡 − 1	is	an	interval	in	the	left	region,	𝕚C, 𝑘 = 𝔡, 𝔡 + 1, 𝔡 +
2…𝔡 + 𝔥 − 1	is	an	interval	in	the	inverted	region,	and	𝕚C, 𝑘 = 𝔡 + 𝔥, 𝔡 + 𝔥 + 1, 𝔡 + 	𝔥 + 2… 	𝔫 − 1	is	an	
interval	in	the	right	region.	For	easier	reading,	I	will	when	convenient	adopt	the	convention	that	an	
𝕕,	𝕙,	and	𝕣	with	subscript	index	k	refer	to	the	same	interval	as	𝕚C ,	the	only	difference	being	the	
additional	explicit	(and	redundant)	information	about	which	of	the	three	subregions	the	interval	
belongs	to.	For	example,	𝕚C	and	𝕙C	refer	to	the	same	interval,	zero-indexed	number	k	from	the	left	in	
the	region	of	interest,	but	in	the	latter	case	you	can	immediately	see	that	the	interval	is	in	the	
inverted	region	without	having	to	scrutinize	the	index.	
	 For	pericentric	inversion	heterokaryotypes,	a	chromatid	is,	as	illustrated	in	figure	2.2,	
unbalanced	if	and	only	if	it	shows	recombination	in	the	inverted	region.	Since	by	assumption	all	
chromatids,	unbalanced	or	not,	have	an	equal	chance	of	becoming	gametes,	the	sterility,	𝜁,	of	such	a	
chromosome	is	simply	given	by	𝜁 = Pr	{𝑅(𝕙) = 1}.	Hence	we	have	the	following	theorem:	
 
2.3.5 Theorem 4: The sterility of pericentric inversion heterokaryotypes 
The	sterility	of	an	individual	heterozygous	for	a	pericentric	inversion	is	given	by	
	

𝜁 = Pr{𝑅(𝕙) = 1} =
1
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Proof:	
This	follows	from	the	discussion	in	theorem	3	above.	
 
2.3.6 d values in the Coyne/Navarro and Ruiz dataset 
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Navarro	and	Ruiz’s	(1997)	figure	1	uses	the	dataset	discussed	in	section	2.3.1	to	plot	each	individual	
pericentric	inversion’s	sterility	against	its	genetic	length,	together	with	a	line	for	their	expression	of	
the	sterility	with	the	value	of	𝑑𝕙	that	gives	the	best	fit	overall.	I	will	here	instead	use	their	dataset	to	
plot	the	individual	𝑑𝕙	values	against	the	genetic	length,	which	for	my	purpose	will	prove	more	
useful.	Assuming,	for	simplicity,	a	Poisson	model	of	interference	(Navarro	and	Ruiz	also	make	this	
assumption,	and	note	that	using	a	more	realistic	model	of	interference	makes	little	difference)	and	
combining	with	the	expression	for	genetic	lengths	(section	2.1.6),	theorem	4	reduces	to	
	

ζ =
1
2
(1 − 𝑒)'±𝕙å)	

	
where	L	is	the	genetic	length	of	the	inverted	region	in	Morgans	(this	is	equivalent	to	Navarro	and	
Ruiz’s	equation	2,	except	the	latter	disregard	the	probability	of	more	than	two	chiasma	events	in	the	
inverted	region).	Solving	for	𝑑𝕙	gives	
	

𝑑𝕙 = −
ln(1 − 2ζ)

2𝐿 	

	
Using	the	values	for	ζ	and	𝐿	in	the	Coyne	et	al.	(1993)/Navarro	and	Ruiz	(1997)	dataset	now	give	the	
scatterplot	in	figure	2.4.	Quite	a	few	of	the	inversions	in	the	set	actually	have	slightly	or	significantly	
negative	sterility	values,	meaning	that	the	fertility	is	higher	in	heterokaryotypes	than	in	
homokaryotypes.	The	𝑑𝕙	values	cannot	be	negative,	so	this	must	be	due	to	sampling	errors	or	
pleiotropic	effects	(see	Coyne	et	al.	1993	for	details	on	the	calculation	of	the	sterility	values).	I	
therefore	plot	the	𝑑𝕙	values	in	question	at	zero.	Note	that	these	all	cluster	in	the	lower	range	of	
inversion	lengths,	possibly	because	short	inversion	heterokaryotypes	fail	to	form	a	homosynaptic	
loop	(Coyne	and	Orr	2004,	Anton	et	al.	2005),	and	that	there	generally	seems	to	be	a	tendency	for	
higher	𝑑𝕙	values	with	longer	inversions,	meaning	that	shorter	inversions	suppress	chiasma	
formation	more	than	longer	ones.	

 
Figure 2.4: The individual 𝑑𝕙 values for the inversions in the dataset from Coyne et al. (1993) and Navarro and 
Ruiz (1997). 𝑑𝕙 values for inversions with negative sterility are set to zero for reasons explained in the main 
text. 
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2.3.7 Theorem 5: Recombination in pericentric inversion heterokaryotypes 
The	probability	of	observing	recombination	pattern	r	on	a	chromosome	with	a	pericentric	inversion	
is	given	by	
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𝑸[𝑖, 𝑗] = 𝝅[𝑗] = 𝜋z					𝑖, 𝑗 = 0,1,2…𝑚	

	
Proof:	
Apart	from	the	inhibition	factors	(d),	the	only	difference	between	theorems	1	and	5	is	the	matrix	𝑸	
that	is	inserted	into	the	latter	equation	at	the	positions	corresponding	to	the	breakpoint	boundaries.	
The	parameter	𝛼	indicate	the	presence	(𝛼 = 1)	or	absence	(𝛼 = 0)	of	chiasma	interference	across	
the	breakpoint	boundaries,	so	in	the	former	case	𝑸&)ê = 𝑸$ ≡ 𝑰dH&	(i.e.	the	identity	matrix).	In	the	
absence	of	interference	across	the	breakpoint	boundaries	(𝛼 = 0),	𝑸	serves	to	redistribute	the	phase	
probabilities	according	to	the	stationary	distribution	(π).	We	can	see	why	this	is	so	by	decomposing	
𝑸	into	the	two	matrices	𝑸U	and	𝑸UU	so	that	
	

𝑸 = 𝑸U𝑸UU	
	
where	
	

𝑸U[𝑖, 𝑗] = 01, 𝑗 = 0
0, 𝑗 > 0 					𝑖, 𝑗 = 0,1,2…𝑚	

𝑸UU[𝑖, 𝑗] = 0
𝜋z, 𝑖 = 0
0, 𝑖 > 0 					𝑖, 𝑗 = 0,1,2…𝑚	
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That	is,	𝑸U	maps	all	phase	probabilities	(arbitrarily)	to	phase	0,	whereas	𝑸UUmaps	them	from	0	to	j	in	
proportion	to	the	stationary	probabilities.	This	is	equivalent	to	making	the	chiasma	events	in	the	
three	subregions	mutually	independent,	as	we	can	see	from	the	following	argument	(j	=	0,1,2…m	for	
all	relevant	equations):	
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Note	that	when	𝛼 = 1,	the	program	executes	theorem	5		once	with	the	intervals	in	the	original	order	
and	once	with	the	intervals	ordered	so	that	order	inside	the	inverted	region	is	reversed	(see	figure	
2.3),	and	the	final	gamete	proportions	(haplotype	representation)	resulting	from	the	two	
calculations	are	averaged.	This	is	also	the	case	for	theorem	7.	
															
QED	
	
In	the	main	program,	the	probabilities	for	all	recombination	patterns,	unbalanced	or	not,	in	a	
pericentric	heterokaryotype,	are	calculated	using	theorem	5.	Unbalanced	chromatids	are	
subsequently	recognized	and	pooled	into	in	a	single	category	unbalanced.	The	probability	of	
observing	a	chromatid	in	category	unbalanced	is	accordingly	equal	to	the	sum	of	the	probabilities	of	
observing	each	individual	unbalanced	chromatid,	which	is,	of	course,	equal	to	the	sterility.		
	 A	chromatid	is	unbalanced	if	and	only	if	it	shows	recombination	in	an	odd	number	of	
intervals	within	the	inverted	region	(see	figure	2.5	for	an	induction	proof).	Hence,	the	function	
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is	1	if	r	is	balanced	and	0	if	r	is	unbalanced,	and	can	therefore	be	used	to	place	patterns	in	the	
appropriate	category.	Note	that	the	probabilities	of	observing	a	chromatid	with	a	certain	
recombination	pattern	is	given	as	a	proportion	of	all	chromatids,	balanced	or	unbalanced,	and	not,	as	
in	e.g.	Navarro	et	al.	(1997),	as	a	proportion	of	balanced	chromatids	only.		
	

	
Figure 2.5: An induction proof of the statement (S) that a chromatid is unbalanced if and only if it shows 
recombination in an odd number of intervals within the inverted region. Keep in mind that an interval shows 
recombination if and only if it is involved in an odd number of chiasma events within the interval, and that a 
chromatid (in a heterokaryotype) is unbalanced if and only if it show recombination in the inverted region. Note 
first that the statement is trivially true when the inverted region consists of only a single interval (S1). Now 
assume for the sake of argument that the boundaries of the inverted region can be moved to include additional 
intervals, and that the statement is true when the inverted region consist of n = k intervals (Sk). Hence, we must 
consider two scenarios: either the chromatid is unbalanced (involved in an odd number of chiasma events 
within the inverted region), which, the induction hypothesis states, must mean that it also shows recombination 
in an odd number of intervals within the inverted region (scenario 1), or the chromatid is balanced (involved in 
an even number of chiasma events within the inverted region), meaning that it show recombination in an even 
number of intervals within the inverted region (scenario 2). The figure shows the effect of including an 
additional recombinant (dashed arrow) or non-recombinant (solid arrow) interval in both of these scenarios (a: 
unbalanced/balanced chromatid, b: odd/even number of recombinant interval in the inverted region). Note that 
the statement is true for n = k + 1. Hence, since S1 is true and Sk implies Sk+1, the statement must be true for all n 
> 0. 
	
	
2.3.8 Terminology	for	paracentric	inversions	

For	paracentric	inversion	karyotypes,	I	will	divide	the	region	of	interest	into	four	subregions,	from	
left	to	right:	the	distal	region	comprises	all	intervals	to	the	left	of	the	inverted	region,	the	inverted	
region	is	as	before,	the	proximal	region	comprises	all	intervals	between	the	inverted	region	and	the	
centromere	(which,	for	our	purpose,	serve	as	a	loci),	and	the	right	region	comprises	all	intervals	to	
the	right	of	the	proximal	region.	These	will	in	the	following	be	denoted	𝕕, 𝕙, 𝕡,	and	𝕣,	respectively,	
with	the	number	of	intervals	in	each	denoted	𝔡, 𝔥, 𝔭	and	𝔯.	Otherwise	the	notation	is	the	same	as	for	
pericentric	inversions.	
	 As	illustrated	in	figures	2.7,	2.8,	and	2.9,	different	number	of	chiasmata	in	the	inverted	and	
proximal	regions	produce	different	proportions	of	tetrads	with	five	different	possible	configurations	

a: Unbalanced
b: Odd! = #

! = # + 1 a: Balanced
b: Even

a: Balanced
b: Even

a: Unbalanced
b: Odd

a: Unbalanced
b: Odd

a: Balanced
b: Even

Scenario 1 Scenario 2
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(figure	2.5).	In	the	following,	a	no	bridge	tetrad	is	a	tetrad	that	do	not	form	chromosome	bridges	at	
either	anaphase	I	or	II,	a	single	anaphase	I	bridge	tetrad	is	a	tetrad	in	which	one	chromatid	pair	form	
a	chromosome	bridge	at	anaphase	I,	a	double	anaphase	I	bridge	tetrad	is	a	tetrad	in	which	two	
chromatid	pairs	(i.e.	all	four	chromatids)	form	anaphase	I	bridges,	and	a	single	and	double	anaphase	
II	bridge	tetrad	is	the	same	for	anaphase	II.	A	to	my	knowledge	unprecedented	expression	for	the	
proportions	of	these	five	configurations	given	the	number	of	chiasma	events	in	the	inverted	and	
proximal	regions	is	included	in	theorem	6.	The	chromatids	involved	in	a	chromosome	bridge	break	
randomly	at	the	respective	anaphase,	and	so	become	unbalanced	in	the	sense	defined	above.	The	
unbalanced	chromatids	generated	in	paracentric	inversion	heterokaryotypes	differ	in	details	from	
the	ones	generated	in	pericentric	inversion	heterokaryotypes	(compare	figures	2.2	and	2.7),	but	for	
our	purpose	they	can	be	treated	as	equivalent	once	they	become	gametes;	i.e.	all	offspring	resulting	
from	one	or	two	unbalanced	gametes	have	zygote	fitness	0	in	either	case.	
 

 
Figure 2.6: The five types of tetrad configurations. a) no bridge, b) single anaphase I bridge, c) single anaphase 
II bridge, d) double anaphase I bridge, e) double anaphase II bridge. Acentric fragments (see figure 2.7) are not 
shown. Chromatids involved in a bridge break randomly at the given anaphase, and are necessarily 
unbalanced. 
 
	 Up	until	now	I	have	only	considered	cases	where	all	chromatids	have	an	equal	chance	of	
becoming	gametes,	so	that	I	have	treated	“the	probability	of	observing	recombination	pattern	r	is	p”,	
“the	probability	of	observing	a	chromatid	with	recombination	pattern	r	is	p”,	and	“the	probability	of	
observing	a	gamete	with	recombination	pattern	r	is	p”	as	equivalent.	I	will	now	consider	a	case	
where	this	is	no	longer	true.	In	the	linear	meiosis	of	females	of	Drosophila	(Sturtevant	and	Beadle	
1936,	Roberts	1976)	and	Sciara	(Carson	1946),	the	two	unbalanced	chromatids	in	an	anaphase	I	
tetrad	are	retained	in	the	polar	bodies,	so	the	remaining	two	balanced	chromatids	are	the	only	ones	
that	can	become	gametes.	Since	a	single	chiasma	event	in	the	inverted	region	always	generates	an	
anaphase	I	tetrad	(figure	2.7),	this	means	that	additional	chiasma	events	in	either	the	inverted	or	
proximal	region	is	required	to	produce	unbalanced	gametes	(figures	2.8	and	2.9).	Hence,	the	sterility	
is	significantly	reduced.	Furthermore,	the	set	of	recombination	patterns	that	end	up	in	an	anaphase	I	
tetrad	is	not	a	representative	sample	of	the	full	set,	so	the	gamete	proportions	are	also	affected.	
Navarro	et	al.	(1997)	provides	approximate	expressions	for	the	sterility	and	gamete	proportions	in	
paracentric	inversion	heterokaryotypes	with	linear	meiosis	under	the	Poisson	and	pure	counting	
interference	models	for	a	maximum	of	two	loci	in	either	the	distal,	inverted	or	proximal	region.	I	will	
here	present	exact	infinite	series	expressions	for	the	sterility	and	gamete	proportions	under	the	

a) b)

c) d)

e)
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general	interference	model	for	an	indefinite	number	of	loci	in	each	of	the	regions	on	the	
chromosome.	I	begin	with	the	former,	which	is	theorem	6.	
	
 

 
Figure 2.7: An inversion loop for a paracentric inversion. A single chiasma in the inverted region creates a 
tetrad with an anaphase I bridge and an acentric fragment (meaning that it is not connected to the centromere) 
which fail to segregates and is lost. 
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2.3.9 Theorem 6: The sterility of paracentric heterokaryotypes with linear 

meiosis 
	
The	sterility	of	a	female	of	a	species	with	linear	meiosis	heterozygous	for	a	paracentric	inversion	is	
given	by	
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u
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⎪
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𝒗𝟎,𝟎 = (1 0 0 0 0)	

𝑻𝕙 =

⎝

⎜
⎛
0 1 0 0 0
1/4 1/2 0 1/4 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0⎠

⎟
⎞
	

𝑻𝕡 =

⎝

⎜
⎛
1 0 0 0 0
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⎞
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𝑑𝕚l𝕚 = 𝑑𝕚𝐸[𝐶𝕚UU]	𝑓𝑜𝑟	𝕚 = 𝕙, 𝕡	

𝑑𝕚𝜇𝕚 = 𝑑𝕚𝐸[𝑋𝕚U]	𝑓𝑜𝑟	𝕚 = 𝕙, 𝕡	

	

Proof:	
The	basic	structure	of	this	equation	is	
	

z = Pr{𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑔𝑎𝑚𝑒𝑡𝑒} = s s Pr	{𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'}Pr	{𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑔𝑎𝑚𝑒𝑡𝑒|
u

DÅh$

u

DÂh$

𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'}	

	
i.e.	it	finds	the	probability	of	an	unbalanced	gamete	by	conditioning	on	the	number	of	chiasma	
events	in	each	region.	Pr¹𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'º = 𝝅𝑫𝕙(𝑥&)𝑸&)a𝑫𝕡(𝑥')𝟏¤ 	is	a	special	case	of	a	more	
general	expression	that	is	shown	in	the	proof	for	theorem	7.	I	therefore	focus	here	on	the	conditional	
probability	of	observing	an	unbalanced	gamete,	Pr¹𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑔𝑎𝑚𝑒𝑡𝑒û𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'º,	which	I	
will	denote	zDÂ,DÅ.	For	small	values	of	x1	and	x2,	we	can	find	zDÂ,DÅ 	through	the	(rather	tedious)	
process	of	drawing	all	possible	tetrads	and	counting	the	resulting	balanced	and	unbalanced	gametes,	
but	for	higher	values	this	approach	becomes	unmanageable.	Navarro	et	al.	(1997)	provide	a	table	of	
zDÂ,DÅ 	values	(denoted	1 − 𝜌¬z 	in	that	text)	for	x1	and	x2	ranging	from	0	to	2,	but	do	not	derive	a	
general	expression.	
	 To	find	one,	consider	first	a	stochastic	process	{𝑍(𝑥&, 𝑥')}(DÂ,DþÅ)∈ℤ�� 	that	represents	the	
configuration	of	a	tetrad	when	𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'	(i.e.	when	there	are	x1	chiasma	events	in	the	
inverted	region	and	x2	chiasma	events	in	the	proximal	region),	so	that	
	

𝑍(𝑥&, 𝑥') =

⎩
⎪
⎨

⎪
⎧
0, 𝑛𝑜	𝑏𝑟𝑖𝑑𝑔𝑒
1, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
2, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
3, 𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
4, 𝑑𝑜𝑢𝑏𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼𝐼	𝑏𝑟𝑖𝑑𝑔𝑒

	

	
We	now	define	the	matrices	𝑻𝕙	and	𝑻𝕡	so	that	
	

𝑻𝕙[𝑖, 𝑗] = Pr{𝑍(𝑥& + 1,0) = 𝑗|𝑍(𝑥&, 0) = 𝑖},																			𝑥& = 0,1,2, … ; 𝑖, 𝑗 = 0,1,2,3,4	

𝑻𝕡[𝑖, 𝑗] = Pr{𝑍(𝑥&, 𝑥' + 1) = 𝑗|𝑍(𝑥&, 𝑥') = 𝑖},								𝑥&, 𝑥' = 0,1,2, … ; 𝑖, 𝑗 = 0,1,2,3,4	

	
and	the	vector	𝒗𝟎,𝟎	so	that	
	

𝒗$,$ = (Pr{𝑍(0,0) = 0} Pr{𝑍(0,0) = 1} Pr{𝑍(0,0) = 2} Pr{𝑍(0,0) = 3} Pr{𝑍(0,0) = 4})	
	
That	is,	the	𝑻𝕚	matrices	are	the	Markovian	transition	matrices	whose	element	i,j	give	the	probability	
of	observing	a	tetrad	in	configuration	j	after	considering	an	additional	chiasma	event	at	the	right	end	
of	region	𝕚	(= 𝕙, 𝕡),	given	that	the	tetrad	was	in	configuration	i	before	considering	that	chiasma	
event	and	that	there	are	no	other	chiasma	event	further	to	the	right;	and	𝒗𝟎,𝟎	is	the	tetrad	
configuration	distribution	when	there	are	no	chiasma	events	in	either	interval.	Accordingly,	
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¿𝒗DÂ)&,$𝑻𝕙À[𝑗] =sPr{𝑍(𝑥&, 0) = 𝑗|𝑍(𝑥& − 1, 0) = 𝑖}
�

¬h$

Pr{𝑍(𝑥& − 1,0) = 𝑖}	

= Pr{𝑍(𝑥&, 0) = 𝑗}	

= 𝒗DÂ,$[𝑗]	

	
so	
	

𝒗DÂ,$ = 𝒗DÂ)&,$𝑻𝕙 = ¿𝒗DÂ)',$𝑻𝕙À𝑻𝕙	
= 𝒗!Â)',$𝑻𝕙

' = ¿𝒗DÂ)�,$𝑻𝕙À𝑻𝕙
' 	

= 𝒗!Â)�,$𝑻𝕙
� 	

										…	
= 𝒗$,$𝑻𝕙

DÂ					𝑓𝑜𝑟	𝑥& = 0,1,2…			
	
Furthermore,	
	

¿𝒗DÂ,DÅ)&𝑻𝕡À[𝑗] =sPr{𝑍(𝑥&, 𝑥') = 𝑗|𝑍(𝑥&, 𝑥' − 1) = 𝑖}
�

¬h$

Pr{𝑍(𝑥&, 𝑥' − 1) = 𝑖} = 𝒗𝒙𝟏,𝒙𝟐[𝑗]	

𝑓𝑜𝑟	𝑥& = 0,1,2,3… ; 𝑥' = 1,2,3… ; 𝑗 = 0,1,2,3,4		

	
so	it	follows	that	
	

𝒗DÂ,DÅ = 𝒗$,$𝑻𝕙
DÂ𝑻𝕡

DÅ, 𝑓𝑜𝑟	𝑥&, 𝑥' = 0,1,2…			

	

where	
	
𝒗𝒙𝟏,𝒙𝟐 = (Pr{𝑍(𝑥&, 𝑥') = 0} Pr{𝑍(𝑥&, 𝑥') = 1} Pr{𝑍(𝑥&, 𝑥') = 2} Pr{𝑍(𝑥&, 𝑥') = 3} Pr{𝑍(𝑥&, 𝑥') = 4})	
	
If	there	are	0	chiasma	events	in	both	the	inverted	and	proximal	regions,	then	all	tetrads	must	
necessarily	be	in	state	no	bridge,	so	
	

𝒗$,$ = (1 0 0 0 0)	
	
We	can	find	𝑻𝕙	and	𝑻𝕡	simply	by	considering	the	resulting	tetrads	for	the	four	possible	
combinations	of	non-sister	strand	involvements	when	an	extra	chiasma	event	is	added	at	the	right	
end	of	the	appropriate	interval	of	a	tetrad	that	is	originally	in	the	given	configuration	(see	figures	2.8	
and	2.9).	This	results	in	
	

𝑻𝕙 =

⎝

⎜
⎛
0 1 0 0 0
1/4 1/2 0 1/4 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0⎠

⎟
⎞
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𝑻𝕡 =

⎝

⎜
⎛
1 0 0 0 0
0 1 2⁄ 1 2⁄ 0 0
0 1 0 0 0
0 0 0 1/2 1/2
0 0 0 1 0 ⎠

⎟
⎞
		

	
(Cobbs	(1978)	uses	a	similar	line	of	reasoning	to	find	the	probability	distribution	of	parental	ditype,	
tetratype,	and	non-parental	ditype	tetrads	given	the	number	of	chiasma	events	in	a	single	colinear	
interval;	note	the	similarity	between	his	matrix	T	and	my	𝑻𝕙.)	

 
Figure 2.8: The leftmost X represent an anaphase I bridge, and the X´s marked a, b, c, d represent the four 
possible non-sister chromatid pair involvements in a single chiasma event. The resulting configurations for each 
pair is shown below. The figure shows that 𝑃𝑟{𝑍(𝑥& + 1,0) = 0|𝑍(𝑥&, 0) = 1} = 1/4, 
𝑃𝑟{𝑍(𝑥& + 1,0) = 1|𝑍(𝑥&, 0) = 1} = 1/2, and 𝑃𝑟{𝑍(𝑥& + 1,0) = 3|𝑍(𝑥&, 0) = 1} = 1/4, which gives the 
second row (zero-indexed row 1) in matrix 𝑻𝕙. The remaining rows are found in the same manner. 

a)

b)

c)

d)

a b c
d
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Figure 2.9: The effect of a single additional chiasma in the proximal region when the tetrad is originally in the 
configuration single anaphase I bridge. The figure shows that Pr{𝑍(𝑥&, 𝑥' + 1) = 1|𝑍(𝑥&, 𝑥') = 1} = 1/2 and 
Pr{𝑍(𝑥&, 𝑥' + 1) = 2|𝑍(𝑥&, 𝑥') = 1} = 1/2, which give the second row (zero-indexed row 1) of matrix 𝑻𝕡. The 
remaining rows are found in the same manner. 
	
	 Now	that	we	have	an	expression	for	the	distribution	of	tetrad	configurations	given	the	
number	of	chiasma	events	in	each	region,	we	only	need	to	weight	each	configuration	according	to	its	
proportion	of	unbalanced	gametes.	Since	unbalanced	chromatids	in	an	anaphase	I	tetrad	are	
retained	in	the	polar	bodies	(meaning	that	anaphase	I	tetrads	produce	only	balanced	gametes),	the	
weight	vector	becomes	
	

𝒘# =

⎝

⎜
⎛
0
0
1/2
1
1 ⎠

⎟
⎞
	

a)

b)

c)

a b c d

d)
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so	
	

zDÂDÅ = Pr¹𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑔𝑎𝑚𝑒𝑡𝑒û𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'º = 𝒗$,$𝑻𝕙
DÂ𝑻𝕡

DÅ𝒘#	
	

For	illustration,	inserting	x1,	x2	=	0,1,2	generates	the	values	in	table	2	in	Navarro	et	al.	(1997):	
	

z$,$ = 𝒗𝟎,𝟎𝑻𝕙$𝑻𝕡$𝒘𝒖 = 0	
z$,& = 𝒗𝟎,𝟎𝑻𝕙$𝑻𝕡&𝒘𝒖 = 0	
z$,' = 𝒗𝟎,𝟎𝑻𝕙$𝑻𝕡'𝒘𝒖 = 0	
z&,$ = 𝒗𝟎,𝟎𝑻𝕙&𝑻𝕡$𝒘𝒖 = 0	
z&,& = 𝒗𝟎,𝟎𝑻𝕙&𝑻𝕡&𝒘𝒖 = 1/4	
z&,' = 𝒗𝟎,𝟎𝑻𝕙&𝑻𝕡'𝒘𝒖 = 1/8	
z',$ = 𝒗𝟎,𝟎𝑻𝕙'𝑻𝕡$𝒘𝒖 = 1/4	
z',& = 𝒗𝟎,𝟎𝑻𝕙'𝑻𝕡&𝒘𝒖 = 3/8	
z',' = 𝒗𝟎,𝟎𝑻𝕙'𝑻𝕡'𝒘𝒖 = 5/16	

	
Pr¹𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑔𝑎𝑚𝑒𝑡𝑒û𝑋𝕙 = 𝑥&, 𝑋𝕡 = 𝑥'º,	denoted	𝜌¬z 	in	Navarro	et	al.,	is	of	course	equal	to	1 − zDÂDÅ .		
	
QED	
	
2.3.10  Prologue to theorem 7 
For	the	next	theorem	we	will	need	some	additional	terminology.	I	will	say	that	a	chromatid	is	in	state	
𝑠z: 𝒓Í( = 𝒓, 𝑡Í( = 𝑡	if	it	shows	recombination	pattern	r	and	is	in	a	tetrad	with	configuration	t,	and	I	
will	refer	to	𝒓Í( 	as	the	recombination	pattern	associated	with	state	sj,	and	𝑡Í( 	as	the	tetrad	
configuration	associated	with	state	sj.	The	statespace	is	hence	the	set	of	all	possible	combinations	of	
recombination	patterns	and	tetrad	configuration,	with	two	exceptions.	Firstly,	I	will	collapse	tetrad	
configurations	double	anaphase	I	bridge	and	double	anaphase	II	bridge	into	the	single	configuration	
double	bridge.	This	is	because	double	anaphase	I	bridge	and	double	anaphase	II	bridge	tetrads	both	
produce	only	unbalanced	gametes,	which	means	that	for	our	purposes	they	are	indistinguishable,	
and	from	matrix	𝑻𝕡	we	can	deduce	that	the	two	form	an	absorbing	class	–	meaning	that	no	number	of	
additional	chiasma	events	at	the	right	end	of	the	proximal	region	(or	in	the	right	region)	can	
transform	a	double	anaphase	I	or	II	bridge	tetrad	into	any	other	configuration.	That	is	to	say,	if	we	
were	to	redefine	the	stochastic	process	in	theorem	6	so	that	
	

𝑍(𝑥&, 𝑥') = ¦

0, 𝑛𝑜	𝑏𝑟𝑖𝑑𝑔𝑒
1, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
2, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
3, 𝑑𝑜𝑢𝑏𝑙𝑒	𝑏𝑟𝑖𝑑𝑔𝑒

	

𝒗𝟎,𝟎 = (1 0 0 0)	

𝑻𝕙 = )

0 1 0 0
1/4 1/2 0 1/4
0 0 0 0
0 1 0 0

*	
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𝑻𝕡 = )

1 0 0 0
0 1 2⁄ 1 2⁄ 0
0 1 0 0
0 0 0 1

*	

𝒘𝒖 = )

0
0
1/2
1

*	

	

then	the	resulting	value	for	z		would	be	unaffected.	Secondly,	for	reasons	that	will	become	clear	in	
the	proof	for	theorem	6,	all	states	with	unbalanced	recombination	patterns	that	also	show	
recombination	in	any	interval	with	index	higher	than	𝔡 + 𝔥 − 1	(i.e.	the	intervals	in	the	proximal	and	
rightmost	regions)	are	excluded.	
	 As	an	example,	with	two	intervals	in	the	inverted	region	and	one	in	the	proximal	region	and	
zero	intervals	in	the	distal	and	rightmost	regions	(i.e.	𝔡 = 0, 𝔥 = 2, 𝔭 = 1, 𝔯 = 0),	which	means	that	
there	is	one	loci	of	interest	in	the	inverted	region	and	none	in	either	of	the	other	regions	(note	that	
this	implies	that	𝕚' = 𝕡' = 𝕡),	we	get	the	(arbitrarily	numbered)	statespace:	
	
𝑠$: 𝒓Í� = ¹𝑟Í�(𝕙$) = 0, 𝑟Í�(𝕙&) = 0, 𝑟Í�(𝕡') = 0º, 𝑡Í� = 0	
𝑠&: 𝒓ÍÂ = ¹𝑟ÍÂ(𝕙$) = 0, 𝑟ÍÂ(𝕙&) = 0, 𝑟ÍÂ(𝕡') = 0º, 𝑡ÍÂ = 1	
𝑠': 𝒓ÍÅ = ¹𝑟ÍÅ(𝕙$) = 0, 𝑟ÍÅ(𝕙&) = 0, 𝑟ÍÅ(𝕡') = 0º, 𝑡ÍÅ = 2	
𝑠�: 𝒓Í+ = ¹𝑟Í+(𝕙$) = 0, 𝑟Í+(𝕙&) = 0, 𝑟Í+(𝕡') = 1º, 𝑡Í+ = 0	
𝑠�: 𝒓Í, = ¹𝑟Í,(𝕙$) = 0, 𝑟Í,(𝕙&) = 0, 𝑟Í,(𝕡') = 1º, 𝑡Í, = 1	
𝑠-: 𝒓Í. = ¹𝑟Í.(𝕙$) = 0, 𝑟Í.(𝕙&) = 0, 𝑟Í.(𝕡') = 1º, 𝑡Í. = 2	
𝑠/: 𝒓Í0 = ¹𝑟Í0(𝕙$) = 0, 𝑟Í0(𝕙&) = 1, 𝑟Í0(𝕡') = 0º, 𝑡Í0 = 1	
𝑠1: 𝒓Í2 = ¹𝑟Í2(𝕙$) = 0, 𝑟Í2(𝕙&) = 1, 𝑟Í2(𝕡') = 0º, 𝑡Í2 = 2	
𝑠3: 𝒓Í4 = ¹𝑟Í4(𝕙$) = 0, 𝑟Í4(𝕙&) = 1, 𝑟Í4(𝕡') = 0º, 𝑡Í4 = 3	
𝑠5: 𝒓Í6 = ¹𝑟Í6(𝕙$) = 1, 𝑟Í6(𝕙&) = 0, 𝑟Í6(𝕡') = 0º, 𝑡Í6 = 1	
𝑠&$: 𝒓ÍÂ� = ¹𝑟ÍÂ�(𝕙$) = 1, 𝑟ÍÂ�(𝕙&) = 0, 𝑟ÍÂ�(𝕡') = 0º, 𝑡ÍÂ� = 2	
𝑠&&: 𝒓ÍÂÂ = ¹𝑟ÍÂÂ(𝕙$) = 1, 𝑟ÍÂÂ(𝕙&) = 0, 𝑟ÍÂÂ(𝕡') = 0º, 𝑡ÍÂÂ = 3	
𝑠&': 𝒓ÍÂÅ = ¹𝑟ÍÂÅ(𝕙$) = 1, 𝑟ÍÂÅ(𝕙&) = 1, 𝑟ÍÂÅ(𝕡') = 0º, 𝑡ÍÂÅ = 0	
𝑠&�: 𝒓ÍÂ+ = ¹𝑟ÍÂ+(𝕙$) = 1, 𝑟ÍÂ+(𝕙&) = 1, 𝑟ÍÂ+(𝕡') = 0º, 𝑡ÍÂ+ = 1	
𝑠&�: 𝒓ÍÂ, = ¹𝑟ÍÂ,(𝕙$) = 1, 𝑟ÍÂ,(𝕙&) = 1, 𝑟ÍÂ,(𝕡') = 0º, 𝑡ÍÂ, = 2	
𝑠&-: 𝒓ÍÂ. = ¹𝑟ÍÂ.(𝕙$) = 1, 𝑟ÍÂ.(𝕙&) = 1, 𝑟ÍÂ.(𝕡') = 1º, 𝑡ÍÂ. = 0	
𝑠&/: 𝒓ÍÂ0 = ¹𝑟ÍÂ0(𝕙$) = 1, 𝑟ÍÂ0(𝕙&) = 1, 𝑟ÍÂ0(𝕡') = 1º, 𝑡ÍÂ0 = 1	
𝑠&1: 𝒓ÍÂ2 = ¹𝑟ÍÂ2(𝕙$) = 1, 𝑟ÍÂ2(𝕙&) = 1, 𝑟ÍÂ2(𝕡') = 1º, 𝑡ÍÂ2 = 2	
	
where	
	

𝑡 = ¦

0, 𝑛𝑜	𝑏𝑟𝑖𝑑𝑔𝑒
1, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
2, 𝑠𝑖𝑛𝑔𝑙𝑒	𝑎𝑛𝑎𝑝ℎ𝑎𝑠𝑒	𝐼𝐼	𝑏𝑟𝑖𝑑𝑔𝑒
3, 𝑑𝑜𝑢𝑏𝑙𝑒	𝑏𝑟𝑖𝑑𝑔𝑒

	

	
Note	that	there	are	no	states	for	unbalanced	patterns	in	no	bridge	tetrads	or	balanced	patterns	in	
double	bridge	tetrads;	this	is	because	if	the	tetrad	is	in	the	no	bridge	configuration,	then	none	of	the	
patterns	associated	with	the	tetrad	can	be	unbalanced,	and,	similarly,	if	the	tetrad	is	in	the	double	
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bridge	configuration,	then	none	of	the	patterns	associated	with	the	tetrad	can	be	balanced,	so	these	
combinations	are	impossible	and	hence	not	included	in	the	statespace.	The	number	of	states	–	or,	
equivalently,	the	size	of	the	statespace	–	will	henceforth	be	denoted	𝔰;	in	the	example	above	𝔰 = 18.	
In	the	main	program,	the	statespace	is	generated	automatically	in	the	class	Karyotype	method	
generate_statespace.	
	 Similarly	to	theorem	6,	we	can	now	describe	the	basic	structure	of	theorem	7	as	consisting	of	
three	distinct	parts:	a	stochastic	process	with	one	transition	matrix	for	each	interval	gives	the	
conditional	state	probability	distribution;	conditioning	on	the	number	of	chiasma	events	in	each	
intervals	then	gives	the	unconditional	state	probability	distribution;	and	weighting	the	
unconditional	state	probability	distribution	appropriately	finally	extracts	the	information	of	interest.	
As	before,	I	will	first	give	the	theorem	in	full	for	easier	reference,	before	providing	a	proof.	
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2.3.11  Theorem 7: Recombination in paracentric heterokaryotypes with 

linear meiosis 
	
Let	the	statespace	be	as	defined	above.	The	probability	of	observing	a	gamete	with	recombination	
pattern	r	for	a	paracentric	inversion	heterokaryotype	with	linear	meiosis	is	now	given	by	
	

Pr¹𝑹çpÌptè²Ì¬t	¥¬èpÌ = 𝒓º = 𝒗𝒘𝒓
¤ 	

	
where	
	

𝒘𝒓[𝑖] =

⎩
⎪
⎨

⎪
⎧2, 𝒓Íþ = 𝒓; 𝜑¿𝒓ÍþÀ = 1; 𝑡Íþ = 1
0, 𝒓Íþ = 𝒓; 𝜑¿𝒓ÍþÀ = 0; 𝑡Íþ = 1
1, 𝒓Íþ = 𝒓; 𝑡Íþ ≠ 1
0, 𝒓Íþ ≠ 𝒓

							𝑓𝑜𝑟	𝑖 = 0,1,2… 𝔰− 1	

𝜑(𝒓) =

⎩
⎪
⎨

⎪
⎧1, s 𝑟(𝕙¬)	𝑖𝑠	𝑒𝑣𝑒𝑛

𝔡H𝔥)&

¬h𝔡

0, s 𝑟(𝕙¬)	𝑖𝑠	𝑜𝑑𝑑
𝔡H𝔥)&

¬h𝔡

	

𝒗 = s s …
u

DÂh$

s 𝔻(𝑥$, 𝑥& …𝑥𝔫)&)
u

D𝔫ÃÂh$

u

D�h$

𝒗D�,DÂ…D𝔫ÃÂ 	

𝔻(𝑥$, 𝑥& …𝑥𝔫)&) = 𝝅Ç 𝑫𝕕](𝑥C)
𝔡)&

Ch$

Ë𝑸&)ê Ç   𝑫𝕙](𝑥C)
𝔡H𝔥)&

Ch𝔡

Ë𝑸&)ê Ç   𝑫𝕡](𝑥C)
𝔡H𝔥H𝔭)&

Ch𝔡H𝔥

ËÇ   𝑫𝕣](𝑥C)
𝔫)&

Ch𝔡H𝔥H𝔭

Ë𝟏¤ 

𝝅 = (𝜋$ 𝜋& 𝜋' … 𝜋d)	

𝜋¥ =
∑ 𝛾ed
eh¥

∑ (𝑞 + 1)𝛾ed
eh$

				𝑓𝑜𝑟	𝑙 = 0,1,2…𝑚	

𝑸[𝑖, 𝑗] = 𝜋z					𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑚	

𝒗𝒙𝟎,𝒙𝟏…𝒙𝖓Ã𝟏 = 𝒗𝟎,𝟎,…,𝟎 � 𝑷𝕕𝑘
𝑥𝑘

𝔡−1

𝑘=0

¢Ç  𝑷𝕙𝑘
𝑥𝑘

𝔡+𝔥−1

𝑘=𝔡

ËÇ   𝑷𝕡𝑘
𝑥𝑘

𝔡+𝔥+𝔭−1

𝑘=𝔡+𝔥

Ë�   𝑷𝕣𝑘
𝑥𝑘

𝔫−1

𝑘=𝔡+𝔥+𝔭

¢ 

𝑫𝕚𝒌(0)[𝑖, 𝑗] = ®
(𝑑ClC)¬)z𝑒)±]l]

(𝑖 − 𝑗)!
𝑒)±]N], 𝑖 ≥ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
									𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑚	
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𝑫𝕚𝒌(𝑥)[𝑖, 𝑗] = s s s𝑔(𝑥 − 𝑙 − 1)𝛾e
𝑒)±𝒌(l𝒌HN])(𝑑C[lC + 𝜇C])ö

ℎ! �
ℎ
𝑙 � �

𝜇C
lC + 𝜇C

�
¥
�

lC
lC + 𝜇C

�
ö)¥d

ehz

÷

hD)¥)&

D)&

¥h$

	

+𝛿{¬�z}
𝑒)±]N](𝑑C𝜇C)D

𝑥!
𝑒)±]l](𝑑ClC)¬)z

(𝑖 − 𝑗)! 	 , 𝑓𝑜𝑟	𝑥 = 1,2,3… ; 	𝑖, 𝑗 = 0,1,2…𝑚	

𝑧 = (𝑥 − 𝑙 − 1)(𝑚 + 1)	

ℎ = 𝑖 + 1 + 𝑙 + 𝑛 + 𝑞 − 𝑗	

𝑔(𝑠) =

⎩
⎪
⎨

⎪
⎧ s 𝑔C(𝑠 − 1)𝛾)&)C

)&

ChÍ)&

, 𝑛 ≥ 𝑠 ≠ 0

1, 𝑛 = 𝑠 = 0
0, 𝑛 ≠ 0; 𝑠 = 0
0, 𝑛 < 𝑠

	

lC = 𝐸\𝐶𝕚]
UU^; 	𝜇C = 𝐸[𝑋𝕚]

U ]	

𝒗$,$,…,$[𝑗] = 0
1, 𝑟Í((𝕚¥) = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙; 𝑡Í( = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

									𝑓𝑜𝑟	𝑗 = 0,1,2… 𝔰− 1	

	

𝑷𝕕𝒌[𝑖, 𝑗] = x
1
2 , 𝜃(𝑖, 𝑗, 𝑘) = 1; 𝑡Íþ = 𝑡Í( = 0	

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
								

				𝑓𝑜𝑟	𝑘 = 0,2,3…𝔡 − 1; 𝑖, 𝑗 = 0,1,2… 𝔰− 1	

	

𝑷𝕙𝒌[𝑖, 𝑗] =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
1/2, 𝜃(𝑖, 𝑗, 𝑘) = 1;	𝑡Íþ = 0; 𝑡Í( = 1

1/4, 𝜃(𝑖, 𝑗, 𝑘) = 1; 𝜑 �𝒓Í(� = 1; 𝑡Íþ = 1; 𝑡Í( = 0
1/4, 𝜃(𝑖, 𝑗, 𝑘) = 1;	𝑡Íþ = 1; 𝑡Í( = 1

1/4, 𝜃(𝑖, 𝑗, 𝑘) = 1; 	𝜑 �𝒓Í(� = 0; 𝑡Íþ = 1; 𝑡Í( = 3
1/2, 𝜃(𝑖, 𝑗, 𝑘) = 1;	𝑡Íþ = 3; 𝑡Í( = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

		

					𝑓𝑜𝑟	𝑘 = 𝔡 + 1, 𝔡 + 2…𝔡 + 𝔥 − 1; 𝑖, 𝑗 = 0,1,2… 𝔰− 1	
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𝑷𝕡𝒌[𝑖, 𝑗] =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
1/2, 𝜃(𝑖, 𝑗, 𝑘) = 1;	𝑡Íþ = 𝑡Í( = 0

1/2, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙	; 𝑡Íþ = 𝑡Í( = 1

1/2, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙; 𝑡Íþ = 1;	𝑡Í( = 2

1/4, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 1;𝜃(𝑖, 𝑗, 𝑘) = 1; 𝑡Íþ = 𝑡Í( = 1

1/4, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 1;𝜃(𝑖, 𝑗, 𝑘) = 1; 𝑡Íþ = 1; 𝑡Í( = 2

1, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙	; 𝑡Íþ = 2; 𝑡Í( = 1

1/2, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 1; 	𝜃(𝑖, 𝑗, 𝑘) = 1	; 𝑡Íþ = 2; 𝑡Í( = 1

1, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙	; 𝑡Íþ = 𝑡Í( = 3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

𝑓𝑜𝑟	𝑘 = 𝔡 + 𝔥, 𝔡 + 𝔥 + 1…𝔡 + 𝔥 + 𝔭 − 1; 𝑖, 𝑗 = 0,1,2… 𝔰− 1	

	

𝑷𝕣𝒌[𝑖, 𝑗] =

⎩
⎨

⎧ 1, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙; 𝑡Íþ = 𝑡Í(
1/2, 𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 1;𝜃(𝑖, 𝑗, 𝑘) = 1; 𝑡Íþ = 𝑡Í(
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

𝑓𝑜𝑟	𝑘 = 𝔡 + 𝔥 + 𝔭, 𝔡 + 𝔥 + 𝔭 + 1…𝔫 − 1; 𝑖, 𝑗 = 0,1,2… 𝔰− 1	

	

𝜃(𝑖, 𝑗, 𝑘) = 0
1, 𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑙 ≠ 𝑘; 𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥) = 0	𝑓𝑜𝑟	𝑙 > 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

	

Proof:	
Consider	a	stochastic	process	{𝑆(𝑥$, 𝑥&, 𝑥' …𝑥𝔫)&)}(D�,DÂ,DÅ…D𝔫ÃÂ)∈ℤ�� 	where	𝑆(𝑥$, 𝑥&, 𝑥' …𝑥𝔫)&)	
represents	the	state	of	a	chromatid	(recombination	pattern	and	tetrad	configuration)	when	there	are	
x0	chiasma	events	in	𝕚$,	x1	chiasma	events	in	𝕚&,	etc,	so	that		
	

𝑆(𝑥$, 𝑥&, 𝑥' …𝑥𝔫)&) = 𝑗, 𝑡ℎ𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	𝑖𝑠	𝑖𝑛	𝑠𝑡𝑎𝑡𝑒	𝑠z; 	𝑓𝑜𝑟	𝑗 = 0,1,2… 𝔰− 1	
	
If	we	now	define	the	vector	𝒗$,$,…,$	so	that	

	
𝒗$,$,…,$[𝑗] = Pr{𝑆(0,0, … ,0) = 𝑗} 							𝑗 = 0,1,2… 𝔰− 1	

	
and	the	matrices	𝑷𝕚], 𝑘 = 0,1,2…𝔫 − 1; 	𝕚 = 𝕕, 𝕙, 𝕡, 𝕣,	so	that	
	

𝑷𝕚][𝑖, 𝑗] = Pr¹𝑆(𝑥$, 𝑥&, … , 𝑥C + 1, 0,0… ,0) = 𝑗û𝑆¿(𝑥$, 𝑥&, … , 𝑥C, 0,0… ,0)À = 𝑖º	

𝑓𝑜𝑟		𝑥$, 𝑥& …𝑥C = 0,1,2… ; 	𝑖, 𝑗 = 0,1,2… 𝔰− 1	

	
then	using	the	same	argument	as	in	the	proof	for	theorem	6,	we	get	
	

𝒗D�,DÂ,…,D𝔫ÃÂ = 𝒗$,$…$𝑷𝕚�
D�𝑷𝕚Â

DÂ …𝑷𝕚𝔫ÃÂ
D𝔫ÃÂ			

	
where	
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𝒗D�,DÂ,…,D𝔫ÃÂ[𝑗] = Pr{𝑆(𝑥$, 𝑥&, … , 𝑥𝔫)&) = 𝑗} 				𝑓𝑜𝑟		𝑗 = 0,1,2… 𝔰− 1;	𝑥$, 𝑥&, … , 𝑥𝔫)& = 0,1,2…	
	
i.e.	the	𝑷𝕚𝒌 	matrices	are	transition	matrices	in	the	same	sense	that	the	𝑻𝕚	matrices	are	in	theorem	6.	
To	get	a	more	intuitive	understanding	of	these	matrices,	note	that	the	element	i,j	in	each	𝑷𝕚𝒌 	gives	
the	probability	of	observing	a	chromatid	with	recombination	pattern	𝒓Í( 	in	a	tetrad	with	
configuration	𝑡Í( 	when	considering	an	additional	chiasma	event	in	interval	𝕚C,	given	that	the	
chromatid	had	recombination	pattern	𝒓Íþ 	and	was	in	a	tetrad	with	configuration	𝑡Íþ 	before	
considering	that	chiasma	event,	assuming	that	there	are	no	chiasma	events	in	any	intervals	with	
index	higher	than	k.	You	might	(erroneously)	conclude	from	this	that	the	validity	of	the	theorem	
rests	on	the	rather	restrictive	assumption	that	the	chiasma	events	occur	in	a	strict	temporal	
sequence	from	left	to	right,	so	that,	say,	no	chiasma	events	can	occur	in	𝕚$	at	a	time	later	than	the	
occurrence	of	any	chiasma	event	in	𝕚&.	To	see	why	this	is	not	so,	imagine	that	all	the	chiasma	events	
in	our	region	of	interest	have	already	occurred,	in	whatever	temporal	sequence,	and	that	we	after-
the-fact	assign	to	a	miniscule	daemon	the	task	of	calculating	the	state	probability	distribution	given	
the	number	of	chiasma	events	in	each	interval.	Being	miniscule,	our	daemon	decides	to	approach	
this	task	as	a	journey	rightwards	from	the	leftmost	to	the	rightmost	boundary	of	the	region	of	
interest,	during	which	he	abides	by	the	following	procedure:	
	
1.	At	the	beginning	of	the	journey,	assume	that	no	chiasma	events	have	occurred	in	any	of	the	
	 intervals,	and	estimate	the	state	probability	distribution	accordingly	
2.	Every	time	a	chiasma	event	is	encountered,	update	the	estimate	by	performing	a	linear	
	 transformation	on	the	former	estimate	using	the	transition	matrix	for	the	current	interval.		
3.	At	the	end	of	the	journey,	report	the	final	estimate.	
	
The	‘initial	estimate’	of	the	conditional	state	probability	distribution	in	point	1	is	by	definition	
𝒗$,$,…,$,	and	performing	in	sequence	x0	linear	transformation	using	𝑷𝕚� ,	then	x1	linear	
transformations	using	𝑷𝕚Â ,	and	so	on,	results	in	a	‘final	estimate’	𝒗$,$…$𝑷𝕚𝟎

D�𝑷𝕚𝟏
DÂ …𝑷𝕚𝖓Ã𝟏

D𝔫ÃÂ 	which	is	equal	
to	𝒗D�,DÂ,…,D𝔫ÃÂ 	regardless	of	the	temporal	sequence	in	which	the	chiasma	events	originally	occurred.	
	 This	thought	experiment	also	provides	an	explanation	as	to	why	we	without	losing	
information	can	simplify	the	statespace	by	removing	the	states	with	unbalanced	recombination	
patterns	that	also	show	recombination	in	any	of	the	intervals	rightwards	of	the	inverted	region.	
Once	the	daemon	has	left	the	inverted	region,	it	has	already	determined	which	chromatids	will	be	
unbalanced	(because	no	number	of	chiasma	events	outside	of	the	inverted	region	can	‘rebalance’	an	
unbalanced	chromatid),	and	the	only	relevant	additional	information	about	those	chromatids	is	for	
our	purpose	the	configurations	of	their	associated	tetrads.	The	transition	matrices	for	intervals	
rightwards	of	the	inverted	region	therefore	perform	the	appropriate	transformation	on	the	tetrad	of	
states	of	with	unbalanced	patterns,	but	leaves	the	pattern	itself	unchanged	(e.g.	the	condition	
𝜑¿𝒓ÍþÀ = 𝜑 �𝒓Í(� = 0; 	𝑟Íþ(𝕚¥) = 𝑟Í((𝕚¥)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙	; 𝑡Íþ = 2; 𝑡Í( = 1	in	𝑷𝕡𝒌).	
	 The	Karyotype	method	calculate_transition_matrices	in	the	main	program	generates	the	𝑷𝕚𝒌 	
matrices	by	looping	over	all	states	in	the	statespace	(state_from	in	the	excerpt	below),	and	
checking	its	tetrad	configuration	(if state_from[-1] == 0:,	etc),	whether	it	is	balanced	(if 
is_balanced(state_from):)	and	whether	it	shows	recombination	in	the	current	interval	(if 
state_from[i] == False:).	The	states	are	stored	as	lists	of	length	𝔫 + 1	where	the	first	𝔫	elements	
indicate	recombination	(True)	or	nonrecombination	(False)	for	each	of	the	𝔫	intervals,	and	the	last	
element	indicate	the	tetrad	configuration	as	a	number	from	0	to	3	(see	the	definition	of	the	
statespace	above).	By	considering	the	effect	of	each	the	four	possible	chromatid	involvement	pairs	in	
the	additional	chiasma	event,	the	four	possible	states	(state_to1,	state_to2,	etc)	to	which	the	original	
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state	can	be	transformed	are	found	and	assigned	an	equal	probability	of	0.25	(because	of	the	
assumption	of	no	chromatid	interference).	Each	state’s	unique	index	is	then	found	(from_index = 
statespace.index(state_from),	etc),	and	used	to	set	the	element	of	the	matrix	to	the	appropriate	
value.	The	excerpt	below	show	the	part	of	the	loop	that	calculates	a	matrix	for	interval	with	index	i 
in	the	inverted	region	(the	matrices	for	the	other	regions	are	handled	separately;	i in	the	code	is	
equivalent	to	k	in	the	theorem).	The	first	line	(if sum(state_from[i+1:intervals_n]) == 0:)	tell	
the	program	to	ignore	states	that	show	recombination	in	intervals	to	the	right	of	i.	In	the	case	of	a	
state_from	with	configuration	no	bridge,	the	procedure	is	relatively	straightforward:	the	state_from	
chromatid	must	necessarily	be	balanced,	the	new	configuration	will	always	be	single	anaphase	1	
bridge	(figure	2.7),	and	the	new	chromatid	will	show	recombination	or	non-recombination	with	
equal	probability,	regardless	of	whether	the	original	chromatid	(associated	with	state_from)	showed	
recombination	(see	matrix	P	in	the	proof	of	Mather’s	equation,	section	2.1.7).	The	case	of	a	
state_from	with	anaphase	1	bridge	configuration	(elif state_from[-1] == 1:)	is	more	
complicated,	but	it	can	in	general	be	solved	through	the	following	line	of	thinking.	First,	consider	
whether	or	not	the	chromatid	is	balanced	(if is_balanced(state_from):).	This	determines	
whether	or	not	the	chromatid	is	involved	in	the	bridge.	Then	consider	what	happens	with	the	
recombination	status	and	the	tetrad	configuration	for	each	of	the	four	possible	chromatid	pair	
involvements	(use	figure	2.8	as	aid).	The	transition	probabilities	for	the	other	tetrad	configurations	
and	regions	are	found	in	the	same	way.	The	comment	after	each	assignment	of	recombination	status	
to	the	new	state	(e.g.	#1	in	state_to1[i] = True #1)	indicate	which	of	the	conditions	listed	in	the	
proof	that	corresponds	to	that	transition,	numbered	so	that	the	top	entry	is	number	1,	and	lower	
entries	have	increasingly	higher	numbers.	For	example,	the	line	state_to1[i] = True #1	below,	
indicate	that	this	transition	corresponds	to	the	first	condition	for	a	matrix	in	the	inverted	region,	
which	is	
	

𝜃(𝑖, 𝑗, 𝑘) = 1;	𝑡Íþ = 0; 𝑡Í( = 1	
	
The	definitions	of	𝑷𝕚𝒌 	given	in	the	proof	can	therefore	be	thought	as	condensed	summaries	of	the	
calculations	in	the	calculate_transition_matrices	method,	which	are	more	intuitive,	but	less	concise.		

The	algorithm	can	easily	be	adapted	to	account	for	chromatid	interference	as	well	as	
chiasma	interference;	simply	expand	the	statespace	to	include	a	binary	indicator	of	whether	or	not	
the	chromatid	associated	with	each	state	was	involved	in	the	previous	chiasma	event,	and	multiply	
each	transition	probability	with	an	appropriate	factor	based	on	this	information.	

… 
if sum(state_from[i+1:intervals_n]) == 0: 
 if state_from[-1] == 0: # no bridge 
  state_to1 = copy.copy(state_from) 
  state_to2 = copy.copy(state_from) 
  state_to1[i] = True #1 
  state_to2[i] = False #1 
  state_to1[-1] = 1 
  state_to2[-1] = 1 
  from_index = statespace.index(state_from) 
  to_index1 = statespace.index(state_to1) 
  to_index2 = statespace.index(state_to2) 
  matrix[from_index][to_index1] = 0.5 
  matrix[from_index][to_index2] = 0.5 
 elif state_from[-1] == 1: # single a1 bridge 
  state_to1 = copy.copy(state_from) 
  state_to2 = copy.copy(state_from) 
  state_to3 = copy.copy(state_from) 
  state_to4 = copy.copy(state_from) 
 
  if is_balanced(state_from): #balanced 
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   if state_from[i] == False: 
    state_to1[i] = False #2 
    state_to1[-1] = 0 
 
    state_to2[i] = True #3 
    state_to2[-1] = 1 
 
    state_to3[i] = False #3 
    state_to3[-1] = 1 
 
    state_to4[i] = True #4 
    state_to4[-1] = 3 
   else: 
    state_to1[i] = True #2 
    state_to1[-1] = 0 
 
    state_to2[i] = True #3 
    state_to2[-1] = 1 
 
    state_to3[i] = False #3 
    state_to3[-1] = 1 
 
    state_to4[i] = False #4 
    state_to4[-1] = 3 
  
  else: #unbalanced 
   if state_from[i] == False: 
    state_to1[i] = True #2 
    state_to1[-1] = 0 
  
    state_to2[i] = True #3 
    state_to2[-1] = 1 
  
    state_to3[i] = False #3 
    state_to3[-1] = 1 
  
    state_to4[i] = False #4 
    state_to4[-1] = 3 
  
   else: 
    state_to1[i] = False #2 
    state_to1[-1] = 0 
  
    state_to2[i] = False #3 
    state_to2[-1] = 1 
  
    state_to3[i] = True #3 
    state_to3[-1] = 1 
  
    state_to4[i] = True #4 
    state_to4[-1] = 3 
 
  from_index = statespace.index(state_from) 
  to_index1 = statespace.index(state_to1) 
  to_index2 = statespace.index(state_to2) 
  to_index3 = statespace.index(state_to3) 
  to_index4 = statespace.index(state_to4) 
 
  matrix[from_index][to_index1] = 0.25 
  matrix[from_index][to_index2] = 0.25 
  matrix[from_index][to_index3] = 0.25 
  matrix[from_index][to_index4] = 0.25 
 
 
 elif state_from[-1] == 3: # double bridge 
  state_to1 = copy.copy(state_from) 
  state_to2 = copy.copy(state_from) 
  state_to1[i] = True #5 
  state_to1[-1] = 1 
  state_to2[i] = False #5 
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  state_to2[-1] = 1 
 
  from_index = statespace.index(state_from) 
 
  to_index1 = statespace.index(state_to1) 
  to_index2 = statespace.index(state_to2) 
 
  matrix[from_index][to_index1] = 0.5 
  matrix[from_index][to_index2] = 0.5 

 
	 If	there	are	no	chiasma	events	in	any	of	the	intervals,	then	there	can	be	no	chromatids	
showing	recombination	in	any	of	the	intervals,	and	all	tetrads	must	be	in	configuration	no	bridge.	
Hence,	
	
	

𝒗𝟎,𝟎,…,𝟎[𝑗] = 0
1, 𝑟Í((𝕚¥) = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑙; 𝑡Í( = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

								𝑓𝑜𝑟	𝑗 = 0,1,2… 𝔰− 1	

	
and	
	

𝒗𝒙𝟎,𝒙𝟏,…,𝒙𝖓Ã𝟏 = 𝒗𝟎,𝟎…𝟎𝑷𝕚𝟎
D�𝑷𝕚𝟏

DÂ …𝑷𝕚𝖓Ã𝟏
D𝔫ÃÂ 	

	
Now	that	we	know	how	to	calculate	𝒗𝒙𝟎,𝒙𝟏,…,𝒙𝖓Ã𝟏 ,	we	can	get	the	unconditional	state	probability	
distribution,	𝒗,	by	conditioning	on	the	number	of	chiasma	events	in	each	interval.	That	is,	
	

𝒗 = s s …
u

DÂh$

s Pr	{𝑋𝕚� = 𝑥$, 𝑋𝕚Â = 𝑥&, … , 𝑋𝕚𝔫ÃÂ = 𝑥𝔫)&, }
u

D𝔫ÃÂh$

u

D�h$

𝒗𝒙𝟎,𝒙𝟏…𝒙𝖓Ã𝟏 	

	
My	next	goal	is	therefore	to	show	that	
	

Pr¹𝑋𝕚� = 𝑥$, 𝑋𝕚Â = 𝑥&, … , 𝑋𝕚𝔫ÃÂ = 𝑥𝔫)&, º = 𝔻(𝑥$, 𝑥& …𝑥𝔫)&)	

= 𝝅Ç 𝑫𝕕](𝑥C)
𝔡)&

Ch$

Ë𝑸&)ê Ç   𝑫𝕙](𝑥C)
𝔡H𝔥)&

Ch𝔡

Ë𝑸&)ê Ç   𝑫𝕡](𝑥C)
𝔡H𝔥H𝔭)&

Ch𝔡H𝔥

ËÇ   𝑫𝕣](𝑥C)
𝔫)&

Ch𝔡H𝔥H𝔭

Ë𝟏¤	

	

where	
	

𝑫𝕚𝒌(0)[𝑖, 𝑗] = ®
(𝑑ClC)¬)z𝑒)±]l]

(𝑖 − 𝑗)!
𝑒)±]N], 𝑖 ≥ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
							𝑖, 𝑗 = 0,1,2…𝑚	

𝑫𝕚𝒌(𝑥)[𝑖, 𝑗] = s s s𝑔(𝑥 − 𝑙 − 1)𝛾e
𝑒)±𝒌(l𝒌HN])(𝑑C[lC + 𝜇C])ö

ℎ! �
ℎ
𝑙 � �

𝜇C
lC + 𝜇C

�
¥
�

lC
lC + 𝜇C

�
ö)¥d

ehz

÷

hD)¥)&

D)&

¥h$

	

+𝛿{¬�z}
𝑒)±]N](𝑑C𝜇C)D

𝑥!
𝑒)±]l](𝑑ClC)¬)z

(𝑖 − 𝑗)! 	 , 𝑓𝑜𝑟	𝑥 = 1,2,3… ; 	𝑖, 𝑗 = 0,1,2…𝑚					

𝑧 = (𝑥 − 𝑙 − 1)(𝑚 + 1)	
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ℎ = 𝑖 + 1 + 𝑙 + 𝑛 + 𝑞 − 𝑗	

𝑔(𝑠) =

⎩
⎪
⎨

⎪
⎧ s 𝑔C(𝑠 − 1)𝛾)&)C

)&

ChÍ)&

, 𝑛 ≥ 𝑠 ≠ 0

1, 𝑛 = 𝑠 = 0
0, 𝑛 ≠ 0; 𝑠 = 0
0, 𝑛 < 𝑠

	

	
Element	i,j	of	the	𝑫𝕚𝒌(𝑥), 𝑘 = 0,1,2…𝔫 − 1; 𝑥 = 0,1,2…	matrices	gives	the	probability	of	observing	x	
chiasma	events	in	𝕚C	and	phase	j	at	the	right	boundary	of	𝕚C	given	phase	i	at	the	left	boundary	of	𝕚C	
under	the	general	chiasma	interference	model,	i.e.	
	

𝑫𝕚𝒌(𝑥)[𝑖, 𝑗] = Pr	{𝑋𝕚𝒌 = 𝑥, 𝑄𝕚𝒌𝒓 = 𝑗|𝑄𝕚𝒌𝒍 = 𝑖}	
	
𝑫𝕚𝒌(0)	is	therefore	equivalent	to	𝑯𝕚𝒌 	in	theorem	1.	My	expression	for	𝑫𝕚𝒌(𝑥)[𝑖, 𝑗], 𝑥 = 1,2,3…	under	
the	general	interference	model	builds	on	the	corresponding	expression	for	homokaryotypes	under	
the	combined	counting	model	(𝛾d = 1; 𝛾e = 0	𝑓𝑜𝑟	𝑞 ≠ 𝑚)	in	Copenhaver	et	al.	(2002).	Using	my	
notation	and	including	the	inversion	factors	(d;	not	present	in	Copenhaver	et	al.),	the	latter	is	given	
by	
	

𝑫𝕚𝒌(𝑥)[𝑖, 𝑗] = s
𝑒)±](l]HN])(𝑑ClC + 𝑑C𝜇C)ö

ℎ! �
ℎ
𝑙 �

D)&

¥h$

�
𝜇C

𝜇C + lC)
�
¥
�

lC
𝜇C + lC

�
ö)¥

	

+𝛿{¬�z}
𝑒)±]N](𝑑C𝜇C)D

𝑥!
𝑒)±]l](𝑑ClC)¬)z

(𝑖 − 𝑗)! 	

	
where	
	

ℎ = 𝑖 + 1 + 𝑙 + (𝑚 + 1)(𝑥 − 𝑙 − 1) +𝑚 − 𝑗	
	
and	is	derived	as	follows.	If	there	are	in	total	x	chiasma	events	in	the	interval,	then	between	0	and	x	
of	them	must	be	𝑋Uevents.	If	there	are	𝑙	(0 ≤ 𝑙 < 𝑥)	𝑋U	events	in	the	interval,	then	the	total	number	
of	𝐶	events	(called	Poisson	events	in	Copenhaver	et	al.)	must	be	h	=	(𝑖	𝑂UUevents	before	the	first	𝑋UU	
event)	+	(the	first	𝑋UU	event)	+	(𝑙	𝑋U	events	[in	no	particular	spatial	order])	+	(𝑥 − 𝑙 − 1	times	𝑚+ 1	
additional	𝐶UUevents)	+	(the	final	𝑚− 𝑗	𝑂UU	events	so	as	to	end	up	in	phase	j	at	the	right	boundary),	in	
total	ℎ = 𝑖 + 1 + 𝑙 + (𝑚 + 1)(𝑥 − 𝑙 − 1) +𝑚 − 𝑗		events.	We	can	therefore	get	an	expression	for	
Pr ¶𝑋𝕚𝒌 = 𝑥, 𝑄𝕚𝒌𝒓 = 𝑗·𝑄𝕚𝒌𝒍 = 𝑖¸	by	summing	over	all	possible	values	of	𝑙,	as	such:	
	

Pr ¶𝑋𝕚𝒌 = 𝑥, 𝑄𝕚𝒌𝐫 = 𝑗·𝑄𝕚𝒌𝐥 = 𝑖¸ = sPr	{𝐶𝕚𝒌 = ℎ, 𝑋𝕚𝒌
U = 𝑙}

D)&

¥h$

+ 𝛿{¬�z}
𝑒)±]N](𝑑C𝜇C)D

𝑥!
𝑒)±]l](𝑑ClC)¬)z

(𝑖 − 𝑗)! 	

	
The	final	term	takes	into	account	the	special	case	where	all	the	x	chiasma	events	are	𝑋U	events	
(which	means	that	there	are	no	𝑋UU	events).	This	term	is	non-zero	only	if	𝑖 ≥ 𝑗	(otherwise	there	must	
be	at	least	one	𝑋UU	events,	which	is	a	contradiction),	and	is	in	that	case	equal	to	the	probability	of	
observing	x	𝑋U	events	and	𝑖 − 𝑗	𝑂UU	events,	which	is	just	the	Poisson	probabilities	multiplied	
(Copenhaver	et	al.	handle	this	special	case	differently).	Since	Pr¹𝐶𝕚𝒌 = ℎ, 𝑋𝕚𝒌

U = 𝑙º = Pr¹𝐶𝕚𝒌 =
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ℎº Pr	{𝑋𝕚𝒌
U = 𝑙|𝐶𝕚𝒌 = ℎ},	and	Pr¹𝐶𝕚𝒌 = ℎº	and	Pr	{𝑋𝕚𝒌

U = 𝑙|𝐶𝕚𝒌 = ℎ}	are	given	by	the	Poisson	and	
binomial	distributions,	respectively,	we	get	
	

Pr¹𝐶𝕚𝒌 = ℎ, 𝑋𝕚𝒌
U = 𝑙º = Pr¹𝐶𝕚𝒌 = ℎº Pr¹𝑋𝕚𝒌

U = 𝑙û𝐶𝕚𝒌 = ℎº	

=
𝑒)±](l]HN])(𝑑ClC + 𝑑C𝜇C)ö

ℎ! �
ℎ
𝑙 � �

𝜇C
𝜇C + lC)
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¥
�

lC
𝜇C + lC

�
ö)¥

	

	
where	
	

ℎ = 𝑖 + 1 + 𝑙 + (𝑚 + 1)(𝑥 − 𝑙 − 1) +𝑚 − 𝑗	
	
	 For	the	general	model,	the	number	of	𝑂UU	events	between	each	𝑋UU	event	is	drawn	from	a	
probability	distribution,	so	we	can	no	longer	assume	that	the	(𝑚 + 1)(𝑥 − 𝑙 − 1) − 𝑡ℎ	𝐶UU	event	after	
the	first	𝑋UU	event	will	be	the	(𝑥 − 𝑙 − 1) − 𝑡ℎ	𝑋UU	event	in	the	interval.	To	get	around	this	problem,	I	
first	define	a	function	𝑔(𝑠)	that	gives	the	probability	that	the	n-th	𝐶UUevent	after	an	𝑋UU	event	is	the	
s-th	𝑋UU	event	after	that	𝑋UU	event.	This	is	achieved	by	defining	the	base	case	𝑔$(0) = 1,	which	means	
that	the	zeroth	𝐶UU	event	is	the	zeroth	𝑋UU	event	with	probability	1,	and	then	recursively	conditioning	
on	which	𝑋UU	event	is	the	last	before	the	s-th,	i.e.	
	

𝑔(𝑠) =

⎩
⎪
⎨

⎪
⎧ s 𝑔C(𝑠 − 1)𝛾)&)C

)&

ChÍ)&

, 𝑛 ≥ 𝑠 ≠ 0

1, 𝑛 = 𝑠 = 0
0, 𝑛 ≠ 0; 𝑠 = 0
0, 𝑛 < 𝑠

	

	
Note	the	difference	between	𝑔(𝑠)	and	𝑏	from	theorem	1:	the	former	gives	the	probability	that	the	
n-th	𝐶UUevent	after	an	𝑋UU	event	is	strictly	the	s-th	𝑋UU	event	after	that	𝑋UU	event,	whereas	the	latter	
gives	the	probability	that	the	n-th	𝐶UUevent	after	an	𝑋UU	event	is	any	𝑋UU	event.	In	the	main	program,	
the	𝑔(𝑠)	values	are	computed	using	a	dynamic	programming	approach	and	stored	in	a	two-
dimensional	array	for	easy	reference.	
	 Now	that	we	have	an	expression	for	𝑔(𝑥 − 𝑙 − 1),	i.e.	the	probability	that	the	n-th	𝐶UU	event	
is	the	last	𝑋UU	event	in	the	interval,	we	can	sum	over	all	possible	values	of	n	weighted	by	𝑔(𝑥 − 𝑙 −
1),	and	then	(in	a	nested	sum)	over	all	possible	phases	q	after	the	last	𝑋UU	event	in	the	interval	
weighted	by	𝛾e	(from	the	intervening	𝑂UU	events	distribution).	The	resulting	values	for	h,	the	total	
number	of	𝐶	events	in	the	interval	,	is	now	h		=	(𝑖	𝑂UUevents	before	the	first	𝑋UU	event)	+	(the	first	𝑋UU	
event)	+	(𝑙	𝑋U	events	[in	no	particular	spatial	order])	+	(n	additional	𝐶UUevents	up	to	and	including	
the	last	𝑋UU	event	)	+	(the	final	q	-	j	𝑂UU	events	so	as	to	end	up	in	phase	j	at	the	right	boundary),	in	
short	
	

ℎ = 𝑖 + 1 + 𝑙 + 𝑛 + 𝑞 − 𝑗	
	
The	final	expression	for	Pr ¶𝑋𝕚𝒌 = 𝑥, 𝑄𝕚]= = 𝑗·𝑄𝕚]> = 𝑖¸ = 𝑫𝕚𝒌(𝑥)[𝑖, 𝑗]	for	the	general	model	is	hence	
given	by	
	

𝑫𝕚𝒌(𝑥)[𝑖, 𝑗] = s s s𝑔(𝑥 − 𝑙 − 1)𝛾e
𝑒)±𝒌(l𝒌HN])(𝑑C[lC + 𝜇C])ö

ℎ! �
ℎ
𝑙 � �

𝜇C
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�
¥
�
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lC + 𝜇C

�
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+𝛿{¬�z}
𝑒)±]N](𝑑C𝜇C)D

𝑥!
𝑒)±]l](𝑑ClC)¬)z

(𝑖 − 𝑗)! , 𝑓𝑜𝑟	𝑥 = 1,2,3… ; 	𝑖, 𝑗 = 0,1,2…𝑚							

𝑧 = (𝑥 − 𝑙 − 1)(𝑚 + 1)	

ℎ = 𝑖 + 1 + 𝑙 + 𝑛 + 𝑞 − 𝑗	

	
	 Using	an	induction	argument	similar	to	the	one	in	theorem	1	gives:	
	

Pr¹𝑋𝕚� = 𝑥$, 𝑄𝕚�= = 𝑗º = �𝝅𝑫𝕚𝟎(𝑥$)� [𝑗]	

Pr¹𝑋𝕚� = 𝑥$, 𝑋𝕚Â = 𝑥&, 𝑄𝕚Â= = 𝑗º = �𝝅𝑫𝕚𝟎(𝑥$)𝑫𝕚𝟏(𝑥&)� [𝑗]	

Pr¹𝑋𝕚� = 𝑥$, 𝑋𝕚Â = 𝑥&, … , 𝑋𝕚? = 𝑥𝕚? , 𝑄𝕚?= = 𝑗º = �𝝅𝑫𝕚𝟎(𝑥$)𝑫𝕚𝟏(𝑥&)…𝑫𝕚𝐤(𝑥A)� [𝑗]	
	
The	Q	matrix	serves	to	break	the	dependence	between	the	number	of	chiasma	events	on	either	side	
of	a	breakpoint	barrier	(if	𝛼 = 1),	as	in	theorems	5	and	6,	and	matrix	multiplication	with	the	𝟏¤ 	
column-vector	is	equivalent	to	summing	over	all	values	of	𝑄𝕚𝔫ÃÂo ,	so	
	
Pr¹𝑋𝕚� = 𝑥$, 𝑋𝕚Â = 𝑥&, … , 𝑋𝕚𝔫ÃÂ = 𝑥𝔫)&, º

= � 𝑫𝕕𝑘(𝑥𝑘)

𝔡−1

𝑘=0

¢𝑸1−𝛼 Ç  𝑫𝕙𝑘(𝑥𝑘)

𝔡+𝔥−1

𝑘=𝔡

Ë𝑸1−𝛼 Ç   𝑫𝕡𝑘(𝑥𝑘)

𝔡+𝔥+𝔭−1

𝑘=𝔡+𝔥

Ë�   𝑫𝕣𝑘(𝑥𝑘)

𝔫−1

𝑘=𝔡+𝔥+𝔭

¢ 𝟏𝑇	

	
The	final	step	is	the	weighting	of	the	vector	v.	Because	unbalanced	patterns	in	anaphase	I	tetrads	are	
retained	in	the	polar	bodies,	balanced	patterns	in	anaphase	I	tetrads	are	weighted	by	2	and	
unbalanced	patterns	in	anaphase	I	tetrads	are	weighted	by	0	(if	this	is	not	clear,	notice	that	
eliminating	unbalanced	anaphase	I	patterns	is	probabilistically	equivalent	to	turning	the	two	
unbalanced	pattern	chromatids	of	an	anaphase	I	tetrad	into	copies	(one	of	each)	of	the	two	balanced	
pattern	chromatids	in	the	same	tetrad,	and	then	drawing	randomly	(uniformly)	from	the	resulting	
four	balanced	pattern	chromatids).	So	
	

Pr¹𝑹çpÌptè²Ì¬t	¥¬èpÌ = 𝒓º = 𝒗𝒘𝒓
¤ 	

where	
	

𝒘𝒓[𝑖] =

⎩
⎪
⎨

⎪
⎧2, 𝒓Íþ = 𝒓; 𝜑¿𝒓ÍþÀ = 1; 𝑡Íþ = 1
0, 𝒓Íþ = 𝒓; 𝜑¿𝒓ÍþÀ = 0; 𝑡Íþ = 1
1, 𝒓Íþ = 𝒓; 𝑡Íþ ≠ 1
0, 𝒓Íþ ≠ 𝒓

								𝑓𝑜𝑟	𝑖 = 0,1,2… 𝔰− 1	

	
Since	all	unbalanced	gametes	are	equivalent	for	our	purposes,	these	are	lumped	together	into	the	
category	‘unbalanced’	in	the	main	program	(note,	again,	that	the	sum	of	all	unbalanced	patterns	is	
equal	to	the	sterility,	z.)	
	
QED	
	
Theorem	7	gives	the	recombination	pattern	probabilities	for	a	homokaryotype	in	the	special	case	
where	𝔡 = 𝔫,	i.e.	where	there	are	no	intervals	in	the	inverted,	proximal	or	opposite	regions.	It	is	
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therefore	more	general	than	theorem	1,	but	as	the	latter	computes	much	more	efficiently	(it	does	not	
require	a	nested	loop	over	the	number	of	chiasma	events	in	all	intervals),	it	should	be	used	
whenever	possible.	For	paracentric	inversion	heterokaryotypes	in	species	with	nonlinear	meiosis,	
meaning	that	all	chromatids	have	an	equal	chance	of	becoming	gametes,	the	sterility	and	the	
probabilities	of	observing	each	recombination	pattern	are	the	same	as	for	a	pericentric	inversion.	In	
the	following,	I	will	therefore	refer	to	inversions	in	these	two	cases	collectively	as	standard	
inversions,	for	which	I	will	calculate	recombination	patterns	using	theorem	5.	Paracentric	inversions	
in	species	with	linear	meiosis	will	be	referred	to	as	paracentric	linear	inversions,	for	which	theorem	7	
is	needed.		 	
	 The	main	program	automatically	chooses	the	appropriate	algorithm	based	on	the	user’s	
input.	All	infinite	series	expressions	considered	in	this	chapter	converges	quickly	for	realistic	
parameter	values,	and	so	can	be	approximated	with	arbitrary	accuracy	in	short	time;	all	such	
expressions	involved	in	the	simulations	discussed	in	this	thesis	have	been	estimated	with	an	error	
no	larger	than	between	10)&'	and	10)&/.		For	paracentric	linear	inversions,	the	current	version	of	
the	program	automatically	assumes	that	recombination	occur	only	in	females	(i.e.	not	in	males)	for	
all	chromosomes	(including	for	inversion	homokaryotypes	and	chromosomes	without	inversion	
polymorphism),	as	this	is	the	case	in	Drosophila	(Gethmann	1988),	which	is	one	of	the	few	groups	
that	is	known	to	possess	linear	meiosis	(Sturtevant	and	Beadle	1936,	Roberts	1976).	In	the	
remaining	chapters,	I	will	also	make	this	assumption.	
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3 A model of non-random mating 
A	commonly	used	model	of	non-random	mating	–	often	referred	to	as	the	fixed-relative	preferences	
model	–	assumes	the	following:	
	

1) The	population	is	infinitely	large	
2) Generations	are	non-overlapping	
3) Males	mate	indiscriminately,	whereas	females	mate	selectively	
4) The	relative	preference	of	a	female	with	a	given	genotype	for	a	male	with	a	given	genotype	is	

the	same	regardless	of	the	composition	of	the	population	
5) Choosiness	is	cost-free,	so	that	the	proportion	of	pairings	involving	a	given	female	genotype	

is	equal	to	that	genotype’s	frequency	before	mating,	regardless	of	preference.	
	
(e.g.	Kirkpatrick	1982,	Gomulkiewicz	and	Hastings	1990,	Servedio	and	Kirkpatrick	1997,	Servedio	
2000,	Servedio	and	Sætre	2003).	Houle	and	Kondrashov	(2002)	suggest	that	indirect	selection	on	
the	preference	loci	can	be	modelled	through	an	infinite	series	of	mate	evaluations	for	which	each	
rejection	entails	a	fixed	cost.	In	this	chapter,	I	will	use	a	similar	approach	to	derive	a	costly	mate	
choice	model	that	reduces	to	the	fixed-relative	preference	model	in	a	special	case.	It	will	be	most	
instructive	to	start	from	the	biological	interpretation	and	build	the	mathematics	bottom-up	from	
there,	as	follows.	
	 Assumptions	1,2,	and	3	above	apply.	Let	the	frequency	of	a	female	with	genotype	a	among	
females	before	mating	be	fa	and	the	frequency	of	a	male	genotype	b	among	males	before	mating	be	
mb,	and	assume	that	the	females	choose	their	mate	by	performing	a	series	of	searches,	defined	so	that	
a	single	search	ends	when	a	female	encounter	a	single	male.	Further	assume	that	each	search	entails	
a	cost	𝑐	(0 ≤ 𝑐 < 1),	that	the	probability	that	a	female	locates	a	male	of	given	genotype	after	a	single	
search	is	proportional	to	that	genotype’s	frequency	among	mating	males	(mb)	and	independent	of	
the	female’s	preference,	and	that	a	female	a	accepts	a	male	b	with	probability	𝑝pC	(0 ≤ 𝑝pC ≤
1,∑ 𝑝pCDCD > 0)	and	rejects	a	male	b	with	probability	1 − 𝑝pC ,	where	𝑝pC	is	some	function	of	the	
genotypes	of	a	and	b.	Assume	that	males	can	mate	an	unlimited	number	of	times	and	that	females	
can	mate	only	once,	so	that	if	the	female	accepts	the	male,	the	former	but	not	the	latter	is	removed	
from	the	mating	population.	This	will	be	reasonable	assumption	when	eggs	are	sufficiently	costly	to	
produce	compared	to	sperm,	or	when	gestation	is	partly	or	fully	internal.	If	a	female	rejects	a	male,	
she	will	perform	another	search,	which	is	identical	to	the	first	search	in	that	the	male	frequencies	do	
not	change	(the	female	frequencies	might	change,	but	I	assume	that	this	does	not	affect	the	
availability	of	males),	and	so	on	until	she	either	accepts	a	male,	dies	during	a	search,	or	the	mating	
season	ends	(in	which	case	she	also	dies	without	mating,	as	I	assume	non-overlapping	generations).	
The	probability	of	dying	during	a	single	search	is	proportional	to	the	cost	c	and	is	the	same	for	all	
searches,	and	the	mating	season	is	assumed	to	be	limited	to	a	maximum	total	number	k	(≥1)	of	
searches,	though	the	special	case	where	k	approaches	infinity	(which	implies	that	all	females	search	
until	they	either	die	during	a	search	or	find	a	mate)	is	applicable,	as	discussed	below.	
	 Now	let	𝑀pC(𝑘, 𝑐)	be	the	proportion	a/b-couples	among	all	mated	couples	for	the	given	
value	of	k	and	c.	For	k	=	1,	this	variable	is	proportional	to	the	probability	of	randomly	picking	a	
female	with	genotype	a	among	all	mating	females,	times	the	probability	that	the	female	survives	the	
search,	times	the	probability	that	the	female	encounter	a	male	with	genotype	b,	times	the	probability	
that	the	female	accepts	the	male,	i.e.	
	 	

𝑀pC(𝑘 = 1, 𝑐) ∝ 𝑓p(1 − 𝑐)𝑚C𝑝pC	
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(males	may	or	may	not	experience	a	cost	for	each	search;	If	the	cost	is	the	same	for	all	males,	then	
the	relative	proportions	of	males	stay	the	same.)	For	k=2,	the	female	a	must	either	survive,	
encounter	and	accept	the	male	b	in	the	first	search	or	survive	and	reject	the	male	she	encounter	in	
the	first	search	before	surviving,	encountering	and	accepting	the	male	b	in	the	second	search,	i.e.	
	

𝑀pC(𝑘 = 2, 𝑐) ∝ 𝑓p È(1 − 𝑐)𝑚C𝑝pC + (1 − 𝑐)�s 𝑚CD(1 − 𝑝pCD)
CD∈𝑩

¢ (1 − 𝑐)𝑚C𝑝pCÉ	

	
where	B	is	the	set	of	all	male	genotypes.	If	we	now	define	
	

𝑁p = s 𝑚CD𝑝pCD
CD∈𝑩

= 1 − s 𝑚CD(1 − 𝑝pCD)
CD∈𝑩

	

	
and	
	

𝑍p = (1 −𝑁p)(1 − 𝑐)	
	
then	𝑁p	gives	the	probability	that	female	a	will	settle	on	a	mate	after	a	single	search	(this	probability	
is	the	same	for	all	searches	since	the	availability	of	males	does	not	change),	and	𝑍p = (1 −𝑁p)(1 −
𝑐)	gives	is	the	probability	that	the	female	will	survive	the	search	(1 − 𝑐)	and	not	settle	on	a	mate	
(1 −𝑁p).	We	can	now	write	
	

𝑀pC(𝑘 = 2, 𝑐) = 𝑓p(1 − 𝑐)𝑚C𝑝pC(1 + 𝑍p)	
	
Using	the	same	reasoning	for	k	=	3	gives	
	

𝑀pC(𝑘 = 3, 𝑐) ∝ 𝑓p[(1 − 𝑐)𝑚C𝑝pC + (1 − 𝑐)𝑍p𝑚C𝑝pC + (1 − 𝑐)𝑍p'𝑚C𝑝pC]	

= 𝑓p(1 − 𝑐)𝑚C𝑝pCs𝑍p¥
'

¥h$

	

	
and	in	general	
	

𝑀pC(𝑘, 𝑐) ∝ 𝑓p(1 − 𝑐)𝑚C𝑝pCs𝑍p¥
C)&

¥h$

															(3.1)	

	
This	equation	is	visualized	in	figure	3.1.	
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Figure 3.1: A probability tree showing the probability that a female with genotype a will mate with a male with 
genotype b (here k = 4). Grey lines: the female searches and either dies (probability c) or survives (probability 
1-c). Green line: The female meets and accepts a male with genotype b (𝑚C𝑝pC). Red line: The female meets 
and accepts a male with a genotype different from b (𝑁p − 𝑚C𝑝pC). Yellow line: The female does not accept the 
male she meets (1 −𝑁p). All black symbols: the female is removed from the mating pool without mating with a 
male with genotype b. Black tear: the female dies. Black heart: The female mates with a different male. Black 
clock: mating season ends. Blue heart: female a and male b mates. Equation 3.1 is the sum of all paths leading 
to a blue heart. 
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Note	that	since	0 < 𝑁p ≤ 1	and		0 ≤ 𝑐 < 1	(I	imposed	these	restriction	in	the	introduction	to	the	
model	above),	it	follows	that	0 ≤ 𝑍p < 1,	so	since	∑ 𝑍p¥C)&

¥h$ 	is	a	geometric	series,	we	get	
	

𝑀pC(𝑘, 𝑐) ∝ 𝑓p(1 − 𝑐)𝑚C𝑝pC
(1 − 𝑍pC)
1 − 𝑍p

	

	
which,	since	(1 − 𝑐)	is	a	constant,	implies	that	
	

𝑀pC(𝑘, 𝑐) ∝ 𝑓p𝑚C𝑝pC
(1 − 𝑍pC)
1 − 𝑍p

= 𝑓p𝑚C𝑝pC
(1 − 𝑍pC)

𝑁p + 𝑐(1 −𝑁p)
	

	
or,	to	be	precise,	

𝑀pC(𝑘, 𝑐) =
1
𝑄 �

𝑓p𝑚C𝑝pC(1 − 𝑍pC)
𝑁p + 𝑐(1 −𝑁p)

�	

	
where	Q	is	the	normalizing	constant,	
	

𝑄 = s s 𝑓pD𝑚CD𝑝pDCD
¿1 − 𝑍pD

C À
𝑁pD + 𝑐(1 −𝑁pD)CD∈𝑩pD∈𝑨

	

	
where	A	and	B	are	the	set	of	all	female	and	male	genotypes,	respectively	(the	cost	of	the	first	search	
cancels	out,	as	it	is	the	same	for	all	females.)	Note	that	𝑍pC = [(1 −𝑁p)(1 − 𝑐)]C	is	the	probability	
that	a	female	a	will	perform	and	survive	k	searches	without	choosing	a	mate,	and	that	1 − 𝑍pC	is	the	
probability	of	the	negation	of	that.	
	
Now	define	the	mating	fitness	of	female	a	(𝐹p

J)	and	male	b	(𝐹Cd)	as	
	

𝐹p
J =

𝑓p∗

𝑓p
	

	

𝐹Cd =
𝑚C
∗

𝑚C
	

	
where	the	frequencies	with	and	without	the	*	are	the	frequencies	after	and	before	mating,	
respectively.	We	can	find	𝑓p∗	and	𝑚C

∗ 	by	summing	over	all	couples	involving	a	and	b,	respectively.	
Hence,	

	

𝑓p∗ =
1
𝑄 s 𝑀pCD(𝑘, 𝑐)
CD∈𝑩

=
1
𝑄 s

𝑓p𝑚CD𝑝pCD(1 − 𝑍pC)
𝑁p + 𝑐(1 −𝑁p)CD∈𝑩

=
1
𝑄 ×

𝑓p𝑁p(1 − 𝑍pC)
𝑁p + 𝑐(1 −𝑁p)

Ø	

	
so	
	

𝐹p
J ∝

𝑁p(1 − 𝑍pC)
𝑁p + 𝑐(1 −𝑁p)

	

Similarly,	
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𝑚C
∗ =

1
𝑄 s 𝑀pDC(𝑘, 𝑐)
pD∈𝑨

=
1
𝑄 s 𝑓pD𝑚C𝑝pDC

¿1 − 𝑍pD
C À

𝑁pD + 𝑐(1 −𝑁pD)pD∈𝑨

= s
𝑓pD
∗𝑚C𝑝pDC
𝑁pDpD∈𝑨

	

	
so	
	

𝐹Cd = s
𝑓pD
∗ 𝑝pDC
𝑁pDpD∈𝑨

	

	
Note	that	these	expressions	are	all	frequency-dependent,	and	that	this	attribute	is	an	inherent	
property	of	the	model	rather	than	an	additional	assumption.	For	example,	we	can	from	the	
expression	for	𝐹p

J	deduce	that	the	mating	fitness	of	a	female	is	lower	if	she	has	a	preference	for	rare	
males	(i.e.	1 −𝑁p	and	𝑍p	are	large,	𝑁p	is	small),	because	she	will	endure	a	larger	cost	for	additional	
searches	and	risk	ending	up	without	any	mates	at	all	at	the	end	of	the	mating	season.	Also	note	that	
the	disadvantage	in	preferring	rare	males	is	more	severe	for	higher	c	and	lower	k.	Similarly,	we	see	
from	the	expression	for	𝐹Cd	that	the	mating	fitness	of	a	male	is	higher	if	he	is	strongly	preferred	by	
females	who	survive	the	searching	procedure.	
	
When	k	approaches	infinity,	meaning	that	all	females	perform	repeated	searches	until	they	either	
find	a	mate	or	die	during	a	search,		𝑍pC	(0 ≤ 𝑍p < 1)	approaches	zero,	so		
	

𝑀pC(𝑘 → ∞, 𝑐) ∝
𝑓p𝑚C𝑝pC

𝑁p + 𝑐(1 −𝑁p)
	

and	
	

𝐹p
J ∝

𝑁p
𝑁p + 𝑐(1 −𝑁p)

	

	
The	latter	expression	is	equivalent	to	equation	2.3	in	Houle	and	Kondrashov	(2002).	In	the	fixed-
relative	preferences	model,	the	proportion	of	pairings	between	a	female	a	and	a	male	b	is	given	by	
JMdNçMN

OM
	where	𝑓p ,	𝑚C ,	and	𝑁p	are	as	defined	above	and	𝑝pC	is	the	relative	preference	of	female	a	for	

male	b	(see	e.g.	Gomulkiewicz	and	Hastings	1990,	section	The	Model).	In	my	model,	when	𝑘 → ∞	and	
𝑐 = 0,	𝑀pC	reduces	to	
	

𝑀pC(𝑘 → ∞, 𝑐 = 0) ∝
𝑓p𝑚C𝑝pC
𝑁p

	

	

and	since	∑
JMdNDçMND

OMCD∈𝑩 = 𝑓p	and	∑ 𝑓pDpD∈𝑨 = 1,	it	follows	that		

	

𝑄(𝑘 → ∞, 𝑐 = 0) = s s
𝑓pD𝑚CD𝑝pDCD

𝑁pDCD∈𝑩pD∈𝑨

= 1	

so	
	

𝑀pC(𝑘 → ∞, 𝑐 = 0) =
𝑓p𝑚C𝑝pC
𝑁p

	

	
which	means	that	my	model	reduces	to	the	fixed-relative	preference	model	in	the	special	case	
where	𝑘 → ∞, 𝑐 = 0.	(𝑝pC	is	not	restricted	to	be	between	0	and	1	in	the	fixed-relative	preference	
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model,	but	scaling	the	preferences	does	not	change	the	result	when	𝑘 → ∞, 𝑐 = 0).	Also	note	that	
when	𝑘 → ∞, 𝑐 = 0,	
	

𝐹p
J =

𝑁p
𝑁p

= 1	

	
which	means	all	females	have	the	same	fitness	regardless	of	preferences,	as	there	is	no	selection	
against	preferring	rare	males.	Furthermore,	when	𝑝pDCD = 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑎U ∈ 𝑨, 𝑎𝑙𝑙	𝑏U ∈ 𝑩,	meaning	that	
all	females	will	accept	any	male	on	first	encounter,	we	get	for	all	values	of	k	and	c	
	

𝑀pC(𝑘, 𝑐) ∝ 𝑓p𝑚C	
	
which	is	the	standard	definition	of	random	mating.	
	
---	
	
From	the	recombination	pattern	probabilities	derived	in	the	previous	chapter,	it	is	easy	to	derive	the	
proportions	of	each	genotype	generated	by	a	given	couple	(see	the	methods	called	
calculate_gamete_frequencies	in	classes	Chromosome_diplotype	and	Genotype,	and	the	method	
find_offspring	in	class	Couple	in	the	program).	The	frequency	of	a	given	genotype	g	in	the	next	
generation	can	then	be	calculated	as	∑ ∑ 𝑦pCP𝑀pCC∈𝑩p∈𝑨 	where	𝑦pCP	is	the	proportion	of	g	genotypes	
produced	by	the	couple	a/b.	In	the	program,	this	calculation	is	done	using	matrix	operations	on	
Numpy	arrays	(see	method	run	in	class	Simulation),	which	is	computationally	highly	efficient	
(Langtangen	2008)	
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4 Reinforcement and the evolution of 
chromosomal inversions 

4.1 The model 
With	reinforcement,	I	here	mean	the	evolution	of	selective	mating	preferences	in	response	to	
selection	against	interspecific	mating	(Servedio	and	Noor	2003).	Many	models	of	reinforcement	can	
be	derived	from	a	single	general	model,	referred	to	as	the	PTMN-model,	that	assumes	four	diallelic	
loci:	a	preference	locus	P	and	a	trait	locus	T	–	collectively	the	prezygotic	isolation	loci	–		and	two	
directly	selected	loci,	M	and	N	–	collectively	the	postzygotic	isolation	loci.	The	preference	of	a	given	
individual	a	for	another	individual	b	of	the	opposite	sex	is	determined	by	a’s	genotype	at	the	P	locus	
and	b’s	genotype	at	the	T	locus;	hence,	purely	assortative	mating,	as	in	Felsenstein’s	(1981)	model,	
occurs	when	there	is	initial	total	linkage	disequilibrium	and	no	recombination,	henceforth	perfect	
linkage,	between	P	and	T	(Kirkpatrick	and	Ravigne	2002	p.	25-26	make	the	similar	point	that	
“assortment	and	mating	preferences	can	be	treated	as	a	single	form	of	prezygotic	isolation	by	
regarding	assortment	as	the	special	case	where	a	mating	preference	acts	on	itself.”).	The	directly	
selected	M	and	N	loci	can	be	either	locally	adapted	or	epistatic	or	both.	These	loci	set	up	the	selection	
pressure	against	interspecific	mating	by	contributing	to	hybrid	inviability,	but	do	not	themselves	
influence	the	bearer’s	mating	preference.	Models	where	the	trait	locus	itself	interact	epistatically	
with	another	locus,	as	in	Dagilis	and	Kirkpatrick’s	(2016)	preference-trait	model,	can	be	derived	by	
assuming	perfect	linkage	between	T	and	M.		
	 Tricket	and	Butlin	(1994)	used	deterministic	simulations	of	the	Felsenstein	(1981)	model	to	
show	that	reinforcement	can	occur	more	readily	when	an	inversion	captures	the	P/T	and	M	loci.	
Dagilis	and	Kirkpatrick’s	(2016)	analysis	quantified	this	effect	in	their	similar	assortative	mating	
model,	as	well	as	the	effect	of	an	inversion	capturing	the	P	and	T/M	loci	in	their	preference-trait	
model	and	some	other	models	that	cannot	easily	be	expressed	in	terms	of	the	general	PTMN-model.	
Using	an	approach	that	differs	in	several	respects	(to	be	discussed)	from	the	ones	in	Tricket	and	
Butlin	(1994)	and	Dagilis	and	Kirkpatrick	(2016),	I	will	in	this	chapter	further	explore	the	effect	of	
both	standard	and	paracentric	linear	inversions	on	reinforcement.		
	 In	addition	to	P,	T,	M	and	N,	my	model	includes	two	bialleleic	loci,	[	and	],	corresponding	to	
the	breakpoints	of	a	chromosomal	inversion.	In	the	case	of	a	paracentric	linear	inversion,	it	includes	
one	additional	monalleleic	loci,	@,	corresponding	to	the	centromere.	I	will	assume	that	the	inversion	
spans	the	four	ordinary	loci	(P,	T,	M,	and	N),	so	that	the	ordering	is	[PTMN]	and	[PTMN]@	for	
standard	and	paracentric	linear	inversions,	respectively.	All	loci	are	autosomal	and	located	on	the	
same	chromosome.	A	single	parameter	L	gives	the	genetic	length	in	Morgans	(see	section	2.1.6)	of	all	
intervals	in	homokaryotypes	except	the	interval	between	N	and	],	which	for	reasons	that	will	
become	clear	is	always	set	to	have	genetic	length	0.	Hence,	the	total	length	of	the	inverted	region	is	
4L,	and	the	length	of	the	proximal	region	is	L	(see	figure	4.1).	The	alleles	[0	and	]0,	[1	and	]1	represent	
the	ancestral	and	diverged	arrangement,	respectively,	so	that	e.g.	the	genotype	key	[01P01T01M01N01]01	
indicate	an	inversion	heterokaryotype	heterozygous	for	all	loci.	The	allele	indices	in	the	genotype	
keys	are	position	sensitive,	with	the	first	and	second	position	at	each	loci	referring	to	the	allele	at	the	
two	parental	homologues.	From	this	we	can,	for	example,	infer	that	an	individual	with	genotype	key	
[01P01T01M01N01]01	has	the	two	parental	haplotypes	[0P0T0M0N0]0	and	[1P1T1M1N1]1.	I	will	often	refer	to	
the	diverged	arrangement	simply	as	the	inversion.	Hence,	the	frequency	of	the	inversion,	is	simply	the	
frequency	of	the	[1	allele	(or,	equivalently,	the	frequency	of	the	]1	allele	or	the	[1	]1	haplotype.	These	
are	all	equivalent	because	[1	and	]1	always	occur	together.)		
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	 For	simplicity,	I	will	assume	that	the	inversion	suppresses	chiasma	formation	to	an	equal	
degree,	d,	in	all	intervals,	so	that	𝑑C = 𝑑𝕙 = 𝑑	for	all	intervals	𝕙C	in	the	inverted	region.	Since	studies	
have	shown	that	chiasmata	formation	is	also	suppressed	in	a	region	stretching	a	fair	distance	
outside	of	the	inversion	itself	(e.g.	Pegueroles	et	al.	2010),	I	will	set	𝑑𝕡 = 𝑑	where	𝕡	is	the	proximal	
region.	Hence,	in	heterokaryotypes	the	inverted	and	proximal	regions	measure	4dL	and	dL	Morgans,	
respectively.	Since	the	pure	counting	model	provides	a	convenient	and	unambiguous	scale	of	
interference,	with	stronger	interference	for	higher	m	(Foss	et	al.	1993,	Navarro	et	al.	1997),	I	will	use	
it	to	define	three	interference	conditions:	no	interference	(m=0),	moderate	interference	(m=3),	and	
strong	interference	(m=7).	For	comparison,	chiasmata	in	Schizosaccharomyces	pombe,	Neurospora,	
Drosophila,	and	Mus	have	been	found	to	be	approximately	distributed	according	to	a	pure	counting	
model	with	m	=	0,	m	=	2,	m	=	4,	and	m	=	6,	respectively	(Munz	1994,	Foss	et	al.	1993,	Lange	et	al.	
1997).	All	the	models	mentioned	in	this	chapter,	except	my	own,	implicitly	or	explicitly	assume	no	
chiasma	interference.	Like	Servedio	and	Sætre	(2003),	but	unlike	Servedio	and	Kirkpatrick	(1997)	
and	Servedio	(2000),	I	assume	diploidy.	

	
Figure 4.1: The relative positions of the different loci and the genetic length of each interval.  
	
	 The	total	population	is	divided	into	two	distinct	habitats,	which	I	will	refer	to	as	habitat	0	
and	habitat	1.	The	demes	in	these	two	habitats	are	assumed	to	have	diverged	in	allopatry,	so	that	
they	are	initially	fixed	for	the	T0,	M0,	and	N0	(habitat	0);	and	T1,	M1,	and	N1	(habitat	1)	alleles,	
respectively.	The	P1,	[1	and	]1	alleles	will	be	introduced	during	the	runs	and	are	initially	not	present,	
so	the	genotypes	[00P00T00M00N00]00	and	[00P00T11M11N11]00	start	with	frequency	1.0	in	their	respective	
habitats.	As	in	Servedio	and	Kirkpatrick	(1997),	Servedio	(2000),	and	Servedio	and	Sætre	(2003),	I	
assume	that	the	preference	locus	is	expressed	only	in	females,	and	that	the	trait	alleles	are	adapted	
to	the	habitats	with	the	corresponding	indices,	and	expressed	and	selected	for	only	in	males.	In	
particular,	a	male	with	diplotype	Tij	,	i,j	=	0,1	in	habitat	k	gets	a	fitness	contribution,	
	

𝐹¿𝑇¬z	𝑖𝑛	ℎ𝑎𝑏𝑖𝑡𝑎𝑡	𝑘À =

⎩
⎨

⎧
1 + 𝑠¤, 𝑖 = 𝑗 = 𝑘

1, 𝑖 ≠ 𝑗
1

1 + 𝑠¤
, 𝑖 = 𝑗 ≠ 𝑘

	

	
whereas	females	gets	a	fitness	contribution	of	1	regardless	of	habitat	or	genotype	at	the	T	locus.	In	
all	the	runs	discussed	in	this	chapter,	𝑆¤ = 0.2.	
	 Mating	occur	only	within	habitats.	Couple	proportions	are	determined	by	the	model	in	
chapter	3,	with	the	acceptance	probabilities	𝑝pC	(i.e.	the	probability	that	a	female	of	genotype	a	will	
accept	a	male	of	genotype	b	at	any	given	encounter)	given	as	in	the	following	table,	
 	

[ P T M N ] @

L L L L 0 L

4L
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a¯/b®	 T00	 T01	 T11	
P00	 (1 + 𝛽$)𝑦	 𝑦	 𝑦

1 + 𝛽$
	

P01	 𝑦
1
2 �

1
1 + 𝛽$

+ 1 + 𝛽&�
	 𝑦	 𝑦

1
2 �1 + 𝛽$ +

1
1 + 𝛽&

�
	

P11	 𝑦
1 + 𝛽&

	 𝑦	 (1 + 𝛽&)𝑦	

Table	4.1:	the	preference	𝑝pC	of	a	female	with	genotype	a	for	a	male	with	genotype	b	
	
where		

𝑦 =
𝜏

max(1 + 𝛽$, 1 + 𝛽&)
, 0 < 𝜏 ≤ 1	

	
The	factor	y	ensures	that	all	probabilities	are	between	0	and	1.	The	proportion,	among	all	couples	
after	pairing,	of	the	couple	made	up	of	female	a	and	male	b	is	now	given	by	
	

𝑀pC(𝑘, 𝑐) =
1
𝑄 �

𝑓p𝑚C𝑝pC(1 − 𝑍pC)
𝑁p + 𝑐(1 −𝑁p)

�	

	
where	all	symbols	are	as	defined	in	chapter	3.	Random	mating	occurs	when	𝛽$ = 𝛽& = 0,	and	
symmetrical	mating	occurs	whenever	𝛽$ = 𝛽&.	When	𝑘 → ∞, 𝑐 = 0,	the	model	reduces	to	the	fixed-
relative	preference	model	with	Gomulkiewicz	and	Hastings’	(1990)	parametrization.	I	will	
throughout	assume	symmetrical	mating	with	𝛽$ = 𝛽& = 0.1	and	𝑘 → ∞.	Unless	otherwise	noted,	c	=	
0.	
	 The	fitness	contribution	from	the	M	and	N	loci	is	for	both	sexes	given	by	
	

𝐹¿𝑀¬z𝑁C¥À = x
1, 𝑖 = 𝑗 = 𝑘 = 𝑙

1 − ℎ𝑆V , 𝑖 + 𝑗 + 𝑘 + 𝑙 = 1	𝑜𝑟
1 − 𝑆V , 𝑖 + 𝑗 + 𝑘 + 𝑙 = 2

𝑖 + 𝑗 + 𝑘 + 𝑙 = 3	

𝑓𝑜𝑟	𝑖, 𝑗, 𝑘, 𝑙 = 0,1		

	
In	other	words,	the	two	pure	diplotypes	(M00N00	and	M11N11)	at	these	two	loci	gets	a	fitness	
contribution	of	1,	diplotypes	with	all	allele	indices	the	same	expect	one	gets	a	fitness	contribution	of	
1 − ℎ𝑆V ,	and	diplotypes	with	two	of	each	allele	index	gets	a	fitness	contribution	of	1 − 𝑆V .	This	is	
equivalent	to	the	parametrization	in	Servedio	and	Sætre	(2003).	Here,	and	in	the	following,	a	pure	
haplotype	or	diplotype	is	one	that	has	the	same	allele	index	for	all	loci	of	a	given	set,	meaning	that	all	
alleles	originated	from	the	same	habitat.	In	all	my	simulations,	ℎ = 0.5	and	𝑆V = 0.5.	The	interaction	
between	the	fitness	contribution	from	T	and	the	fitness	contribution	from	M/N	is	multiplicative.	
	 The	M	and	N	alleles	interact	epistatically,	but	are	not	differently	selected	in	the	two	habitats.	
This	does	not	necessarily	mean	that	they	must	have	diverged	by	drift	in	allopatry;	if	both	loci	
originally	were	fixed	for	a	now	lost	third	ancestral	allele	that	were	replaced	in	the	two	habitats	by	
different	positively	and	universally	selected	alleles	(M0	and	N0	versus	M1	and	N1)	with	the	same	non-
epistatic	fitness,	then	they	would	be	neutral	in	this	regard	after	secondary	contact.	Note	that	this	
account	differs	from	the	typical	textbook	model	of	Dobzhansky-Muller	incompatibilities	(e.g.	Futuyma	
2013),	in	which	only	one	of	the	alleles	is	replaced	in	each	habitat.	The	difference	between	these	two	
models	will	prove	important	later	(see	chapter	5);	I	will	use	the	terms	four-allele	model	and	two-
allele	model	to	distinguish	them	(see	figure	4.2).	In	general,	when	an	allele,	haplotype	or	diplotype	is	
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adapted	to	the	genetic	background	or	local	environment	in	one	habitat	but	not	the	other,	I	will	say	
that	it	is	differentially	adaptive.	
	

	
Figur 4.2: Two models of the evolution of incompatible alleles in allopatry. Top: four-allele model. Bottom: 
two-allele model. Mx and Nx are ancestral and universally compatible. Derived 0-index alleles are compatible 
with the ancestral alleles and other 0-index alleles, but are incompatible with 1-index alleles. Vice versa for 1-
index alleles. 
	
	 Migration	begins	at	secondary	contact.	In	the	main	program,	migration	rates	are	given	for	n	
habitats	as	the	migration	matrix	t,	
	

𝒕[𝑖, 𝑗] = 𝑡¬z, 𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑛 − 1	
where	
	

s𝑡Cz
C

= 1, 𝑓𝑜𝑟	𝑗 = 0,1,2…𝑛 − 1	

	
so	that	a	representative	sample	of	habitat	i	before	each	migration	event	make	up	a	proportion	𝑡¬z 	of	

habitat	j	after	the	event.	With	two	habitats,	we	get	the	migration	matrix	�1 − 𝑡&$ 𝑡$&
𝑡&$ 1 − 𝑡$&

�.	In	this	

text,	I	will	mostly	consider	the	case	of	symmetrical	migration,	which	for	two	habitats	can	be	
expressed	by	the	single	parameter	t,	so	that	
	

𝒕 = �1 − 𝑡 𝑡
𝑡 1 − 𝑡�	

	
On	one	occasion	I	will	also	consider	the	case	of	one-way	migration	(also	known	as	a	continent-island	
model),	so	that	
	

𝒕 = �1 𝑡
0 1 − 𝑡�	

	

!"#"
↓
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!"#"
↓
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An	equilibrium	is	reached	when	all	the	genotype	frequencies	changes	less	than	a	predetermined	
value,	Δ,	from	one	generation	to	the	next.	At	this	point,	an	equilibrium	action	is	performed,	e.g.	
introduce	a	new	mutation,	change	migration	rates,	or	end	the	simulation.	A	scenario	is	a	description	
of	the	order	in	which	the	different	equilibria	actions	occur.	I	will	consider	four	different	scenarios	
(the	delta	values	in	parenthesis	indicate	the	condition	for	performing	each	action;	these	are	the	same	
as	those	used	by	Servedio	and	Sætre	2003	in	what	I	call	the	control	scenario):	
	
Control	scenario	(no	inversion)	

1) Secondary	contact	(start	migration)	
2) P1	is	introduced	in	habitat	1	(Δ = 10)&')	
3) End	(Δ = 10)&$)	

	
Scenario	1:	

1) Secondary	contact	
2) P1	is	introduced	in	habitat	1	(Δ = 10)&')	
3) New	inversion	captures	the	haplotype	P1T1M1N1	in	habitat	1	(Δ = 10)&$)	
4) End	(Δ = 10)&$)	

	
Scenario	2:	

1) Secondary	contact	
2) P1	is	introduced	in	habitat	1	(Δ = 10)&')	
3) New	inversion	captures	the	haplotype	P0T1M1N1	in	habitat	1	(Δ = 10)&$)	
4) End	(Δ = 10)&$)	

	
Scenario	3:	

1) Secondary	contact	
2) New	inversion	captures	the	haplotype	P0T1M1N1	in	habitat	1	(before	the	introduction	of	P1)	

(Δ = 10)&')	
3) P1	is	introduced	within	the	inverted	region	(if	the	inversion	has	spread)	in	habitat	1	(Δ =

10)&$)	
4) End	(Δ = 10)&$)	

	
The	new	mutation	(P1	or	inversion)	is	introduced	at	a	frequency	of	0.001	in	the	given	habitat.	
Migration,	selection,	and	mating	happen	in	that	order	in	each	generation	in	all	scenarios.		
	 Since	the	genetic	length	between	N	and	]	is	set	to	zero	and	the	inversion	captures	the	N1	
haplotype	in	all	scenarios,	haplotypes	with	N0	and	]1	will	never	occur.	These	can	therefore	be	
removed	from	consideration,	which	significantly	reduces	the	running	time	of	the	simulations	(the	
program	has	a	feature	that	allows	user-defined	haplotypes	or	alleles	to	be	removed	from	individual	
inter-equilibria	steps	or	the	full	simulation).	This	is	the	main	motivation	for	setting	the	genetic	
length	between	N	and	]	to	zero,	though	it	is	also	arguably	more	realistic	than	the	alternative,	since	
the	formation	of	chiasmata	is	typically	more	strongly	suppressed	close	to	breakpoint	boundaries	
(e.g.	Schaeffer	and	Anderson	2005).	The	genetic	length	between	[	and	P	is	deliberately	not	set	to	
zero,	so	as	to	explore	the	effects	of	recombination	of	P	alleles	in	and	out	of	the	different	
arrangements.	Note	that	setting	the	genetic	length	between	L	and	]	to	0	is	equivalent	to	setting	the	
suppression	factor	for	this	interval	to	0,	since	[,		]	and	@	are	always	homozygous	in	homokaryotypes.	
For	the	same	reason,	the	positioning	of	the	loci	in	my	model	is	equivalent	to	one	in	which	the	left	
breakpoint,	[,	is	moved	an	additional	interval	to	left,	if	the	chiasmata	are	perfectly	suppressed	in	this	
interval.	Hence,	assuming	non-zero	recombination	between	[	and	P	in	heterokaryotypes	in	my	model	
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is	not	necessarily	in	contradiction	to	the	finding	that	chiasmata	formation	is	more	strongly	
suppressed	close	to	the	breakpoint	boundaries.	

The	studies	in	Tricket	and	Butlin	(1994)	and	Dagilis	and	Kirkpatrick	(2016)	are	similar	to	
scenario	1,	but	one	important	difference	is	that	they	both	assume	that	the	inversion	captures	only	
one	of	the	postzygotic	isolation	loci.	As	Dagilis	and	Kirkpatrick	(2016)	note,	a	perfectly	chiasma-
suppressing	inversion	that	captures	a	high-fitness	haplotype	at	two	or	more	epistatic	or	locally	
adapted	loci	will	spread	by	avoiding	recombination	with	lower-fitness	haplotypes	(Charlesworth	
and	Charlesworth	1973,	Kirkpatrick	and	Barton	2006);	their	objective	is	to	show	that	this	is	not	a	
necessary	condition	for	the	inversion	to	spread	in	a	reinforcement	setting.	My	objective	is	rather	to	
compare	the	outcome	of	the	three	scenarios	above	when	the	inversion	captures	all	four	loci.	In	
scenario	2,	this	means	that	the	inversion	can	spread	even	though	it	captures	a	locally	maladapted	
preference	allele	(P0),	which	generates	some	interesting	dynamics,	as	we	shall	see.	Another	
important	difference	is	that	Tricket	and	Butlin	(1994)	and	Dagilis	and	Kirkpatrick	(2016)	both	
assume	that	the	inversion	perfectly	suppresses	recombination	and	is	free	of	direct	selection,	which	
in	my	terminology	is	equivalent	to	a	standard	inversion	with	𝑑C = 0	for	all	intervals	𝕚C .	In	my	study,	I	
will	investigate	the	effect	of	varying	the	value	of	𝑑 = 𝑑𝕙 = 𝑑𝕡,	for	standard	as	well	as	paracentric	
linear	inversions,	in	the	latter	case	with	recombination	only	in	females,	as	in	Drosophila.	Note	that	
this	implies	that	the	paracentric	linear	inversion	is	neutral	in	males,	since	it	neither	causes	meiotic	
irregularities,	nor	suppresses	recombination	between	the	loci	(since	recombination	is	absent	
anyway).	Since	higher	values	of	d	imply	more	recombination	inside	the	inversion	and	higher	degree	
of	underdominance,	both	of	which	lower	the	fitness	of	a	newly	introduced	inversion	that	captures	a	
high-fitness	haplotype	(Kirkpatrick	and	Barton	2006),	a	useful	metric	is	what	I	will	call	the	
𝑑	toleration	limit,	i.e.	the	highest	value	of	𝑑 = 𝑑𝕙 = 𝑑𝕡	that	still	allow	the	inversion	to	spread	by	
selection.	This	parametrization	models	recombination	and	underdominance	of	the	inversion	as	an	
indirect	consequence	of	varying	the	degree	to	which	chiasma	generation	is	suppressed	in	
heterokaryotypes	(see	chapter	2),	which	is	arguably	more	realistic	than	treating	recombination	and	
underdominance	as	independent	parameters,	as	do	all	other	evolutionary	models	that	I	am	aware	of.	
	 I	ran	simulations	with	L	=	0.02,	0.06,	0.125,	0.2.	These	values	were	chosen	so	as	to	make	the	
total	length	of	the	inverted	region	(4L)	span	the	range	observed	in	the	Coyne	et	al.	(1993),	Navarro	
and	Ruiz	(1997)	dataset	(see	figure	2.4,	chapter	2).	L	=	0.02	correspond	approximately	to	the	
shortest	observed	inversion,	L	=	0.06	is	within	the	higher	range	for	which	d	≈	0,	L	=	0.125	is	within	
the	range	for	which	d	is	significantly	larger	than	zero,	and	L	=	0.2	corresponds	approximately	to	the	
largest	inversion.	For	the	two-way	migration	runs,	I	used	𝑡 = 𝑡$& = 𝑡&$ = 0.001, 0.01, 0.065.	𝑡 =
0.065	is	the	approximate	highest	migration	rate	for	which	differentiation	between	the	two	habitats	
was	maintained	before	the	introduction	of	P1	in	all	runs.	When	t	is	further	increased,	a	tipping	point	
is	reached	above	which	both	habitats	become	fixed	for	the	P0,	T0,	M0,	N0	alleles.	The	reason,	
presumably,	is	that	before	the	introduction	of	P1,	T0	has	higher	fitness	than	T1	when	averaged	over	
both	habitats	because	it	is	preferred	by	all	the	(P0)	females.	Hence,	when	migration	is	sufficiently	
high,	T0	invades	both	habitats	and	M0	and	N0	increases	in	frequency	in	habitat	1	due	to	linkage	
disequilibrium	with	T0.	The	M	and	N	alleles	are	under	positive	frequency-dependent	selection	
(common	alleles	are	more	likely	to	be	paired	with	a	copy	of	itself),	so	when	M0	and	N0	become	the	
more	prevalent	ones	in	habitat	1,	they	are	selected	in	their	own	right	and	go	to	fixation	(Servedio	
and	Kirkpatrick	1997	makes	a	similar	point).	The	exact	value	of	the	tipping	point	depends	on	the	
other	parameters	(Servedio	and	Kirkpatrick	1997).	
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4.2 Results 
4.2.1 Control scenario 
Figure	4.3	(top)	displays	the	differentiation	between	the	habitats	at	the	P	locus,	i.e.	the	frequency	of	
P1	in	habitat	1	minus	the	frequency	of	P1	in	habitat	0,	at	the	final	equilibrium	in	the	two-way	
migration	control	scenario	(i.e.	before	the	introduction	of	the	inversion	in	scenario	1/2)	for	the	pure	
counting	model,	m	=	0,	3,	7,	c	=	0	(no	cost	of	searching)	and	t	=	0.065.	All	runs	with	symmetrical	two-
way	migration	considered	here	are	perfectly	symmetrical	with	regards	to	preference,	selection	and	
migration,	meaning	that	the	preference	of	P0	for	T0	is	mirrored	by	the	preference	of	P1	for	T1,	the	
selection	on	T0	in	habitat	0	and	1	is	mirrored	by	the	selection	on	T1	in	habitat	1	and	0,	and	the	
selection	on	M0	or	N0	in	any	given	diploid	genotype	is	mirrored	by	the	selection	of	M1	or	N1	in	the	
same	genotype	with	the	indices	reversed.	Accordingly,	I	found	that	the	frequency	of	P0	in	habitat	0	
mirrored	the	frequency	of	P1	in	habitat	1	at	the	final	equilibrium	whenever	the	latter	spread	under	
these	conditions.	Consistently	with	previous	results	(Felsentein	1981,	Servedio	and	Kirkpatrick	
1997,	Servedio	2000,	Servedio	and	Sætre	2003),	the	figure	shows	that	closer	linkage	implies	higher	
differentiation,	i.e.	more	complete	reinforcement.	As	mentioned	in	chapter	1,	this	is	because	
recombination	breaks	up	the	linkage	disequilibrium	between	the	pre-	and	postzygotic	loci,	so	as	to	
make	the	trait	allele	a	less	reliable	indicator	of	male	fitness	(Felsentein	1981,	Servedio	and	
Kirkpatrick		1997).	The	figure	also	shows	that	varying	chiasma	interference	has	little	effect	on	the	
degree	of	differentiation,	except	that	it	is	slightly	lower	for	stronger	interference,	presumably	
because	the	recombination	rate	in	any	given	interval	is	slightly	higher	for	stronger	interference	
when	the	genetic	length	is	held	constant	(Foss	et	al.	1993	and	figures	4.3,	bottom,	and	4.6	in	this	
text).	Note	that	because	the	equilibrium	frequency	of	P1	in	habitat	1	(≈

&H±¬JJ.Y
'

)	is	not	that	much	
higher	than	0.5,	a	randomly	occurring	inversion	is	not	much	more	likely	to	capture	P1	(scenario	1)	
than	P0	(scenario	2),	except	when	L	is	small.		
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Figure 4.3: Top: The difference between the equilibrium frequencies of P1 in habitats 1 and 0 in the control 
scenario with symmetrical two-way migration, t = 0.065, c = 0. Bottom: The recombination rate of a single 
interval of length L (cf. Figure 1 in Foss et al. 1993, and Figure 4.6 in this text.) Both plots: Pure counting 
model, blue: m = 0, green: m = 3, red: m = 7. The green and red lines partly coincide in both figures. 
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4.2.2 Scenario 1 
There	are	two	forces	influencing	whether	or	not	the	inversion	initially	spread	in	scenario	1.	Firstly,	it	
captures	an	optimal	haplotype	and	reduces	recombination	with	lower-fitness	ones,	which	is	favored	
by	selection	(Charlesworth	and	Charlesworth	1973,	Tricket	and	Butlin	1994,	Kirkpatrick	and	Barton	
2006,	Dagilis	and	Kirkpatrick	2016).	Secondly,	if	d	>	0,	the	inversion	is	underdominant	due	to	
meiotic	irregularities	in	heterokaryotypes	(chapter	2),	meaning	that	it	will	have	lower	fitness	when	
newly	introduced.	Whether	or	not	the	inversion	spread	therefore	depends	on	which	of	these	forces	
initially	have	the	strongest	effect;	as	mentioned	above,	both	depends	on	d	so	that	the	fitness	of	the	
inversion	is	lower	for	higher	values	of	d.	If	the	derived	arrangement	spreads	and	reaches	a	high	
frequency	in	habitat	1,	it	will	still	be	in	strong	linkage	disequilibrium	with	P1,	T1,	M1,	and	N1	because	
of	the	initial	condition	and	the	low	(if	d	>	0)	or	zero	(d	=	0)	rate	of	recombination	with	haplotypes	of	
the	ancestral	arrangement.	Accordingly,	the	few	P0,	T0,	M0,	and	N0	alleles	that	might	invade	it	by	
recombination	have	low	fitness,	as	they	will	either	be	maladapted	to	the	local	habitat	(T)	or	the	
locally	prevalent	postzygotic	isolation	alleles	(M,	N),	or	cause	the	bearer	to	mate	with	locally	
maladapted	individuals	(P,	T).	Since	the	runs	are	once	again	perfectly	symmetrical	except	for	initial	
condition,	the	same	with	the	indices	inversed	will	be	true	for	the	few	P1,	T1,	M1	and	N1	alleles	
remaining	outside	of	the	derived	arrangement.	When	d	>	0,	the	two	alternative	arrangements	
additionally	experience	positive	frequency-dependent	selection	in	their	respective	habitats,	due	to	
underdominance.	In	sum,	therefore,	I	expect	the	two	pure	haplotypes,	[0P0T0M0N0]0	and	[1P1T1M1N1]1,	
to	be	selected	in	their	respective	habitats,	and	any	non-pure	haplotypes	to	be	selected	out	faster	
than	they	are	generated	by	low	recombination	in	heterokaryotypes.	I	will	say	that	the	inversion	
divide	the	population	when	the	population	as	a	whole	at	equilibrium	consist	almost	exclusively	of	the	
two	pure	haplotypes	in	approximately	equal	proportions;	this	was	the	case	in	all	the	runs	in	which	
the	inversion	spread.	To	be	more	precise,	the	total	frequency	of	pure	haplotypes	in	the	population	as	
a	whole	at	equilibrium	depended	on	the	recombination	rate	in	heterokaryotypes	(higher	for	higher	L	
and	higher	d)	and	ranged	from	over	0.99999999	to	about	0.96	for	different	runs	(not	shown).		
	 Figure	4.4a	(top)	compares	the	differentiation	at	the	P	locus	before	and	after	the	
introduction	of	a	standard	inversion	for	two-way	migration,	t	=	0.065,	d	=	0.001,	m	=	3,	c	=	0.	The	
imperfect	final	differentiation	(≈0.8	rather	than	≈1)	is	primarily	due	to	exchanges	of	pure	genotypes,	
as	indicated	in	figure	4.4a	(bottom),	which	plots	the	normalized	linkage	disequilibrium	(𝐷/𝐷[\!;	
Lewontin	1964)	between	the	P	and	T	loci	in	the	population	as	a	whole	(both	habitats	combined)	
before	and	after	the	introduction	of	the	inversion.	This	measure	is	1	when	all	haplotypes	are	pure	
(P0T0	or	P1T1),	which	is	approximately	the	case	at	the	final	equilibrium.	The	differentiation	is	higher	
for	lower	migration	rates	(figure	4.4b),	as	expected.	A	typical	progress	for	an	inversion	that	spread	
in	scenario	1	is	shown	in	figure	4.5.	Note	that	when	the	inversion	spreads,	the	frequency	of	P1	is	
significantly	reduced	in	habitat	0	and	the	frequency	of	pure	adapted	haplotypes	is	increased	in	both	
habitats,	for	the	reasons	discussed.	Also	note	that	P1	spreads	at	a	much	lower	rate	than	the	inversion,	
a	point	to	which	I	will	return.			
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Figure 4.4a: Top: The difference between the equilibrium frequencies of P1 in habitats 1 and 0 in scenario 1 
with symmetrical two-way migration before (squares, dashed) and after (circles, solid) the introduction of the 
inversion (note the change of axis from figure 4.3, top). Bottom: The normalized linkage disequilibrium between 
P and T in the pooled population before (squares, dashed) and after (circles, solid) the introduction of the 
inversion. t = 0.065, c = 0, m = 3, d = 0.001. 
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Figure 4.4b: Same as figure 4.4a (top), but for t = 0.01. 
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Figure 4.5: Progress example for scenario 1 in habitat 0 (dashed) and habitat 1 (solid). Top: The frequencies of 
the P1 allele (red) and the inversion (blue). Bottom: the frequencies of the pure P1T1M1N1 haplotype (red), the 
pure P0T0M0N0 haplotype (green) and the inversion (blue). The two plots represent the same run. The P1 allele 
is introduced at generation 0, and the inversion at generation 39,100. Standard inversion, symmetrical two-way 
migration, pure counting model, t = 0.065, m = 3, d = 0.001, L = 0.06, c = 0. 
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	 Table	4.2	displays	whether	or	not	the	standard	inversion	spread	in	scenario	1	for	d	=	0,	
0.001,	0.01,	0.05	and	t	=	0.001,	0.01,	0.065.	Interestingly,	those	results	hold	for	all	tested	degrees	of	
linkage	and	interference	(L	=	0.02,	0.06,	0.125,	0.2,	m	=	0,	3,	7).	An	inversion	capturing	a	high-fitness	
haplotype	with	more	closely	linked	loci	will,	all	else	being	equal,	spread	at	a	lower	rate	because	if	the	
loci	are	closely	linked	then	the	recombination	rates	between	them	are	low	even	in	homokaryotypes,	
so	the	presence	of	an	inversion	makes	less	of	a	difference	(Kirkpatrick	and	Barton	2006,	Dagilis	and	
Kirkpatrick	2016).	On	the	other	hand,	as	figure	4.6	shows,	a	long	(in	genetic	length)	standard	
inversion	is	generally	more	strongly	underdominant	(the	sterility	is	generally	higher	for	stronger	
interference,	but	for	the	relevant	values	of	d	the	difference	is	small).	Hence,	in	my	parametrization,	
these	two	forces	work	to	the	opposite	effect	when	varying	L,	and	at	the	granularity	tested	here,	they	
approximately	cancel	out.		
	
	
	 d=0	 d=0.001	 d=0.01	 d=0.05	
t=0.001	 yes	 no	 no	 no	
t=0.01	 yes	 yes	 no	 no	
t=0.065	 yes	 yes	 yes	 no	
Table 4.2: Displays whether the standard inversion spread (yes) or not (no) in scenario 1. Valid for L = 0.02, 
0.06, 0.125, 0.2; m = 0, 3, 7; c = 0 

	
Figure 4.6: The sterility of a standard inversion as a function of dL (the parameters d and L multiplied) for 
different strengths of interference. Pure counting model, m = 0 (blue, bottom line), m = 3 (green), m = 7 (red, 
top line). Note that the whole inverted region has genetic length 4dL in heterokaryotypes. The figure also gives 
the recombination rate for an interval of length 4dL (cf. figure 1 in Foss et al. 1993 and figure 4.3, bottom, in 
this text).  
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Figure 4.7: the sterility of paracentric linear inversions with 𝛼 = 1 (top) and 𝛼 = 0 (bottom) as a function of 
dL for m = 0 (blue), m = 3 (green), and m = 7 (red). The inverted and proximal regions have lengths 4dL and 
dL, respectively. Note that the blue curve is identical in both figures. Also note the change of axis from that in 
figure 4.6. 
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Figure 4.8: The coefficient of coincidence for the two intervals comprising the inverted (4dL) and the proximal 
(dL) regions, as a function of dL. Pure counting model, m = 0 (blue), m = 3 (green), and m = 7 (red). 
	
	
	 Also	evident	from	table	4.2	is	the	observation	that	the	d	toleration	limit	is	generally	higher	
for	higher	migration	rates	(t).	This	is	because	when	the	migration	rate	is	high,	there	will	be	more	
unfit	migrants	to	recombine	with,	and	hence	stronger	selection	for	recombination	suppressors	that	
makes	recombination	less	likely	(Kirkpatrick	and	Barton	2006,	Dagilis	and	Kirkpatrick	2016).	The	d	
toleration	limit	for	standard	inversions	is	nevertheless	fairly	low	even	for	the	high	migration	runs	(t	
=	0.065);	in	no	runs	did	an	inversion	with	d	=	0.05	spread.	In	contrast,	figure	4.9	plots	the	d	toleration	
limits	for	a	paracentric	linear	inversion	with	𝛼 = 1	(interference	across	breakpoint	boundaries)	and	
𝛼 = 0	(no	interference	across	breakpoint	boundaries)	for	m	=	0,	3,	7;	L	=	0.02,	0.06,	0.125,	0.2;	t	=	
0.001,	0.065,	showing	d	toleration	limits	as	high	as	1.0	(no	chiasma	inhibition;	values	higher	than	1	
were	not	tested)	for	short	inversions	with	strong	interference.	These	values	were	found	by	gradually	
increasing	the	d	values	in	steps	of	0.05	until	the	inversion	no	longer	spread.	Note	that	d	=	1.0	imply	
no	chiasma	inhibition,	but	for	paracentric	linear	inversions	there	is	still	significant	reduction	of	
recombination	in	heterokaryotypes	compared	to	homokaryotypes,	since	the	unbalanced	anaphase	1	
chromatids	that	are	retained	in	the	polar	bodies	in	the	former	case	would	have	been	balanced	
recombinant	gametes	in	the	latter	case.	As	the	figure	shows,	the	limit	for	this	type	of	inversion	
depends	strongly	on	m	and	L.	We	can	understand	why	this	is	so	by	comparing	the	heterokaryotype	
sterility	for	standard	inversions	and	paracentric	linear	inversions	(in	females)	with	𝛼 = 1	and	𝛼 = 0,	
as	shown	in	figures	4.6	and	4.7.	Three	things	stand	out.	Firstly,	standard	inversions	are	overall	much	
more	strongly	underdominant	than	paracentric	linear	ones.	This	is	expected,	since	for	a	paracentric	
linear	inversion	heterokaryotype	to	produce	unbalanced	gametes,	there	must	be	at	least	one	
chiasma	event	in	the	inverted	region	and	one	or	more	additional	chiasma	event	in	the	inverted	
region	and/or	the	proximal	region,	whereas	a	standard	inversion	heterokaryotype	always	produces	
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50%	unbalanced	gametes	when	there	is	at	least	one	chiasma	event	in	the	inverted	region	(chapter	2;	
the	latter	follows	from	Mather’s	equation).		
	 Secondly,	the	degree	of	interference	makes	little	difference	for	the	underdominance	of	short	
standard	inversions,	but	it	makes	a	large	difference	for	short	paracentric	linear	inversions,	in	
particular	when	𝛼 = 1.	This	is	again	an	intuitive	result:	the	underdominance	of	standard	inversion	
depends	only	the	probability	of	observing	zero	chiasma	events	in	the	inverted	region	(Mather’s	
equation),	which	for	short	inversions	does	not	vary	much	with	the	degree	of	interference.	For	
paracentric	linear	inversions,	on	the	other	hand,	there	must	be	at	least	two	chiasma	events	in	close	
proximity	for	there	to	be	any	unbalanced	gametes	at	all,	and	this	is	much	less	likely	with	strong	
positive	interference	since	the	first	chiasma	event	will	inhibit	a	second	one	from	forming	in	its	
vicinity.	This	effect	is	even	more	stark	when	there	is	interference	across	the	breakpoint	boundaries	
(𝛼 = 1),	because	then	a	chiasma	event	in	the	inverted	region	interfere	not	only	with	other	chiasma	
events	in	the	inverted	region,	but	also	with	chiasma	events	in	the	proximal	region.	The	result	is	that	
for	strong	interference	and	𝛼 = 1,	a	short	paracentric	linear	inversion	is	almost	selectively	neutral	
(compare	the	curves	for	m	=	0,	m	=	3	and	m	=	7	in	figure	4.7	(top)).	Figure	4.8	plots	the	coefficient	of	
coincidence	(see	chapter	2)	for	the	inverted	and	proximal	regions,	indicating	that	allowing	
interference	across	the	breakpoint	boundary	has	a	large	effect	for	small	L	but	matters	less	as	L	gets	
larger.	For	m	=	0,	there	is	no	interference	anyway,	so	the	curve	is	flat	at	one.	Thirdly,	and	consistently	
with	the	results	in	Navarro	et	al.	(1997),	when	the	inversions	are	sufficiently	long,	the	sterility	
increases	rather	than	decreases	with	stronger	interference.	This	is	not	relevant	for	the	d	toleration	
limits	in	our	case,	however,	since	no	inversions	above	the	necessary	heterokaryotype	length	spread	
in	any	of	the	runs.	A	comparison	between	the	top	and	bottom	plots	in	4.9	also	show	the	effect	of	
migration	rate,	with	generally	higher	d	toleration	limits	for	higher	rates,	as	discussed	above.	
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Figure 4.9: The d toleration limits in scenario 1 for a paracentric linear inversion when t = 0.001 (top) and t = 
0.065 (bottom). Values larger than 1 were not considered. Two-ways symmetrical migration, pure counting 
model, m = 0 (blue), m = 3 (green), m = 7 (red), 𝛼 = 1 (solid) and 𝛼 = 0 (dashed). c = 0. The dashed and solid 
blue lines coincide in both plots. The dashed red and dashed green lines coincide in the top plot.  
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4.2.3 Scenario 2 
As	in	scenario	1,	the	newly	introduced	inversion	in	scenario	2	experience	the	opposing	evolutionary	
forces	of	underdominance	due	to	meiotic	irregularities	(if	d	>	0)	and	positive	selection	for	reducing	
recombination	of	a	directly	selected	high-fitness	haplotype	(T1M1N1).	What	differs	in	scenario	2	is	
that	the	P0	rather	than	the	P1	allele	is	initially	in	close	linkage	with	the	inversion,	which	causes	
bearers	of	the	new	arrangement	to	prefer	mating	with	T0	males.	Since	the	T0	allele	is	poorly	adapted	
to	habitat	1,	and	is	in	linkage	disequilibrium	with	the	M0	and	N0	alleles,	which	are	incompatible	with	
the	M1	and	N1	alleles	inside	the	inversion,	this	introduces	an	additional	force	working	against	the	
spreading	of	the	inversion	(though	note	that	the	T0	allele	is	rare	in	habitat	1	and	that	the	preference	
is	by	assumption	rather	weak.)	
	 Unlike	in	scenario	1,	I	found	that	the	standard	inversion	did	not	initially	spread	in	scenario	2	
for	L	=	0.02	under	any	of	the	tested	combinations	of	migration	rates	and	interference	strengths,	
meaning	that	it	is	sometimes	positively	selected	when	it	captures	P1	but	not	when	it	captures	P0.	In	
some	of	these	runs,	the	inversion	accordingly	rebounded	and	spread	to	divide	the	population	once	
the	P1	allele	had	invaded	it	through	recombination,	though	this	implies	that	its	frequency	initially	
decreased	to	a	value	lower	than	the	introduction	frequency,	which	is	biologically	implausible.	For	L	=	
0.06,	0.125,	0.2,	the	standard	inversion	spread	in	scenario	2	for	the	same	combinations	of	t	and	d	as	
in	scenario	1	(table	4.2),	regardless	of	m.	The	paracentric	linear	inversion	once	again	showed	much	
higher	d	toleration	limits,	though	I	did	not	perform	systematic	investigations	to	find	the	exact	values	
for	this	type	of	inversion	in	scenario	2.	When	an	inversion	of	either	type	did	spread	in	scenario	2,	
one	of	two	things	happened.	Either	the	inversion	went	to	fixation	with	the	P0	allele	in	habitat	1,	
meaning	that	the	P1	allele	was	replaced	and	lost	from	the	population;	or	the	inversion	initially	
increased	with	the	P0	allele,	before	being	invaded	through	recombination	by	the	P1	allele,	so	that	the	
pure	[1P1T1M1N1]1	haplotype	replaces	the	lower-fitness	[1P0T1M1N1]1	haplotype	and	the	population	
eventually	equilibrated	at	approximately	the	same	genotype	frequencies	as	in	the	corresponding	run	
in	scenario	1.	
	 Since	the	P1	allele	decreases	in	frequency	before	rebounding	once	it	invades	the	inversion,	
its	overall	lowest	frequency	–	and	accordingly	the	probability	that	it	would	be	lost	in	a	finite	
population	–	depends	on	the	flux	rate	at	the	P	locus	in	heterokaryotypes,	i.e.	the	proportion	of	
balanced	gametes	that	show	recombination	in	the	interval	between	[	and	P	and	the	interval	between	
P	and	].	Figures	4.10	plots	the	flux	rate	at	the	P	locus	in	heterokaryotypes	as	a	function	of	genetic	
distance	(dL)	with	my	parameter	settings,	for	standard	inversions	and	paracentric	linear	inversions	
with	𝛼 = 1	and	𝛼 = 0.	The	shapes	of	these	curves	are	all	similar	to	each	other	and	to	the	shape	of	the	
sterility	curves	for	paracentric	linear	inversions	(figure	4.7);	this	is	because	in	all	these	cases	at	least	
two	closely	spaced	chiasma	events	are	required.	Consistently	with	Navarro	et	al.’s	(1997)	results,	
flux	rates	are	lower	for	stronger	interference	when	inversions	are	short,	again	because	a	chiasma	
event	in	the	interval	between	[	and	P	interferes	with	the	generation	of	the	necessary	additional	
chiasma	event	in	the	interval	between	P	and	].	We	should	therefore	expect	the	P1	allele	to	rebound	
earlier,	and	at	a	higher	lowest	frequency,	when	interference	is	weak.	I	found	this	to	be	the	case	for	all	
runs	tested	(standard	inversion	with	𝛼 = 1,	t	=	0.001,	0.01,	0.065;	m	=	0,	3,	7;	d=0,	0.001,	0.01;	L	=	
0.06,	0.125,	0.2;	all	combinations	for	which	the	inversion	spread).	
	 Figure	4.11	compares	the	progress	of	the	P1	allele	in	habitat	1	when	all	parameters	except	m	
are	held	constant	at.	L	=	0.06,	t	=	0.065,	d	=	0.01,	c	=	0,	showing	the	expected	pattern	for	both	types	of	
inversion	(I	only	tested	𝛼 = 1	for	paracentric	linear	inversions).	The	figure	also	show	that	the	
minimum	frequency	of	P1	is	lower	for	standard	than	for	paracentric	linear	inversion	for	all	values	of	
m.	I	suggest	that	this	is	because	the	inversion	spread	at	a	faster	rate	when	it	captures	a	haplotype	
with	more	high-fitness	loci	(Kirkpatrick	and	Barton	2006),	and	the	P0T1M1N1	haplotype	has	higher	
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fitness	in	males	than	in	females.	Recall	that	for	paracentric	inversions,	I	assume	that	there	is	no	
recombination	at	all	in	males	(as	in	Drosophila).	Therefore	the	paracentric	linear	inversion	with	the	
P0T1M1N1	allele	is	selected	only	in	females,	for	whom	P0	is	maladaptive	and	T1	is	not	directly	selected,	
whereas	the	standard	inversion	is	also	selected	in	males,	for	whom	the	P0	allele	is	neutral	and	T1	is	
positively	selected.	Hence,	I	expect	the	inversion	to	spread	more	slowly,	and	the	P1	allele	to	be	
replaced	more	quickly	in	the	latter	case.	Figure	4.12	plots	the	progress	the	inversion	in	the	same	
runs	as	those	in	figure	4.11,	indicating	that	the	standard	inversions	initially	spread	relatively	fast	to	
a	high	frequency	before	increasing	somewhat	further	once	invaded	by	P1,	whereas	the	paracentric	
linear	inversions	initially	spread	relatively	slowly	before	accelerating	once	invaded.	This	is	seen	
more	clearly	in	figure	4.13,	which	shows	the	progress	of	the	P1	allele	and	the	[1P1T1M1N1]1	and	
[1P0T1M1N1]1	haplotypes	in	a	single	run,	for	both	types	of	inversions.	The	figures	also	show	that	even	
though	the	paracentric	linear	inversion	initially	spread	at	slower	rate,	the	total	number	of	
generations	for	the	two	runs	is	not	necessarily	much	different.	
	 When	interference	is	strong	and	the	inversion	is	short	(table	4.4),	or	when	d	=	0	(tables	4.3	
and	4.4),	recombination	in	heterokaryotypes	is	respectively	very	low	(figure	4.10)	or	zero,	so	that	
the	P1	allele	does	not	invade	the	inversion	at	all,	and	is	lost	(though	note	that	as	long	as	the	
recombination	is	non-zero	and	the	population	is	infinite,	the	P1	allele	will	invade	sooner	or	later	if	∆	
is	set	to	a	low	enough	value).	
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Figure 4.10a: The flux rates at the P locus for a paracentric linear inversion with 𝛼 = 1 (top) and 𝛼 = 0 
(bottom), as a function of dL. 
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Figure 4.10b: The flux rates at the P locus for a standard inversion as a function of dL. 
	
	
	 d=0	 d=0.001	 d=0.01	 d=0.05	
t=0.001	 yes	(P0)	 no	 no	 no	
t=0.01	 yes	(P0)	 yes	(P1)	 no	 no	
t=0.065	 yes	(P0)	 yes	(P1)	 yes	(P1)	 no	
Table 4.3: Displays whether the standard inversion spread (yes) or not (no) in scenario 2, and which allele at 
the P locus ended up fixed in habitat 1. Valid for L = 0.06, 0.125, 0.2; m = 0, 3 
	
	
	 d=0	 d=0.001	 d=0.01	 d=0.05	
t=0.001	 yes	(P0)	 no	 no	 no	
t=0.01	 yes	(P0)	 yes	(P0)	 no	 no	
t=0.065	 yes	(P0)	 yes	(P0)	 yes	(P1)	 no	
Table 4.4: Displays whether the standard inversion spread (yes) or not (no) in scenario 2, and which allele at 
the P locus ended up fixed in habitat 1. Valid for L = 0.06, 0.125, 0.2; m = 7 
 	



 78 

	

	

	
Figure 4.11: The progress of the base 10 logarithm of the frequency of P1 in habitat 1, scenario 2 for m = 0, 1, 
2, 3, 4, 5 (top to bottom curves). Top: standard inversion. Bottom: paracentric linear inversion, 𝛼 = 1. All runs, 
both plots: L = 0.06, t = 0.065, d = 0.01, c = 0 
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Figure 4.12: The progress of the inversion in habitat 1, scenario 2, for m = 0, 1, 2, 3, 4, 5 (same colors as in 
figure 4.11). Top: standard inversion. Bottom: paracentric linear inversion, 𝛼 = 1. L = 0.06, t = 0.065, d = 
0.01, c = 0. 
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Figure 4.13: The progress of the P1 allele (blue), the [1P0T1M1N1]1 haplotype (green) and the [1P1T1M1N1]1 

haplotype (red) for a standard inversion (top) and paracentric linear inversion (bottom). The blue and red 
curves coincide in the rightmost half of the top plot. Both runs: t = 0.01, d = 0.001, m = 3, L = 0.06, c = 0. 
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4.2.4 Scenario 3 
In	scenario	3,	the	P1	allele	is	introduced	inside	the	already	(nearly)	fixed	inversion,	meaning	that	the	
high-fitness	P1T1M1N1	haplotype	mostly	avoids	recombining	with	locally	maladapted	0-index	alleles,	
so	that	the	trait	allele	(T1)	remains	a	reliable	indicator	of	male	fitness.	Since	recombination	is	the	
major	obstacle	to	reinforcement	(Felsenstein	1981)	and	the	initial	spreading	of	the	P1	allele	seems	to	
be	the	limiting	step	in	scenario	1	(see	figure	4.5),	scenario	3	tests	the	idea	that	reversing	the	order	of	
the	equilibrium	actions	can	accelerate	the	process.	Figure	4.14	plots	the	total	number	of	generations	
needed	to	reach	the	final	equilibrium	in	the	control	scenario,	scenario	1	and	scenario	3	for	t	=	0.001,	
0.065,	d	=	0,	m	=	3,	showing	that	scenario	3	reaches	equilibrium	significantly	faster	than	both	the	
control	scenario	and	scenario	1	when	L	>	0.02.	The	results	for	d	>	0	are	almost	identical	(figure	4.15).	
That	the	inversion	spread	slightly	faster	for	higher	L	in	scenario	3	is	consistent	with	Kirkpatrick	and	
Barton’s	(2006)	results	showing	that	an	inversion	with	𝑑𝕙 = 0	that	capture	a	high-fitness	haplotype	
spread	at	a	lower	rate	when	recombination	in	homokaryotypes	is	lower;	as	mentioned	above,	this	is	
because	the	difference	between	the	recombination	rates	in	homokaryotypes	and	heterokaryotypes	
is	then	less	significant.	Figure	4.15	shows	that	this	effect	is	also	present	when	𝑑 = 𝑑𝕙 = 0.001.	
Scenarios	1	and	2	show	the	opposite	pattern,	because	in	those	cases	the	limiting	step	is	the	initial	
spreading	of	the	P1,	which	is	impeded	when	there	is	high	recombination	between	pre-	and	post-
zygotic	loci	(since	the	trait	allele	is	then	no	longer	a	reliable	indicator	of	male	fitness).	Also	note	the	
substantial	effect	of	varying	t:	for	t	=	0.065	the	longest	run	lasted	about	133,000	generations,	
whereas	for	t	=	0.001	the	number	is	over	3,750,000.	This	is	presumably	because	higher	migration	
brings	more	maladapted	individuals	to	habitat	1,	which	increases	the	selection	on	both	the	inversion	
(Kirkpatrick	and	Barton	2006,	Dagilis	and	Kirkpatrick	2016)	and	the	preference	allele.	Figure	4.16	
plots	the	progress	of	the	P1	allele	and	the	inversion	in	scenarios	1	and	3	for	two	different	settings	of	
L,	showing	that	some,	but	not	all,	of	the	difference	is	due	to	P1	allele	taking	longer	to	settle	on	an	
equilibrium	after	reaching	a	high	frequency	in	scenario	1.	
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Figure 4.14: The total number of generations (in thousands) needed to reach the final equilibrium in the control 
scenario (dotted), scenario 1 (dashed), and scenario 3 (solid). Top: t = 0.001. Bottom: t = 0.065. Both figures: 
d = 0, m = 3, c = 0. All generations are rounded up to the nearest thousand. Note that it necessarily takes more 
generations to reach equilibrium in scenario 1 than in the control, because the former include the latter plus 
one extra step. 
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Figure 4.15: Same as figure 4.14, bottom, except d = 0.001 
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Figure 4.16: Example progress plots for scenario 1 (dashed) and scenario 3 (solid) for equivalent parameter 
settings. Blue: Inversion. Red: P1. Top: L = 0.06, Bottom: L = 0.2. All runs: standard inversion. Note that, 
unlike in figures 4.14 and 4.15, the progress before the introduction of P1 and the inversion is not included. The 
solid blue curve in the bottom plot rises so sharply that it almost coincides with the y-axis. All runs: t = 0.065, m 
= 3, d = 0.001.  
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	 I	also	tested	the	idea	that	an	initially	(nearly)	fixed	inversion	can	make	reinforcement	
happen	more	easily	when	the	P1	allele	is	introduced	on	the	island	in	a	continent-island	model	(one-
way	migration).	One-way	migration	is	generally	less	conducive	to	reinforcement	than	two-way	
migration	because	the	direct	effect	of	migration	of	P0	individuals	from	the	continent	can	swamp	the	
indirect	effect	of	selection	on	P1	on	the	island	(Servedio	and	Kirkpatrick	1997).	Figure	4.17	compares	
the	final	equilibrium	frequency	of	P1	on	the	island	in	the	control	scenario	for	c	=	0,	0.005,	0.01,	0.05,	t	
=	0.01,	m	=	3,	and	scenario	3	for	the	same	settings	except	c	=	0,	showing	that	for	c	=	0,	the	P1	allele	
does	not	spread	when	L	>	0.02	(meaning	that	scenario	1	would	be	impossible),	but	it	does	spread	
almost	to	fixation	for	all	values	of	L	when	an	inversion	is	introduced	as	intermediate	step	(i.e.	in	
scenario	3).	The	figure	also	shows	the	effect	of	varying	c,	the	cost	of	searching	for	mates,	in	the	
control	scenario.	As	I	showed	in	chapter	3,	when	c	>	0,	females	favoring	rare	males	are	
disadvantaged,	and	increasingly	so	with	increasing	c.	Since	P0	females	favor	T0	males,	which	are	rare	
on	the	island,	and	vice	versa	for	P1,	we	should	expect	reinforcement	to	happen	more	readily	for	
higher	values	of	c,	which	the	figure	shows	is	the	case.	Nevertheless,	the	equilibrium	frequencies	in	
the	control	scenario	for	the	highest	value	of	c	tested	(0.05)	is	still	not	as	high	as	the	ones	for	the	
corresponding	runs	in	scenario	3	with	c	=	0.	

	
Figure 4.17: The equilibrium frequency of the P1 allele in habitat 1 for one-way migration (continent-island 
model). Solid line: scenario 3, c = 0, d = 0.001 (no runs with c > 0 were executed). Dashed lines: Control 
scenario, t = 1, c = 0.05, 0.01, 0.005, 0 (top to bottom lines). All runs: t = 0.01, m = 3. 
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5 Discussion 
Previous	studies	have	investigated	whether	or	not	a	perfectly	chiasma-suppressing	inversion	(𝑑𝕙 =
0	in	my	terminology)	can	spread	and	facilitate	reinforcement	when	it	captures	an	adapted	set	of	pre-	
and	postzygotic	isolation	loci	(Tricket	and	Butlin	1994,	Dagilis	and	Kirkpatrick	2016).	However,	the	
effects	of	recombination	and	underdominance,	of	capturing	a	maladapted	preference	allele,	and	of	
reversing	the	order	in	which	the	preference	allele	and	inversion	appears,	have	not	yet	been	
examined.	The	results	in	the	previous	chapter	indicate	that	a	chromosomal	inversion	can	enhance	
differentiation	at	the	preference	loci	and	cause	the	two	habitats	to	be	fixed	for	alternative	optimal	
haplotypes	(scenario	1),	even	when	initially	capturing	a	maladapted	preference	allele	(scenario	2),	
and	that	the	process	is	significantly	accelerated	when	the	preference	allele	is	introduced	after	the	
inversion	(scenario	3).	Furthermore,	although	my	simulations	only	examine	the	initial	stages	of	
reinforcement,	I	will	suggest	that	an	inversion	can	enhance	differentiation	further	in	later	stages	for	
four	reasons.	
	 Firstly,	my	results	indicate	that	the	inversions	can	spread	and	divide	the	population	into	the	
two	pure	haplotypes	even	when	underdominant	(d	>	0).	This	means	that	almost	all	individuals	with	
co-adapted	index	1	alleles	in	habitat	1	will	also	have	the	derived	arrangement	([1	and	]1),	and	vice	
versa	for	index	0,	so	that	the	underdominance	of	the	inversion	enhances	the	postzygotic	barrier	to	
gene	flow.	I	stress	that	the	underdominant	inversions	in	my	model	are	favored	by	selection,	which	is	
in	contrast	to	classical	chromosomal	rearrangement	speciation	models	(e.g.	White	1978)	in	which	
the	inversion	spread	by	drift	against	a	selection	gradient	in	allopatry.		
	 Secondly,	as	Navarro	and	Barton	(2003)	show,	new	pairs	of	universally	favored	two-allele		
incompatibilities	(see	figure	4.2)	that	appear	successively	in	parapatry	are	more	likely	to	cause	
differentiation	of	the	two	subpopulations	when	located	inside	an	inversion	than	when	located	in	a	
colinear	region.	This	is	because	when	a	new	allele	at	a	locus	M	(allele	M0)	starts	spreading	in	habitat	
0,	the	reduced	gene	flow	between	the	two	arrangements	means	that	there	is	more	time	for	an	
incompatible	allele	N1	at	locus	N	to	appear	and	spread	in	habitat	1	before	this	habitat	is	also	invaded	
by	M0	(see	figure	5.1).	They	furthermore	show	that	each	such	pair	of	fixed	incompatibility	alleles	
that	differentiates	the	two	arrangements	will	make	the	recruitment	of	additional	incompatibility	
alleles	more	likely,	because	of	the	further	reduction	in	gene	flow,	and	because	higher	differentiation	
increases	the	probability	that	new	mutations	will	be	incompatible	with	at	least	some	alleles	in	the	
other	habitat.	Hence,	a	snowball	effect	of	increasing	postzygotic	barriers	can	be	initiated.	
	 Thirdly,	the	enhanced	postzygotic	barriers	will	in	turn	create	stronger	selection	for	
enhanced	prezygotic	barriers,	since	the	disadvantage	of	mating	with	individuals	from	the	other	
deme	will	be	larger.	Since	stronger	prezygotic	barriers	will	reduce	gene	flow	further	by	making	
cross-species	mating	less	likely,	it	will	accelerate	the	Navarro-Barton	postzygotic	snowball	effect	and	
initiate	a	positive	feedback	loop	between	the	recruitment	of	new	pre-	and	postzygotic	isolation	
alleles.		
	 Fourthly,	additional	preference	alleles	will	spread	faster	when	the	inversion	is	present,	for	
the	reasons	discussed	in	the	previous	chapter	(scenario	3).	
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Figure 5.1: Navarro and Barton’s (2003) model of the differentiation of two-allele incompatibilities in 
parapatry. Left: No inversion polymorphism. Right: Inversion polymorphism. M0 and N1 are universally 
selected and incompatible. Grey indicates new fixed mutation, bold underline indicates new fixed migrant. The 
numbers represent time, as follows. Left: 1) The subpopulations starts out the same. 2) The M0 allele appear in 
habitat 0. 3) The M0 allele, being universally selected, quickly spread into habitat 1. 4) The N1 allele appear as 
a mutation in habitat 1, but is inhibited from spreading by the presence of the incompatible M0 allele. The two 
habitats ends up the same. Right: 1) The two subpopulations starts fixed for the MxNx haplotype, but 
differentiated by an inversion polymorphism (maintained by some sort of selection). 2) M0 appear in habitat 0. 
3) The invasion of M0 into habitat 1 is delayed because of low recombination in inversion heterokaryotypes. 4) 
N1 appear as a mutation in habitat 1 and spreads, hence preventing M0 from invading. The two subpopulations 
end up differentiated at all four loci. 
	
	 The	previous	paragraphs	are	reminiscent	of	Servedio	and	Sætre’s	(2003)	suggestion	of	a	
positive	feedback	loop	between	pre-	and	post-zygotic	isolation	genes	in	collinear	(i.e.	non-inverted)	
regions.	According	to	this	hypothesis,	the	frequency	of	post-zygotic	isolation	alleles	(M1	and	N1	in	a	
four-allele	incompatibility	model)	can	increase	in	habitat	1	by	hitchhiking	with	the	newly	introduced	
preference	allele	(P1).	Their	simulations	(and	mine,	results	not	shown)	show	that	this	does	indeed	
happen,	though	the	effect	is	small,	even	for	closely	linked	loci	(in	Servedio	and	Sætre’s	simulations	
the	frequency	of	the	M1N1	haplotype	increases	by	around	𝑒)3	when	L	≈	0.01	and	around	𝑒)&�	to	
𝑒)&�	when	L	>	0.1	for	autosomes,	and	by	slightly	more	when	M	and	N	recombine	freely	and/or	the	
loci	are	sexlinked).	The	increased	frequency	of	the	M1	and	N1	alleles	in	habitat	1	will,	the	hypothesis	
goes,	further	increase	the	selection	pressure	on	new	prezygotic	isolation	alleles,	hence	initiating	the	
feedback	loop.	It	is	not	intuitively	obvious	to	me	that	this	latter	effect	is	real,	as	one	could	make	the	
opposite	argument	that	selection	against	mating	with	maladapted	(M0	and	N0)	individuals	is	lower	
rather	than	higher	when	there	are	fewer	maladapted	individuals	around,	and	to	my	knowledge	it	is	
yet	to	be	confirmed	and,	if	it	is	real,	quantified.	Either	way,	since	the	increase	in	the	frequency	of	the	
M1N1	haplotype	is	small,	the	effect	on	the	selection	pressure	on	new	prezygotic	alleles	will	
presumably	be	small	as	well.	
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	 The	simulations	of	scenario	2	show	that	the	inversion	can	cause	the	fixation	of	the	P1	allele	
in	habitat	1	even	when	it	does	not	initially	capture	it,	though	it	can	also	cause	it	to	become	lost	if	the	
flux	rates	are	too	low	and/or	the	inversion	spread	to	fixation	too	fast.	I	will	conjecture	that	this	
finding	is	quite	general,	or	more	precisely	that	an	inversions	that	(1)	spread	by	capturing	a	
differentially	adaptive	haplotype	with	high	but	suboptimal	fitness	in	parapatry,	and	(2)	show	some	
recombination	in	heterokaryotypes,	will	tend	to	either	absorb	remaining	differentially	adaptive	
alleles	through	recombination	and	end	up	fixed	with	an	optimal	or	close	to	optimal	haplotype,	or	
cause	the	non-included	high-fitness	alleles	to	become	lost,	depending	on	linkage,	d,	interference,	and	
the	speed	at	which	the	inversion	spreads.	Hence,	higher	recombination	in	heterokaryotypes	can	
facilitate	differentiation	when	the	inversion	does	not	capture	the	full	optimal	haplotype.	Note	that	
this	effect	works	only	one	way,	since	low-fitness	alleles	that	invade	the	inversion	through	
recombination	are	not	selected.	
	 My	results	might	at	first	seem	to	contradict	the	ones	in	Feder	and	Nosil	(2009),	which	are	
sometimes	cited	as	a	potential	reason	to	doubt	the	effect	of	inversions	on	speciation	(e.g.	Faria	and	
Navarro	2010).	In	that	study,	the	authors	ran	simulations	of	different	models	with	two	postzygotic	
isolation	loci	in	two	habitats	initially	fixed	for	alternative	chromosomal	arrangements	(loci	order	
[MN]),	and	found	that	in	some	runs	the	differentiation	between	the	two	habitats	quickly	disappeared	
whenever	there	is	some	recombination	in	heterokaryotypes.	In	all	those	runs,	however,	they	
assumed	that	the	inversion	captures	a	haplotype	with	low	fitness	in	both	demes,	and	that	the	
alternative	haplotype	with	highest	fitness	is	not	differentially	adaptive.	For	example,	in	their	model	3	
the	M	and	N	loci	are	standard	Dobzhansky-Muller	two-allele	incompatibilities	(see	figure	4.2),	and	
the	two	habitats	start	out	fixed	for	the	haplotypes	[0M0Nx]0	and	[1MxN1]1,	respectively,	where	Mx	and	
Nx	are	the	ancestral	compatible	alleles,	and	M0	and	N1	are	derived	and	incompatible	but	not	
positively	selected.	Accordingly,	Mx	and	Nx		are	universally	compatible,	and	when	allowed	to	
recombine,	they	take	over	both	habitats.	The	only	evolutionary	force	influencing	the	inversion	will	
then	be	underdominance	from	meiotic	irregularities	in	heterokaryotypes,	meaning	that	the	more	
common	one	will	soon	become	universally	fixed.	This	does	not	happen	when	the	inversion	captures	
a	differentially	adaptive	haplotype,	like	the	M1N1	haplotype	in	my	four-allele	incompatibility	model,	
or	the	MxN1	haplotype	in	a	two-allele	model	where	N1	and	M0	are	positively	selected	(so	that	the	
fitness	of	MxN1	is	higher	than	that	of	MxNx	and	M0N1	in	deme	1,	but	lower	than	that	of	the	prevalent	
M0Nx	in	deme	0),	as	in	Feder	and	Nosil’s	model	4,	and	in	the	later	(Time	4	in	figure	5.1,	right)	stages	
of	Navarro	and	Barton’s	(2003)	model	(the	latter	explicitly	assume	some	sort	of	selection	
maintaining	the	initial	differentiation	of	the	alternative	arrangements	at	time	1).	Hence,	the	key	
factor	determining	whether	or	not	differentiation	is	maintained	in	spite	of	recombination	in	Feder	
and	Nosil’s	study	is	simply	whether	or	not	the	differentiation	is	adaptive.	In	other	words,	while	
recombination	erodes	neutral	and	maladaptive	differentiation	(Feder	and	Nosil’s	models	1,	3,	and	5),	
it	does	not	necessarily	erode	adaptive	differentiation,	and	in	some	cases	it	actually	facilitates	it	(this	
study,	scenario	2).	Furthermore,	Feder	and	Nosils’	models	assume	that	the	habitats	are	initially	fixed	
for	the	alternative	arrangements	without	explaining	how	this	came	to	be;	if	the	inversion	does	not	
capture	a	high-fitness	haplotype	then	it	does	not	spread	by	selection	in	parapatry,	and	will	not	
become	fixed	in	the	first	place	unless	one	invokes	drift	against	the	selection	gradient	in	allopatry	
(assuming	that	the	inversion,	being	subject	to	recombination,	is	also	underdominant).	There	is	
therefore	reason	to	doubt	whether	such	scenarios	are	representative	of	naturally	occurring	
inversions.	
	 In	sum,	I	suggest	that	in	order	to	have	a	stable	inversion	polymorphism	between	two	
subpopulation,	there	needs	to	be	some	kind	of	selection	to	establish	and	maintain	it.	Such	selection	
can	either	be	the	result	of	reduced	recombination	of	local	high-fitness	(but	not	necessarily	optimal)	
haplotypes	(Charlesworth	and	Charlesorth	1973,	Tricket	and	Butlin	1994,	Kirkpatrick	and	Barton	
2006,	Dagilis	and	Kirkpatrick	2014,	this	text),	or	simply	from	direct	selection	on	the	inversion’s	
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effects	on	gene	expression	(Avelar	et	al.	2013).	Once	such	a	polymorphism	is	in	place,	further	
differentiation	can,	I	suggest,	occur	through	the	processes	discussed	here	and	in	Navarro	and	Barton	
(2003),	even	when	there	is	some	recombination	in	heterokaryotypes.	
	 As	expected,	I	found	a		stark	difference	between	the	d	toleration	limit	for	standard	and	
paracentric	linear	inversions.	In	the	former	case,	the	inversion	did	not	spread	for	d=0.05,	even	under	
the	most	favorable	conditions	(scenario	1,	highest	possible	migrations	rate).	In	the	dataset	in	Coyne	
et	al.	(1993)	and	Navarro	and	Ruiz	(1997),	only	inversions	shorter	than	about	0.25	Morgan	have	d	
values	in	this	range	(see	figure	2.4,	this	text);	if	this	is	a	general	result,	it	could	impose	an	upper	limit	
on	the	length	of	standard	inversions	that	can	spread	in	scenarios	similar	to	the	ones	considered	
here.	This	is	a	testable	hypothesis	that	can	be	addressed	in	future	empirical	studies.	Paracentric	
linear	inversions,	on	the	other	hand,	are	only	weakly	underdominant	even	when	d	is	quite	large,	and	
accordingly	they	did	spread	in	my	simulations	for	a	wide	range	of	d	values,	even	for	the	maximum	
value	of	1	when	conditions	are	ideal.	As	many	people	have	noted	before	me	(e.g.	Coyne	et	al.	1993),	
this	is	probably	the	reason	why	paracentric	inversion	polymorphisms	are	much	more	common	than	
pericentric	ones	in	Drosophila	(Stone	1955),	which	is	one	of	the	groups	with	linear	meiosis.	My	
results	from	scenario	2	furthermore	indicate	that	a	paracentric	linear	inversion	that	does	not	
initially	capture	the	adapted	preference	allele	is	less	likely	to	cause	it	to	get	lost	from	the	population,	
compared	to	a	standard	inversion,	presumably	because	of	the	assumption	of	no	recombination	in	
males.	
	 Future	research	should	investigate	whether	the	Drosophila	d	values	in	Navarro	and	Ruiz	
(1997)	are	representative	for	other	species.	It	would	also	be	interesting	to	systematically	compare	
the	d	values	of	laboratory-induced	inversions	(as	in	the	Coyne/Navarro	and	Ruiz-dataset)	with	those	
of	naturally	occuring	inversion	polymorphisms.	Naturally	occuring	inversion	polymorphisms	are	
sometimes	found	to	not	be	underdominant	at	all	(Nachman	and	Myers	1989,	Coyne	et	al.	1991)	
implying	d	≈	0,	though	it	is	not	clear	whether	this	is	because	more	underdominant	inversions	did	not	
spread	in	the	first	place	or	because	the	inversions	spread	when	underdominant	and	subsequently	
underwent	selection	to	further	suppress	chiasma	formation.	
	
All	theories	and	assumptions,	however	well	established,	should	and	must	be	open	to	further	
criticism	(Popper	1934/2002).	I	will	therefore	end	this	thesis	with	a	critical	look	at	some	of	mine.	
Firstly,	I	have	throughout	this	text	disregarded	the	effect	of	gene	conversions.	Although	the	rate	of	
flux	from	gene	conversion	is	typically	small	compared	to	that	from	crossing	over	in	homokaryotypes,	
this	need	not	necessarily	be	the	case	in	heterokaryotypes,	especially	when	the	inversion	is	short	and	
interference	is	strong	(Navarro	et	al.	1997).	My	simulations	therefore	probably	underestimate	the	
degree	of	flux	in	heterokaryotypes	for	a	given	value	of	d.	This	might	be	considered	a	conservative	
assumption	for	scenario	2,	in	that	higher	gene	flux	rates	would	make	it	easier	for	the	P1	allele	to	
invade,	but	not	necessarily	so	for	the	other	scenarios.	Allowing	for	gene	conversions	would	not	affect	
the	degree	of	underdominance	of	the	inversion	and	would	increase	flux	in	homokaryotypes	as	well	
as	heterokaryotypes,	so	I	would	not	expect	it	to	have	a	large	effect	in	scenarios	1	and	3,	except	
perhaps	that	the	d	toleration	might	be	slightly	lowered.	Another	interesting	implication	of	gene	
conversions	is	that	a	short	paracentric	linear	inversions	with	strong	interference	and	𝛼 = 1	would	
be	nearly	selectively	neutral	(i.e.	not	underdominant)	while	still	allowing	some	degree	of	gene	flux.	I	
plan	to	include	gene	conversions	in	a	future	version	of	my	program.	
	 Secondly,	while	there	is	plenty	of	evidence	that	interference	depends	on	genetic,	as	opposed	
to	physical,	distance	in	homokaryotypes	(chapter	2),	evidence	either	way	is	to	my	knowledge	lacking	
in	heterokaryotypes.	My	assumption	in	this	text	is	that	the	intermediate	events	are	suppressed	by	a	
factor	d,	and	that	the	counting	process	works	on	this	depleted	set	in	the	same	manner	that	it	does	in	
homokaryotypes.	This	might	seem	like	a	straightforward	implication	of	the	counting	models,	but,	as	
I	mentioned	in	chapter	2,	much	work	remains	to	determine	which	aspects	of	these	models	are	
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physically	real,	and	which	are	just	useful	mathematical	abstractions.	In	essence,	the	problem	is	that	
the	counting	models	lack	a	good	explanation	(Deutsch	2011)	for	why	they	work	so	well.	I	here	use	
the	term	good	explanation	in	Deutsch’s	non-standard	meaning	of	“an	explanation	that	is	hard	to	vary	
while	still	accounting	for	what	it	purports	to	account	for”.	As	he	explains,	the	ancient	Greek	myth	
that	seasonal	variation	in	weather	is	caused	by	the	mood	swings	of	the	goddess	Demeter	is	not	a	
good	explanation	in	this	regard,	as	one	can	easily	vary	the	myth	to	account	for	any	weather	pattern,	
or	indeed	anything	at	all.	By	contrast,	the	theory	that	seasons	are	due	to	the	earth’s	axial	tilt	is	a	good	
explanation:	the	theory	makes	clear,	non-trivial	and	unchangeable	predictions	–	risky	predictions	in	
Popper’s	(1963)	terminology	–	that	allow	us	to	unequivocally	reject	it	if	proven	false.	A	good	
explanation,	furthermore,	has	reach,	in	Deutch’s	(2011)	sense	of	being	able	to	address	problems	
beyond	those	which	it	was	designed	to	solve.	Hence,	just	as	a	good	explanation	of	seasons	informs	us	
about	seasons	in	other	locations	and	on	other	planets,	so	a	good	explanation	of	how	interference	
works	in	homokaryotypes	might	tell	us,	by	implication,	how	it	works	within	an	inverted	region	and	
across	breakpoint	boundaries,	how	and	why	it	varies	across	species,	and	all	sorts	of	other	things	we	
are	yet	to	consider.	At	the	very	least,	a	good	explanation	will	tell	us	where	to	look,	and	what	to	test.	
While	the	counting	models	have	proved	adept	at	modelling	interference	in	a	wide	range	of	species,	
the	theory	of	why	they	work	so	well	is	at	present	not	a	good	explanation	in	the	sense	used	here;	as	
long	as	the	mechanism	of	the	hypothetical	“machine	that	can	count”	(Foss	and	Stahl	1995)	remains	
as	elusive	as	Demeter’s	mood	swings,	the	inferences	we	can	draw	from	one	study	to	the	next	will	
remain	limited.	For	this	reason,	a	good,	hard	to	vary,	long-reaching,	and	provably	true	explanation	of	
how	interference	actually	works,	will	be	infinitely	more	valuable	than	any	set	of	data	points.	
	 Finally,	I	recognize	that	the	simulations	in	the	previous	chapter	explore	only	a	small	region	
of	the	vast	parameter	space	in	which	reinforcement	and	chromosomal	evolution	can	occur.	This	is	
mostly	for	reasons	of	simplicity,	though	I	do	not	consider	it	a	major	shortcoming.	The	theories	
presented	in	this	thesis	do	not	consist	of	the	outputs	of	the	model	designed	to	test	them;	the	former,	
unlike	the	latter,	have	reach	that	stretches	well	into	hitherto	unexplored	areas	of	parameter	space,	in	
which	they	can	be	further	tested	and	eventually	refuted	or	improved.	I	intend	to	take	up	this	task..	In	
particular,	I	plan	to	investigate	how	the	Navarro-Barton	postzygotic	snowball	effect	interacts	with	
the	evolution	of	new	preference	alleles	in	later	stages	of	divergence,	and	how	the	whole	process	is	
affected	by	chiasma	interference	and	recombination,	with	and	without	a	chromosomal	inversion.	
Other	studies	could	follow	in	this	path,	or	focus	on	testing	the	influence	of	parameters	that	I	have	
here	investigated	only	briefly	or	not	at	all,	such	as	the	cost	of	searching,	the	symmetry	and	degree	of	
mating	preferences,	or	the	type	and	strength	of	selection	on	the	postzygotic	isolation	loci.	
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Appendix A: A note on matrix notation 
All	vectors	and	matrices	are	denoted	in	bold.	A	matrix	or	vector	followed	by	square	brackets	([])	
denotes	the	particular	element	of	that	matrix	or	vector,	so	that	e.g.	
	

𝑴[𝑖, 𝑗] = 𝑖 + 𝑗,				𝑓𝑜𝑟	𝑖, 𝑗 = 0,1,2…𝑛 − 1	
	
indicate	that	𝑴	is	a	zero-indexed	matrix	of	size	n,n	with	element	i,j	(row,	column)	equal	to	i+j.	All	
vectors	are	row-vectors	unless	otherwise	indicated,	so	that	e.g.	
	

𝒗[𝑗] = 𝑗,					𝑓𝑜𝑟	𝑗 = 0,1,2…𝑛 − 1	
	
means	that	
	

𝒗 = (0 1 2 … 𝑛 − 1)	
	
When	referring	to	a	column-vector,	I	either	do	so	by	writing	out	the	vector	in	full,	like	this:	
	

𝒘 =

⎝

⎜
⎛

0
1
2
…

𝑛 − 1⎠

⎟
⎞
	

	
or	by	first	defining	the	vector	elements	and	then	indicate	in	subsequent	expression	that	the	vector	is	
transposed,	like	this:	
	

𝒘[𝑗] = 𝑗,					𝑓𝑜𝑟	𝑗 = 0,1,2…𝑛 − 1	

𝑎 = 𝒗𝒘¤		

	
Two	vectors	or	matrices	placed	side	by	side	always	indicate	matrix	multiplication.	When	matrix	
multiplication	operations	are	to	be	performed	on	a	given	number	of	matrices	with	increasing	indices	
from	left	to	right,	I	sometimes	write	it	in	the	following	short	form	
	

 𝑴¬

)&

¬h$

= 𝑴$𝑴&𝑴' …𝑴)&	

	
The	multiplication	of	x	instances	of	the	same	matrix	(M)	is	denoted	𝑴D ,	so	that	
	

𝑴D = 𝑴
D)&

¬h$

= 𝑴𝑴𝑴…𝑴	

	
By	definition,	
	

𝑴$ = 𝑰	
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i.e.	a	matrix	to	the	zeroth	power	is	always	equal	to	the	corresponding	identity	matrix.		
	 Multiplication	of	a	matrix	with	a	scalar,	or	addition	of	two	matrices	with	the	same	
dimensions,	indicate	that	each	element	in	the	matrix	is	multiplied	or	added.	For	example,	if	
	

𝑴& = �1 2
3 4�	

𝑴' = �1 0
0 1�	

then	

2𝑴& = �2 4
6 8�	

and	

𝑴& +𝑴' = �2 2
3 5�	

	
	 The	one-vector,	denoted	𝟏,	is	a	vector	of	only	ones,	i.e.	𝟏 = (1 1 1 … 1).	The	number	of	
elements	in	the	one-vector	is	determined	by	context.	
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Appendix B: Example input file with 

comments 
The	following	is	a	version	of	the	input	file	‘example.txt’	(online	appendix)	with	brief	comments	
(indicated	with	//).	Note	that	the	comments	interfere	with	the	reading	of	the	input,	so	use	the	
comment-free	version	if	you	want	to	run	the	simulation.	
	
The	key	settings	for	this	simulation	are:	Standard	inversion;	L	=	0.125;	d	=	0.001;	pure	counting	model,	
m	=	3;	symmetrical	migration,	t	=	0.065.		
	
#	chromosome	1	 	 	 //	create	an	autosomal	chromosome	
loci	=	[PTMN]	 	 	 	 //	loci	keys	in	the	order	they	appear	on	the	chromosome	
lambda	=	1.0,	1.0,	1.0,	1.0,	0.0	 	 //	lambda	values	for	each	interval	
Mu	=	0.0	 //	mu	values	(if	only	a	single	0	is	given,	it	means	0	for	all	

intervals)	
d	=	0.001,	0.001,	0.001,	0.001,	0.001	 //	d	values	
	
#	chromosome	sex	 	 	 //	create	the	sex	chromosome	
loci	=	$	 	 	 	 	 //	$	is	the	sex	determination	locus	
heterogametic	=	female	
	
	
	
#	Equilibrium	1		 	 	 //	input	for	first	equilibrium	
check	=	500	 	 	 	 //	indicate	how	often	to	check	if	equilibrium	is	reached	
	
%	remove	 	 	 	 //	alleles/haplotypes	to	remove	from	this	equilibrium	step	
alleles	=	P1,	[1	
	
%	condition	 	 	 	 //	delta	
delta	=	1.0e-12	
	
%	follow	 	 	 	 //	which	alleles/haplotypes	to	follow	
alleles	=	T1,	M1,	N1	
haplotypes	=	T1&M1&N1,	T0&M0&N0	
screen	=	true	
	
%	do	mutate	 	 	 	 //	introduce	the	inversion	
[00P00T11M11N11]00	to	[01P00T11M11N11]01	
frequency	=	0.002	
deme	=	1	
	
	
#	Equilibrium	2		 	 	 //	input	for	second	equilibrium	
check	=	1000	
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%	remove	
alleles	=	P1	
	
%	condition	
delta	=	1.0e-10	
	
%	follow	
alleles	=	[1	
haplotypes	=	[1&T1&M1&N1,	T0&M0&N0,	T1&M1&N1	
screen	=	true	
	
%	do	mutate	 	 	 	 //	introduce	P1	
[11P00T11M11N11]11	to	[11P01T11M11N11]11	
frequency	=	0.002	
deme	=	1	
	
	
#	Equilibrium	3		 	 	 //	input	for	third	equilibrium	
	
check	=	100	
	
%	condition	
delta	=	1.0e-10	
	
%	follow	
alleles	=	P0,	P1,	[1	
haplotypes	=	[1&P1&T1&M1&N1&]1,	[1&P0&T1&M1&N1&]1,[0&P0&T0&M0&N0&]0,	P1&T1&M1&N1,	
P0&T0&M0&N0,	T1&M1&N1,	T0&M0&N0	
screen	=	true	
file	=	progress	 	 	 	 //	store	progress	as	Numpy	array	
	
%	do	end	 	 	 	 //	end	simulation	
	
#	Population	 	 	 	 //	population	settings	
Gamma	=	0.0,	0.0,	0.0,	1.0	 	 //	gamma	values	
c	=	0.0	 	 	 	 	 //	cost	of	searching	
	
%	remove	 	 	 	 //	remove	globally	
haplotypes	=	]1&N0	
	
%	migration	 	 	 	 //	migration	matrix	
0.935	0.065	
0.065	0.935	
	
%	Interactions	
fitness	=	$&T*M&N	 	 	 //	multiplicative	fitness	interaction	
preference	=	PxT	
	
%	Fitness	
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Incompatibilities	=	M,N,	0.5,	0.5	 //	shortcut	for	setting	incompatibilities	with	the	
parametrization	used	in	the	thesis	(can	also	be	set	manually	
to	other	parametrizations)	

	
%	Mating	
quickset	=	P,	T,	0.1,	0.1,	1.0	 //shortcut	for	setting	mating	preferences	with	

parametrization	used	in	the	thesis	
	
	
#	Deme	0	 	 	 	 //	input	for	habitat	0	
	
static	=	false	
	
%	Allele	frequencies	
P|T|M|N0=1.0	
P|T|M|N1=0.0	
[|]0=1.0	
[|]1=0.0	
	
%Fitness	 	 	 	 //	fitness	specific	to	habitat	0	({m}	indicate	a	male)			
{m}&T00	=	1.2	
{m}&T01	=	1.0	
{m}&T11	=	0.833333333	
	
	
#	Deme	1	 	 	 	 //	input	for	habitat	1	
	
%	Allele	frequencies	
T|M|N0=0.0	
T|M|N1=1.0	
P0=1.0	
P1=0.0	
[|]0=1.0	
[|]1=0.0	
	
%Fitness	
{m}&T11	=	1.2	
{m}&T01	=	1.0	
{m}&T00	=	0.833333333	
	
	
#	Report	 	 	 	 //settings	for	the	final	report	
alleles	=	P1,	T1,	M1,	N1,	[1,	]1	
haplotypes	=	[0&P0&T0&M0&N0&]0,	[1&P1&T1&M1&N1&]1,	P0&T0&M0&N0,	P1&T1&M1&N1,	
T0&M0&N0,	T1&M1&N1,	M1&N1,	M0&N0	
equilibria	=	true	
file	=	+_output.txt	
screen	=	true	


