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1. Introduction 
1.1 Symmetry 
The term “symmetry” derives from the Greek words sum (meaning ‘with’ or ‘together’) 
and metron (‘measure’), yielding summetria. Originally this indicated a relation of 
commensurability [1]; that something (concept, theory, or a concrete object) is measurable 
or comparable by a common standard.  Symmetry, in both science and everyday life, has 
fascinated and intrigued humans since ancient times.  Symmetry has, both as a concept 
and as a concrete thing, a particular salience to humans as it is closely related to humans’ 
inclination for harmony, beauty, and unity.  In everyday use the word has two meanings 
[2]; one philosophical and one mathematical.  The artistic usage of the word pertains to 
the harmony of shapes, colors, and forms in art, but also harmony in the written word such 
as Petrarchan sonnets and rhyming couplets.  This artistic understanding of the word is 
less strict and applied in a more general/abstract sense than in the purely mathematical 
usage. At its core, symmetry is therefore a philosophico-mathematical idea by which man 
has attempted to understand and construct order, beauty, and perfection [2].   

In art, symmetry is considered the harmonizing effect proportions and composition 
may have on different elements so that they are brought together into a unitary whole [1].  
This does not require that any of the elements can be mirrored across an imaginary plane 
or undergo any geometric transformation.  Rather, it is more of a conceptual mechanism 
that unifies the different parts of a sculpture or painting.  This rather elusive use of the 
term symmetry in art means that the notion of symmetry is more of a transcendent 
experience that goes beyond measurable geometric figures. 

Aristoteles writes in one of his principal works, Metaphysica, that “(t)he chief forms 
of beauty are order and symmetry and definiteness, which the mathematical sciences 
demonstrate in a special degree [3].”  The mathematical branch of  geometry defines 
bilateral symmetry, the symmetry of left and right, as an absolutely precise concept [2].  
An object is symmetrical if it can be split into two or more identical parts, and this parts 
are systematically situated in relation to one another [4].  Objects are symmetric by two 
main types of transformation: reflection or rotation [4].  Reflection, also known as mirror 
symmetry, and rotation, which is any operation that results in bilateral symmetry, were 
described succinctly in writing as well as schematically by Hermann Weyl (Figure 1) [2]:  

“A body, a spatial configuration, is symmetric with respect to a given plane E if it is carried into itself by reflection in E.  Take 
any line / perpendicular to E and any point p on /: there exists one and only one point p' on / which has the same distance 
from E but lies on the other side. The point p' coincides with p only if p is on E. Reflection in E is that mapping of space upon 
itself, S: p-> p', that carries the arbitrary point p into this its mirror image p' with respect to E. A mapping is defined whenever 
a rule is established by which every point p is associated with an image p'. A rotation around a perpendicular axis, say by 
30°, carries each point p of space into a point p' and thus defines a mapping. A figure has rotational symmetry around an 
axis / if it is carried into itself by all rotations around /.” 
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Bilateral symmetry of the face is perhaps the archetypal example of symmetry 
about a line (Figure 2).  The imaginary line that bisects the face in the midsagittal plane 
can be thought of like a mirror, as every point on one side of the mirror plane has its 
counterpoint on the other side, thus yielding the figure what is called self-coincident with 
congruent sides [4].  When a transformation changes an object, like half a face, into a 
congruent figure it is called an isometry, with reflection being indirect or opposite isometry 
and rotation being direct isometry [4].  When a two dimensional figure like a triangle is 
mirrored across a line, the corresponding angle turns of the mirror image will be opposite 
(clockwise and counterclockwise).  For three-dimensional structures the corresponding 
turns are right-handed and left-handed, and the two parts of the figure are called indirectly 
or oppositely congruent [4]. 

Mardia et al. [5] make a differentiation between two types of bilateral symmetries 
observed in the natural world, matching symmetry and object symmetry.  Matching 
symmetry manifests itself as a pair of separate copies at the same distance from an 
imaginary mirror plane (midsagittal plane), but this symmetry axis does not bisect either 
of the paired objects [6].  Deer antlers, insect antennae, crayfish claws, primate hands are 
all examples of  matching symmetry where a structure is present in two separate mirror 
image copies of each other on opposite sides of the anteroposterior axis of bilaterians.  
The term matching symmetry refers to the way scientists evaluate and analyze the degree 
of symmetry/asymmetry between mirror image structures [6]:  the structures of interest 
are matched by using one as the reference object and reflecting the test object before 
superimposition.  On the other hand, anatomical structures (objects) with an internal axis 

Figure 1.  Schematic of reflection/rotation about a line resulting in bilateral symmetry as sketched by Hermann       
Weyl in his book Symmetry [2] and demonstrated with a premolar.   
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or plane of symmetry such as the human mandible, sternum, pelvis, etc. that are bisected 
with midsagittal plane have object symmetry. 
 

There are other types of symmetry (Figure 2) for both two-dimensional objects in  
one plane (glide reflection [e.g. human footprints]) and three-dimensional solids such as 
[4]: 

 inversion symmetry (e.g. pair of cranks on a bicycle), 
 rotatory inversion (e.g. two equal sticks laid across each other at right 

angles; if the cross is tuned through a right angle and inverted, the sticks will 
have changed places), and 

 screw symmetry (e.g. spiral stair case, DNA helix, screw, etc.). 
 

These symmetries can be combined and present at the same time for certain objects, and 
it is clear that the number of symmetry permutations in three dimensions far exceeds those 
possible in  two dimensions. 
 
 

 
 
 
 
 

Figure 2.  Visualization of different types of symmetries (A-F).  The symmetry about the mirror line E in (A) shows how point 
p has its counterpart p´ on the other side (authors´ face).  The symmetry depicted in (B) shows the reflection about 
the mirror line E of the authors´ twins face resulting in a mirror imaged where for every point there is a 
corresponding.  It follows that corresponding angles are clockwise and anticlockwise.  Panel (C) demonstrates 
inversion symmetry (rotation and reflection about the axis of the bicycle crank).  For two-dimensional objects one 
can also have symmetry in glide reflection (D).  Three-dimensional symmetries are numerous as demonstrated 
with both screw symmetry and rotary inversion (E and F).    
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1.1.1 Symmetry versus Asymmetry 
To understand the propensity for bilateral symmetry in biology, it is important to appreciate 
the different forms of asymmetry.  The ideal body plan of an organism belonging to the 
bilaterian clade has perfect symmetry, but this is never really encountered in nature. 
Imbalances in growth due to selective pressures, environmental challenges, congenital 
instability or genetic defects can result in patterns of asymmetry that fall into three 
categories  [7, 8]: 

1. Fluctuating Asymmetry (FA):  FA is a random phenotypic deviation from the 
expected ideal genotypic programmed bilateral symmetry believed to be due 
to developmental instability from genetic factors (e.g. mutations) and/or 
environmental challenges (e.g. pathogens, toxins, nutritional) [9].  The use 
of FA as an indicator of genetic and overall health is controversial and by 
some described as contentious [6, 10].  Palmer and Strobeck [7] lamented 
that “FA as a measure of developmental stability is a very small signal easily 
lost in a tumultuous sea of entropic forces.” There are, however, more recent 
studies that have found that increased FA is associated with higher BMI in 
women, more medical conditions [11],  and lower IQ and socioeconomic 
status [9, 12].  See Figure 3A. 

2. Directional Asymmetry (DA): DA is a form of asymmetry whereby a 
characteristic in a population differ from the left to right side in the same 
direction.  Examples of this include male narwhals with their consistently 
enlarged left canine [13], height differences in ear openings in barn owls 
[14], and asymmetrically situated internal organs in Homo sapiens [15].  See 
Figure 3B. 

3. Antisymmetry (AS): AS is where the characteristic is consistently of greater or 
lesser size like in DA but occurs on either side with approximately equal 
frequency.  The fiddler crab (Uca spp.) is an example of AS where there are 
equal distributions of males with the extremely asymmetric enlarged claw 
being either right- or left-clawed [16].  See Figure 3C. 
 

External dental geometric morphometrics have attempted to correlate FA in teeth 
with both general health and malocclusion.   Bailit et al. [17] found that they could predict 
the ranking of dental FA in four different ethnic groups according to degree of external 
challenges (exposure to illnesses, caloric intake, environment and living conditions, and 
inbreeding).   Khalaf et al. [18] found that the degree of FA was low in their study sample 
of young Caucasian males and females from the United Kingdom where external 
challenges on average can be expected to be low.  When studying the connection 
between dental FA, Sprowls et al. [19] found a positive correlation between increased FA 
and so-called transverse positional asymmetries as well as dental crowding.  The 
connection between dental FA and overall health is contested, as other studies have not 
found any biological meaningful correlation with morbidity [20].  Asymmetry is not only 
manifested in structures either belonging to the object or matching type of symmetry but 
may also present itself in the midsagittal plan such as a spina nasalis anterior deviation or 
an asymmetric sagittal skull suture resulting in bulging away from the midline [21]. 
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1.1.2 Bilateral Symmetry: Sexual Dimorphism and Attractiveness 
The human face plays an important role in visual perception (e.g. gender) and for 
conveying and understanding social cues.  Facial expressions and grimaces that are 
transmitted, either consciously or sub-consciously, are quickly assessed and perceived 
by the receiver and illicit both physical and psychological reactions.  It was previously 
held as scientific truth that a person’s outer appearance could give insight into his/her 
personality.  Historically, many scientists devoted their careers to the study of 
physiognomy, the assessment of a person’s traits and characteristics based on facial 
features.   Physiognomic analysis is now considered a pseudo-science at best.  
However, with the advent of advanced two- and three-dimensional facial analysis the 
field has been reincarnated as studies show that people and computers are able to 
correctly identify gender (sexual dimorphism) based on symmetry with a high degree of 
accuracy [22, 23]. 

. 

Figure 3.  Categories of asymmetry. (A) FA demonstrated by the antlers of elk (Cerus candadensis). FA is represented
by minor non-directional deviations from perfect symmetry (origin), measuredas the differences between
corresponding parts on the left and sides of the body (thus, the mean value (x̅) for left–right differences is
zero). (B) With DA, morphological lateralization in essentially all individuals of a population is fixed on the
same side. The species-specific left placement of the tusk of the Narwhal (Monodon monoceros) typifies DA.
(c) Populations with random lateralization of contralateral structures, such as seen with the enlarged claws
of Banana fiddler crabs (Uca mjoebergi), show discrete asymmetries either to the left (pink) or to the right
(blue), exhibit AS.  Figure after Compagnucci et al.  [21] by permission from John Wiley and Sons (Lisences 
number 4423701297049) 
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A high degree of symmetry (low FA) has also been investigated in sexual 
dimorphism by itself [24] and has been found to correlate positively with perceived facial 
attractiveness [25, 26]. 

 
Symmetry is both visually pleasing and appealing to humans; it has perceptual 

salience [27].  It permeates the organic and inorganic natural world as well as art, 
architecture and engineering [2].  The ubiquitous and almost universal presence of 
bilateral body plans, while radial (rotational)  symmetry and other forms can be found as 
well [6], suggest that symmetry must have become in of and in itself a driving force of 
sexual selection for the bilaterian clade. 

1.1.3 The Origin and Evolution of Bilateral Symmetry 
It is believed that the bilaterian body plan burst out of what is known as the Cambrian 
Explosion approximately 541 million years ago [28].  The main features of vertebrate 
bilaterians are that they have a front (anterior), back (posterior), top (dorsal), and bottom 
(ventral).  This anteroposterior axis gives their external body bilateral symmetry, e.g. left 
and right side. The bilaterian blueprint for segmental identity, anteroposterior vectorial 
patterning, and development of anatomical structures is encoded by conserved common 
cladistic regulatory genes known as homeotic genes such as Hox genes [29].  These 
regulatory programs for regional specification and morphogenesis are under fine-tuned 
control by several signaling molecules. 

Retinoic acid (RA) (the oxidized form of vitamin A) is an important signaling 
molecule with several functions in the developing vertebrate embryo [30].  RA plays an 
important part in establishing the anteroposterior and the left-right embryonic axis along 
with the formation of the cranial neural crest cells (NCC) [31].  These NCC are vertebrate 
pluripotent migratory cells that specialize into cells that become responsible for 
craniofacial development and patterning of bone, cartilage, and teeth [32].   

Epithelial-mesenchymal interactions control odontogenesis and the 
morphodifferentiation of teeth.  These interactions are controlled through several complex 
signaling pathways by a number of different mesenchymal regulatory molecules and their 
receptors [33].  Furthermore, RA provides a molecular link between the anteroposterior 
and left-right axis that ensures the bilateral symmetric somitogenesis in vertebrate 
embryos [30, 34].  The Zebrafish´s anterior dentition was lost in evolution.  Seritrakul et 
al. [32] demonstrated that Zebrafish exposed to RA during development induced both the 
formation and bilateral symmetric formation of ectopic anterior dentition.   

1.1.4 Bilateral Symmetry: From Bones to Teeth 
Apart from the asymmetric arrangement of internal organs, the anatomical structures and 
limbs of the human body is assumed to exhibit near perfect matching or object symmetry.  
The clinical relevance is apparent in the case of surgical reconstructions/corrective 
surgery and a multitude of clinical assessments where the contralateral limb serves as an 
intra-subject control [35].  Studies on bilateral symmetry of both the physical, 
densitometric, and structural measurements of the entire femur as well as geometric 
morphometric features of the proximal femur show substantial symmetry [35, 36].  The 
implication for both research purposes and surgical procedures is clear when Young et al. 
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[36] also found that demographics (age, weight, height, ethnicity and gender) had no 
association with asymmetry.  The bilateral matching symmetry of the femur is a valuable 
aid in reproducing the correct femoral size, shape and orientation in hip arthroplasty [37, 
38]. 

 
Three-dimensional evaluation and comparison of computed tomography (CT) 

images of the scaphoid bone demonstrate, like the studies on femurs, such a high degree 
of bilateral matching symmetry that ten Berg et al. [39] suggest that the contralateral side 
is a useful reference in preoperative planning for reconstruction surgery of scaphoid 
fractures. Other similar two- and three-dimensional comparisons of bilateral anatomical 
structures support the presumption of bilateral matching and object symmetry in humans 
for structures such as the talus  for surgical planning;  metacarpals, humeri and calcanei  
for mismatching comingled human remains; and for shape and volume deviation analysis 
of the pelvis  [40-43] [44]. 

 
The high degree matching symmetry seen in bones and bony structures has also 

been found in cartilage and fibrocartilaginous tissue in certain outer and inner human 
anatomical structures such as the outer ear [45] and meniscus [46].  Bilateral symmetry 
seems pervasive in the human body.  It is also present in the normal craniofacial complex 
[47, 48] with the mandible showing a symmetry of 82.85 (95% confidence interval 80-
84.2), in a sample of 952 Brazilian individuals [49].  Thus, one would therefore presume 
that this would be the case for contralateral teeth. 

 
Studies on the degree of macroscopic similarity between contralateral teeth have 

been sparse, but there has been interest in the microscopic features such as striae of 
Retzius in enamel and lines of Owen of the dentin in forensic dentistry.  Based on an 
investigation by two Japanese scientists (T. Fujita and H. Takiguti) the renowned forensic 
dentist G. Gustafson [50] showed in 1947 that teeth from the same dentition could be 
matched using the aforementioned lines.  His wife, and Sweden’s second female with a 
PhD in dentistry, Anna-Greta Gustafson, confirmed the structural symmetry in 
contralateral premolars.   She demonstrated that gross details such as the dentinoenamel 
junction and  finer details such as irregularities and bending of the enamel prisms were 
identical in contralateral first premolars [51].  She also states “(…) occasional exceptions 
where the condition is not bilateral are no doubt accounted for by some localized 
disturbance of development (…) such as trauma or infection (…).”  In her thesis [52], she 
reiterates her findings of identical structural regions in homologous teeth from the same 
individual.  She makes the contention that results from any investigation of the reactions 
of “enamel are unreliable unless absolutely identical control material has been used” and 
“experiments on the reactions of enamel to acid or to other destructive substances should 
be [conducted] on a very great number of teeth, or on homologous teeth.” 
 

Jørgensen [53] did not cite the findings or recommendation made by Anna-Greta 
Gustafson two decades prior, but he did confirm her conclusion on enamel being identical 
in homologous teeth by testing effect of a given etching acid on different teeth and on 10 
pairs of contralateral teeth ex vivo.  He used the scanning electron microscopy (SEM) 
monitor to localize identical coordinate values measured from the mesial and incisal 
border of the labial surface.  He concluded that non-contralateral teeth demonstrate 
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substantial differences in the pattern of the etched enamel and that symmetric areas on 
pairs of contralateral teeth have almost identical etch patterns.  He suggested that 
“comparative studies (…) may therefore lead to erroneous conclusions unless the 
materials are compared from pairs of contralateral teeth [53].”  In a follow-up study, 
Jørgensen & Shimokobe [54] used contralateral pairs of incisors and canines and 
confirmed their previous findings when they examined the adaption of flowable restorative 
materials to etched enamel ex vivo.   

 
Brännström and Nordenvall [55] based their methodology on Jørgensen’s findings.  

They used contralateral teeth in their combined in vivo and ex vivo etching on dentin and 
enamel study in an effort to create well-balanced experimental groups.  They found 
variations in the etching effects, but it is unclear how the compared the exact same area 
of tooth with its corresponding contralateral.  Furthermore, since the etching procedures 
were conducted prior to extraction the enamel surfaces could not be matched as 
suggested by Anna-Greta Gustafson.  Nevertheless, in his presentation of the series of 
experiments laying the grounds for explaining the hydrodynamic theory, Martin 
Brännström used contralateral premolars to have one of the homologous teeth serve as 
the control [56]. 

 
Even though matched contralateral teeth have been used as the substrate for 

certain comparison studies [57-61], they have never become the gold standard [62, 63].  
De-Deus [64] suggest using paired and matched teeth for endodontic leakage studies as 
most studies have only demonstrated differences in anatomy.  This principle of using 
paired and matched teeth can be applied to other studies apart from leakage studies.  
There are, however, a paucity of detailed and high quality studies on the normal external 
or internal anatomy of contralateral teeth. 
 
1.1.4.1 Bilateral Symmetry in Premolars 
 
Ludwig [65] identified seven distinct morphological traits that included 19 aspects of the 
mandibular second premolar.   These traits were used by Wood and Green [66]  in their 
study of second premolar morphologic trait similarities in twins to see if they could be used 
to determine whether twin pairs were mono- or dizygotic.  This study has been erroneously 
cited as evidence for contralateral premolars being almost anatomically identical [58] and 
that their similarity would remove confounding factors such as root canal anatomy or 
dentin structure.  Unfortunately, Wood and Green only made homolateral (i.e. left premolar 
from twin “A” compared to left premolar from twin “B”) and heterolateral (i.e. left premolar 
from twin “A” compared to right premolar from twin “B”)  premolar comparisons, but, as 
seen in figure 4 their schematic this is easily misunderstood: 
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As a side 

note, high homolateral concordance (similarity) was positively correlated with 
monozygosity and was in close agreement with the serologic diagnosis.  In other words, 
a finding of homolateral premolars with high degrees of similarity had a higher chance 
belonging to identical twins.  Their findings of occlusal topology having less variability in 
identical twins versus fraternal twins has been confirmed in two three-dimensional 
geometric morphometric studies [67, 68].  Townsend et al. speculate that since less 
asymmetry (both directional and fluctuating) was reported in identical and fraternal twins 
compared with singletons according to findings made by Boklage, “there may be 
something special about the twinning process [69, 70].” 

1.2 Premolars 

Paired and matched premolars have been suggested as being a suitable substrate for 
comparison studies due to their availability and potential to create well-balanced 
experimental groups [64, 71]. 

1.2.1 Availability of Premolars 
The proportion of children receiving orthodontic treatment in Norway has historically been 
approximately 30% out of every birth cohort.  Overbites and the combination of crowding 
in the maxilla and mandible are the most common treated malocclusions [72].  In 2017 the 
Norwegian birth cohort consisted of 56 633 babies [73]. The extraction of premolars to 
treat crowding and overbites is commonplace, and the access to contralateral premolars 
as substrates for endodontic comparison studies seems plentiful. 

1.2.3 Techniques to Investigate Root Canal Morphology 
The root canals’ multifarious morphologies, intriguing intricacies, enchanting enigmas, 
reclusive recesses, twisting tortuosities, and cavernous complexities have always 
fascinated students of dental anatomy.  The founder of the Brooklyn Endodontic Study 

Figure 4.  Schematic depicting the intra-pair comparisons done by Wood and Green, 1969.  Note how no comparisons 
within each twin were made. 
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Club, inventor of the endodontic explorer DG-16 [74] and root canal anatomist Dr. David 
Green, stated that “(o)f all the phases of anatomic study in the human system one of the 
most complex is that of pulp cavity morphology [75].”   
 

Without a thorough and complete appreciation of the normal and abnormal 
anatomy that is hidden within the tooth, the dental operator cannot be expected to provide 
state-of-the-art care.  It is thanks to researchers like Dr. David Green that endodontic 
exploration has evolved from the simple sectioning and grinding studies to the complex 
and visually stunning three-dimensional elucidations of today. The wonderful history of 
investigating the internal anatomy of teeth deserves a synopsis, and the following is an 
attempt at presenting its evolution.  This brief history of endodontic exploration is by no 
means exhaustive.  It merely presents some of the more important landmark studies. 
 

The first comprehensive and systematic description of root canal anatomy was 
published by Georg Carabelli in 1844 [76].  The earliest internal investigations were 
conducted by sectioning teeth in all planes and detailing the anatomy with both 
measurement data and meticulous illustrations as seen in the works by G.V. Black and E. 
Mühlreiter [77, 78].  The first to use another technique besides sectioning and grinding 
was probably Gustav Preiswerk who employed a method he called corrosion 
technique.   He poured molten Wood's metal into the pulp chamber and root canal system 
before softening of the tooth with liquor potassae (a caustic solution) for easy removal of 
metallic casts [79].  These casts were often incomplete, as the metal could not flow into 
the finer wefts of the root canal system.  In 1907, inspired by Preiswerk, Fischer obtained 
stunning, though fragile, results by immersing teeth in celluloid-in-acetone solutions before 
decalcification with hydrochloric acid [80].  He was able to demonstrate the finer details of 
the root canal systems ramifications and his renditions of the apical delta are quite 
stunning.    Hess made a further improvement by injecting vulcanized rubber prior to 
decalcification [81], and his excellent vulcanite preparations and impressive illustrations 
are still valuable to the study of root canal anatomy today. Nevertheless, Hess and his 
predecessors failed to portray the relation of the canals to the tooth as a whole. The 
methods described so far also all resulted in the complete destruction of the surrounding 
tooth substance 

 
Werner Spalteholz introduced his clearing technique (diaphanization) in 1911 for 

visualization of internal structures of anatomical specimens [82].  Investigators of internal 
dental anatomy finally had a non-invasive method to render dental tissue translucent.  By 
injecting the pulp cavity with either molten metal like P. Adloff did in 1913 or Indian ink as 
introduced by H. Moral in 1914, it was now finally possible to study the pulp cavity in 
relation to the outer anatomy [83-85].  These two revolutionary methods did, however, 
have their shortcomings [86]. The first technique had the potential to produce artifacts and 
cracks from the molten metal.  Also, the molten metal would not penetrate the finer minutia 
of the root canal system.  The India ink does have the ability to penetrate the intricate 
anastomoses, but the ink would also diffuse into dentinal tubules and obscure the 
periphery of the canals. 
 

Okumura presented a new classification for root canals from his extensive study of 
2148 teeth in 1927 using the technique of dyes and diaphanization [87].  Many have 
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unfortunately overlooked his studies as they were first published in Japanese.  Seeling 
and Gillis presented in 1973 a simplified method in which the dentin and cementum are 
made transparent and the pulp tissue is stained dark blue [88]. This technique was refined 
and utilized (decalcification in hydrochloric acid, placed in potassium-hydroxide solution, 
Hematoxylin staining of pulp tissue and clearing of teeth using a crystal-clear liquid plastic 
casting resin after dehydration in alcohol) both by Vertucci et al. and by Gulabivala et al. 
in their seminal studies of permanent teeth [87, 89-91].  The canal staining and clearing 
technique eventually became the gold standard method of studying root canal anatomy 
[92].   

 
Two-dimensional x-ray has also been used alone and as a supplement to the 

aforementioned techniques to provide as demonstrated in Augustus Henry Mueller’s 
impressive master thesis from 1932, which was a radiographic study  on 1394 incisors, 
cuspids, and bicuspids [93].  His introduction gives an excellent overview of the 
investigations of root canal anatomy leading up to his study.  However, this method yields 
an unreliable interpretation of a three-dimensional reality.  This would only be attainable 
when combining computerized methods with radiography.   

 
The first studies attempting to introduce a CAT methodology for three-dimensional 

imaging of the root canal were carried out in the mid-1980s.  Mayo & Montgomery [94]  
were inspired by non-invasive CAT scan technology, when they injected contrast medium 
into the root canal system of nine extracted single-rooted permanent human premolars 
before taking radiographs from several known angles.  A computerized digital image-
processing program evaluated these radiographs and they were able to calculate the root 
canals’ volume and diameter.  Next, they compared their findings with the actual volume 
and diameter from physical cross-sections.  The diameter of the root canal was found to 
be very accurate (within 1 mm of actual measurements), while the volume was significantly 
different.  The volumetric discrepancy was probably due to voids in the contrast medium. 
Furthermore, the methodology required trephination and flattening of the occlusal surface 
prior to injection of contrast medium.  Nevertheless, this study showed the promise of CAT 
and was improved upon the following year using xeroradiography, which yielded superior 
edge enhancement and enhanced detail when compared with conventional radiographs 
[95].   Their hope was that future studies would employ the methodology in order to study 
root canal morphology before and after instrumentation. 

 
The first studies to utilize computerized methodology for this very purpose was 

Berutti [96].   In 1993 he used microphotographs of five root canal sections from cross-
sectioned mesial roots of mandibular molars for superimposition of the root canal before 
and after instrumentation.  Berutti did not include cross-sections of the apical portion like 
Blašković-Šubat et al. did in their study [97].   It provided more detail, but this was also a 
destructive technique.  These two aforementioned studies were in many ways only an 
elaborate extension of the sectioning and grinding studies of G.V. Black and E. Mühlreiter 
[77, 78] in the sense that they were destructive and ultimately did not yield sufficient detail 
of the anatomy.  Despite this criticism, at the time they must have provided much incentive 
and motivation for other dental scientists finding themselves at the dawn of the dental 
digital age. 
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The potential of non-destructive, computerized, three-dimensional radiographic 
technique to the field of endodontics was first explored by Tachibana and Matsumoto [98] 
in 1990.  It was not until the invention of microscopic computed tomography (micro-CT) 
that the field of endodontic exploration was revolutionized.  Much of the work done the 
first pioneers still give insight to both untrained students and seasoned endodontists alike.  
Nevertheless, it is interesting to note that none of them were concerned with the presence 
or absence of bilateral symmetry in normal root canal anatomy. 

1.2.4 Symmetry of Dental Anomalies/Aberrations 
Despite the lack of studies on the expected anatomy in bilateral teeth, reports on bilateral 
symmetry of unexpected and aberrant root canal morphology have not been scant in the 
dental scientific literature [99-109].   However, most of these studies have been on single 
incidences of bilateral anomalies. The first systematic large scale study of the occurrence 
of bilateral internal dental aberrations was not undertaken until 1994 [110].  Sabala et al. 
scrutinized a large radiographic material consisting full-mouth series from 501 patients 
and found 100% bilaterality for rare abnormalities ( they classified rare as an anomaly 
occurring less than 1% in their sample).  Overall, they discovered that 60.2% of the 
aberrations they evaluated (multiple canals, extra roots, fused roots, and atypical shapes 
or appearances of pulp chambers) occurred with bilaterality.  The tooth type with the 
highest incidence of aberration was the mandibular first premolar (22.8% had a bifurcation 
of root/canal with 60% bilaterality).  Their findings were admittedly limited by being two-
dimensional, but their results serve as a reminder that exact matching symmetry is not a 
default condition in teeth. 
 

The fact that the mandibular first premolar showed the highest incidence of 
aberrations concurs with previous findings made by Slowey [111].  Slowey, in fact, referred 
to them as endodontic enigmas.  However, this is contrariwise to idea of morphogenetic 
fields (field theory) in which a “pole” or “key” teeth contribute most to the size and shape 
of each tooth class (incisors, canines, premolars and molars) (66).  The “pole” or “key” 
teeth show less asymmetry, variation in size and morphology, and are “never” missing 
due to agenesis.  The mandibular pole teeth include the lateral incisor, canine, first 
premolar, and first molar [70].  The vast variability within the tooth types demonstrated by 
Slowey (and by the many researchers before and after) clearly show the need for 
screening and matching of teeth that are to be used in comparative endodontic studies. 

 
Kirthiga et al. [112] conducted a descriptive cross-sectional survey among 2111 

children to identify twelve morphological features in mixed dentition of 6-10 year old 
children in Bengaluru city, India.  The combined mean (standard deviation) prevalence of 
symmetry of features was 97.44% (5.56) with a range of 81.4% to 100%.  The features 
were recorded a present or absent, and the study fails to provide any two- or three-
dimensional geometric morphometric data.  Nevertheless, it supports the idea that 
bilateral structures are under identical genotypic control. 
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1.3 On the Importance of Knowing Symmetry in Dentistry 

1.3.1  Dental Anthropology 
It is common practice for the experienced clinician to use the occlusal pattern and 
morphology of an intact contralateral tooth as a reference template when restoring its 
antimere. This is based on both subjective experience and the anecdotal evidence that 
the occlusal morphology of contralateral teeth is close to identical.  This anecdotal 
evidence and conjecture regarding occlusal matching symmetry made when performing 
restorative dentistry is not without scientific merit. 
 

Dental anthropology, a subfield of biological anthropology, is the study of  the 
development, eruption, number, size, morphology, modification, wear, and pathology of 
teeth, among other topics, in order to answer questions like how individuals and 
populations are related, what pre-historic humans’ diet consisted of, and what their 
general health status was like [113].  According to Diaz et al. [114], the analysis of dental 
morphology by anthropologists strives to understand how so-called Tooth Crown 
Morphological Traits present in frequency, sexual dimorphism, and bilateral symmetry in 
order to answer the aforementioned questions as well as give insight in biology, 
anthropology, dentistry, paleopathology, archeology, and forensic science. 

 
There is according to dental anthropology a high degree of symmetry in dental 

morphological and geometric traits [115] and the bilaterality of these traits are analyzed 
when studying the dentition of a given population [20, 114, 116].  Scott et al. elucidate that 
the overall symmetry rates based on the presence or absence of morphological traits fail 
in the range of 85-95%, but that it is lowered to 50-80% when all forms of asymmetry are 
considered  [115].  This range is due to the varying findings among different populations 
with regard to fluctuating symmetry, which has been extensively studies in the field of 
dental anthropology and is believed to be increase with inbreeding, deleterious 
environmental challenges, and in certain genetic disorders [70]. 

1.3.3 Endodontics 
The need for endodontic treatment of contralateral teeth is commonplace.  It is of great 
clinical importance to ascertain if bilateral homonymous teeth are symmetrical in number 
of roots and root canal configuration/morphology.  The use of cone beam computed 
tomography (CBCT) has made it possible for three-dimensional analysis of dental 
morphology. 
 

Plotino et al. [117] completed the very first in vivo CBCT study (Field-of-View (FOV): 
15x15cm) evaluating the symmetry of root and root canal morphology of 596 maxillary 
and mandibular molars in 201 Caucasian (Rome, Italy) men and women in 2013.  They 
noted that there was no previously available data concerning the symmetry of teeth in the 
endodontic literature even though this information would serve as being highly clinically 
relevant when treating contralateral teeth.  The study evaluated contralateral molars’ 
symmetry according to number of roots and configuration of root canal system according 
to the Vertucci classification.  Exact matching symmetry for the chosen parameters varied 
from 70%-81%, and they noted that the first mandibular and maxillary molars exhibited 
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the greatest degree of asymmetry.  The clinical relevance is apparent, as missed anatomy 
in endodontics can be the root cause of clinical failure [118].  Furthermore, it accentuates 
the need for screening and matching of contralateral teeth destined for ex vivo 
comparative studies as asserted by Xu et al. [71] in their CBCT screening proposal for 
using contralateral premolars for creating balanced experimental groups. 

 
The external and internal morphology of teeth varies according to ethnicity with 

respect to prevalence of number of roots (i.e. radix para- entomolaris in mandibular molars 
among Inuit populations [119, 120]), shape of pulp cavity (i.e. C-shape prevalence in 
Chinese second mandibular molars [121]), and even crown morphology  (i.e. shoveling in 
Pima Indians [122]). The fact that anatomical features are not homogenous from one 
race/ethnicity to the next has led others to investigate the degree of symmetry among 
different populations.  Felsypremila et al. [123] examined CBCT scans (FOV: 18x20cm) 
from 246 patients (3015 teeth) in an Indian subpopulation (Chennai, Tamil Nadu) and 
evaluated the degree of symmetry in number of roots and morphology when the patient 
had contralateral teeth according to the Vertucci classification for maxillary and 
mandibular premolars and molars.  They found a percentage of symmetry that varied from 
70%-98%, with premolars in ascending order showing the greatest degree of symmetry: 
maxillary first and second (81.5%), mandibular first (96.1%), and mandibular second 
(98.3%).  Contrariwise, to the findings made by Plotino et al. [117], the first maxillary and 
mandibular molars were more symmetrical than the second molars in both arches.  

Table 1 details the symmetry for bilateral homonymous teeth [124-134] on different 
populations along with the two aforementioned studies.  The overall finding from these 
studies should prompt clinicians to use information from contralateral teeth when 
considering the expected anatomy/morphology when this data is available. 
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1.4 Endodontic Challenges 
 
Endodontics is the field of dentistry concerned with the morphological, physiological, and 
pathological aspects of the human dental pulp and periradicular tissues [135].  It is 
imperative for dentists to have a working knowledge of the possible complexities and 
irregularities in anatomy of any tooth destined for Root Canal Treatment (RCT).  
Understanding both irregular and regular morphology/anatomy is fundamental to 
planning, performing, and the prognosis of successful RCT [136](132).  Failing to locate 
and/or completely biomechanically clean (irrigate) and obturate all canals is a root cause 
not achieving a successful prognosis of RCT and ultimately endodontic treatment failure 
[118, 137].  The purpose of RCT is ultimately preventing and treating apical periodontitis 
through chemo-mechanical instrumentation by preparing the root canal for obturation with 
a root canal material of choice before sealing with a coronal restoration [138].  Pathogenic 
ingress through these barriers will lead to (re)infection and failure [139].   
 

Despite the many challenges (persistence of bacteria, inadequate filling of the 
canal, overextensions of root filling materials, improper coronal seal, untreated canals,  
and iatrogenic procedural errors) that can prove deleterious to the endodontic prognosis 
when preventing or treating apical periodontitis, RCT has enjoyed a relatively high rate of 
success regardless of the outcome measures [140-147].  The very nature of endodontic 
treatment is a pursuit of perfection judged and predicted with great accuracy from the final 
radiograph.  The esteemed Professor Dag Solmund Ørstavik states succinctly, 
“Endodontics will be successful and joyful by producing a final result in the form of a 
radiographically "perfect" root canal filling, which confirms the quality of the preceding 
endodontic work [148].”    

 
Striving for perfection has permeated all aspects of the endodontic discipline and 

has led to an everlasting endeavor of developing advances in areas such as techniques, 
instruments, and obturation materials that might improve upon the already high long-term 
prognosis of RCT.   

 
1.4.1 Evaluation of Endodontic Techniques and Materials 
 
1.4.1.1 Instrumentation  
 
 The body of work relating to the variations of the unprepared root canal anatomy is 
vast and the exploration of this literature in Chapter 1.2.3 is certainly not exhaustive.  It 
would take over 100 years after Carabelli’s first systematic study [76] of root canal 
anatomy before the first studies on the prepared root canal appeared in the literature.  The 
first mention of histological studies on prepared root canals appeared in a 1928 review. 
E.H. Hatton listed three primary reasons for failure of root canal treatment: firstly, 
insufficiently cleaned root canals; secondly, fillings short of the apex; and thirdly, that the 
diameter of the filling material is considerably less than the diameter of the pulp canal (this 
was considered most serious) [149].  He stated that, “The canals are very superficially 
cleansed and much of the pulp tissue is not removed. It is probably true that all the pulp 
tissue cannot be removed until the shape, course, and diameter of the canals are modified 
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by filing and curetments. Yet the efforts of the operators to remove the pulps, as observed 
in treated teeth, are frequently pitifully inadequate.”  His findings are based on histological 
findings on extracted failed root treated teeth in studies from USA, Switzerland, France, 
Austria, and elsewhere.  It is unclear where any of the renditions of histological sections 
are taken from, except for one, which is a section typifying ”a very poorly treated and filled 
root canal” by the oral histologist William G. Skillen.  Romelli et al. [150] reconfirmed the 
general findings of insufficient debridement of pulpal tissue in instrumented root canals.   
 

In 1968, two studies evaluated the effect mechanical instrumentation had on the 
morphology of the root canal [151, 152].  Haga [151] instrumented 161 root canals and 
made two cross sectional cuts at 2 mm and 6 mm from the tip and found in the measuring 
microscope a high percentage of inadequate preparations (75-81.3%) in all of the 
categories of canals except the maxillary central incisors.  Inadequate preparation was 
defined as failure to remove voids and irregularities and was in general always greater at 
the 6 mm level than at the 2 mm level.  Gutierrez and Garcia [152] inspected rubber molds 
of the internal anatomy in a microscope at magnifications of up to 40x after instrumentation 
of 120 extracted maxillary incisors and canines.  After cleaving the teeth in twain, they 
found that that the 78.33% of the incisors’ and 85% of the canines’ root canals had “been 
badly negotiated” and that the “lack of regularity was due to the presence of prolongations, 
very much like fins of a fish (…).”   

 
Davis et al. [153] confirmed the finding of untouched irregularities (lateral canals, 

fins, webbings, and irregularly shaped foramina) in their beautifully detailed silicone 
models of the post-debridement canal anatomy of 217 teeth after dissolution of tooth 
substance with 5% nitric acid.  Much like the earliest studies on root canal anatomy, the 
first evaluations of instrumentation were destructive in nature.  Furthermore, even when 
they started applying modern computer-assisted tomography [94] they only considered 
the morphology and root canal walls post-instrumentation, which made it impossible to 
precisely quantify the instruments ability to shape the canals. 

 
Bramante et al. [154] acknowledged the lack of methods allowing for accurate 

comparison of pre- and post-instrumented canals.  They devised a reassembly setup 
where teeth were sectioned at three different levels before instrumentation, removed, and 
the profile of the root canal was traced from a projection of the transparency of each 
section.  The sections were positioned back into the jig, the teeth were instrumented, 
before removal and tracing of the instrumented canals.  Though crude and two-
dimensional when compared to modern techniques, the methodology allowed for 
statistical analysis and calculation of changes in area from pre- to post-instrumentation. 

 
Berutti [96] was inspired by the aforementioned setup and elaborated upon it by 

conducting computerized analysis of the first five apical millimeters below the bifurcation 
of mesial roots from first permanent mandibular molars.  Microphotograph outlines of five 
cross-sections (pre- and post-instrumentation) per root were digitized and it was possible 
to superimpose the models graphically for three-dimensional visual inspection.  
Furthermore, it was possible to acquire metric measurements and data for both volumes 
and surfaces.  Even if the experiment did not include information regarding the apical 
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portions and was destructive in nature, it certainly gave a glimpse into what the future had 
in store for endodontic research in terms of computer-aided tomography.      
 

McComb and Smith [155] were the first to describe the smear layer in instrumented 
root canals with SEM, and since their pioneer study, the use of SEM has provided much 
insight into the effects of instrumentation and chelation.  However, there has been a lack 
of reproducibility and standardization in these studies.  The attempt to correlate presence 
or absence of smear layer with sealability has been described as “pointless” [64].  Among 
other shortcomings in these types of studies, the effect of root canal anatomy and 
differences in dentin physiology (sclerotic and irregular secondary dentin) have not been 
accounted for [156]. 
 

The use of micro-CT in endodontic research revolutionized the field allowing for the 
non-destructive comparison of pre- versus post-instrumentation data such as debris 
accumulation, anatomy (morphology, transportation, centering ability, SMI), changes in 
volume, and surface, from different types of instruments and kinematics [157-163]. 
 

Finally, a recent paper [164] integrated histology, SEM, and micro-CT into a 
correlative analysis in order to evaluate the untouched surfaces of the same root canals 
after instrumentation and irrigation.  Innovative well-conceived studies, like this one, that 
integrate the best of different techniques like this give valuable insights into the effects 
that our armamentarium have on the hard tissue, soft tissue, and the biofilm.  

1.4.1.2 Obturation 
One-hundred years ago, one of the most infamous proponents of extractions in lieu of 
endodontics and the Focal Infection Theory (oral sepsis) [165], Dr. Weston A. Price, 
presented probably the first report on the physical properties of root filling materials 
(mainly gutta-percha) and root fillings ability to hinder bacterial infection of sterilized teeth 
[166].  The main conclusions on the physical properties, and the root fillings’ ability to seal 
off the extracted teeth from infection [166], was that “(w)e are using materials which do 
not have the properties that our needs require” and “(e)xhaustive researches should be 
made to develop adequate root filling materials.”  Furthermore, he concluded that the 
apparent initial success of root canal therapy must be due to what he called “an apparently 
tolerant nature” and the inevitable failure of the root fillings is attributed to the contraction 
of the materials leading to leakage and ingress of bacteria. 

  
 The following 100 years have seen a plethora of materials for obturation, but even 

more so, an inexhaustible production of testing methods for evaluating endodontic filling 
materials.  The other work of Price on rabbits and case reports of improvements of medical 
conditions have been discredited due to the eventual dismissal of Focal Infection Theory 
and his research not meeting the stringent standards of modern dental research [167].        

 
The “Washington Study” [168, 169] found that poorly performed obturation was 

responsible for 58.66% of endodontic failures, which was misconstrued to mean that the 
obturation itself was responsible for success or failure.  There are, indeed, studies that 
have shown resolution and healing of apical periodontitis without obturation [170, 171], 
but these do not by any means disprove the importance of an impregnable root canal seal.  
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Cleaning or shaping together with the obturation complete the classical triad in endodontic 
treatment [172], and modern endodontics now place the emphasis on the biomechanical 
cleaning and shaping steps.  The American Association of Endodontists (AAE) states the 
following in one of its pamphlets [173]: “what you take out of a root canal may be more 
important than what you put in”, which echoes the similar statement made by Eberly in 
1898. 

 
The AAE statement encompasses the paradigm shift in endodontics from 

performing root canals in order to simply fill dead spaces (Hollow Tube Theory) in the 
1930s [174, 175] to the treatment or prevention of periapical infection.  The Hollow Tube 
Theory has since been debunked and apical periodontitis is considered a microbiological 
challenge [176-179].  The statement, however, does not mitigate the value of a technically 
well performed root canal judged radiographically.  It is important to keep in mind the 
prognostic value of a good quality root filling with satisfactory lengths [180, 181] as these 
two parameters have been associated with the absence of periapical lesions in 
epidemiological studies [182, 183].  Ray & Trope [184] showed that the quality of the 
coronal restoration was more important for the periapical health than the technical quality 
of the endodontic treatment (obturation).  This was challenged by the findings made in the 
duplicate study by Tronstad et al. [185] who also found that a good coronal restoration in 
combination with good endodontic quality is important, but poor obturation resulted in a 
poor outcome regardless of the quality of the coronal restoration.   

 
 The interest in assessing the quality of the root canal in terms of deficits (voids) 
and leakage has therefore been of great interest to the endodontic research community 
since the possibly the first one conducted by Weston A. Price [166].  Brayton et al. [186] 
echoed the concerns of Price stating that “(…) gutta-percha placed in a root canal by the 
lateral condensation technique [with standard root canal sealer] is inadequate as a filling” 
when evaluating root fillings after teeth were decalcified and dissolved away.  Their group 
from Tufts University School of Dental Medicine conducted a series of studies on 
conventional and experimental root canal materials [186-191], which was prompted by the 
lack of success-and-failure studies providing insight into the role of the various root canal 
filling materials effect on the outcome of root canal treatment and their ability to seal off 
the root canal.  Their studies on lateral condensation technique with gutta-percha [186, 
188] found a lack of correlation with the radiographs, the fillings showed voids, 
irregularities, and did not reveal root canal variations as demonstrated in their in 
morphological study of instrumented root canals [153].   
 
A follow-up study [187] compared the results from lateral condensation technique with 
models of Kloroperka and Chloropercha after decalcification and dissolution with nitric 
acid [153].  They found more homogeneity and better replication of root canal anatomy 
in both these two chloroform-based techniques than in models from lateral condensation 
technique.  The Kloroperka technique used a master gutta-percha cone which fitted 2 
mm short of the apex. Chloroform was added to Kloroperka powder (19.6%, rosin 11.8%, 
gutta-percha 19.6%, zinc oxide 49.0%) to make a thick creamy mix.  The cone was dipped into 
the Kloroperka mixture and is inserted into the canal.  Successive cones were added in 
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the same manner with firm pressure using spreaders or pluggers until the canal was 
completely obturated.  In the Chloropercha technique, a master cone was also fitted 2 
mm short of the apex.  Next, gutta-percha was dissolved in chloroform to make a 
creamy mix. The fitted cone was dipped into the mix and placed in the canal. 
Subsequent cones were added with very firm pressure from root canal pluggers until the 
canal was obturated.  Chloropercha was deemed better than Kloroperka but concerns 
about contraction/shrinkage and porosity were raised.  Their conclusion regarding lack 
of conformity to root canal regularities and shrinkage resulted in the histological study of 
three experimental root canal materials; root filling consisting of silicone elastomer and 
adhesive (Silastic 382 elastomer and Silastic Medical Adhesive type A) or a pure poly-
hydroxy-ethyl-methacrylate root filling (Hydron, Hydron Technologies, FL, USA ) (185).  
The in vitro & in vivo preliminary findings for Hydron were very promising [192-194], but 
a subsequent long-term study showed poorer results with Hydron versus gutta-percha 
and AH-26 [195].  Furthermore, other independent studies on histological responses and 
leakage found that Hydron did not fulfill the manufactures promises concerning 
physical/clinical properties as it elicited severe inflammatory responses, demonstrated 
more leakage than conventional root filling materials, and was resorbable [196-198].   

The search for advanced root filling materials that complete the quest for three-
dimensional obturation and the creation of a monoblock [199] seemed possible with the 
polymer based Resilon core material and methylacrylate based sealer RealSeal/SE [200-
203].  However, like the story of the hopeful but hapless Hydron, the once promising 
revolutionary Resilon was recently found to be 5.7 times more likely to fail than teeth filled 
with gutta-percha and AH Plus sealer in a long- term clinical outcome study with a 
retrospective case-control design [204].   

 
Former methods to evaluate obturation were destructive and invasive in nature.  

Micro-CT technique has become the common non-destructive method used to evaluate 
root fillings materials in terms of voids and ability to obturate root canals three-
dimensionally [205-208]. 
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2. Aims of the Research and Hypothesis 

2.1 Aims 

The overall objective of this thesis was to develop a valid and reliable in silico 
methodology for ex vivo endodontic comparative studies using contralateral premolars.  
An additional purpose was to provide a greater insight into the anatomy and morphology 
of the pulp cavity of contralateral premolars.  The working hypothesis was that 
contralateral premolars are anatomically identical, and the primary aim was to provide 
insight into their degree of similarity and matching symmetry by: 

 Qualitatively and quantitatively describing and comparing the similarity of the 
anatomy/morphology of contralateral premolars’ pulp cavity in terms of shape 
deviation analysis (SDA) and simple morphometric geometric parameters (Study 
I).  

 Assess and compare the morphology of contralateral premolars’ pulp cavity in 
terms of anatomic characteristics such as length, canal width, dentinal thicknesses, 
accessory canals, root canal configurations, isthmi, C-shapes, root canal orifices, 
and apical foramina (Study II). 

The secondary aim was to use micro-CT technology and metrology software to 
validate the use of contralateral premolars in endodontic comparison studies by 
comparing their root canal systems before and after canal instrumentation with one 
instrumentation system. Furthermore, to determine whether contralateral premolar will 
yield non-significantly different outcomes regarding shaping ability (volume), degree of 
twisting and three-dimensional shape changes (Study III). 

2.2 Hypothesis 
The overall hypothesis was that using screened and matched contralateral premolars 
would yield non-significant results in a comparative endodontic study using the same 
biomechanical instrumentation system, and thereby providing a model and standard for 
endodontic comparative studies. 
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3. Methodological Considerations 
 
3.1 Background to Micro-CT 
 
Conventional radiographs (i.e. periapical radiograph) are two-dimensional, direct (no 
reconstruction; immediate conversion to grey-scales), and exhibit spatial summation.  The 
ability to acquire multi-planar reconstructions (three-dimensional images) of the internal 
structure of an object (i.e. jaw or tooth) probably represents the single most important 
dental diagnostic developmental step in the evolution of oral radiology since the first dental 
radiograph by Otto Walkhoff in 1896. 
  

The slice-by-slice internal view and translation in any plane along any axis of an 
object would not be possible without the complicated mathematical algorithms for 
reconstruction of that object through a technique first known as computerized axial 
tomography (CAT) or now simply CT.  The original tomographic techniques were based 
on axial one-dimensional direct imaging (i.e. panoramic) or two-dimensional 
reconstructions from for example fan beam CT.  Today, CBCT has allowed for true three-
dimensional reconstruction from a grey-scale cloud (three-dimensional dataset).  
Tomography is a Greek compound from the words “τόμος tomos (slice, cutting, sharp)” 
and “γράφω graphō” (representation by means of lines, writing) [209]. 

 
The underlying principle for any radiographic technique is based on the interaction 

between ionizing radiation and matter.  The x-rays from the source transverses the object 
of study and within the object, the intensity of the x-ray is weakened (attenuated).  The 
attenuation is due to reduction in beam intensity both by absorption (photoelectric) and 
deflection (scattering).  The attenuated ionizing radiation is detected by a sensor (11 
Megapixel (4000x2300) 12-bit digital charge coupled device (CCD)-camera coupled to 
scintillator (converts x-rays into visible light) in the Skyscan 1172) or phosphor plate.  Both 
the CT and CBCT reconstructions utilize the Beer Lambert Law (I = Io · e-μx), where I is the 
detected X-ray intensity at a detector pixel after passing through an object of thickness x, 
Io is the incident X-ray intensity at the same pixel, and μ is the attenuation coefficient of 
the specimen’s material.  This is what is called attenuation-based scanning, and the  
scanning software uses this relation to generate a quantifiable shadowgraph [210].  This 
CT number is proportional to the degree to which the material within the voxel has 
attenuated the x-ray beam.  It represents the absorption (photoelectric), or linear 
attenuation coefficient, of that particular volume in the object of study.  The degree of 
photoelectric interaction varies directly with the third power of the atomic number of the 
absorber, and it is this difference in absorption that makes it possible to produce any 
radiographic image [211].   
 

The mathematical basis for the CT technique is based on a 1917 mathematical 
relation known as the Radon transform (the inverse Radon transform is applied for CT), 
which in short proves that an n-dimensional object can be reconstructed from its (n-1)-
dimensional projections [212].  The mathematical principle of the Radon transform allows 
us to reconstruct any point along an ideal line.  In radiology, this ideal line is the X-ray and 
with the inverse Radon transform, we can reconstruct any grey-scale along this X-ray.  
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The result is an image from one-dimensional projections seen as two-dimensional axial 
slices composed of distinct grey-scale pixels. 

 
The mathematical basis presented by Cormack in 1964 and 1965 [213, 214] laid 

the foundation for cross-sectional imaging reconstruction in the CT scanner. They also  
implemented the mathematics that show that a function can be reconstructed from values 
of its line integrals [215].   The CT scanner was invented by Hounsfield [216], and the first 
clinical machine was installed at the Atkinson Morley Hospital in Wimbledon in 1971 [217]. 
In the case of CBCT (the X-ray bundle has a cone shaped geometry), the volumetric 
reconstruction process is accomplished through the so-called back-projection algorithm 
method of the attenuation coefficients using the Feldkamp algorithm [218].  The 
mathematical principle behind the reconstruction is different from the Radon transform, as 
the Feldkamp algorithm allows for the reconstruction of, for example, teeth, into a grey-
scale cloud.  The results of this imaging process is a three-dimensional volumetric dataset 
consisting of voxels (volumetric pixels).  This radiographic technique allows for the multi-
planar non-destructive internal inspection and computation of a volume. The CBCT has 
many clinical applications including: medical, industrial, and research.  
 

Micro-CT in biological applications and materials testing had been around since 
the 1960s, when Elliott and Dowker published their paper on the investigation of a carious 
lesion in enamel.  Their paper contained both contour maps and images with half-tones 
along with the possibility of quantitative data [219].  The apparatus from their first paper 
was modified with an axis to rotate the specimen and used again in a follow-up paper in 
1982 [220]. Even if the paper only presented a two-dimensional slice of a tropical fresh-
water snail, the resolution of 15 μm was revolutionary.  This was the first suggestion of 
micro-CT (“X-ray micro-tomography) based on the principles of CAT and served as a 
major stepping-stone into the modern world of micro-CT technology. Present day micro-
CT technology has the ability to collect multiple adjoining slices of volumetric data 
simultaneously.  The technology evolved rapidly and resolutions of better than 10 μm were 
soon attainable along with the generation of 3D tomographic images [215, 221].  Today, 
resolutions in the nano-resolution (submicron) region are attainable. 

 
The endodontic research community quickly realized the potential of CT-

technology already in the 1980s as a means of non-destructively and non-invasively 
studying the internal anatomy of teeth.  However, the first CT scanners with slice widths 
of 2 mm did not offer fine enough resolutions for detailed study (94).  The invention of the 
CBCT machine NewTom-9000 in 1998 allowed for resolutions down to 0.3 mm voxel size 
[222], and today small FOVs in modern CBCTs can offer <0.1mm voxel size [223].  The 
effective spatial resolution in CBCT devices is always lower than the published 
resolutions.  This is due to the inevitable influences of patient movement (motion blur) and 
scatter effects. In clinical/practical applications, this means that one cannot expect higher 
accuracy than 0.5 mm [224].  It is important to make the distinction between the terms 
destructive and invasive.  Although, micro-CT is a non-destructive technique it is invasive 
when it comes to the study of human dental anatomy.  This is because the studies using 
micro-CT are on extracted teeth (ex vivo). 

The seminal study by Nielsen et. al in 1995 truly launched micro-CT technology 
into the realm of endodontic research.  This paper demonstrated micro-CT’s capability to 
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evaluate external/internal morphology, changes from instrumentation in terms of 
surface/volume, degree of canal transportation, and transportation at a resolution of 127 
μm [225]. The application for this technology in dental education was soon realized along 
with the possibility for detailed qualitative and quantitative studies of morphology and 
instrumentation/obturation/retreatment [160, 205, 206, 226-236]. 

3.2 Hardware for micro-CT 
The contralateral premolars in Study I-III were all scanned with the Skyscan 1172 (Bruker 
microCT, Kontich, Belgium) in vitro desktop micro-CT.  It employs a microfocus X-ray 
source and a tungsten source target with a variable range over 20-100kV (10W).  
Adjustment of applied voltage and use of different X-ray filters (0.5mm Al, 1.0mm Al, 0.5m 
Al/40μm Cu, 0.25mm Cu) allow for modification of the polychromatic X-ray energy 
spectrum generated by the source target (233).  Furthermore, it has a spot size of <5μm 
and a 11 Megapixel (4000x2300) 12-bit digital CCD camera with a 50mm FOV.  It has the 
ability to detect 1μm at its highest resolution to 25μm (continuous variable pixel size) due 
to its adaptive geometry.  Image reconstruction is accomplished using a modified 
Feldkamp algorithm for cone beam [237].  
 

The adaptive geometry offered in the Skyscan 1172 means that it has a variable 
specimen magnification for scanning.  This is possible because the x-ray camera can be 
moved closer or further away from the source, which allows for increased X-ray detection 
efficiency and scanning speed over a wide range of resolutions [237].  Newer scanners, 
like the Skyscan 2211, which is multimodal, allow for both the sample stage and x-ray 
camera being adujested nearer or farther away from the source.  This means that the it 
can scan samples on the nano scale as long as the sample is small and close enough to 
the source.   

 
3.3 Software and Image Analysis for micro-CT 
 
Visualization and analysis of the micro-CT image data in Study I - III was completed using 
the standard SkyScan (Bruker microCT, Kontich, Belgium) Image analysis software.  The 
software package consists of CTAn (CT analyzer; builds 3d models from micro-CT scans 
and measures 2D and 3D morphometric parameters), CTVol (CT volume; provides a 
virtual 3D viewing environment by surface rendering), and CTVox (CT voxel; provides a 
virtual 3D viewing environment by volume rendering). 
 

The precise and valid analysis, visualization, and comparison of the various 
parameters of the root canal geometries in Study I - III relies on the user-dependent 
thresholding (visual and histographical estimation) of the binarized  dataset to extricate 
the root canal volume from the surrounding phases (tooth structure) [238].  The image 
data are transformed to 8 bits for analysis by the reconstruction software (the dynamic 
range is 256 shades of gray) before thresholding. Thresholding can be a major source of 
error in micro-CT analysis when dealing with interfaces (i.e. tissues, materials) with 
overlapping ranges [239].   Binarization of the root canal and hard tissue was readily 
performed as there is a clear delineation between air and tooth structure.  

 
The comprehensive metrology software, Geomagic (Geomagic, Morrisville, NC, 
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USA) was used for geometric and morphometric shape deviation analyses in Study I and 
III.  The software has been validated by several international governmental agencies.  The 
Physikalisch-Technische Bundesanstalt (PTB) is Germany’s technical authority for 
metrology and physical safety engineering.  The PTB is a scientific and technical authority 
under the auspices of the Federal Ministry for Economic Affairs and Energy.  The institute 
fulfils the requirements for calibration and testing laboratories as defined by the EN 
ISO/IEC 1705 international standard, and as such is Germany’s highest authority when it 
comes to correct and reliable measurements [240].  In 2005, Geomagic Qualify™ 
computer-aided inspection software received the highest accuracy certification from PTB 
by passing their standards for surface- and curve-fitting algorithms. Fitting results were 
accurate to less than 0.1 micrometers in length and 0.1 arcseconds (1/36,000 of a degree) 
in angle compared to the official reference value.  In 2017, the PTB evaluated Geomagic 
Control X™ (formerly Qualify™), and again found “all deviations of the algorithms under 
test (..) below the maximum permissible errors (MPE) for all quality characteristics [241].”  
The metrological software has also received certification for accuracy from the American 
National Institute of Standards and Technology (NIST) and the United Kingdom’s National 
Measurement Institute: the National Physical Laboratory (NPL).  NPL found that 
Geomagic Control X™ “comfortably satisfied, with all performance values for location, 
orientation, size and angle parameters being, respectively, less than 10–9 μm, 10–14 
radians, 10–5 μm and 10–14 radians [240].” 

   
The Vascular Modeling Toolkit Lab (VMTKLab) application (Orobix, Bergamo, Italy) 

was used for extraction of the centerlines and the geometric characterization of their 
torsion (degree of twisting) in Study III.  The deviation from a straight line is measured as 
its curvature, while torsion is the local nonconformity of the line lying on the osculating 
plane.  In other words, torsion describes how sharply a line is twisting in space [242].  
VMTKLab has a user-friendly interface with a number of algorithms part from the Vascular 
Modeling Toolkit (VMTK) and other open-source libraries for segmentation, geometric 
characterization, network analysis, hemodynamic modeling and visualization of vascular 
structures from medical images [243].  VMTK is what is known as an image-based 
modeling framework, which, unlike commercially available counterparts, is open-source 
and free. Herein lies VMTK’s major advantage as it allows for reproducibility and a high 
degree of validity [243-246].  
 

Extraction of the centerline was the only subjective operator-dependent step as the 
placement of seed points was done manually.  When using VMKTLab for the study of 
vessels, the operator identifies individual vascular segments for segmentation from large 
vascular networks by placing seed points.  This step in the process was implemented 
intentionally in order to make location of the subset of vessels of interest reproducible, 
and also because more automated segmentation methods require extensive model 
editing for mesh generation [243].  In the case of root canal geometries, the segment was 
already identified, and the generation of centerlines was not affected by the placement of 
seed points on the most coronal and apical extremities of the model.  VMTKLab processes 
centerline generation automatically after placement of seed points by using the script 
vmtkcenterlines (Figure 5).  The centerline is a line extending from the origin to the 
terminal point of the canal, and is defined by “inscribed spheres (the largest sphere which 
can fit within the surface), taking the sphere at the point for the centerline [244].”   
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Figure 5.  Panel A shows the stepwise (i-v) centerline creation in Orobix VMTKLab on a three-dimensional polydata 
object (root canal  space) (i). The process starts with placement of the coronal green source seed (ii) followed 
by   placement of the apical red target seed (iii) before computation and visualization of centerline (iv and v) 
and panel B.  The centerlines pre- (green) and post-instrumentation (red) visualized simultaneously from the 
coronal source seed can be appreciated in panel C.  

3.4 Scan Quality Challenges and Artefacts 
 
Micro-CT has replaced the primitive methods of studying root canal anatomy and has 
become the gold standard for laboratory studies.  It is invasive because it can only assess 
teeth ex vivo.  Being a powerful non-destructive imaging tool, it can lead to clinical 
applications such as the development of new techniques.  It also allows for comparative 
analysis of existing approaches in endodontic treatment, and enhancement of dental 
education in preclinical and clinical stages [247]. CBCT certainly has its applications as 
both a diagnostic aid in clinical endodontics.  However, along with the clearing technique, 
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it is inferior to micro-CT in identifying correct canal anatomy [248].  The resolution possible 
for CBCT is improving, and newer scanners have voxel sizes lower than 80μm.  However, 
there are challenges to acquiring accurate images at such high spatial resolutions due to, 
for example, patient movement.   
 

A major impediment to improving the spatial resolution of CBCT is also that the 
image noise (seen as graininess) is inversely proportional to the product of the pixel step 
size and the square of the number of photons detected [249].  This means that when the 
pixel size, is reduced by a factor of two, the number of photons must be increased 4-fold 
in order to keep the signal-to-noise ratio constant [249].  The quality of micro-CT image 
acquisition is, just like CBCT, hampered by noise in addition to several other types of 
artefacts.   

 
There are four main types of CT-artefacts: patient (specimen) based, physics 

based, hardware based, and helical & multichannel artefacts.  Some of these artefacts 
include ring, scatter, noise, extinction, beam hardening, aliasing, and motion artefacts 
(Figure 6) [250-252].  Both ring and beam-hardening reduction algorithms exist, but it has 
been largely unknown if these reductions tools will have an effect on endodontic research 
outcomes.  Queiroz et al. subjectively and objectively evaluated the influence of these two 
artefact reduction tools [253].  They found no statistically significant difference for canal 
volume or canal surface for a total of thirteen assessed ring and beam-hardening 
reduction protocols when applied according to the observer’s visual preference [252]. 
 
 

 

 

 

 

 

 

 

 

 
Figure 6.   A miscalibrated or defective detector creates ring artefact centered on the center of rotation (A).  The level 

axial slice in panel B is identical to A.  The quality is greatly improved in B with ring and beam-hardening 
reduction algortithms. Beam hardening, noise and scattering from a composite filling (C). Beam hardening, 
noise, and scattering (D) caused by a metallic crown has resulted in streaks and bands, impairing the quality 
of the images.  Ring artefact can be seen in panales A, C, and D. 
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3.5 Landmark based versus Automatic Algorithms 
 

A major strength of the methodology used in Study I and III is its ability to yield 
quantitative information on morphometric parameters independent of landmark 
placement. This makes for a highly automated and efficacious procedure for matching 
teeth for experimental testing.  The accuracy is mainly limited by the software’s ability to 
both align and co-register geometries.  The method consists of a two-step iterative closest 
point algorithm [254, 255].  The first step finds the rigid transformation that brings the 
geometries into an approximated alignment in X, Y, Z-planes followed by the fine-tuned 
second step, which co-registers the models for SDA.  The automatic alignment requires 
approximately 90% of common data for success.  Furthermore, the registration step, 
which finds common areas of curvature and orients overlapping portions of scans 
together, requires 10% overlap for the geometries to be co-registered before SDA.  Setting 
tolerances as low as possible and increasing both sample size and iterations increases 
the accuracy of both these processes. 

 
Another method to superimpose geometries, in addition to landmark-based 

methods and the surface-based registration presented herein, is voxel-based registration.  
This registration process can also be highly automated [256].  Here the software performs 
registration on greyscale voxels, and by using the intensity gray scale for each voxel it 
can compare the difference of the geometries [256].  Nevertheless, using voxel-based or 
surface-based shape deviation analysis of geometries with identical color-coded points 
(black and white) as in Study I and III seems arbitrary.  

 
The standard methods to study and compare anatomical structures in three 

dimensions have largely been landmark-based.  These methodologies have their 
apparent shortcomings as they often require extensive training for identifying the 
anatomical structures (inaccessible to non-experts), are prone to inter-examiner variability 
as reproducibility of landmarks is challenging, and are time consuming [257, 258].  The 
opposite methodologies are landmark-independent and evaluate surfaces 
comprehensively in terms of morphometry.  There are a multitude of algorithms used to 
perform these automated surface analyses that are applied in similarity estimation and 
matching of 3D objects [259, 260].  Recent studies have demonstrated that landmark-
independent methods had higher degrees of validity and reproducibility in addition to 
offering a more comprehensive analysis (Figure 7) compared to the landmark-dependent 
methods [258, 261, 262]. 
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The extensive evaluation of the similarity between contralateral premolars in Study 
I and III included comprehensive SDA, which proved an efficacious and valid method for 
matching teeth destined for endodontic comparative studies.  The scanning precision 
(unpublished data) was determined by rescanning a premolar at a different point in time, 
but with otherwise identical micro-CT and reconstruction settings [263].  The three-
dimensional models were aligned and compared using 3D deviation in Geomagic (Figure 
8), and the precision of the scanning was determined to be subvoxel (Root Mean Square 
Error (RMSE) = 0.048μm; average 3D deviation (SD) = 0.0148 / -0.0424μm (0.0291).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Depiction of landmark (A) and surface-based (B) three-dimensional analyses of facial asymmetry 
(Alqattan, M. and  Djordjevic, J. Comparison between landmark and surface-based three-dimensional analyses 
of facial asymmetry in adults. Eur J Orthod. 2017. 37(1):1-12.  Reprinted by permission of Oxford University 
Press (Lisence number 4418180579013.) 
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3.6 Nickel-Titanium Instruments 

Shaping of the root canal system has historically been achieved by different modes 
of manual [264] and rotary instrumentation since William H. Rollins first introduced the 
rotational endodontic handpiece in 1889 [265].  The greatest advancement in endodontic 
instruments shaping ability came with the introduction of nickel-titanium (NiTi) files in 1988 
due to their superior metallurgical characteristics of shape memory and super elasticity 
[266].  In recent years, single-file reciprocating NiTi file systems, which were based on the 
balanced force concept introduced [264, 267], have become commonplace.   

 
The mechanical characteristics of the original NiTi files have been improved 

through different types of cross-sections, various flute designs, taper variations, and 
improvements in the manufacturing processes (electro-polishing, electro-discharge 
machining, and thermal treatment protocols) [268].  Recently, NiTi-file systems that 
undergo a proprietary metallurgical temperature treatment resulting in files with a blue 
surface color (titanium oxide layer) and, at the same time, creating a predetermined shape 
memory have been introduced [269].  An example of this next generation of such files is 
the RECIPROC blue system (RB), which consists of the three different files each with their 
own size and taper.  All three files have the characteristic S-shape cross section and 
constant taper over the first 3 mm of their working part before a decreasing taper until the 
shaft of the instrument [270].   

Figure 8.  Precision testing scans with SDA in Geomagic Control demonstrating near perfect matching of  surface 
models viewed in four different perspectives. The deviation color maps show deviations within the range of 
approximately ±0.04μm.  
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In preliminary studies, the RB files have demonstrated increased flexibility and 
cyclic fatigue resistance [271-273]. Although studies have shown less resistance to 
bending and cyclic fatigue for the RB files, as of yet there are no studies that have 
evaluated these files’ shaping ability and ability to respect the original root canal anatomy 
in matched contralateral premolars.  The RB files make up the endodontic shaping system 
that undergraduate dental students are trained to master at the University of Oslo.  This 
was part of the reason for choosing this system for Study III.  However, the choice of 
system could very well have been arbitrary as the purpose of the study was to see if a 
given shaping system used in contralateral premolar roots would result in statistically non-
significant differences. 

The instrumentation of the contralateral premolars in Study III was performed in 
the ambient conditions of the laboratory, while other studies have instrumented extracted 
teeth immersed in 37ºC water bath with an irrigant solution also having the same 
temperature.  Azim et al.  used this as their protocol knowing that heat-treated instruments, 
such as RB used in Study III, can undergo phase transformation [162, 274], which affects 
the fatigue life of the instrument.  The choice of using ambient conditions versus the 
methodology of Azim et al. would not affect the outcome of Study III as the conditions 
were identical for all the samples, but future endodontic comparative studies may 
implement this in order to closer approximate in vivo conditions. 

 

3.7 Ethical Considerations 

The experimental use and storage of biological samples, such as extracted teeth, is limited 
by journal specific regulations in addition to institutional, national, and international 
guidelines/legislation.  This PhD project was performed according to the all pertinent 
Norwegian, international (Declaration of Helsinki), and institutional (University of Oslo) 
legislation and regulations regarding health and medical research. 
 

The Regional Committee for Medical and Health Research Ethics of South East 
Norway evaluated the project and found it not to necessitate disclosure as it was 
“Technical and methodological development work that uses anonymized biological 
material.”  The contralateral premolars were all extracted for orthodontic reasons. The 
patients (or legal guardians) were given written and oral information about the project prior 
to acquiring written consent to have their extracted teeth included in the study.  The 
consent of the patient and the guardian was obtained in accordance with the Norwegian 
Health Research Act (Lov 2008-06-20 nr 44), Chapter 4, § 13 and section 20. The 
extracted teeth were anonymized, except for sex and age, and consent could not be 
withdrawn, in accordance with §16.   
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4. Summary of the Results 
 
This dissertation is based upon the results from three studies in contralateral premolars 
before and after biomechanical root canal preparation. The studies were conducted out at 
the Department of Biomaterials and the Department of Endodontics, Institute of Clinical 
Dentistry, Faculty of Dentistry, University of Oslo. 

Study I 

In Study I, an in silico methodology on ex vivo teeth was established for the morphometric 
geometric analysis and comparison of contralateral premolars.  Using micro-CT, forty-one 
intact premolar pairs (n = 82) extracted from 28 patients were evaluated using geometric 
morphometric shape deviation analysis of the pulp spaces after mirroring, automatic 
alignment, and co-registration with semi-automated software. Geometric parameters 
compared included volume, surface, and surface over volume.  This was the first study of 
its kind to quantitatively compare contralateral premolars three-dimensionally with high 
resolution tomography.  An improved understanding of the similarity of contralateral 
premolars was reached and set a new standard for internal validation of teeth to be used 
in endodontic comparative studies. 

Study II 

In Study II, a micro–computed tomography investigation qualitatively and quantitatively 
assessed and compared the morphology of contralateral premolars in terms of length, 
canal width, dentinal thicknesses, accessory canals, root canal configurations, isthmi, C-
shapes, root canal orifices, and apical foramina.  The contralateral premolars showed a 
high degree of symmetry in linear measurements. There was also matching symmetry in 
terms of root canal configurations and root canal orifice shapes. There were noticeable 
variations between contralaterals in the apical portion as well as some instances of major 
anatomic asymmetry such as radicular dens invaginatus. 

Study III 

In Study III, the effect of a reciprocating file system for biomechanical preparation in forty-
four contralateral roots from twenty-eight contralateral premolars was evaluated in terms 
of volume, SDA, and degree of twisting.  Contralateral premolar root canals were 
associated with similar changes in terms of volume, three-dimensional shape and degree 
of twisting from pre- to post-instrumentation. There was no differences between the pairs 
pre- and post-instrumentation, and the study validated contralateral premolars as samples 
for root canal comparison studies.  The study gave further validation for using contralateral 
premolar roots in endodontic comparative studies. 
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5. Discussion 

5.1 Validity and Reliability of Methodologies in Endodontic Research 

The purpose of RCT is the prevention and treatment of apical periodontitis (134).  This is 
accomplished through the process of chemo-mechanical instrumentation in order to both 
reduce the bacterial challenge in case of an established infection and prepare the root 
canal system for obturation with a material of choice before sealing off the entire pulp 
cavity with a coronal restoration [138].  No current root filling material or technique fulfills 
all the requirements for an ideal obturation [275], and research is ongoing to improve 
sealability and make materials impervious to bacterial ingress.  The eventual leakage and 
ingress of pathogens will eventually lead to (re)infection and failure of the endodontic 
treatment [139].  The sealing off of the root canal system and entombment of remaining 
bacteria has therefore always been considered an important step of RCT.  Due to this 
fact, it has been commonplace to compare and rank different root canal materials’ sealing 
ability by using a myriad of microleakage tests [139].  There seems to be no limit to the 
ingenuity of design and variability in these microleakage methodologies, but the prevailing 
lack of standardization in testing calls into question their clinical credibility [64, 276].     

 
One of the earliest studies looking at in vitro microleakage was done in 1939 

through evaluation of both dye and bacteria ingress through temporary fillings in glass 
capillary tubes [277].  Since then, several other methodologies have been utilized to 
measure the efficacy of endodontic barriers.  These include, but are certainly not limited 
to, radioactive isotopes, electrochemical circuits, capillary flow porometry, fluid filtration 
systems, calibrated latex microsphere percolation, glucose, and leakage of endotoxins 
and bacteria [191, 278-286].  In terms of clinical relevance, human teeth are preferred due 
to the fact that morphological, chemical composition and physical property differences 
should be considered when interpreting results of leakage test using other substrates 
[287].  However, many leakage tests utilizing human teeth and having otherwise well-
conceived experimental designs, lack information about donors [288], storage [289], and 
matching information beyond tooth type [290].  It is interesting to note that even studies 
intending to evaluate the validity of leakage tests have not performed sample size 
calculations, adequate morphometric geometric matching of teeth nor adequately detailed 
medical history, age, or indications for extractions [288, 291].  Because of this, these types 
of bench-top experiments have long been subject to controversy due to questionable 
clinical relevance.  They often lack a sound design, have no control of confounding factors, 
contain statistical errors, and there is a prevailing absence of standardization [64, 292-
298].  

 
In the mid-1970s only 2.9 % of all studies in JOE pertained to leakage, but by 1990 

the popularity of publishing studies on leakage reached such pinnacle that there was a 
1:4.3 ratio between leakage studies and other endodontic articles in the two “main” 
endodontic journals, namely Journal of Endodontics (JOE) and International Endodontic 
Journal (IEJ) [292].  As a matter of fact, among the 100 top-cited articles from the last 50 
years of Endodontic research from 2013, studies evaluating microleakage (coronal or 
apical) ranked number one (n = 12) in the field [299]. The IEJ celebrated its 50th year in 
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2017 and its Editorial Board ranked Wu and Wesselink’s critical appraisal [292] of 
endodontic leakage studies from 1993 among the top 6 most influential articles [300].  The 
main message from this article is that “(i)t seems that more research should be done on 
leakage study methodology, rather than continuing to evaluate the sealing ability of 
different materials and techniques by methods that apparently provide little relevant 
information.”  In other words, the endodontic literature has been saturated by comparative 
studies lacking a sound scientific foundation supporting reliable conclusion.  De-Deus’ 
editorials in 2007, 2008, and 2012 [64, 276, 301] were echoes from the past reiterating 
Wu and Wesselink’s largely unanswered call for studies validating methodology.  The 
prevailing lack of standardization in leakage testing has “most of the time (…) 
demonstrate[d] the effect of canal anatomy rather than the variable of interest, that is, the 
root filling or technique [64].”   

 
 Sealability remains, however, an ever-important topic for endodontic research, as 

the dental community would benefit from a standardized, reliable and validated laboratory 
leakage testing method that could successfully screen and reliably rank 
materials/techniques with a meaningful correlation to clinical performance.  Until such a 
model exist, results from endodontic comparative studies are of limited clinical application 
and have no prognostic value.  The use of clinical trials to evaluate new endodontic 
materials for their performance is expensive, time-consuming, and even potentially 
ethically questionable.  It would be ideal to be able to predict clinical outcomes based on 
validated laboratory tests.   Certain laboratory test exist that demonstrate correlation with 
clinical outcome for dental composites (flexural strength, fracture toughness, wear, and 
hardness) but “the overall clinical success of dental composites is multi-factorial and 
therefore is unlikely to be predicted accurately by even a battery of in vitro test methods 
[302].”    

 
The AAE clearly states that the use of a new endodontic material or treatment 

method should not be employed unless its use in patient care is based on adequate 
laboratory, biological, and clinical studies [303].  The most important criterion for a root 
filling material is clinical success observed over time.  A considerable amount of time may 
pass from the introduction of a material until systematic clinical studies are available. This 
makes it difficult for dentists to assess whether or not to use a new material. The first 
information available is usually laboratory data and animal testing, which usually 
examines completely specific properties of the material (i.e. leakage). This type of 
information is frequently used for advertising purposes.  Systematic studies on the 
material from its use in patients´ teeth measured against clinical success criteria is not 
necessary in order to sell a material. Therefore, it may take a long time before such data 
is available. It is therefore prudent to assess the documentation of a material based on 
the type of studies available and critically appraise what level of evidence pyramid these 
belong to [172]. The “state-of-the-art” is not the same as what is considered the “standard-
of-care,” which is when the material/technique has generally been adopted by the 
profession for a specific purpose and proven clinically efficacious [304]. 

 
 In 2003 the Resilon Research LLC (Madison, CT, USA) introduced a thermoplastic 
synthetic polymer-based (polyester) root canal filling system called the Resilon™ 
Obturation System along with a dual curable dental resin composite sealer (Epiphany 
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Root Canal Sealant (Pentron Clinical Technologies)) [202].  The “Resilon Revolution” 
promised superior sealability with the creation of what became known as a monoblock 
seal (Resilon Monoblock System [RMS] [201]).  It was absolutely considered “state-of-
the-art”, but the following will demonstrate how there is no guarantee for a material being 
part of what is deemed “standard-of-care” even if the material can perform adequately in 
laboratory, biological, and clinical studies.   
 

There was a sentiment presented in the first articles evaluating Resilon™ that 
gutta-percha based root fillings were the weak link in endodontic therapy and they “leak 
at an alarming rate” [202].  This assertion was largely based on leakage studies [282, 305-
307] with clear methodological flaws and potential systematic errors [296] as well as 
epidemiological cross-sectional studies of apical periodontitis prevalence [184, 308] in 
urban populations with no control over how or when the RCT was performed (i.e. adequate 
aseptic technique).  In any case, several preliminary studies on everything from physical 
properties [203], leakage [202, 289, 309, 310], cytotoxicity [311, 312], animal studies [201, 
313, 314], and clinical outcome studies [315, 316] with short observational time (maximum 
25 months) demonstrated statistically indistinguishable or superior properties compared 
with conventional or other new root filling materials.  Based on the available data from 
laboratory, biological, and clinical studies at the time, no one could have predicted the 
downfall of Resilon™.   

 
There were some studies and theoretical criticisms of Resilon™ finding that it was 

no better than conventional root filling materials and actually sometimes worse.  The 
findings from these studies were related to its degradation [317-321], potentially high C-
factor and interfacial bond stresses [322], lower push-out and shear bond strengths [323, 
324], and reduced short- and long-term sealability [290, 325-328].  However, sound 
scientific skepticism and divergent findings when new materials are introduced is nothing 
new.  Nevertheless, these studies offer plausible explanations to why Barborka et al. [204] 
found a 5.7 higher chance of failure in their retrospective case-control study in which they 
compared the long-term (average approximately 6 years) clinical outcomes in teeth 
obturated with RMS versus gutta-percha and AH-Plus.    

 
The failure of Resilon™ to fulfill its potential as the replacement for conventional 

gutta-percha root fillings demonstrates how too much emphasis placed on poorly 
validated and unreliable leakage tests can lead to dental outcome disasters.  A lack of 
validation of methodologies in the leakage studies carried out on the lowest level of the 
evidence pyramid on gutta-percha root fillings gave impetus to invest time, money, and, 
worst of all, patients’ health and wellbeing into a material that over time proved to be a 
disastrous alternative. 

 5.2 Sample size 

It is of utmost importance to have an appropriate sample size when conducting 
experimental trials in order to ensure reliable answers to the research question.  Too small 
sample sizes may prevent a real difference between mean scores being statistically 
significant.  The sample size has to be large enough to yield statistically valid data and 
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not too large as to exceed limitations set by allocated means available to the researcher.  
It is necessary to determine optimal sample sizes prior to an experiment.  Several factors 
influence sample size [329]: 

 Expected drop-out rate 
 Access to samples 
 Study desing 
 Budget 
 Acceptable level of significance (p-value) 
 Power of the study (the probability that a statistical test will yield a significant result; 

a low power casts doubt on the conclusion). 
 Expected effect size (d).  Effect size is the quantification of the difference between 

groups; effect size points to the degree to which a phenomenon or difference is 
present in the population.  A small difference (= effect) between mean scores is not 
likely to be significant if the samples are very small. 

 Underlying event rate in the population 
 Standard deviation in the population. 

When comparing two different therapies in (endodontic) comparative studies it is 
common to set a null hypothesis  (H0) to be rejected.  The H0 being:  there is no difference 
between the therapies (techniques/materials) on the outcome [330].  It is important to keep 
in mind that failure to reject the H0only means just that.  In other words, if we are unable 
to reject the H0it only means that there is not enough evidence to show any difference and 
not that it is true.  When performing hypothesis testing it is possible to commit two types 
of errors: Type I Error (σ) and Type II Error (β).   
 

The first (Type I Error) is set by the level of significance (p-value), which is the risk 
we are willing to accept to commit such an error.  A p-value of 0.05 means that we are 
accepting a 5% chance that we are going to reject the H0 even if it is in fact true. Type II 
Error is failing to reject a false null hypothesis.  Type II Errors are prone to occur if the 
sample size has not been made sufficiently large and the H0 is accepted even when it is 
false, but there were not enough samples included to detect that difference.   

 
The power is usually set at 80%, i.e. one is willing to accept a 20% chance of not 

rejecting the null hypothesis when it is actually false (1-β, where β is the probability of 
Type II Error (20%)) [331].  The two errors are the false-positive (Type I) and the false-
negative (Type II) results [332].  The possibility of committing these types of errors can be 
reduced by performing sample size and effect size calculations. 

 
  The increase of sample size will lead to more precision as individual differences 

and chance will matter less, but “an increase in sample size reaches a point where the 
effect over precision is meaningless [332].”  Ethical and economic considerations are also 
important incentives for not having sample sizes that are larger than necessary.  Matched 
and well-balanced groups can provide researchers with smaller sample sizes with 
sufficient power that will give reliable answers.  This approach can deal with challenges, 
for example the natural variance of bone [333], that would require a larger sample size for 
biomechanical testing in an unpaired design. 
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The general anatomic matching symmetry of contralateral bones for both 
mechanical, densitometric morphometric, and geometric parameters has the potential to 
reduce the sample number by anywhere from half to one tenth [35, 36, 40, 333-335].  
Sample size reduction by 25% can be achieved using bilateral research designs (σ =0.05, 
β =0.20) in cartilage tissue engineering [336], and similar reduction in endodontic research 
would siginificantly reduce the cost and time it takes to conduct ex vivo and in vivo 
research.   

 
 Calculating the paired-design sample size reduction factor (λp) based on the 
sample sized for unpaired and paired study designs for contralateral premolars is given 
by the following equation [333, 337]: 

 
Where Nm is the total number of premolar roots in a paired design, Nu is the number of 
premolar roots in an unpaired design, and R is the correlation coefficient (linear regression 
analysis in SigmaPlot) between the left and right.  According to Barker et al., the validity 
of the right sided term in Equation 1 as a measure of λp “depends on the degree of 
homoscedasticity [same variance] between left and right parameters with similar 
variances between groups leading to an accurate approximation of λp [333].”   
  

The desired σ (two-sided) and β was set to 0.05 and 0.20, respectively, for 
calculation of the number of matched (Nm) specimens needed to detect a bilateral 
percentage difference of 15% (δBPD) in premolar size using the following sample estimate 
equations (Equation 2) (346, 347, 350): 

 
 
Where σD  is the standard deviation of the differences between the contralateral 
parameters, δ is the minimum detectable difference between left and right, ZQ = Zσ + Zβ 
(ZQ = 2.8 (σ (two-sided) = 0.05 and β = 0.20) [329]).  The minimum desired detectable 
difference between left and right (δBPD = 15%) is converted to an absolute number (δ = 
mean(L,R) δBPD / 100) [333].  
 

The size of the mean difference between contralateral measurements is, according 
to Sumner et al. [334], dependent upon systematic biological asymmetry in addition to 
systematic measurement error.  Furthermore, the magnitude of the standard deviation is 
a measure of fluctuating asymmetry and random measurement error.  With regards to our 
findings, there was a high level of contralateral homoscedasticity and no evidence of 
systematic biological asymmetry or systematic measurement error in the mean 
contralateral differences evaluated for sample size and regression analysis.  These results 
along with standard deviations for six out of the nine measurements (Table 2 in 
APPENDIX II) being larger than the means, indicate a very high degree of bilateral 
symmetry of the root canal volumes and diameters [333, 334].  Table 3 in APPENDIX III 
shows the paired design sample reduction factors (λp), correlation coefficients, and mean 
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sample estimates to detect differences in contralateral pairs of 15% for selected 
paramenters.  Figure 10 in APPENDIX IV show scatter plots comparing contralateral 
premolar roots with fitted linear regression lines with no difference between the left and 
right [338].  The overall finding is a very high degree of similarity for premolar 
contralaterals giving a substantial reduction in sample number for comparison studies. 

5.3 Geometric Morphometric Analysis 

The goal of any comparative study is to create well-balanced experimental groups.  This 
is, of course, also what researchers aim to accomplish in endodontic ex vivo research.  
Unfortunately, even recent studies often lack sufficient information about the exact origin 
of the extracted teeth, the origin of teeth in regard to age or sex, and storage prior to 
inclusion. There is also no matching of shape/morphology beyond Vertucci’s classification 
[90] and homogeneity of simple geometric parameters [157, 159, 162, 339-341].       

 
A recent study by Guimaraes et. al [342] made a creditable effort in creating well-

balanced experimental groups.  They used thirteen pairs of single-rooted oval shaped 
contralateral premolars with known storage medium and age to compare two different 
endodontic instrumentation systems.  Furthermore, a sample size calculation was 
performed prior to experimentation, but the contralateral premolars were not matched on 
overall geometric morphometric similarity.  However, they asserted that the lack of 
statistically significant difference in the initial canal volume and surface confirm the validity 
of using contralateral teeth.  This assertion is supported by the findings from the SDA 
analysis and anatomical evaluation of similarity in Study I - III but cannot be made based 
on simple geometric values of volume and surface area alone.  

 
Two recent articles by Gustavo De-Deus’ group compared the shaping ability 

outcomes of different root canal instrumentation systems on matched teeth.  The teeth 
were selected from a pool of teeth with unknown storage prior to inclusion in the studies 
[269, 343].  In both instances, they conducted a priori sample size calculations based on 
previous studies [344, 345]. The two previous studies that were used for sample size 
calculations in the recent articles [269, 343] matched teeth based on two-dimensional 
curvature, root canal configurations, volumes, and lengths of root canals.  In addition to 
root canal configuration and simple geometric parameters, the teeth were matched based 
on a method called the structure model index (SMI), which gives a numerical value 
characterizing the structure of trabecular bone in bone research as being either plate-like 
(SMI = 0), rod-like (SMI = 3) or spherical (SMI = 4) [346].  The SMI was first used in the 
geometrical analysis of unprepared three-rooted maxillary molars in order to rate the 
roundness of the mesio-buccal, disto-buccal and palatal canals.  The index was also used 
to assess endodontic instruments´ ability to create rounder canals [347].  The root canals 
in the studies by De-Deus’ group had already matched the geometries according to 
configuration and other factors, and it is unknown if the lack of statistically significant 
difference between the SMI has any real bearing on the matching of teeth to be used in 
endodontic comparative studies.  

  
Study I - III did not consider the SMI for the matching or comparison of root canal 

anatomy.  The SMI is applicable for characterization of primitive and convex geometries 
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by comparing the surface area of a structure before and after an infinitesimal dilation to 
its volume [348].  The SMI has been the “de facto standard for measuring the rod- and 
plate-like geometry in 3-dimensional trabecular bone images [348].” However, findings by 
Salmon et al. strongly suggest that the SMI is confounded by the concavities present in 
real bone geometries and that the SMI algorithm therefore should not be used anymore 
for evaluation of trabecular bone [348].   

 
The confounding concave surfaces that may be found in trabecular bone can be 

manifested as saddle curves, troughs, or bowls [348].  It is apparent from the abundant 
literature on the internal anatomy of teeth that root canals are not smooth and well-defined 
tubes.  The great variation within the course of any given root canal system may contain 
all of the three aforementioned concavities that are known to confound the SMI.  The 
questions is then if the shortcomings of SMI in relation to trabecular bone described in the 
paper by Salmon et al. [348] are applicable to root canal geometries and if similar SMI 
values can be used for matching purposes.  In other words, do SMI values without 
statistical significance indicate morphological likeness?  Phil L. Salmon states “SMI might 
be OK for root canals since most of the curvature is convex. It is concave surfaces where 
SMI becomes biased by porosity and percent volume and thus compromised  [349].”   

 
It remains uncertain whether or not the SMI can be considered a 3D geometric 

morphometric approach for comparing similarity of root canals comprehensively.  
Furthermore, it is a common understanding to assume that the root canal is convex tube 
as described by a myriad of morphological studies.  The potential of SMI as a supplement 
to SDA by Geomagic for morphological matching of root canal geometries should be 
explored further in future research.  If SMI would prove to be a valid method for matching 
teeth, it would be a valuable time-saver as it is an integrated algorithm in CTan.   

 
Previous odontometric studies [18, 350, 351] have found evidence of considerable 

fluctuating asymmetry for the external anatomy of teeth.  This was calculated by 
measuring one dimensional distances or superimposition of traced photos. The use of 
simple one-dimensional parameters has been suggested to cause measurement errors 
due to variable reference points as well as not giving sufficient information about the 
teeth’s morpho-geometric whole [352]. Although valuable, these studies do not “facilitate 
detailed assessments of how genetic, epigenetic, and environmental factors contribute 
the final tooth form [70].”  The emergence and accelerated evolution of comprehensive 
metrology software has ushered forward the era of dental phenomics [70, 353], which 
allows for the geometric morphometric comparison of external and internal dental 
structures and how they relate to genetic, epigenetic, and environmental factors. 

 
Probst demonstrated a very high degree of matching symmetry for anterior teeth’s 

crown morphology (centrals, laterals, and canines) using advanced metrology software in 
his PhD thesis [354] and also in two sub-sequent articles based on his thesis [352, 355].  
Our evaluation (unpublished data) of geometric morphometric comparison of the 
contralateral premolars external anatomy support their findings (n = 41 contralateral pairs: 
mean RMSE (SD) = 180.26 (103.84) μm; mean Transformed Davg = 246.40 (103.76) μm) 
(Figure 9 in APPENDIX I). The assumption made by Zehnder et al. [58] that contralateral 
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teeth (premolars) are anatomically identical (twin teeth) does indeed seems plausible 
despite the lack of evidence to back up their assertion.  
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6. Conclusions 
 
The main aim of this thesis was to develop a valid and reliable in silico methodology for 
ex vivo endodontic comparative studies using matched contralateral premolars.  The three 
studies that comprise this thesis demonstrate how to make a comprehensive evaluation 
of the degree of similarity between contralateral premolars using micro-CT and metrology 
software prior to conducting an endodontic comparative study.   
 
The results from this thesis lead to the conclusion that contralateral premolars can be 
used to reliably test differences between endodontic techniques/materials.  This thesis 
has shown that contralateral premolars do not have a significant amount of variation in 
anatomy, and this will therefore not be a confounding factor in comparison studies. 
 
The validation of this test system sets a new standard for endodontic comparison studies. 
 
The main conclusions from Study I – III are as follows:    
 

 Contralateral premolar pulp cavities, in general, exhibit matching symmetry in 
terms of volume, surface, and surface over volume, and SDA (Study I) 

 Contralateral premolars have matching symmetry in lengths, root canal widths, and 
dentinal thickness (Study II and III) 

 Contralateral premolars demonstrate fluctuating asymmetry in the apical portion, 
in terms of accessory canals, C-shapes, and isthmi (Study II). 

 Removal of the apical 3 mm is recommended when it may influence the outcome 
(i.e. leakage studies) (Study II). 

 Canal instrumentation of contralateral premolars produce non-significantly different 
geometric and morphometric changes in volume, degree of twisting (torsion), and 
three-dimensional shape (Study III). 

 Although this study has found that contralateral premolars have a high degree of 
symmetry, variations in the apical third and anatomic aberrations such as dens 
invaginatus underscore the need for micro-CT scanning and comparison of 
contralateral premolars intended for use in endodontic comparison studies (Study 
II). 
 
The results presented in this thesis contribute to a greater understanding and 

knowledge of the root canal anatomy of contralateral premolars, which will have impact 
and relevance for clinicians and researchers alike.  This includes dental forensics, pre-
clinical education, dental anthropology, and endodontic comparative research.   

 
The overall hypothesis that using screened and matched contralateral premolars 

will yield non-significant results in a comparative endodontic study using the same 
biomechanical instrumentation system cannot be rejected.  We have thereby provided a 
new model and set a new standard for endodontic comparative studies. 
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7. Research Prospects 
 
The findings in the present thesis pave the way for interesting future studies in the fields 
of dental anthropology, dental forensics, craniofacial developmental biology (twin studies), 
as well as endodontic ex and in vivo comparative studies. 

 
Existing research is scant in the area of anthropological differences in degree of 

root canal symmetry beyond number of canals and root canal configuration.  Future 
research in dental anthropology should include SDA of contralateral teeth. 

 
No statistically significant difference existed between the degree of similarity 

between male and female root canal geometries in Study I.  Statistically significant 
differences between the sexes would warrant recruitment of the sex with the highest 
degree of left-right symmetry. Furthermore, this may also be useful in identification of 
gender in dental forensics.  Prospective research should include a larger sample size from 
each sex to explore whether this holds true for both the external and internal anatomy of 
contralateral premolars. 
  

In the realm of craniofacial developmental biology, the methodology for presented 
in the present thesis could provide additional insight into the role of genetic, epigenetic 
and environmental factors during dental development.  Also, further studies may reveal a 
high degree of similarity of root canal geometries in identical twins and as such be a 
potential method to determine twin zygosity.  

 
Future endodontic comparative studies on instrumentation techniques, irrigation 

protocols, obturation etc. should be conducted in screened and matched contralateral 
teeth.  Further enhancements on current methodology and suggested future research 
includes development of fully automated SDA or topology matching processes [259, 260] 
for quick retrieval of geometries in silico from large repositories of teeth.  It is even 
conceivable to match the teeth from different individuals (Figure 8) to be used for testing 
if they are within a certain range of morphological similarity. The range, or lowest 
acceptable similarity coefficient, would certainly rely on further validation has yet to be 
determined. This type of database repository of pulp spaces would open up for extremely 
time and cost-efficient ex vivo studies. 

 

 

Figure 8.  Depiction of theoretical topology matching for fully automatic similarity estimation and retrieval of root canal 
geometries from database.  The selected configuration and morphology for a hypothetical comparison 
experiment is shown as the key and the models returned with the highest similarities are shown to the right.  
Figure modified from modification done by Jonas Wengenroth based on Hilaga et al. [258]. 
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APPENDIX II 
 
 Table 2.  Comparison of selected parameters in contralateral premolars and simple linear regression values. 

 

 

 

 

Parameter Contralateral 
Mean Difference 

Standard 
Deviation 

Simple Linear 
Regression (R) 

Volume Total Length Root 
Canal System 

0.831 mm3 ± 0.832  0.9927 

Volume Apical Third 0.158 mm3 ± 0.157 0.9519 

Average object equivalent 
circle diameter per slice apical 
third (AED) 

0.645 mm ± 0.390 0.8992  

Faciolingual Distance at CEJ 0.323 mm ± 0.562 0.8517 

Mesiodistal Distance at CEJ 0.154 mm ± 0.189 0.9467 

Faciolingual Distance Halfway 0.273 mm ± 0.301 0.9308 

Mesiodistal Distance Halfway 0.0915 mm ± 0.0943 0.9659 

Faciolingual Distance 2mm 
from Apex 0.228 mm ± 0.277 0.9503 

Mesiodistal Distance 2mm from 
Apex 0.189 mm ± 0.175 0.9462 
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Figure 10.  Scatter plots comparing contralateral premolar roots with fitted linear regression lines 
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