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Abstract

In recent years there has been an increased interest in creating high-level program-
ming languages for domains that require high performance. The aim is to let the pro-
grammer focus on the applications using her domain-specific knowledge while the
compiler and backend handles the rest.

In this thesis, we conduct a performance analysis and optimize the CUDA backend
of Equelle, a domain-specific language (DSL) for solving partial differential equations
(PDE) using the finite volume method (FVM). We also give an introduction to DSLs,
a suvey of existing DSLs for high performance computing, as well as an overview of
frameworks and tools that have been made to lower the effort of making new DSLs.
Concludingly, we present candidates for future work for the CUDA backend.
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Chapter 1

Introduction

In this thesis we conduct a performance analysis and optimize the CUDA backend of
the Equelle DSL. We also give an introduction to domain-specific languages (DSLs),
as well as a survey of previous and current developments in the field.

Equelle is a DSL for solving partial differential equations (PDEs), using the finite
volume method (FVM). Designing such simulators in a way that is both type safe
and efficient is a tough problem when using general-purpose languages, and requires
expertise in numerical mathematics as well as an understanding of the underlying
hardware and parallel algorithms. Equelle aims to provide a high level syntax that lets
the programmer write code that closely resembles the PDEs in their numerical form,
and still achieve both safety1 and good performance. By doing this, the programmer
can focus on the mathematics involved, and leave the rest to the compiler and the
backend of Equelle.

The down-side to DSLs is that they are very hard to develop. Developing DSLs
requires knowledge about the domain it targets, compiler construction as well as the
architectures that they are meant to run on. However, in recent years there has been
an increased interest in using DSLs. Tools have been developed to make it easier to
create new DSLs.

CUDA is Nvidia’s proprietary platform for programming GPUs to perform
general-purpose computations and is popular in fields that benefit from high parallel
performance. CUDA provides its own programming model that lets the programmer
have a high degree of control over the GPU’s resources, i.e., memory or processor
cores. Equelle’s CUDA backend was implemented in 2014 [17] so that the system can
benefit from the high computational intensity of modern GPUs. It builds on the CPU
backend which uses operator overloading extensively to conveniently implement
automatic differentiation.

1.1 Motivation

Although the CUDA backend achieves better performance than the CPU backend, it is
designed in such a way that the GPU is not fully utilized. In this thesis we analyze the
backend by using profilers in order to get an overview of its underlying problems. The
results will serve as a basis for our own implementations as well as our suggestions

1By safety we mean code that is free of bugs, mathematical errors and logical errors.
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for future work. Hopefully, our work can serve as valuable background material for
future development on the Equelle DSL. Although we mostly use the implicit heat
equation simulation2 as benchmark case for our analysis, we should still be able to
generalize our results to other Equelle programs, since there is a large overlap in the
operators they use, and similarities in structure.

1.2 Organization of the Thesis

In the following chapter, we start by giving an introduction to DSLs. We will then go
through concepts in compiler construction, and give an account of frameworks and
tools that have been made to lower the effort of developing DSLs. We also provide a
survey of DSLs that are similar to Equelle, in that they also require high performance.
Next, we give a short introduction to CUDA, and to the Equelle language, and
finally we go through tools and best practices that are useful when doing CUDA
programming. In Chapter 3 we present our performance analysis of the Equelle
CUDA backend. In Chapter 4 we go through implementations and the results we
have achieved. In Chapter 5 we conclude the thesis and make suggestions for future
work.

2The complete Equelle code for the implicit heat equation can be found in Appendix A.1.
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Chapter 2

Background

2.1 Introduction to Domain-specific Languages

A domain-specific language (DSL) is a language which is designed for a specific
purpose. Domain-specific languages have several advantages over the more well
known general-purpose languages, such as C++, Java and Lisp. With a syntax that
can express the ideas in the domain at hand in a more intuitive way, a DSL lets
programmers reason about their programs on a higher level, helping them to be
more creative and productive. DSLs also enable the implementation of data structures
and algorithms for traversal and computations that is otherwise non-optimal or even
infeasible to implement when using a general-purpose language. By applying these
ideas to domains that demand high parallel performance, we can write programs
that are performance portable1. Another benefit that is mentioned in the literature,
is reusability. Elements of DSLs such as grammars and domain abstractions can easily
be reused, and some DSLs support translation of programs into application libraries
for other systems to use as for example plugins. As demonstrated by Bentley [2]2,
DSLs can also be used to make new DSLs.

It is not always clear whether a programming language is domain-specific or
general-purpose. In fact, several languages that were designed for a specific purpose
in the past, are considered general-purpose3 today. However, one could evaluate this
as a continuous spectrum, with pure general-purpose languages like C++ on one side,
and a strictly domain-specific one like Diderot on the other. One factor that contributes
to defining a language as a DSL is the restrictions put on the programming model.
With the proper restrictions, the programming model can be limited to only express
concepts in the domain.

Even though the benefits of using a DSL are apparent, there are serious drawbacks
to consider. Developing a DSL can be a difficult, tedious and costly process, and a
large body of work have been put into finding out how DSLs can be built that are good
enough, while minimizing the effort needed. What "good enough" entails depends

1Performance portability: performance scalability across different hardware architectures with little
or virtually no effort.

2In his column Little Languages, Bentley uses the line drawing language PIC as a back-end for a
language that defines chemical structure diagrams. CHEM’s output is PIC’s input. This approach is
called pipelining.

3Fortran for numerical calculations, COBOL for business applications.
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on factors such as performance, size of the user community and the chances of it
surviving in the long run.

In 2010, Chafi et al. [7] proposed DSLs as a means to shield the ordinary
programmer from the variations and complexities of programming models in modern
hardware architectures. Since then, numerous DSLs have been designed to tackle this
problem in the domains of image processing, image analysis, scientific visualization,
physical simulation and similar areas. Due to the difficulty of developing the DSLs
themselves, several frameworks and development tools have been made. In the
following sections we present a selection of DSLs, development tools and frameworks,
as well as the structure of an optimizing compiler. Please note that this by no means
represents the full body of work in this field. The intent is to give an account of current
trends.

2.2 Developing Domain-specific Languages

In this section we will give an introduction to the development of DSLs. We start by
describing the structure and basic concepts of an optimizing compiler. Afterwards,
we give an account of development tools and frameworks that have contributed to
lowering the effort of developing DSLs. In the next section we will have a look at
DSLs where some of these tools and frameworks have been used.

2.2.1 Structure of a Compiler

A compiler is a computer program that translates one language into another. The
input is a program written in the source language, and the output is a corresponding
program in the target language. In this text we will focus on a modern perspective
where a compiler consists of three major components: a frontend, an optimizer and
a backend. Modern compilers and compiler frameworks are often designed to be
modular. For instance, an optimizer can have several compatible frontends and
backends.

Frontend Optimizer Backend
Source code IR IR* Target code

Figure 2.1: The three phases of an optimizing compiler. The compiler frontend takes
the source program as input, the compiler then processes the program and outputs
the corresponding program in the target language.

Frontend

A compiler frontend contains the following stages:

Lexer Parser Semantic analyzerSource code Tokens AST IR

Figure 2.2: The frontend of a compiler.
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• Scanning, also called lexing. In this stage, a Lexer reads the input (source code)
and splits it into segments called tokens. The output is a stream of tokens. A
lexer program can be implemented by specialized tools such as Flex and JFlex.

• Parsing, also called syntax analysis. The token stream is read by the Parser and
checked for well-formedness, usually specified as a context-free grammar. The
parser produces a tree structure of the program which is simplified to a abstract
syntax tree (AST). A parser can be implemented using parser generators such as
GNU Bison and CUP.

• Semantic analysis. Here the parse tree is checked for semantic correctness, for
example by checking types, or checking whether a variable is declared before
use. A DSL might for instance check if the dimensions of a vectors and a matrices
in multiplications are compatible. In general: "Does this make sense?". The
output of this stage is usually an augmented version of the AST, containing
relevant information for the next stages. Alternatively, the AST can be converted
into an intermediate representation.

An intermediate representation (IR for short), is code or a data structure which
represents the source program in a format which is meant for optimizations and
translation. An IR can be in any form, but there are certain types that are popular,
such as various versions of three-address-code4 (3AC or TAC), or one-address-code
(Pascal- or P-code). P-code operates on a stack and is commonly used in bytecode.
3AC is more commonly used in optimizing compilers.

A property commonly inherent in an intermediate representation is static single
assignment (SSA), meaning that a variable is read-only once it is assigned a value.
This greatly simplifies optimizations.

Optimizer

Optimizer

IR’

IR IR*

Figure 2.3: The optimizer of a compiler.

The optimizer performs optimizing passes over the intermediate representation.
Typical optimizations are:

• Constant folding, which replaces variables by constants in places where it is
certain that the value will not change during runtime.

• Dead code elimination, where code which is unreachable is removed.

43AC consists of basic instructions which contain an operation and at most 3 addresses, for instance
in memory, or a register identifier. e.g. "t1 = a + b"
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• Common subexpression elimination, where identical expressions are identified
and possibly replaced by a single variable.

• Domain-specific optimizations such as program rewriting using mathematical
identities.

Backend

A backend, or simply a code generator, translates the intermediate representation into
code for one or more targets. A target can be either another high-level programming
language, or a machine specific low-level language.

Typically, when generating code on machine level, the process consists of three
main tasks: instruction selection, register allocation and assignment, and instruction
ordering. When performing instruction selection, the code generator selects an
instruction from the instruction set of the target architecture (or language), which
correctly represents the intent of the program. Registers are units of storage located
on processing units that are limited in size and few in numbers, but much faster than
the main memory. Efficient management of registers is extremely important to obtain
efficient code, as continuously fetching data from main memory is very expensive.
When generating code for another high-level language (source-to-source), the process
consists of mapping concepts in the source language into appropriate concepts in the
target language.

Back-end Target 1

Target 2

Target 3

IR*

Figure 2.4: The backend of a compiler performs code generation for one or more
targets by translating the optimized IR into target-specific code.

2.2.2 Implementing DSLs

There are two main classes of DSLs: those with complete standalone compilers (often
called external DSLs), and embedded DSLs (often called internal DSLs). An internal
DSL is implemented inside another programming language by defining new language
constructs tailored to the domain. Living inside another programming language can
lower the development effort of the DSL remarkably, but if the hosting language is not
well suited for hosting an embedded language, it could set serious limitations for the
implementation. Also, most general-purpose languages do not provide suitable error
reporting and debugging for domain-specific implementations.

External DSLs on the other hand, provide their own complete compiler pipeline.
This approach has several benefits. Firstly, the syntax of the language can be
implemented to more closely resemble the notation of the domain. Secondly,

6



Figure 2.5: LLVM provides an optimizer that can be used by several frontends
and backends. Each frontend can be compiled to the same targets. Source:
http://www.aosabook.org/en/llvm.html

semantics can be designed to more closely model the constructs in the domain.
However, the effort to develop a full compiler can be immense. That is why the
language virtualization was proposed by Chafi et al. [7]. Virtualization will receive more
attention in the sections on Scala.

There are compiler approaches that contain a mix of these two, but we will treat
all DSLs that are not pure external ones as internal DSLs.

Development Tools and Frameworks

In this section, we provide a review of some notable tools and frameworks that are
either key components in the development of the DSLs included in this survey, or that
have otherwise made considerable contributions to the research of developing high
performance DSLs with a reasonable amount of effort.

LLVM. The LLVM Project is a collection of modular and reusable compiler and
toolchain technologies and has grown to be very popular since its inception in 2003.
As we can see in Figure 2.5, LLVM follows the three-part model previously given,
where several frontends (programming languages) can use the same optimizer and
backend. This is possible because LLVM provides its own standardized intermediate
representation (the LLVM IR). One of LLVM’s current weaknesses is the limited sup-
port for compiling to parallel targets. LLVM is used as a backend to generate efficient
code for several of the DSLs in this survey, and is also implemented in the Terra sys-
tems programming language discussed further down.

Multi-stage programming, or staging for short, is a development technique in
which a programmer can define when code will be evaluated (i.e. at which stage),
as well as employ code generation during runtime. This mechanism has proven to
be useful when developing high performance DSLs because it provides the means to
add additional layers of abstraction (i.e. domain abstractions) with optimizations. The
first stage compiles the the program in a traditional manner, constructing a program
representation which is passed on to the future stages. Subsequent stages occur dur-
ing runtime. Most programming languages do not support staging natively, but some
have been extended to support it [36].
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Scala is a general-purpose functional programming language which has been
extended in order to make it a better host language. There are two inter-related
projects: Scala-Virtualized [25] and Lightweight Modular Staging (LMS) [30, 31].

Scala-Virtualized is an experimental branch of the Scala compiler which aims to
make embedding DSLs more seamless by providing functionality to define existing
Scala constructs in terms of the DSLs. For instance, control structures such as
while-loops, if-then-else statements and object constructions can be overloaded or
overridden. In addition, new infix-operators can be added to existing types. Scala-
Virtualized also uses Scala’s implicit parameters which lets DSLs fetch source file
information and line numbers, thus improving debugging capabilities.

Lightweight Modular Staging (LMS) is a framework for runtime code generation
and embedded compilers. Unlike Scala-Virtualized, LMS does not change the Scala
compiler itself, but is implemented as a library which provides functionality that can
be used to define IRs, and perform suitable optimizations and translation. LMS uses
a type based form of multi-staging, where a staged program is defined purely as a
collection of types with dependencies, and the binding times are defined using type
annotations5. The result is a high level program representation in the form of a graph
where elements can move freely (”sea of nodes”). Using such a graph based IR,
with a high abstraction level, enables the implementation of relatively straightforward
optimizations. For instance, the framework provides global common subexpression
elimination out of the box, which ensures no code duplication.

Together, Scala-Virtualized and LMS provide what Scala needs to transform a pure
library based embedded language into one that is close to a standalone implementa-
tion in terms of expressiveness, performance, safety6 and with modest effort. We say that
Scala is virtualizable [7]. LMS provides performance because the DSL developer can
define domain abstractions that can be optimized from both a generic and domain-
specific perspective, and can be translated into low-level optimized code. Scala-
Virtualized provides expressiveness with modest effort, as domain abstractions more
easily can be mapped to appropriate syntax. Safety is achieved using a technique
known as finally tagless [6] or polymorphic embedding [16]. Lastly, an important part of
maintaining modest effort is the ability to reuse ideas and implementations. Delite
which is discussed next, is a good example of how Scala can be used for this.

Delite [5, 33] is a compilation and runtime framework for embedded DSLs. It is
developed in Scala using Scala-Virtualized and LMS, to make it easier to implement
DSLs that are efficient, expressive and parallel performance portable. In the words of
Arvind K. Sujeeth et al. [32] "Delite is essentially a Scala library that DSL authors can
use to build an intermediate representation (IR), perform optimizations, and generate
parallel code for multiple hardware targets."

Traditional compilers often structure their IRs as control flow graphs defining the
execution of the code. Delite on the other hand, uses the "sea of nodes" representation
from LMS, allowing optimizations to be performed from three perspectives: generic,
parallel and domain-specific.

5Rep[T], where T is an arbitrary type, is used to define an expression which represents the type T in a
future stage.

6A DSL is considered "safe" if programs are guaranteed to maintain certain properties defined by the
DSL. Limited interference from host constructs that are not part of the DSL is important.
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Figure 2.6: The Delite pipeline. The application code is lifted into a DSL
representation, which is repeatedly optimized from three perspectives (generic,
parallel and domain-specific). After optimizations are complete, code is generated for
each target (Scala, CUDA, etc.), as well as an execution graph containing dependencies
between computations.

The lowest-level view of the IR is the generic one, centered around symbols and
definitions. Since the IR nodes are defined as Scala classes, certain optimizations can
easily be performed. For instance, during IR construction common subexpression
elimination can be performed simply by checking if a node already exists in the
graph. Optimizations that can be performed after the IR is constructed include dead
code elimination and operator fusions (i.e. loop fusion). The result of these generic
optimizations is an optimized program in block structure.

When viewing the IR with regard to parallelism, the compiler extends the nodes
using predefined Delite ops representing parallel patterns (sequential, reduce, map,
map-reduce).

In the domain-specific view of an IR, the DSL developer extends the Delite ops
with domain-specificity. For instance, using pattern matching to recognize a double
matrix transpose and implement the correct transformation.

The main focus of the Delite project is reuse [32]. Delite consists of a large set
of components that are both reusable, extendable and overridable. These include
code generation implementations, for instance if the DSL developer wishes to create a
hand-optimized version for CUDA. Other elements for reuse are the operators (ops).

DSLs developed using Delite include OptiML for machine learning, OptiGraph
for graph analysis, OptiQL for data querying and OptiMesh for solving PDEs on un-
structured meshes7.

Terra is a low-level programming language which is made with interoperability
in mind. It is syntactically embedded in, and metaprogrammed from Lua. Lua8 is a
lightweight, embeddable programming language which supports a diverse selection
of programming models: procedural programming, object-oriented programming,

7OptiMesh is Liszt implemented in Delite.
8https://www.lua.org/about.html

9



Scala frontend Liszt backend MPI

CUDA

Pthreads

Liszt code IR

Figure 2.7: Schematic overview of the Liszt compiler.

functional programming, data-driven programming and data description.
A consequence of programming languages not being developed with interoperab-

ility in mind, is that glue code often is needed to make the parts communicate. For in-
stance, when using C together with Python, glue code to prevent Python objects from
being garbage collected is needed. Also, data which is passed between the runtimes
might need explicit conversions. Another problem, is that the languages might have
an overlap in responsibilities, adding extra layers of complexity.

In Lua, Terra entities such as variables, functions and expressions are treated as
first-class values (they can be stored in Lua variables, returned from statements etc.),
thus eliminating the need for glue code.

The backend of Terra uses LLVM for optimizations and generation of machine
code. Terra is modelled to be similar to C in several aspects, with manual memory
management using malloc and free, as well as having similar semantics. A library
function (terralib.includec) can be called to parse C files and generate bindings to C
code.

2.3 Survey of High-performance DSLs

In this section we provide a survey of a selection of DSLs which demand high paral-
lel performance. They can all be placed in the domains of image processing, image
analysis, scientific visualization or physical simulations. An overview of an extended
selection can be found in Table 2.1.

Liszt [11] is a mesh based DSL for solving partial differential equations. Its com-
piler is implemented with a Scala frontend (LMS and Scala-Virtualized) which emits
Liszt IRs to the custom Liszt backend using a plugin. The backend then performs
transformations and optimizations on the IR, and generates code for CUDA, pthreads9

and MPI10. Liszt’s most notable weaknesses are that it is limited to mesh based-
simulations, and not well suited for implicit methods.

Ebb [4] is the second generation of Liszt and improves on several of Liszt’s weak-
nesses. A three-layer-model is applied, separating simulation code, definition of data
structures for geometric domain and finally runtimes supporting parallel architec-
tures. The model is illustrated in figure 2.8. This model supports utilization of several

9Pthreads is a threading implementation based on POSIX, targeting UNIX compatible systems.
10MPI, or Message Passing Interface is a standardized and portable API for distributed computing.

10



Figure 2.8: The figure shows the three-layer-model of Ebb, where simulation code,
domain definitions and runtimes targeting parallelism are separated. Domains can be
combined in simulations if wished, as can be seen in the FEM simulation.

geometric domains simultaneously. Ebb is developed using Lua-Terra and thus with
interoperability in mind. The authors say that Ebb is "the first step to building an in-
tegrated simulation environment".

Simit [23] uses a model which lets the programmer view its domain in two ways:
as a graph, which is useful for local computations, and as matrices, which is useful
for global linear algebra. Two different code generation platforms are used: LLVM for
CPU code, and Nvidia’s LLVM based framework NVVM. Simit can be integrated in
existing C++ implementations since it is composed of C++ APIs. It is planned that
Simit will use the Tensor Algebra Compiler (taco)11 for its backend in the future.

Diderot [21] is a DSL for portable parallel scientific visualization and image
analysis. It was developed due to the lack of mathematical abstraction and difficulty
of parallelization in scientific visualization and image analysis. Diderot has the most
focus on domain specific notation of the DSLs and uses Unicode encode mathematical
notation. (∇, δij, εijk, etc). Their IR, called EIN lets the compiler perform clever
optimizations based on mathematic identities.

Kindlmann et al. chose to develop Diderot as a standalone compiler, because they
didn’t want to restrict themselves to the limitations of other languages. However, the
system can interoperate with other systems by compiling applications to libraries in
C, exposing global variables and other parameters. A simple schematic overview of
the Diderot compiler can be seen in Figure 2.9.

Halide [24, 27, 28] is a DSL for optimizing parallelism, locality and recomputation
in image processing pipelines. The compiler decouples algorithms and schedules,
making it possible to achieve high performance without affecting the logic of the
implementation. Algorithms in Halide are defined as pipelines of functions. The
functions are declarative12 (meaning no side effects, no explicit loops). The schedules
in Halide represent the order in which the functions are executed. Halide uses a

11http://simit-lang.org/
12Also known as pure functional.
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stochastic (genetic) algorithm in order to generate and pick an optimal schedule for
a given program. Even though Halide has been proven to be a very efficient DSL,
the schedule optimizer has been criticized to not be optimal. Other solutions to the
schedule optimization have been proposed more recently [26]. The Halide pipeline
can be seen in Figure 2.10. Halide is still in active development at the time of writing.

Custom frontend Custom backend

Parallel C

Sequential C

OpenCL

C library

CUDA

Diderot code IR(EIN)

Figure 2.9: Schematic overview of Diderot. EIN is the intermediate representation,
which is based on Einstein notation.

Figure 2.10: The Halide pipeline [28].
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Name Domain Implementation Description
Simit [3, 23] Physical simula-

tion
Implemented as a C++
library, using LLVM
and NVVM for code
generation.

Simit lets the programmer view do-
mains as both a graph structure
which is useful for local computa-
tions, and a global matrix/tensor
perspective which enables the use of
global linear algebra.

Ebb [3, 4] Physical simula-
tion

Lua-Terra Ebb is the second generation of
Liszt. Employs a 3-layer model
which separates simulation code,
geometric domains and runtime de-
tails.

Diderot [21] Scientific image
analysis and
visualization

Standalone Uses Unicode encoding to imple-
ment mathematical symbols in its
syntax (∇, δij, εijk, etc).

Halide [28] High perform-
ance image
processing

Frontend embedded
in C++, backend
implemented with
LLVM

Separates the algorithm (how) from
the schedule (when) of the pro-
gram. Implements a functional pro-
gramming model where images are
functions f (x, y). Uses a stochastic
search algorithm to find optimal ex-
ecution schedules.

Opt [12] Non-linear least
squares optimiza-
tion for graphics
and imaging

Lua-Terra A user writes energy functions
defined over graphs and images,
which are then compiled to highly
optimized GPU solvers.

Darkroom [15] High-level im-
age processing
code to hardware
pipeline

Lua-Terra Produces highly optimized
pipelines for image processing,
competitive with Halide.

OptiML [35] Machine learning Delite Efficient performance portable DSL
for quick prototyping of ML al-
gorithms.

Forge [34] Meta DSL for the
Delite framework

Scala/LMS/Scala-
Virtualized

Forge is not a high performance
DSL, but rather a declaration lan-
guage for specifying DSLs in the De-
lite framework.

Liszt [11] Physical simula-
tion

Frontend in Scala, cus-
tom backend

Liszt solves PDEs over unstructured
meshes and generated code for MPI,
pthreads and CUDA. Its weakness is
its limitation to one domain type.

Nebo [13] Solving PDEs Embedded in C++ Functional/declarative program-
ming model.

Green-Marl [18] Graph analysis Lightweight compiler DSL for graph analysis.
ImageCL [14] Portable perform-

ance image pro-
cessing

ROSE compiler frame-
work

It uses a source-to-source compiler
which produces candidate imple-
mentations in OpenCL, and then
picks one of them for a given device,
using a machine learning approach.

Table 2.1: Table of related DSLs
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Figure 2.11: Results from the Halide algorithm.

2.4 Halide: Example Program

In this section we will have a closer look at an example program written in Halide, an
embedded DSL for digital image processing.

Often when performing image processing tasks, the code will contain an
abundance of boilerplate for-loops, which can become hard to read and maintain in
larger applications. As we have mentioned, Halide expresses images as functions,
which makes it easier to think in terms of input and output, in addition to adhering to
the notation found in image processing literature. In this example we will describe
a Halide program which performs a simple edge detection, and show the results.
We start by describing how we set up Halide, since it turned out to not be straight-
forward.

2.4.1 Setting up Halide

When setting up Halide, it is important to be aware of which library versions it
requires, and to know which compiler versions it supports. For this particular test
case, a version of Halide which requires LLVM of version 3.9 or higher, turned out
to be incompatible with Clang/LLVM version 5.0.0. The incompatibility was due
to a restructuring in the Halide backend. We also experienced the binary release
version of Halide support our compiler version. In particular, the binaries compiled
for GCC/G++ 5.3 was not compatible GCC/G++ 5.4.

Halide also requires developer versions of the libjpeg and libpng libraries.
Anaconda, which is a Python distribution which comes with a package manager
might append itself into the PATH environment variable. Anaconda only had release
versions of the libpng and libjpeg libraries, which caused Halide programs to fail
when being run.

The final solution was to use version 3.9 of Clang/LLVM and to download the
source code in order to build with GCC 5.4, and remove Anaconda from the PATH
variable when running programs.
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2.4.2 The program

The algorithm performs edge detection by first reducing noise in the image by
applying a blur filter of size 5× 5, and then compute the gradient magnitude of the
blurred image. Since Halide is an embedded DSL in C++, the code is stored in a .cpp
file and we compile it using the G++ compiler. The code can be seen in Listing 1.

Notice the DSL constructs Func and Var. Func is used to define steps in the
algorithm pipeline, typically filters and other transformations of the images. Var is
used to refer to the axes of the images. In the code we first read the image from file
using load_image (line 7). We then define the pipeline by using Funcs: On the lines 10
and 11 we pad the image, by adding zeroes around the edges, before we extend the
colour space to avoid overflows later on. In the lines 17 to 30 we define our blur kernel
(filter), k. We define the blur operation on the lines 34 to 38, and finally we define the
gradient magnitude on lines 40 to 43.

We then run the pipeline using the realize function (line 46). Finally we execute
the algorithm and write the results to the Buffer object, before writing to file. We run
program on two grayscale images, and the results can be seen in Figure 2.11.

2.5 Introduction to CUDA and Nvidia GPUs

CUDA is Nvidia’s proprietary platform for heterogeneous computing. It was released
in 2007 and has since been adopted as one of the most commonly used tools in
applications that require massive parallel performance, such as scientific computing,
machine learning or computational finance. GPU stands for Graphics Processing Unit
and is a processor which is designed to perform computations on a massively parallel
scale. A GPU has considerably more processing units than a traditional CPU. In this
section we will go through concepts that are central to CUDA and Nvidia GPUs. For
more information about any of these concepts, refer to the CUDA C Programming
Guide [9].

2.5.1 Programming Model and Runtime

In the CUDA C programming model, we refer to the CPU as the host and the GPU
with all its resources is referred to as the device. When we use the term GPU, we are
referring to the computational unit (processor) itself.

The functions/programs that run on the GPU are called kernels. CUDA uses a
SIMT (Single Instruction, Multiple Threads) model, meaning that when an instruction
is issued, the operation is performed in parallel across several threads.

The basic execution units are called threads, and they all represent one run of a
kernel. Threads are organized in larger structures called threadblocks, or just blocks,
and blocks are organized into grids, as can be seen in Figure 2.12. When calling a
kernel from the host, the programmer specifies the configuration of threads, blocks
and grids. Grids and blocks can be 1, 2 or 3 dimensional. During runtime, blocks get
assigned to the GPU’s multiprocessors and partitioned into warps, which are execution
units consisting of 32 threads.
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1 #include "Halide.h"
2 #include "halide_image_io.h"
3 using namespace Halide::Tools;
4 using namespace Halide;
5 int main(int argc, char **argv) {
6 // Take a gray 8-bit input
7 Buffer<uint8_t> input = load_image("images/gray.png");
8 Var x("x"),y("y");
9 // Pad the image by clamping

10 Func padded("padded");
11 padded(x,y) = input(clamp(x, 0, input.width()-2), clamp(y, 0, input.height()-2));
12 // Upgrade the image to 16-bit to avoid overflow
13 Func input_16("input_16");
14 input_16(x, y) = cast<uint16_t>(padded(x, y));
15

16 // Gauss kernel
17 Func k("GaussianKernel");
18 k(x,y) = 0;
19 // First three rows
20 k(-2,-2) = 1; k(-2,-1) = 4; k(-2, 0) = 7;
21 k(-1,-2) = 4; k(-1,-1) = 16;k(-1, 0) = 26;
22 k(0, -2) = 7; k(0, -1) = 26;k(0, 0) = 41;
23 k(1, -2) = 4; k(1, -1) = 16;k(1, 0) = 26;
24 k(2, -2) = 1; k(2, -1) = 4; k(2, 0) = 7;
25 // Fourth and fifth row
26 k(-2, 1) = 4; k(-2, 2) = 1;
27 k(-1, 1) = 16;k(-1, 2) = 4;
28 k(0, 1) = 26;k(0, 2) = 7;
29 k(1, 1) = 16;k(1, 2) = 4;
30 k(2, 1) = 4; k(2, 2) = 1;
31

32 // Define reduction domain of size 5x5,
33 // with origin in the middle
34 RDom r(-2,5,-2,5);
35 // Perform gaussian blur
36 Func blurred("blurred");
37 blurred(x,y) = sum(input_16(x+r.x,y+r.y)*k(r.x,r.y));
38 blurred(x,y) /= k_divisor;
39 // Find gradient magnitude
40 Func grad("grad");
41 grad(x, y) = cast<uint8_t>(sqrt(pow(blurred(x+1, y) - blurred(x-1, y), 2) +
42 pow(blurred(x, y+1) - blurred(x, y-1), 2)));
43 // Allocate buffer for the resulting image
44 Buffer<uint8_t> result(input.width(), input.height());
45 // Run the algorithm
46 grad.realize(result);
47

48 // Store final image in png file
49 save_image(result, "ParrotEdgeDetected.png");
50 return 0;
51 }

Listing 1: A Halide program which performs edge detection by first blurring the
image and then calculating the gradient magnitude of the blurred image.
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Figure 2.12: Organization of grids, blocks and threads. Source: CUDA C Program-
ming Guide [9]

2.5.2 Synchronous vs Asynchronous Execution

Operations in CUDA can be either synchronous or asynchronous with regard to the host.
A synchronous operation will stall the program until the operation is finished. If
an operation is asynchronous, on the other hand, it will run independently of the
host, and the program can proceed. Some operations have both synchronous and
asynchronous versions, such as memory copies. The synchronous memory copy
is called using cudaMemcpy while the asynchronous version has the Async suffix
(cudaMemcpyAsync). Multiple asynchronous operations can run concurrently (at the
same time), and is implemented using CUDA streams.

2.5.3 Hardware Architecture

On Nvidia GPUs, the main execution units are the Streaming Multiprocessors,
commonly referred to as SMs. A GPU has several SMs, each of which have their own
set of resources such as CUDA cores, memory (caches, registers, shared memory).
SMs contribute to a portable and scalable hardware design, because performance of
applications can be improved just by adding more SMs or GPUs to the system, and
the behaviour of the application will be the same. Figure 2.13 shows an example of an
SM design.

GPUs have a wide variety of applications that demand different types of
workloads. Some applications such as scientific computing might demand higher
floating point precision than computer games or machine learning. Nvidia categorizes
their GPU chips into categories known as Compute Capabilities (CC). Their version
numbers consist of a major version and a minor version. For instance, the GTX 1060
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Figure 2.13: An example of a Streaming Multiprocessor design. This in particular is
the GP100 SM, which is used in the most high-end GPUs of the Pascal generation,
from 2016. This class of SM is especially well suited for double precision workloads,
as it has 1 double precision unit for every 2 processing cores.

is of compute capability 6.1, with 6 being the major version and 1 being the minor
version. The major version refers to which generation the GPU belongs to and the
minor version more specifically states what types of workloads it is designed for.
Having this system makes it easier for programmers to get a good insight into the
features of the devices they are programming for.

2.5.4 Memory Model

A top priority in CUDA development is to optimize memory usage. The device
has several types of memory, all with distinct properties regarding size, caching,
read/write, scope and access latency. They are also designed for different access-
patterns and using these correctly is absolutely crucial to achieve optimal perform-
ance. Figure 2.14 gives an overview of how the spaces are organized on the device.
The green area marked with GPU contains the memory types that are located on the
GPU chip itself, while the blue DRAM area contains the memory spaces that are loc-
ated in the off-chip memory. Typically the DRAM memories have a high access latency
but also a high memory size. The memory located on the GPU are usually small in
size, but quick to access. We will now have a look at each memory type and describe
their characteristics.

18



Figure 2.14: CUDA memory spaces and where they are located. Source: CUDA Best
Practices Guide [8]

Global memory. Global memory is the largest, also the slowest of the memory
types and can potentially consume hundreds of cycles per access. Traditionally
global memory has been located in off-chip DRAM13. Designing kernels to access
global memory according to its intended access pattern is a high priority in CUDA
development, as stated by the CUDA Best Practice Guide [8]. Global memory is
cached in L2 cache, so repeated access to the same memory segments will improve
performance. It is common practice to place values in global memory in the initial
steps of development, and then modify the algorithm later on to use other types where
it is beneficial.

Local memory. A chunk of local memory is only accessible by a single thread. Local
memory is located in DRAM, but also cached (in L2 on newer devices) for faster
repeated access. Storage in local memory can be caused by register spilling.

Constant memory. Constant memory is read-only and located off-chip. It is cached
in a dedicated constant cache. Constant cache is best utilized when all threads in a
warp access the same element, and must be declared at compile-time.

Shared memory. Shared memory is located on the chip, and is shared between
threads in a single block. It is very fast if used correctly, but it is not suited for all
types of operations as it has strict requirements to access patterns. Shared memory
is divided into memory banks of a fixed size (4 or 8 bytes depending on generation).
If several threads in a warp tries to access the same memory bank using different
addresses, a memory bank conflict occurs and the accesses are serialized. If all the
threads in a warp accesses the same memory bank (same address), its value is
broadcasted. If several threads access the same bank, its value is multicasted.

Texture memory. Texture memory is read-only and resides in DRAM, but is cached
in a special purpose texture cache (shared by L1 on newer devices) that is optimized
for 2D spatial locality. Texture fetches does not cost any global memory reads unless
there is a cache miss.

13The newest high-end GPUs have replaced it with faster HBM memory (high bandwidth memory)
which is on the chip.
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Registers. Registers are the fastest memory type, but they are also very limited
in both number and size. The scope of a register is limited to a single thread. In
traditional serial programming, limiting register usage is a concern when optimizing.
In parallel programming however, reusing registers might cause data dependencies
and finding a trade-off between register reuse and parallelism is in order.

2.5.5 Latency Hiding and Occupancy

There are many sources of latency on the GPU and a common strategy is to hide this
latency by assigning more work to the SMs. The metric we use for this is occupancy
and is defined as the ratio between the number of warps that are active on the SM and
the maximum number of warps it can process.

2.6 Introduction to Equelle

Equelle is a standalone DSL for solving partial differential equations (PDEs) numeric-
ally on unstructured grids with an emphasis on the finite volume method (FVM). In
this section we will have a look at the most important concepts in Equelle, and give
a few examples that demonstrate the use of these concepts. The Equelle Reference
Manual [29] can be viewed for additonal information.

2.6.1 Grids in Equelle

The grids in Equelle are structures of interconnected cells, and can be defined in either
1, 2 or 3 dimensions. Cells always have the same dimension as the grid, and pairs of
cells are connected by faces. Figure 2.15 shows an example grid in 2 dimensions with
cells labeled with numbers and faces labeled with letters.

A domain is another important concept in Equelle. A domain is a set of unique
grid entities (cells or faces) of the same dimensionality. Equelle provides built-in
basic domains for entities that lie on the boundary of the grid, for entities inside
the boundary, and for entities of the whole grid. Having access to these domains
makes it a lot easier to apply common operations, such as adding boundary conditions
and performing computations on the whole grid. AllCells(), BoundaryCells() and
InteriorCells() are examples of how these can be accessed. A programmer can also
specify custom domains as input to the backend when running a simulator.

2.6.2 Programming Model and Features

Equelle has a variety of features that make it both safe and convenient to use.
The code example in Section 2.6.3 demonstrates some of the concepts we mention
here.

Vectorization. The syntax of Equelle is highly vectorized. This makes programming
in Equelle a lot easier, since the developer does not need to worry about error-prone
indexing in loops. Since a for loop in itself is a highly serialized concept, keeping the
syntax vectorized also helps to expose parallelism.

Type safety and dimension consistency. Safety is a top priority in Equelle and is
achieved mainly by implementing strong type checking and consistency of dimensions.
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Figure 2.15: An example grid in 2D. The numbers denote the cells and the lowercase
letters denote faces. The letters are placed according to where the face normals point.
Source: Equelle Reference Manual

Function Arguments Returns
AllCells Collection Of Cell
InteriorCells Collection Of Cell
BoundaryCells Collection Of Cell
AllFaces Collection Of Face
InteriorFaces Collection Of Face
BoundaryFaces Collection Of Face
FirstCell Collection Of Face Collection Of Cell
SecondCell Collection Of Face Collection Of Cell
IsEmpty Collection Of Cell Collection Of Bool
Centroid Collection Of Cell Collection Of Vector
Centroid Collection Of Face Collection Of Vector
Normal Collection Of Face Collection Of Vector

Table 2.2: Built-in grid functions. Source: Equelle Reference Manual [29]
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Type Semantics
Scalar A single floating-point number
Vector A pair or triple of Scalars (depending on grid dimension)
Bool A flag that is True or False
Cell A cell entity of the grid
Face A face entity of the grid

Table 2.3: Basic types in Equelle. Source: Equelle Reference Manual [29]

Dimensions in this context does not refer to spatial dimensions (2D, 3D etc), but
rather to units of measurement (metres, feet, degrees Celsius, etc) for quantities (mass,
length, temperature, etc).

Variables are by default declared as immutable, meaning that once a variable
has been assigned a value, it cannot be reassigned another value. This property
is commonly known as static single assignment (SSA) and does not only provide a
safety guarantee, but also enables us to implement well-known compiler optimization
techniques. However, sometimes one might need to reassign variables, such as in
iterative methods. For this reason, Equelle also allows the use of the Mutable keyword
to make a variable reassignable.

Explicit and implicit methods. Equelle supports both explicit and implicit methods
for solving PDEs.

Automatic Differentiation

Equelle uses a technique called automatic differentiation (AD) to compute the
derivative (Jacobian) matrices needed for implicit methods. A Jacobian matrix
contains all the first order partial derivatives of a given function. If for instance a
collection in Equelle represents a temperature field, its Jacobian matrix describes how
the temperature of all the entities in the collection change with respect to each other.

Jij =
∂ fi

∂xj
=


∂ f1
∂x1

. . . ∂ f1
∂xj

...
. . .

...
∂ fi
∂x1

. . . ∂ fi
∂xj

 (2.1)

AD calculates accurate derivatives by using the chain rule on expressions. The
derivative matrices can potentially become huge, but since cells in the grid often only
interact with cells nearby, the majority of its elements will be zeroes (high degree of
sparsity). When a matrix can be considered as sparse, using a sparse matrix storage
scheme is usually beneficial.

There are several well-known storage schemes, such as coordinate list (COO),
compressed sparse row (CSR) and compressed sparse column (CSC). No single
scheme is considered to be superior to others, as they are all optimized for matrices of
different characteristics. For instance, if a matrix has far more columns than rows, CSR
would probably be a better choice than CSC. There are also other factors to consider
when choosing a format, for instance memory access patterns. This last factor is
especially relevant for GPUs. There has been developed special sparse schemes such
specifically to match parallel access patterns.
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Types

The basic types of Equelle are Scalar, Vector, Bool, Cell and Face. These types
are often used to associate values with entities in the grid, commonly stored in a
Collection Of type. In addition, there is the Sequence Of Scalar type which is used
for timestepping in loops.

Built-in Functions and Operators

Equelle provides several built-in functions. Table 2.2 lists the built-in grid functions,
which can be used to query the grid for either entities, or properties of its entities, for
instance the centroids of cells or faces, or the face normals.

Two other essential functions in Equelle and for the finite volume method
(FVM) are the Gradient() function and the Divergence() function. Gradient()
takes a CollOfScalar as argument which is defined on AllCells and returns a
CollOfScalar which is defined on InteriorFaces. The Divergence() function is used
to calculate the total flow into each cell. It takes a CollOfScalar which is defined on
InteriorFaces, that represents the fluxes. Fluxes represent the actual flow, accounting
for physical properties of the grid and the problem being solved.

The Extend and On operators are used to change the domains that CollOfScalars
are defined on.

2.6.3 Example Program: Explicit Heat Equation

In this section I will show how to solve the heat equation explicitly in Equelle. The
purpose is to give a typical example of what an Equelle program looks like. I will
not go into detail on the mathematics or the numerical schemes, but rather present
a few fundamental equations and show how they are easily translated into code.
Appendix B.1 in the original work on the backend gives a more detailed explanation
of the mathematics [17]. The program in its entirety can be found in Listing 2.6.3.

The heat equation is a partial differential equation (PDE) which describes how heat
spreads in a medium over time. The equation can be written on the form:

∂u
∂t
− k∇2u = 0 (2.2)

Where k is the conductivity of the material,∇2 is the Laplace operator and u is the
medium.

The first thing we do in the program, is to fetch necessary values from the
parameters. To read the conductivity constant k, we use the following line:

1 k : Scalar = InputScalarWithDefault("k", 0.3)

If the parameter file provides a value for k, then the value of the Scalar variable k
is set to that value. If not, it will default to the value provided in the function call (0.3
in this case). Note that the type definition : Scalar is not strictly necessary, but can
be useful for readability.

For our loop, we need a list of timestep values. These are provided as a list of
values in a separate file linked to by the parameter file. We declare our timestep
variable and fill it with values in the following way:
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1 timesteps : Sequence Of Scalar
2 timesteps = InputSequenceOfScalar("timesteps")

Next we need the initial temperatures for u. The input to this variable is either a
uniform value to be applied to all the cells in the grid, or it can be supplied as a file
containing one temperature for each cell. The values are supplied by the parameter
u_initial.

1 u0 : Collection Of Scalar On AllCells()
2 u0 = InputCollectionOfScalar("u_initial", AllCells())

In the simulation we use a Dirichlet boundary condition to apply an external heat
source to u. This is done by setting a subset of the grid’s boundary faces’ values to
appropriate temperatures. In the following code, dirichlet_boundary contains the
face indices that we apply the values to and dirichlet_values contains the values
we want to apply to these.

1 dirichlet_boundary : Collection Of Face Subset Of (BoundaryFaces())
2 dirichlet_boundary = InputDomainSubsetOf("dir_boundary", BoundaryFaces())
3 dirichlet_values : Collection Of Scalar On dirichlet_boundary
4 dirichlet_values = InputCollectionOfScalar("dir_values", dirichlet_boundary)

In this next snippet we calculate the transmissibility of the interior faces. The
transmissibility is a measure of how much heat the face is able to transfer. It is
calculated by multiplying k with the area of the face, and dividing by the distance
between its first and second cell. Each face is connected to two cells, each of which can
be accessed using FirstCell(face) and SecondCell(face). We can see below that the
areas of the faces are fetched by using pipes (’|’). The distance between the cells are
found by using their centroids, which are vectors that point to their midpoints. By
subtracting one from the other and taking the norm of the two vectors, we get the
distance between the cells.

1 ifaces = InteriorFaces()
2 first = FirstCell(ifaces)
3 second = SecondCell(ifaces)
4 itrans : Collection Of Scalar On ifaces
5 itrans = k * |ifaces| / |Centroid(first) - Centroid(second)|

Next, we find the transmissibility of the boundary faces. This is mostly the same,
except that the boundary faces only have a single cell that can either be the first, or
the second cell. We use the ternary if to check if the first cell is empty. If it is, we pick
the second cell, if it is not, we pick the first cell. Instead of using the distance between
cells, we find the distance between the face and its cell.

1 bf = BoundaryFaces()
2 bf_cells = IsEmpty(FirstCell(bf)) ? SecondCell(bf) : FirstCell(bf)
3 btrans = k * |bf| / |Centroid(bf) - Centroid(bf_cells)|

We now define a function to calculate the flux of the interior faces. For this we use
the transmissibility we calculated earlier and the gradient of u. It uses the standard
form of the law of heat conduction, ~q = −k∇u. The flux is the amount of heat that
passes through a given face, also giving the direction of the flow through its sign.
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1 computeInteriorFlux : Function(u : Collection Of Scalar On AllCells()) ...
2 -> Collection Of Scalar On InteriorFaces()
3 computeInteriorFlux(u) = {
4 -> -itrans * Gradient(u)
5 }

Before we can compute the flux of the boundary faces, we must find the correct
signs. We find this using the ternary if, in the same way as choosing the correct cells
for the faces:

1 bf_sign = IsEmpty(FirstCell(bf)) ? (-1 Extend bf) : (1 Extend bf)
2 dir_sign = bf_sign On dirichlet_boundary

Now we define a function for computing the flux of the boundary faces. The
computation is done by multiplying the transmissibility by the signs we just found,
and then multiplying by the difference between the boundary cell values and the heat
source values. This is the same operation as the one we performed on the interior
cells. The difference in the values of the boundary cells and the heat sources, is the
same as the gradient along the boundary.

1 computeBoundaryFlux : Function(u : Collection Of Scalar On AllCells()) ...
2 -> Collection Of Scalar On BoundaryFaces()
3 computeBoundaryFlux(u) = {
4 # Compute flux at Dirichlet boundaries.
5 u_dirbdycells = u On (bf_cells On dirichlet_boundary)
6 dir_fluxes = (btrans On dirichlet_boundary) * dir_sign ...
7 * (u_dirbdycells - dirichlet_values)
8 -> dir_fluxes Extend BoundaryFaces()
9 }

The last part of the program is the loop that uses everything we have already
defined to solve the heat equation. The loop iterates over the timesteps and solves
once per entry. The code starts by defining a Mutable Collection Of Scalar. We
need it to be mutable because it will be reassigned in every iteration. Next we use the
functions we defined to compute the fluxes. By extending them both to AllFaces()
and adding them together, we place all the fluxes in the same domain. In the solution
step, we divide the timestep dt by the volumes of all cells in the grid. This ensures
that the heat spreads at the correct rate no matter what the cell size is. We then take
the divergence of the fluxes, effectively performing ∇ · (k∇u).

1 u : Mutable Collection Of Scalar On AllCells()
2 u = u0
3 For dt In timesteps
4 {
5 # Compute fluxes.
6 ifluxes = computeInteriorFlux(u)
7 bfluxes = computeBoundaryFlux(u)
8 fluxes = (ifluxes Extend AllFaces()) + (bfluxes Extend AllFaces())
9

10 # Solve for current timestep.
11 u = u - (dt / |AllCells()|) * Divergence(fluxes)
12 }

This concludes our example program, and we will now proceed to the next section,
where we describe the CUDA backend.
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1 # Heat diffusion constant.
2 k : Scalar = InputScalarWithDefault("k", 0.3)
3 # Input timesteps.
4 timesteps : Sequence Of Scalar
5 timesteps = InputSequenceOfScalar("timesteps")
6 # Input initial temperatures.
7 u0 : Collection Of Scalar On AllCells()
8 u0 = InputCollectionOfScalar("u_initial", AllCells())
9 # Input boundary condition domain, a subset of BoundaryFaces, and boundary heat values.

10 dirichlet_boundary : Collection Of Face Subset Of (BoundaryFaces())
11 dirichlet_boundary = InputDomainSubsetOf("dir_boundary", BoundaryFaces())
12 dirichlet_values : Collection Of Scalar On dirichlet_boundary
13 dirichlet_values = InputCollectionOfScalar("dir_values", dirichlet_boundary)
14 # Compute interior transmissibilities.
15 ifaces = InteriorFaces()
16 first = FirstCell(ifaces)
17 second = SecondCell(ifaces)
18 itrans : Collection Of Scalar On ifaces
19 itrans = k * |ifaces| / |Centroid(first) - Centroid(second)|
20 # Compute boundary transmissibilities.
21 bf = BoundaryFaces()
22 bf_cells = IsEmpty(FirstCell(bf)) ? SecondCell(bf) : FirstCell(bf)
23 btrans = k * |bf| / |Centroid(bf) - Centroid(bf_cells)|
24

25 # Function for computing flux for interior faces.
26 computeInteriorFlux : Function(u : Collection Of Scalar On AllCells()) ...
27 -> Collection Of Scalar On InteriorFaces()
28 computeInteriorFlux(u) = {
29 -> -itrans * Gradient(u)
30 }
31

32 # Compute sign to get correct gradient.
33 bf_sign = IsEmpty(FirstCell(bf)) ? (-1 Extend bf) : (1 Extend bf)
34 dir_sign = bf_sign On dirichlet_boundary
35

36 # Function for computing flux for boundary faces.
37 computeBoundaryFlux : Function(u : Collection Of Scalar On AllCells()) ...
38 -> Collection Of Scalar On BoundaryFaces()
39 computeBoundaryFlux(u) = {
40 # Compute flux at Dirichlet boundaries.
41 u_dirbdycells = u On (bf_cells On dirichlet_boundary)
42 dir_fluxes = (btrans On dirichlet_boundary) * dir_sign * ...
43 (u_dirbdycells - dirichlet_values)
44 -> dir_fluxes Extend BoundaryFaces()
45 }
46

47 # Need mutable variable for the loop.
48 u : Mutable Collection Of Scalar On AllCells()
49 u = u0
50 For dt In timesteps
51 {
52 # Compute fluxes.
53 ifluxes = computeInteriorFlux(u)
54 bfluxes = computeBoundaryFlux(u)
55 fluxes = (ifluxes Extend AllFaces()) + (bfluxes Extend AllFaces())
56

57 # Solve for current timestep.
58 u = u - (dt / |AllCells()|) * Divergence(fluxes)
59 }

Listing 2: An Equelle program which solves the heat equation explicitly.
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2.6.4 CUDA Backend Design

The CUDA backend is based on the CPU backend, which is implemented in C++ and
uses operator overloading extensively. By using operator overloading, it gets simpler
to implement mathematical expressions since they can be written in a form that is
closer to its mathematical notation. We will see examples of this in the sections below.
Table 2.5 shows a complete list of all the implemented arithmetic operators. For a
more complete explanation of the backend, please refer to the previous work [17].

CollOfScalar

The CollOfScalar class represents a Collection Of Scalar in the Equelle language.
Its values are stored in a CudaArray object. The collection’s derivatives are stored in
a CudaMatrix object. The matrix is only used if the Equelle program uses the implicit
method. The arithmetic operators of CollOfScalar uses automatic differentiation
when calculating its derivatives. Let’s say we want to calculate u ∗ v + w where u,
v and w are collections. By applying the chain rule we get uv′ + u′v + w′ for the
derivative, and finding the new collection’s value happens in a elementwise manner.
By using the operator overloading approach, this operation is straight-forward to
implement. The code in Listing 3 demonstrates how operator overloading simplifies
implementations.

1 CollOfScalar u;
2 CollOfScalar v;
3 CollOfScalar w;
4

5 /* Set the values of u, v and w and compute their derivatives. */
6

7 CollOfScalar result = u*v+w;
8

9 // This is what happens implicitly
10 CudaArray new_values = u.val_*v.val_ + w.val_; // u * v + w
11 CudaMatrix new_der = u.val_*v.der_ + u.der_*v.val_ + w.der_; // uv' + u'v + w'
12 CollOfScalar result(new_values, new_der);

Listing 3: C++ code which demonstrates how to use CollOfScalar to implement
mathematical expressions.

CudaArray

CudaArray is essentially a vector, with operator overloading for element-wise
arithmetic and comparison. When such an operator is performed, it performs the
operations using CUDA kernels. The class has a pointer to its values which are located
on the device. Listing 4 shows how the class can be used in code. When an object is
initialized, it allocates memory and when the object’s destructor, it frees the memory.
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1 // Create two CudaArrays containing 1000 elements.
2 int N = 1000;
3 CudaArray array1(N);
4 CudaArray array2(N);
5

6 /* Set the values of the arrays to arbitrary numbers */
7

8 // Element-wise addition
9 CudaArray array_arith_result = array1 + array2;

10

11 // Element-wise check for equality
12 CollOfBool array_comp_result = array1 == array2;
13

14 // Element-wise check on whether array1's elements are greater than array2's
15 CollOfBool array_comp_result = array1 > array2;

Listing 4: C++ code showing how to use CudaArray. Initialization of the CudaArray
values is omitted.

CudaMatrix

CudaMatrix represents a matrix in sparse storage format. It uses the compressed sparse
row (CSR) storage format. CSR is a widely used format and is supported by both
CUSP and cuSPARSE. A matrix in CSR format consists of 3 data arrays: A row pointer,
column indices and the nonzero matrix values. The row pointer array contains the
cummulative number of nonzero values for each row, and always has a leading zero
element. The column index array stores the indices of the columns that the nonzero
values are located in, in row-major order. The nonzero values are stored in the same
order. Figure 2.16 shows an example of a dense matrix and its corresponding CSR
representation.

CudaMatrix uses cuSPARSE for most of its arithmetic operators, such as multiplic-
ation, addition and subtraction. For sparse matrix multiplication, it uses the csrgemm
procedure. For matrix-vector multiplication, it uses the csrmv procedure. Finally, for
sparse matrix addition and subtraction, it uses csrgeam.

CollOfVector

CollOfVector is another data class which represents a collection of vectors, for
instance centroids or normals. Like the other data classes, it overloads basic arithmetic
operators in addition to the indexing operator (’[]’). Its data is stored using a
CudaArray object, which is useful since many of the operations for CollOfVector are
performed element-wise. vec_collection[1] returns the second component of all
the vectors in vec_collection as a CollOfScalar rather then the second vector in the
collection. It also has functions for dot products and norms.

DeviceGrid

The DeviceGrid class is responsible for constructing and managing the Equelle grid,
which is stored on the device. Grids are constructed on the CPU using the OPM
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1 0 3 0
0 0 4 5
2 0 0 0
0 6 0 7


(a)

rowPtr 0 2 3 5 7

colInd 0 2 2 3 0 1 3

values 1 3 4 5 2 6 7

(b)

Figure 2.16: A dense matrix (a) and its corresponding sparse representation in
compressed sparse row (CSR) format. The length of a row pointer array in a CSR
structure is always one more than the number of rows in the matrix it represents, and
always starts with a 0. The column index array and the value array each contain a
number of elements equal to the number of nonzero values in the matrix.

library [19], and then transferred to the device. The grid remains on the device until
the Equelle program is finished. Table 2.4 lists the data arrays of the grid. DeviceGrid
also implements functions for creating and accessing the built-in domains.

LinearSolver

The LinearSolver class implements iterative solvers and preconditioners using the
CUSP library. It currently supports the following solvers: CG, BiCGStab and GMRes.
CG and BiCGStab can both be used with a diagonal (or Jacobi) preconditioner and
GMRes does not support any preconditioners.

EquelleRuntimeCUDA

EquelleRuntimeCUDA is the main class in an Equelle CUDA program. It works as a
wrapper for the other classes and keeps track of the runtime state, contains the grid,
handles file input (e.g. parameters) and output and printing to terminal.

2.7 Tools and Best Practices

Nvidia provides a set of tools for measuring performace and debugging CUDA
programs. They also provide a best practices guide that makes recommendations for
how to perform optimization work and for what to focus on when programming for
their GPUs. In this section, we will have a look at some of these best practices as well
as the tools that have been used in this thesis.

2.7.1 Best Practices

Many fields have certain established guidelines that are widely accepted as effective.
We will now go through some of the best practices that are important to both CUDA
development and performance evaluation.
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Variable Size (Elements) Data Type
(Bytes)

Description

cell_centroids_ One vector per cell. double (8) Vectors pointing to the
centers of the cells. Each
vector contains 1 double
for each cell.

face_centroids_ One vector per face. double (8) Vectors pointing to the
centers of the faces. Each
vector contains 1 double
for each face.

face_normals_ One vector per face. double (8) Face normals describing
their direction.

cell_volumes_ One per cell. double (8) Volumes of cells.
face_areas_ One per face. double (8) Areas of faces.
cell_facepos_ One per cell + 1 int (4) Starting indices for

each cell’s faces in
cell_faces_.

cell_faces_ size_cell_faces int (4) Stores the relations
between cells and their
faces.

face_cells_ 2 per cell. int (4) Stores 2 cell indices per
face, pointing to the
faces’ first and second
cells.

Table 2.4: The table contains information about the data arrays that make up the grid.
They are constructed on the CPU using the OPM library and then copied as-is to the
device memory. Note that vectors (centroids and normals) have one element for each
dimension of the grid.

CUDA Development

During development we follow the CUDA Best Practices Guide [8] for guidelines on
how to develop and optimize CUDA programs.

Figure 2.17 illustrates the APOD process which is described in the guide. APOD
stands for Assess, Parallelize, Optimize and Deploy, and is an iterative process where
we first assess our program to get an overview of its bottlenecks and find possible
solutions to them. If the bottlenecks contain any serial code, we parallelize is, then we
optimize the code, and finally we deploy our solution to reap the benefits as early as
possible. The steps are then repeated.

We can use several approaches when assessing our application, but at the center
in CUDA development is the use of profilers to measure the actual performance of
programs. Profilers are specialized programs made specifically for gathering and
analyzing runtime data.
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Returns Lhs Operator Rhs
CudaArray CudaArray + - * / CudaArray
CudaArray Scalar * / CudaArray
CudaArray CudaArray * / Scalar
CudaMatrix CudaMatrix + - * CudaMatrix
CudaMatrix CudaMatrix * CudaArray
CudaMatrix Scalar * CudaMatrix
CudaMatrix CudaMatrix * Scalar
CudaMatrix N/A - CudaMatrix
CollOfScalar CollOfScalar + - * / CollOfScalar
CollOfScalar CollOfScalar * / Scalar
CollOfScalar Scalar * / CollOfScalar
CollOfScalar N/A - CollOfScalar
CollOfVector N/A - CollOfVector
CollOfVector CollOfVector + - CollOfVector
CollOfVector Scalar * CollOfVector
CollOfVector CollOfVector * / Scalar
CollOfVector CollOfVector * / CollOfScalar
CollOfVector CollOfScalar * CollOfVector

Table 2.5: Overloaded arithmetic operators in the CUDA backend.

Figure 2.17: A diagram depicting the APOD development process described in the
CUDA Best Practice Guide [8]. APOD is an iterative process where we first assess our
program to get an overview of its hotspots and find possible solutions to them. We
parallelize serial code where possible, we then optimize and lastly we deploy our
changes. We then repeat the steps.
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Performance Evaluation

Performance evaluation of computer systems is a difficult task and has been a well-
established research field for decades.

One might say that "the only requirement for validation is that the results should
not be counterintuitive." [20]. This means that when we measure the performance
of a system, with the correct assumptions, we should to a certain degree be able to
estimate the impact when changing the factors of the system. In our performance
analyses in this thesis, we will follow this principle for validation. If we apply this
correctly, it will allow us to generalize our results and extract more information from
our measurements. Validating results could include the use of analytical modelling
to estimate performance, and then measure the system to see if the assumptions are
correct. If the measurements do not correlate with the modelling, then the results
should be investigated in more detail to find the cause of the unintuitive results.

2.7.2 Tools

In this section we will go through the tools that have been used for profiling and
debugging in this thesis. These are the profilers provided by Nvidia as well as their
debugger, and the GPU monitoring application nvidia-smi.

Profilers and Debuggers

For profiling and debugging we are using Nvidia’s supplied toolkit of debugger and
profilers. For debugging we are using CUDA-GDB, which is based on the GNU
Project Debugger, gdb14. and provides the same user interface as well as additional
functionality for CUDA debugging, such as kernel debugging. We are using two
different but interconnected profilers: the command-line profiler nvprof and the Nvidia
Visual Profiler. nvprof lets us collect and view profiling data from the command-
line. By giving appropriate command-line options we can customize the data from
nvprof to include dependency analyses, CPU-traces, metrics such as floating-point
operations per second and several others. The output can be specified as well, for
instance redirecting it to a file that can be read by the Visual Profiler.

When CPU profiling is enabled, nvprof will sample the CPU’s program counter
(PC) at a given frequency (100hz as default), ultimately generating a trace which
shows where in the code the CPU spends most of its time. The trace can be viewed
from 3 different perspectives: top-down, bottom-up and flat. When displayed top-down,
it will show the call hierarchy starting at the first call (usually the main function) and
continues deeper down, showing the time portion of each sub-call.

The Nvidia Visual Profiler (nvvp) is an advanced profiler which visualizes CUDA
programs as timelines and provides an easy-to-use GUI. The timeline view is very
useful for inspecting programs in detail, with the possibility to do in-depth analysis
of both single kernels and whole-program analyses. It also has a guided analysis mode
that guides the developer to possible bottlenecks, giving advice on where to optimize.

In addition to their own profilers, Nvidia provides APIs that both lets us alter
the output of the profilers, as well as making our own. By using the Nvidia Tools

14https://www.gnu.org/software/gdb/
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Figure 2.18: This is the default view of the Nvidia Visual Profiler. It is in guided
mode and the GPU analysis has been run. The green area is the timeline for CUDA
and driver API activity, the orange area shows GPU activity, the blue area shows
the memory transfers with one line for each type (host-to-device, device-to-host and
device-to-device), the red area shows the timeline for the kernel calls with one line for
each kernel. Finally, the yellow currently shows the Analysis view with information
from the GPU analysis. It can also change to views for Console, GPU details, and CPU
details.

Extension (NVTX) API, we can annotate the Nvidia Visual Profiler’s timeline by
tagging ranges of the program. This makes interpretation of the timelines much easier.
If we run the annotated code with nvprof, we also get summaries for each range.

Nvidia-smi

Nvidia System Management Interface (nvidia-smi) is a command-line utility for
monitoring Nvidia GPUs. It can be used to gather metrics such as memory usage,
compute utilization, temperature, clock speeds of both memory and multiprocessors
and power consumption. We can also use the tool to change the behaviour of our
device by changing variables. Figure 2.19 shows the output after running nvidia-
smi in its default mode. At the top we see the driver version (387.34) and in the
table below we can read information such as the GPU model (GTX 1060), current
temperature (90C), power consumption (70W) and total memory usage in mebibytes
(MiB). The table at the bottom shows all the processes that are running on the GPU,
including both graphics and compute applications. Graphics processes are labelled G
and compute processes are labelled C. In this example, we are running a version of

33



Figure 2.19: This is the console output of nvidia-smi while running the implicit heat
equation simulation. From this screen we can see that the process takes up 1952 MiB
of memory. We also see that the temperature of the GPU is 90 degrees Celsius.

the implicit heat equation, which uses 1953 MiB of memory.
With nvidia-smi we can generate timeseries of metrics for compute applications

by using the query-compute-apps command line option in a loop. The loop interval
is specified using the lms command line option, and specified in milliseconds and the
output is in CSV format. This functionality is very useful for benchmarking memory
usage, as the profilers do not have this kind of functionality at the time of writing. In
this thesis, we are using the command line in Listing 5 to gather timeseries of memory
usage. Since we are running on Ubuntu, we can use the ’>’ symbol to redirect the
output to the file memory_usage.csv.

nvidia-smi --query-compute-apps=used_memory --format=csv,noheader,nounits
-lms 1 > memory_usage.csv

Listing 5: Command line for writing GPU memory usage to a csv file.

The output is a stream of integers separated by line feeds, which can easily be
copy-pasted into spreadsheets or read by programs, and be analyzed. The numbers
are in mebibytes (MiB), which is 10242 bytes, as opposed to a megabytes (MB) which
are 10002 bytes.

2.7.3 CUDA Libraries

This section contains brief descriptions of libraries that are used in the CUDA backend.
Using these libraries lets us parallelize code with a much lower effort than if we
developed every algorithm from scratch. The libraries listed that come with the
CUDA Toolkit are actively developed and maintained.

Thrust is a useful library for parallel algorithms which is included in the CUDA
toolkit. It is based on the C++ Standard Template Library (STL), and includes similar
functionality such as efficient implementations of common algorithms (sorting,
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GPU FP64 Throughput
(GigaFLOP/s)

Memory Band-
width (GB/s)

Memory
Amount

CUDA Cores
Total (FP64)

Core
Clock

GTX
1060 133 192 6 GB 1280 (40) 1670Mhz

NVS
5200M 10 14.4 1 GB 96 (8) 625Mhz

Tesla
K40 1430 288 12 GB 2880 (960) 706Mhz

Table 2.6: List of GPUs used with Equelle. In the CUDA cores column, the numbers
in parentheses denote the number of cores that are capable of performing double
precision operations. We are using the GTX 1060 which is a GPU designed for single
precision.

reductions, prefix sums), general and special purpose iterators, data structures such
as vectors and maps that can reside on both the host and the device, and more. Thrust
also supports several backends for its algorithms, such as OpenMP, device (GPU) and
host (CPU).

cuSPARSE is a CUDA library that comes with the CUDA toolkit, which provides a
set of subroutines for sparse matrices. Examples of functionality it provides are: basic
components for building solvers and preconditioners, subroutines for transpositions
and other modifications sparse structures, as as well known arithmetic operators such
as generalized multiplication (gemm). cuSPARSE supports a variety of storage schemes
for sparse matrices such as compressed sparse row (CSR), compressed sparse column
(CSC) and a hybrid format (HYB), as well as subroutines for conversion between these
and editing of them.

CUSP "is an open source C++ library of generic parallel algorithms for sparse
linear algebra and graph computations on CUDA architecture GPUs" [10]. It is not
included in the CUDA Toolkit, but is available on GitHub as an open source project.
CUSP uses common sparse storage formats such as CSR and is therefore compatible
with cuSPARSE. The last major version of CUSP was released in 2015. Most of the
recent updates to CUSP are bugfixes and adding compatibility for newer GPUs and
CUDA versions, as can be seen in the CUSP commit history on GitHub [1].

2.7.4 Hardware Setup

The GPU we are using is a Geforce GTX 1060 for laptops, with 6 GBs of on-
board DRAM memory, with a bandwidth of 192 GB/s. The GPU has 10 Streaming
Multiprocessors (SMs) with 128 CUDA cores each. It is a GPU in the upper middle-
range meant for computer games and is therefore designed for single precision
computations. The peak performance is listed in the Nvidia Visual Profiler as 4.276
teraFLOP/s for single precision, and 133 gigaFLOP/s for double precision. The
reason for this discrepancy is that only 4 of the 128 cores on every SM is capable of
performing double precision computations, which means that we only have 40 cores
for these computations. Since Equelle mainly works with double precision floating
point numbers, this greatly decreases the potential for performance gains compared
to other GPUs tailored for double precision.
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In the initial work on the CUDA backend, two GPUs were used for testing: The
NVS 5200M laptop GPU and the Tesla K40 compute GPU. Like the GTX 1060, the NVS
is designed with single precision in mind, and only 8 out of its total 96 cores are double
precision-capable, and has a throughput of 10 gigaFLOP/s. Tesla K40 on the other
hand is a pure compute GPU with 2880 cores where 1/3 of them are double precision
capable, with a core frequency of 706 Mhz. The peak double precision performance is
1.43 teraFLOP/s, roughly 11 times more than what the GTX 1060 is capable of.
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Chapter 3

Performance Analysis

It is important to know what the bottlenecks of a program are when deciding on
optimizations. In this chapter we perform an analysis of the Equelle CUDA backend,
mainly by using the implicit heat equation simulator. We will first give an explanation
of the program so that we can better understand the computations that are involved.
The knowledge we get from this study will help us to understand our profiling
results and to perform further analysis. After we have studied the program, we
will use profilers to measure the performance of the backend and to find out what
its underlying problems are. We will then use our results to decide on optimizations
in the next chapter.

3.1 Program Overview

In this section we will have a look at the overall structure of the implicit heat equation
program with a focus on the main computation phase. The complete Equelle code can
be found in Section A.1.

Listing 6 contains pseudocode that demonstrates a typical case of solving an
equation implicitly, using the Newton-Raphson method. For each timestep, a solution
to u is found by iteratively minimizing the residual of u. The residual and its associated
Jacobian is calculated using a residual function and it is considered to be small enough
when its norm is below a chosen tolerance value.

The residual computation for the heat equation is the following:

residual = u - u0 + (dt / (cv * vol)) * Divergence(fluxes)

where u is the collection of values that we update after each iteration. At the beginning
of each iteration, u has an identity matrix as its derivative. u0 is the starting point of
the current timestep and it has no derivative. It will get updated in every timestep,
but it stays constant across Newton iterations. dt is the timestep length, and its
value is specified as a parameter to the program. The step length might vary for
each timestep, but it is usually uniform. cv is a scalar value which represents the
specific heat capacity of the cells. vol is the volumes of the grid cells, which has been
precomputed in the setup phase. Divergence(fluxes) is the divergence of the heat
flow on every cell on the grid. fluxes is the heat flow of the grid and is defined
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1: for n in timesteps do
2: residual, jacobian← computeResidual(u);
3: i← 0;
4: while twoNorm(residual) < tolerance and i < maxiterations do
5: du← linearSolve(residual, jacobian);
6: u← u− du;
7: residual, jacobian← computeResidual(u);
8: ++ i;
9: end while

10: un ← u
11: end for

Listing 6: Pseudocode for solving an equation implicitly using Newton’s method. u
contains the solution vector and is iteratively updated using Newton iterations.

on AllFaces. The final result of the computation which is stored in residual, is a
Collection Of Scalar which is defined on AllCells, with a derivative matrix of size
AllCells×AllCells.

Listing 7 shows the timestepping in Equelle. The built-in function NewtonSolve
is called with the residual function and the initial guess u_guess as arguments. The
Equelle backend then computes the residual and updates the solution, as described in
Listing 6.

Listing 8 defines the residual function in Equelle. The fluxes are calculated on lines
2 to 4. computeInteriorFlux and computeBoundaryFlux are called to compute the
interior and boundary fluxes before adding them together (line 4). Notice that since
ifluxes is defined on InteriorFaces and bfluxes is defined on BoundaryFaces, they
both need to be extended to AllFaces before being combined.

Listing 9 defines computeInteriorFlux, which computes the interior flux by
multiplying the negative interior transmissibilities (-itrans) by the gradient of u.
When the gradient of u is taken, its derivative is computed by multiplying a fixed
sparse matrix depending on the grid. The transmissibilities also stay the same since
they are computed in the setup phase. Thus, computeInteriorFlux will yield the
same derivative every time for a given grid. The values of the resulting collection is
defined on InteriorFaces and contains the heat that passes through each of the faces.

Similarly, computeBoundaryFlux (Listing 10) computes the fluxes along the
Dirichlet boundary. The values of u in the Dirichlet boundary cells in u are first stored
in u_dirbdycells by using the On operator. The flux of the Dirichlet boundary is
then found by multiplying the transmissibilities, face direction (sign) and the change
in temperature. The derivative matrix of the boundary flux will remain the same
throughout the simulation as well. The fluxes are extended to the BoundaryFaces
domain before being returned.
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1 For dt In timesteps {
2 computeResidualLocal(u) = {
3 -> computeResidual(u, u0, dt)
4 }
5 u_guess = u0
6 u = NewtonSolve(computeResidualLocal, u_guess)
7 u0 = u
8 }

Listing 7: Equelle code which defines the timestepping loop for the implicit heat
equation. NewtonSolve is called with the residual function and an initial guess as
its arguments.

1 computeResidual(u, u0, dt) = {
2 ifluxes = computeInteriorFlux(u)
3 bfluxes = computeBoundaryFlux(u)
4 fluxes = (ifluxes Extend AllFaces()) + (bfluxes Extend AllFaces())
5 residual = u - u0 + (dt / (cv * vol)) * Divergence(fluxes)
6 -> residual
7 }

Listing 8: Equelle code which defines the computeResidual function. The interior
fluxes (ifluxes) and boundary fluxes (bfluxes) are first computed, and then added
together (line 4). The residual function is then evaluated.

1 computeInteriorFlux(u) = {
2 -> -itrans * Gradient(u)
3 }

Listing 9: Equelle code which defines the computeInteriorFlux function. The flux of
the interior faces are calculated by multiplying the negative transmissibilities by the
gradient of u. The result is defined on InteriorFaces.

1 computeBoundaryFlux(u) = {
2 u_dirbdycells = u On dir_cells
3 dir_fluxes = dir_trans * dir_sign * (u_dirbdycells - dir_val)
4 -> dir_fluxes Extend BoundaryFaces()
5 }

Listing 10: Equelle code which defines the computeBoundaryFlux function. First we
define a new variable containing the values of the cells along the Dirichlet boundary.
As we can see from the extend operator in the return statement, the result is defined
on BoundaryFaces.
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3.2 Program Analysis

In this section we perform a manual analysis of the program by using simple
established program analysis concepts that are implemented in many modern
compilers. They can be extended to perform many optimizations such as data flow
analysis for identifying "dead" variables1 and dependency analysis, for instance for
eliminating common sub-expressions.

We start by writing the residual computation in Three Address Code (TAC or 3AC).
TAC is an extensively used intermediate representation (IR) which simplifies program
analysis and optimizations. The format is defined as follows: each statement contains
at most 2 source addresses (right-hand-side), and one destination address (left-hand-
side). Each statement represents one instruction/operation. In order to rewrite the
code we insert temporary variables, using names such as t1, t2, etc. The result can be
seen in Listing 11. The format is essentially a linearization of the AST of a program
and simplifies operations such as instruction reordering.

Figure 3.1 contains a directed acyclic graph (DAG) for the residual computation.
The operations it represents are evaluated from the bottom, and upwards, so the last
operation to be performed is addition. The blue nodes represent constants (zero
derivative). White nodes represent functions or variables representing domains,
and the grey nodes represent operations and variables that will have different
values/results across iterations. Another property of the grey nodes is that they
involve calculations on the derivatives. It should be noted that the graph does not
represent the correct order of operations when it comes to associativity, as some of
the nodes are reordered in order to make the graph more readable. Table 3.1 shows
an overview of the operators that are used in the residual computation, which can be
useful for analyzing the impact that an optimization might have.

Since the graph is a DAG, we can exploit several of its properties. For instance,
if an operation node has two or more parents, we have common sub-expressions.
As we can see in the graph, common subexpressions is not a problem. Since we
know that the blue nodes will not change across iterations2, we can also tell that
any blue node that has an operator as a parent can be precomputed, reducing the
number of calculations in each iteration. In this case, the following expressions can
be precomputed: (1) -trans, (2) dir_trans * dir_sign and (3) (dt / (cv * vol)).
This is valuable information, since the compiler can detect such expressions and
perform optimizations after analyses on the AST.

1The analysis is called live variable analysis in the compiler literature.
2u0 will get updated in every timesteps, but is constant across Newton iterations in a single timestep.
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1 t1 = -itrans
2 t2 = Gradient(u)
3 ifluxes = t1 * t2
4 u_dirbdycells = u On dir_cells
5 t3 = u_dirbdycells - dir_val
6 t4 = dir_trans * dir_sign
7 dir_fluxes = t4 * t3
8 bfluxes = dir_fluxes Extend BoundaryFaces()
9 t5 = ifluxes Extend AllFaces()

10 t6 = bfluxes Extend AllFaces()
11 fluxes = t5 + t6
12 t7 = cv * vol # Scalar * CollOfScalar
13 t8 = dt / t7
14 t9 = u - u0
15 t10 = t9 + t8
16 t11 = Divergence(fluxes)
17 t12 = t10 * t11

Listing 11: The residual computation written in Three Address Code (TAC) format.
Since the sequence contains no branches, it forms what is known as a basic block. The
statements on the lines 1 to 11 is the flux computation and 12 to 17 is the final residual
computation.

Operator compute
Boundary
Flux

compute
Interior
Flux

compute
Residual

Total Comment

* 2 1 2 5 Lines 3, 6, 7, 12, 17
Extend 1 0 2 3 Lines 8 to 10
+ 0 0 2 2 Lines 11 and 15
Binary - 1 0 1 2 Lines 5 and 14
On 1 0 0 1 Line 4
/ 0 0 1 1 1 Scalar / CollOfScalar,

Line 13
Unary - 0 1 0 1 Line 1
Gradient 0 1 0 1 Line 2
Divergence 0 0 1 1 Line 16
Total 5 3 9 17

Table 3.1: The table contains the number of calls for each operation in the residual
computation. The columns contain numbers for each function which is called, as well
as the total. The line numbers listed refers to the location of the operations in the TAC
code (Listing 11).
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Figure 3.1: A directed acyclic graph (DAG) describing the residual computation. The
blue nodes represent constants (no derivative), grey nodes represent collections with
derivatives and white nodes are domains used with the On and Extend operators.
Also note that dt and cv are scalars. Lastly, note that the graph depicts the relation
between the operators, but does not retain the correct associativity with respect to the
code.
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3.3 Memory Usage

This section describes the memory usage for the implicit heat equation program. We
assume a grid of size 250× 100× 100 (Table 3.2). We focus on the grid itself as well as
the variables that are defined in the Equelle program, excluding the temporaries that
are created in the backend. Overhead caused by temporary objects will be discussed
in the next section, where we measure performance using the profilers and nvidia-smi.

The intent of this analysis is to estimate the memory impact of these variables. By
using very simple reasoning about our program, we can also look for optimization
possibilities. When we measure performance by profiling, we can also use the results
from this section when inspecting the memory usage in the nvidia-smi output.

First we calculate the total footprint of the grid itself (excluding domains). The
Equelle grid contains 8 data arrays that describe its geometry and the relations
between its cells and faces. Table 3.3 lists the arrays, as well as their memory sizes.
The total memory usage of the grid is 633.84 MBs. Table 3.4 lists the collections that
are stored during the residual computation. They are all destroyed after each residual
computation. Their total size is 777.6 MBs. If we include the u parameter with an
identity matrix as its derivative, the total is 837.6. The size of the gradient matrix is
208.32 MB. The size of the divergence matrix is 190 MBs. Variables in the setup phase
account for 222.56 MBs. In the next section, when we profile the application, we will
use these numbers to validate our assumptions.

x y z AllCells AllFaces InteriorFaces BoundaryFaces
250 100 100 2,500,000 7,560,000 7,440,000 120,000

Table 3.2: The table shows the number of entities in each domain for a given grid
(x, y, z).

Variable Elements * Data Type Size (MB)
cell_centroids_ (3 * 2,500,000) * 8 60
face_centroids_ (3 * 7,560,000) * 8 181.44
cell_facepos_ (2,500,000 + 1) * 4 10
cell_faces_ (15,000,000) * 4 60
cell_volumes_ (2,500,000) * 8 20
face_areas_ (7,560,000) * 8 60.48
face_cells_ (2 * 7,560,000) * 4 60.48
face_normals_ (3 * 7,560,000) * 8 181.44
Total - 633.84

Table 3.3: The table shows the size of each individual array in the grid as well as the
total. The centroids and normals are vector types and are therefore multiplied by the
number of dimensions in the grid.
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Values Derivative Total
Variable Elements Size (MB) Rows NNZ Size (MB) Size (MB)
ifluxes 7,440,000 59.52 7,440,000 14,880,000 208.32 267.84
bfluxes 120,000 0.96 120,000 20,000 0.72 1.68
fluxes 7,560,000 60.48 7,560,000 14,900,000 209.04 269.52
residual 2,500,000 20 2,500,000 17,380,000 218.56 238.56
Total - 140.96 - - 636.64 777.6

Table 3.4: Size information for all collections that are stored on the device in
computeResidual. All of these are destroyed and reallocated for each timestep.

Matrix Rows NNZ Size (MB)
Gradient 7,440,000 14,880,000 208.32
Divergence 2,500,000 15,000,000 190
Total - - 398.32

Table 3.5: The table contains size information for the gradient and divergence
matrices, which are constructed once and stored on the device throughout the
simulation.

3.4 Profiling

In this section we use profilers and nvidia-smi to measure the performance of the
CUDA backend, which will help us to locate bottlenecks. We will get insights into
the cost of the operations involved, both at a high and a low level of the code. For
our profiling, we are using the system which was described in Section 2.73, running
CUDA 8.0, and GPU driver version 396.54.

First we use the Nvidia Visual Profiler to generate timelines. This will let us get an
overview of the program execution. Figure 3.2 shows a timeline with NVTX markers
that we have added for the first two timesteps, which perform two iterations each.
Above the markers is the CUDA API activity, and underneath it shows GPU activity.
In the first iteration, computing the interior flux and the residual takes more time than
in subsequent iterations. The reason is that the gradient and the divergence matrices
are constructed on the CPU and copied to the device for reuse. We can clearly see
that it is done on the CPU as there is no GPU activity and no CUDA API activity in
those periods. Now we move on to study one single iteration, so that we can get more
information about each computation step.

Figure 3.3 shows the steps in a single residual computation. The steps are: (1)
computing the interior flux, (2) computing the boundary flux, (3) adding the interior
and boundary fluxes together and finally (4) computing the residual. Adding the
fluxes together is the most expensive step, and we can se a relatively high amount of
GPU activity in that region.

At the end of step 1, 3 and 4, there are periods where there is CUDA API activity,
but no GPU activity. It is mostly cudaFree that is being called, so we can assume that
the gaps are due to cleanup steps. Since cudaFree is a blocking call, no new kernels
can be launched until it is finished. In Figure 3.4 we see the timeline we get after

3Laptop with i7-7700HQ, GTX 1060 with 6 GBs of memory, 16 GB RAM, running on Ubuntu 16.04.
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Figure 3.2: Timeline for the first two timesteps with markers. The top shows CUDA
API calls and the bottom shows GPU activity. The large gaps in CUDA and GPU
activity are due to the construction of the gradient and the divergence matrices on the
CPU.

Figure 3.3: Timeline for a single residual computation with NVTX markers for each
step. The top shows CUDA API calls and the bottom shows GPU activity.

Figure 3.4: Timeline for one residual computation, with markers for each step as well
as for the destructors of CudaMatrix and CudaArray. The markers for the destructors
are placed below the ones for the computation steps. Notice that there is no GPU
activity where the destructors (cudaFree) are called.

Figure 3.5: The figure shows the output from the Nvidia Visual Profiler after running
its GPU analysis in Guided Mode.
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sudo nvprof --cpu-profiling on --cpu-profiling-frequency 500Hz
--cpu-profiling-mode top-down --cpu-profiling-thread-mode separated
./out_heateq_cuda ../heateq/params.param

Listing 12: nvprof command line for profiling the CPU. We specify that the CPU’s
program counter will be sampled 500 times every second. Our application launches
four threads, but only one of them does anything CUDA related. We therefore set the
thread mode to separated.

adding markers for the destructors of CudaMatrix and CudaArray. Our assumption
is confirmed, as the timeline clearly shows that the destructors are dominating those
regions.

Using the Nvidia Visual Profiler’s guided mode, we run a GPU analysis which
gives us the output in Figure 3.5. The output shows that the memory throughput is
low and that there is very little overlap between CUDA operations such as memory
copies and kernel calls. It comes as no surprise that there is little overlap, as the use
of several CUDA streams have not been implemented in Equelle. As for the memory
bandwidth issues, we need to investigate a bit more.

We can inspect the individual memory copies by using the GPU Details tab. Each
entry shows the type of transfer (HtoD/DtoH/DtoD, asynchronous/synchronous),
the transfer size as well as the achieved throughput of the transfers. We can also click
on the entries in order to have them highlighted in the timeline. When we inspect the
host-to-device (HtoD) transfers individually, we immediately recognize the transfer
sizes from our previous analysis (Section 3.3), most of them being for the gradient
and divergence matrices, and the grid. 15 out of 17 transfers are done synchronously.
The achieved throughputs are mostly between 5.5 and 11 GB/s, so nowhere near the
5.236 MB/s average that the profiler lists in Figure 3.5. Moving on to the device-to-
host transfers (DtoH), we start to see where the low bandwidth issue comes from.
There are thousands of transfers of 4 and 8 bytes with an achieved throughput of
between 0.28 MB/s and 12 MB/s. The timeline shows that these small transfers of 4
bytes are done in relation to kernels for sparse matrix multiplication. Most notably the
transfers are made interleaved with the stable_sort_by_key kernels, which are called
before the kernel that finds the new sparsity pattern (csrgemmNnz) of the result matrix,
and the multiplication kernel (csrgemm). They are called when cuSPARSE performs
multiplications which involve transposed matrices. The Extend operator is the only
part of Equelle which uses this csrgemm version.

In Figure 3.6, we see the timeline for the same iteration after adding markers for
gemmNnz and gemm. We can observe that the GPU utilization varies a great deal across
each call. For the multiplication in computeInteriorFlux the utilization is high, but in
computeBoundaryFlux the GPU utilization is low for the majority of the time for both
gemmNnz and gemm. For our simulation we know that there are very few entities on the
boundary compared to the interior part of the grid, so the SMs of the GPU aren’t fully
utilized.

Now we move on to generating a CPU trace, in order to understand where the
program actually spends most of its time. We use the command line in Listing 12 to
generate the trace. The simulation takes 43.19 seconds.
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Figure 3.6: Timeline for a single iteration with markers for each step and for matrix
multiplication. gemmNnz is the procedure which finds the new sparsity pattern of the
matrix and gemm is the multiplication procedure. Below the markers we see the GPU
activity. For the multiplication kernels, the GPU utilization varies a great deal. The
bottom of the timeline shows device-to-host transfers. Notice the sequences of small
transfers during multiplication.

Figure 3.7: Time distribution for the implicit heat equation reported by the CPU trace.
We can clearly see that the extend operator is a bottleneck, taking 43.4 percent of
the total execution time. The secondary bottlenecks are the gradient and divergence
operators.

Figure 3.7 shows the time distribution of the most dominating parts of the code.
The results clearly show that the Extend operator is a bottleneck, taking over 40
percent of the total simulation time. Figure 3.8 shows the call graph we get from
the trace, for the Extend operator. operatorExtend calls both extendToFull and
extendToSubset. extendToFull is a function which extends a domain to the whole
grid. extendToSubset calls extendToFull first, and then restricts it to the subdomain.

When we look at the gradient’s trace, we see that sparse matrix multiplication is a
bottleneck there as well. For the divergence operator, we see exactly the same as for
the gradient. Since the time to construct the matrices would not increase as we run
the simulation for more timesteps, we do not need to consider this as a bottleneck.
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Figure 3.8: The figure shows a call graph for the Extend operator with percentages of
its total runtime. cudaFree and asynchronous device-to-host copying are responsible
for 80.7%. Most of the remaining time is spent on memory management of CudaArray
and CudaMatrix. In extendToFull alone we lose about 9% to memory management.

The trace also shows that for operator*, which is the CollOfScalar multiplication,
80% of the time is spent in the CudaMatrix destructor. For twoNorm, 87.7% of the time
is spent performing matrix multiplication.

We have generated traces for 7 different grid sizes using 100 timesteps to see if
there is a shift in bottlenecks when we scale the grid. The results can be seen in Figures
3.9 and 3.10. They show that the operators keep their relative places for all the grid
sizes.

Now we run nvprof in its summary mode to get statistics on GPU activity and
CUDA API calls (Listing 13). The top two kernels are related to the sparse matrix
multiplication (csrgemm), where the multiplication kernel itself and the kernel for
finding the non-zero pattern of the resulting matrix are equally dominating at around
41% in total, with 280 calls being made to each of them. This equates to 14 calls per
timestep. Next on the list is device-to-device memory transfers, with 12.34% of the
time and 7,929 calls being made. Thirdly we see that there are calls to kernels for
converting CSR to CSC format, which is used to transpose matrices in cuSPARSE.
They are called 120 times each, or 6 times per timestep. The sort_by_key kernels
account for more than 10% and are called 1,840 times each. We also see that sparse
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Figure 3.9: The chart shows the percentage of the total time for the most significant
parts from the CPU trace, and how it changes as we increase the grid size. What we
see is that the extend operator takes a larger percentage as the grid size increases. We
also see that there is no shift in bottlenecks. Figure 3.10 supplements this chart and
shows how the percentages of each operator changes between each grid sample. The
data was collected using 100 timesteps.

Figure 3.10: The chart shows that the extend, gradient and divergence operators take
increasingly a larger portion of the total time as the grid size is scaled up. The columns
denote scaling between different grid sizes. 0.512-1.024 means that the grid was scaled
from 0.512 to 1.024 megacells. It is worth noting that for the minus operator, the
percentages decreases for the first half and then starts to increase. Even though this
might indicate a shift, our sample size is too small for us to make any conclusions.
The data was collected using 100 timesteps.

49



Time(%) Time Calls Name
20.61% 5.72949s 280 void csrgemm_kernel2
20.34% 5.65499s 280 void csrgemmNnz_kernel2
12.34% 3.43084s 7929 [CUDA memcpy DtoD]
10.08% 2.80228s 120 void CsrToCsc_kernel_build_cscColPtr<float, ...>
10.05% 2.79374s 120 void CsrToCsc_kernel_build_cscColPtr<double, ...>
5.27% 1.46576s 1840 void stable_sort_by_key_local_core
5.26% 1.46206s 1840 void stable_sort_by_key_merge_core
2.79% 776.41ms 240 void convert_CsrToCoo_kernel
2.68% 745.86ms 120 void csrgeam_windowBased_core<double, ...>
1.90% 529.46ms 200 equelleCUDA::wrapCudaMatrix::diagMult_kernel(double*, ...)
1.51% 418.74ms 120 void csrgeam_windowBased_core<float, ...>
1.34% 372.09ms 2000 void stable_sort_by_key_stop_core<...>

Time(%) Time Calls Avg Min Max Name
60.85% 24.3709s 12781 1.9068ms 4.7090us 306.25ms cudaFree
28.62% 11.4624s 7340 1.5616ms 5.4750us 51.143ms cudaMemcpyAsync
8.32% 3.33155s 12780 260.68us 3.7580us 121.55ms cudaMalloc
0.86% 343.24ms 240 1.4301ms 136.79us 5.5551ms cudaEventSynchronize
0.69% 274.47ms 7009 39.159us 5.9120us 27.979ms cudaMemcpy
0.42% 169.58ms 20548 8.2530us 3.4120us 2.9027ms cudaLaunch

Listing 13: Output from running the implicit heat equation simulation with nvprof’s
summary mode. The top table shows the most time consuming operations on the
device with percentages of the total GPU time. The bottom table shows the most time-
consuming CUDA API and driver calls, with cudaFree taking 60.85% of the time. Less
relevant entries are omitted. Also notice that cudaFree is called one time more than
cudaMalloc. The reason is that cusparseCreate(), which initializes cuSPARSE, calls
cudaFree implicitly.

matrix addition (csrgeam) is called 120 times, or 6 times per timestep.
The bottom table gives an overview of the calls being made to the driver API or

to the runtime API. cudaFree is called 12,781 times and accounts for over 60% of the
total runtime. Performing that many cudaFree calls is bad for two reasons: (1) freeing
memory is in itself an expensive operation, (2) cudaFree is a blocking/synchronizing
call, which means that when it is called, all the processes running on the device
must finish before memory can be freed and the program can proceed. This can
potentially be very bad for performance as it prohibits asynchronous activities such
as kernels and asynchronous memory copies from running independent of the CPU.
We should avoid synchronization whenever possible. Blocking operations include
cudaFree, cudaMalloc and cudaMemcpy. By using output to console, we find that 3,090
of the cudaFrees are from the CudaMatrix destructor, and 1,785 is from the CudaArray
destructor. Further we see that cudaMemcpyAsync is performed 7,340 times (367 per
timestep) and takes over 28% of the time. cudaMalloc is called one time less than
cudaFree, at 12,780. The table also shows that 20,548 kernels are being launched.

In our next benchmarks we measure the overall performance of Equelle for the
implicit heat equation. A common metric for measuring performance when dealing
with grids of cells, is the number of cells that the system can process per second.
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We are using different grid sizes to determine at point the CUDA backend gets fully
saturated. We run the simulation for 20 timesteps. When the GPU is saturated, we
should see that the simulation time scales linearly with the amount of work we add.

Figure 3.11 shows the performance we achieve with 28 different grid sizes,
measured in megacells per second. The throughput is 1.18 megacells per second for a
grid which is 3.5 megacells large. The performance increases sharply when increasing
the grid on the lower end, but flattens out as the grids get larger. The tendency is
expected, as it is typical for how performance scales on parallel processors as the
workload is scaled up.

Figure 3.12 shows the total amount of time it takes to complete 0 to 5 timesteps
using a grid size of 2.5 megacells. When we run the simulation for 0 timesteps, it only
sets up the grid and the initial variables and then does the cleanup phase, which only
takes approximately 1 second. When we increase the timesteps to 1, we see a large
leap (6 seconds) in the simulation time. A large part of this increase comes from the
construction of the gradient and the divergence matrices of the grid (on the CPU). As
we would expect, the time scales linearly from 1 timestep and upwards. Each timestep
above 1 adds approximately 1.9 seconds.

In our next benchmarks, we will have a look at the actual memory usage. We
collect the data using nvidia-smi. Note that the data in the charts are in mebibytes
(MiB) and not MB4. The charts have been annotated manually by the use of the
timelines generated by the Nvidia Visual Profiler as well as matching the memory
sizes we estimated in Section 3.3, to make clear what causes the memory activity.
The annotations also indicate what data we have stored on the device throughout the
simulation.

In Figure 3.13 we see the memory activity for the first two timesteps. The very
first activity we see is the allocation of the grid followed by the construction of
the interior faces (marked ifaces). The grid takes up just over 600 MiB, which is
what we estimated in Section 3.3. As we have already observed in the annotated
timelines, every timestep performs two residual computations/iterations. The very
first computation takes a lot longer than the subsequent ones because the gradient and
the divergence matrices are being constructed on the CPU. We have also observed that
there is no CUDA activity in these two periods, which we can clearly see in the chart
as there is no memory being allocated nor freed.

In Figure 3.14 we can see the itrans section, with the rest of the setup phase. The
chart is divided into sections that first set the variables containing the FirstCell and
the SecondCell of the interior faces. In the itrans section, there is a big overhead to
the computation, which loads 776 MiB into memory (at its peak) to evaluate the whole
expression. The expression is:

itrans = k * |ifaces| / |Centroid(first) - Centroid(second)|

The timeline shows that the calculation is performed in the following order: (1) Find
centroids of first, then find the centroids of second. (2) Perform the subtraction of
the two centroid collections. (3) Find the norm of the centroids. (4) Find the norm of
ifaces. (5) Perform the division between the norms. (6) Multiply the Scalar k by the
previous result. Two collections of centroids will alone account for 170.3 MiB. At the

4One MiB is 10242 bytes, while a MB is 10002 bytes.
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Figure 3.11: The chart shows that the throughput sharply increases and then flattens
out as we scale up the grid. The data is collected using 28 distinct grid sizes, running
for 20 timesteps.

Figure 3.12: The chart shows how much time it takes to complete from 0 to 5 timesteps
using a grid of 2.5 megacells. As expected, the time scales linearly with respect to the
number of timesteps. Each timestep above 1 adds approximately 1.9 seconds.

52



Figure 3.13: The chart shows the memory usage in mebibytes (MiB) for the first two
timesteps. The annotated areas show the amount of memory that remains on the
device until the end of the simulation. The residual is computed 4 times, and as
we have seen earlier, the long inactive periods are caused by the construction of the
gradient and divergence matrices on the CPU. After the divergence is calculated, the
total of memory that remains on the device is more than 1,350 MiB (more than 1,400
MB).

beginning of the calculation, we can see that each of the centroid operations account
for approximately double of the estimated size, suggesting that there is an overhead
equal to one temporary CollOfVector in each of them. When reading the Dirichlet
boundary data, there is not much variation in the memory usage. The data arrays are
quite small (only 20,000 elements each). The flat parts are where the CPU is reading
the data. In the next section of the chart where the Dirichlet transmissibilities are being
set, the On operator is performed on three collections to yield dir_cells, dir_sign and
dir_trans.

Figure 3.15 shows memory usage for one iteration, annotated to show each
computation phase and significant operations. We will use the chart as a reference
in our optimization chapter.

The last thing we do is to determine the largest grid we can run on the GTX 1060.
A grid of size 350× 100× 100 (3,500,000 megacells) seems to work fine, but scaling
it up to 365× 100× 100 causes a memory overflow. The grid contains 3,650,000 cells
and 11,033,000 faces.
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Figure 3.14: The chart shows the setup phase in the implicit heat equation program.
itrans is corresponds to the spike we see in 3.13, and is the calculation of the interior
transmissibilities. It shows the whole setup step in the implicit heat equation, which
includes (1) Setting the collections containing the first and second cell of the interior
faces. (2) Computing the transmissibility of the interior faces. (3) Reading the Dirichlet
boundary values from file. (4) Setting the Dirichlet transmissibility. (5) Read the
initial temperatures into u_initial and set u0. (6) Finally we see the start of the
timestepping. Evaluating the itrans expression demands 776 MiB of memory.

3.5 Additional Observations

In this section we perform measurements and analyses that are not strictly related
to any of our simulations. Since the simulators written in Equelle will most likely
only use a subset of the language’s available functionality, we should conduct some
experiments that highlight other parts of Equelle.

3.5.1 Destructor Calls Per Operator

We already know that the CUDA backend performs a large number of kernel launches
and calls to expensive operations such as cudaFree and cudaMalloc. Table 3.6 gives
an overview of the calls being made to the destructors of CudaArray and CudaMatrix
in addition to the total amount of cudaFree they account for. The data was collected
using the autoDiff test in the CUDA backend test suite. Calls to cudaFree which is
being done outside of the destructors are not included, as the table is meant to give
an indication of the amount of temporary objects in Equelle. Since the number of
temporary objects can depend on the compiler being used and the optimization level,
we choose to use actual measurements instead of making estimates based on reading
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Figure 3.15: The chart shows the memory usage of a single iteration, measured
in mebibytes (MiB). The most dominant portions of the program are highlighted.
Asterisk (*) denotes CollOfScalar multiplication and plus (+) denotes CollOfScalar
addition. The memory usage reaches its peak of 3,285 MiB in the residual section
when performing an addition. Notice how much of the time is spent performing the
Extend operator.

the code. We have measured using G++ version 5.5 with the -O3 optimization option.
There are two versions of the divergence operator, one which calls cudaFree 30 times
and one which calls cudaFree 10 times. The difference is due to the first one being
called on a collection that needs to be extended to AllFaces first. The latter is already
defined on AllFaces, so no extension is needed.

3.5.2 Incorrect Results from GPU Solvers

We have experienced issues with the implicit two-phase flow simulation. When we
run it with any of the GPU solvers and preconditioners, the results are not comparable
to those of the CPU (which we assume to be correct). After running for a while, all the
pressure values in the output becomes nan. We do not know what the reason is. We
get comparable results to the CPU if we use the CPU solver with the GPU backend.

3.5.3 Race Conditions in csrgemm

In the implicit two-phase flow simulation, the results vary from run to run. After
debugging we determined that the varying results are due to race conditions in the
gemm procedure when we use a small grid. The race conditions were detected using
cuda-memcheck with its racecheck tool when compiling for CUDA 9.
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3.5.4 Explicit Zeroes in CudaMatrix

When we run the autoDiff test from the CUDA backend test suite, it fails
because a matrix has the wrong nnz value. We get the following error message:
"Wrong number of nnz: 41072 should be 11392", so the number of nonzeroes is
approximately 3.6 times too high. This is caused by a call to the ternary if operator
in a previous step5. In Section 4.12 we will have a closer look at the ternary if operator
and how these explicit zeroes end up in a CudaMatrix’s values.

3.5.5 Slow csrgeam in CUDA 9

The sparse matrix addition provided by cuSPARSE is 8 times slower in CUDA 9 than
in CUDA 8. The kernels get launched with CUDA grids that are 8 times larger. We
made a forum post in the Nvidia Developer Forums where Nvidia confirms that it is
most likely a bug 6. This is one of the reasons for not using CUDA 9 in our work on
Equelle. We have submitted a bug ticket.

3.6 Summary

We have now analyzed the Equelle program which solves the heat equation implicitly
with a focus on the timestepping and residual computation part of the program. We
have used simple reasoning about the program as measuring its performance with
profilers and nvidia-smi to look for ways of improving the Equelle compiler and
CUDA backend. Our analyses have been done using a variation of grids, but we
mainly used a grid of 2,500,000 cells and 7,560,000 faces for the benchmarks.

In our analysis we have established where the program spends most of its time.
The Equelle Extend operator is a major bottleneck, and it takes 43.4 percent of the
total time when we use a grid of 2.5 megacells. It is the extension of the matrices
that takes 90 percent of the time, and is performed by doing a matrix multiplication
with a transposed matrix, using cuSPARSE gemm. This multiplication procedure calls
cudaFree implicitly, which makes the program stall until it is finished, which prohibits
asynchronous execution. The transposition process itself, which is done as an initial
step for both the procedure that finds the sparsity pattern of the matrix, as well
as for the multiplication kernel, makes several thousand calls to cudaMemcpyAsync
and kernels used for sorting indices. Using matrix multiplication is not necessary to
perform the extension, as all that needs to be done to extend the matrix, is to change
its row pointer array. Its nnz variable as well as the column index array and the value
array will stay the same. In Chapter 4 we will optimize the operator and observe the
results.

We have also seen that cudaFree stalls the program for approximately 60 percent
of the time and is called 12,781 times when the simulation runs for 20 timesteps. Half
of the stall time is related to cuSPARSE routines, and the rest comes from temporary
data objects. As we have mentioned, not only is cudaFree an expensive call, but it
is also a blocking call which stalls our program. This clearly makes it a performance

5The test suite uses regression testing, so each test is dependent on the results of preceding tests.
6https://devtalk.nvidia.com/default/topic/1038554/gpu-accelerated-libraries/slow-

cusparsedcsrgeam-in-cuda-9-2/
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issue, and we should look into ways of reducing the number of calls. Both by reducing
the use of temporary objects in the backend as well as procedures that use it implicitly.
In Chapter 4 we will attempt to do this by using move semantics, which is a concept in
modern C++ designed specifically to reduce the cost of temporary objects.

Next in the list of observations, is the large fluctuation in memory usage. We have
seen in our charts that certain operations cause spikes in the memory utilization on the
device. For instance, for the CollOfScalar multiplication operator we could observe
that 80 percent of the time were spent in the CudaMatrix destructor. This should be
looked into, as solving it will allow us to run larger simulations, since we will be
able to use larger grids without causing the memory to overflow. At this point the
largest grid we can run for the implicit heat equation on the GTX 10607, is of size
365× 100× 100, containing 3,650,000 cells and 11,033,000 faces.

Also related to memory usage, are data on the device that gets allocated and used
once. We can optimize our program by freeing this memory once it has been used.
In the implicit heat equation program, examples of two such variables are first and
second, which contain the first cell and second cell of the interior faces. Performing
the optimization is possibly something that needs to be done at compile-time.

The twoNorm operator computes the sum of squares of the values in a
CollOfScalar. We have seen that the operator spends close to 90 percent of its time
performing matrix multiplication, which is not necessary, since the matrix values are
not needed for this calculation. We will optimize the twoNorm opera

In addition to finding bottlenecks, we have established that the simulation scales as
expected when we increase either the grid size or the timesteps. When we increase the
number of timesteps, each one adds the same amount of time. We also saw that when
we add more work (larger grid) the typical case for parallel computers occurs: If the
workload is too small, then the efficiency is low (not enough work for the GPU). If we
add additional work, we see that the performance increases sharply in the beginning,
and then we receive less of an increase. This observation can be seen in Figure
3.11. Equelle’s peak performance for the implicit heat equation is approximately 1.18
megacells per second.

We have also highlighted other issues by running the two-phase flow simulation,
as well as the test suite of the CUDA backend. First we found that the GPU solvers and
preconditioners do not give results that are comparable to those of the CPU backend.
We have also found that the gemm routine from the cuSPARSE library gives different
results from run to run when used on the two-phase flow simulation. Running cuda-
memcheck’s racecheck tool showed that race conditions occur when Equelle grids are
small. In addition we found that the csrgeam routine is 8 times slower in CUDA 9 than
it is in CUDA 8. When we ran the autoDiff test suite, we also found that the ternary
if operator causes explicit zeroes to get stored in the values of CudaMatrix objects.

7Note that up to 1 GB of memory is taken by graphical programs, making the effective memory size
5 GB.

57



Operator ~CudaArray ~CudaMatrix cudaFree
Subset On Subset 3 10 33
Divergence(CollOfScalarAD,InteriorFaces) 3 9 30
Ternary if 2 9 29
CollOfScalar / CollOfScalarAD 4 8 28
CollOfScalarAD / CollOfScalarAD 3 7 24
CollOfScalarAD / CollOfScalar 3 7 24
CollOfScalarAD * CollOfScalar 2 6 20
CollOfScalarAD * CollOfScalarAD 1 5 16
Extend(InteriorCells, AllCells) 1 5 16
CollOfScalar * CollOfScalarAD 1 5 16
Gradient(CollOfScalarAD) 1 4 13
Sqrt(CollOfScalarAD) 3 3 12
Scalar / CollOfScalarAD 3 3 12
Divergence(CollOfScalarAD,AllFaces) 1 3 10
CudaMatrix * CudaMatrix 0 3 9
On(CollOfScalarAD,AllCells,
InteriorCells)

2 2 8

CollOfScalarAD + CollOfScalarAD 2 2 8
CollOfScalarAD * Scalar 2 2 8
CollOfScalarAD1 - CollOfScalarAD1 2 2 8
CollOfScalarAD - CollOfScalar 2 2 8
CollOfScalar - CollOfScalarAD 2 2 8
-CollOfScalarAD 2 2 8
CollOfScalarAD + CollOfScalar 1 1 4
Scalar * CollOfScalarAD 1 1 4
CollOfScalarAD1 - CollOfScalarAD2 1 1 4
CollOfScalarAD / Scalar 1 1 4
Diagonal CudaMatrix * CudaMatrix 0 1 3

Table 3.6: The table gives an overview of the number of times the destructors of
CudaArray and CudaMatrix are called for a selection of Equelle operators. This
is before we have implemented any optimizations. CollOfScalarAD denotes a
CollOfScalar with a derivative. The CudaFree values only account for the calls being
made from the destructors. ~CudaMatrix calls cudaFree 3 times and ~CudaArray calls
it 1 time. The measurements have been done using output to console.
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Chapter 4

Implementation and Results

In this chapter, we describe implemented changes that address some of the issues we
found in Chapter 3. We will follow the iterative development approach recommended
by Nvidia (Section 2.7.1). For each implementation we perform an analysis,
implement the changes we see fit and then go back to assessing our application to
find another bottleneck to optimize.

We will perform six implementations. We first optimize the Extend operator which
we have found to be the bottleneck in the implicit heat equation program. We then
move on to implementing move semantics, which will reduce the cost of temporary
objects. Thirdly we optimize the CollOfScalar multiplication operator, which is not
memory efficient. In our fourth optimization, we eliminate matrix multiplication from
the two-norm computation, since it is not needed. Our fifth implementation is an AST
rewriter and is the first step towards making Equelle into an optimizing compiler.
In our sixth and final implementation, we remove the explicit zeroes in CudaMatrix
objects that are caused by the ternary if operator. Finally we summarize our results
and perform a conclusive measurement.

4.1 Optimizing the Extend Operator

In our performance analysis we found that the Extend operator is the dominating
bottleneck when solving the heat equation implicitly, taking more than 40 percent of
the total simulation time. Specifically, the long execution time is caused by the use
of transposed matrices in sparse matrix multiplication (csrgemm) when extending the
derivative.

4.1.1 Design and Implementation

Performing the extension with a multiplication is completely unnecessary, as the only
change in the new matrix is the number of rows. This means that the only operation
we need to do is to allocate a new row pointer array, place the row pointer values
from the original row pointer into the newly allocated row pointer and finally fill in
the gaps.
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The implementation consists of three steps and can easily be implemented using the
Thrust library and is as follows:

1. Fill the new row pointer array with zeroes.

2. Insert the row pointer values from the original domain into their corresponding
places in the extended domain. This is implemented with the scatter algorithm.

3. Use the inclusive scan algorithm to change the remaining zeroes to the correct
non-zero values.

The code in Listing 14 implements the steps above.
A scan algorithm takes a binary operator which it applied to the input array from

left to right. With the inclusive variant, earlier results are carried over and influences
the results in subsequent evaluations. When using the maximum operator, the array
values are set to the highest value that has previously been encountered. Figure 4.1b
shows the result after evaluating the values {0 1 0 0 2 0 3 4 0}.

1 // 1.1) Set up the output matrix. Also allocates row pointer array.
2 CudaMatrix der(full_size, in_data.der_.cols(), in_data.der_.nnz());
3

4 // Copy csrColInd, csrVal and fill csrRowPtr with zeroes
5 thrust::copy(thrust::device, in_data.der_.csrColInd(),
6 in_data.der_.csrColInd()+in_data.der_.nnz(), der.csrColInd());
7 thrust::copy(thrust::device, in_data.der_.csrVal(),
8 in_data.der_.csrVal()+in_data.der_.nnz(), der.csrVal());
9 // 1.2) Fill row pointer array with zeroes.

10 thrust::fill(thrust::device,der.csrRowPtr(),der.csrRowPtr()+der.rows()+1, 0.0);
11

12 // 2) Map values in set being extended to the new domain.
13 thrust::scatter(thrust::device, in_data.der_.csrRowPtr()+1,
14 in_data.der_.csrRowPtr()+in_data.der_.rows()+1,
15 from_set.begin(), der.csrRowPtr()+1);
16

17 // 3) Fill in the gaps of the rowPtr.
18 // {0, 0, 2, 0, 0, 4, 0, 5} becomes
19 // {0, 0, 2, 2, 2, 4, 4, 5}
20 thrust::maximum<int> binary_op;
21 thrust::inclusive_scan(thrust::device, der.csrRowPtr(),
22 der.csrRowPtr()+der.rows()+1, der.csrRowPtr(), binary_op);

Listing 14: C++ code implementing the optimized extend operator for sparse matrices.
The extension is performed in three steps: (1) allocate new row pointer array of zeroes,
(2) insert old row pointer into the new row pointer, (3) fill the remaining gaps.

4.1.2 Performance Results

Figure 4.4 illustrates the improvement. The optimized version of the extend operator
shows a dramatic improvement over the old version. When running the heat equation
with the same grid as before, Extend takes between 1.4 and 1.5 seconds, rather than
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0 1 2 3 4

0 1 0 0 2 0 3 4 0

(a)

0 1 0 0 2 0 3 4 0

0 1 1 1 2 2 3 4 4

(b)

Figure 4.1: Extension of the row pointer in two steps. Figure (a) illustrates the
mapping of the subset into the extended domain. Figure (b) illustrates the inclusive
scan algorithm that fills in the missing values.

18 seconds, speeding it up by a factor of between 12x and 12.85x! The total runtime of
the simulation is reduced from 43 seconds to 27 seconds. Previously we found that the
Extend operator called the CudaArray destructor once and the CudaMatrix destructor
5 times. After our optimization, we see that the calls to the CudaMatrix destructor is
reduced from 5 to 1.

Listing 15 shows the output from nvprof’s summary mode after we have
performed the optimization. The number of calls to cudaFree has been reduced by
2,800, from 12,781 to 9,981 and we see that the time has gone from 24.37 seconds
to 14.55 seconds. The number of calls to cudaMemcpyAsync has gone from 7,340 to
1,240, and its execution time from 11.45 seconds to 4.258 seconds. Notice also that the
number of calls to cudaLaunch have been reduced from 20,548 to 4,448.

In our initial profiling the transposition kernels (CsrToCsc etc.) were also listed,
taking over 20% of the execution on the GPU. As we can see, they are no longer
present. We also notice that the number of device-to-device (DtoD) copies have been
reduced from 7,929 to 6,629. Its total time, however, is not that different has not
changed much. It has gone from 3.43 to 3.12 seconds.

In Figure 4.2 we see the new time distribution in percent. The Extend operator now
takes 5.3% of the total execution time, down from between opproximately 40%. Our
new bottleneck is the gradient operator (28%), followed by the divergence (22.8%),
CollOfScalar multiplication (10.7%), the CollOfScalar destructor (9.8%) and the
two-norm (9.6%, used in the Newton loop). Figure 4.4 shows the before and after
comparison for the program as a whole and for the extend operator isolated.

Figure 4.3 shows an updated memory activity chart. The Extend operator has
been reduced to short spikes in increased memory usage instead of being large flat
structures, like the gradient and the divergence. These spikes represent the temporary
objects that are returned at the end of the function. In the next section we will use
move semantics from modern C++ to reduce the overhead of such objects.

Figure 4.5 shows a memory chart for the extension of the interior fluxes and the
boundary fluxes, before and after the optimization. The red line is for the optimized
version, and the blue line is for the unoptimized version. Notice that the Extend
operator now takes much less time to execute, but it still causes a large increase in
memory usage. In the next section we will implement move semantics, which reduces
the cost of temporary objects by reusing their data members.
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Time(%) Time Calls Name
26.28% 3.26302s 160 void csrgemm_kernel2<double, ...>
25.11% 3.11821s 6629 [CUDA memcpy DtoD]
23.90% 2.96730s 160 void csrgemmNnz_kernel2<...>
6.03% 748.17ms 120 void csrgeam_windowBased_core<double, ...>
4.27% 530.19ms 200 wrapCudaMatrix::diagMult_kernel(double*, ...)
3.32% 412.14ms 120 void csrgeam_windowBased_core<float, ...>
1.29% 160.25ms 320 wrapCudaMatrix::initDiagonalMatrix(double*, ...)
1.23% 152.94ms 17 [CUDA memcpy HtoD]

Time(%) Time Calls Avg Min Max Name
64.64% 14.5528s 9981 1.4551ms 1.0540us 304.30ms cudaFree
18.91% 4.25821s 1240 3.4340ms 5.6590us 52.981ms cudaMemcpyAsync
12.49% 2.81227s 9980 281.79us 2.3240us 148.54ms cudaMalloc
1.48% 332.85ms 220 1.5130ms 127.99us 5.6105ms cudaEventSynchronize
1.21% 271.53ms 5909 45.951us 6.3960us 35.511ms cudaMemcpy
0.84% 189.24ms 480 394.26us 3.1990us 3.9312ms cudaDeviceSynchronize
0.25% 56.603ms 4448 12.725us 4.0910us 2.6597ms cudaLaunch

Listing 15: Output from nvprof after we have optimized the extend operator. We
see that matrix multiplication is called 120 times less, which brings the total number
of calls to csrgemm and all its associated procedures down to 160. Notice also the
substantial difference in calls to cudaLaunch, which is reduced from 20,548 to 4,448.
That’s a difference of 16,100, or a reduction of almost 80%!

Figure 4.2: Time distribution for the implicit heat equation after optimizing the extend
operator. In the initial profiling the extend operator took over 43 percent of the time,
but now it takes 5.3 percent. It is sped up by a factor of 12x to 12.85x. We see now that
the gradient and divergence operators are the main bottlenecks.
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Figure 4.3: Memory usage for one iteration, after we have optimized the extend
operator. The chart shows the same iteration as Figure 3.15. Notice that the extend
operators have been reduced to spikes in memory usage over a short timespan, rather
than large flat structures like the gradient and divergence. Also notice that the total
time is down to approximately 0.425 seconds, from 0.76 seconds.

Figure 4.4: The chart shows the execution time in seconds before and after we
optimized the extend operator. The left bars show before and after for the total time
and the right bars show before and after for the extend operator itself.
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Figure 4.5: The chart shows the memory activity and run time of the two extend
operator calls when adding the fluxes together, for both before (blue) and after (red)
the optimization of the extend operator. The extend operator takes considerably less
time, but we see that it still uses a lot of memory.

4.2 Move Semantics

As we now know, there are a large number of temporary objects that affect
the performance of Equelle. They cause runtime overhead by calling cudaFree,
cudaMalloc, and performing memory transfers on the device. In addition to being
expensive calls, cudaFree and cudaMalloc are blocking calls that inhibit concurrency.
We have also seen in previous profiling that we get spikes in memory usage which
can cause the memory to flow over, preventing us from scaling up our simulations.
Figure 4.6 shows a memory activity chart for a single iteration, highlighting some of
the spikes created by temporary objects. In this section we implement move semantics
in the CUDA backend to reduce the impact of temporary objects.

4.2.1 Design and Implementation

Move semantics is a concept in modern C++ that came with the C++11 standard. It
reduces the overhead of temporary objects by moving rather than copying their values
into other objects. We can identify these temporary objects by using rvalue references in
our parameters in C++, which are denoted using double ampersands (&&), instead of
the single ampersands used in traditional by-reference parameters.
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Figure 4.6: The chart highlights some of the spikes in memory usage created by the
temporary objects returned by functions/operators. They can be addressed using
move semantics in C++. The chart shows the same iteration as in previous charts.

Constructors and Assignment Operators

It is common practice to implement both a move constructor and a move assignment
operator for a class with data members which could be reused at some point. A move
constructor takes an rvalue reference to an object as its argument. It sets the member
variables of the object it constructs to be empty, and then swaps them with those of the
input object, effectively leaving the temporary object with no data (nothing to clean
up!). The move assignment operator swaps the content of the temporary object with
the content of the assignee. Since the assignee might already have data in it, the result
will often be that the temporary object receives data that will get destroyed when its
destructor is called.

Consider the case of a = (b + c) with the assumption that we have already
implemented move assignment. Since the expression (b + c) produces a temporary
object, the move assignment operator will be called, swapping the contents of the
temporary with the contents of a. If a is empty, then there will be no cleanup since the
object will become empty. If a contains any data, however, the temporary object from
(b + c) will receive the contents of a, which will be destroyed when it leaves scope.
This is still better than if we did not have the move assignment implemented. If the
copy assignment was called instead, then the contents of a must first be destroyed,
then the data of the temporary object is copied into a, and finally the temporary is
destroyed. To summarize:
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1 // Move constructor
2 CudaArray::CudaArray(CudaArray&& coll) noexcept
3 : size_(coll.size_),
4 dev_values_(0)
5 {
6 std::swap(dev_values_, coll.dev_values_);
7 }
8

9 // Move assignment operator
10 CudaArray& CudaArray::operator=(CudaArray&& other) noexcept
11 {
12 size_ = other.size_;
13 std::swap(dev_values_, other.dev_values_);
14 return *this;
15 }

Listing 16: Move semantics for CudaArray. They both set the size variable of the new
CudaArray and swaps its data pointer with the input object’s. In the move constructor,
the data pointer of the input object is always set to 0, leaving it empty. In the move
assignment operator the left-hand-side object might have data, so the input object
other is potentially left with data that will be cleaned up.

• Move assignment cost:

– Empty assignee: 0 copies, 0 cleanup

– Non-empty assignee: 0 copies, 1 cleanup

• Copy assignment cost:

– Empty assignee: 1 copy, 1 cleanup

– Non-empty assignee: 1 copies, 2 cleanup

In the CUDA backend for Equelle we want to implement move semantics for our
main data classes: CollOfScalar, CudaMatrix, CudaArray and CollOfVector. We start
with CudaArray since it is the simplest of the three, and its move members are needed
to implement move semantics for both CollOfScalar and CollOfVector.

Listing 16 shows how the move constructor and move assignment operator for
CudaArray is implemented. Notice that we use the double ampersand notation (&&)
in the parameters. In the initializer list we first copy the size variable and set the
data variable dev_values_ to 0, and then call the std::swap() function to swap the
pointers of the input object and the constructed object. As we have described, this will
leave coll with a null pointer and nothing to clean up.

The move assignment operator also starts out by setting the size variable, and
then it switches data pointers, leaving the temporary with the previous contents of
the assignee. This will cost a maximum of 1 cudaFree, but 0 if the temporary is left
empty.

In the implementation for CudaMatrix, we implement our own swap method
(Listing 17). It will perform the move operation by swapping the three data pointers
csrVal_, csrRowPtr_, csrColInd_ and all the other variables. We use the swap
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method to implement the standard move constructor and move assignment operator
for CudaMatrix in the same manner as we did for CudaArray, as can be seen in
Listing 18. The move constructor will not cause any memory management. The move
assignment operator will cost 3 cudaFrees if the temporary object is assigned any data
but 0 if it is left empty.

1 // Swaps the variables of the caller and "other"
2 void CudaMatrix::swap(CudaMatrix& other) noexcept
3 {
4 std::swap(nnz_, other.nnz_);
5 std::swap(csrVal_, other.csrVal_);
6 std::swap(csrColInd_, other.csrColInd_);
7 std::swap(rows_, other.rows_);
8 std::swap(csrRowPtr_, other.csrRowPtr_);
9 std::swap(cols_, other.cols_);

10 operation_ = other.operation_;
11 diagonal_ = other.diagonal_;
12 }

Listing 17: Swap method for CudaMatrix, used for moving.

1 // Move constructor
2 CudaMatrix::CudaMatrix(CudaMatrix&& mat) noexcept
3 : rows_(0),
4 cols_(0),
5 nnz_(0),
6 csrVal_(0),
7 csrRowPtr_(0),
8 csrColInd_(0),
9 sparseStatus_(CUSPARSE_STATUS_SUCCESS),

10 cudaStatus_(cudaSuccess),
11 description_(0),
12 operation_(mat.operation_),
13 diagonal_(mat.diagonal_)
14 {
15 swap(mat);
16 createGeneralDescription_("CudaMatrix move constructor");
17 }
18

19 // Move assignment operator:
20 CudaMatrix& CudaMatrix::operator=(CudaMatrix&& other) noexcept
21 {
22 swap(other);
23 return *this;
24 }

Listing 18: Move semantics for CudaMatrix.
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In Listing 19 we have the implementations for three move constructors and
the move assignment operator for CollOfScalar. Since the data members of
CollOfScalar are not pointers, but rather CudaArray and CudaMatrix, we take a
different approach to implementing move semantics. We must force the use of their
move constructors, rather than using the swap functions. This is done by using the
C++ Standard Library function std::move(), which tells the compiler to treated an
object as an rvalue (basically a temporary object). In the code, we use the function in
the initializer list of the constructors to force the move assignment operators of the
member in the move assignment operator.

As before, for the two move constructors that only have rvalue references there is
no memory management occuring. For the constructors where either of the arguments
are lvalue references, it is more expensive:

• CollOfScalar(const CudaArray& val, CudaMatrix&& der) copies a CudaArray,
causing one cudaMalloc and one cudaMemcpy.

• CollOfScalar(CudaArray&& val, const CudaMatrix& der) copies a CudaMatrix,
causing three cudaMallocs and three cudaMemcpy.

The best case for operator=(CollOfScalar&& other) is when the assignee is an
empty CollOfScalar and all that needs to be done is a move operation. In the worst
case, however, the temporary gets assigned data to both its variables and the cost is 4
cudaFrees.

Again, to compare to the copy alternatives: The constructors that copy both
members need to allocate memory for each of the objects and copy them. This
amounts to 4 cudaMalloc and 4 cudaMemcpy. The copy assignment operator will need
to destroy the contents of the assignee, then allocate them again, then copy the variable
of the temporary and finally destroy the temporary, ending up at a cost of 8 cudaFree,
4 cudaMalloc and 4 cudaMemcpy.

In Listing 20 we see the implementations of move semantics for CollOfVector.
Only a regular move constructor is implemented, in a standard way: std::move is
used to force the move semantics of its data member which is a CudaArray.

We also add std::move() to certain parts of the backend code in order for it to
use the newly implemented move semantics. Listing 21 shows the change we must
do in the addition operator for CollOfScalar. We change CollOfScalar(val, der)
to CollOfScalar(std::move(val), std::move(der)) and CollOfScalar(val) to
CollOfScalar(std::move(val)).

Now that we have implemented move semantics for the constructors and
assignment operators of Equelle’s main data classes, we can move on to implementing
it for other parts of the code, such as arithmetic operators.
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1 // Move constructor
2 CollOfScalar::CollOfScalar(CollOfScalar&& coll) noexcept
3 : val_(std::move(coll.val_)),
4 der_(std::move(coll.der_)),
5 autodiff_(coll.autodiff_)
6 {
7 }
8

9 // Move constructor from CudaArray and CudaMatrix.
10 // Both val and der are moved.
11 CollOfScalar::CollOfScalar(CudaArray&& val, CudaMatrix&& der) noexcept
12 : val_(std::move(val)),
13 der_(std::move(der)),
14 autodiff_(true)
15 {
16 }
17

18 // Move constructor from CudaArray and CudaMatrix
19 // Only der is moved. val is copied.
20 CollOfScalar::CollOfScalar(const CudaArray& val, CudaMatrix&& der) noexcept
21 : val_(val),
22 der_(std::move(der)),
23 autodiff_(true)
24 {
25 }
26

27 // Move constructor from CudaArray and CudaMatrix
28 // Only der is moved. val is copied.
29 CollOfScalar::CollOfScalar(CudaArray&& val, const CudaMatrix& der) noexcept
30 : val_(std::move(val)),
31 der_(der),
32 autodiff_(true)
33 {
34 }
35

36 // Assignment move operator
37 CollOfScalar& CollOfScalar::operator=(CollOfScalar&& other) noexcept
38 {
39 val_ = std::move(other.val_);
40 autodiff_ = other.autodiff_;
41 if ( autodiff_ || other.autodiff_) {
42 der_ = std::move(other.der_);
43 }
44 return *this;
45 }

Listing 19: Move semantics for CollOfScalar.

Operator Overloading

In order to implement move semantics for a function or an overloaded operator, at
least on of the inputs must be of the same type as the output. Using this knowledge
should let us easily identify targets for move semantics.
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1 // Move constructor
2 CollOfVector::CollOfVector(CollOfVector&& coll)
3 : elements_(std::move(coll.elements_)),
4 dim_(coll.dim_),
5 vector_setup_(coll.numVectors())
6 {
7 }

Listing 20: Move semantics for CollOfVector.

1 CollOfScalar equelleCUDA::operator+ (const CollOfScalar& lhs,
2 const CollOfScalar& rhs)
3 {
4 //CudaArray val = lhs.val_ + rhs.val_;
5 CudaArray val = lhs.val_ + rhs.val_;
6 if (lhs.autodiff_ || rhs.autodiff_) {
7 CudaMatrix der = lhs.der_ + rhs.der_;
8 //return CollOfScalar(val, der);
9 return CollOfScalar(std::move(val), std::move(der));

10 }
11 //return CollOfScalar(val);
12 return CollOfScalar(std::move(val));
13 }

Listing 21: std::move insertion in operator+ return values.

Take for instance the itrans expression:

itrans = k * |ifaces| / |Centroid(first) - Centroid(second)|

Three of the operations in the expression have inputs and outputs of the same type.
For the itrans computation, this applies to:

• Scalar * CollOfScalar

• CollOfVector - CollOfVector

• CollOfScalar / CollOfScalar

The first is k * |ifaces|, which multiplies a Scalar by a CollOfScalar and
returns a CollOfScalar. The temporary object from |ifaces| can be reused. The
second operation is the division operator, which takes two CollOfScalars as its
arguments. Since both sides in this case are temporaries, we can reuse either of
them. Thirdly, the minus operator for CollOfVector has the same type in its input
and output.

When implementing move arithmetic operators, the typical case is to perform the
operation in-place on the temporary we want to reuse, and return it using the move
constructor ( e.g. return CudaArray(std:move());). Move division is implemented
for CudaArray in Listing 22.
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1 CudaArray equelleCUDA::operator/(CudaArray&& lhs, CudaArray&& rhs) {
2 kernelSetup s = lhs.setup();
3 division_kernel<<<s.grid, s.block>>>(lhs.data(), rhs.data(), lhs.size());
4 return CudaArray(std::move(lhs));
5 }

Listing 22: Move division operator for CudaArray. It performs division in-place on
lhs before its data is moved into the returned object.

For the residual computation, we have 3 operators that are compatible with move
semantics:

• CollOfScalar * CollOfScalar

• Scalar * CollOfScalar

• Scalar / CollOfScalar

We implement these operators in the backend and will see the results in the next
section.

4.2.2 Performance Results

We now measure the performance improvement after implementing move semantics,
starting with only the move constructors and move assignment operators implemen-
ted.

In Figure 4.7 we see the memory usage for one iteration, after move semantics for
the constructors and the assignment operators are implemented. Notice that all the
spikes marked in Figure 4.6 are now gone. We also see that the new peak in memory
usage is lower, now at 3,013 MiB, down from 3,285 before we implemented move
semantics. Calls to cudaFree have been reduced by 30 percent (2,990 less), down to
6,991 which now accounts for 10.5 seconds. This is a reduction of 4 seconds, or 27
percent. We can also observe that the total execution time of the simulation has gone
down from 27 seconds to 21.4, which is an improvement of approximately 20 percent.

Figure 4.8 shows the memory usage after we have added move semantics for the
arithmetic operators. Inspection of the data shows that the memory usage in general
is 20 MiB lower, which is the size of a CollOfScalar on the AllCells domain. The
first multiplication operator’s memory usage has gone down by 280 MiB and both
the second multiplication’s and the addition’s memory usage has gone down by 262
MiB. cudaFree is now called 6,423 times, which accounts for 9.84 seconds. The current
execution time is 20.7 seconds. Our implementation has improved both the time and
the memory usage of the backend. In the next section we will look further into the
multiplication operator to make one more improvement.
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Figure 4.7: Memory usage after implementing move semantics for constructors and
assignment operators, for one iteration. Notice that all the small spikes highlighted in
Figure 4.6 are gone. The new peak memory usage is 3,013 MiB, down from 3,285.

Figure 4.8: Memory usage after implementing move semantics for arithmetic
operators. We see that there are significant improvements for the multiplication and
addition operators, which are annotated.
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4.3 Optimizing CollOfScalar Multiplication

In this section we will optimize the CollOfScalar multiplication by reducing its
memory usage footprint. The first multiplication creates a spike of 380 MiB and the
second a spike of 262 MiB.

The first of the two occurs when computing the interior flux, when the negative
transmissibility is multiplied by the gradient of u:

-itrans * Gradient(u)

And the second one occurs in the residual computation in the following operation:

(dt / (cv * vol)) * Divergence(fluxes)

The backend code can be seen in Listing 23. On the lines 4 to 6 we see where the
memory usage goes up. We see that the values of the two CollOfScalar are copied
into two CudaMatrix objects before being used in diagonal multiplications with the
derivatives of the collections, and adding the results together. Each of the diagonal
matrices will have a size which is equal to the number of elements it receives from
the value array, in addition to having the row pointers and the column index arrays.
Since they are diagonal matrices, they do not need to store the row pointer and column
indices, since they will both contain sequential numbers up to its size.

1 CollOfScalar equelleCUDA::operator*(const CollOfScalar& lhs, const CollOfScalar& rhs)
2 {
3 CudaArray val = lhs.val_ * rhs.val_;
4 if ( lhs.autodiff_ || rhs.autodiff_ ) {
5 CudaMatrix diag_u(lhs.val_);
6 CudaMatrix diag_v(rhs.val_);
7 CudaMatrix der = diag_v*lhs.der_ + diag_u*rhs.der_;
8 return CollOfScalar(std::move(val), std::move(der));
9 }

10 return CollOfScalar(std::move(val));
11 }

Listing 23: Unoptimized CollOfScalar multiplication code from the backend.

4.3.1 Design and Implementation

Diagonal multiplication in the CUDA backend is implemented using a member
function of CudaMatrix which takes a CudaMatrix as argument. When using it, the
caller needs to be a diagonal matrix. We choose a simple implementation where
we add a modified version, where the argument is a CudaArray representing a
diagonal matrix. By using the CudaArray directly instead of constructing a wrapper
CudaMatrix, we avoid generating and storing column indices and row pointers. For
collections that are on the InteriorFaces domain when we use our grid which
contains 7,440,000 faces, this equates to saving 56.76 MiB per matrix. This means that
we should see an improvement equal to double this number in addition to temporary
objects involved in the calculation.
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1 CudaMatrix CudaMatrix::diagonalMultiply(const CudaArray& lhs_diag_mat) const
2 {
3 // Check if this is empty
4 // Check if this is diagonal
5 CudaMatrix out = *this;
6 kernelSetup s(this->rows_);
7 wrapCudaMatrix::diagMult_kernel<<<s.grid, s.block>>>(out.csrVal_,
8 out.csrRowPtr_,
9 lhs_diag_mat.data(),

10 this->rows_);
11 return CudaMatrix(std::move(out));
12 }

Listing 24: Diagonal matrix multiply function without CudaMatrix wrapper. This
is used in the improved CollOfScalar multiplication in Section 4.3. The parameter
CudaArray represents a diagonal matrix, which is multiplied from the left.

The implementation can be seen in Listing 24. As we can see, the caller matrix
is copied, and then diagMult_kernel which performs the diagonal multiplication is
called. In Listing 25 we see the CollOfScalar multiplication operator which uses the
new function.

1 CollOfScalar equelleCUDA::operator*(const CollOfScalar& lhs, const CollOfScalar& rhs)
2 {
3 CudaArray val = lhs.val_ * rhs.val_;
4 if ( lhs.autodiff_ || rhs.autodiff_ ) {
5 CudaMatrix der = lhs.der_.diagonalMultiply(rhs.val_)
6 + rhs.der_.diagonalMultiply(lhs.val_);
7 return CollOfScalar(std::move(val), std::move(der));
8 }
9 return CollOfScalar(std::move(val));

10 }

Listing 25: Improved CollOfScalar multiplication code from the backend. The
diagonalMultiply() function treats a CudaArray as a diagonal matrix.

4.3.2 Performance Results

The results in memory usage after we have improved the CollOfScalar multiplication
can be seen in Figure 4.9. The multiplications that are annotated have both improved,
with the first one now using 236 MiB less memory and the second using 60 MiB less
memory. We also see that the two-norm operator now has an extra spike in memory
usage, which is most likely a temporary object. The execution time is now 21.514
seconds and the number of calls to cudaFree is 5583 (57.24%, 10.1 seconds). The
number of cudaMemcpy calls is 2311. cudaLaunch is called 4128 times. In the next
section we will improve the two-norm operator, which is bottlenecked by matrix
multiplication, which it does not need to perform.
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Figure 4.9: Memory usage after optimizing the CollOfScalar multiplication. The
first multiplication has been significantly improved, using 236 MiB less. The second
multiplication uses 60 MiB less memory. Thirdly we see that the norm operator now
produces a temporary object, indicated by a spike like the ones we have seen in
previous charts.

4.4 Optimizing TwoNorm

The two-norm operator is a scalar value which is calculated as the sum of all the values
squared. In iterative methods such as the Newton’s method which Equelle uses, it is
used to determine whether a residual of the current solution is small enough. In this
section we will have a look at how to optimize it, as it is far more expensive than it
needs to be. When calculating the norm of a CollOfScalar, it is multiplied by itself,
both its derivative and its values. Before the optimization, the execution time for the
twoNorm function is 2.35 seconds, accounting for 10.26% of the total execution time.

4.4.1 Design and Implementation

We use a straight-forward approach where we implement a member function
which returns a CollOfScalar, containing the squares of the caller’s values. The
implementation of the square function can be seen in Listing 26, along with its use
in the twoNorm function.

4.4.2 Performance Results

The results we get after improving the twoNorm calculation can be seen in Figure 4.10.
The execution time of the program has been reduced from 21.51 to 19.47 seconds and
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twoNorm has been reduced from 2.35 seconds to approximately 0.2 seconds.

1 CollOfScalar CollOfScalar::squareVals() const
2 {
3 return CollOfScalar(std::move(val_*val_));
4 }
5

6 Scalar EquelleRuntimeCUDA::twoNorm(const CollOfScalar& vals) const
7 {
8 return std::sqrt( sumReduce(vals.squareVals()) );
9 }

Listing 26: C++ code which implements the square function we have added and the
twoNorm function where it is used.

Figure 4.10: Memory usage after improving the two-norm calculation.
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Figure 4.11: Substitution of a+ b ∗ c and a ∗ b+ c in an AST sub-tree representing ((a+
b ∗ c) + a ∗ b) + c. The algorithm runs recursively through the AST in a pre-order fash-
ion and finds two instances of a+ b ∗ c. The result is MulAdd(a, b, MulAdd(b, c, a))+ c.

4.5 Abstract Syntax Tree Rewriting

A common compiler optimization technique is to rewrite the intermediate represent-
ation (IR) of a program. In this section we discuss an AST rewriter which we have
implemented in the Equelle compiler. The rewriter performs pattern matching on
sub-trees which are modified or replaced based on rules that are specified in its im-
plementation. In our example pattern match scheme, we fuse the multiplication and
addition operators to make a multiply-add operation. We expect no big perform-
ance improvement from this implementation at this point, as we have established that
memory operations limit the performance too much. The implementation will, how-
ever, be applicable in the future, and across backends, as it is applied before code
generation. We might say that it is a first step towards making the Equelle compiler
into an optimizing compiler.

4.5.1 Design and Implementation

The rewriting step happens after the semantic analysis1 has been performed, and
before the code generation. Figure 4.11 gives an example of what a rewriting of a
multiplication and an addition looks like.

4.5.2 Results

As previously mentioned, there will be no discussion about the performance results as
this section only demonstrates the AST rewriting itself. In the implicit heat equation
simulation, the rewriter finds one multiply-add in the residual computation, which
generates the following C++ code:

1Rewriting occurs after the program has been proven to be correct.
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1 // Pattern matching for multiply-add
2 if (current->op() == Add) {
3 // Dynamic cast to BinaryOpNode* works as a type check.
4 // If it isn't a BinaryOpNode* then the result is nullptr
5 auto* lhs = dynamic_cast<BinaryOpNode*>(current->getChild(0));
6 auto* rhs = dynamic_cast<BinaryOpNode*>(current->getChild(1));
7 // Accounts for a*b+c and a+b*c
8 BinaryOpNode* mulOpNode;
9 int addOpNodeIndex = 0;

10 if (lhs != nullptr && lhs->op() == Multiply) {
11 mulOpNode = lhs;
12 // child index of rhs
13 addOpNodeIndex = 1;
14 } else
15 if (rhs != nullptr && rhs->op() == Multiply) {
16 mulOpNode = rhs;
17 //child index of lhs
18 addOpNodeIndex = 0;
19 } else {
20 return;
21 }
22

23 auto replacementNode =
24 new MultiplyAddNode(dynamic_cast<ExpressionNode*>(mulOpNode->getChild(0)),
25 dynamic_cast<ExpressionNode*>(mulOpNode->getChild(1)),
26 dynamic_cast<ExpressionNode*>(current->getChild(addOpNodeIndex)));
27 replaceNode(childIndex, current, replacementNode);
28 deleteNode(mulOpNode);
29 }

Listing 27: Code from the AST rewriter that implements fusion of multiplication and
addition.

1 const CollOfScalar residual =
2 er.multiplyAdd((dt / (cv * vol)), er.divergence(fluxes), (u - u0));

Listing 28: Generated C++ code after operator fusion using the AST rewriter.

4.6 Explicit Zero Compression

The ternary if operator is a common feature in many modern programming languages
and is often called an inline if-statement. It takes three arguments: one condition
and two expressions. The two expression parameters are used to construct an output
value of the same type, and therefore needs to be compatible. In the case where the
expressions are two collections, they must contain the same basic value type, be of the
same dimensions and be on the same domain (if any). The syntax is as follows2:

(value > 0) ? iftrue : iffalse
In the example, value > 0 is the condition that generates the predicate. The result

2The parentheses can be omitted, but are added for readability.
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Figure 4.12: An example of the three steps involved in the ternary if operator,
demonstrating how zeroes get stored explicitly. The first two are multiplications by a
predicate stored in diagonal matrices. The last step adds the two results together to
yield the final derivative matrix.

is a Collection Of Bool of the same size as the value collection, with 1’s in the
positions where the condition is true, and 0’s where it is false. For insance, if value
contains {0,1,4,3,-3}, the predicate would be {0,1,1,1,0}. (value > 0) ? 2 :
3 is also valid and returns {3,2,2,2,3}.

When performing the ternary if on the values of collections, it simply evaluates the
predicate in an element-wise manner and picks values from the iftrue collection for
predicate values that are true (or a 1), and picks values from the iffalse collection
where the predicate is false (or a 0). Evaluating the predicate {0,1,0,1,0} with
{2,2,2,2,2} as iftrue and {3,3,3,3,3} as iffalse would yield {3,2,3,2,3}.

In the case of the derivatives, the operation is performed using three steps. In the
first step the predicate array is turned into a diagonal matrix and multiplied with the
iftrue collection’s derivatives.

In step 2, the values of the predicate are flipped so that 0’s become 1’s and 1’s
become 0’s. Using the flipped predicate, we perform the same operation as in the
previous step on the iffalse collection. The final step is to add the two matrices
together.

A problem with this approach is that zeroes are stored in the non-zero structure of
the sparse representation, resulting in excessive storage and computational overhead.
Consider the following example:

Let us say we have two collections containing 3 scalars each, and we have
generated the predicate {0,1,0}. The iftrue derivative matrix contains the CSR
values {1,3,5,7,9} and iffalse’s matrix contains {2,4,6,8}. The equations 4.1, 4.2,
and 4.3 show the three steps, demonstrating how the zeroes get stored.
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4.6.1 Design and Implementation

In order to avoid the storage of zeroes in our sparse matrices, we choose to remove
them in a consecutive step. The cuSPARSE library has a compression procedure
which is designed for this purpose. The CSR-to-CSR compression takes two steps.
First cusparseDnnz_compress is called to find the sparsity pattern of the resulting
matrix, including an array containing the number of nnz per row. The information
is used to allocate memory for the new matrix, and then cusparseDcsr2csr_compress
is called to perform the compression. The implementation is added as a function in
the CudaMatrix class and returns a compressed copy of the matrix when called. The
code is located in Listing 29. The line der = der.removeZeroes(); is added in the
wrapEquelleRuntimeCUDA::trinaryIfWrapper function.

4.6.2 Results

After implementing the zero compression function, we run the autoDiff test
again. The result is that the test program fails on an earlier test than before,
saying "Wrong number of nnz: 49267 should be 60632". Notice that before the
implementation, the CudaMatrix contained too many non-zeroes, but now it contains
fewer than the CPU matrix which it is compared to. Investigating further with console
output shows that the CudaMatrix now has the correct amount of non-zeroes, but
the matrix which is from the CPU backend contains explicit zeroes. This means that
both the CPU backend and the CUDA backend stores explicit zeroes for different
operations.

4.7 Summary of Results

In this chapter we have made improvements to the Equelle compiler and CUDA
backend, with a focus on the implicit heat equation simulation. We used a grid of
2.5 megacells and ran it for 20 timesteps.

First we optimized the Extend operator, which we had previously found to be the
bottleneck. The execution time of the operator was reduced from 18.77 seconds to
1.45 seconds. The total execution time of the simulation was reduced from 43.19 to 27
seconds.

Furthermore, we have implemented move semantics to address the cost of
temporary objects. After implementing move semantics for constructors, assignment
operators and arithmetic operators, we saw that the execution time was reduced from
27 seconds to less than 21 seconds.

Next, we optimized CollOfScalar multiplication, since its memory usage was not
very efficient. The reason for the large increase in memory usage when evaluating
these multiplications, was that CudaArrays were being wrapped into CudaMatrix
objects representing diagonal matrices, generating both row pointers and column
indices. After our optimization, we did not see a significant improvement in execution
time. However, the memory usage for the two multiplications went down by 236 MiB
and 60 MiB.

Our fourth optimization was an improvement of the twoNorm operator, which is
performed once for each Newton iteration. The two-norm performed an unnecessary
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1 CudaMatrix CudaMatrix::removeZeroes() const
2 {
3 if (isEmpty()){
4 return CudaMatrix();
5 }
6 CudaMatrix out;
7 out.rows_ = rows_;
8 out.cols_ = cols_;
9

10 double tol = std::numeric_limits<double>::epsilon();
11

12 int *nnzPerRow;
13 int *newNNZ;
14 cudaStatus_ = cudaMallocManaged( &nnzPerRow, sizeof(int) * rows_ );
15 checkError_("Failed to allocate memory for nnzPerRow in CudaMatrix::removeZeroes()");
16 cudaStatus_ = cudaMallocManaged( &newNNZ, sizeof(int));
17 checkError_("Failed to allocate memory for newNNZ in CudaMatrix::removeZeroes()");
18 memset( nnzPerRow, 0, sizeof(int) * rows_ );
19

20 // Get nnz information about the the compressed matrix
21 cusparseDnnz_compress(CUSPARSE, rows_, description_, csrVal_,
22 csrRowPtr_, nnzPerRow,
23 newNNZ, tol);
24 out.nnz_ = *newNNZ;
25

26 // Allocate memory for the compressed matrix
27 if (out.nnz_ > 0) {
28 cudaMalloc((void**)&out.csrRowPtr_, sizeof(int)*(rows_+1));
29 cudaMalloc((void**)&out.csrColInd_, sizeof(int)*out.nnz_);
30 cudaMalloc((void**)&out.csrVal_, sizeof(double)*out.nnz_);
31 } else {
32 cudaFree(nnzPerRow);
33 cudaFree(newNNZ);
34 return CudaMatrix();
35 }
36

37 // Compress the matrix
38 cusparseDcsr2csr_compress( CUSPARSE, rows_, cols_, description_, csrVal_,
39 csrColInd_, csrRowPtr_,
40 nnz_, nnzPerRow,
41 out.csrVal_, out.csrColInd_,
42 out.csrRowPtr_, tol);
43 cudaFree(nnzPerRow);
44 cudaFree(newNNZ);
45 return out;
46 }

Listing 29: Function for compressing a sparse matrix. It uses the cuSPARSE procedure
cusparseDcsr2csr_compress to remove zeroes in a CudaMatrix.

matrix multiplication. After our improvement we saw a decrease in both execution
time and memory usage. The total time was 19.47 seconds. The memory improvement
(before and after) can be seen in Figure 4.9 and Figure 4.10.
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The fifth implementation was an abstract syntax tree rewriter, meant for improving
or modifying the structure of Equelle programs. We demonstrated how to implement
operator fusion of multiplication and addition. We did not implement the fused
operator in the backend, as the intent was to give an example of how to implement a
rewriting scheme.

The last implementation was a function for removing explicit zeroes in sparse
matrices, which we had observed in our initial analysis. The implementation was
tested on the autoDiff test in the Equelle test suite, and showed that the compression
was successful. However, the test suite failed at another test, because the CPU matrix
contained explicit zeroes.

4.7.1 Final Profiling

As a conclusion to our analysis and optimization work, we now profile the implicit
heat equation program once more to measure the total impact of our implementations.
We compare our results to those of Chapter 3. A summary of the metrics can be seen
in Tables 4.1 and 4.2.

First we measure the number of cells that the backend can process. Before our
optimizations, we found that the backend processed 1.18 megacells per second for
a grid of 3.5 megacells, running for 20 timesteps. When we now run the same
benchmark it shows that the throughput is 3.77 megacells per second, which is a 3.19x
speedup.

Figure 4.13 shows the new distribution reported by the CPU trace. What we see
is that the gradient and divergence operators now are the main bottlenecks, and that
the extend operator which used to be the bottleneck only takes 3.4 percent of the total
execution time.

In order to push the system, we increase the grid to the largest it can handle. Before
our optimizations, it was 3.65 megacells. The new maximum is 4.8 megacells. The
performance when running for 100 timesteps is 3.7 megacells per second. Since this is
approximately the same performance as for the former grid, it suggests that it is the
peak performance.

The chart in Figure 4.14 shows the memory usage for one Newton iteration, before
and after our optimizations. The red line is after our optimizations and the blue line
is before. Notice that the iteration takes more than 7.5 milliseconds to complete before
the optimizations and it only takes slightly more than 2.5 milliseconds after. Also
notice the improvement in memory usage, where the peak has gone down by 534
MiB.

82



Figure 4.13: Time percentages reported by the CPU trace after optimizations. The
extend operator which used to be the bottleneck now only takes 3.4 percent of the
execution time. The gradient and divergence operators are clear bottlenecks.

Figure 4.14: Memory usage for one Newton iteration, before and after our optimiza-
tions.
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Metric Before After Improvement
Cell throughput (megacells) 1.18 3.77 3.19x
Newton iteration time 7.5ms 2.5ms 3x
Memory usage 3,285 MiB 2,751 MiB 534 MiB
Max grid size (megacells) 3.65 4.8 1.315x
Timestep time 1.9s 0.65s 2.9x

Table 4.1: The table shows an overview of various improvements from before and
after our optimizations. Cell throughput is measured using a grid of 3.5 megacells for
20 timesteps. The other entries are measured with a grid of 2.5 megacells running for
20 timesteps.

Operation Before (s) After (s) Reduction (%)
cudaFree 23.87 8.24 34.5
memcpyAsync 11.46 3.76 32.81
cudaMalloc 3.33 1.55 53.4
DtoD copy 3.43 0.98 71.4
Total 41.46 14.52 -

Table 4.2: The table shows the reduction in time spent performing memory operations.
The numbers are measured using a grid of 2.5 megacells, running for 20 timesteps.
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Chapter 5

Conclusion

In this thesis, we have analyzed and improved the compiler and CUDA backend of
Equelle, a DSL for solving partial differential equations (PDEs) using the finite volume
method (FVM). We have also given an introduction to DSLs, including tools and
frameworks for developing them, as well as a survey of DSLs for high performance
computing.

In our performance analysis in Chapter 3, we found that the implicit heat equation
simulation was bottlenecked by the Extend operator, which took over 40 percent of
the execution time. We also found that the performance of the backend is limited
by operations related to memory management on the device, mostly because of the
frequent allocation and deallocation of memory in temporary objects. Furthermore,
operators such as the CollOfScalar multiplication and addition caused spikes in
memory usage. We also found that when using CUDA 9, the cuSPARSE matrix
addition (csrgeam) is 8 times slower than in CUDA 8. Running the autoDiff test
from the test suite showed that the ternary if operator causes zeroes to get stored in
CudaMatrix values. Lastly, we performed additional analysis which showed that the
GPU solvers do not provide sufficient solutions to the two-phase flow simulation, and
that there are race conditions in the csrgemm that cause the results to vary across runs.

In Chapter 4 we implemented optimizations that improved the performance of the
CUDA backend, addressing some of the previous findings. First, we optimized the
Extend operator, which was sped up by a factor of 12 to 12.85x. Next we implemented
move semantics to reduce the memory management cost of temporary objects, which
yielded a speedup of approximately 1.25x, as well as improving the overall memory
usage. In our third optimization we improved the memory usage of the CollOfScalar
multiplication, which lowered the peak memory usage. Next, we optimized the
twoNorm operator, which improved both its memory usage and execution time. Its
execution time was reduced from 2.35 seconds to 0.2 seconds, which is a speedup of
11.75x. Our fifth implementation is an AST rewriter, which allows us to modify sub-
trees of the AST. The rewriter will let us experiment with transformations that can
optimize our program, for instance by changing operators or removing unneeded
computations. In our last implementation we added functionality for removing
explicit zeroes from the value array of a CudaMatrix. The final profiling showed
that the cell throughput for the implicit heat equation, which is a good metric for

85



the overall performance, has increased by a factor of 3.19x1. Furthermore, the largest
grid we can run before the memory flows over is over 30 percent larger.

5.1 Future Work

In this section we make suggestions for future development of the Equelle CUDA
backend, based on our findings in Chapters 3 and 4. The list is in prioritized order,
keeping the work-to-benefit ratio in mind.

After our optimizations, the gradient and the divergence operators are the
most time consuming parts of the code. Together they account for over 60
percent of the application execution time, most of which are spent performing
matrix multiplication using cuSPARSE csrgemmNnz and csrgemm. Also, memory
management overhead is still performance limiting. The frequent allocation,
deallocation and copying of memory on the device are time consuming, and
operations such as cudaFree, cudaMalloc and cudaMemcpy block asynchronous
execution, and should be a consideration when looking into future development.

• Implement additional parallel linear solvers and preconditioners. This should
arguably be the first priority in further development. Whether the issues when
running the two-phase flow simulation2 were due to poor conditioning of the
linear system or poor performance from the solvers, or a mix of the two we
do not know. This will need additional investigation. The first step should
be to identify an implementation of a preconditioner/solver combination that
have been proven to work well for the equations in question. The implicit
two-phase simulation is a good candidate for testing, as that is the one we
have been struggling with, and it is much more complex than the implicit heat
equation simulation, and so it is a more interesting program to optimize. The
CUDA toolkit supplies a code example that implements the BiCGStab solver
with Incomplete Lower-Upper (ILU for short) factorization for preconditioning.
Adapting the code to fit into the Equelle backend would make a good starting
point to see if the results when solving the two-phase flow example are
comparable to those of the CPU.

• Memory management in the CUDA backend. As we have observed through
our profiling in our initial assessment (Chapter 3) and after our optimization-
s/experiments (Chapter 4), the memory management in Equelle is by far the
main performance issue. Calls to cudaMalloc and cudaFree are not only expens-
ive calls in themselves, but are also blocking, inhibiting asynchronous execution
and efficient concurrency. Solving this might need a redesign of the backend.

• Alternatives to cuSPARSE. cuSPARSE has proven to be both unreliable and
costly when used in the Equelle compiler. In addition to this, Nvidia seems to be
unresponsive even after bugs are filed regarding the issues we have experienced,

1Measured using a grid of 3.5 megacells running for 20 timesteps.
2Two-phase issues are described in Section 3.5.2.
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including race conditions3 and slow routines4. The bug report that we submitted
for the slow csrgeam routine is not publicly available, but we have made a post
in the Nvidia developer forum where Nvidia confirms that it is most likely a bug.
Looking for and comparing alternatives that are more efficient and that follow
a more transparent release cycle should be a priority and can be a worthwhile
investment for further development. Looking for open source alternatives that
let us debug in more detail, should bugs appear, should be a priority. It is
planned that taco (Tensor Algebra Compiler), will receive GPU support [22]. This
should be a very interesting alternative. Concludingly, it should be noted that
CUDA 10 has since been released, and we have not verified that the issues we
encountered remain.

• Explore more IR/AST transformations. Implementing more compiler optimiz-
ations before the code generation step, for instance by extending the AST re-
writer (Section 4.5) is interesting for further development. It is necessary to
transform programs in order to implement both global and local optimizations.
One such optimization is the reordering of calculations. In many cases the order
in which the operations are performed, does not affect the result, but it can have
a significant impact on the performance. For instance, consider the expression
u * u0 * u1, where u has a derivative and u0 and u1 does not. With this order-
ing, the calculation will involve 2 matrix multiplications, since the derivative of
u first is multiplied by the values in u0, where the result has a derivative, which
is then multiplied by u1, causing another matrix multiplication. If we evaluate
u0 * u1 first, however, only one matrix multiplication will be performed since
the first calculation does not involve any derivatives.

• Implement NewtonSolveSystem in the CUDA backend. NewtonSolveSystem
is an extension of NewtonSolve and is currently not supported in the CUDA
backend. Doing this has not been a priority in this thesis. Doing so would make
a great addition to the language, and might expose more interesting themes
to look into. Implementing solvers and preconditioners should, however, be
a priority before this.

• Implement code generation of CUDA kernels for arbitrary expressions. The
backend still calls a large number of small kernels, which is sub-optimal for
several reasons. By moving larger portions of the program into large kernels, the
backend will benefit from the aggressive optimizations that the CUDA compiler
(nvcc) performs. One thing to keep in mind is that sparse matrix operations in
most cases5 can not be included in the generated kernels, as cuSPARSE can not
be called from within a kernel.

• Exploit knowledge about the sparsity patterns of matrices. We know that
the sparsity patterns of the derivatives will not change between Newton
iterations. For this reason, we do not need to recalculate the sparsity pattern for

3Race conditions in csrgemm when we use small Equelle grids.
4csrgeam is 8 times slower in CUDA 9 due to what seems to be a bug (confirmed by Nvidia in our

forum post).
5Sparse matrix multiplication can be included when the left-hand-side matrix is diagonal.
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every step, using cuSPARSE subroutines such as csrgeamNnz and csrgemmNnz.
Since csrgemmNnz is about as expensive as csrgemm, an implemention of this
optimization might halve the cost of matrix multiplication when applicable. For
instance, this is applicable for the gradient and divergence calculations, which
are bottlenecks in the implicit heat equation.
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Appendix A

Complete Code Samples

A.1 Implicit Heat Equation

1 # Heat conduction with Diriclet boundary conditions.
2

3 # This example is intended to show how a relatively simple
4 # model can be implemented in Equelle. It shows how to use
5 # units properly, how to write functions, and how to solve
6 # implicit problems. It also shows how to implement general
7 # Dirichlet type boundary conditions.
8

9 # Heat diffusion constant.
10 # Default value within range given for granite:
11 # http://en.wikipedia.org/wiki/List_of_thermal_conductivities
12 k = InputScalarWithDefault("k", 2.85) * 1 [Watt / (Meter*Kelvin)]
13

14 # Volumetric heat capacity.
15 # Default value corresponds to granite:
16 # http://en.wikipedia.org/wiki/Volumetric_heat_capacity
17 cv = InputScalarWithDefault("cv", 2.17e6) * 1 [Joule / (Kelvin * Meter^3)]
18

19 # Compute interior transmissibilities.
20 ifaces = InteriorFaces()
21 first = FirstCell(ifaces)
22 second = SecondCell(ifaces)
23 itrans = k * |ifaces| / |Centroid(first) - Centroid(second)|
24

25 # Compute flux for interior faces.
26 computeInteriorFlux(u) = {
27 -> -itrans * Gradient(u)
28 }
29

30 # Support for Dirichlet boundaries
31 dir_boundary = InputDomainSubsetOf("dir_boundary", BoundaryFaces())
32 dir_val = InputCollectionOfScalar("dir_val", dir_boundary) * 1 [Kelvin]
33

34 # Compute boundary transmissibilities and orientations.
35 bf = BoundaryFaces()
36 bf_cells = IsEmpty(FirstCell(bf)) ? SecondCell(bf) : FirstCell(bf)
37 bf_sign = IsEmpty(FirstCell(bf)) ? (-1 Extend bf) : (1 Extend bf)
38 btrans = k * |bf| / |Centroid(bf) - Centroid(bf_cells)|
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39 dir_cells = bf_cells On dir_boundary
40 dir_sign = bf_sign On dir_boundary
41 dir_trans = btrans On dir_boundary
42

43 # Compute flux for boundary faces.
44 computeBoundaryFlux(u) = {
45 # Compute flux at Dirichlet boundaries.
46 u_dirbdycells = u On dir_cells
47 dir_fluxes = dir_trans * dir_sign * (u_dirbdycells - dir_val)
48 # Extending with zero away from Dirichlet boundaries,
49 # which means assuming no-flow elsewhere.
50 -> dir_fluxes Extend BoundaryFaces()
51 }
52

53 # Compute the residual for the heat equation.
54 vol = |AllCells()|
55 computeResidual(u, u0, dt) = {
56 ifluxes = computeInteriorFlux(u)
57 bfluxes = computeBoundaryFlux(u)
58 # Extend both ifluxes and bfluxes to AllFaces() and add to get all fluxes.
59 fluxes = (ifluxes Extend AllFaces()) + (bfluxes Extend AllFaces())
60 residual = u - u0 + (dt / (cv * vol)) * Divergence(fluxes)
61 -> residual
62 }
63

64 # u_initial is user input (u is the unknown, temperature here)
65 u_initial = InputCollectionOfScalar("u_initial", AllCells()) * 1 [Kelvin]
66

67 # Sequences are ordered, and not associated with the grid
68 # as collections are.
69 timesteps = InputSequenceOfScalar("timesteps") * 1 [Second]
70

71 # u0 must be declared Mutable, because we will change it
72 # in the For loop further down.
73 u0 : Mutable Collection Of Scalar On AllCells()
74 u0 = u_initial
75

76 # Output initial conditions
77 Output("u", u0)
78 Output("maximum of u", MaxReduce(u0))
79

80 For dt In timesteps {
81 computeResidualLocal(u) = {
82 -> computeResidual(u, u0, dt)
83 }
84 u_guess = u0
85 u = NewtonSolve(computeResidualLocal, u_guess)
86 Output("maximum of u", MaxReduce(u))
87 u0 = u
88 }
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