
 I

Implementing and evaluating dual-radios with

TSCH MAC for Industrial Wireless Sensor

Networks.

Vegar Krogsethagen

Thesis submitted for the degree of

 Master in Programming and Networks
60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

August 2018

 II

 III

Implementing and evaluating dual-radios

with TSCH MAC for Industrial Wireless

Sensor Networks.

Vegar Krogsethagen

 IV

© Vegar Krogsethagen

2018

Implementing and evaluating dual-radios with TSCH MAC for Industrial Wireless Sensor

Networks

Vegar Krogsethagen

http://www.duo.uio.no

Printed: Reprosentralen, Universitetet i Oslo

http://www.duo.uio.no/

 V

Summary

Now that Internet of Things (IoT) is emerging, we see new industrial applications emerge in

the industrial paradigm. Terms like Industrial Internet of Things (IIoT), Internet of

Everything (Cisco), appear everywhere. An integral part in industrial networks is

(Operational Technology) along with IP based networks (informational technology).

As WSN has been important in the development of IoT, IWSN will be an important part of the

development of Industrial Internet of Things (IIoT). WSN technologies have shown great

potential for industrial use. Particularly in process monitoring and control where processes

such as pressure, temperature, flow, vibration can be measured and transferred wirelessly to

a control system. Wireless communication has several advantages like: - Reduction in Cost,

Flexibility and Performance. Traditional cable Industrial Automation and Control Systems

(IACS) can come up to several thousand dollars in both cables, installation and maintenance.

Moving machinery also poses major challenges, this is solved with different techniques like

sliding contacts and slip rings, but this is also prone to wear.

We also see that by reducing costs we can increase the number of actuators and sensors

which in turn gives an increased performance.

A promising MAC solution is to combine time-division multiple access (TDMA) and

frequency hopping to meet the strict requirements of reliability and real-time characteristics,

called Time Slotted Channel Hopping (TSCH). It uses time synchronization and channel

hopping to mitigate effects of external interference and multi-path fading.

This is used in well-known standards such as WirelessHART and ISA100.11.a.

TSCH was standardized by IEEE 802.15.4-2015 and selected by IETF for standardization in

"IPv6 over the TSCH mode of IEEE 802.15.4.e" (6TiSCH).

By using two homogenous radios on each sensor or actuator each link has different channels.

This utilize the same effect that makes channel hopping so efficiently (frequency-dependent

fading effects) and could make it possible to achieve extremely high reliability, and with

extremely low jitter and delay.

 VI

 VII

Preface

I would like to thank Andreas Urke and my supervisor Professor Knut Øvsthus

at Western Norway University of Applied Sciences (HVL) for excellent

counseling. I would also like to thank the Western Norway University of Applied

Sciences (HVL) for hospitality with my own laboratory space, as well as

equipment.

 VIII

 IX

Contents

1 Introduction ___ 1

2 Background ___ 3

2.1 Internet of Things (IoT) ___ 3

2.2 Wireless sensor network (WSN) ______________________________________ 5

 WSN Topology ___ 6

2.3 Industrial Wireless sensor network (IWSN) ____________________________ 8

 Requirements ___ 10

 Standards ___ 13

2.4 Time Slotted Channel hopping (TSCH) _______________________________ 17

2.5 Ipv6 over TSCH mode of IEEE 802.15.4e(6TiSCH) _____________________ 22

3 Proposal ___ 23

3.1 Method __ 24

4 Design ___ 26

4.1 Contiki-NG __ 27

 MAC Layer ___ 28

 NET Layer ___ 29

 Routing protocol ___ 29

 Contiki-NG mote __ 30

4.2 My Design ___ 33

 ContikiMote __ 34

 Cooja-radio-driver__ 35

 MAC layer ___ 39

 Radio Medium __ 40

5 Result and analysis___ 42

5.1 Background information ___ 42

 X

 Simulation information __ 42

 Disturber node ___ 43

5.2 Reliability and latency ___ 44

 UDP Client node ___ 44

 UDP Server node __ 44

 Results and analysis __ 45

5.3 Joining time __ 65

 Joining node __ 65

 Coordinator node __ 65

 Results and analysis __ 66

5.4 Two-hop simulation ___ 68

 UDP Client node ___ 68

 UDP Server node __ 68

 Intermediate node __ 69

 Results and analysis __ 69

5.5 Discussion__ 70

6 Conclusion ___ 72

6.1 Future work __ 73

Bibliography __ 74

7 Appendix A ___ 78

7.1 ISO stack – WirelessHART vs ISA100.11a ____________________________ 78

7.2 Duty cycle __ 78

7.3 Retransmission ___ 79

7.4 IEEE 802.15.4 __ 80

8 Appendix B ___ 82

8.1 Cooja-radio-driver __ 82

8.2 Cooja-config__ 90

8.3 DummyRadioInterface ___ 91

8.4 MoteInterfaceHandler (Showing only the parts i have added) ____________ 98

 XI

8.5 RadioMedium (Showing only the parts I have added) ___________________ 98

8.6 TSCH EB scanning (Showing only the parts I have added) ______________ 101

9 Appendix C __ 102

9.1 Java-Script for 2-hop simulation ____________________________________ 102

9.2 Java-Script for joining the simulation _______________________________ 103

9.3 Java-Script for Reliability and latency _______________________________ 104

List of Figures

Figure 1: Stability of link between two nodes for different channels in factory deployment [5]

.. 1

Figure 2: Typical IoT device.. 3

Figure 3: Star topology .. 7

Figure 4: Mesh topology .. 7

Figure 5: IWSN .. 8

Figure 6: General IWSN .. 15

Figure 7: 6TiSCH ... 16

Figure 8: TSCH schedule one radio ... 17

Figure 9: 6top obtained from [20] .. 22

Figure 10: TSCH schedule two radio... 23

Figure 11 : Contiki-NG design .. 30

Figure 12 : My design .. 33

Figure 13: Read function ... 36

Figure 14: Send function .. 37

Figure 15: doInterfaceActionsBeforeTicks.. 38

Figure 16: Calculating ASN... 42

Figure 17 : Environment 1 ... 45

Figure 18 : Retransmissions with no interference.. 46

Figure 19: EB every 32s .. 46

Figure 20: Average transmissions no interference... 47

Figure 21 : No interference radio distribution.. ... 47

Figure 22: Duty cycle one radio no interference ... 48

 XII

Figure 23: Duty cycle two radios no interference .. 48

Figure 24: Average ASN. .. 49

Figure 25 : Environment 2 ... 50

Figure 26: Data one disturber. ... 51

Figure 27: Average transmissions one disturber. ... 52

Figure 28: One disturber radio distribution.. ... 52

Figure 29 : One disturber, packet dropped... 53

Figure 30: Duty cycle one radio one disturber... 53

Figure 31 : Duty cycle two radios one disturber. ... 54

Figure 32: Average ASN. .. 54

Figure 33 : Environment 3 ... 55

Figure 34 : Data Two disturbers. ... 56

Figure 35: Average transmissions two disturber nodes. .. 56

Figure 36 : Two disturber radio distribution.. .. 57

Figure 37 : Two disturbers packets dropped .. 58

Figure 38: Duty cycle one radio two disturbers. .. 58

Figure 39: Duty cycle two radios two disturbers. .. 58

Figure 40: Average ASN. Figure shows average... 59

Figure 41: Environment 4 .. 60

Figure 42: Data three disturbers. .. 61

Figure 43: Average transmissions three disturber nodes. .. 61

Figure 44 : Three disturbers radio distribution. ... 62

Figure 45 : Package dropped one radio.. 62

Figure 46: Duty cycle one radio three disturbers. .. 63

Figure 47: Duty cycle two radios three disturbers. ... 63

Figure 48: One radio average ASN .. 64

Figure 49: Average TX .. 64

Figure 50 : Joining environment .. 66

Figure 51 : Joining data.. 66

Figure 52: Average delay 2hop. ... 69

Figure 53 : Duty cycle.. 78

Figure 54 : Acknowledgement ... 79

Figure 55: IEEE 802.15.4 .. 80

 XIII

 List of Tables

Table 1: Classification industrial application obtained from article [26] and RFC [33] 14

Table 2: Client node Packet delivery ratio (PDR) ... 44

Table 3: Server node Packet delivery ratio (PDR)... 44

Table 4: Joining node ... 65

Table 5: Coordinator node ... 65

Table 6: Result joining simulation ... 67

Table 7: Two-hop Client node ... 68

Table 8: Two-hop Server node .. 68

Table 9: Two-hop Intermediate node ... 69

Table 10: ISO stack – WirelessHART vs ISA100.11a .. 78

 1

1 Introduction

Industrial networks typically require high reliability and real-time characteristics (low latency

and as little variation in latency as possible), traditionally solved with wired solutions.

However, the benefits of wireless solutions have meant that more researchers have

considered it for more demanding industrial applications [1]. There are two key phenomena

that affect packet loss and delay, this is external interference where other wireless

technologies operate on the same frequency band and can create collisions and packet loss,

and multi-path fading where radio waves can propagate through different paths to the

destination (hence receive multiple signals) and create a destructive effect that can result in

packet loss [2]. These phenomena can be reduced using channel hopping, where subsequent

packets are sent at different frequencies. Channel hopping has been shown to reduce ETX

(metric indicating how many transmissions it takes for a packet to be successfully received)

by 63% [3]. Channel hopping is used in several major standards such as ISA100.11.a,

WirelessHART and IEEE 802.15.4.e Time Slotted Channel Hopping (TSCH) [4].

Figure 1: Stability of link between two nodes for different channels in factory deployment [5]

In [5] they placed 44 nodes in a 2.4GHz wireless sensor network in a factory. The nodes sent

data packets every 28 seconds and retrieved information about the number of transmissions,

received acknowledgements, average RSSI, and other metrics for a single link using one

channel for 15 minutes at a time. They did this for 26 days. They concluded that "(..) Based

on this plot, no channel appears significantly better or worse than any other when averaged

 2

over time and paths, and the network appears to function well on all frequencies". The result

can also be seen in Figure 1 (successful transmissions and receipt of acknowledgments).

However, it is not possible to predict which channel is interfered, so creating a hopping

sequence that avoids channels exposed to interreference is difficult, and frame loss is

inevitable. In the industrial network the use of retransmissions increases the reliability, but

retransmissions also increase latency and jitter which has a negative impact on the

requirements for real-time characteristics (low delay, low jitter).

 3

2 Background

2.1 Internet of Things (IoT)

IoT is a network of physical devices such as industrial sensors, vehicles, home equipment,

smartphones, which shares and exchanges data [6]. Devices sense and collect data from

things around us and may use this information locally or even share this data across the world

to be used for different purposes. A typical IoT devices (in industrial environment) consist of

a processor, a sensor that collect data, and transmits or receives using a radio (shown in

Figure 2). Sensors can collect different data such as temperature fluctuations, vibrations in

industrial motors to see unnatural behaviors, or even gas leaks. IoT devices can be placed

where access is challenging, and traditionally wired system is difficult to install.

Figure 2: Typical IoT device

 4

IoT is used in many different applications such as [6]:

• Smart buildings

o Identify location of people as well as the state of the building. Control

heating/air condition, and lighting system to reduce the power bill. Sensors

can also monitor the building structure health.

• Smart cities

o Sensors monitor humans or vehicle and can collect data from smart buildings.

Use information boards to inform others about car incidents in the car line.

• Industrial systems

o Use sensor to monitor industrial processes. Collect information about

industrial motors health and use this to avoid motor failures. Sensors could

monitor gas leaks, fire, unnatural variation, temperature etc.

Data could be sent directly to actuators that can make changes dynamically

[7], [28].

• Medical system

o Patient mentoring sensor located at home or doctor office.

• Vehicles

o Could be used to monitor the state of the vehicle. It can reduce fuel

consumption, and even monitor air pressure in tires and inform about holes.

Internet of Things does not necessarily mean that wireless communication takes place,

sensors could also be wired. But, due to the development of wireless network reliability that

manages to establish end-to-end reliability to 99.999% [5], and years or even decade of

battery lifetime [8], new opportunities arise through the use of wireless communications in

industrial networks.

 5

2.2 Wireless sensor network (WSN)

A WSN typically consists of several cheap, power-friendly, more functional sensors nodes

located in an area of interest [9]. They are small but are equipped with radio, sensors and

microprocessors, and therefore not only have the ability to sense but also process and send

data [9]. Communication takes place over wireless medium and together they can monitor

e.g. industrial area, war zone or environmental area [9], [10].

Compared to traditional networks, they have some unique characteristics and requirements

that can be summed up this way [9]:

• Battery powered

o Wireless sensor could use battery as power source and is expected to last

several years or even decades before charging/replacing battery [8].

• Environment

o Wireless nodes can be placed in hard or hostile areas where access is limited

or even impossible [9].

• Limited power recourses, processing capability and storage capabilities

o The nodes have limited power availability, processing capability and storage

capabilities [9]. Storage and processing capability can be as low as 10kB

RAM, 8Mhz CPU, and 48 kB flash memory [11]. Due to the limited

processing capability large demanding protocols should be avoided [4].

• Self-Configurable

o Because nodes can autonomously discover each other to build a topology, they

could be placed in the area of interest and monitor without special planning

[9]. They could also make dynamically changes to the topology on node

failure e.g. out of battery hence also self-healing.

• Application Specific

o The sensor often has a specific task, or build to a specific application [9]

• Unreliable sensor nodes

o Due to the hostile / harsh environment the nodes are placed in, they are often

exposed to damage or malfunction [9].

 6

• Deferred to topology changes

o Node can fail, get corrupted, run out of power or be exposed to interference

[9]. Nodes can also be mobile which make them vulnerable to topology

changes

• Multiple-to-one traffic pattern

o Sensor data sent from a specific node can take more paths to destination [9].

• Redundant

o Due to the fact that nodes are often sealed in an area of interest, as well as

multiple-to-one traffic pattern, nodes may use other paths to the destination

[9]. The fact that they are self-configurable allows them to have more

redundant paths to their destinations.

• Tightly distributed

o Node is placed close in an area of interest.

Wireless sensor nodes have great advantages over traditional wired networks, which reduce

the cost and delay, and the fact that they can be placed in hostile/harsh environment where

wired solutions are impossible [9]. The development in miniaturization will make it possible

to get sensors down in a few cubic millimeters in the future [12] that will make it even easier

to place those in demanding environments. Because of the size and wireless communication,

sensor network can be installed in environments where wired solutions are difficult, this may

be because the machines rotate or are mobile, or that the environment they are placing in is

dangerous (e.g. war zones).

 WSN Topology

There are three different topologies in WSN, Star, Star mesh and mesh [4], [24].

In a Star network (shown in Figure 3), all nodes have a specific path to the border router.

This means that if there is an error between two nodes, the information will be lost.

Mesh (shown in Figure 4) has several redundant routes to its destination because nodes are

also routing nodes, so the data can take other paths to the destination.

 7

Star network

Figure 3: Star topology

• One-hop for any node to gateway

o Low latency (one-hop)

o Limitation of possible range

o Or increase of transmit power

Mesh network

Figure 4: Mesh topology

• Many-hop to gateway

o Latency can be high (many hops)

o Routing to improve range

o Transmission range can be kept low

o Spending energy for transmitting data for other nodes.

 8

A growing area of WSN is the Industrial Wireless Sensor Network (IWSN), which uses

wireless systems to control and monitor different industrial tasks [4].

2.3 Industrial Wireless sensor network (IWSN)

Figure 5: IWSN

WSN has been important in the development of IoT, and IWSN will be an important part of

the development of Industrial Internet of Things (IIoT). WSN technologies have shown great

potential for industrial use. Particularly in process monitoring and control where processes

such as pressure, temperature, flow, vibration can be measured, assembled and transferred

wirelessly to a control system (show in Figure 5) [10]. Although wireless systems have been

used in control applications for several years, such as Supervisory Control and Data

Acquisition (SCADA), WSN for process monitoring and control has not been widely

available until recently due to the strict/specific requirements [10], [4].

 9

The advantages of industrial wireless sensor networks versus wired industrial networks can

be summed up this way:

• Flexibility

o A wired solution can often be difficult, e.g. there can be dangerous

chemicals/environment, or the cable distances can be very large. Machines can

also be mobile or rotating and that makes it even more challenging.

• Cost

o Traditionally wired Industrial Automation and Control systems (IACS)

depend on the wired fieldbus system, and installation costs are often up to

thousands of dollars [1], [12], which is up to 80% of the cost of the entire

system [13]. Or as [7] states, "(..) estimates that WSNs enable cost savings of

up to 90% compared to the deployment cost of wired field devices in the

industrial automation domain”.

• Performance

o When reducing the cost with wireless communication, it becomes

economically feasible to increase the number of sensors, actuators and

connection points [8]. They also have a higher data communication speed,

such as WirelessHART with data rate up to 250Kbps (IEEE 802.15.4

standard) [4].

Where the wired sensor network shares the same fieldbus, each sensor in a

wireless network can communicate simultaneous, hence has a higher network

capacity. Also, with the use of self-healing wireless communication

technology and cheap redundant sensor nodes, we can also increase

availability [4].

What separates IWSN from other networks is the requirements. Requirements in Industrial

Wireless sensor networks (IWSN) are different than other wireless networks, where IWSN is

a stricter limit when it comes to packet loss, delay, jitter, reliability and security [4]. Or as [4]

describe it “(..) In comparison with other wireless networks, IWSNs require high reliability

and real-time performance, which is challenging due to noisy surroundings”.

 10

 Requirements

The requirements in IWSN can be summarized in this way:

• Real-time characteristics

o Deterministic behavior

▪ Industrial communication requires very low latency, and as low (less

then 20s [27]) variation in latency as possible (hence, jitter) as

possible. When industrial network is a part of application control loop,

latency and jitter can result in degrading of the control system

performance, and result in economic loss, or even human safety (e.g.

gas pipe explosion).

o Short latency

▪ Industrial application requires short latency, this is especially true

when used in control loops when requirements for latency can be as

low as microseconds (less then 10s [27]) [8]. Considering sensor data

that may typically only be valid for a short period (i.e. real-time

characteristics), latency can cause data to not be accurate anymore or

of limited use. This defends the application's prioritization of new data

instead of guaranteeing receipt of all packets [8].

• Reliability

o Reliability is often defined as the network's ability to transfer data between

two devices with as low delay as possible and is often measured in metrics

such as packet loss or packet delivery ratio (PDR), or as [4] describes it

“Reliability is concerned with how much data is received successfully at the

receiving end with minimum delay(..)”.

Latency and jitter can affect control loops performance, therefore is

guaranteed delivery, or as [1] defines it “ultra-high reliability” said to be one

of the most important requirements in IWSN. Given that IWSN can be used in

security systems, critical alarm data must be received at the other end and with

as little delay as possible [14], [28]. From a MAC layer point of view,

retransmissions are often used to increase reliability, but this is increases

latency and overall throughput because bandwidth is used to retransmit

packages.

 11

• Robustness

o Nodes in IWSN are often exposed to physical harsh industrial environment

where dust, dirt, liquid and vibration is inevitable [4]. Industrial wireless

environment unlike traditional IT environment contains metal surfaces and

machinery (AC convert e.g.). Therefor are redundancy mechanisms important

when nodes failure occurs, or a gateway failure [13], [28]. On the MAC layer,

robustness typically refers to the network's ability to maintain high reliability

when exposed to difficult conditions, such as external interference and multi-

path fading [29], [30]. Using unlicensed bands like 2.4GHz, different

technologies will create interference, such as Wi-Fi, microwave, power

converter, etc.

• Availability

o Refers to users ability to access services provided by the network and is often

measured in “downtime” [22]. Consequence of bad “Availability” is similar as

reliability, and in case of a malfunction, process usually has to stop in

controlled manners and it can take hours before its fully functional again [8].

• Scalability and adaptability

o Considering that a sensor network can consist of 100 or even more than 1,000

nodes, protocols must also be scalable to the different topology sizes.

Nodes in an IWSN are also subject to physical harsh industrial environments

where dust, dirt, liquid is inevitable [4]. This along with the fact that nodes

could be mobile, should IWSN protocols be adaptive to topology changes [9].

• Resource utilization

o Energy

▪ Wireless sensor usually use battery as power source and is expected to

last several years or even decades before charging/replacing battery

[8]. Network size, traffic load, number of retransmissions, mobility,

all have an impact on power consumption. Due to limitation in node

size, nodes should not deal with big demanding protocols for

communication [4]. Because of the limited energy consumption, WSN

should use an energy-efficient MAC layer that have a low duty cycle

and CPU usage. However, IWSN often use a trade-off in battery

 12

consumption to meet the more critical requirements in an industrial

environment, such as real-time characteristics and reliability [23].

o Bandwidth

▪ As mentioned in Robustness, when using unlicensed band such as

2,4GHz, different co-exciting technology (Wi-Fi, microwave etc.) all

“fight” for available bandwidth. Therefore, all the IWSN layers must

be as bandwidth effective as possible for other requirements to be

within available bandwidth [10].

• Topology organization

o To meet the demands of reliability, robustness and power efficiency, topology

management needs to be as flexible and efficient as possible. Nodes in the

IWSN can be located in hazardous areas, or areas where access is limited, it is

therefore a requirement that they must be self-organized and self-configurable

[28]. Because of limited access and the harsh environments they are placed in,

they must therefore also be self-healing [8].

• Security

o Industrial network burglary can have a much higher consequence than in

traditional networks. There are several known attack forms in the IWSN,

ranging from man-in-middle attack, black-hole, selective forwarding and sink-

hole. All these forms of attack can have fatal consequences and, at worst, can

lead to loss of human life. Techniques for securing data against these attacks

include everything from authentication and encryption, link-layer hop-by-hop

encryption, and unique ID authentication for each device (challenge to realize

sensor nodes is limited), but some types of attacks are difficult to protect

against such as selective forwarding and sink-hole.

• Interoperability

o Today's industrial systems use a combination of cable and wireless sensors to

measure data and perform actions. Therefore, wireless systems must also

support the old systems. There may also be other wireless systems that the

new system must support [13], [28].

 13

 Standards

In today's IWSN there are two standards that dominate the industrial wireless networks and it

is WirelessHART and ISA 100.11.a [4]. Both are based on IEE 802.15.4 (see appendix).

WirelessHART was the first industrial standard and was introduced in 2007 for control and

measurements. It was self-organizing, self-healing mesh network (figure 4) and uses the

IEEE 802.15.4 on channels 11-25 at 2.4GHz frequency spectrum [4], [24]. It uses Time-

division multiple access (TDMA) that allows nodes to sleep when the timeslot is neither

transmit nor received to reduce energy consumption. It uses synchronized timeslots, with a

fixed length of 10ms for real-time communication. It uses Direct-Sequence Spread Spectrum

(DSSS) for spreading the message signal by modulating following a bit sequence (radio

pulse) and Frequency Hopping Spread Spectrum (FHSS) to spreading code modulation by

hopping on a series of frequencies. For routing protocol, it uses graph routing, which contains

several redundant routes to nodes [4]. Data transfers over a bad link can be avoided by using

blacklisting mechanisms [4].

In September 2009, the International Society of Automation came up with a proposal called

ISA100.11a for monitoring and controlling applications in the industrial environment [4].

Unlike WirelessHART they use variable timeslots and have features in frequency, spatial

diversity and time. They use a channel-hopping schedule, where nodes communicate on

different channels each timeslot in a slotframe [4].

 14

Industrial applications can be divided into three parts: Security, Control and Monitoring - and

everyone has different requirements. They are again divided into six classes from zero to six,

where zero is the most critical and six is the least strict [26], [33] (shown in Table 1).

Category Class Type Application Examples

Safety 0 Always a critical function

Emergency Action Safety interlock Emergency

shutdown Automatic fire

control

Control 1 Often a critical

function

Closed-loop regulatory control

Control of primary actuators

High frequency cascades

2 Usually a non-critical function

Closed-loop supervisory control

Low frequency cascade loops

Multivariable controls

Optimizers

3 Open-loop control Open-loop control

Manual flare

Remote opening of security

gate Manual pump/valve

adjustment

Monitoring 4 Short-term operational effect

Alerting Event-based maintenance

5 No immediate

operational consequence

Logging and downloading /

uploading

History collection, sequence-

of-events, preventive

maintenance
Table 1: Classification industrial application obtained from article [26] and RFC [33]

A commonly centered IWSN network usually consists of node, sink/network manager,

management console and a process manager (shown in Figure 6) [28]. The nodes collect data,

send them to Sink/Network manager, which in turn communicates with the controller [28].

The use of WSN in control systems has given us new opportunities. Due to the cost reduction

wireless sensor network provides, Wireless Network Control System (WNCS) has become an

important infrastructure technology for critical control systems (class 1-3) (Table 1) in

industrial systems. [7]. In WNCS, sensor nodes attached to the physical plant sample and

transmit data over a wireless channel to the controller [7]. The data collected may range from

heat expansion, gas leaks or vibration changes. E.g. by looking at the profile of the vibration

pattern on different machines you can discover un-naturalities before it breaks down.

The data collected by nodes is then forwarded to actuators that can make changes

dynamically [7], [28]. When we introduce wireless communication, we also introduce no-

zero delay and message loss. As we have discussed earlier, message loss in industrial systems

 15

can have major consequences (financial loss, downtime or worst-case human safety).

Because of the requirements of ultra-low delay (seconds, or even milliseconds depending on

the control loops [13], [39]) and high reliability, wireless systems need mechanisms to handle

the strict requirements [13].

Critical in such networks is the Media Access Control (MAC), which has a strong impact on

both latency, packet delivery ratio (PDR) and power consumption. A promising MAC

solution is to combine time-division multiple access (TDMA) and frequency hopping, called

Time Slotted Channel Hopping (TSCH). This is used in well-known standards such as

WirelessHART and ISA100.11.a. TSCH was standardized by IEEE 802.15.4-2015 [45], and

selected by IETF for standardization in "IPv6 over the TSCH mode of IEEE 802.15.4.e"

(6TiSCH) (shown in Figure 7) [4]. In TSCH, the nodes must be tightly synchronized (tens of

milliseconds [34]), which allows a reservation-based contention-free media access.

[5] shows that no channels are much better or worse than the other, but all channels are not

bad at the same time, or as the article concluded "(..) no channel appears significantly better

or worse than any other when averaged over time and paths, and the network appears to

function well on all frequencies ". And combined with the conclusion form article [2] "The

results above suggest that changing frequency when re-transmitting increases the chances of

a successful transmission," makes this MAC solution promising.

By using TDMA, we will also get a lower duty cycle which will in turn lead to lower energy

consumption. This is important given that nodes should have a lifespan of years or even

decades [8].

Figure 6: General IWSN

 16

Figure 7: 6TiSCH

 17

2.4 Time Slotted Channel hopping (TSCH)

Figure 8: TSCH schedule one radio

Institute of Electrical and Electronics Engineers (IEEE) released a new IEEE 802.15.4e [45]

standard who extended the features of the original IEEE 802.15.4 MAC. There are several

key features to meet the requirements in factory automation in 802.15.4e:

• Deterministic & Synchronous Multi-channel Extension mode

o Support of industrial applications which need deterministic latency and higher

link reliability

• Time Slotted Channel Hopping mode

o Process Automation applications with a particular focus on equipment and

process monitoring

• Low Latency Deterministic Network mode

o Support of factory automation and process automation

• Additional Frame Formats

• Low Energy mode

• Enhanced Beacon behavior

• Information Elements

• Miscellaneous – fast association, network metrics, enhanced Acknowledgement

frames, channel diversity

 18

One of the key features was Time Slotted Channel Hopping mode. Time-Slotted Channel

Hopping (TSCH) mitigates two of the main causes of link failure [3] external interference

and multi-path fading [2].

External interference

Occurs when wireless technologies operate on the same frequency band. Simultaneous

transmissions will collide and introduce packet loss [2].

Multi-path fading

When a wireless device sends packets, the radio waves will take many different paths to the

destination, which will then receive multiple signals. Depending on several factors, this will

create a destructive effect that results in packet loss [2].

All sensors in a TSCH network are tightly synchronized in time (tens of milliseconds [34])

[15]. Although the nodes are equipped with clocks, the time of different types of nodes can

be different over time. They must therefore be periodically synchronized again. Therefore,

both data and acknowledgments packets contain information used to synchronize the clock.

This means that neighbor nodes synchronize when exchanging data.

Time is then cut into timeslots, shown in Figure 8 represented by the red box. A timeslot is

large enough for a maximum sized MAC frame to be sent from one node to another node, as

well as responding with an acknowledgment(ack) frame indicating successful reception [15].

The length of timeslot is not defined in the standard where e.g. WirelessHART has a defined

length of 10ms and ISA 100.11.a has variable length. IEEE 802.15.4 radios operate on the

2.4GHz band and have a maximum length of 127 bytes that takes about 4ms to transmit [15],

[1]. So, in a 10ms timeslot you use 4ms to transmit, about 5ms for radio turnaround and 1ms

to receive ack back [1], [15]. Due to channel hopping in TSCH, a packet loss will lead to a

new transmission on another channel. In a timeslot, sensors can either transmit, sleep or listen

for incoming data. In timeslots that is not a transmit or receive slot nodes can sleep to reduce

power consumption, and if a node has nothing to send in his transmit slot, it can sleep even

more to reduce power consumption.

 19

Timeslots are then grouped into a slotframe. Slotframe is continuously repeated over time

[15]. Same as timeslots, slotframe length are not defined in the standard and the length can

vary from 10`s to 1000`s timeslots long [15]. The length is determining how often the

slotframe is repeated, so when it is small, the slotframe will be repeated more frequently.

Small slotframe length will give more available bandwidth, but at the same time it will also

increase energy consumption since transmit or receive timeslots are repeated more frequently

[15].

All this is governed by a TSCH schedule. Schedule indicates the timeslot as dedicated to

transmitting or receiving, frequency to be communicated on and the neighbor's address [15].

When a node has received his schedule, he performs it. In its transmit slot it will see if it has

any packets in outbound buffer, if it does, it will transmit it and wait for acknowledgment.

As mentioned earlier, if a node has nothing in its outbound buffer, it will sleep to reduce

power consumption. In his receiving slot a node must wake up and listen for incoming data.

A node cannot know if anyone wants to communicate so it must be active, but some

implementations have varying length of listening period. So instead of listening in 10ms

(timeslot length), it's listening in, for example. 5ms before it assumes no data will be received

and sleeps to reduce power consumption. Figure 8 shows an example of a TSCH schedule.

Time is cut into timeslots, and four timeslots represent a slotframe that’s repeats over time.

If other nodes want to join, they have to listen for EB (Enhanced Beacon) from already

synchronized nodes. EB contains information about timeslot size, current Absolute slot

number (ASN), Slotframe information and 1-byte joining priority [15]. The priority is used to

make better choices of which node to connect to. ASN is used to synchronized nodes in a

wireless sensor network.

ASN is a timeslot counter and increases by 1 each timeslot.

𝐴𝑆𝑁 = (𝑘 ∗ 𝑆 + 𝑡) [15]

k is number of repeated slotframe since the network started, S represent the length of the

slotframe and t is the slottoffset [15]. ASN is a 5-byte number that makes it possible to

increase for hundreds of years. Just how long depends on the length of timeslot, where a

small timeslot leads to a faster increase in the ASN number [15].

 20

When joining nodes has received ASN, they use this to calculate witch channel to

communicate on. All scheduling cells have a specific slotoffset and channeloffset. This

means that if node 1 has a transmitting slot to node 2 on channeloffset 1, node 2 will have a

receiving slot for node 1 on the same channeloffset, i.e. channeloffset 1. The channel offset is

then transformed to a frequency using the function below [15].

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = ((𝐴𝑆𝑁 + 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑂𝑓𝑓𝑠𝑒𝑡) 𝑚𝑜𝑑 𝑛𝐹𝑟𝑒𝑞) [15]

Then we look into a table that contains all available frequencies. nFreq is the size of the table,

which means the number of available channels. How many values there is that the

channeloffset depends on which band is being used (the 2400-2483.5 MHz band has 16

channels, 11-26) [15].

The fact that ASN increases with one per timeslot causes the nodes to communicate on

different frequency each timeslot. This will cause a possible retransmission to occur at a

different frequency.

Several literatures have measured the link quality in an industrial environment [2], [5]. The

results indicate that no channels are much better or worse than others, but link quality is not

bad at all frequencies at the same time. That means sending a retransmission at another

frequency will result in less packet loss, leading to less retransmissions, which in turn leads to

lower latency and variation of latency (jitter).

The node that has received EB is now part of the network and becomes a synchronizer and

advertises EB to other joining nodes [17]. TCSH is used in ISA100.11a, WirelessHART and

is used in tens of thousands of networks [1].

Successful channels in channel hopping are separated by at least 15MHz (three channel

offsets in IEEE802.15.4) [2]. This is also proved in [2], where they tested if a transmission

that failed on frequency 2.435GHz (channel 17) should be retransmitted one channel away, or

more? Results showed that if a transmission failed at frequency 2.435GHz (channel 17), the

retransmission should be made at least 2.5 frequencies away, that is channel 14 (2.420GHz)

 21

or 20 (2.450GHz). Channel hopping can be done in different ways. The easiest way is blind

channel hopping, where every node is hopping over all available channels (16 available

channels in the 2400 - 2483.5 MHz band, 11-26). Whitelisting is a more advanced method,

where two neighbor nodes agree upon a subset of channels [3]. This is dependent on the

nodes themselves to collecting link quality statistics. Article [3] shows that the simplest

method of blind channel hopping increases network connectivity by 26%, is 56% is more

efficient and increases stability by 38%. Whitelisting can increase network performance even

more by avoiding the least optimal channels, and a scheme of 6 channels gives best results.

TCSH was standardized by IEEE in 802.15.4-2015 and selected by IETF for standardization

in the “IPv6 over the TSCH mode of IEEE 802.15.4e” (6TiSCH) working group [17].

 22

2.5 Ipv6 over TSCH mode of IEEE 802.15.4e(6TiSCH)

6TiSCH combines IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) [32]

and Routing Protocol for Low-Power and Lossy Networks (RPL) [31] with IEEE802.15.4e

TSCH MAC [19] layer shown in figure 6. IEEE 802.15.4e TSCH standard do not define how

to build and maintain that schedule, so a 6TiSCH operation sublayer (6top) (shown in Figure

9) is defining and standardizing how to manage and build the TSCH schedule [20].

Figure 9: 6top obtained from [20]

6top enables the neighbors to negotiate resource allocation within the schedule and

monitoring network statistics. 6top`s roles are to implement and terminate 6top Protocol,

which allows neighbor nodes to communicate to add/delete cells to one another [20]. And

also run one or more 6top schedules functions, which defines the rules that decide when to

add/delete cells [20]. TSCH schedule orchestrates all communication and involves assigning

timeslots to communicate. Nodes can have multiple timeslot to increase throughput and lower

latency, but that means they have to listen more thereby increasing the energy consumption.

 23

3 Proposal

Figure 10: TSCH schedule two radio

The proposal is to use two homogenous radios on each sensor or actuator. By using two

homogenous radios on each sensor or actuator each link has different channels. The

conclusion in [5] was “No single channel is significantly better than any other and decreases

in stability happen on different channels at different times”, it might be possible to improve

reliability and reduce jitter without the need for retransmissions by transmitting or receiving

over to channels simultaneously. By utilizing the same effect that makes channel hopping so

efficient (frequency-dependent fading effects), it can be possible to achieve extremely high

reliability, and with extremely low jitter and delay. This could be done at the MAC-layer, by

creating a TSCH schedule were every link uses two cells in the same timeslot but with

different channel offset. This is shown in Figure 10, where the two red squares represent two

different channels in the same transmission timeslot (shown downward), and the two blue

squares represent two different channels in the same reception timeslot (shown downwards).

This means that nodes will send duplicate data at two different frequencies and receive data

at one or two different frequencies simultaneously depending on the frequency quality, and

reduce packet loss and retransmission, hence reduce latency and jitter (Real-time

characteristic).

 24

Using the ASN number obtained through Enhanced beacon (EB) (both discussed in chapter

2.4) when joining, we can use the : 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = ((𝐴𝑆𝑁 + 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑂𝑓𝑓𝑠𝑒𝑡) 𝑚𝑜𝑑 𝑛𝐹𝑟𝑒𝑞)

[15], function to set channel offset on radio 2 at least 2.5 frequencies away (using result from

[2]) two mitigate channel fading.

Using two radios could also give us the opportunity to synchronize faster.

A joining node must listen for EB at a given frequency but do not know what frequency to

listen to. The node who searches for EB must also be active during the search period, which

will lead to increased energy consumption.

By using two radios, synchronized nodes send out EB at two different frequencies while a

joining node will listen on two different frequencies. This will hopefully reduce convergence

time considerably. Listening on to two different frequencies using two radios will increase

power consumption, but at the same time it could reduce the search period that will reduce

power consumption.

The natural disadvantage of this proposal could be battery consumption, bandwidth used and

the cost of two radios. But given that WSN gives us a cost reduction up to 90% compared

with wired field devices [4], this proposal might be beneficial after all. Some applications

have a lower power consumption requirement, where ultra-low delay, jitter and high

reliability often come at the expense of power consumption, especially true in closed loops

system where requirements are millisecond of delay [23], [27].

3.1 Method

There are several methods for assessing the proposed method. We could use a mathematical

analysis. A second alternative is testing in a real-world environment with two radios. Finally,

there is the alternative of simulation.

Real-world test has the advantage that it takes into account physical phenomena such as

external fading and multi-path fading, but it might also be too time consuming. Software

 25

must be created that’s capable of processing both radio at the same time and it must be

implemented in layers above. We must also find an environment that is representative of an

industrial area.

Mathematical approach has the advantage that it is not too time consuming, but both physical

phenomena and duty cycle can become complicated and difficult to calculate.

Simulation will be “easier” as we have control over the environment, but at the same time it

is difficult to simulate physical phenomena such as external interference and path fading. One

way to simulate External interference is to introduce a node that interfere at different

frequencies in the simulation environment.

There are several operating system used on resource-constrained devices in IoT, Contiki-NG,

TinyOS, LiteOS, FreeRTOS, MantisOS, Nano-RK and many more. My supervisor suggested

Contiki-NG because he heard positive things about the operating system before and some

people at the Western Norway University of Applied Sciences (HVL) have some experience

in using it. Contiki-NG also has a simulation tool written in Java called Cooja. Here we can

add firmware written with C to nodes and measure everything from radio duty cycle and

PDR, as well as information about everything that happens in the layers above. COOJA

simulation tool is based on the assumption that one node has one radio, so changes must be

made to the actual source code of the simulation tool.

However, this might be less time-consuming then creating a Software for a real-world device

that can process two radios that transmit and receive at the same time and implemented in the

layers above.

I have done literature survey, searching for usage of multi-radios using the Contiki-NG

implementation. I did not find any using Oria [44]. I found one publication on GitHub that

used “two” radios with different transmission rang, but this was for the old Contiki-OS and it

does not look like it supports simultaneous transmitting or receiving [43]

 26

4 Design
I have chosen to use the new Contiki-NG (Next Generation) operating system. It was

launched in December 2017 and have better documentation as a predecessor (Contiki-OS

[36]). Here we have the opportunity to experiment with TSCH on the MAC layer, several

different schedule mechanisms like 6top (6TiSCH, chapter 2.5), Orchestra (visit [11]) and

RPL as routing protocol. Contiki-NG has a simulation tool (Cooja) written in JAVA, for

simulating different sensor networks and retrieve data about radio duty cycle, CPU usage,

PDR and number of retransmissions and much more. This allows developers to test

applications or implementations on a fully emulated hardware device, which means they can

test code before they try on real hardware. But, because the Cooja simulation tool is based on

the assumption that one node has one radio, I need to make several changes to the simulation

source code. Because the node in Cooja is a compiled and executable Contiki-NG system, an

additional interface must also be added and integrated into the source code of the simulation

tool. In order for the new Interface to work, I need to make changes to the radio driver, so it

can send or receive data on two different radios simultaneously. I have not come across any

good documentation on Cooja, just some introduction articles that explain the very basic.

In the following next, I will first explain how Contiki-NG is designed, what possibilities are

offered by the MAC and NET layer as well as routing. Then I will explain my radio design

and implementations.

The entire code can be retrieved from:

https://github.com/VegarKrogsethagen/Contiki-NG-Dual-radio.git

https://github.com/VegarKrogsethagen/Contiki-NG-Dual-radio.git

 27

4.1 Contiki-NG

Contiki-NG [21] is an operating system used on resource-constrained devices in IoT. Contiki-

NG contains an RFC-compliant, low-power IPv6 communication stack, enabling Internet

connectivity. It can be run on many different systems based on energy-efficient architectures

such as ARM Cortex-M3 and Texas Instruments MSP430.

Contiki-NG started as a fork of the Contiki operating system with five goals obtained from

[21]:

1. Focus on dependable (reliable and secure), standard-based IPv6 communication;

2. Focus on modern IoT platforms, e.g. ARM Cortex M3 and other 32-bit MCUs;

3. Modernize the structure, configuration, logging and platforms, to reflect the goals

above;

4. Improve the documentation, both code API, module description, and tutorials;

5. Implement a more agile development process, with easier inclusion of new features,

and with periodic releases.

There are some small and significant changes to the operating system from the predecessor

Contiki-OS to the new Contiki-NG. The former core directory is renamed to OS. Apps

directory is now moved to OS, and top-level directory dev, CPU and platform is now under

one directory called arch [35].

However, the biggest change is how the network stack is set up.

The networking stack has two main layers: MAC (Medium access Control) layer and

NET(Network) layer.

When creating a new project, the choice of MAC and NET layer is clarified in the Makefile

file located in your project folder.

 28

The Contiki-NG is open-source and has many different contributors that often cause the

documentation to be a little short. And my experience is that, many services that appear to be

there are often removed without removing all of the code and information in wiki. I have not

been able to find any specific documentation of the code build-up of Cooja (simulation tool)

only some user guides that describes the very basic seen in [40], [41], [42]. And questions

about documentation of specific services are sometimes answered with "the code is the

documentation". I tried to ask the community about implementing Dual-radio in Cooja,

without any answers. This resulted in that I spent many weeks/months just understanding the

construction of the simulation tool and its connection to the operating system itself.

Next, I will present what options you have in the NET and MAC layer, which routing

protocols you have to choose from, and how a Contiki mote in Cooja works.

 MAC Layer

Contiki-NG offers four different predefined mac layer settings obtained from [38], [37].

• NULLMAC

o Layer that does nothing. No transmission or receiving of packages.

• CSMA

o IEEE 802.15.4 non-beacon-enabled mode. CSMA always-on radio.

• TSCH

o IEEE 802.15.4 TSCH mode. Globally-sync, scheduled, frequency-hopping

MAC. This includes 10ms default timeslot, standard TSCH queues and

CSMA-CA [37]. As mentioned earlier, the IEEE 802.15.4e does not define the

standard how to build and maintain the schedule, so here you have the ability

to implement 6top (from 6TiSH) or Orchestra [11] which is an autonomous

schedule.

• OTHER

o Used when creating/customizing own mac layer

By default, Contiki-NG uses 6TiSCH minimal schedule that use a shared slot for sending and

receiving, with a slotframe length of seven and default timeslot of 10ms [37].

 29

The MAC layer is defined by a Makefile which lies in every project folder. Selection of

MAC layer is set by MAKE_MAC = (your choice) in Makefile.

No matter which one you choose, you can customize/modify your own MAC with a

NETSTAK_CONF_MAC flag in a .h file located in your project folder. If you are choosing

MAC_OTHER, the NETSTACK_CONF_MAC flag is mandatory.

 NET Layer

Contiki-NG offers three different predefined net layer settings obtained from [38]:

• NULLNET

o Does nothing. No modification on packets up and down the stack.

• IPV6

o uIP low-power IPv6 stack, with 6LoWPAN and IPv6 Routing Protocol for

Low-Power and Lossy Networks (RPL). RPL is enabled default, and more

specified the RPL-lite version. RPL-classic is also possible.

• OTHER

o Used when creating/customizing own mac layer.

The NET layer is defined by a Makefile which lies in every project folder. Selection of NET

layer is set by MAKE_NET = (your choice) in Makefile.

Same as MAC layer, you can specify your own implementation of NET layer with a .h file in

your project folder using NETSTACK_CONF_NET flag. The flag is mandatory when using

NET_OTHER.

 Routing protocol

Contiki-NG offers three different routing protocols obtained from [38].

• NONE

o No routing protocols.

• LITE

o RPL-lite implementation of RPL (default)

• CLASSIC

o Classic implementation of RPL

Select one out of these three routing protocols using MAKE_ROUTING in the Makefile.

 30

Routing protocol is defined by a Makefile which lies in every project folder. Selection of

routing protocol is set by MAKE_ROUTING = (your choice) in Makefile.

 Contiki-NG mote

Figure 11 shows a simplified overview of how motes in Contiki-NG is built up. Node/Mote

could have many different interfaces, this can be e.g. LED, button, sensor and of course a

radio. The radio is controlled by a radio driver that is platform specific. This can be anything

from Texas instruments CC1200 chip, Bosh Sensortec, to the simulation tool (Cooja) own

radio driver. However, all radio drivers must follow the rules defined by Radio.h located in

Contiki-NG. Next, there will be a brief explanation of what features the radio driver must

contain and what features the MAC layer must contain.

Figure 11 : Contiki-NG design

 31

Radio driver

Contiki-NG uses Radio.h header that defines which rules a radio-driver must follow. This

header contains twelve functions obtained from radio.h in Contiki-NG source code:

Init button

- Initialization of the radio driver (threads/processes etc.)

Prepare

- Prepare the radio with a packet to send

Transmit

- Sends the packet that has previously been prepared

Send

- Prepares and transmits a packet.

Read

- Read a received packet into a buffer.

Channel clear

- Preforms a Clear-channel Assessment (CCA) to find out if there is a packet in the air.

Used in etc. CSMA. (Carrier sensing)

Receiving packet

- Checks if the radio driver is currently receiving a packet

Pending packet

- Checks if the radio driver has just received a packet.

Get values

- Get radio parameter value

Set values

- Set radio parameter value

 On

- Turns the radio on

Off

- Turns the radio off

 32

Mac Layer

Contiki-NG uses a Mac.h that defines which functions the mac-layer must contain.

Obtained from Mac.h in Contiki-NG source code:

Init

- Initializes the MAC driver

Send

- Sends a packet for the packetbuffer

Input

- Notification of incoming packets

On

- Turns MAC layer on

Off

- Turns MAC layer off

 33

4.2 My Design

Since the COOJA simulation tool is built with the assumption that a node has one radio,

several changes need to be made. Changes in Cooja`s source code, implement new interface

(new radio) on the node itself, as well as changing the structure of the radio driver and

changes to the MAC layer. Figure 12 illustrates a relay node that is forwarding data packets.

Starting from the bottom where the node receives its data on two different radios. Next the

packets are forwarded to the radio driver. When a node receives data, it checks whether the

package has been received on both radios, or only one. This is checked through the sequence

number in the received package to avoid duplicates. If a packet is received on the radios, the

MAC layer is informed. When a packet is sent down from the MAC layer, it uses the send

function in the radio driver, which then creates a duplicate of the package before it is sent on

both radios. Next, there will be a more detailed explanation of the changes made to the node,

followed by an explanation of all the parts in the radio driver and finally, changes to the

MAC layer.

Figure 12 : My design

 34

 ContikiMote

I’m using a simulated mote called Contiki Mote. On a Contiki mote we compile Firmware

(written in c) and control and analyzes through Cooja (simulation tool). Motes can be

analyzed in Cooja with a lot of details that make emulation “slow”, or it can be simulated by

ruling out unnecessary information that makes it faster (more information visit [40]).

Since a node in Cooja only have one radio at default, I had to attach an additional interface.

This radio is called DummyInterface. Here's a simplified explanation of the changes I had to

make on the mote, in more detail see appendix B.

I created a new interface on my mote called DummyInterface. This interface is based on the

default ContikiRadio and an undocumented new_interface example already existing in Cooja.

Function in ContikiRadio and DummyInterface are the same, but the variable names are

different. E.g. when Cooja-radio-driver calls isReceiving(), function in ContikiRadio will

replay with simReceiving and a value form 0 to 1. When the driver calls the same function

for my DummyInterface, DummyInterface will replay with simReceivingDummy and a value

from 0 to 1. The values represent the state of the radios. 0 means the radio is not receiving

something, and 1 means the radio is receiving something.

Both radio-interfaces have its own doActionAfterTick functions that’s run after every CPU

tick. These functions check if the radio is on, changes in the output power, changes in radio

channel, ongoing transmission, new transmission, etc.

Both radio-interfaces are then implement/generated on the ContikiRadio from a configuration

file.

 35

 Cooja-radio-driver

The Radio header contains twelve functions as shown in the chapter 4.1.1. All these

functions are implemented in cooja-radio-driver. Unlike the radio-interfaces that checks after

mote tick, Cooja-radio-driver checks for changes before mote tick. This function checks for

example if the radios are On or Off by calling isRadioOn(), check of the radios are receiving

by calling isReceiving(), and if one or both of them have received data. If one or both of them

have received something, it starts a process that calls the read function and pass it to the

layers above. Now there will be an explanation of all the parts in the radio driver.

 36

Functions that is modified in the Cooja-radio driver:

Read function: Figure 13 shows a flowchart of how the radio driver reads data received on

the radios. First, it checks whether one or both of the radios have received data. If nobody has

received data, it does nothing, but has one or both of the radios received data it checks if the

incoming data exceeds radio buffer set by Cooja. If the data exceeds this limit, the driver will

clear the radio buffers. If both radios have received the same data, we select only one of them

to avoid duplicates, this is checked by looking at the sequence number. If only one of the

radios has received data, the data is handled. Then the MAC layer is notified, and the package

is processed in the layers above.

Figure 13: Read function

 37

Send function: Figure 14 shows a flowchart of how the radio driver sends data passed down

from the layers above. First, we check if the radios are on, if not we turn them on. Then we

look at the package prepared by the layers above and check if the package exceeds the

bufsize limit of 127 bytes defined by the TSCH standard (chapter 2.4) or if the package is

empty. If it is over the limit or is empty, we will return an error message that is captured by

the MAC layer. Then we check the radios already have data in the outgoing buffer, if so we

will send an error message captured by the MAC layer. Finally, the data is copied to the

radio's outgoing buffer before its transmitted on both radios.

Figure 14: Send function

 38

Pending packet:

The mac layer calls this function to check if the radio is not receiving anything right now but

have received something. Instead of only checking ContikiRadio, it checks both radios.

doInterfaceActionsBeforeTick:

Figure 15 shows a flowchart of how the radio-driver checks whether the radio has received

data or not. This feature is run after each mote CPU tick. But instead of just checking if one

radio has received data, it checks both radios. It first checks if the radios are on or off. If the

radios are off, then there is no reason to check if they have received something. It then checks

if the radios are currently receiving something, if yes, don’t do anything other den updating

radios signal strength. If the received data is grater then zero, start a process that run the read

function (fig 13).

Figure 15: doInterfaceActionsBeforeTicks

 39

Receiving packet function:

The MAC layer checks if the radios are receiving something before it calls the transmit

functions which starts the send function. Instead of only checking ContikiRadio and return 0

or 1, it also checks DummyRadio.

 MAC layer

Channel selection function:

The TSCH mac layer (TSCH schedule) is responsible for which channel to transmit/receive

on. As explained in chapter 2.5, all scheduling cells have a specific slotoffset and

channeloffset. This means that if node 1 has a transmitting slot to node 2 on channeloffset 1,

node 2 will have a receiving slot for node 1 on the same channeloffset, i.e. channeloffset 1

[15]. The channel offset is then transformed to a frequency using the function below,

obtained from Contiki-NG code:

uint8_t

tsch_calculate_channel(struct tsch_asn_t *asn, uint8_t channel_offset)

{

 uint16_t index_of_0 = TSCH_ASN_MOD(*asn, tsch_hopping_sequence_length);

 uint16_t index_of_offset = (index_of_0 + channel_offset) %

tsch_hopping_sequence_length.val;

 return tsch_hopping_sequence[index_of_offset];

}

Contiki-ng have five predefined schemes from the IEEE standard. One of the schedules is

down below:

[16, 17, 23, 18, 26, 15, 25, 22, 19, 11, 12, 13, 24, 14, 20, 21]

The table above contains all available frequencies in 2400-2483.5 MHz band, channel 11-26.

By using the Absolute slot number (asn) that increases with one per timeslot, the length of the

table above (16 due to 16 available frequencies) and the channel offset that each slot

represents, the function returns a channel in the table.

 40

Because we have implemented two radios, the function has to calculate two different

frequencies and pass the calculated values down to the radio-driver.

MAC layer calculates channel offset by using the function in chapter 2.5. The MAC layer

then calls the set_channel function in the radio driver with the calculated channel offset as

argument. Article [2] has done an experiment where they tested if a transmission failed on

frequency 2.435GHz (channel 17) should retransmission be done one channel away, or more?

The result was that if a transmission failed at frequency 2.435GHz (channel 17), the

retransmission should be made at least 2.5 frequencies away, that is channel 14 (2.420GHz)

or 20 (2.450GHz). Therefore, radio 2 chooses a channel 5 away from radio 1, we use either

uses five channels over, or five offsets below depending on which channel radio 1 uses.

Scanning for EB function:

When a new node wants to connect to the network, it must listen for Enhanced beacon (EB).

This is done by selecting a random frequency and listening to it for a given period before

selecting a new frequency and doing the same operation. Now it selects two different

frequencies and listens for a given period before selecting two new frequencies.

 Radio Medium

When creating a new project in Cooja, we must choose which radio medium we want.

Contiki-NG offers different radio medium, all of them have different attribute when it comes

to e.g. package loss. Where one medium has random packet loss by creating a random

number and depending on the generated number drops the packet. They all extends from

AbstractRadioMedium. Because Cooja assumes that one mote has only one radio, I had to do

some modifications.

Cooja have a MoteInterfaceHandler which AbstractRadioMedium uses to registers motes

interfaces to the Radio-medium of your choice. I created a new object for DummyRadio, and

a function to get the object for AbstractRadioMedium (getRadio and getDummyRadio).

When we add a new mote to the radio-medium, AbstractRadioMedium calls these new

functions and puts all radio interfaces in a list. This list is used to go through all potentials

destinations.

 41

I also had to modify the AbstractRadioMedium when potential source and destination is

evaluated. Default it only checks if the receiver and transmitter is the same radio, but that’s

not enough. I implemented a getPosition() function that return the position of the mote/radio.

This is because we don't want packets sent from one radio source to be transmitted to the

other radio on the same mote. This is not necessary in a real-world device, but because this is

a simulation it looks true all potential destinations before transmitting.

 42

5 Result and analysis

5.1 Background information

 Simulation information

In this chapter we will review three different simulations using COOJA simulation tools.

Here we will measure Packet Deliver Ratio (PDR), number of retransmissions, connection

time (joining time), duty cycle and latency.

Figure 16: Calculating ASN

Latency is calculated using Absolute slot number (ASN). One slotframe represents a set of

timeslots (seven in my experiments), and the slotframes are repeated over time. Looking at

Figure 16, the red box is the first timeslot and blue is next timeslot, and one timeslot has a

length of 10ms. By calculating how many timeslots it takes before a package is received at

the recipient we can calculate latency.

ASN is synchronized in a TSCH network so all nodes will have the same ASN number.

𝐴𝑆𝑁 = (𝑘 ∗ 𝑆 + 𝑡) [15]

I use the 6TiSCH minimal schedule that uses one shared timeslot for transmitting and

receiving. Maximum number of transmissions per package is set to 7 by Contiki-NG, which

 43

is also defined in the standard. This is because applications often prioritize new data instead

of guaranteeing receipt of all packets [8].

The point of using ASN to look at latency is to look at the context, where increased

retransmission increases latency calculated in number of timeslots before the package is

received.

In all simulations, radios have these configurations:

Transmission range 50 m

interference range 100 m

Radio bitrate 250.00 kbps

 Disturber node

Do to the fact that typical fading events are frequency-dependent and do not span all

available channels at the same time, I created a disturber node. Disturber node is placed

within interferences range of the transmitting or receiving nodes. It sends out packets

continuously with a random duration between 1-10ms (10ms is the Contiki-NG default

timeslot length). The node also generates a random number between 11-26 (available

channels in the 2400-2483.5 band), this number is used to set which channel the disturber

node is to interfere on.

 44

5.2 Reliability and latency

One simulation equals 10 000 packets being sent from “client” to “server”. TX 1 means one

transmission, TX 2 means two transmissions (or one retransmission), TX 3 means three

transmissions (or 2 retransmission) etc.

 UDP Client node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Slotframe length 7

Payload size 64 bytes

Timeslot length 10ms

EB sending period 16sec

Number of packages 10 000

UDP package sending period 1sec

Routing protocol None

Table 2: Client node Packet delivery ratio (PDR)

Client node listen for EB for synchronization. After that the client starts sending out UDP

package to the server every second. The UDP package contains current ASN numbers

derived from client node as payload. I created a java script to save information printed from

the nodes, shown in Appendix C.

 UDP Server node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Routing protocol None

Table 3: Server node Packet delivery ratio (PDR)

Server node is set as coordinator and starts sending out EB for synchronization. Then listens

for incoming packages. Server counts the number of received UDP packets and checks

sequence numbers to exclude duplicate packages.

When the client transmitted a UDP packet, he placed his current ASN's number in payload,

and the server can then use this number and compare it with current ASN numbers. By

calculating the difference, we find latency calculated in ASN.

 45

Server node use PowerTracker to collect information about radio duty cycle. I created a java

scripts to save information from the server, shown in Appendix C.

 Results and analysis

Environment 1: No Interference

The first test is to verify the changes made in the simulation tool and test the hypothesis that

in a perfect environment without interference, two radios will not improve Packet Deliver

Ratio (PDR), reduce number of retransmissions hence reduce latency, but only have a higher

energy consumption.

Figure 17 : Environment 1

Figure 17 shows the simulation environment. Node 1 represents client and is located 20m

away from node 2 representing the server.

 46

Figure 18 : Retransmissions with no interference. The figure shows percentage in Y-direction and number of
retransmissions in X-direction

Figure 18 shows, as expected, that in a perfect environment without any disturbances, nodes

with one or two radios get more or less the same result. We see that some of the packets need

one retransmission, this is due to the 6TiSCH minimal schedule that uses a shared slot so EB

collisions can occur. We verified this by lower the rate at how often nodes emit EB from

every 16s to 32s. This is showed in Figure 19 where we get a higher percentage of packets

without retransmissions. The rest of the simulations will be with the standard EB

cycle of 16s.

Figure 19: EB every 32s. The figure shows percentage in Y-direction and number of retransmissions in X-direction

97,69

2,04 0,00 0,00 0,00 0,00 0,00

97,98

2,02 0,00 0,00 0,00 0,00 0,00
%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7

Number of transmissions per package

No interferance

One radio Two radio

99,73

0,27 0,00 0,00 0,00 0,00 0,00

99,73

0,26 0,00 0,00 0,00 0,00 0,00
0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7

No interference

Two radios One radio

 47

Figure 20: Average transmissions no interference. Figure shows average transmissions per package in Y-direction

Figure 20 shows that nodes with one radio and two radios need exactly as many

transmissions per package. We can also read this from the figure 18 which shows that the

percentage of packets sent without retransmission is equal using one and two radios.

Figure 21 : No interference radio distribution. The figure shows percentage in Y-direction.

Figure 21 shows that all packets sent are received simultaneously on both radios. This makes

sense because both channels that are communicated on are always without disturbing

elements. This also confirms our implementation.

1,02 1,02

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

One radio Two radios

A
ve

ra
ge

 t
ra

n
sm

is
si

o
ns

No interference

0 0

100

0

10

20

30

40

50

60

70

80

90

100

Radio 1 Radio 2 BOTH

%

No interferance

 48

Figure 22: Duty cycle one radio no interference

Figure 23: Duty cycle two radios no interference

If we compare the duty cycle for nodes with one radio and two radios (figure 22 and 23), we

see that nodes with one radio has somewhat higher duty cycle. This is due to some

retransmissions nodes with one radio must do. However, due to the fact that dual-radio nodes

use twice the amount of power on transmission and receiving, power consumption will still

be higher using two radios.

4,91

0,36
0,08 0,00

4,40

0,09
0,36

0,00
0,00

1,00

2,00

3,00

4,00

5,00

6,00

ON Transmitting Receiving Interfered

%
Duty cycle one radio

Client Server

4,45

0,36
0,08 0,00

4,41

0,09
0,36

0,00
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

ON Transmitting Receiving Interfered

%

Duty cycle two radios

Client Server

 49

Figure 24: Average ASN. Figure show average ASN in Y-direction, and radios in X-direction.

Figure 24 shows that without any kind of interference, latency using one radio vs. two radios

is more or less the same. This can also be seen in figure 18 where the number of

transmissions per packet is equal. When they need as many retransmissions per package,

latency will be similar.

7,76 7,64

0

1

2

3

4

5

6

7

8

9

10

One radio Two radios

A
S

N
Average ASN

 50

Environment 2: One disturber

In test number two we will test the hypothesis that in an environment with a disturber node

that interferes on one random channel, two radios will improve packet deliver ratio (PDR),

reduce the number of retransmissions hence reduce delay. This is because we communicate at

two different frequencies at the same time, but there is interference on one channel at a time.

Figure 25 : Environment 2

Figure 25 shows the simulation environment. Node 1 represents client and is located 20m

away from node 2 representing the server. Node 3 is a disturber node in interference range of

both nodes.

 51

Figure 26: Data one disturber. Figure shows percentage in the Y-direction and the number of retransmissions in the X-
direction.

Figure 26 shows that when we introduce a disturber node that randomly interfere on different

channels in random durations, we get a significant increase in number of retransmissions

using only one radio. If we look at the proportion of packets received with one

retransmission, nodes with one radio have increased by 575.98% compared to environment

without interference, while using two radios, it has "only" increased by 67.98%. Result shows

that when using one radio we have packets that exceed the limit of seven transmissions (the

limit set by the TSCH standard), hence packet loss, but using two radios we have a worst case

of three transmissions (or two retransmissions). The reason for an increase in retransmissions

using two radios is that even though the disturber node only interferes on one channel at a

time, it has a random duration that allows it to interfere over a timeslot at two different

frequencies. If it has a duration of e.g. 5ms, it could interfere 5ms on one channel and 5ms on

another channel therefor interfere over one timeslot (10ms).

96,52

3,39
0,09 0 0 0 0

83,576

13,787

2,217 0,355 0,056 0,008 0,002
%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7

Number of transmissions per packet

One disturber

Two radio One radio

 52

Figure 27: Average transmissions one disturber. Figure shows average transmissions per package in Y-direction

Figure 27 shows that nodes with one radio needs 1.2 transmission per packet on average,

while two-radio nodes need 1.04 transmission per packet on average. Compared with

environment without interference, transmission per packet has increased by 17.65% with one

radio and 1.96% using two radios.

Figure 28: One disturber radio distribution. Figure shows the percentage in Y-direction.

Figure 28 shows that not all packets are received on both radios. 22.55% of the packets were

only received on one of the radios. Looking at figure 26 again, we see that the proportion of

packets that did not require retransmissions has decreased, but by using two radios, it has not

decreased more than 1.49%.

This shows that two radios have an impact when we introduce disturbances.

1,20

1,04

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

One radio Two radios

A
v

er
a

g
e

tr
a

ns
m

is
si

o
n

s

One disturber

11,16 11,39

77,45

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

Radio 1 Radio 2 BOTH

%

One disturber

 53

Figure 29 : One disturber, packet dropped

Figure 29 shows that with one radio, two packets are being dropped because they exceed the

limit of seven retransmission, but with two radios all packets are received.

Figure 30: Duty cycle one radio one disturber. Percentage in y-direction, and radio modes in x-direction.

2

0
0

0,5

1

1,5

2

2,5

One radio Two radio

N
u

m
b

e
r

o
f p

a
ck

et
s

dr
o

p
pe

d
One disturber

4,73

0,41
0,09

0,43

4,28

0,10
0,37

1,42

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

ON Transmitting Receiving Interfered

%

Duty cycle one radio

Client Server

 54

Figure 31 : Duty cycle two radios one disturber. Percentage in y-direction, and radio modes in x-direction.

Fig 30 and fig 31 show that the duty cycle for nodes with one radio differs from nodes with

two radios. The reason for that is all retransmissions nodes with one radio must do before

package is received. We see that the node with one radio has been 0.41% of the time in

transmission mode, but with two radios it has "only" been in transmission mode 0.37% of the

time. The same increase can be seen in receive mode.

Figure 32: Average ASN. The figure shows ASN on average in Y direction, and radios in X direction

Figure 32 shows that due to retransmissions, we get an increase in average ASN. Average

ASN when using one radio have increased by 41.88% and with two radios 4.45% compared

to environment without interference. As we have discussed before, latency increases when

we need to use retransmissions, so when we get a reduction in the proportion of packets sent

without retransmissions, latency will naturally also increase.

4,44

0,37
0,08

0,37

4,41

0,09
0,32 0,40

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

ON Transmitting Receiving Interfered

%
Duty cycle two radios

Client Server

11,01

7,98

0

2

4

6

8

10

12

One radio Two radios

A
S

N

Average ASN

 55

Environment 3: Two disturbers

In test number three we will test the hypothesis that in an environment with two disturber

nodes that interferes on two different channels simultaneous, will we not only see an increase

in retransmissions using one radio but also using two radios. But we will still see that two

radios improve packet deliver ratio (PDR), reduce the number of retransmissions hence

reduce delay.

Figure 33 : Environment 3

Figure 33 shows the simulation environment. Two nodes are placed 20m apart from each

other (node 1 and 2). Disturber nodes (3 and 4) are placed within interference range of the

two nodes.

 56

Figure 34 : Data Two disturbers. Figure shows the percent in the Y-direction and the number of retransmissions in the X-
direction

Figure 34 shows that when introducing two disturber nodes, the number of retransmissions is

increasing even further. Proportion of packets sent without retransmissions have fallen by

23.75% using one radio and 4.67% using two radios compared to environment without

interference.

We also see that we have a worst case of five transmissions (or four retransmissions) using

two radio and packet loss using one radio.

Figure 35: Average transmissions two disturber nodes. Figure shows average transmissions per package in Y-direction

Figure 35 shows that nodes with one radio needs 1.35 transmission per packet on average,

while two-radio nodes need 1,07 transmissions per packet on average. Compared with

93,396

6,204
0,375 0,024 0,002 0 0

73,928

19,297

5,034
1,292 0,340 0,086 0,022

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7

Number of transmissions per packet

Two disturbers

Two radio One radio

1,35

1,07

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

One radio Two radios

A
ve

ra
ge

 t
ra

n
sm

is
si

o
ns

Two disturbers

 57

environment without interference, transmission per packet has increased by 32.35% with one

radio and 4.90% using two radios.

Figure 36 : Two disturber radio distribution. Figure shows the percentage in y-direction.

Figure 36 shows that not all packets are received on both radios. 35.4% of the packets were

only received on one of the radios. This shows that two radios have an impact when we

introduce disturbances.

17,52 17,64

64,84

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

Radio 1 Radio 2 BOTH

%

Two disturber

 58

Figure 37 : Two disturbers packets dropped

Figure 37 shows that we get 92 (or ~1%) packet loss using one radio, and 0 when using two

radios.

Figure 38: Duty cycle one radio two disturbers. Figure shows percentage in Y-direction and radio modes in X-direction

Figure 39: Duty cycle two radios two disturbers. Figure shows percentage in Y-direction and radio modes in X-direction

92

0
0

10

20

30

40

50

60

70

80

90

100

One radio Two radio

N
u

m
b

e
r

o
f p

a
ck

et
s

dr
o

p
pe

d
Two disturbers

4,87

0,47
0,08

0,64

4,42

0,09
0,38

0,63

0,00

1,00

2,00

3,00

4,00

5,00

6,00

ON Transmitting Receiving Interfered

%

Duty cycle one radio

Client Server

4,44

0,37
0,08

0,37

4,41

0,09
0,32 0,40

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

ON Transmitting Receiving Interfered

%

Duty cycle two radios

Client Server

 59

The node with one radio is more often "ON", respectively 4.87% versus 4.44% to

radios(figure 38 and 39). This is because of all the retransmissions node with one radio must

do as we can see in the columns Transmitting (0.47% vs 0.37%) and Receiving (0.38% vs

0.32%). The client must send the same package multiple times, while the server might

receive more. This may be because the packet never arrived at the server side, or that ack was

not received at the client side.

Figure 40: Average ASN. Figure shows average ASN in Y-direction and radios in X-direction

Figure 40 shows that due to retransmissions, we get an increase in average ASN. Average

ASN when using one radio have increased by 103.09% and with two radios 10.73%

compared to no interference simulation.

15,76

8,46

0

2

4

6

8

10

12

14

16

18

One radio Two radios

A
S

N

Average ASN

 60

Environment 4: Three disturbers

Test number four will be in an environment filled with interference. We introduce three

disturber nodes that interfere on three or less different frequencies. Here we will see that both

radio and dual radios will get more retransmissions that lead to more latency, but nodes with

two radios will still get better results.

Figure 41: Environment 4

Figure 41 show the simulation environment. Two nodes (1 and 2) placed 20m apart from

each other. Disturber nodes (3,4 and 5) is placed within interference range of the two nodes.

 61

Figure 42: Data three disturbers. Figure shows percentage in Y-direction and the number of retransmissions in the X-
direction.

In the latest simulation, we introduced three random disturbers, and the number of

retransmissions is increasing even more (shown in Figure 42). When comparing the node

with one radio and two-radio, we see that the number of packets sent without retransmissions

decreases by 32.53% against two radios 8.51% compared to the perfect environment. Worst

case with one radio is above seven transmissions (hence packet drop), and five using two

radios.

Figure 43: Average transmissions three disturber nodes. Figure shows average transmissions per package in Y-direction.

Figure 43 shows that nodes with one radio needs 1.52 transmission per packet on average,

while two-radio nodes need 1,12 transmissions per packet on average. Compared with

89,176

9,667

1,039 0,107 0,010 0,001 0

65,448

22,691

7,837
2,668 0,928 0,316 0,111

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7

Number of transmissions per packet

Three disturbers

Two radio One radio

1,52

1,12

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

One radio Two radios

A
ve

ra
ge

 t
ra

n
sm

is
si

o
ns

Three disturbers

 62

environment without interference, transmission per packet has increased by 49.02% with one

radio and 9.80% using two radios.

Figure 44 : Three disturbers radio distribution. Figure shows percentage in Y-direction.

Figure 44 shows that not all packets are received on both radios. 44.77% of the packets were

only received on one of the radios.

Figure 45 : Package dropped one radio

Figure 45 shows that 857 (or ~8.6%) packets is being dropped with one radio, and 0 when

using two radios. Considering the strict requirements of reliability, packaging losses in

industrial closed loops can result in degradation of the control system performance, and result

in economic loss, or even human safety (e.g., gas pipe explosion).

22,25 22,52

55,23

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Radio 1 Radio 2 BOTH

%

Three disturber

857

0
0

100

200

300

400

500

600

700

800

900

One radio Two radio

N
u

m
b

e
r

o
f p

a
ck

et
s

dr
o

p
pe

d

Three distrubers

 63

Figure 46: Duty cycle one radio three disturbers. Figure shows percentage in Y-direction and radio modes in X-direction

Figure 47: Duty cycle two radios three disturbers. Figure shows percentage in Y-direction and radio modes in X-direction

Duty cycle shows that the node with one radio is ON 5.01%, and with two radios 4.49%

(figure 46 and 47). This is because of all retransmissions node with one radio must do as we

can see the Transmitting column (0.53% vs. 0.40%) and Receiving (0.40% vs. 0.30%).

5,01

0,53
0,08

0,88

4,43

0,09
0,40

0,85

0,00

1,00

2,00

3,00

4,00

5,00

6,00

ON Transmitting Receiving Interfered

%
Duty cycle one radio

Client Server

4,49

0,40
0,07

0,82

4,40

0,09
0,30

0,88

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

ON Transmitting Receiving Interfered

%

Duty cycle two radios

Client Server

 64

Figure 48: One radio average ASN

Due to retransmissions, we get an increase in average ASN (shown in figure 48). Average

ASN when using one radio have increased by 223.45% and with two radios 23.30%

compared to no interference simulation.

Figure 49: Average TX

Figure 49 shows that with no interference we need the same number of transmissions on

average. But, when adding interference to the environment, we see that with three disturber

nodes, nodes with one radio need 1.5 transmission on average per packet, compared with two

radios 1.12 transmission on average.

25,1

9,42

0

5

10

15

20

25

30

One radio Two radios

A
S

N

Average ASN

1,02 1,04 1,07
1,12

1,02

1,20

1,35

1,52

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

No interference One disturber Two disturbers Three disturbers

N
u

m
b

e
r

o
f T

X

Average TX

Two radios One radio

 65

5.3 Joining time

In this simulation one node is set as a coordinator. The other node (Joining node) is trying to

join by listening for Enhanced beacon (EB). When the node is “synchronized”, timestamp is

collected. Server node is set as coordinator and starts sending out EB for synchronization. It

sends out EB every 1 second. This simulation is repeated 1000 times. I created a java script

that saves timestamp printed from joining node, shown in Appendix C.

In this test we will look at the effect of two radios at convergence time. The hypothesis is that

when joining node listen on two different frequencies while coordinator node sends out

Enhanced beacons (EB) on two different frequencies we will see a significantly reduce in

convergence time.

 Joining node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Table 4: Joining node

 Coordinator node

MAC TSCH

EB sending period 1 Seconds

Slotframe length 101

TSCH Schedule 6TiSCH Minimal

Table 5: Coordinator node

 66

Figure 50 : Joining environment

Figure 50 shows the joining environment. Node 1 represents joining node and is located 20m

away from node 2 representing the coordinator.

 Results and analysis

Figure 51 : Joining data. Figure shows number of simulations in X-direction and joining time in second in Y-direction.

0

20

40

60

80

100

120

1
2

5
4

9
7

3
9

7
1

21
1

45
1

69
1

93
2

17
2

41
2

65
2

89
3

13
3

37
3

61
3

85
4

09
4

33
4

57
4

81
5

05
5

29
5

53
5

77
6

01
6

25
6

49
6

73
6

97
7

21
7

45
7

69
7

93
8

17
8

41
8

65
8

89
9

13
9

37
9

61
9

85

Jo
in

in
g

tim
e

 in
 s

e
co

nd
s

Number of simulations

Joining time

One radio Two radio

 67

 One radio Two radios

Average time 14,917s (~15s) 4,121s(~4s)

Worst case 97s 27s

Table 6: Result joining simulation

Figure 51 shows, as expected, that two radios significantly reduce convergence time.

With two radios, we get an average connection time of 4.121s (~ 4s), and 14.917s (~ 15s)

using one radio. This is a reduction of average connection time of 72.37%.

We also see that two-radio nodes have a worst-case of 27s, and worst case using one radio of

97s, this is a worst-case reduction of 73.37%.

To verify the average connection time using one radio, I have looked for other documents

that have done similar tests. In [16] they have used Python as simulation tools, the result

showed a connection time of ~15s, which is identical to my result.

Reducing joining time reduces power consumption as nodes must be active throughout the

search period. However, listening on two radios and sending EB on two radios also increases

the energy consumption.

 68

5.4 Two-hop simulation

In the last test we will look at the impact two radios have on networks that require more hop

to destination and the impact this has on latency. In the same way as Chapter 5.2, we use

ASN to calculate latency and disturber nodes to simulate interference.

 UDP Client node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Slotframe length 7 (timeslots)

Timeslot length 10ms

Routing protocol RPL-lite

Number of packets 10 000

UDP package sending period 1sec

Payload size 64 bytes

Table 7: Two-hop Client node

Client node waits for EB for synchronization. After that the client sends out UDP packet to

the server every second. The UDP package contains current ASN numbers derived from

client node as payload.

 UDP Server node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Routing protocol RPL-lite

Slotframe length 7

Timeslot length 10ms

Table 8: Two-hop Server node

Server node is set as coordinator and starts sending out EB for synchronization. Then listens

for incoming packages. The server counts the number of packets received and takes out the

ASN number from the payload and uses the current ASN number to calculate the difference.

I created a java script to save information printed from the server node, shown in Appendix

C.

 69

 Intermediate node

MAC TSCH

TSCH Schedule 6TiSCH Minimal

Routing protocol RPL-lite

Slotframe length 7

Timeslot length 10ms

Table 9: Two-hop Intermediate node

The intermediate node is waiting for EB to be synchronized. After this, he is only part of the

routing topology and forwarding packets that are being sent. After the node has become part

of the network, it also sends out periodic EB.

Figure 52: Average delay 2hop. Figure shows Average ASN in Y-direction.

 Results and analysis

Figure 52 shows, as expected, that without any interference, we get more or less the same

result. However, when adding interference to the environment, nodes with one radio will get

a much higher average latency. In particular, we see it when we add two disturber nodes,

where nodes with one radio gets an average ASN of 46.62 and two radios get an average of

17.8. We also see that when adding interference, nodes with two radios do not change that

much, without interference it has an average ASN of 15.99 and with two disturbers it has an

15,95

25,02

46,62

15,99 16,49 17,8

0

5

10

15

20

25

30

35

40

45

50

No interference One disturber Two disturbers

A
S

N

Average ASN

Two radios One radio

 70

average of 17.8, this is only an increase of 11.32%. Looking at nodes with one radio, average

is increasing 192.29%.

5.5 Discussion

Based on all simulations we see that using two radios may have some advantages. In a perfect

environment without interference two radios will not help much, it only has a higher energy

consumption, but this is not very representative of an industrial environment. There will be

interference that could make link quality poor.

When we add random interference, we see that not only do we get a high number of

retransmissions, but also packet loss using one radio.

When we compare Figure 18 and Figure 42, we see that the proportion of packets received

without retransmission has gone from 97.69% to 65.45% using one radio, a reduction of

33%, and an average delay of 25.10 ASN (figure 48). Looking at the use of two radios, the

proportion of packets received without retransmission has gone from 97.98% to 89.176%,

which is a reduction of 9%, and an average delay of 9.42 ASN. The high number of

retransmissions do not only increase latency, but you also get a large variation of latency

(jitter). When we consider the requirements for Real-time characteristics in industrial

systems, where the requirements for latency were less than 10s and less then 20s jitter

[27], could the high proportion of retransmissions make us not reach these requirements.

Looking at Figures 29, 37 and 45 we see that we have packet loss using one radio, and no

packet loss when using two radios. Considering the strict requirements of reliability, packet

losses in industrial closed loops can result in degradation of the control system performance,

and result in economic loss, or even human safety (e.g., gas pipe explosion). The reason for

packets drop is that they exceeded the limit of 7 transmissions. This is also defended by the

fact that some industrial network prioritizes new data instead of guaranteeing reception of all

packets [8].

 71

Figure 46 and 47 shows a lower duty cycle in percentage when using two radios.

This is because of all retransmissions nodes with one radio must do before the packet is

received. A lower duty cycle results in less energy consumption.

Convergence time can also be greatly reduced by using two radios. A joining node must

listen for Enhanced Beacon at a given frequency but do not know what frequency to listen to.

Instead of listening on one radio after Enhanced Beacon at one random frequency, we listen

to beacons at two different frequencies simultaneous. This reduces the average joining time

from ~ 15s to ~ 4s, which means a reduction of 72.37%. We also see that we reduce worst

cases from 97s to 27s, meaning a reduction of 72.16%. This also leads to a reduction of

power consumption as joining nodes must be active throughout the search period.

On the negative side, implementing two radios will increase energy

consumption.

Implementing two radios comes with a tradeoff. The node with two radios will have a higher

energy consumption as it sends packets over two radios and listen with two radios.

In an environment without interference, implementing two radios will help us meet the

requirements of real-time characteristics (low latency and jitter), but only have a higher

power consumption that reduces network lifetime.

Looking at the radio duty cycle (figure 46-47) with a random interference sources, we see

that with one radio we get overall higher values which means higher energy consumption.

But even though the duty cycle is lower in percent with two radios, power consumption will

also be higher in these percentages. So, when the node radio is "ON" 5% of the simulation

time, both radios will be “ON” 5% of the simulation time, but in these 5 percent’s, it will use

twice as much energy.

This solution is not necessarily equally interesting for all industrial applications. However,

for applications where ultra-high reliability, low jitter and delay are more important than

power consumption, this solution can work. This is particularly important in closed-loops

(Table 1), where sensors directly interact with actuators that make a dynamic change like in

the WNCS.

 72

6 Conclusion

Implementing two radios on one node or actuator has its advantages, but also disadvantages.

Two radios have advantages in terms of reliability and Real-time characteristics, but

disadvantages in terms of power consumption, bandwidth used and cost of two radios.

In a perfect environment without any interference, implementing two radios will not have any

effect, but in an environment with random noise sources, two radios have a positive effect.

By adding interference, we see that the number of retransmissions per packet increases

drastically using one radio, this has a negative effect on real-time data that relies on as little

latency and variation of latency as possible (jitter). This is particularly important in industrial

closed loops where actuators make changes dynamically and the latency and jitter

requirements are in milliseconds. We also see that using one radio in a very noisy

environment can cause packet loss, but by using two radios, the simulations have shown that

we avoid this. Packet loss is also very critical in industrial systems where data can contain

alarms and in the worst case this can lead to loss of human life. Convergence time can also be

greatly reduced by using two radios. This reduces the average joining time from ~15s to ~4s,

which means a reduction of 72.37%. We also see that we reduce worst cases from 97s to 27s,

this is a reduction of 72.16%. Lowering joining time will also reduce power consumption as

nodes must be active throughout the search period, but at the same time we increase power

consumption by listening on two radios

The natural disadvantage of this proposal is the cost of two radios, bandwidth and power

consumption.

Using two radios also increases power consumption, as nodes sends and receives on two

radios at the same time. One thing the simulations shows is that the duty cycle in percent

when using two radios is somewhat lower than using one radio, this is because of all

retransmissions nodes with which one radio must do. But even though the duty cycle is lower

in percent with two radios, power consumption will also be higher in these percentages.

 73

6.1 Future work

One way to reduce power consumption with two radios is to classify traffic.

For example, if we only send Enhanced beacons (EB) with one radio, we still will get faster

connection time when joining nodes search on two different frequencies, but we will reduce

the power consumption on an already converted networks.

So, by sending specific critical real-time data on two radios (two different frequencies), we

could reduce the power consumption.

In my implementation, there is also a problem if we want to use whitelisting.

A whitelisting selects preferred frequencies and excludes others, but we use frequency offset

calculated for radio 1 of the MAC layer to select channel for radio 2.

So, when we select a channel 5 above or below radio 1, this can be one of the excluded

channels.

Implementing this on a real node will of course be very interesting. The phenomenon of

multi-path fading is something difficult to simulate. The changes I've made in the MAC layer

will also work on a real node, but the radio driver I've changed works only for simulation

using Cooja.

 74

Bibliography

[1] D. Dujovne, T. Watteyne, X. Vilajosana and P. Thubert, "6TiSCH: deterministic IP-

enabled industrial internet (of things)," in IEEE Communications Magazine, vol. 52, no. 12,

pp. 36-41, December 2014.

doi: 10.1109/MCOM.2014.6979984

 [2] T. Watteyne, C. Adjih and X. Vilajosana, "Lessons learned from large-scale dense

IEEE802.15.4 connectivity traces," 2015 IEEE International Conference on Automation

Science and Engineering (CASE), Gothenburg, 2015, pp. 145-150. doi:

10.1109/CoASE.2015.7294053

[3] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency diversity: Why

channel hopping makes sense,” in Proceedings of the 6th ACM Symposium on Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, ser. PE-WASUN ’09.

New York, NY, USA: ACM, 2009, pp. 116–123. [Online]. Available:

http://doi.acm.org/10.1145/1641876.1641898

[4] H. A. Salam and B. M. Khan, "IWSN - Standards, Challenges and Future," in IEEE

Potentials, vol. 35, no. 2, pp. 9-16, March-April 2016.doi: 10.1109/MPOT.2015.2422931

[5] L. Doherty, W. Lindsay and J. Simon, "Channel-Specific Wireless Sensor Network Path

Data," 2007 16th International Conference on Computer Communications and Networks,

Honolulu, HI, 2007, pp. 89-94.doi: 10.1109/ICCCN.2007.4317802

[6] Dimitrios. Serpanos; Marilyn Wolf , “Internet-of-Things (IoT) Systems: Architectures,

Algorithms, Methodologies”, 2018 doi: 10.1007/978-3-319-69715-4

[7] P. Park, S. Coleri Ergen, C. Fischione, C. Lu and K. H. Johansson, "Wireless Network

Design for Control Systems: A Survey," in IEEE Communications Surveys & Tutorials, vol.

20, no. 2, pp. 978-1013, Secondquarter 2018. doi: 10.1109/COMST.2017.2780114

[8] J. Åkerberg, M. Gidlund and M. Björkman, "Future research challenges in wireless sensor

and actuator networks targeting industrial automation," 2011 9th IEEE International

Conference on Industrial Informatics, Caparica, Lisbon, 2011, pp. 410-415. doi:

10.1109/INDIN.2011.6034912

[9] Jun Zheng; Abbas Jamalipour, "Introduction to Wireless Sensor Networks," in Wireless

Sensor Networks:A Networking Perspective , 1, Wiley-IEEE Press, 2009, pp.500-

doi: 10.1002/9780470443521.ch1

[10] G. Zhao, “Wireless sensor networks for industrial process monitoring and control: A

survey,” Network Protocols and Algorithms, vol. 3, no. 1, pp. 46–63, 2011. [ONLINE]

Available: https://pdfs.semanticscholar.org/9293/78d9cf6c289f65cfae760b5eb36a55c9373b.p

df

[11] Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH

[Online] Available: http://www.simonduquennoy.net/papers/duquennoy15orchestra.pdf

 75

[12] Madhav Patil Department of Electrical Engineering, Kishan Gutta Department of

Electrical Engineering, “Wireless Sensors in Industrial Instrumentation A

Survey”. [ONLINE]Available: http://www.asee.org/documents/zones/zone1/2014/Student/P

DFs/228.pdf

[13] V. C. Gungor and G. P. Hancke, "Industrial Wireless Sensor Networks: Challenges,

Design Principles, and Technical Approaches," in IEEE Transactions on Industrial

Electronics, vol. 56, no. 10, pp. 4258-4265, Oct. 2009.doi: 10.1109/TIE.2009.2015754

[14] M. Luvisotto, Z. Pang and D. Dzung, "Ultra High Performance Wireless Control for

Critical Applications: Challenges and Directions," in IEEE Transactions on Industrial

Informatics, vol. 13, no. 3, pp. 1448-1459, June 2017. doi: 10.1109/TII.2016.2617459

[15] “Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of

Things (IoT): Problem Statement” RFC7554 [Online].

Available: https://tools.ietf.org/html/rfc7554

[16] Apostolos Karalis, Dimitrios Zorbas, and Christos Douligeris, “ATP A Fast Joining

Technique for IEEE802154 TSCH Networks” [Online].

Available: https://www.researchgate.net/profile/Dimitrios_Zorbas/publication/325286100_A

TP_A_Fast_Joining_Technique_for_IEEE802154-

TSCH_Networks/links/5b03f7c9aca2720ba0996561/ATP-A-Fast-Joining-Technique-for-

IEEE802154-TSCH-Networks.pdf

[17] Duy, Thang Phan ; Dinh, Thanh ; Kim, Younghan, “A rapid joining scheme based on

fuzzy logic for highly dynamic IEEE 802.15.4e time-slotted channel

hopping networks” International Journal of Distributed Sensor Networks, 2016, Vol.12(8)

[18] Cooja documentation [Online]. Available: https://github.com/contiki-os/contiki/wiki/An-

Introduction-to-Cooja

[19] Tsung-Han Lee,Lin-Huang Chang, Yan-Wei Liu, Jiun-Jian Liaw, Hung-

Chi Chu, “Priority-based scheduling using best channel in 6TiSCH networks” [ONLINE].

Available: https://doi.org/10.1007/s10586-017-1185-9

  
[20] 6TiSCH Operation Sublayer (6top) draft

[Online]. Available: https://tools.ietf.org/html/draft-ietf-6tisch-6top-interface-04

[21] More about Contiki‐NG

[Online]. Available: https://github.com/contiki-ng/contiki-ng/wiki/More-about-Contiki‐NG

[22] J. Farkas, B. Varga, X. Vilajosana, E. Grossman, C. Gunther, P. Thubert, P. Wetterwald,

J. Raymond, J. Korhonen, Y. Kaneko, S. Das, Y. Zha, F.-J. Goetz, J. Schmitt, T. Mahmoodi,

S. Spirou, and P. Vizarreta, “Deterministic Networking Use Cases,” Internet Engineering

Task Force, Internet-Draft draft-ietf-detnet-use-cases- 11, Oct. 2016, work in Progress.

[Online]. Available: https://tools.ietf.org/html/draft-ietf-detnet-use-cases-11

 76

[23] P. Zand, S. Chatterjea, K. Das, and P. Havinga, “Wireless industrial monitoring and

control networks: The journey so far and the road ahead,” Journal of Sensor and Actuator

Networks, vol. 1, no. 3, p. 123âA ̆S ̧152, Aug 2012. doi: 10.3390/jsan1020123

[24] “IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4-2015

(Revision of IEEE Std 802.15.4-2011), vol., no., pp.1-709, April 22 2016 doi:

10.1109/IEEESTD.2016.7460875

[25] Office of Energy Efficiency and Renewable Energy, “Wireless success story - industrial

technologies program (itp),” U.S. Department of Energy, Tech. Rep., 2010.

[26] J. Werb, “The technology behind isa100.11a user driven design,” ISA100 Wireless

Compliance Institute, Tech. Rep., 2010. [Online]. Available:

http://isa100wci.org/Documents/PDF/Yokohama- Meeting/ AM1_26- Aug-

2010_Jay_Werb_WCI- Tech- Overview

[27] M. Ehrlich, L. Wisniewski, and J. Jasperneite, “State of the art and future applications of

industrial wireless sensor networks,” Nov 2016.

[28] A. A. Kumar S., K. Ovsthus and L. M. Kristensen., "An Industrial Perspective on

Wireless Sensor Networks — A Survey of Requirements, Protocols, and Challenges,"

in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1391-1412, Third Quarter

2014. doi: 10.1109/SURV.2014.012114.00058

[29] D. D. Guglielmo, S. Brienza, and G. Anastasi, “IEEE 802.15.4e: A survey”,

Computer Communications, vol.88, pp. 1–24, 2016.

[Online]. Available: https://doi.org/10.1016/j.comcom.2016.05.004

[30] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler and T. Engel, "On

Optimal Scheduling in Duty-Cycled Industrial IoT Applications Using IEEE802.15.4e

TSCH," in IEEE Sensors Journal, vol. 13, no. 10, pp. 3655-3666, Oct. 2013. doi:

10.1109/JSEN.2013.2266417

[31] RFC 6550 “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks”

[Online]. Available: https://tools.ietf.org/html/rfc6550

[32] RFC 4944 “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks” [Online]. Available: https://tools.ietf.org/html/rfc6282

[33] Industrial Routing Requirements in Low-Power and Lossy Networks [Online] Available:

https://www.rfc-editor.org/rfc/pdfrfc/rfc5673.txt.pdf

[34] R. Yu, “Mesh network protocols for the industrial internet of things”, MICROWAVE

JOURNAL, vol. 57, no. 12, pp. 38–+, 2014.

[35] “Contiki-NG wiki” [Online] Available: https://github.com/contiki-ng/contiki-

ng/wiki/More-about-Contiki‐NG

[36] “Contiki-OS wiki” [Online] Available: http://www.contiki-os.org

https://doi.org/10.3390/jsan1020123
https://tools.ietf.org/html/rfc6550

 77

[37] “Contiki-ng Documentation: TSCH and 6TiSCH” [Online] Available:

https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-TSCH-and-6TiSCH

[38] “The Contiki‐NG configuration system»

[Online] Available: https://github.com/contiki-ng/contiki-ng/wiki/The-Contiki‐NG-

configuration-system

[39] A. Willig, “Recent and emerging topics in wireless industrial communication,” IEEE

Transactions on Industrial Informatics, vol. 4, no. 2, pp. 102–124, 2008.

[40] “An Introduction to Cooja» [Online]. Available: https://github.com/contiki-

os/contiki/wiki/An-Introduction-to-Cooja

[41] “Cooja simulation” [Online]. Available:

http://anrg.usc.edu/contiki/index.php/Cooja_Simulator

[42] “Cooja Simulator Manual» [Online]. Available:

https://www.researchgate.net/publication/304572240_Cooja_Simulator_Manual

[43] “Dual-radio implantation Contiki-OS”

[Online]. Available: https://github.com/clovervnd/Dual-radio-simulation

[44] “Oria Find printed and electronic books, journals, articles, book chapters and more. at

UiO and other Norwegian academic and research libraries”

[Online]. Available: https://www.ub.uio.no

[45] “IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) - IEEE Standard for

Low-Rate Wireless Networks”

[Online]. Available: https://standards.ieee.org/findstds/standard/802.15.4-2015.html

 78

7 Appendix A

7.1 ISO stack – WirelessHART vs ISA100.11a

Layer WirelessHART ISA100.11a

Application Application Upper application layer

Application Sublayer

Presentation Not defined Not defined

Session Not defined Not defined

Transport Transport Transport

Network Network Layer Services Network Layer

Network Layer

Data link Logical Link Layer Upper Data Link Layer

MAC Sublayer MAC Extension

 MAC Sublayer

Physical Physical (2,4GHz bands, DSSS

modulation IEE 802.15.4 - 2006

radio

Physical

Table 10: ISO stack – WirelessHART vs ISA100.11a

7.2 Duty cycle

Power consumption is very imported in a battery powered device. Devices can be places at

challenging spots, and charging/changing battery is difficult. Duty cycle model is widely

used to analyze IoT devices [9] and is calculated as a percentage of the time the devices is

active. The more it can sleep (“turned off”), the lower energy consumption.

Figure 53 : Duty cycle

𝐷𝑢𝑡𝑦 =
𝑇1

𝑇2
∗ 100%

 79

7.3 Retransmission

Industrial networks require high reliability. This is done by using acknowledgement by the

recipient, shown in figure 54. If the sender does not receive acknowledgement within a

timeframe (ack-timeout), he assumes that the receiver did not receive the packet and

transmits the packet again. This will increase delay.

Figure 54 : Acknowledgement

 80

7.4 IEEE 802.15.4

Figure 55: IEEE 802.15.4

Both WirelessHART and ISA have the IEEE 802.15.4 [24] standard as base. The standard

was designed for low rate wireless personal area networks (LR-WPANs) and has several

advantages such as:

• Good against noise

o Direct Sequence Spread Spectrum (DSSS)

▪ Spreading the message signal by modulating following a bit sequence

(radio pulse)

• Good against interference

o CSMA/CA to access the physical medium.

o GTS (PAN coordinator is guaranteed timeslot

o Channel energy scan - PLME-ED request prior to using the channel to know

how much energy there is (activity/noise/interferences)

▪ Energy, Carrier Sense (CCA), CCA + Energy

• Low consumption protocol (low duty cycles, sleep up to 99%)

The physical layer provides data transmission services such as direct sequence spread

spectrum (DSSS) to minimize data loss due to noise, and process RF transceiver, perform

channel selection, and signal MGMT functions.

The MAC layers task is to send MAC packets through the physical layer, treat access to the

physical layer and network beaconing, check package validation and guarantee timeslot

(GTS).

 81

 82

8 Appendix B
Here I will explain the change made in the Cooja simulation tool, and changes made on the

MAC layer. I explain only the changes I have made and why they had to be done.

(..) means that there are codes that have been removed as they are either not relevant or I

have not made changes there.

The entire code can be retrieved from:

https://github.com/VegarKrogsethagen/Contiki-NG-Dual-radio.git

8.1 Cooja-radio-driver

 (……)

1.

2. /* COOJA */

3. char simReceiving = 0;

4. char simInDataBuffer[COOJA_RADIO_BUFSIZE];

5. int simInSize = 0;

6. rtimer_clock_t simLastPacketTimestamp = 0;

7. char simOutDataBuffer[COOJA_RADIO_BUFSIZE];

8. int simOutSize = 0;

9. char simRadioHWOn = 1;

10. int simSignalStrength = -100;

11. int simLastSignalStrength = -100;

12. char simPower = 100;

13. int simRadioChannel = 26;

14. int simLQI = 105;

15. /* COOJA */

16.

17. /*Dummy Radio*/

18. char simReceivingDummy = 0;

19. char simInDataBufferDummy[COOJA_RADIO_BUFSIZE];

20. int simInSizeDummy = 0;

21. rtimer_clock_t simLastPacketTimestampDummy = 0;

22. char simOutDataBufferDummy[COOJA_RADIO_BUFSIZE];

23. int simOutSizeDummy = 0;

24. char simRadioHWOnDummy = 1;

25. int simSignalStrengthDummy = -100;

26. int simLastSignalStrengthDummy = -100;

27. char simPowerDummy = 100;

28. int simRadioChannelDummy = 1;

29. int simLQIDummy = 105;

30. /*Dummy Radio*/

31. static const void *pending_data;

32. //static int seqnr=0;

33. /* If we are in the polling mode, poll_mode is 1; otherwise 0 */

34. static int poll_mode = 0; /* default 0, disabled */

35. static int auto_ack = 0; /* AUTO_ACK is not supported; always 0 */

36. static int addr_filter = 0; /* ADDRESS_FILTER is not supported; always 0 */

37. static int send_on_cca = (COOJA_TRANSMIT_ON_CCA != 0);

38.

39. PROCESS(cooja_radio_process1, "cooja radio process");

40. /*---*/

https://github.com/VegarKrogsethagen/Contiki-NG-Dual-radio.git

 83

(……)

41. /*---*/

42. void

43. radio_set_channel(int channel) // Set radio frequency on radio 1
44. {

45. simRadioChannel = channel;

46.

47. }

48. void

49. radio_set_channelDummy(int channel) // Set radio frequency on radio 2
50. {

51. simRadioChannelDummy = channel;

52.

53. }

54.

55. /*---*/

56. void

57. radio_set_txpower(unsigned char power) // Sett transmission power on both
radios

58. {

59. /* 1 - 100: Number indicating output power */

60. simPower = power;

61. simPowerDummy = power;

62. }

63. /*---*/

64. (……)

65. /*---*/

66. static int

67. radio_on(void) // Turn both radios on.
68. {

69. simRadioHWOn = 1;

70. simRadioHWOnDummy = 1;

71. return 1;

72. }

73. /*---*/

74. static int

75. radio_off(void) // Turn both radios off.
76. {

77. simRadioHWOn = 0;

78. simRadioHWOnDummy = 0;

79. return 1;

80. }

81. /*---*/

82. static void

83. doInterfaceActionsBeforeTick(void)

84. {

85. if(!simRadioHWOn && !simRadioHWOnDummy) {

86. simInSizeDummy = 0;

87. simInSize = 0;

88.

89. return;

90. // Check if both radios are on, if not there is no point in
checking for incoming packages

91. }

92.

93. if(simReceiving && simReceivingDummy)

94. {

95. simLastSignalStrength = simSignalStrength;

96. simLastSignalStrengthDummy = simSignalStrengthDummy;

97. return;

 84

98. // Check if radios are reciving something right now, if they
are we do anything other than update them.

99. }

100. else if(simReceiving && !simReceivingDummy)

101. {

102. simLastSignalStrength = simSignalStrength;

103. // Check if radio 1 is receiving something and radio 2
don’t

104. }

105. else

106. {

107. simLastSignalStrengthDummy = simSignalStrengthDummy;

108. // Checking radio 2.
109. }

110. if(simInSize > 0 || simInSizeDummy > 0)

111. {

112. // If they have a payload greater then 0 we pull a process
that reads the data and notify MAC layer.

113. process_poll(&cooja_radio_process1);

114. }

115. }

116. (……)

117. static int

118. radio_read(void *buf, unsigned short bufsize)

119. {

120. int tmp = simInSize;

121. int tmp1 = simInSizeDummy;

122.

123. if(simInSize <0 && simInSizeDummy <0) {

124. // Checking if the received data is greater than 0, if not
we return 0.

125. return 0;

126. }

127.

128. if(bufsize < simInSize && bufsize < simInSizeDummy) {

129. simInSize = 0; /* rx flush */

130. simInSizeDummy = 0; /* rx flush */

131. // if the incoming data is over the buffsize limit for both
radios we return 0.

132. return 0;

133. }

134. else if(bufsize < simInSize) {

135. simInSize = 0; /* rx flush */

136. // Checks only radio 1s buffer limit.
137. }

138. else if(bufsize < simInSizeDummy) {

139. simInSizeDummy = 0; /* rx flush */

140. // Checks only radio 2s buffer limit
141. }

142.

143.

144. if(simInDataBuffer[2]==simInDataBufferDummy[2])

145. {

146. memcpy(buf, simInDataBuffer, simInSize);

147. simInSize = 0;

148. simInSizeDummy = 0;

149. if(!poll_mode) {

150. packetbuf_set_attr(PACKETBUF_ATTR_RSSI, simSignalStrength);

151. packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, simLQI);

152. }

 85

153. // Comparing Seq-Nr for incoming data. If there are a match
we choose data from radio 1. Return the data(tmp) and notify
MAC layer.

154. return tmp;

155. }

156. else if(simInSize>0)

157. {

158. // Checking if radio 1 have received something. Return the
data(tmp) and notify MAC layer.

159. memcpy(buf, simInDataBuffer, simInSize);

160. simInSize = 0;

161. simInSizeDummy = 0;

162. if(!poll_mode) {

163. packetbuf_set_attr(PACKETBUF_ATTR_RSSI, simSignalStrength);

164. packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, simLQI);

165. }

166.

167. return tmp;

168. }

169. else

170. {

171. // Checking if radio 2 have received something. Return the
data(tmp1) and notify MAC layer.

172. simLastPacketTimestamp = simLastPacketTimestampDummy;

173. memcpy(buf, simInDataBufferDummy, simInSizeDummy);

174. simInSize = 0;

175. simInSizeDummy = 0;

176. if(!poll_mode) {

177. packetbuf_set_attr(PACKETBUF_ATTR_RSSI, simSignalStrengthDummy);

178. packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, simLQIDummy);

179. }

180.

181. return tmp1;

182. }

183.

184. }

185. /*---*/

186. (……)

187. /*---*/

188. static int

189. radio_send(const void *payload, unsigned short payload_len)

190. {

191.

192.

193. int radiostate = simRadioHWOn;

194. simRadioHWOnDummy = simRadioHWOn;

195. /* Simulate turnaround time of 2ms for packets, 1ms for acks*/

196. #if COOJA_SIMULATE_TURNAROUND

197. simProcessRunValue = 1;

198. cooja_mt_yield();

199. if(payload_len > 3) {

200. simProcessRunValue = 1;

201. cooja_mt_yield();

202. }

203. #endif /* COOJA_SIMULATE_TURNAROUND */

204.
205. if(!simRadioHWOn) {

206. // Turn radio 1 on.
207.

208. /* Turn on radio temporarily */

209. simRadioHWOn = 1;

210. }

211. if(!simRadioHWOnDummy) {

 86

212. // Turn radio 2 on.
213.

214. /* Turn on radio temporarily */

215. simRadioHWOnDummy = 1;

216. }

217.

218. if(payload_len > COOJA_RADIO_BUFSIZE) {

219. // The payload is grater then the limited bufsize, returns
error.

220. // The payload is greater than the limited bufsize.

221. return RADIO_TX_ERR;

222. }

223. if(payload_len == 0) {

224. // No payload, returning error.
225. // empty package.

226. return RADIO_TX_ERR;

227. }

228. if(simOutSize > 0 && simOutSizeDummy > 0) {

229. // Already something in buffer, returning error.
230. return RADIO_TX_ERR;

231. }

232.

233. /* Transmit on CCA */

234. #if COOJA_TRANSMIT_ON_CCA

235. if(send_on_cca && !channel_clear()) {

236. return RADIO_TX_COLLISION;

237. }

238. #endif /* COOJA_TRANSMIT_ON_CCA */

239. // Copying data to buffer.
240. memcpy(simOutDataBuffer, payload, payload_len);

241. memcpy(simOutDataBufferDummy, payload, payload_len);

242. simOutSize = payload_len;

243. simOutSizeDummy = payload_len;

244. while(simOutSize > 0 && simOutSizeDummy > 0)

245. {

246. // Sending the data
247. // Sending the data

248. cooja_mt_yield();

249.

250. }

251. // Turn radios off.
252. simRadioHWOnDummy = radiostate;

253. simRadioHWOn = radiostate;

254. return RADIO_TX_OK;

255.

256. }

257. /*---*/

258. static int

259. prepare_packet(const void *data, unsigned short len)

260. {

261. // Called by MAC layer, saving pending package before
transmitting it.

262. pending_data = data;

263. return 0;

264. }

265. /*---*/

266. static int

267. transmit_packet(unsigned short len)

268. {

269. // Called by MAC layer, sending the pending package.
270. int ret = RADIO_TX_ERR;

271. if(pending_data != NULL) {

 87

272. ret = radio_send(pending_data, len);

273. }

274. return ret;

275. }

276. /*---*/

277. static int

278. receiving_packet(void)

279. {

280. // Called by MAC layer, checking if radios are receiving
something right now.

281.

282. if(simReceiving == 1 || simReceivingDummy == 1){ return 1; }

283. else return 0;

284.

285. }

286. /*---*/

287. static int

288. pending_packet(void)

289. { // Called by MAC layer, checking if radios have a pending
package.

290.

291. if ((!simReceiving && simInSize > 0) || (!simReceivingDummy && simInSizeDummy > 0))

292. { return 1;}

293. else return 0;

294. // return !simReceiving && simInSize > 0;

295. }

 88

296.

297. /*---*/

298. PROCESS_THREAD(cooja_radio_process1, ev, data)

299. {

300. int len;

301.

302. PROCESS_BEGIN();

303.

304. while(1)

305. {

306. // Waiting for notification of incoming data. This is
pulled by on doInterfaceActionBeforeTicks.

307. PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL);

308. if(poll_mode) {

309. continue;

310. }

311.

312. packetbuf_clear();

313. // Reads the data and notify MAC layer.
314. len = radio_read(packetbuf_dataptr(), PACKETBUF_SIZE);

315. if(len > 0) {

316. packetbuf_set_datalen(len);

317. NETSTACK_MAC.input(); }

318. }

319.

320. PROCESS_END();

321. }

322.

323.

324. /*---*/

325. (……)

326. /*---*/

327. static radio_result_t

328. set_value(radio_param_t param, radio_value_t value)

329. {

330. switch(param) {

331. case RADIO_PARAM_RX_MODE:

332. if(value & ~(RADIO_RX_MODE_ADDRESS_FILTER |

333. RADIO_RX_MODE_AUTOACK | RADIO_RX_MODE_POLL_MODE)) {

334. return RADIO_RESULT_INVALID_VALUE;

335. }

336.

337. /* Only disabling is acceptable for RADIO_RX_MODE_ADDRESS_FILTER */

338. if ((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0) {

339. return RADIO_RESULT_NOT_SUPPORTED;

340. }

341. set_frame_filtering((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0);

342.

343. /* Only disabling is acceptable for RADIO_RX_MODE_AUTOACK */

344. if ((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0) {

345. return RADIO_RESULT_NOT_SUPPORTED;

346. }

347. set_auto_ack((value & RADIO_RX_MODE_AUTOACK) != 0);

348.

349. set_poll_mode((value & RADIO_RX_MODE_POLL_MODE) != 0);

350. return RADIO_RESULT_OK;

351. case RADIO_PARAM_TX_MODE:

352. if(value & ~(RADIO_TX_MODE_SEND_ON_CCA)) {

353. return RADIO_RESULT_INVALID_VALUE;

354. }

355. set_send_on_cca((value & RADIO_TX_MODE_SEND_ON_CCA) != 0);

356. return RADIO_RESULT_OK;

357. case RADIO_PARAM_CHANNEL:

358. if(value < 11 || value > 26) {

 89

359. return RADIO_RESULT_INVALID_VALUE;

360. }

361. radio_set_channel(value);

362. return RADIO_RESULT_OK;

363. case RADIO_PARAM_CHANNELDummy: // Channel set by MAC layer.

364. if(value < 11 || value > 26) {

365. return RADIO_RESULT_INVALID_VALUE;

366. }

367. radio_set_channelDummy(value);

368. return RADIO_RESULT_OK;

369. default:

370. return RADIO_RESULT_NOT_SUPPORTED;

371. }

372. }

373. /*---*/

374. static radio_result_t

375. get_object(radio_param_t param, void *dest, size_t size)

376. {

377. if(param == RADIO_PARAM_LAST_PACKET_TIMESTAMPContikiRadio)

378. {

379. if(size != sizeof(rtimer_clock_t) || !dest) {

380. return RADIO_RESULT_INVALID_VALUE;

381. }

382.

383. *(rtimer_clock_t *)dest = (rtimer_clock_t)simLastPacketTimestamp;

384. return RADIO_RESULT_OK;

385. }

386. else if(param == RADIO_PARAM_LAST_PACKET_TIMESTAMPDummy) {

387. if(size != sizeof(rtimer_clock_t) || !dest) {

388. return RADIO_RESULT_INVALID_VALUE;

389. }

390.

391. *(rtimer_clock_t *)dest = (rtimer_clock_t)simLastPacketTimestampDummy;

392. return RADIO_RESULT_OK;

393. }

394. return RADIO_RESULT_NOT_SUPPORTED;

395. }

396. /*---*/

397. static radio_result_t

398. set_object(radio_param_t param, const void *src, size_t size)

399. {

400. return RADIO_RESULT_NOT_SUPPORTED;

401. }

402. /*---*/

403. const struct radio_driver cooja_radio_driver =

404. {

405. init,

406. prepare_packet,

407. transmit_packet,

408. radio_send,

409. radio_read,

410. channel_clear,

411. receiving_packet,

412. pending_packet,

413. radio_on,

414. radio_off,

415. get_value,

416. set_value,

417. get_object,

418. set_object

419. };

420. /*---*/

421. SIM_INTERFACE(radio_interface,doInterfaceActionsBeforeTick,doInterfaceActionsAfterTick);

422. SIM_INTERFACE(dummy_interface,doInterfaceActionsBeforeTick,doInterfaceActionsAfterTick);

 90

8.2 Cooja-config

1. /*---*/

2. (……)

3. /*---*/

4.

5. org.contikios.cooja.contikimote.interfaces.ContikiRadio.RADIO_TRANSMISSION_RATE_kbps = 250

6. org.contikios.cooja.contikimote.interfaces.DummyInterface.RADIO_TRANSMISSION_RATE_kbps = 250

7. org.contikios.cooja.contikimote.ContikiMoteType.MOTE_INTERFACES = org.contikios.cooja.interfac

es.Position org.contikios.cooja.interfaces.Battery org.contikios.cooja.contikimote.interfaces.

ContikiVib org.contikios.cooja.contikimote.interfaces.ContikiMoteID org.contikios.cooja.contik

imote.interfaces.ContikiRS232 org.contikios.cooja.contikimote.interfaces.ContikiBeeper org.con

tikios.cooja.interfaces.RimeAddress org.contikios.cooja.contikimote.interfaces.ContikiIPAddres

s org.contikios.cooja.contikimote.interfaces.ContikiRadio org.contikios.cooja.contikimote.inte

rfaces.DummyInterface org.contikios.cooja.contikimote.interfaces.ContikiButton org.contikios.c

ooja.contikimote.interfaces.ContikiPIR org.contikios.cooja.contikimote.interfaces.ContikiClock

 org.contikios.cooja.contikimote.interfaces.ContikiLED org.contikios.cooja.contikimote.interfa

ces.ContikiCFS org.contikios.cooja.contikimote.interfaces.ContikiEEPROM org.contikios.cooja.in

terfaces.Mote2MoteRelations org.contikios.cooja.interfaces.MoteAttributes

8. /*---*/

9. (……)

10. /*---*/

 91

8.3 DummyRadioInterface

1. /*

2. * Copyright (c) 2008, Swedish Institute of Computer Science.

3. * All rights reserved.

4. *

5. * Redistribution and use in source and binary forms, with or without

6. * modification, are permitted provided that the following conditions

7. * are met:

8. * 1. Redistributions of source code must retain the above copyright

9. * notice, this list of conditions and the following disclaimer.

10. * 2. Redistributions in binary form must reproduce the above copyright

11. * notice, this list of conditions and the following disclaimer in the

12. * documentation and/or other materials provided with the distribution.

13. * 3. Neither the name of the Institute nor the names of its contributors

14. * may be used to endorse or promote products derived from this software

15. * without specific prior written permission.

16. *

17. * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND

18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

20. * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE

21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

27. * SUCH DAMAGE.

28. *

29. */

30. package org.contikios.cooja.contikimote.interfaces;

31.

32.

33. import java.util.*;

34. import javax.swing.*;

35. import org.apache.log4j.Logger;

36. import org.jdom.Element;

37.

38.

39. import java.awt.BorderLayout;

40. import java.awt.event.ActionEvent;

41. import java.awt.event.ActionListener;

42. import java.util.Observable;

43. import java.util.Observer;

44. import java.lang.*;

45. import javax.swing.Box;

46. import javax.swing.JButton;

47. import javax.swing.JLabel;

48. import javax.swing.JPanel;

49.

50. import org.contikios.cooja.COOJARadioPacket;

51. import org.contikios.cooja.Mote;

52. import org.contikios.cooja.RadioPacket;

53. import org.contikios.cooja.Simulation;

54. import org.contikios.cooja.contikimote.ContikiMote;

55. import org.contikios.cooja.interfaces.PolledAfterActiveTicks;

56. import org.contikios.cooja.interfaces.Position;

57. import org.contikios.cooja.interfaces.Radio;

58. import org.contikios.cooja.mote.memory.VarMemory;

59. import org.contikios.cooja.radiomediums.UDGM;

60. import org.contikios.cooja.util.CCITT_CRC;

 92

61.

62.

63.

64.

65. import org.contikios.cooja.*;

66. import org.contikios.cooja.contikimote.ContikiMoteInterface;

67. import org.contikios.cooja.interfaces.PolledAfterAllTicks;

68. import org.contikios.cooja.interfaces.PolledBeforeAllTicks;

69. import org.contikios.cooja.mote.memory.SectionMoteMemory;

70.

71. @ClassDescription("Dummy Interface")

72. public class DummyInterface extends Radio implements ContikiMoteInterface, PolledBeforeAllTick

s, PolledAfterAllTicks {

73. private static Logger logger = Logger.getLogger(DummyInterface.class);

74.

75. private ContikiMote mote;

76. private VarMemory myMoteMemory;

77.

78.

79. /**

80. * Transmission bitrate (kbps).

81. */

82. private double RADIO_TRANSMISSION_RATE_kbps;

83.

84. private RadioPacket packetToMote = null;

85.

86. private RadioPacket packetFromMote = null;

87.

88. private boolean radioOn = true;

89.

90. private boolean isTransmitting = false;

91.

92. private boolean isInterfered = false;

93.

94. private long transmissionEndTime = -1;

95.

96. private RadioEvent lastEvent = RadioEvent.UNKNOWN;

97.

98. private long lastEventTime = 0;

99.

100. private int oldOutputPowerIndicator = -1;

101.

102. private int oldRadioChannel = -1;

103.

104.

105.

106.

107.

108.

109. public DummyInterface(Mote mote) {

110. RADIO_TRANSMISSION_RATE_kbps = mote.getType().getConfig().getDoubleValue(

111. DummyInterface.class, "RADIO_TRANSMISSION_RATE_kbps");

112.

113.

114. this.mote = (ContikiMote) mote;

115. this.myMoteMemory = new VarMemory(mote.getMemory());

116.

117. radioOn = myMoteMemory.getByteValueOf("simRadioHWOnDummy") == 1;

118. }

119.

120. public static String[] getCoreInterfaceDependencies() {

121.

 93

122. return new String[] { "dummy_interface" };

123. }

124.

125. public void doActionsBeforeTick() {

126. logger.debug("Java-part of dummy interface acts BEFORE mote tick:");

127. }

128.

129. public void doActionsAfterTick() {

130.

131. long now = mote.getSimulation().getSimulationTime();

132.

133. /* Check if radio hardware status changed */

134. if (radioOn != (myMoteMemory.getByteValueOf("simRadioHWOnDummy") == 1)) {

135. radioOn = !radioOn;

136.

137. if (!radioOn) {

138. myMoteMemory.setByteValueOf("simReceivingDummy", (byte) 0);

139. myMoteMemory.setIntValueOf("simInSizeDummy", 0);

140. myMoteMemory.setIntValueOf("simOutSizeDummy", 0);

141. isTransmitting = false;

142. lastEvent = RadioEvent.HW_OFF;

143. } else {

144. lastEvent = RadioEvent.HW_ON;

145. }

146.

147. lastEventTime = now;

148. this.setChanged();

149. this.notifyObservers();

150. }

151. if (!radioOn) {

152. return;

153. }

154.

155. /* Check if radio output power changed */

156. if (myMoteMemory.getByteValueOf("simPowerDummy") != oldOutputPowerIndicator) {

157. oldOutputPowerIndicator = myMoteMemory.getByteValueOf("simPowerDummy");

158. lastEvent = RadioEvent.UNKNOWN;

159. this.setChanged();

160. this.notifyObservers();

161. }

162.

163. /* Check if radio channel changed */

164. if (getChannel() != oldRadioChannel) {

165. oldRadioChannel = getChannel();

166. lastEvent = RadioEvent.UNKNOWN;

167. this.setChanged();

168. this.notifyObservers();

169. }

170.

171. /* Ongoing transmission */

172. if (isTransmitting && now >= transmissionEndTime) {

173. myMoteMemory.setIntValueOf("simOutSizeDummy", 0);

174. isTransmitting = false;

175. mote.requestImmediateWakeup();

176.

177. lastEventTime = now;

178. lastEvent = RadioEvent.TRANSMISSION_FINISHED;

179. this.setChanged();

180. this.notifyObservers();

181. /*logger.debug("----- CONTIKI TRANSMISSION ENDED -----");*/

182. }

183.

184. /* New transmission */

185. int size = myMoteMemory.getIntValueOf("simOutSizeDummy");

186. if (!isTransmitting && size > 0) {

 94

187. packetFromMote = new COOJARadioPacket(myMoteMemory.getByteArray("simOutDataBufferDummy",

 size + 2));

188.

189. if (packetFromMote.getPacketData() == null || packetFromMote.getPacketData().length == 0

) {

190. logger.warn("Skipping zero sized Contiki packet (no buffer)");

191. myMoteMemory.setIntValueOf("simOutSizeDummy", 0);

192. mote.requestImmediateWakeup();

193. return;

194. }

195.

196. byte[] data = packetFromMote.getPacketData();

197. CCITT_CRC txCrc = new CCITT_CRC();

198. txCrc.setCRC(0);

199. for (int i = 0; i < size; i++) {

200. txCrc.addBitrev(data[i]);

201. }

202. data[size] = (byte)txCrc.getCRCHi();

203. data[size + 1] = (byte)txCrc.getCRCLow();

204.

205. isTransmitting = true;

206.

207. /* Calculate transmission duration (us) */

208. /* XXX Currently floored due to millisecond scheduling! */

209. long duration = (int) (Simulation.MILLISECOND*((8 * size /*bits*/) / RADIO_TRANSMISSION_

RATE_kbps));

210. transmissionEndTime = now + Math.max(1, duration);

211.

212. lastEventTime = now;

213. lastEvent = RadioEvent.TRANSMISSION_STARTED;

214. this.setChanged();

215. this.notifyObservers();

216. //logger.debug("----- NEW CONTIKI TRANSMISSION DETECTED -----");

217.

218. // Deliver packet right away

219. lastEvent = RadioEvent.PACKET_TRANSMITTED;

220. this.setChanged();

221. this.notifyObservers();

222. //logger.debug("----- CONTIKI PACKET DELIVERED -----");

223. }

224.

225. if (isTransmitting && transmissionEndTime > now) {

226. mote.scheduleNextWakeup(transmissionEndTime);

227. }

228. }

229.

230. /* Packet radio support */

231. public RadioPacket getLastPacketTransmitted() {

232. return packetFromMote;

233. }

234.

235. public RadioPacket getLastPacketReceived() {

236. return packetToMote;

237. }

238.

239. public void setReceivedPacket(RadioPacket packet) {

240. packetToMote = packet;

241. }

242.

243. /* General radio support */

244. public boolean isRadioOn() {

245. return radioOn;

246. }

247.

248. public boolean isTransmitting() {

249. return isTransmitting;

 95

250. }

251.

252. public boolean isReceiving() {

253. return myMoteMemory.getByteValueOf("simReceivingDummy") == 1;

254. }

255.

256. public boolean isInterfered() {

257. return isInterfered;

258. }

259.

260. public int getChannel() {

261. return myMoteMemory.getIntValueOf("simRadioChannelDummy");

262. }

263. public void signalReceptionStart() {

264. packetToMote = null;

265. if (isInterfered() || isReceiving() || isTransmitting()) {

266. interfereAnyReception();

267. return;

268. }

269.

270. myMoteMemory.setByteValueOf("simReceivingDummy", (byte) 1);

271. mote.requestImmediateWakeup();

272.

273. lastEventTime = mote.getSimulation().getSimulationTime();

274. lastEvent = RadioEvent.RECEPTION_STARTED;

275.

276. myMoteMemory.setInt64ValueOf("simLastPacketTimestampDummy", lastEventTime);

277.

278. this.setChanged();

279. this.notifyObservers();

280. }

281.

282. public void signalReceptionEnd() {

283. if (isInterfered || packetToMote == null) {

284. isInterfered = false;

285. packetToMote = null;

286. myMoteMemory.setIntValueOf("simInSizeDummy", 0);

287. } else {

288. myMoteMemory.setIntValueOf("simInSizeDummy", packetToMote.getPacketData().length - 2);

289. myMoteMemory.setByteArray("simInDataBufferDummy", packetToMote.getPacketData());

290. }

291.

292. myMoteMemory.setByteValueOf("simReceivingDummy", (byte) 0);

293. mote.requestImmediateWakeup();

294. lastEventTime = mote.getSimulation().getSimulationTime();

295. lastEvent = RadioEvent.RECEPTION_FINISHED;

296. this.setChanged();

297. this.notifyObservers();

298. }

299. public RadioEvent getLastEvent() {

300. return lastEvent;

301. }

302.

303. public void interfereAnyReception() {

304. if (isInterfered()) {

305. return;

306. }

307.

308. isInterfered = true;

309.

310. lastEvent = RadioEvent.RECEPTION_INTERFERED;

311. lastEventTime = mote.getSimulation().getSimulationTime();

312. this.setChanged();

313. this.notifyObservers();

314. }

315.

 96

316. public double getCurrentOutputPower() {

317. /* TODO Implement method */

318.

319. return 0;

320. }

321.

322. public int getOutputPowerIndicatorMax() {

323. return 100;

324. }

325.

326. public int getCurrentOutputPowerIndicator() {

327. return myMoteMemory.getByteValueOf("simPowerDummy");

328. }

329.

330. public double getCurrentSignalStrength() {

331. return myMoteMemory.getIntValueOf("simSignalStrengthDummy");

332.

333.

334. }

335.

336. public void setCurrentSignalStrength(double signalStrength) {

337. myMoteMemory.setIntValueOf("simSignalStrengthDummy", (int) signalStrength);

338. }

339. public void setLQI(int lqi){

340. if(lqi<0) {

341. lqi=0;

342. }

343. else if(lqi>0xff) {

344. lqi=0xff;

345. }

346. myMoteMemory.setIntValueOf("simLQIDummy", lqi);

347. }

348.

349. public int getLQI(){

350. return myMoteMemory.getIntValueOf("simLQIDummy");

351. }

352.

353. public Position getPosition() {

354. return mote.getInterfaces().getPosition();

355. }

356.

357.

358.

359.

360. public JPanel getInterfaceVisualizer() {

361. JPanel panel = new JPanel(new BorderLayout());

362. Box box = Box.createVerticalBox();

363.

364. final JLabel statusLabel = new JLabel("");

365. final JLabel lastEventLabel = new JLabel("");

366. final JLabel channelLabel = new JLabel("");

367. final JLabel ssLabel = new JLabel("");

368. final JButton updateButton = new JButton("DummyRadio");

369.

370. box.add(statusLabel);

371. box.add(lastEventLabel);

372. box.add(ssLabel);

373. box.add(updateButton);

374. box.add(channelLabel);

375.

376. updateButton.addActionListener(new ActionListener() {

377. public void actionPerformed(ActionEvent e) {

378. ssLabel.setText("Signal strength (not auto-updated): "

379. + String.format("%1.1f", getCurrentSignalStrength()) + " dBm");

380. }

381. });

 97

382.

383. final Observer observer = new Observer() {

384. public void update(Observable obs, Object obj) {

385. if (isTransmitting()) {

386. statusLabel.setText("Transmitting");

387. } else if (isReceiving()) {

388. statusLabel.setText("Receiving");

389. } else {

390. statusLabel.setText("Listening");

391. }

392.

393. lastEventLabel.setText("Last event: " + getLastEvent());

394. ssLabel.setText("Signal strength (not auto-updated): "

395. + String.format("%1.1f", getCurrentSignalStrength()) + " dBm");

396. if (getChannel() == -1) {

397. channelLabel.setText("Current channel: ALL");

398. } else {

399. channelLabel.setText("Current channel: " + getChannel());

400. }

401. }

402. };

403. this.addObserver(observer);

404.

405. observer.update(null, null);

406.

407. panel.add(BorderLayout.NORTH, box);

408. panel.putClientProperty("intf_obs", observer);

409. return panel;

410. }

411.

412. public void releaseInterfaceVisualizer(JPanel panel) {

413. }

414.

415. public Collection<Element> getConfigXML() {

416. ArrayList<Element> config = new ArrayList<Element>();

417.

418. Element element;

419.

420. /* Radio bitrate */

421. element = new Element("bitrate");

422. element.setText("" + RADIO_TRANSMISSION_RATE_kbps);

423. config.add(element);

424.

425. return config;

426. }

427.

428. public void setConfigXML(Collection<Element> configXML, boolean visAvailable) {

429. for (Element element : configXML) {

430. if (element.getName().equals("bitrate")) {

431. RADIO_TRANSMISSION_RATE_kbps = Double.parseDouble(element.getText());

432. logger.info("Radio bitrate reconfigured to (kbps): " + RADIO_TRANSMISION_RATE_kbps);

433. }

434. }

435. }

436. public Mote getMote() {

437. return mote;

438. }

439.

440. public String toString() {

441. return "DummyInterface";

442. }

443.

444. }

 98

8.4 MoteInterfaceHandler (Showing only the parts i have

added)

1. (……)

2. private Position myPosition;

3. private Radio myRadio;

4. private Radio myRadioDummy;

5. private PolledBeforeActiveTicks[] polledBeforeActive = null;

6. private PolledAfterActiveTicks[] polledAfterActive = null;

7. private PolledBeforeAllTicks[] polledBeforeAll = null;

8. private PolledAfterAllTicks[] polledAfterAll = null;

9.

10. /*---*/

11. (……)

12. /*---*/

13. * Returns the radio interface (if any).

14. *

15. * @return Radio interface

16. */

17. public Radio getRadio() {

18. if (myRadio == null) {

19. myRadio = getInterfaceOfType(Radio.class);

20. }

21. return myRadio;

22. }

23. public Radio getDummyRadio() {

24. if (myRadioDummy == null) {

25. myRadioDummy = getInterfaceOfType(DummyInterface.class);

26. }

27. return myRadioDummy;

28. }

29. /*---*/

30. (……)

31. /*---*/

32.

8.5 RadioMedium (Showing only the parts I have added)

1. /*---*/

2. (……)

3. /*---*/

4.

5. public UDGM(Simulation simulation) {

6. super(simulation);

7. random = simulation.getRandomGenerator();

8. dgrm = new DirectedGraphMedium() {

9. protected void analyzeEdges() {

10. /* Create edges according to distances.

11. * XXX May be slow for mobile networks */

12. clearEdges();

13. for (Radio source: UDGM.this.getRegisteredRadios()) {

14. Position sourcePos = source.getPosition();

15. for (Radio dest: UDGM.this.getRegisteredRadios()) {

16. Position destPos = dest.getPosition();

17. /* Ignore ourselves */

18. if (source.getPosition().equals(dest.getPosition()))

19. {

 99

20.

21. continue;

22. }

23.

24. double distance = sourcePos.getDistanceTo(destPos);

25.

26. if (distance < Math.max(TRANSMITTING_RANGE, INTERFERENCE_RANGE))

27. {

28. /* Add potential destination */

29. addEdge(

30. new DirectedGraphMedium.Edge(source,

31. new DGRMDestinationRadio(dest)));

32. }

33.

34.

35.

36. }

37. }

38. super.analyzeEdges();

39. }

40. };

41.

42. public RadioConnection createConnections(Radio sender) {

43. RadioConnection newConnection = new RadioConnection(sender);

44.

45. /* Fail radio transmission randomly - no radios will hear this transmission */

46.

47.

48.

49.

50. /* Calculate ranges: grows with radio output power */

51. double moteTransmissionRange = TRANSMITTING_RANGE

52. * ((double) sender.getCurrentOutputPowerIndicator() / (double) sender.getOutputPowerIndica

torMax());

53. double moteInterferenceRange = INTERFERENCE_RANGE

54. * ((double) sender.getCurrentOutputPowerIndicator() / (double) sender.getOutputPowerIndica

torMax());

55.

56. /* Get all potential destination radios */

57. DestinationRadio[] potentialDestinations = dgrm.getPotentialDestinations(sender);

58. if (potentialDestinations == null) {

59. return newConnection;

60. }

61.

62. /* Loop through all potential destinations */

63. Position senderPos = sender.getPosition();

64. for (DestinationRadio dest: potentialDestinations) {

65. Radio recv = dest.radio;

66.

67.

68. if (sender.getPosition().equals(recv.getPosition())){

69.

70. continue;

71. }

72.

73.

74.

75. /* Fail if radios are on different (but configured) channels */

76. if (sender.getChannel() >= 0 &&

77. recv.getChannel() >= 0 &&

78. sender.getChannel() != recv.getChannel()) {

79.

80. /* Add the connection in a dormant state;

81. it will be activated later when the radio will be

82. turned on and switched to the right channel. This behavior

83. is consistent with the case when receiver is turned off. */

 100

84. newConnection.addInterfered(recv);

85.

86. continue;

87. }

88. Position recvPos = recv.getPosition();

89.

90. /* Fail if radio is turned off */

91. // if (!recv.isReceiverOn()) {

92. // /* Special case: allow connection if source is Contiki radio,

93. // * and destination is something else (byte radio).

94. // * Allows cross-level communication with power-saving MACs. */

95. // if (sender instanceof ContikiRadio &&

96. // !(recv instanceof ContikiRadio)) {

97. // /*logger.info("Special case: creating connection to turned off radio");*/

98. // } else {

99. // recv.interfereAnyReception();

100. // continue;

101. // }

102. // }

103.

104. double distance = senderPos.getDistanceTo(recvPos);

105. if (distance <= moteTransmissionRange)

106. {

107. /* Within transmission range */

108.

109.

110. if (!recv.isRadioOn()) {

111.

112. newConnection.addInterfered(recv);

113. recv.interfereAnyReception();

114. } else if (recv.isInterfered()) {

115.

116. // Was interfered: keep interfering

117. newConnection.addInterfered(recv);

118. } else if (recv.isTransmitting()) {

119.

120. newConnection.addInterfered(recv);

121. } else if (recv.isReceiving()) {

122.

123. // Was receiving, or reception failed: start interfering

124. newConnection.addInterfered(recv);

125. recv.interfereAnyReception();

126.

127. // Interfere receiver in all other active radio connections

128. for (RadioConnection conn : getActiveConnections()) {

129. if (conn.isDestination(recv)) {

130. conn.addInterfered(recv);

131. }

132. }

133.

134. } else {

135.

136. /* Success: radio starts receiving */

137. /*

138. System.out.println("Source " + sender.getPosition() + " sender til " + recv.getPosit

ion());

139. System.out.println("SourceRADIO " + sender.toString() + " sender til RecvRADIO " + r

ecv.toString());

140. Clock clock = Clock.systemDefaultZone();

141. System.out.println(clock.instant());

142.

143. */

144. newConnection.addDestination(recv);

145. }

146. }

147. else if (distance <= moteInterferenceRange) {

 101

148. /* Within interference range */

149. newConnection.addInterfered(recv);

150. recv.interfereAnyReception();

151. }

152. }

153.

154. return newConnection;

155. }

156. /*---*/

157. (……)

158. /*---*/

159.

8.6 TSCH EB scanning (Showing only the parts I have

added)

1. /*---*/

2. (……)

3. /*---*/

4.
5.
6. if(current_channel == 0 || now_time -

 current_channel_since > TSCH_CHANNEL_SCAN_DURATION) {
7.

8. // Choosing a random channel for radio 1
9. /* Pick a channel at random in TSCH_JOIN_HOPPING_SEQUENCE */
10. uint8_t scan_channel = TSCH_JOIN_HOPPING_SEQUENCE[
11. random_rand() % sizeof(TSCH_JOIN_HOPPING_SEQUENCE)];
12.
13. do
14. {

15. // Choosing a random channel for radio 2 and making sure that
they are listening on to different channels.

16. scan_channeldummy=TSCH_JOIN_HOPPING_SEQUENCE[
17. random_rand() % sizeof(TSCH_JOIN_HOPPING_SEQUENCE)];
18. }
19. while(scan_channel==scan_channeldummy);
20.
21. if(current_channel != scan_channel) {

22. // Setting channel on both radios
23. NETSTACK_RADIO.set_value(RADIO_PARAM_CHANNEL, scan_channel);
24. NETSTACK_RADIO.set_value(RADIO_PARAM_CHANNELDummy, scan_channeldummy);
25. current_channel = scan_channel;
26. }
27. current_channel_since = now_time;
28. }
29.
30. /* Turn radio on and wait for EB */
31. NETSTACK_RADIO.on();
32. /*---*/

33. (……)

34. /*---*/

 102

9 Appendix C

9.1 Java-Script for 2-hop simulation

1. TIMEOUT(100000000000);

2. while(true)

3. {

4.

5. if(msg.contains("Ready"))

6. // When the node has finished sending all of its UDP packages,
it prints out "Ready". Then I log all information before
closing the simulation.

7. {

8.

9. log.log(abc+"\n");

10. log.log(server+"\n");

11. log.log(client+"\n");

12.

13. // plugin saves duty cycle information from all the nodes in the simulation.

14. plugin = mote.getSimulation().getCooja().getStartedPlugin("PowerTracker");

15. log.log("PowerTracker: Extracted statistics:\n" + plugin.radioStatistics() + "\n");

16. log.testOK(); /* Report test success and quit */

17.

18. }

19. else

20. {

21. if(msg.contains("Client Energest CPU"))

22. {

23. // If the message sent from the node contains the message Client Energest
CPU, I save data in a variable called client. This will be overwritten
every time the client prints CPU information because I'm only interested in
the latest CPU data.

24. client = msg;

25. }

26. else if(msg.contains("Server Energest CPU"))

27. {

28. // Same as above, it only stores information about the server.
29. server = msg;

30. }

31. else

32. {

33. abc = msg;

34. }

35. }

36.

37.

38.

39.

40. YIELD(); // Wait for the next time the node prints something
41.

42. }

 103

9.2 Java-Script for joining the simulation

1. TIMEOUT(100000000000);
2. while(true)
3. {
4.
5. if(msg.contains("Time = "))
6. {
7. log.log(msg+"\n");
8. log.testOK(); /* Report test success and quit */

9. // Joining node printes out «Time» followed by timestamp. This will be
saved, and the test will end.

10. }
11. else
12. {
13. }
14. YIELD();
15.
16. }

 104

9.3 Java-Script for Reliability and latency

1. TIMEOUT(100000000000);
2.
3. tx1 = "0"
4. tx2 = "0"
5. tx3 = "0"
6. tx4 = "0"
7. tx5 = "0"
8. tx6 = "0"
9. tx7 = "0"
10. WAIT_UNTIL(msg.contains("time")) //
11. while(true)
12. {

13. // When the node has finished sending all of its UDP packages, it
prints out "Ready". Then I log all information before closing the
simulation.

14.
15. if(msg.contains("Ready"))
16. {
17. // Logs the number of packages received with one, two, three etc. transmissions.
18.
19. log.log("Tx1 = "+ tx1 +" Tx2 = "+tx2+ " Tx3 = "+tx3 + " Tx4 = "+tx4 + " Tx5 = "+tx5 + " Tx6 = " + tx6 + "

Tx7 = "+tx7+"\n");

20. log.log(total+"\n");
21. plugin = mote.getSimulation().getCooja().getStartedPlugin("PowerTra

cker");
22. log.log("PowerTracker: Extracted statistics:\n" + plugin.radioStati

stics() + "\n");
23. log.log(Server+"\n");
24. log.log(Client+"\n");
25. log.log(radio+"\n")
26. log.testOK(); /* Report test success and quit */
27. }
28.

29. // Logs the number of received packages, used to calculate PDR
30.
31. else if (msg.contains("Reciving package = "))
32. {
33. total=msg;
34. }
35.
36.
37. else if(msg.contains("Server Energest CPU:"))
38. {
39. Server = msg;
40. }
41. else if(msg.contains("Client Energest CPU:"))
42. {
43. Client = msg;
44. }
45. else if(msg.contains("tx"))
46. {

47.
// The sentences below count how many of the transmissions need one, two, or three
transmissions.

48.
49. if(msg.contains("tx=1"))
50. {
51. tx1++;
52. }
53. else if(msg.contains("tx=2"))

 105

54. {
55. tx2++;
56. }
57. else if(msg.contains("tx=3"))
58. {
59. tx3++;
60. }
61. else if(msg.contains("tx=4"))
62. {
63. tx4++;
64. }
65. else if(msg.contains("tx=5"))
66. {
67. tx5++;
68. }
69. else if(msg.contains("tx=6"))
70. {
71. tx6++;
72. }
73. else if(msg.contains("tx=7"))
74. {
75. tx7++;
76. }
77. }

78. // Saves radio distribution
79.
80. else if(msg.contains("Radio1 ="))
81. {
82. radio = msg;
83. }
84.
85.
86.
87. YIELD();
88.
89. }

	Summary
	Preface
	Contents
	List of Figures
	List of Tables
	There are three different topologies in WSN, Star, Star mesh and mesh [4], [24].
	In a Star network (shown in Figure 3), all nodes have a specific path to the border router. This means that if there is an error between two nodes, the information will be lost.
	Mesh (shown in Figure 4) has several redundant routes to its destination because nodes are also routing nodes, so the data can take other paths to the destination.
	Star network
	Mesh network
	 NULLNET
	Figure 11 : Contiki-NG design
	Radio driver
	Init button
	Prepare
	Transmit
	Send
	Read
	Channel clear
	Receiving packet
	Pending packet
	Get values
	Set values
	On
	Off
	Mac Layer
	Send
	Input
	On
	Off
	Figure 12 : My design
	Figure 17 : Environment 1
	Figure 18 : Retransmissions with no interference. The figure shows percentage in Y-direction and number of retransmissions in X-direction
	Figure 19: EB every 32s. The figure shows percentage in Y-direction and number of retransmissions in X-direction
	Figure 21 : No interference radio distribution. The figure shows percentage in Y-direction.
	Figure 23: Duty cycle two radios no interference
	If we compare the duty cycle for nodes with one radio and two radios (figure 22 and 23), we see that nodes with one radio has somewhat higher duty cycle. This is due to some retransmissions nodes with one radio must do. However, due to the fact that d...
	Figure 25 : Environment 2
	Figure 28: One disturber radio distribution. Figure shows the percentage in Y-direction.
	Figure 29 : One disturber, packet dropped
	Figure 31 : Duty cycle two radios one disturber. Percentage in y-direction, and radio modes in x-direction.
	Figure 33 : Environment 3
	Figure 34 : Data Two disturbers. Figure shows the percent in the Y-direction and the number of retransmissions in the X-direction
	Figure 36 : Two disturber radio distribution. Figure shows the percentage in y-direction.
	Figure 37 : Two disturbers packets dropped
	Figure 44 : Three disturbers radio distribution. Figure shows percentage in Y-direction.
	Figure 50 : Joining environment
	Figure 51 : Joining data. Figure shows number of simulations in X-direction and joining time in second in Y-direction.
	Bibliography
	Figure 53 : Duty cycle
	Figure 54 : Acknowledgement

