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Abstract
We investigate two-dimensional quantum turbulence and plasticity from a common 
mathematical perspective, focusing on topological defects as the most important 
degrees of freedom. Quantum turbulence features quantized vortices which tend to 
cluster into statistically self-similar structures as a result of the inverse energy 
cascade. Similarly, the strong interaction between dislocations in single crystals 
under load leads to characteristic patterns, suggesting a common way of studying the 
complex nonequilibrium dynamics of the two fields. In the field of turbulence, we 
benefit from a fruitful interplay between models at different scales, from microscopic 
quantum field theory, via the semiclassical Gross–Pitaevskii equation, to the more 
phenomenological point vortex models of larger systems, leading to novel statistical 
signatures of the self-similar structure of vortices in two-dimensional quantum 
turbulence. In plasticity, the phase-field crystal model plays a similar mesoscale role 
to the Gross–Pitaevskii equation in quantum turbu-lence, but there are some problems 
in applying it to realistic crystals. We attempt to alleviate some of these problems 
through a more detailed understanding of the elastic and plastic behavior of the 
phase-field crystal.
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Chapter 1

Introduction

Water flowing slowly through a pipe is governed by a simple linear relation be-
tween the fluid flow rate Q and the pressure difference ∆P that drives the flow.
This relation is known as the Poiseuille equation [6], and is given by

∆P =
8µLQ

πR4
, (1.1)

where µ is the dynamic viscosity, L is the pipe length, Q is the volumetric flow
rate, and R is the pipe radius. The equation can be derived by assuming laminar
flow in the Navier–Stokes equation. However, when the flow rate exceeds a given
threshold, laminar flow gives way to large fluctuations in the flow field, leading a
sharp increase in the resistance to flow [7]. This strongly fluctuating state is known
as turbulence. More recently, the concept of turbulence has also been applied to
quantum fluids, such as superfluid helium and laser-cooled atomic Bose–Einstein
condensates. These systems feature similar phenomenology to the classical case,
with the crucial difference that vorticity is quantized.

Materials under small loads feature a simple linear relation between loading
force and deformation, known as a stress–strain relationship [8],

eij = Cijklσkl, (1.2)

where the strain eij measures the relative deformation of the crystal, and the stress
σkl is the applied force in the direction k per unit area with normal vector compo-
nents nl. However, when the strain exceeds some threshold, the material starts to
fail. The exact point of failure is quite predictable in large samples, but as the sam-
ple size decreases the picture becomes more complicated, featuring many small-
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scale yielding events which can be seen as serrations in the measured stress–strain
relation [9]. Understanding this yielding transition is the subject of plasticity.

These two subjects seem to have little in common, since one is concerned with
fluids in sustained motion, while the other is concerned with crystal structures at
rest, with applied forces resisted by the stiffness of the material. However, as we
will see, there are some deep mathematical similarities between the two problems
when looked at in a certain way. This thesis project is concerned with exploring
some of these similarities in the hope of shedding light on both problems.

The thesis is structured as follows: In this introductory chapter, we explore the
high-level, qualitative similarities between modeling approaches and key physical
phenomena in turbulence and plasticity. In chapter 2, we give an overview of the
field of fully developed classical turbulence, with a particular emphasis on mo-
tivating the introduction of physical quantities that we make use of in this thesis
project. In chapter 3, we study the nonequilibrium behavior of two-dimensional
weakly interacting Bose–Einstein condensates, and discuss how turbulent states
can develop in this system, as well as how these states can shed light on the be-
havior of classical turbulent states. We also summarize our three publications
(papers I–III) contributing to this area of research. Chapter 4 introduces the basic
concepts of elasticity and plasticity, as well as the phase-field crystal model for
mesoscopic crystal plasticity. We also summarize our publications IV–V, which
study the nonequilibrium properties of this model. We provide a brief discussion
of the numerical methods employed in this project in chapter 5. Finally, we make
some general observations about the interplay between the two fields and con-
clude in chapter 6. The four published papers I–IV and the submitted paper V are
included in part II.

1.1 2D turbulence and the point vortex model

Turbulence is a state of fluid flow where strong velocity fluctuations coexist on a
wide separation of scales, resulting in a rapid dissipation of kinetic energy from
the fluid. In 3D, this complicated flow arises because energy is added to the system
at a rate that is much faster than the available viscous dissipation, which is more
efficient at dissipating smaller-scale fluctuations. As a result, large fluctuations in
the flow can grow while removing energy from the mean flow. This fluctuation can
then break down into smaller fluctuations, which develop still smaller fluctuations,
and so on. The resulting steady-state flow removes energy from the system as fast
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as it is added by transferring this energy into smaller and smaller scales in a self-
similar process, until a scale is reached that is small enough for viscous dissipation
to be efficient in removing the injected energy. This is known as the Richardson
energy cascade.

In 2D, it turns out that the kinetic energy flows in the opposite direction, to-
wards larger and larger scales. This is known as the inverse energy cascade, and
results in large-scale rotational flows spanning the entire system. Unlike the clear
qualitative picture of the Richardson cascade, the mechanism for the backwards
transfer of energy is not fully understood. As part of modeling efforts to gain a
detailed understanding of the inverse energy cascade, the flow was simplified into
a collection of point-like vortices carrying units of circulation. These vortices are
then subject to phenomenological merging and annihilation rules, and by studying
the statistical behavior of how vortices are distributed relative to each other, one
can hopefully gain some insight into the mechanism for the backwards transfer of
energy. Similarly, 3D quantum turbulence has been applied to gain insights into
problems related to the conservation of helicity in 3D turbulence.

The description of 2D flow as resulting from a collection of point-like vor-
tices, while constituting an approximation in the field of classical turbulence, is
much closer to reality in quantum fluids, where quantized vortices are the only
carriers of fluid rotation. This has resulted in great interest in the field of quan-
tum turbulence, where one studies fluctuating flow regimes in quantum fluids both
theoretically, numerically and experimentally, to gain physical insight into the be-
havior of point-like vortices (in 2D) or line-like vortex filaments (in 3D). There
are, however, some important differences between the vortices of quantum flu-
ids and the point vortices studied in classical turbulence — in particular, vortex
merging is not a common feature of quantum turbulence. The field of quantum
turbulence therefore deserves to be studied in its own right, in addition to as a
way of understanding classical turbulence. In papers I–III, we explore and relate
different scale-free statistical signatures associated with the statistical behavior of
vortices in 2D quantum turbulence.

1.2 Plasticity and dislocations

Plasticity occurs when crystal structures fail due to applied loads, causing a reor-
ganization of the crystal lattice and irreversible deformations. Naively, one might
expect this to occur when the applied load is sufficient to break all the bonds hold-
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ing two crystal planes together. This assumption, however, leads to computations
of crystal strengths that are orders of magnitude higher than the actual measured
values. Instead, the applied stresses will concentrate on weaknesses in the crys-
tal leading to localized deformations near these weaknesses. A particular kind of
essential crystal weaknesses are dislocations, which are places where the lattice
symmetry does not quite fit. Dislocations tend to move under applied load, and
the result is a crystal that can continuously deform without whole planes slipping
over each other. The interaction of dislocations, however, means that this process
is complicated, characterized by large structures of dislocations which suddenly
depin in avalanche-like events [9].

Thus, like in turbulence, the statistical behavior of line-like structures in 3D,
or point-like structures in 2D is essential in studying plasticity. This suggests that
it might be helpful to study both fields from a common perspective. However,
modeling the behavior of large-scale ensembles of dislocations, known as discrete
dislocation dynamics, requires phenomenological rules such as dislocation mo-
bility and annihilation rules, which are difficult to justify without empirical input.
These processes could be studied with the help of a mesoscale model that can ex-
plicitly model the breakdown of the crystal lattice near the dislocation core, while
still being able to access the relatively slow timescales of plastic deformation.
One such model is the phase-field crystal model (PFC), which models the atomic
density on a coarse-grained level where fast elastic interactions are averaged out.
Unfortunately, the resulting dynamical equation does not correctly reproduce the
separation of timescales between fast elastic deformations and slow plastic defor-
mations. In paper IV, we develop a new formalism to study the elastic and plas-
tic behavior of the PFC, which we employ in paper V in order to quantitatively
demonstrate the problem, as well as presenting a solution.

1.3 Notation

The notational convention varies between our published papers, but we employ
a consistent notation throughout this thesis. Here we give the most important
conventions.

Vectors are written in boldface (e.g. v), as opposed to scalars which use the
standard font weight (e.g. x). The norm of a vector v is denoted by its standard
equivalent, v = |v|, while its Cartesian components are denoted by Latin sub-
script indices vi. The coordinate vector is r, with components x, y and z. This
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leads to some ambiguity in the context of the phase-field crystal, because we use
the symbol r for the quench depth parameter. We therefore refrain from using
this symbol for denoting the radius |r| when discussing the phase-field crystal,
hopefully avoiding some confusion.

Given a collection of N topological defects, we use Greek letters for indexing
into this set, thus the positions of quantized vortices in 2D quantum turbulence are
denoted by {rα}Nα=1. This index is raised when we need to refer to the components
of such vectors, thus the i’th coordinate of vortex α is denoted by rαi . The Einstein
summation convention is used only for the components of vectors and tensors,
thus the expression rαi v

α
i is equivalent to the dot product rα·vα without summation

over α.

The gradient operator is∇, and its Cartesian components are referred to by the
short-hand ∂i = ∂

∂ri
. Similarly, differentiation with respect to time is be denoted

by ∂t = ∂
∂t

, in addition to the dot notation ψ̇ = ∂tψ. We use the convention
that differential operators bind tightly to the symbol to their right, thus ∂xf∂yg =

(∂xf)(∂yg), not ∂x(f∂yg). The Levi–Civita symbol is denoted by ε, thus the curl
of a vector v in 3D has i’th component given by εijk∂jvk.

The imaginary unit is i. This will hopefully not lead to confusion with the
Latin subscript indices, since we never use them as anything other than subscripts.
Thus iki is the imaginary unit times the i’th component of the wave vector k.

The Fourier and inverse Fourier transforms are denoted by F [−] and F−1[−],
respectively. Fourier-transformed quantities are also indicated by a tilde above the
original symbol. We use the asymmetric normalization where the inverse trans-
form is divided by 2π, thus

ψ̃(k) = F [ψ](k) =

∫
ψ(r)e−ik·rddr,

ψ(r) = F−1
[
ψ̃
]

(r) =
1

(2π)d

∫
ψ̃(k)eik·rddk,

where d is the number of dimensions. We will make use of the following prop-
erties of Fourier transforms, which are readily proven by manipulating the above
definitions:

• Spectral differentiation,

F [∂iψ](k) = ikiψ̃(k); (1.3)
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• the shift property,

F−1[ψ̃(k− g)](r) = eig·rψ(r); (1.4)

• the convolution theorems,

F

[∫
f(r′)g(r− r′)ddr′

]
(k) = f̃(k)g̃(k),

F−1

[∫
f̃(k′)g̃(k− k′)ddk′

]
(r) = (2π)df(r)g(r). (1.5)
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Chapter 2

Turbulence

Turbulence is the tendency of fast fluid flows to develop large fluctuations leading
to rapid dissipation of energy. This is characterized by the dimensionless Reynolds
number, Re = UL

ν
, where U is the typical fluid velocity, L is the typical length

scale of the system, and ν is the kinematic viscosity [7]. One can think of this
number as describing the balance between inertial effects causing disturbances to
spread through the system by advection with U , and dissipative effects which tend
to dampen out these disturbances. For low Reynolds numbers, small disturbances
tend to dissipate out before they can spread, so that laminar flow has a high degree
of stability. As the Reynolds number increases, disturbances get more and more
long-lived, leading to a transition to turbulence around Re ∼ 2000 − 3000 or so
[7, 10], although the precise transition point depends sensitively on the geometry.

The transition to turbulence at these intermediate Reynolds numbers is a much
studied subject with complicated phenomenology (see for example [11, 12]), but
here we will be more interested in the nonequilibrium steady state of fully devel-
oped turbulence at very high Reynolds numbers, where energy is injected into the
system by some driving process at a constant rate ε, and then dissipated out by
viscous forces at the same rate. This is a state where the entire fluid field has large
fluctuations at a wide range of spatial scales, which is important because it leads to
a much larger energy dissipation compared to a laminar flow with the same mean
flow rate. In this chapter, we will introduce Kolmogorov’s classical 1941 theory of
fully developed three-dimensional turbulence [13], before discussing how the pic-
ture changes in two dimensions. We will then discuss how outstanding problems
in the field of two-dimensional turbulence can be studied from the perspective of
quantum turbulence.
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2.1 The direct energy cascade

Any theoretical understanding of turbulence starts with the Navier–Stokes equa-
tion describing the momentum balance of a velocity field V with density ρ [10],
(ignoring body forces),

ρ(∂tV + V · ∇V) = ∇ · σ, (2.1)

where the stress tensor σ contains an isotropic pressure term and a term linearly
dependent on velocity shear to model momentum diffusion,

σij = −Pδij + µ

[
∂iVj + ∂jVi −

2

3
δij∂kVk

]
. (2.2)

The parameter µ is called the dynamic viscosity and the pressure P is determined
from a thermodynamical equation of state. Alternatively, if we assume that the
fluid is incompressible, we can take the density to be constant and determine the
pressure from the condition that ∂iVi = 0. Inserting the stress into the momentum
balance, we find for incompressible flow that

∂tV + V · ∇V = −∇p+ ν∇2V, (2.3)

where p = P
ρ

is the rescaled pressure and ν = µ
ρ

is the kinematic viscosity. The
pressure is determined by taking the divergence of this equation and using the
incompressibility assumption, giving

∇2p+∇ · (V · ∇V) = 0. (2.4)

This equation along with equation (2.3) gives a closed system of equations de-
scribing the fluid flow.

In principle, the Navier–Stokes equation is fully deterministic. However, due
to the nonlinear nature of the equation, small-scale fluctuations can tend to grow
unboundedly, reducing the usefulness of a deterministic description. The first step
to accounting for turbulent noise is through the Reynolds-averaged Navier–Stokes
equation, which is derived by decomposing the velocity field V = U + v into a
mean flow U = 〈V〉 averaged over the noise, and a fluctuating velocity v with
〈v〉 = 0. By taking the average of the Navier–Stokes equation with respect to this
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ensemble, we find

∂tU + 〈(U + v) · ∇(U + v)〉 = −∇p+ ν∇2U

∂tU + U · ∇U = −∇p+ ν∇2U−∇ · 〈v ⊗ v〉 (2.5)

where we have used 〈U〉 = U, 〈v〉 = 0, and exploited the commutation of
derivatives with expectation values to write 〈v · ∇v〉 = ∇ · 〈v ⊗ v〉. This al-
lows us to express the effect of a fluctuating velocity field as resembling a stress
term σRij = −〈vivj〉, known as the Reynolds stress. Since this tensor is negative-
definite, it results in a loss of energy from the mean flow. Note that, since this
equation depends on the second moment of the fluctuating velocity, it does not
give a closed equation for the mean velocity field. One can derive an equation
for this second moment by multiplying the Navier–Stokes equation with V before
averaging, but this equation will again depend on third moments of v. Continuing
in this manner one derives an infinite sequence of equations for higher and higher
moments of v. A common modeling approach is to truncate this sequence at some
order by introducing a closure assumption, essentially an assumption about how
certain high-order moments behave [10]. We will not consider such assumptions
here.

We can estimate the relative importance of the viscous dissipation versus the
Reynolds stress by dimensional analysis. If both the mean and fluctuating veloci-
ties have typical magnitude U going to zero over the system size L, then the ratio
between the two terms has size given by

[∇ · 〈v ⊗ v〉]
[ν∇2U ]

=
U2/L

νU/L2
=
UL

ν
= Re, (2.6)

giving the Reynolds number. This argument shows that, in fully developed tur-
bulence with high Reynolds numbers, the Reynolds stress is much more efficient
at removing energy from the mean flow than viscous dissipation. However, the
Reynolds stress must still conserve energy, so the energy from the mean flow
must be transferred into fluctuations which are presumably characterized by a
length scale slightly smaller than that of the mean flow. We can then repeat a sim-
ilar argument to the above for these largest-scale fluctuations, which will lead to
a similar Reynolds stress term that transfers energy into still smaller-scale fluctu-
ations, but now over a smaller length scale leading to a smaller Reynolds number.
One might then expect this process to repeat in a self-similar manner until the
Reynolds number is small enough that viscous effects become important. This
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Figure 2.1: Qualitative picture of the Richardson cascade, where turbulent ed-
dies are broken up into smaller eddies in a self-similar process. Reprinted from
ref. [14] with permission from Cambridge university press.

qualitative picture of the turbulent steady-state is known as the Richardson cas-
cade (see figure 2.1), and the range of length scales where energy transfer domi-
nates over viscous dissipation is known as the inertial range.

This qualitative picture of an energy cascade across length scales suggests
that we should study velocity structures coherent across a given distance r = |r|.
One way of doing this is by generalizing the Reynolds stress to two-point cor-
relations in fluctuating velocity field, Uij(r, r′) = 〈vi(r′)vj(r′ + r)〉. It is com-
mon to assume statistical homogeneity, which means that Uij only depends on
its first argument r, as well as statistical isotropy, which means that Uij only de-
pends on the norm r of r. If the system is large, we can replace the ensemble
average by an average over the volume V , giving Uij the form of a convolution
Uij(r) = 1

V

∫
vi(r

′)vj(r
′ + r)d2r′, which will be simplified by taking the Fourier

transform. By the convolution theorem, we find

Ũij(k) =

∫
Uij(r)e−ik·rd3r =

1

V
ṽi(−k)ṽj(k), (2.7)

where ṽi(k) are the Fourier components of the fluctuating velocity field. Inte-
grating the trace Ũii over all of reciprocal space, we recover the mean fluctuating
kinetic energy density Ek = 1

2
ρ 〈v2〉,

1

(2π)3

∫
Ũii(k)d3k = Uii(0) =

1

V

∫
vi(r)vi(r)d3r =

2Ek
ρ
. (2.8)
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Since we are only interested in how energy depends on the magnitude k = |k| of
the wave vector, we integrate out the directional dependence by

Ek =
1

2

ρ

(2π)3

∫ ∞

0

[∫

|k|=k
Ũii(k)dS

]
dk

=
ρ

(2π)3

∫ ∞

0

[∫

|k|=k

1

2V
ṽi(−k)ṽi(k)dS

]
dk =

ρ

(2π)3

∫ ∞

0

E(k)dk, (2.9)

where the dS integral is taken across a sphere of constant |k|. This equation
defines the kinetic energy spectrum E(k), which quantifies the kinetic energy of
turbulent structures coherent across a length scale L = 2π/k. If the system is
statistically isotropic so that Uij(r) = Uij(r) is independent of the direction of r,
we also have that Ũij(k) = Ũij(k) is independent of the direction of k. In that
case, the directional integral simply gives a factor 4πk2 from the measure, or 2πk

in 2D. Using that ṽi(−k) = ṽi(k)∗ since v is real, the energy spectrum simplifies
to

E(k) =
2π

V
k2|ṽ(k)|2 (3D), E(k) =

π

V
k|ṽ(k)|2 (2D). (2.10)

The picture of a self-similar energy cascade suggests that this energy does not de-
pend on the details of the system, but only on the constants describing the whole
self-similar process and on the length scale itself. Given that the energy dissipa-
tion rate ε also quantifies the transfer of energy between scales, we should expect
the form E(k) = CEε

akb where CE is a dimensionless constant. Noting that the
energy spectrum has units of L3T−2 and the dissipation rate L2T−3, dimensional
analysis gives the estimate

E(k) = CEε
akb, [E(k)] = L2a−bT−3a = L3T−2, (2.11)

which requires a = 2
3

and 4
3
− b = 3 ⇔ b = −5

3
. The result is the famous

Kolmogorov energy scaling,

E(k) = CEε
2/3k−5/3, (2.12)

which can also be motivated by similar arguments of self-similarity in physical
space [10, 13]. In practice, this simple scaling law will be modified by intermit-
tent effects related to the random variation of the energy flux εk across a given
wavenumber [14, 15]. These effects are most easily observed in higher moments
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of longitudinal velocity differences, δvr(r) = [v(r′+r)−v(r)] ·r/r, which define
the structure functions Sp(r) = 〈δvr(r)p〉.

As we have argued, the self-similar scaling in the energy spectrum should be
accompanied by a transfer of energy from larger to smaller scales. This trans-
fer can be studied quantitatively by the spectral energy flux, which is derived
by differentiating the definition of Ũij(k) with time and using the Navier–Stokes
equation in spectral space to show that [10]

dE(k)

dt
= D(k) + T (k) + F (k), D(k) = −νk2E(k), (2.13)

where D(k) is due to viscous dissipation, T (k) is related to the nonlinear term
giving rise to three-point correlations in velocity,

T (k) = −2πρk2Pijm(k)

∫
Im [〈ũi(k)ũj(k

′)ũk(k− k′)〉] d3k′, (2.14)

and Pijm(k) is a function of the wave vector k only. It can also be shown that∫∞
0
T (k)dk = 0, which means that the nonlinear term can only redistribute en-

ergy between scales, as we have argued from more general grounds above. The
F (k) term is added to account for the injection of energy balancing the dissi-
pation D(k), and is usually assumed to be localized around some characteristic
wavenumber ki. We can study how energy is moved from wavenumbers smaller
than k to those larger than k by integrating T (k), giving a quantity called the
spectral energy flux,

Π(k) =

∫ ∞

k

T (k′)dk′ = −
∫ k

0

T (k′)dk′. (2.15)

This quantity is important in studying the energy cascade because it gives di-
rect evidence as to the direction of energy flux across scales. For the Richardson
cascade described above, it is expected to be positive across the inertial range.
Indeed, assuming a steady-state where E(k) is independent of time, we find for
wavenumbers k > ki such that F (k) = 0,

Π(k) = −
∫ k

0

T (k′)dk′ =

∫ ∞

0

F (k)dk − 2ν

∫ k

0

k′2E(k′)dk′, (2.16)

where the integral of F (k) equals the energy injection rate ε. Inserting the Kol-
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mogorov scaling law for E(k), this is equivalent to

Π(k) = ε− 3

2
νCEε

2/3k4/3 +

∫ ki

0

k′2E(k′)dk′, (2.17)

where the last term is related to the behavior at scales larger than the onset ki
of the energy cascade, and will be much smaller than the other terms. Thus,
the spectral flux is approximately constant and equal to the energy injection and
dissipation rate until k is such that viscous effects become important, at which
point the energy cascade stops in favor of viscous dissipation. We can estimate
the small-scale limit of the inertial range by finding the wavenumber kd where this
happens by setting Π(kd) = 0, giving the Kolmogorov microscale wavenumber

kd ∼
( ε
ν3

)1/4

, (2.18)

which is the only combination of ε and ν that gives the dimension L−1 of a
wavenumber. For scales smaller than this microscale (k > kd), we expect the
energy spectrum to stop following the k−5/3 form and instead decay rapidly to
zero, along with T (k).

2.2 Two-dimensional turbulence

In two-dimensional systems, turbulent states look very different from their three-
dimensional counterpart. The 3D Richardson cascade leads to the coexistence of
fluctuations across a wide set of spatial scales all the way down to the Kolmogorov
microscale kd, which is typically very small, so the visual image of the turbulent
state has no discernible structure. By contrast, 2D turbulence is characterized by
spectacular coherent rotational structures on large scales. This is visible in quasi-
2D atmospheric flows (see figure 2.2), as well as in experiments in confined fluid
flows such as soap films [16, 17]. Direct numerical solution of the Navier–Stokes
equation in 2D also reproduces such structures [10].

One important difference between the 2D and 3D cases can be found by look-
ing at the equation of motion for vorticity ω = ∇ × V. Taking the curl of the
Navier–Stokes equation, rewriting V · ∇V = 1

2
∇(V 2) − V × ω, and using in-

compressibility, we find

∂tω + V · ∇ω = ω · ∇V + ν∇2ω, (2.19)
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Figure 2.2: Processed view of the north polar region of Jupiter as seen by NASA’s
Juno spacecraft. Swirling storms and coherent vortices are seen on very large
scales. Public domain, obtained from the Bruce Murray Space Image Library
[18].
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which is a simple advection–diffusion equation with an additional source term ω ·
∇V called the vortex stretching term. This term is an important source of velocity
fluctuations because it tends to stretch areas of vorticity into smaller and more
intense vortices. In two dimensions, since the vorticity is always oriented along
the z direction while V is independent of z, this term is zero. Thus, vorticity in 2D
satisfies a simple advection–diffusion equation. This motivates the introduction of
another conserved scalar quantity known as enstrophy,

Ω =

〈
1

2
ω2

〉
=

1

2V

∫
|∇ × v|2d2r. (2.20)

This quantity needs to be accounted for in the same way as energy, with enstro-
phy added to the system on a characteristic forcing scale and dissipated out most
efficiently on small scales. Batchelor [19] suggested that, as the turbulent velocity
field mixes the vorticity field, vorticity gradients increase and thus the enstrophy
moves to smaller scales in a similar way as the kinetic energy does in 3D.

We can study this enstrophy cascade in spectral space using similar techniques
as for the kinetic energy in 3D. Considering the vorticity correlation function
Ω(r) = 1

2
〈ω(r′)ω(r′ + r)〉, we find that its Fourier transform takes the form

Ω̃(k) =
1

2V
εijεik[−ikiṽj(−k)][ikiṽk(k)] =

1

2V
k2|ṽ(k)|2, (2.21)

so integrating over a shell of constant k, we find that the enstrophy spectrum is
related to the energy spectrum by

Ω̃(k) =
1

2V
k2

∫

|k|=k
|ṽ(k)|2dS = k2E(k), (2.22)

where E(k) is the 2D kinetic energy spectrum defined in equation (2.10). This
ties the energy and enstrophy spectra together, as they differ only by a factor k2.

Now assume that the system is forced at a characteristic length scale given
by the wavenumber ki, with an energy injection rate ε. This corresponds to an
enstrophy injection rate β = k2

i ε, and a self-similar enstrophy cascade should be
associated with an enstrophy spectrum, and therefore an energy spectrum, which
only depends on β and k. Applying the same kind of dimensional analysis as we
did for the energy cascade, we see that [β] = L−2[ε] = T−3, so writing E(k) =

CΩβ
akb we must have L−bT−3a = [E(k)] = L3T−2, giving a = 2

3
, b = −3. Thus

the enstrophy cascade is characterized by an energy spectrum following the power
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ε 2/3k -5/3

β 2/3k -3
βε

ε

kE∼(εt
3)-1/2

ki

kd∼(βν
-3)1/6

Figure 2.3: Schematic illustration of the dual cascades of 2D turbulence in a log-
log plot where power laws look like straight lines. Energy is injected at rate ε at
wavenumber ki and enstrophy at rate β = k2

i ε, shown as vertical dashed arrows.
The enstrophy cascades down to smaller scales causing a self-similar k−3 energy
spectrum, while the energy cascades to larger scales causing a k−5/3 energy spec-
trum. This energy therefore piles up on larger and larger scales, moving the peak
up and to the left and increasing the width of the inertial range until the system
size is reached. After a similar illustration by Lesieur [10].

law
E(k) = CΩβ

2/3k−3 = CΩk
4/3
i ε2/3k−3, (2.23)

although in practice this power law must be corrected by a logarithmic factor
(ln k

ki
)−1/3 [20]. This spectral signature should be accompanied by a positive

enstrophy flux, given by

Z(k) =

∫ ∞

k

k2T (k)dk, (2.24)

where T (k) is the spectral energy transfer function from equation (2.13). Apply-
ing a similar argument as that leading to equation (2.17), we can show that

Z(k) = β − 2ν

∫ k

0

k′4E(k′)dk′ ∼ β − 2νCΩβ
2/3k2, (2.25)

which gives the Kolmogorov microscale of the enstrophy cascade as kd ∼
(
β
ν3

)1/6
.

Consider now what happens to the kinetic energy in the inertial range ki <
k < kd of the enstrophy cascade. By the above argument, the transfer function
T (k) = − 1

k2
dZ
dk

goes like k−1 in the inertial range, while it should go to zero for
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k > kd. The spectral energy flux Π(k) = −
∫ kd
k
T (k) should therefore go like Π ∼

− ln kd/k, which is negative. As a result, the presence of the enstrophy cascade
prevents the kinetic energy injected at ki from transferring down to smaller scales.
Kraichnan [21] therefore proposed that the kinetic energy goes in the opposite
direction, towards larger scales in 2D. This inverse energy cascade would then be
signaled by a k−5/3 energy spectrum at k < ki by the same dimensional analysis
as we used to show equation (2.12), while the spectral energy flux Π(k) would be
negative in the same range. This situation is illustrated in figure 2.3.

Assuming that there is no efficient energy dissipation mechanism at large
scales, this will cause the energy to build up on larger and larger scales. For
example, assume that the inverse energy cascade extends over an inertial range
kE < k < ki, so that E(k) = CIε

2/3k−5/3 in this range and then falls rapidly to
zero for k < kE . The energy contained in scales larger than the injection scale ki
is then approximately given by

EI =

∫ ki

0

E(k)dk ≈ CIε
2/3

∫ ki

kE

k−5/3dk =
3

2
CIε

2/3
(
k
−2/3
E − k−2/3

i

)
. (2.26)

With energy being added to this system at a rate ε, EI needs to grow at this rate,
which is only possible if kE decreases with time. Setting dEI

dt
= ε, we find

d(k
−2/3
E )

dt
∼ ε1/3, kE ∼ ε−1/2t−3/2 =

1√
εt3
, (2.27)

which is the only combination of ε and time with the dimension L−1. Thus, the
inertial range of the inverse energy cascade widens until kE gets close to the sys-
tem size, where further transfer of energy to larger scales is blocked. The result is
typically that energy piles up at small wavenumbers, breaking the self-similarity
of the cascade. This is the phenomenon of energy condensation, which manifests
itself as a few large, system-spanning rotational structures in the flow. In this way,
we have obtained an ordered state of a few large vortices by adding energy to the
system, which is an unexpected outcome.

Alternatively, one can obtain forced steady-states in 2D turbulence if there
is an efficient dissipation mechanism at the largest scales. Such a dissipation
mechanism is often added to numerical simulations through an additional term in
the Navier–Stokes equation of the form νL∇−2V [22, 23] (meaning formally that
we determine a field W by ∇2W = V and add a term νLW), which varies with
scale like k−2 and is therefore important only at the largest scales. This allows for
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studying statistical properties of the inverse energy cascade by taking long time-
averages in the steady-state regime. In lab experiments, large-scale damping can
for example be due to linear drag with the vertical boundary in quasi-2D flows
[22].

2.3 The point vortex model

In 3D turbulence, the Richardson picture of large eddies breaking up into smaller
eddies gave an intuitive, if quantitatively imprecise, picture of how energy is trans-
ferred from large scales to small. The picture in 2D is much less clear. Kraichnan
[24] gave a picture where small-scale vorticity structures, when sheared by some
large-scale flow, tends to elongate and lose energy to the larger-scale strain. En-
ergy is therefore transferred to larger scales, while the small-scale vortical struc-
ture itself becomes smaller, transferring enstrophy to smaller scales. This picture
has been borne out by numerical and experimental studies [22, 23].

A seemingly completely different mechanism for the condensation of energy
at large scales was provided by Onsager [25] by decomposing the 2D flow into
a discrete collection of point-like, singular vortices. Such a picture naturally
emerges when studying the stream function for incompressible flows with van-
ishing viscosity [26]. The incompressibility of v means that it can be represented
by a stream function ψ, with vi = εij∂jψ, from which ∇ · v = 0 is satisfied iden-
tically. The stream function can be determined from a given vorticity field ω(r)

by the relation
ω = εij∂ivj = εijεjk∂ikψ = −∇2ψ, (2.28)

giving a Poisson equation for the stream function, which is conveniently solved by
the Green’s function method. The 2D Laplacian in an infinite plane has a Green’s
function given by

G(r, r′) =
1

2π
ln |r− r′|, ∇2G =

1

2π
∇2 ln |r− r′| = δ(r− r′), (2.29)

so the stream function can be expressed as

ψ(r) = −
∫
G(r, r′)ω(r′)d2r′ = − 1

2π

∫
ω(r′) ln |r− r′|d2r′. (2.30)

By analogy to the point charges of elementary particles in electromagnetism, one
now considers the vorticity field as represented by a discrete set of point-like
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sources located at rα, with a continuous distribution of circulation strength given
by 2πsα. Hence ω(r) = 2π

∑
α sαδ(r− rα), from which we find

ψ(r) = −
∑

α

sα ln |r− rα|. (2.31)

The velocity field due to such a collection of vortices is now given by

vi = εij∂jψ, vx = −
∑

α

sα
y − yα
|r− rα|2

, vy =
∑

α

sα
x− xα
|r− rα|2

, (2.32)

from which one can verify that the circulation integral satisfies
∮

C

v · dl = 2π
∑

rα∈C

sα, (2.33)

where the sum runs over all vortices contained inside the given loop C. Setting
ρ = 1 and computing the kinetic energy of this velocity field, we find

1

2

∫
vivid

2r =
1

2

∑

α,β

sαsβ

∫
∇ ln |r− rα| · ∇ ln |r− rβ|d2r, (2.34)

where we used that the 2D Levi–Civita tensor satisfies εijεik = δjk. For terms in
this sum where α = β, we can perform the integral in polar coordinates relative
to the vortex position, giving

1

2

∑

α

2π(sα)2

∫ R

a

(∇ ln r)2rdr = π
∑

α

(sα)2 ln
R

a
, (2.35)

where a and R are lower and upper cutoff length scales introduced to control the
logarithmic divergence of this energy at both small and large scales. Ignoring
these diverging terms, we can proceed with the sum over different indices. Ap-
plying an integration by parts and ignoring another logarithmic divergence from
the boundary term, we find

H = −1

2

∑

α6=β

sαsβ

∫
ln |r− rα|∇2 ln |r− rβ|d2r = −π

∑

α 6=β

sαsβ ln rαβ, (2.36)

where we used that ∇2 ln r = 2πδ(r), and the intervortex distance is denoted by
rαβ = |rαβ| = |rα − rβ|. This expression is known as the point vortex Hamil-
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Figure 2.4: Qualitative illustration of the density of states Ω(E) of the point vortex
Hamiltonian as a function of energy, with examples of positive, infinite, and neg-
ative temperature states. Reprinted figure with permission from [27]. Copyright
2014 by the American Physical Society.

tonian; indeed it turns out that the dynamics of inviscid point vortices satisfy a
Hamiltonian system of equations given by H . By equation (2.19), we see that 2D
vorticity is simply advected by the velocity field at ν = 0. Applying this principle
to point vortices, we must have that ẋα = ∂yψ

(α)(rα), ẏα = −∂xψ(α)(rα), where
the (α) superscript indicates that we remove the contribution to ψ from the vortex
α, which is singular at rα. By evaluating this derivative, we can show that the dy-
namics of point vortices is equivalent to a Hamiltonian system of equations given
by

2πsαẋα =
∂H

∂yα
, ẏα = − ∂H

∂(2πsαxα)
, (2.37)

with the extra factor of 2 coming from the symmetry of the Hamiltonian under
the interchange rα ↔ rβ . Hence, we see that 2πsαxα and yα are the conjugate
coordinates in the Hamiltonian, which is highly unusual. Hamiltonian dynamics
of typical systems in classical mechanics has a momentum coordinate p as con-
jugate to the physical coordinates r. The fact that such a momentum coordinate
is missing here is because vortices have no inertia, simply following the velocity
field passively.

This simple fact has dramatic consequences for the equilibrium behavior of a
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bounded vortex gas. In a bounded system, the Green’s function of the Laplacian
is modified to satisfy the no-flux boundary condition on the velocity field, but the
general structure of the system is preserved [26]. In particular, the phase space
still consists of the vortex coordinate variables weighted by circulation strength,
which are now confined to the area A of the system. Hence, the phase space P of
N vortices has volume

|P| =
∏

α

∫
d(2πsαxα)dyα = (2πA)N

∏

α

sα, (2.38)

which is a finite number. The energy, meanwhile, takes values from −∞ to ∞,
but the density of states D(E) at a given energy E must have a bounded integral∫∞
−∞D(E)dE = |P|. This is only possible ifD(E) has a maximumD′(Ecrit) = 0,

from which it asymptotically decreases to 0, giving D′(E > Ecrit) < 0. Thus the
microcanonical inverse temperature,

β =
dS

dE
∝ d lnD

dE
=
D′

D
, (2.39)

is negative for E > Ecrit [25], which means that an increase in energy leads to an
ordered low-entropy state. This tendency of the system to become ordered when
energy is added is exactly what we observed in the case of energy condensation
due to the inverse energy cascade. Indeed, if we consider a system where like-
signed vortices are clustered together into large coherent structures (see figure
2.4), we see that an increase in energy is associated with the clusters packing
more tightly together, leading to a decrease in the typical intervortex distance rαβ
and a higher energy − ln rαβ . Tighter vortex clusters have a smaller available
phase-space volume, hence these vortex clusters have negative temperature. A
similar argument shows that a system of tightly coupled vortex dipoles has positive
temperature, while the critical energy where Ω′(Ecrit) = 0 is associated with a free
gas of vortices not strongly coupled to other vortices with infinite temperature
T = 1/β.

From the above discussion we see that, if the point vortex model is a good ap-
proximation of 2D turbulent states, the phenomenon of energy condensation can
be explained as the tendency of like-signed vortices to cluster together into large
coherent structures. However, the equilibrium arguments performed by Onsager
are insufficient in investigating the nonequilibrium state of the inverse energy cas-
cade and the forward enstrophy cascade, where turbulent energy fluxes and vis-
cosity are important. In classical fluid flows, the most important effect of viscosity
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is that vortices have a core structure of size a, within which the vorticity field de-
cays smoothly to zero [28]. The core region is subject to the diffusion term in
equation (2.19), causing the core radius to increase like a ∼

√
t. Vortices whose

core regions come into contact are then subject to merging rules, giving rise to a
new vortex with a different circulation and core radius [29]. Such dissipative point
vortex models have reproduced the k−3 energy spectrum associated with the en-
strophy cascade, which is associated with a scale-free distribution of vortex core
sizes. Similarly, the k−5/3 energy spectrum of the inverse energy cascade has been
reproduced by adding a phenomenological small-scale driving mechanism to the
point vortex model [30].

The fact that the energy of the system of vortices only depends on their posi-
tion means that energetic properties like the energy spectrum are purely dependent
on the spatial configuration of vortices. Novikov [31] derived an expression for
the energy spectrum given by

E(k) =
π

k

(∑

α

s2
α +

∑

α 6=β

sαsβJ0(krαβ)

)
, (2.40)

and then went on to consider the behavior of this function in a cluster of vortices
of the same circulation sα = 1, in which case the energy spectrum only depends
on the intervortex distance. Upon averaging, this leads to a dependence on the
vortex pair correlation function g(r) = A

N2

∑
α 6=β 〈δ(r− rαβ)〉, given by

〈E(k)〉 =
Nπ

k

(
1 +

N

A

∫
J0(kr)g(r)d2r

)
, (2.41)

providing a relationship between the structure of the vortex cluster as measured by
pair correlations and the energy spectrum. Novikov then argued that a self-similar
energy cascade should be related to a self-similar scaling of the pair correlation,
leading to the ansatz g(r) − 1 ∝ r−α, from which a kα−3 energy spectrum fol-
lows. An r−4/3 scaling in the vortex pair correlation is associated with the k−5/3

energy spectrum of the inverse energy cascade, suggesting that 2D turbulence
features fractal vortex clusters with self-similar structure. This hypothesis is the
starting point for many analytic and numerical studies of point vortex turbulence,
including our papers II and III, which we will discuss more thoroughly in the next
chapter on quantum turbulence.

Thus we find a qualitative picture of the inverse energy cascade that is very
different from the picture of vortex stretching, which we mentioned in the begin-
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ning of this section. It is an open question whether the two pictures are equivalent
in some way, or whether they describe qualitatively different processes which are
expressed in different systems.

Onsager also mentioned that the point vortex model might be a more accurate
representation of rotating superfluids, where such point-like vortices appear as the
only carriers of vorticity. This simple observation has led to considerable inter-
est in the turbulent behavior of superfluids, due to the potential for experimental
investigation of the point vortex model. However, the point vortices of super-
fluids have some important differences from their classical counterparts, such as
the quantization of vortex circulation, and the nondiffusive vortex core structure.
Turbulent states in superfluids are therefore subject to intense study in their own
right, in a field known as quantum turbulence. This is the field to which we turn
our attention in the next chapter.
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Chapter 3

Quantum turbulence

Quantum turbulence is a state of rapidly fluctuating flow similar to classical turbu-
lence, but occurring in a quantum fluid or superfluid [32]. Superfluids are macro-
scopic quantum states of matter where the wavefunctions of many particles over-
lap, leading to counterintuitive phenomena, such as vanishing viscosity and the
quantization of vorticity. One might wonder whether turbulence could even ex-
ist given these differences. However, both numerical and experimental work has
proved the existence of an energy cascade in 3D [33, 34], which is associated with
vortex lines breaking up into smaller vortex rings, leading to a complex tangle of
vortices [35, 36]. Work on 3D quantum turbulence has focused on superfluid he-
lium, which is modeled phenomenologically by the coexistence of a normal fluid
component obeying the Navier–Stokes equation, and a superfluid component that
is represented phenomenologically as a collection of interacting vortex filaments
coupled to the normal fluid through viscous drag with the vortex core [37].

In the previous chapter on classical turbulence, we saw how outstanding prob-
lems in 2D turbulence can be informed by studies of vortices in 2D quantum
turbulence. Two-dimensional superfluids can be realized experimentally as dilute
atomic Bose–Einstein condensates in a laser-cooled trap, which are strongly con-
fined in the vertical direction to give a quasi-2D state [38]. Since these systems are
dilute, the interactions between atoms located at rα and rβ can be approximated
by contact interactions, V (rα − rβ) = gδ(rα − rβ). In this chapter we introduce
the semiclassical Gross–Pitaevskii equation (GPE) to study the basic properties
of these systems. We show how the equation can be interpreted as describing a
superfluid velocity field obeying a hydrodynamic equation, and how quantized
vortices arise as singularities in the complex phase of the wavefunction. From
this, we derive the point vortex model as an effective description of the motion
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when compressible effects are small. We then describe observations of the inverse
energy cascade in quantum turbulence and how they relate to the spatial structure
of quantized vortices. Finally, we summarize our contributions investigating this
spatial structure in papers I–III.

3.1 The Gross–Pitaevskii equation

A Bose–Einstein condensate (BEC) is a system of N particles of mass m obey-
ing Bose–Einstein statistics, where the temperature is cold enough that a macro-
scopic number N0 of particles remain in the ground state of the trapping poten-
tial. Weakly interacting Bose gases are typically modeled by a second-quantized
Hamiltonian for the particle annihilation and creation operators Ψ̂(r), Ψ̂†(r) trapped
by an external potential V (r), given by [39]

H =

∫ [
~2

2m
∇Ψ̂† · ∇Ψ̂ + V (r)Ψ̂†Ψ̂ +

1

2
gΨ̂†Ψ̂†Ψ̂Ψ̂

]
ddr, (3.1)

where g is the strength of the contact interaction between particles in the gas. In
the Heisenberg picture, the particle operator Ψ̂ obeys the Heisenberg equation of
motion, given by

i~∂tΨ̂ = [Ψ, H] = − ~2

2m
∇2Ψ̂ + V Ψ̂ + gΨ̂†Ψ̂Ψ̂. (3.2)

The particle operator is then decomposed into Ψ̂ = ψ̂ + φ̂, where ψ̂ is the ground
state and φ̂ represents excitations. Due to Bose–Einstein condensation, the occu-
pation number of the ground state N0 =

〈
ψ̂†ψ̂

〉
� 1 is large compared to the

commutator [ψ̂, ψ̂†] = 1. Thus the particle operators of the ground state approx-
imately commute, and we can treat it as a classical field in what is known as a
Bogoliubov approximation [39]. Also neglecting the excitations φ̂, which are of
order N −N0 � N0, we obtain the time-dependent Gross–Pitaevskii equation

i~∂tψ(r) = − ~2

2m
∇2ψ(r) + V (r, t)ψ + g|ψ(r)|2ψ(r), (3.3)

where ψ is a complex order parameter that represents the ground state wavefunc-
tion. Since stationary states oscillate with the chemical potential µ (similar to
how single-particle states oscillate with their energy), it is useful to transform to
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the comoving frame ψ 7→ ψe−iµt/~, which leads to an additional term −µψ on the
right-hand side,

i~∂tψ = − ~2

2m
∇2ψ −

(
µ− V − g|ψ|2

)
ψ. (3.4)

This corresponds to considering the conserved dynamics of the grand canonical
HamiltonianH = H − µN , using a classical version of the Hamiltonian in equa-
tion (3.1),

H =

∫
ddr

[
~2

2m
|∇ψ|2 + V |ψ|2 +

µ2

2g

(
g

µ
|ψ|2 − 1

)2
]
, i~∂tψ =

δH
δψ∗

, (3.5)

where we completed the square in the expression g
2
|ψ|4 − µ|ψ|2 and ignored an

unimportant additive energy constant. We can verify that this conserves energy as
long as the confining potential is constant by taking functional derivatives,

∂tH =

∫
ddr

(
δH
δψ

∂tψ +
δH
δψ∗

∂tψ
∗ +

δH
δV

∂tV

)

=

∫
ddr

(
δH
δψ

1

i~
δH
δψ∗
− δH
δψ∗

1

i~
δH
δψ

+ |ψ|2∂tV
)

=

∫
|ψ|2∂tV ddr. (3.6)

By contrast, a time-dependent potential can add or remove energy from the sys-
tem, as we will exploit below.

3.2 The Thomas–Fermi ground state

A simple understanding of the stationary lowest-energy state of the Gross–Pitaevskii
equation can be found using the Thomas–Fermi approximation. In this approxi-
mation, we assume that the kinetic energy term ~2

2m
∇2ψ of the ground state is small

compared to the other terms, leading to a slowly varying state. Thus, ignoring this
term and looking for stationary states by setting ∂tψTF = 0, we find

(µ− V − g|ψTF |2)ψTF = 0, ⇐ ψTF = 0 or ψTF =

√
µ− V
g

, (3.7)

where the solution can be multiplied with an arbitrary constant phase factor, and
we take ψTF = 0 when V > µ. For example, if the confining potential is harmonic
with V = 1

2
mω2r2, we find that the condensate should extend approximately out
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to the Thomas–Fermi radius given by

1

2
mω2R2

TF = µ, ⇐ RTF =

√
2µ

mω2
, (3.8)

and within this radius the solution takes the shape of a hemisphere, given by

ψTF =

√
µ− 1

2
mω2r2

g
=

√
µ

g

(
1− r2

R2
TF

)
. (3.9)

This solution has rapid variations near RTF , so the Thomas–Fermi approxima-
tion breaks down here, with the balance between potential and distortion energies
determining a smoother approach to ψ = 0 at r ∼ RTF . It is still a good approx-
imation away from RTF . We therefore use this solution as an initial condition in
paper I.

3.3 Dissipation

At small but finite temperatures, the low-energy state described by the condensate
wavefunction is not fully populated, with some atoms being thermally excited
to higher-energy states. The interaction between the low-energy condensate and
higher-energy excitations leads to dissipation of energy from the condensate. This
can be modeled explicitly by considering the states above some energy cutoff to be
in thermal equilibrium, yielding a grand canonical description of the condensate
[40]. The result is the Stochastic Projected Gross–Pitaevskii equation (SPGPE),
which effectively results in the addition of a dissipating term to the time develop-
ment,

i~∂tψ = (1− iγ)

[
− ~2

2m
∇2ψ(r) + V (r, t)ψ − µψ + g|ψ(r)|2ψ(r)

]
, (3.10)
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with γ related to the temperature [40]. That this term causes energy to dissipate
can be seen from its effect on the Hamiltonian,

∂tH =

∫
ddr

(
δH
δψ

∂tψ +
δH
δψ∗

∂tψ
∗ +

δH
δV

∂tV

)

=

∫
ddr

(
δH
δψ

1− iγ
i~

δH
δψ∗
− δH
δψ∗

1 + iγ

i~
δH
δψ

+ |ψ|2∂tV
)

= −γ
~

∫
ddr

∣∣∣∣
δH
δψ∗

∣∣∣∣
2

+

∫
ddr|ψ|2∂tV, (3.11)

where the first term is negative, dissipating energy. If the confining potential
also varies with time, we can obtain a nonequilibrium steady state driven by the
competition between a net influx of energy from the time-dependent potential,
and the energy dissipation due to the γ term. We use this technique in paper
I in order to generate a forced turbulent steady-state. In particular, the poten-
tial V (r, t) = Vt(r) + Vg(r, t) consists of a constant harmonic trapping potential
Vt = 1

2
mω2r2, and a small Gaussian obstacle with peak V0 > µ that moves around

a circle with a given speed. Since V0 > µ, the wavefunction will go to zero around
the obstacle, and as it moves it will push a compression wave in front of it, while
leaving a diluted wake behind it. Thus, the density |ψ|2 is higher in front of the
obstacle where the potential increases with time and is lower behind it where
the potential decreases, giving a positive second term of equation (3.11). In this
way, the stirring obstacle adds energy to the system, leading to a nonequilibrium
steady-state determined by the balance between forcing and dissipation.

For such numerical work as well as ease of analysis, it is useful to introduce di-
mensionless units. The natural scale of the energy is set by the chemical potential
µ, while the global phase rotation e−iµt/~ gives rise to a time scale τ = ~/µ. The
chemical potential along with the atomic mass gives a speed

√
µ
m

, which we will
see below corresponds to the speed of sound. Finally, the distance that sound can
travel during one phase rotation is the coherence length, ξ = cτ = ~√

mµ
. Indeed,

a disturbance over a length scale ξ is associated with a kinetic energy penalty of
order ~2

mξ2
, which is permissible as long as it stays below the chemical potential µ;

hence ξ = ~√
mµ

sets the typical length scale of distortions in the BEC. Rescaling
time, space and potential energy by these units, we obtain the dimensionless form

i∂tψ = (1− iγ)

[
−1

2
∇2ψ +

(
V − 1 +

g

µ
|ψ|2

)
ψ

]
. (3.12)
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The interaction parameter g
µ

can be absorbed into the wavefunction by ψ 7→
√

g
µ
ψ,

which requires another rescaling of time by g/µ. Thus we obtain a fully dimen-
sionless equation with the dissipation parameter γ as the only adjustable constant,

∂tψ = (i+ γ)

[
1

2
∇2ψ + (1− V − |ψ|2)ψ

]
, (3.13)

which corresponds to the dimensionless Hamiltonian given by

H =

∫ [
1

2
|∇ψ|2 + V |ψ|2 +

1

2

(
|ψ|2 − 1

)2
]

ddr. (3.14)

3.4 Hydrodynamics

While the Gross–Pitaevskii equation resembles the Schrödinger equation with an
extra nonlinearity, it can also be transformed into hydrodynamical equations de-
scribing the superfluid flow in the condensate. This is done through the Madelung
transformation ψ(r) =

√
ρ(r)eiφ(r), where ρ = |ψ|2 represents the particle den-

sity and φ the complex phase. The current density of ρ is as usual given by
J = ~

2mi
(ψ∗∇ψ −∇ψ∗ψ) = ~

m
ρ∇φ, allowing us to identify the superfluid veloc-

ity v = ~
m
∇φ. We note that as a gradient, this superfluid velocity is irrotational.

Inserting the Madelung transformation into the SPGPE, multiplying with the con-
jugate and taking real and imaginary parts, we find [40]

∂tρ+∇ · (ρv) =
2ργ

~
(µ− Ueff), (3.15)

~∂tφ = µ− Ueff +
~γ
2ρ
∇ · (ρv), (3.16)

Ueff =
mv2

2
+ V + gρ− ~2

2m

∇2√ρ
√
ρ
. (3.17)

The first equation shows that the particle number N =
∫
ρddr is not conserved,

but is driven towards chemical equilibrium with the thermal excitations, defined
by Ueff = µ. The last term in the effective potential Ueff is called the quantum
pressure, which is small unless the density changes rapidly, that is, far away from
vortices andRTF . Taking the gradient of the φ equation and ignoring the quantum
pressure and other terms related to the rapid variation of ρ, one derives a Navier–
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Stokes-like equation for the velocity field [40],

∂tv + v · ∇v = − 1

m
(V + gρ) +

~γ
2m
∇2v. (3.18)

This shows that the superfluid velocity behaves effectively like a classical velocity
field with kinematic viscosity νq = ~γ/2m proportional to the dissipation param-
eter γ, except for effects related to the quantum pressure near vortex cores.

In light of this, it is interesting to see how the Hamiltonian transforms under
the Madelung transformation. Inserting ψ =

√
ρeiφ into (3.5), the Hamiltonian

decomposes nicely into four terms,

H =

∫ [
1

2
ρv2 +

~2

4m

|∇ρ|2
ρ

+ V ρ+
µ2

2g

(
g

µ
ρ2 − 1

)2
]

ddr. (3.19)

This decomposition includes the kinetic energy T = 1
2
ρv2, a distortion energy

related to density variations ∇ρ, potential energy V ρ, and a term balancing the
contact interaction with the chemical potential.

As any fluid, superfluids have compression waves, or sound waves, as their
elementary excitations. Ignoring the confining potential for simplicity, we see that
the ground state of equations (3.15–3.16) is the Thomas–Fermi solution ρ = µ

g
at

constant φ = 0, corresponding to the v = 0 solution of equation (3.18). Sound
waves are found as small deviations from this state, ρ = µ

g
+ δρ with δρ and φ

small, leading to linearized equations for δρ and φ given by

∂tδρ+
~µ
mg
∇2φ = −2γµ

~

(
δρ− 1

4
ξ2∇2δρ

)
,

~∂tφ = −gδρ+
1

4
gξ2∇2δρ+

~2γ

2m
∇2φ. (3.20)

If we consider distortions that vary slowly compared to the coherence length ξ,
we can ignore the quantum pressure term ξ2∇2δρ. Hence, at γ = 0 we can
differentiate the φ equation with time to obtain

∂ttφ−
µ

m
∇2φ = 0, (3.21)

which is a wave equation describing compression waves moving with speed c =√
µ
m

, justifying why it is called the speed of sound. This result was also found
by Pismen [41], with a factor

√
2 in the speed of sound due to their different
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convention for the GPE, where they leave out the factor 1
2

in front of the Laplacian
in equation (3.13). On the other hand, if the dissipation dominates with γ � 1, the
two equations decouple into an exponential decay for δρ and a diffusion equation
for φ,

∂tδρ = −2γµ

~
δρ, ∂tφ = νq∇2φ, (3.22)

with the diffusion constant given by the kinematic viscosity νq = ~γ
2m

, and the ex-
ponential decay rate characterized by the phase rotation time scale τ = ~/µ. This
shows that conservative behavior is associated with ballistic degrees of freedom,
while the dissipative behavior is associated with diffusive degrees of freedom. In
our simulations in paper I, we kept γ very small ∼ 10−2, hence we expect acous-
tic degrees of freedom to take the form of compression waves moving at speed c,
with only weak dissipative effects.

Finally, we note that the speed of sound is affected by the confining poten-
tial, which we have ignored here. For wavelengths that are short compared to
the variation of V , we can assume that the sound wave varies adiabatically with
the Thomas–Fermi solution ρ = µ−V

g
, hence the speed of sound takes the form

c =
√

µ−V
m

. Faster variations of the potential occur near the boundary, which
presumably leads to scattering of the sound waves.

3.5 Vortices

We now turn our attention to quantized vortices, which are central to superfluids
as they are the only carriers of rotation. Note first that since the superfluid velocity
is a gradient v = ~

m
∇φ, the vorticity ω = ∇×∇φ vanishes unless φ is singular.

Singularities in the phase φ are permissible at finite energy if the density ρ van-
ishes. A vanishing density, however, comes at the expense of an energy density
µ2/2g from the Hamiltonian in equation (3.5). We therefore expect the density
to return to its equilibrium value quite rapidly, over a distance comparable to the
coherence length ξ.

In addition to this compactness, the vortex must satisfy topological constraints
for the wavefunction to be well defined: As we go around a loop C containing
the singularity, the wavefunction must have the same value at the initial and final
points of the loop. This constraint is satisfied if the phase changes by an integer
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multiple of 2π, defining the topological charge s of the singularity by
∮

C

dφ =

∮

C

∇φ · dr = 2πs. (3.23)

This quantity is an intrinsic property of the singularity, because continuous changes
to the loop C results in continuous changes of the contour integral as long as φ
is smooth; hence s can only change by discrete amounts when the loop crosses
the singularity. Similarly, continuous changes in the phase φ cannot lead to dis-
crete changes in the circulation integral. Hence, the singularity is topologically
protected by the condition (3.23), which is why it is called a topological defect. If
the loop encompasses more then one vortex, we can smoothly split the loop into
smaller loops containing each vortex, hence the topological charge is additive,

∮

C

dφ = 2π
∑

α∈C

sα, (3.24)

with the sum running over each vortex of charge sα contained in C.

Topological defects in 2D are point-like, because we can always shrink the
loop down to a point. In 3D, we also have to consider perpendicular translations of
the loop, without changing the topological charge. As a result, topological defects
in 3D are line-like filaments going through the system, or closing in on themselves
to form loops. In general, topological defects of the GPE are of codimension two,
which means that they span d−2 dimensions where d is the dimension of the sys-
tem. Mathematically, this is related to the fact that the minimizing order parameter
ψ =

√
µ−V
g
eiφ contains a U(1) degree of freedom φ, hence the space of the mini-

mizing order parameter has a nontrivial first homotopy group Z, which gives rise
to codimension two topological defects with charges in Z [41]. Similarly, higher
homotopy groups are connected with topological defects of higher codimension
(lower dimension), although we will not consider such defects in this thesis.

Recalling that the superfluid velocity is given by v = ~
m
∇φ, we can restate

the loop integral as a circulation integral of the velocity,
∮
C

v · dr = 2π ~
m
s. This

circulation integral is reminiscent of the point vortices that we considered in chap-
ter 2. However, while the charge sα of classical vortices could vary continuously,
in quantum fluids it is topologically constrained to take discrete values that are
integer multiples of ~/m. This is the quantization of vorticity, and is the reason
topological defects in this system are known as quantized vortices. We can rep-
resent the vorticity by a collection of point vortices by taking the circulation of v
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around the boundary of a surface S in 2D and using Stokes’ theorem, giving
∮

∂S

v · dr =

∫

S

(∇× v)d2r =
h

m

∫

S

S(r)d2r, (3.25)

where we introduced the vortex density S(r) =
∑

α sαδ(r− rα). Since this equa-
tion must hold over all surfaces S, the vorticity of the fluid satisfies ω(r) = h

m
S(r).

We can gain more information about the typical structure of point vortices by
considering a stationary, isolated vortex at the origin. Considering an infinite 2D
system with no external potential for simplicity, an isotropic ansatz for a vortex
with charge s is given by χ(r)eisθ where r, θ are polar coordinates. Setting ∂tψ =

0 in the dimensionless form of the GPE, we find after some computation that χ(r)

must satisfy
r2∂rrχ+ r∂rχ− s2χ = 2r2(χ2 − 1)χ. (3.26)

In addition we must have χ(0) = 0 to ensure that the wavefunction is well-defined,
and that χ must approach the equilibrium value of 1 as r → ∞. Close to the
origin we can ignore the right-hand side, giving an Euler–Cauchy equation with
solutions χ ∝ r±s, of which r|s| satisfies the boundary condition at r = 0. Thus,
we have that ψ = Λr|s|eisθ close to the vortex, where Λ is a slope that can only be
determined by considering the full boundary value problem. In ref. [40], Λ was
determined numerically for |s| = 1 to Λ2 ≈ 0.6805. As r increases, the right-
hand side of equation (3.26) becomes more important and the solution will flatten
out to the constant value of χ = 1 after a distance roughly corresponding to the
coherence length ξ.

The region close to the vortex where χ = Λr|s| is called the vortex core, and
the region outside this core where χ ≈ 1 is called the far field. Note, however, that
the nature of this vortex core differs from the core structure of a viscous classical
vortex. While classical vortices have a continuous vorticity going smoothly to zero
inside the vortex core, in quantized vortices the vorticity is strictly constrained to
the delta function peak at the location of the defect, with the density going to
zero in order to keep the kinetic energy finite. While the core of viscous classical
vortices tend to grow diffusively with time, the core structure of quantized vortices
have a well-defined size ∼ ξ, independently of dissipative effects.

Denoting the core radius by Rc ∼ ξ, we can compute the far-field energy of
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the vortex as

Efar =

∫

r>Rc

[
1

2
|∇ψ|2 +

1

2
(|ψ|2 − 1)2

]
d2r = π

∫ R

Rc

r
s2

r2
dr = πs2 ln

R

Rc

,

(3.27)

where R is the system size. Pismen [41] found that the full energy including the
core structure takes the similar form πs2 ln R

√
e

a0
, where a0 is a numerically deter-

mined constant related to the particular solution of equation (3.26), depending on
|s|. In any case the vortex energy scales with s2, suggesting that vortices with
|s| > 1 are unstable, preferring to split into vortices of smaller charges which then
repel each other. Indeed, in our simulations of the GPE of paper I, we see only
singly charged vortices.

3.6 Vortex motion

The motion of vortices is controlled by deviations of ψ from the equilibrium vor-
tex solution χ(r)eisθ, of which phase perturbations eiφ(r) are the most important.
The coupling between vortices and phase perturbations has been studied rigor-
ously by finding stationary vortex solutions in a comoving frame, and studying
the energetic properties of such solutions by matched asymptotic expansion [41].
This gives rise to a rich phenomenology of the coupling between vortices and
the acoustic field. However, the speed of a given vortex in a particular out-of-
equilibrium state ψ can be obtained more simply by exploiting that the vortices
coincide with the zeros of the wavefunction, which allows us to track those zeros.
This method was originally proposed by Halperin [42] and further developed by
Mazenko [43, 44]. We give an outline of this method here, because it serves as an
introduction to the generalization of the method that we develop for dislocations
in chapter 4 and paper IV.

Since |ψ(r)| ∼ r|s| as r → 0, the wavefunction ψ has a zero with multiplicity
|s| exactly where vortices of charge s are located. Assuming these are the only
places where the wavefunction vanishes, the function δ(ψ) has singularities ex-
actly at the vortex positions. By the transformation law of delta functions, this
gives that ∑

α

|sα|δ(r− rα) = |D|δ(ψ), (3.28)

whereD is the Jacobi determinant of the transformation of variables from (Reψ, Imψ)
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to (x, y), given by

D =

∣∣∣∣
∂x Reψ ∂x Imψ

∂y Reψ ∂y Imψ

∣∣∣∣ = Im(∂xψ
∗∂yψ) =

1

2i
εij∂iψ

∗∂jψ. (3.29)

In fact, using the local solution ψ ∝ r|s|eisθ near the origin, we can show that
D has the same sign as s, thus we can remove the absolute values and find an
expression for the vortex density S(r),

S(r) =
∑

α

sαδ(r− rα) = Dδ(ψ). (3.30)

Since the topological charge is a conserved quantity, it should be possible to de-
rive a conserved current for S(r). Indeed, the Jacobi determinant D satisfies the
conservation equation given by

∂tD +∇ · JD = 0, JDi = εij Im (∂jψ
∗∂tψ) , (3.31)

as can be verified by substitution. We can also verify that

D∂tδ(ψ) + JD · ∇δ(ψ) = 0, (3.32)

by differentiating through the delta function and inserting for D and JD. This
allows us to derive a conservation equation for S(r),

∂tS = ∂t [Dδ(ψ)] = ∂tDδ(ψ) +D∂tδ(ψ)

= −∇ · JDδ(ψ)− JD · ∇δ(ψ) = −∇ · [JDδ(ψ)] , (3.33)

so the conserved current of S is JS = JDδ(ψ). If vortices move with speed vα,
this current should also equal

JS =
∑

α

sαvαδ(r− rα) =
∑

α

JD
D
sαδ(r− rα), (3.34)

where we also used equation (3.30) to rewrite δ(ψ). Setting the coefficients mul-
tiplying the delta functions equal to each other, we find that the velocity of vortex
α is given by

vα =
J(rα)

D(rα)
. (3.35)
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In paper I, we used this expression to numerically measure the speed of individ-
ual vortices, by computing an average weighted by |D| within a region where
the wavefunction is close to zero. This allowed for robust velocity statistics of
quantized vortices.

We can use the expression in equation (3.35) to heuristically compute how a
vortex responds to phase perturbations. Consider a vortex at the origin given by
ψ0 = Λr|s|eisθ for small r, which satisfies ∂tψ0(r = 0) = 0 and is therefore at
rest. A phase disturbance is added by setting ψ = ψ0e

iφ(r), resulting in ∂tψ 6= 0,
and the goal is to compute v = JD

D
of the transformed wavefunction. Inserting ψ

into the SPGPE and using ψ0(r = 0) = 0, we find

∂tψ = (1 + iγ)∇ψ0 · ∇φeiφ, JDi = εij Im [∂jψ
∗
0(1 + iγ)∂kψ0∂kφ] . (3.36)

The particular solution for ψ0 satisfies i∂kψ0 = s
|s|εkl∂lψ0, which transforms the

current to

JDi = εij

[
Im (∂jψ

∗
0∂kψ) + γ

s

|s|εkl Im (∂jψ
∗
0∂lψ)

]
∂kφ. (3.37)

To relate this to the Jacobi determinant D, note that it is invariant under the defor-
mation at the origin because ψ0 vanishes,

D =
1

2i
εil (∂iψ

∗
0 − iψ∗0∂iφ) (∂lψ0 + iψ0∂lφ) =

1

2i
εil∂iψ0∂lψ0. (3.38)

Applying εjk to this expression we find

εjkD =
1

2i
(δijδkl − δikδjl)∂iψ∗0∂lψ0 = Im (∂jψ

∗
0∂kψ0) , (3.39)

which we recognize from the current, allowing us to derive an expression for the
vortex velocity,

JDi = εij

(
εjkD + γ

s

|s|εklεjlD
)
∂kφ, v =

JD
D

= −∇φ+ γ
s

|s|∇
⊥φ, (3.40)

where we used that εijεik = δjk and ∇⊥ is the rotated gradient with components
(∂y,−∂x). Thus, conservative dynamics move the vortex along the ambient ve-
locity field (ignoring the singular velocity induced by the vortex itself), while
dissipative dynamics move the vortex perpendicularly to this field. Note, how-
ever, that in this derivation we have ignored effects such as the deformation of
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the vortex core as it moves. This effect turns out to be somewhat important for
the dissipative part of the vortex motion, leading to logarithmic corrections to the
simple law specified here [41]. For the purpose of phenomenological modeling,
however, such corrections are generally ignored [45].

Now assume that the only sources of velocity are the vortices themselves. If
the vortices are well-separated so that their cores do not overlap, we can assume
that the wavefunction is given by the product of stationary solutions with circula-
tions sα,

ψ =
∏

α

ψ0(r− rα; sα), (3.41)

hence the dimensionless velocity field is given by the superposition of the velocity
due to each vortex, v(r) =

∑
α sα∇θ(r− rα), where θ(r− rα) is the polar angle

relative to rα. Evaluating the gradient, we find

vi(r) = −εij
∑

α

sα
rj − rαj
|r− rα|2

, (3.42)

so the vortices themselves move with velocity

vα = −
∑

β 6=α

sβ
(rα − rβ)⊥

|rα − rβ|2
+ γ

∑

β 6=α

sαsβ
|sα|

rα − rβ
|rα − rβ|2

. (3.43)

Hence, if we ignore compressible effects such as the vortex core structure and
acoustic interactions, the Gross–Pitaevskii equation is reduced to a dynamical
system of vortices similar to the point vortex model introduced in chapter 2, but
with an additional dissipative vortex drift due to thermal dissipation, which has
the effect of repelling like-signed vortices and attracting opposite-signed vortices.
Using a more symmetric form of the Hamiltonian equations (2.37) that does not
distinguish the conjugate variables, this dissipation can be included in extra dissi-
pative terms, giving

ẋα =
1

2πsα

∂H

∂yα
− γ

2π|sα|
∂H

∂xα
,

ẏα = − 1

2πsα

∂H

∂xα
− γ

2π|sα|
∂H

∂yα
, (3.44)

from which we can verify that the effect of γ is to dissipate energy from the point
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vortex Hamiltonian,

∂tH =
∑

α

(
∂H

∂xα
ẋα +

∂H

∂yα
ẏα

)

= −γ
∑

α

1

2π|sα|

(
∂H

∂xα

∂H

∂xα
+
∂H

∂yα

∂H

∂yα

)
< 0. (3.45)

This derivation ignores the acoustic degrees of freedom of the BEC, which
are certainly present. For example, even isolated vortices emit acoustic radiation
depending on their velocity, and acoustic waves themselves exert drag on a vortex.
Pismen [41] showed that a corotating vortex pair at distance 2a emits acoustic
energy at a rate 8πc3ξ4a−6; thus the distance increases as ȧ = 4cξ4a−5 to conserve
energy. This effect by itself is subdominant compared to the γc/a decay due
to thermal dissipation as long as a > 4ξγ−1/4, hence we can expect significant
acoustic effects for vortices that are closely spaced compared with this distance.

The largest deviation from point-vortex behavior occurs when the vortex cores
overlap. This is energetically disfavored for same-signed vortices, however dis-
sipation will cause opposite-signed vortices to attract each other until their cores
overlap. Such an event leads to complicated behavior that is not completely un-
derstood. Topologically, it is permissible for the two vortices to annihilate, as the
circulation integral around both is zero. For this to happen, the energy associ-
ated with the core structure must dissipate, either to acoustic radiation or through
the thermal friction coefficient. Recent experiments have suggested that instead
of rapid annihilation, vortex–antivortex pairs tend to bind together into a state
dubbed vortexonium [46], which then finally annihilates upon the collision with
a third vortex. This collision could conceivably have important effects on the
third vortex. However, such three-body annihilation processes were found to be
suppressed as the dissipation parameter was increased, suggesting that a simple
two-body process is sufficient to account for vortex pair annihilation in the pres-
ence of dissipation. In paper III, we account for annihilation by simply removing
vortex–antivortex pairs that get closer than a given threshold distance.

We have also neglected the effect of the confining potential V (r) in this anal-
ysis. Generally, a confining potential will cause a vortex to precess around the
center of the condensate [47]. In the limit of an infinite cylindrical well with ra-
dius R, the confining potential is equivalent to a hard-wall boundary condition at
r = R, which requires enforcing a no-flux boundary condition on the velocity
field of point vortices. Such a boundary condition can be satisfied by adding im-
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age vortices of opposite charge located at r vα = R2

r2α
rα, as well as image vortices of

the same charge located at the origin. The positions of these images are not sub-
ject to additional dynamical equations, but are fully determined by the position of
the physical vortex, however they do modify the velocity field. The effect is to
modify the point-vortex Hamiltonian to

H = −π
∑

α 6=β

sαsβ ln |rα − rβ|+ π
∑

α,β

sαsβ ln(|rα − r vβ |rβ). (3.46)

Note that the coordinate expression in the second sum is symmetric under the
interchange rα ↔ rβ , which is useful for computing the Hamiltonian equations
of motion from this Hamiltonian. Indeed, taking the square and using |v−w|2 =

v2 + w2 − 2v ·w, we find the symmetric expression

|rα − r vβ |2r2
β =

(
r2
αr

2
β +R4 − 2R2rα · rβ

)
. (3.47)

3.7 Energy cascades in 2D BECs

Given the various effects of the acoustic degrees of freedom described above,
one might expect the nature of turbulent states to be different from the analysis
presented in chapter 2. For example, the annihilation of vortices breaks the con-
servation of enstrophy, because the quantity

∫
ω2d2r =

∑
α(sα)2 equals the total

number of vortices. Consequently, forward energy cascades have been observed
numerically in systems where compressible effects are important [48]. On the
other hand, if the typical inter-vortex distance is large compared to the coherence
length ξ, the compressible effects might be subdominant to the vortex gas [49].
Indeed, an inverse energy cascade has been observed in numerical experiments
where the energy is dominated by the vortex gas [50, 51]. An important feature of
these systems is that an initial period of vortex dipole annihilation tends to remove
oppositely charged vortices from the vicinity of a given vortex, leading to small
clusters of like-signed vortices that protect any given vortex from annihilation,
thus restoring the approximate conservation of enstrophy.

A common way to study the interplay between compressible and incompress-
ible effects is to account for density variations by introducing the density-weighted
velocity w =

√
ρv. This field, unlike v, can have a rotational component∇×w =

(∇√ρ) × v if ρ varies perpendicularly to v, for example near vortex cores. Per-
forming a Helmholtz decomposition of w into incompressible and irrotational
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parts,

w = wI + wC , ∇ ·wI = 0, ∇×wC = 0, wI ·wC = 0, (3.48)

we find a decomposition of the kinetic energy density T = 1
2
w2 = 1

2
w2
I + 1

2
w2
C

where the incompressible part is associated with the far field of vortices and the
compressible part is associated with acoustic excitations and vortex cores [48, 52].
Proceeding as in chapter 2, we can study the energy spectra of each part separately,

EC(k) =
1

2

∫

|k|=k
|w̃C(k)|2ddk, EI(k) =

1

2

∫

|k|=k
|w̃I(k)|2ddk. (3.49)

Numasato et al. [48] found a k−5/3 incompressible energy spectrum associated
with a positive energy flux, in a system where the compressible energy was of the
same order of magnitude as the incompressible. By contrast, the inverse cascade
was observed in systems where the incompressible energy accounted for a higher
fraction of the total energy [50]. In the latter case, the cascade was associated with
a clustering of vortices as suggested by Novikov’s work on the point vortex model
(see chapter 2).

In order to investigate such clustering effects, Bradley et al. [40] computed
the energy spectrum of quasistatic vortex configurations of the kind leading to the
point vortex model of the previous section. Their result reproduces the Novikov
energy spectrum with a large-k modification due to the core structure,

EI(k) =
2πµ2ξ3

g
FΛ(kξ)

∑

α,β

sαsβJ0(krαβ), (3.50)

where FΛ(kξ) characterizes the energy spectrum of a single vortex with ρ = (Λr)2

near the vortex core, given by

FΛ(kξ) = Λ−1f(kξΛ−1), f(z) =
z

4

[
I1

(z
2

)
K0

(z
2

)
− I0

(z
2

)
K1

(z
2

)]2

.

(3.51)
The single-vortex energy spectrum has the asymptotic behavior f(z) ∼ z−1 for
z � 1 and f(z) ∼ z−3 for z � 1, which gives rise to a k−3 tail in the energy spec-
trum for length scales short compared to the vortex core size, while the Novikov
energy spectrum is recovered for scales longer than the core size. Thus, argu-
ing as in chapter 2, one expects that the inverse energy cascade in 2D quantum
turbulence is associated with scale-free clustering of like-signed vortices.
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The above discussion shows that 2D quantum turbulence features a complex
interplay between compressible and vortex degrees of freedom, but the right con-
ditions should allow numerical and experimental investigation into the clustering
behavior of vortices in the inverse energy cascade. Papers I–III of this work were
concerned with such an investigation.

3.8 Paper I

Given that the inverse energy cascade in quantum turbulence is associated with a
particular self-similar structure of like-signed vortex clusters, we wanted to simu-
late a statistical steady-state turbulent regime using the Gross–Pitaevskii equation
in order to look for statistical signatures of these clusters [1]. Following ref. [50],
we used a BEC confined in a harmonic trap with a Gaussian stirring obstacle mov-
ing at speed 0.5c ≤ vext ≤ 0.8c, which had been found to optimize the creation of
small vortex clusters, preventing annihilation. Solving the Gross–Pitaevskii equa-
tion with a weak damping parameter γ = 0.009, we obtained a driven steady state
determined by the energy balance of equation (3.11), featuring a large number of
vortices with a tendency for clustering.

While we found a weak k−5/3 scaling regime in the incompressible energy
spectrum at certain times, this scaling did not survive statistical averaging, which
suggests that compressible effects were still important. However, by using an
algorithm for identifying like-signed vortex clusters, we could synthesize how the
energy spectrum would look if only these vortex clusters were present, resulting
in a clearer signal. This indicates that self-similar vortex clusters were indeed
present, but isolated vortices and dipoles break this self-similarity.

We also found an f−5/3 frequency scaling in the power spectrum of the vor-
tex number fluctuations associated with the energy cascade. A similar frequency
scaling has been observed for the vortex line density in numerical and experimen-
tal studies of 3D quantum turbulence in superfluid helium [53–55], where it was
attributed to the advection of isolated vortex lines by the turbulent velocity field
of the normal fluid component [56]. Similarly, we attributed the frequency scal-
ing in the vortex number fluctuations to the advection of isolated vortices by the
turbulent velocity field due to self-similar vortex clusters. In support of this argu-
ment, we found that the number fluctuations were dominated by the fluctuations
of isolated vortices, while clusters of like-signed vortices did not follow the same
scaling law.
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Looking for other statistical signatures of these clusters, we found hints of a
v−5/3 probability tail in the distribution of clustered vortex velocities. A simple
scaling argument shows why such a scaling law might be explained by self-similar
clusters. A pair correlation function g(r) ∼ r−α corresponds to a probability of
seeing another vortex at a distance r of pr(r) = 2πrg(r) ∼ r1−α. If the vortex
velocity is due to one such other vortex, a simple transformation of variables gives
a vortex velocity distribution (using v(r) ∼ r−1)

Pv(v) ∼ Pr(r)
dr

dv
∼ r1−αd(v−1)

dv
∼ vα−1v−2 = vα−3, (3.52)

hence the self-similar structure of α = 4/3 gives rise to a v−5/3 tail in the vortex
velocity distribution.

3.9 Paper II

To better understand the v−5/3 tail in the velocity distribution, we performed a
more detailed study of vortex velocity fluctuations inside a self-similar cluster
in paper II [2], taking all the N + 1 vortices of the cluster into account. The
computation is given in detail in the paper, so this section only summarizes the
results.

Fixing a particular vortex at the origin, we assumed that the other N vortices
are distributed around the vortex as τ(r) = n′

α

N
r−α

′−1, where α′ = α − 1 char-
acterizes the distribution of distances from the origin T (r) ∼ r−α

′ due to the 2D
measure 2πrdr. The fractal density nα′ is determined by the normalization of the
distribution between the lower cutoff a ∼ ξ due to vortex core interactions and
the upper cutoff due to the cluster size R, and is given by

nα′ =
N(1− α′)

2π(R1−α′ − a1−α′)
. (3.53)

Note that, in the paper, we use α′ as the primary exponent and name this α, unlike
the convention in this thesis. The self-similar distribution α = 4/3 associated
with the inverse energy cascade corresponds to α′ = 1/3 for the distance from
the origin. Taking all the vortex charges sα = 1 in dimensionless units, this
distribution of vortex positions then determines the velocity distribution W (V)
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by superposition of the velocities φ(rα) induced by each vortex,

W (V) =

∫ [ N∏

α=1

drατ(rα)

]
δ

(
V −

N∑

α=1

φ(rα)

)
. (3.54)

By manipulating this integral in spectral space, taking the thermodynamic limit
N → ∞, R → ∞ while keeping nα′ fixed, and series expanding in 1/V to find
the high-velocity tail, we found the series representation

W (V) =
∞∑

n=1

Pnn
n
α′V n(α′−1)−2, (3.55)

with a Gaussian cutoff for velocities larger than 1/a due to the low-distance cutoff
a ∼ ξ. The dimensionless prefactor Pn is computed by contour integrals in the
complex plane, giving the values P1 = 1 and

P2 = −41−α′
tan

πα′

2
B

(
1− α′

2
,
1

2

)2

, (3.56)

where B(x, y) is the Beta function. At high velocities below the cutoff 1/a, the
n = 1 term dominates, so the distribution for the velocity norm V = |V| is given
by

P (V ) = 2πVW (V) = 2πnα′V α′−2 = 2πnα−1V
α−3, (3.57)

so a fractal cluster with α = 4/3 (α′ = 1/3) is indeed associated with V −5/3 tail
in the vortex velocity distribution. However, this power-law scaling breaks down
for velocities low enough that the n = 2 term becomes important, namely when

nα′V α′−3 = |P2|n2
α′V 2α′−4 ⇔ V = (|P2|nα′)1/(1−α′) , (3.58)

hence the scaling range in the vortex velocity distribution becomes smaller with
increasing density nα′ of vortices. This explains the limited scaling range we ob-
served in paper I, due to the relatively tightly spaced vortices in the BEC compared
to the core radius ∼ ξ.
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3.10 Paper III

Given that the signals of self-similar vortex clusters in paper I were limited by
compressible effects and a small system size, we decided to eliminate compress-
ible effects and allow for larger systems by moving from the GPE to a driven and
dissipative point vortex model in paper III [3]. We saw above that the dissipation
parameter γ in the SPGPE (3.13) leads to a dissipative vortex drift in the motion of
vortices, which is readily accounted for by modifying the Hamiltonian equations
of motion to equation (3.46).

To model the driving force due to the stirring obstacle, we noticed that the
main effect of the obstacle on the vortex gas is to create vortex dipoles with a
characteristic distance ∼ ds between the two created vortices, at a given rate. We
therefore injected random dipoles into the system at a given rate, with a distance ds
between the two vortices. As the number of vortices increases and interact with
each other, it is inevitable that a vortex–antivortex pair comes into contact with
each other, at which point they are expected to annihilate due to compressible
effects. We therefore removed such pairs that came closer than a distance da < ds
from the system. If these processes occur at equal rates, the energy of the system
changes approximately by π ln ds

da
> 0 with each event, so this effect drives energy

into the system at a length scale on the order of da and ds.

The result was a turbulent steady state where we measured a negative spectral
energy flux, as well as an average energy spectrum which showed a k−5/3 scaling
if we removed isolated vortices from the analysis as in paper I. Due to the larger
system size and longer simulation times, we also obtained enough vortex statistics
to probe the self-similar structure of vortex clusters directly. While previous work
has focused on isolated vortex clusters of a single circulation charge [31, 40], we
found this picture to be insufficient for analyzing the spatial structure of vortices
in our system, which featured a diverse set of clusters of different sizes coupled to
each other, often polluted with a few vortices of the opposite charge. We therefore
generalized Novikov’s statistical analysis to account for both vortex charges.

Recall that the energy spectrum of a system of vortices located at rα with
charge sα is given by equation (2.40), namely

E(k) =
π

k

(
N +

∑

α 6=β

sαsβJ0(krαβ)

)
, (3.59)

where we assume that |sα| = 1. Taking the average of this quantity and allowing
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the number N of vortices to fluctuate, we find a dependence on the weighted pair
correlation function, defined as

ρgw(r) =
1

〈N〉

〈∑

α 6=β

sαsβδ(r− rαβ)

〉
, (3.60)

where ρ = 〈N〉
A

is the number density of vortices. Note the weighting by the
vortex charges sα, leading to a different correlation function than those considered
previously. This gives rise to an average energy spectrum given by

〈
E(k)

N

〉
=
π

k

(
1 +

∫
J0(kr)ρgw(r)d2r

)
. (3.61)

The k−5/3 energy scaling would thus be associated with an r−4/3 scaling in the
weighted pair correlation function. Indeed, by numerically counting the number
vortices near a given vortex weighted by the vortex charges, we found that the
weighted pair correlation function satisfied such a power law, again after remov-
ing isolated vortices from the analysis. This result suggests that analyzing the
self-similar structure of a single vortex cluster is not sufficient for understand-
ing turbulent states in 2D quantum turbulence, due to strong interactions between
vortex clusters of different signs.

As a final note, we remark that the weighted pair correlation function can be
interpreted as a measure of the vorticity covariance. Using that the point vortices
are related to vorticity by

ω(r) = 2π
∑

α

sαδ(r− rα), (3.62)

the vorticity covariance at separation r is given by

〈ω(r′ + r)ω(r′)〉 = 4π2

〈∑

α,β

sαsβδ(r
′ + r− rα)δ(r′ − rβ)

〉
. (3.63)

Assuming statistical homogeneity, this value is unchanged if we integrate over the
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origin point r′ and divide by the area A, giving

〈ω(r′ + r)ω(r′)〉 =
4π2

A

〈∑

α,β

sαsβ

∫
δ(r′ − rα)δ(r + r′ − rβ)d2r′

〉

=
4π2

A

〈∑

α,β

sαsβδ(r− rαβ)

〉
. (3.64)

We split this sum into a part where α = β, and a part where α 6= β. In the first
case, the charges simplify to s2

α = 1, while the distance between vortices is 0,
giving

4π2

A

〈∑

α

δ(r)

〉
= 4π2 〈N〉

A
δ(r) = 4π2ρδ(r). (3.65)

For the case of different vortices α 6= β, can compare with the definition of the
weighted pair correlation function in equation (3.60), giving

4π2

A

〈∑

α6=β

sαsβδ(r− rαβ)

〉
=

4π2

A
〈N〉 ρgw(r) = 4π2ρ2gw(r), (3.66)

so the vorticity covariance can be expressed using the weighted pair correlation
function as

〈ω(r′ + r)ω(r′)〉 = 4π2ρδ(r) + 4π2ρ2gw(r). (3.67)

This shows that the self-similar structure of vortex clusters is the point-vortex
equivalent of a similar r−4/3 scaling in the vorticity correlation. Such a scaling
is a well-known corollary of the k−5/3 energy spectrum in classical turbulence,
as can be shown for example by comparing the resulting enstrophy spectrum
Z(k) = k2E(k) ∼ k1/3 with its definition in terms of vorticity correlations. Our
expression of the energy spectrum in terms of the weighted pair correlation func-
tion can therefore be seen as an adaptation of these scaling arguments to the case
of singular vortices.
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Chapter 4

Elasticity and Plasticity

Solids undergoing deformation have two main modes of responding to the applied
forces. Weak loads lead to smooth, slowly varying deformations resisted quickly
by forces internal to the solid. These forces return the solid back to the equilibrium
configuration almost instantaneously when the load is removed. Such deforma-
tions are called elastic, and the equilibrium behavior of solids under elastic loads
is the study of elasticity. As the applied load is increased, the internal forces of
the solid stabilize at a critical value known as the yield stress (see figure 4.1, left
panel). Loads exceeding the yield stress will overcome the internal forces of the
solid, causing it to start deforming irreversibly. This is called plastic yielding, and
the study of the yielding transition is known as plasticity.

Macroscopic samples tend to have a consistent yield strength only depending
on the particular material, except for effects depending on previous loading con-
ditions such as work-hardening and material fatigue. For samples on the scale
of micrometers, however, the yield strength starts varying wildly from sample to
sample. At the same time, the smooth yielding transition breaks into a series of
small-scale yielding events in between periods where the elastic stress builds up
(see figure 4.1, right panel). The yield stress also shows a marked correlation with
sample size, such that smaller crystals tend to be stronger [9, 57]. This compli-
cated yielding behavior of single crystals has been attributed to the strong interac-
tion of dislocations, which are topological defects in the crystal lattice similar to
the quantized vortices of BECs. Experimental characterization of the small-scale
yielding events by measuring acoustic emission shows that they are characterized
by self-similar scaling laws consistent with a picture where large coherent struc-
tures of dislocations pinned to each other and to the lattice, suddenly undergo
avalanche-like depinning events [58]. This shows that plasticity, similarly to 2D
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Figure 4.1: Left: conceptual illustration of plastic yielding in macroscopic solids.
Stress and strain are linearly related for elastic deformations, until the yield
point where plastic flow starts occurring. Right: Bursty yielding dynamics in a
single-crystal nanopillar. Small-scale yielding events are interleaved with buildup
of elastic stress. The characteristic yield stress increases with decreasing size.
Reprinted from ref. [57], with permission from Elsevier.

turbulence, is characterized by the self-similar spatiotemporal statistics of singular
structures moving through the medium.

Indeed, the most successful approach towards modeling the plastic yield tran-
sition is by considering the dislocations as the basic degrees of freedom [59],
similar to how 2D quantum turbulence is reduced to a collection of point vor-
tices. This approach, known as discrete dislocation dynamics (DDD), has gone a
long way towards explaining the complex behavior of single-crystal plasticity [9].
However, it depends on phenomenological input such as how dislocations respond
to applied forces, which are difficult to compute from first principles.

In the previous chapter, we saw how the mesoscale model of the Gross–
Pitaevskii equation was very useful in deriving phenomenological higher-level
models with controlled approximations. A similar mesoscopic model for crystal
plasticity is known as the phase-field crystal (PFC). This model, however, fails to
reproduce the strong separation of timescales between elastic and plastic motion
common to all crystals. Our research therefore focused on gaining a sufficiently
detailed understanding of elastic and plastic behavior in the PFC that we could
propose a method of overcoming this issue.

We begin this chapter by introducing the basic concepts of linear elasticity
and dislocation-mediated crystal plasticity, before introducing the PFC. We then
summarize our contribution to understanding the elastic and plastic behavior of
the PFC in paper IV, as well as our improved model in paper V.
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4.1 Crystal lattices

A crystal structure is a periodic arrangement of atoms such that their equilibrium
positions occur on a crystal lattice, r{ni}i =

∑d
i=1 niai, where {ni} are sets of d

integers, d is the dimension of space, and ai are the d primitive lattice vectors. For
example, the 2D triangular lattice with lattice constant a can be constructed from
the basis

a1 =
a

2
(ex +

√
3ey), a2 = aex, (4.1)

where ei is the unit vector in direction i. The spaces between the lattice points
are called unit cells, and can be parameterized by

∑d
i=1 tiai for 0 ≤ t < 1. The

unit cells of the triangular lattice are equilateral triangles, hence the name of this
lattice.

Crystal structures typically occur as symmetry-breaking phase transitions from
a homogeneous and isotropic liquid phase, giving rise to the particular choice of
crystal lattice. Given the periodicity of the crystal lattice, it is useful to study a
given state in spectral space. Consider the density field ρ(r), which is symmet-
ric under the translation of a lattice vector. Any periodic function of r can be
expanded as a Fourier series,

ρ(r) =
∑

g

ρge
ig·r, (4.2)

where a real density field satisfies ρ−g = ρ∗g, and the sum runs over the vectors
g such that the periodicity condition of the crystal lattice is satisfied. Translating
the coordinate by a lattice vector gives the condition

ρ

(
r +

∑

i

niai

)
=
∑

g

ρge
ig·rei

∑
i nig·ai =

∑

g

ρge
ig·r, (4.3)

which is satisfied whenever g · ai is an integer multiple of 2π. The set of vectors
satisfying this condition form another lattice called the reciprocal lattice, which
has basis vectors qi defined by

qi · aj = 2πδij. (4.4)
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Indeed, writing g =
∑

j kjqj for integral kj , we find

g · ai =
∑

j

kjqj · ai = 2πki, (4.5)

which satisfies the periodicity requirement. For example, the basis vectors of a
triangular lattice can be chosen as

q1 = qTey, q2 =
qT
2

(√
3ex − ey

)
, qT =

4π√
3a
. (4.6)

4.2 Linear elasticity

It is crucial to have a good mathematical description of how solids respond to
small reversible deformations before considering the larger, irreversible deforma-
tions of plasticity. The lowest-order such theory is called linear elasticity, and is
essentially formulated as a linear response theory of how the free energy responds
to small deformations.

Small deviations to a given crystal lattice are defined as an affine transforma-
tion r 7→ r′ = r + u(r), where u(r) is the displacement vector, displacing the
lattice from the equilibrium structure. Rigid body translations of the entire lat-
tice clearly cost no energy, therefore the lowest-order possible term in free energy
depending on displacement is quadratic in the displacement gradients,

Fel =
1

2

∫
ddrCijkl∂iuj∂kul, (4.7)

where the elastic tensor Cijkl describes the stiffness of the material to various
deformations. Since the integral is symmetric under the interchange i, j ↔ k, l,
the elastic tensor must also have this symmetry. We can derive more conditions
for the elastic tensor by requiring the elastic energy of a rigid rotation to be zero.
Considering an infinitesimal rotation r′ = r+ω× r, we see that the displacement
vector has components ui = εijkωjrk which we can invert by taking the curl,
giving

εijk∂juk = εijkεklrωlδjr = εijkεljkωl = 2ωi, (4.8)

where we used that εijkεljk = 2δil. For the elastic energy of this to be zero for all
ω, it must be independent of εijk∂juk for all u; hence it must only depend on the
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symmetric part of the displacement gradient, known as the infinitesimal strain:

eij =
1

2
(∂iuj + ∂jui) . (4.9)

This allows us to re-express the elastic energy as

Fel =
1

2

∫
ddrCijkleijekl, (4.10)

from which we can see that the elastic tensor must also be symmetric in i ↔ j

and k ↔ l.

The force density arising as a response to the deformation is then given by

fj = −δFel

δuj
= ∂i (Cijkl∂kul) = ∂iσij, (4.11)

where the elastic stress is defined as σij = Cijkl∂kul = Cijklekl. This tensor can
be interpreted as the Cauchy stress tensor denoting the force per area along the
direction j, exerted on a surface element with normal vector ni. By Gauss’ law,
such a definition leads to a force on a volume dV bounded by the surface Σ given
by

Fj =

∮

Σ

σijnidΣ =

∫
∂iσijdV, (4.12)

in agreement with equation (4.11). By the symmetries of the elastic tensor, we
see that the stress is also symmetric, σij = σji, which could also be derived by
requiring the torque on infinitesimal volume elements to vanish [60].

In addition, the elastic tensor has to respect the symmetry of the underlying
crystal lattice. For example, the elastic energy of the 2D triangular lattice must be
invariant under rigid rotations of the displacement vector by 60◦. Similarly, if we
look at large polycrystals consisting of many small crystal grains and only concern
ourselves with scales larger than that of the individual grain, we can coarse-grain
over the varying lattice orientations and obtain a continuously isotropic descrip-
tion. In that case the free energy must be invariant with respect to continuous
rotations of the displacement vector. In the cases of isotropic elasticity and the
2D triangular lattice, it can be shown that the elastic tensor only depends on two
independent parameters [8], namely

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , σij = λδijekk + 2µeij, (4.13)

55



where λ and µ are the Lamé parameters. In this case, the stress–strain relation
can also be inverted easily. Noting first that the traces are related by σkk = (dλ+

2µ)ekk where d is the number of dimensions, we find that

eij =
1

2µ
(σij − λδijekk) =

1

2µ
(σij − κδijσkk) , (4.14)

where κ = λ
dλ+2µ

.

The formalism of linear elasticity allows us to compute the equilibrium re-
sponse of a solid to applied forces. For example, assume a traction τi (that is, a
force per area) is applied to the crystal boundary. The equilibrium deformation
arising from these tractions is found by setting the internal forces to zero,

∂iσij = Cijkl∂i (∂kul + ∂luk) = 0, (4.15)

with the boundary conditions that njσij = τi, and where nj is the boundary nor-
mal vector. Solving the partial differential equation for u, we find the crystal
deformation response.

In two-dimensional simply connected spaces, there is a useful way of express-
ing all stress fields which solve the equilibrium condition ∂iσij = 0 through the
Airy stress function. Given any smooth function χ, if we define a stress tensor by
σij = εikεjl∂klχ, we have that

∂iσij = εikεjl∂iklχ = εjl∂l (εik∂ik)χ = 0, (4.16)

by commutation of partial derivatives. This shows that there is a continuous fam-
ily of stress fields satisfying elastic equilibrium, so we need another condition
to fully determine σ. Indeed, the symmetric tensor σij has d(d+1)

2
independent

quantities, so the d equations given by the equilibrium condition still leaves d(d−1)
2

independent quantities to be determined. In contrast, by expressing the stress as
a function of the displacement gradient as in equation (4.15), the number of inde-
pendent quantities goes back to d, giving a fully determined system of equations.
The problem therefore occurs when moving from the displacement field u to the
strain tensor eij as the free parameter, because this has more independent quan-
tities. Indeed, not all symmetric tensors eij arise from gradients of vectors u. It
would therefore be useful to find a condition which assures that this is the case.
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4.3 Compatibility of strain

A symmetric tensor eij which can be expressed as the symmetric gradient of a
displacement field u is called a compatible strain tensor. We argued above that we
need necessary and sufficient conditions for the compatibility of eij . A necessary
condition is easily derived by noting that the curl of a gradient vanishes,

εijk∂j(∂kul) = 0. (4.17)

Hence, by taking curls of the strain tensor, we see that

εijk∂jekl =
1

2
(εijk∂jkul + εijk∂jluk) =

1

2
εijk∂jluk,

εmnlεijk∂njekl =
1

2
εmnlεijk∂j∂nluk = 0, (4.18)

so a necessary condition for the strain to be compatible is that the double curl van-
ishes. St. Venant showed that this condition is also sufficient in a simply connected
region [61], which proves that the condition of vanishing double curl,

εijkεmnl∂njekl = 0, (4.19)

sufficiently determines the strain tensor along with the the condition of elastic
equilibrium ∂iσij = 0.

For isotropic elasticity, this lets us derive an equation for determining the Airy
function. The strain tensor determined by the Airy function is found by the inverse
stress–strain relation,

eij =
1

2µ
(σij − κδijσkk) =

1

2µ

(
εikεjl∂klχ− κδij∇2χ

)
. (4.20)

Hence, applying the 2D double curl, we find the equation

εikεjl∂ijekl =
1

2µ

(
εikεjlεkmεln∂ijnmχ− κεikεjk∂ij∇2χ

)
=

1− κ
2µ
∇4χ = 0,

(4.21)
where we used multiple instances of the identity εijεik = δjk. This allows us to
determine the stress function by solving a biharmonic equation, with second-order
boundary conditions given by the tractions niεikεjl∂klχ = τj .

57



4.4 Dislocations

While linear elasticity describes smooth and reversible deformations of the lattice
well, the irreversible, diffusive deformations of plasticity are associated with topo-
logical defects in the displacement field known as dislocations. The displacement
field has a nontrivial topology because the reference lattice is symmetric under
translations by a lattice vector, so the displacement of the crystal lattice by a lat-
tice vector is equivalent to no displacement from an equivalent reference lattice.
This means that the displacement vector is only defined up to equivalence between
unit cells. Mathematically, we define displacements to be equivalent if they are
translated by lattice vectors,

u ∼ u′ ⇔ u′ = u +
∑

i

niai, ni ∈ Z, (4.22)

and consider displacements to take values in the quotient space U = Rd/ ∼. It
can be shown that this space is topologically equivalent to a d-torus, which has
a fundamental group isomorphic to Zd. We should therefore expect the deforma-
tion field u to support topological defects of codimension two, with topological
charges given by d integers.

Consider therefore a loop C in the crystal parameterized by r(t) : [0, 1]→ Rd

with r(0) = r(1). This loop in real space induces a loop of displacement vectors
uc(t) = u(r(t)) : [0, 1] → U, with the condition that the start and end points are
equivalent, uc(1) − uc(0) = b for some lattice vector b. In other words, taking
the circulation of the displacement field around the loop, we find

∮

C

du =

∮

C

∇u · dr = uc(1)− uc(0) = b. (4.23)

This shows that the displacement field has topological defects known as disloca-
tions, with the topological charge characterized by a lattice vector b, known as
the Burger’s vector. The Burger’s vector, as any lattice vector, can be expressed
in terms of d integers as b =

∑
i niai, ni ∈ Z, and since the lattice vectors are

linearly independent, addition of Burger’s vectors is isomorphic to addition of the
integers ni. This shows that the dislocation charge b is isomorphic to the funda-
mental group Zd of the d-torus, as expected.

In 3D, dislocations form lines permeating the crystal lattice. Of special interest
is the relation between the line tangent vector t and the Burger’s vector b. If
the Burger’s vector is perpendicular to the line tangent, the dislocation can be
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b

(a) (b)

b

Figure 4.2: (a): Illustration of edge dislocation in the plane perpendicular to the
dislocation line in a square lattice (gray lines). Following a loop (in this case
a square) around the dislocation, we measure the lattice deformation by the dis-
placement of the center of each unit cell. The deformation increases gradually,
finally resolving to the Burger’s vector b when we come back to the starting point.
This is associated with a vertical crystal plane terminating at the position of the
dislocation. (b): A screw dislocation in three dimensions, showing vertical dis-
placement by the Burger’s vector b around a horizontal loop.

visualized in the plane perpendicular to t. An example is given in figure 4.2,
where we see the mismatch by b at the beginning and end of a square loop, as
well as a crystal plane terminating at the dislocation.

In 2D, we can think of the point-like dislocation as the projection of a dis-
location line going straight through the plane along the z axis. Thus, since the
Burger’s vector must lie in the plane, b is always perpendicular to t, so the edge
dislocation is the only possible kind of dislocation in 2D. In 3D, however, we can
have that b is parallel to t. This kind of dislocation is known as a screw disloca-
tion, and is an essentially three-dimensional object, which is illustrated in figure
4.2 b. As we go around the loop, the crystal lattice is displaced in the direction
perpendicular to the plane of the loop, causing a screw-like deformation of the
lattice. As a third possibility, the Burger’s vector can have components both along
t and perpendicular to t, creating a mixed dislocation with features of both kinds.
Indeed, as dislocation lines tend to curve around the crystal, these mixed disloca-
tions will be common occurrences in three dimensions. Here, however, we focus
on the plasticity of 2D systems, so we will not go further into the properties of
such dislocations.
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4.5 Plastic strain

We saw above that the displacement vector should really be thought of as an el-
ement of the space U which is a quotient space of the physical vector space Rd.
However, for physical interpretation it is still useful to think of the displacement
vector as a physical vector in Rd. In that case the displacement field will in general
be multivalued, in a manner similar to the case of multivalued functions in com-
plex analysis. We can recover a single-valued displacement field by adding the
equivalent of a branch cut to the crystal, at the cost of a jump discontinuity across
the branch cut. This branch cut takes the form of a surface Σ, called a slip plane,
which terminates at the dislocation line and is tangent to the Burger’s vector, such
that the deformation field jumps by b as we cross the slip plane. For example, the
slip plane is drawn as a dashed line in figure 4.3 a, with u+ above the line and u−

below the line, and b = u+ − u−. The jump discontinuity is associated with a
delta function peak in the strain given by [62]

ePij =
1

2
(nibj + njbi)δ(ζ), (4.24)

where n is the normal vector to the plane and ζ is the perpendicular distance from
the plane. This discontinuity is however invisible to the microscopic physics of
the crystal, as the slip plane is chosen arbitrarily. The stress can therefore only
depend on the elastic part of the strain,

σij = Cijkle
el
kl = Cijkl(ekl − ePkl). (4.25)

Still, the plastic strain has a physical interpretation as an irreversible plastic de-
formation due to the lattice reorganization inherent in the creation of the dislo-
cation. While the value of this strain carries the ambiguity of the choice of slip
plane, changes in plastic strain under the motion of dislocations are not ambigu-
ous. Consider moving an element dl of a dislocation line by a small amount δr.
This causes the slip plane to grow or shrink by an amount δΣ = nδΣ = dl× δr,
leading to a change in the plastic strain (see figure 4.3). A detailed study of the
geometry of the problem leads to the expression [62]

δePij =
1

2
(biεjlm + bjεilm) tmδ(ξ)δxl, (4.26)
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(a) (b) (c)

u+

u-

Figure 4.3: Illustration of dislocation motion in a square lattice. (a): The initial
dislocation, with the slip plane indicated by the dashed line, and plastic slips u+

and u− indicated by arrows. (b): Crystal lattice after the dislocation has moved
along the slip plane, in the glide direction, accomplished purely through the re-
organization of particle bonds. The increase in the slip plane is indicated by the
arrow. (c): Crystal lattice after the dislocation has moved in the climb direction,
normal to the slip plane. The new slip plane now has a component normal to the
Burger’s vector. A local increase in volume due to the addition of a lattice site
(circle) is evident.

where t is the tangent vector to the dislocation line and ξ is the radius vector
taken from the dislocation line. This shows that the change in plastic strain is
independent of the choice of slip plane, only depending on quantities local to the
dislocation.

If δr is parallel to b, the new part δΣ of the slip plane has a normal vector
perpendicular to b, hence the plane is tangent to b. This type of motion is known
as glide, and can be accomplished by a simple reorganization of the lattice (see
figure 4.3). On the other hand, if δr is perpendicular to b, known as climb motion,
then the new part of the slip plane has normal vector along the slip direction b.
This leads to the appearance of a small void of size b · δΣ, which must be filled
with material. Indeed, the plastic strain of equation (4.26) has a trace given by

δePii = δx · (t× b)δ(ξ), (4.27)

which is nonzero if δx has a component perpendicular to t and b, that is, if the
motion has a climb component. We see in figure 4.3 that climb motion is associ-
ated with adding or removing a lattice site from the crystal plane terminating at
the dislocation in the square lattice. Climb motion is therefore coupled to mass
transport processes such as vacancy diffusion, while glide motion can occur in-
dependently of mass transport. This is an important difference between the two
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types of motion.
Differentiating the change in plastic strain with time, we can see that a moving

dislocation is associated with a strain rate given by

ėPij =
1

2
(biεjlm + bjεilm) tmδ(ξ)vl, (4.28)

where vl is the velocity of the dislocation line element dl. Thus, if the crystal is
continuously sheared with a steady-state differential strain rate γ̇, one can assume
that the strain rate is linked to the steady-state motion of straight dislocation lines
in the appropriate direction by the Orowan relation [9]

〈γ̇〉 = 〈ρbv〉 , (4.29)

where ρ is the density of the moving dislocations and v is their speed. This general
relation was proposed in very early experiments by Orowan and Becker. However,
due to the strong interaction between dislocations and the crystal lattice, plastic
motion tends to be more complex than this simple picture.

This is because dislocations interact with each other through the elastic stress
field. By considering the work that the elastic field performs in displacing an
element dl by δx, Peach and Koehler [63] derived the Peach–Koehler force,

Fi = εijktjσklbl, (4.30)

although it was later shown that, because dislocation climb increases the volume
locally, the stress must be replaced by the deviatoric stress σ′ij = σij − 1

d
δijσkk

[62].

4.6 Dislocation stresses

In addition to the plastic strain of equation (4.24), dislocations are also sources of
elastic stresses and strains. This is because the elastic deformation u must contain
a singularity at the position of the dislocation in order to satisfy the constraint of∮

du = b, requiring the particular solution of ∂iσij to diverge at the dislocation
position. Note that this singularity is physical, in contrast to the jump discontinuity
in the plastic strain ePij , which is due to a branch cut. For a point defect in 2D or
a straight dislocation line in 3D, this singularity can be inserted by decomposing
the displacement field into singular and nonsingular parts, u = 1

2π
bθ+ δu, where
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θ is the azimuthal angle relative to the dislocation and δu is smooth. δu is then
determined by inserting the decomposition into the elastic equilibrium equation
(4.15). For a single dislocation at the origin of an isotropic material with Burger’s
vector b = bex along the x direction, one finds [8]

ux =
b

2π

(
θ +

1

2

λ+ µ

λ+ 2µ
sin 2θ

)
,

uy =
b

2π

(
µ

λ+ 2µ
ln r +

1

2

λ+ µ

λ+ 2µ
cos 2θ

)
, (4.31)

which gives rise to divergence-free stresses given by

σxx = −D sin θ(2 + cos 2θ)

r
, σyy = D

sin θ cos 2θ

r
,

σxy = σyx = D
cos θ cos 2θ

r
, D =

b

2π

2µ(λ+ µ)

λ+ 2µ
. (4.32)

This means, for example, that two dislocations in the plane with Burger’s vectors
±bex, separated along x by a distance r, exert attractive forces on each other given
by

Fi = εijσjkbk, Fx = σyxbx = ± b
2

2π

2µ(λ+ µ)

λ+ 2µ

1

r
, Fy = −σxxbx = 0, (4.33)

with the sign of Fx depending on which dislocation we are looking at, determining
the sign of cos θ.

As an alternative to solving for the displacements, one can determine the stress
directly by noting that the Burger’s loop of equation (4.23) causes the strain tensor
to be incompatible at the dislocation position. In two dimensions, one finds [8]

εikεjl∂kleij = εij∂iBj, where B(r) =
∑

α

bαδ(r− rα), (4.34)

which along with the equilibrium condition ∂iσij determines the stress. Using this
in equation (4.21) for the Airy stress function, we find

1− κ
2µ
∇4χ = εij∂iBj, (4.35)

showing explicitly how dislocations are singular sources for the elastic stress, sim-
ilar to how point vortices serve as singular sources for the stream function in the
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point vortex model (see chapter 2). This stress field will then act on other dis-
locations through the Peach–Koehler force. It remains, however, to determine
how dislocations respond to such forces if we want to obtain a closed dynami-
cal system similar to the point vortex model. One possibility is a simple over-
damped model where the dislocation speed is proportional to the Peach–Koehler
force, but with different mobilities in the glide and climb directions to account
for the temperature-dependent coupling between climb motion and diffusive mass
transport. However, in reality, the crystal lattice itself also exerts forces on the
dislocation, known as Peierls stress barriers [62].

Ideally, one could study these processes from a mesoscale model of the crystal
lattice, similar to how we studied vortex motion under controlled approximations
in chapter 3. Here, however, a-priori modeling is more limited. The most obvi-
ous approach is to explicitly solve the equations of motion for each atom in the
crystal structure, using appropriate two-body potentials to model the interaction
between atoms. This approach is known as molecular dynamics (MD) and is very
successful in modeling fast processes in crystals such as shock waves and lattice
vibrations [64]. Dislocation motion, on the other hand, is a slow process coupled
to the large-scale motion of the entire lattice (e.g. by Orowan’s relation), and it is
hard to access these slower timescales in MD, although some progress has been
made using large, massively parallel computations [65]. It would therefore be
useful to have a mesoscale model that resolves the crystal lattice to model lattice
effects on dislocation motion, but ignores the fast timescales of lattice vibration
in order to more easily access the long timescales of plasticity. The leading con-
tender for such a model is the phase-field crystal, which we discuss next.

4.7 The phase-field crystal

The phase-field crystal was originally proposed as an extension of phase-field
methods for tracking the interface between two coexisting phases in a first-order
phase transition, to tracking the growth of the crystal phase in an isotropic liquid
[66, 67]. For this to be feasible, the phase field must satisfy the same symmetry as
the crystal lattice of the solid phase. As in other phase-field methods, the starting
point is a Ginzburg–Landau type of free energy density containing a nonlocal term
g(ψ,∇2ψ),

F =

∫
f(ψ,∇2ψ) = d2r

∫
d2r

[
r

2
ψ2 +

1

4
ψ4 + g(ψ,∇2ψ)

]
, (4.36)
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where the phase field ψ is typically interpreted as a linear function of the atomic
density, and the parameter r, known as the quench depth, represents the deviation
of the temperature from the critical point. The nonlocal term g(ψ,∇2ψ) is chosen
to be consistent with the symmetry of a given lattice, which for the triangular
lattice leads to a gradient-expanded form given by g(ψ,∇2ψ) = 1

2
[(1 +∇2)ψ]2.

The equilibrium behavior of this system is given by minimizing the free energy
at a fixed number of atomsN =

∫
ψd2r. This constraint is enforced by the method

of Lagrange multipliers, which leads to the variational equation

δ(F − µcN)

δψ
=
δF
δψ
− µc = 0 ⇔ (1 +∇2)2ψ + rψ + ψ3 = µc. (4.37)

The constant µc, interpreted as the chemical potential, is then chosen so that the
solution of equation (4.37) has the required value for N .

Being a fourth-order nonlinear partial differential equation, this equation is
difficult to analyze analytically without approximation. However, Elder and Grant
[66] argued from general principles that the free energy should favor three kinds
of solutions: constant solutions ψ = ψ0, undulating stripes with a given wavenum-
ber, and a solution with the symmetry of a triangular lattice. Such solutions can
be expanded in the reciprocal lattice as in equation (4.2),

ψ =
∑

g

Age
ig·r, (4.38)

where the sum runs over vectors in the reciprocal lattice consistent with the given
symmetry. For stripes, this means that g = nqS for integral n and qS the fun-
damental wave vector of the stripes, while for the triangular lattice, we use the
reciprocal lattice basis vectors q1,q2 of equation (4.6). The operator (1 + ∇2)

acting on one of these terms gives

(1 +∇2)
(
Age

ig·r) = (1− g2)Age
ig·r, (4.39)

hence we expect wave vectors of length |g| ≈ 1 to be energetically favored in this
expansion, as well as the necessary g = 0 term from the conservation of mass.
This suggests that we should take qS ≈ 1 and qT ≈ 1, and the dominating terms in
the amplitude expansion will be those corresponding to reciprocal lattice vectors
of length qT , namely ±q1,±q2 and ±q3 with q3 = −q1 − q2. We also expect
the amplitudes of these vectors to be equal because of rotational symmetry. The
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resulting ansatz is known as the one-mode approximation, and is given by

ψS = ψ0 + ASe
iqS ·r + c.c., ψT = ψ0 + AT

3∑

n=1

eiqn·r + c.c. (4.40)

Inserting these ansatzes into the free energy and minimizing with respect to qS, AS
and qT , AT , one finds qS = qT = 1 as expected, as well as equilibrium values for
the amplitudes given by [66]

AS =

√
−r

3
− ψ2

0, AT =
1

5

(
|ψ0|+

1

3

√
−15r − 36ψ2

0

)
, (4.41)

which differs from the stripe value A and the triangular value At given in ref. [66]
by numerical factors because of the different representation they use for the expan-
sion. Requiring the amplitudes to be real and positive, we find that the stripe phase
is only stable for r < −3ψ2

0 , and the triangular phase is only stable for r < −12
5
ψ2

0 .
More accurate stability bounds can be found by computing the free energy den-
sity of these equilibrium states, and compare them against each other and against
the energy of the uniform state ψ = ψ0. Since these are first-order symmetry-
breaking phase transitions, one must also allow for coexistence between phases
by performing a Maxwell construction. The resulting phase diagram is reprinted
in figure 4.4.

Given that the triangular ground state satisfies the same symmetry as a triangu-
lar lattice, Elder and Grant [66] expected the equilibrium behavior of this state to
satisfy the same linear elastic behavior as 2D triangular crystals. This means that
a deformation r′ = r + u(r) of the lattice results in a change in free energy which
follows the linear stress–strain relation σij = Cijkl∂kul, with Cijkl consistent with
the symmetries of the lattice. The authors proved this by inserting the ground
state ansatz (4.40) into the free energy integrated over a unit cell while deforming
the coordinate system by bulk, shear and deviatoric deformations. Expanding the
resulting free energy in the magnitude of these deformations and comparing the
result to a similar expansion of the elastic energy (4.7), they found global elas-
tic constants for the equilibrium crystalline phase consistent with the symmetry
of the triangular lattice. Below, we will derive the same elastic constants via an
expression for the stress tensor given any out of equilibrium state ψ.
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Figure 4.4: Phase diagram for the phase-field crystal in terms of the quench depth
r and the conserved mean density ψ0. Reprinted figure with permission from [66].
Copyright 2004 by the American Physical Society.

4.7.1 Nonequilibrium dynamics

While the free energy of equation (4.36) fully determines the equilibrium behavior
of the phase field ψ, additional assumptions are needed to determine how states
dynamically approach equilibrium. Because the phase field ψ is conserved, its
dynamics must satisfy a conservation equation

∂tψ +∇ · J = 0, (4.42)

however the behavior of J can be chosen arbitrarily. The most common assump-
tion is that the system relaxes towards equilibrium in a purely dissipative way. We
saw above that the free energy is minimized when the variation δF

δψ
is uniform,

so we choose J to go in a direction which smooths out nonuniformities in this
variation, J = −D∇ δF

δψ
. Applying the divergence to this current, using the con-

servation equation, and rescaling the time coordinate with the diffusion constant
D, we find

∂tψ = ∇2 δF
δψ

= ∇2
[
(1 +∇2)2ψ + rψ + ψ3

]
. (4.43)
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This is the dynamical equation suggested originally in ref. [66, 67]. A similar
dynamical equation has been derived from the classical density functional theory
of a system of colloidal particles by a gradient expansion of the direct correlation
function, given by [68, 69]

∂tψ = ∇ ·
(
ψ∇δF

δψ

)
, (4.44)

which corresponds to a current equation given by J = −ψ∇ δF
δψ

due to the mo-
bility of colloids depending on the colloidal density. This shows that the PFC
corresponds to treating the mobility as constant, known as the constant mobility
approximation. Such an approximation is not entirely controlled, but has the ad-
vantage of changing a fully nonlinear equation into one where the nonlinearity is
contained in only one term. This has advantages for numerical work, as we will
see in chapter 5.

In practice, we are only interested in states which are only slightly out of
equilibrium, such as crystalline states that have been elastically and plastically
deformed, or that are in coexistence with a surrounding liquid. We saw above that
the amplitude expansion is useful for studying properties of equilibrium states,
so it is natural to attempt to generalize this expansion to also capture deformed
crystals. Given a deformation of the crystal by r′ = r + u(r), we see that the
opposite deformation r = r′ − u will recover the reference lattice. Hence, the
deformed crystal can be represented by

= ψ0 +
∑

g>0

Age
ig·(r−u) = ψ0 +

∑

g

(
Age

−ig·u) eig·r, (4.45)

which indicates that we could represent a more general state by allowing the com-
plex phase of the amplitudes to vary slowly. Similarly, a liquid–solid boundary
could be represented by the amplitudes going to zero across the boundary. A gen-
eral state ψ which is slightly out of equilibrium could therefore be represented in
the one-mode approximation by allowing the amplitudes to vary slowly in magni-
tude as well as phase,

ψ(r) = ψ0(r) +
∑

n

An(r)eiqn·r + c.c., (4.46)

where An = Aqn is the amplitude corresponding to the oscillation along qn.
Given that slowly varying amplitudes require less grid points to be represented
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accurately, it would be preferable to consider the amplitudes as dynamical vari-
ables rather than the phase field ψ, which oscillates on the scale of the lattice.
Assuming a constant mean density ψ0, Goldenfeld et al. [70, 71] derived dynam-
ical equations for the three independent amplitudes An using a renormalization
group approach valid at |r| � 1, given by

∂tAn = (Ln − 1)
[
L2
nAn + (r + 3ψ2

0)An
]

− 6ψ0

3∏

m=1,m 6=n

A∗m − 3An

(
2

3∑

m=1

|Am|2 − |An|2
)
, (4.47)

where Ln = ∇2 + 2iqn · ∇. A more rigorous derivation using multiple scale
theory leads to a similar equation where the Ln−1 operator is applied to all terms
rather than just the first one [71, 72], reflecting the outer Laplacian operator in
the original equation for ψ. In any case, Yeon et al. [72] argued that this outer
operator can be approximated to Ln − 1 ≈ −1, which as an added benefit makes
the equation less numerically stiff. Under a similar approximation they also found
an appropriate equation for variations in the mean density ψ0, which (ignoring
their additional ψ3 term in the free energy) is given by

∂tψ0 =∇2

[
(1 + r)ψ0 + ψ3

0 + 6ψ0

3∑

n=1

|An|2 + 6

(
3∏

n=1

An +
3∏

n=1

A∗n

)]
,

∂tAn =−
[
L2
nAn + (r + 3ψ2

0)An
]

− 6ψ0

3∏

m=1,m 6=n

A∗m − 3An

(
2

3∑

m=1

|Am|2 − |An|2
)
. (4.48)

The assumption of overdamped dynamics has the important consequence that
all dynamical evolution is purely diffusive. Indeed, performing a linear stability
analysis around the one-mode approximation for the equilibrium state, Elder and
Grant found that local disturbances spread diffusively [66]. This is in marked con-
trast to the Gross–Pitaevskii equation for BECs, where we found acoustic degrees
of freedom moving ballistically through the medium (see chapter 3). While plastic
motion can be assumed to behave diffusively, elastic equilibrium is generally at-
tained on a much faster timescale determined by the speed of sound in the crystal,
which equation (4.43) cannot capture. This is problematic because it means that
plastic motion will happen out of elastic equilibrium, in contrast to real crystals
that can be assumed to be at elastic equilibrium at all times.
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It is interesting to note that the difference between the GPE and equation (4.43)
is that the GPE describes a complex field with two real degrees of freedom, so
that additional momentum degrees of freedom can be represented in the complex
phase, as we saw by deriving a hydrodynamic description. In contrast, the dynam-
ical equation of the PFC has only one real degree of freedom. An early attempt to
alleviate this problem was to add a momentum degree of freedom by letting the
current have inertia while approaching equilibrium [73],

∂tJ + βJ = −α2∇δF
δψ

⇒ ∂2
t ψ + β∂tψ = α2∇2 δF

δψ
. (4.49)

Performing a linear stability analysis of this equation, the authors found short-
wavelength ballistic degrees of freedom moving at a particular speed of sound.
However, long wavelengths are still overdamped, causing a diffusive behavior
which still fails to equilibrate the system properly [74, 75]. A variety of other
methods have been proposed for the amplitude equations (4.47 and 4.48) for con-
straining the evolution to mechanical equilibrium [76] or coupling the phase field
to a momentum-conserving mesoscopic velocity field [77]. However, by con-
straining themselves to amplitude-expanded equations, these approaches are only
valid near the critical point r = 0 in the free energy. We will see below that the
phenomenology of dislocation motion is very simple near criticality, with more
interesting behavior at deeper quenches.

We therefore sought a phase-field crystal method using the original equation
(4.43), which enforces mechanical equilibrium on the timescale of plastic defor-
mation. We propose such a model in paper V, however arriving at this model re-
quired a better understanding of the local elastic and plastic behavior of the PFC.
Such an understanding was the goal of paper IV [4], which we describe next.

4.8 Paper IV

A detailed understanding of the elastic properties of the PFC is helped by an ex-
pression for the elastic stress σij at any given point. As described above, the
elastic constants of the equilibrium triangular lattice were obtained in ref. [66] by
computing the free energy of the deformed equilibrium state, but this does not
provide an expression for the stress without knowing the elastic strain eij . We
therefore developed different approach where stress is computed for any state ψ.
The derivation is described in the paper, but we give it in more detail here.
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Consider then a general state ψ(r), and deform the coordinate system by a
slowly varying displacement field r′ = r + u(r) giving a new state ψ′(r). We will
assume that the density is unchanged under the deformation, so that evaluating the
deformed state at the deformed position gives the same value as the original state
at the original position, giving ψ′(r′) = ψ(r). This assumption is only correct
if the displacement has no volumetric component ∇ · u, because any change in
local volume must be compensated by a change in ψ to conserve the particle
number N =

∫
ψd2r. Our result for the λ Lamé coefficient, which is related

to volumetric deformations, will therefore have corrections. Similar assumptions
have been made in earlier work [66, 68, 76].

The energy of the deformed state can be computed in the deformed coordinate
system as

F [ψ′] =

∫
f
[
ψ′(r′), ∂′iψ

′(r′), ∂′ijψ
′(r′)

]
d2r′, (4.50)

where f(ψ, ∂iψ, ∂ijψ) is a general free energy density depending on ψ and its
derivatives, while ∂′i denotes the derivative with respect to the r′ coordinate. In or-
der to compare this with the free energy of the original state, we change variables
from r′ to r. The Jacobian of this transformation is given by

∣∣∣∣
∂x(x+ ux) ∂x(y + uy)

∂y(x+ ux) ∂y(y + uy)

∣∣∣∣ = 1 +∇ · u +O(∇u2), (4.51)

where we drop terms quadratic in the displacement gradient due to the slow vari-
ation of u. Using that ψ′(r′) = ψ(r), the integral transforms to

F [ψ′] =

∫
f
[
ψ(r), ∂′iψ(r), ∂′ijψ(r)

]
(1 +∇ · u)d2r. (4.52)

The derivative operators on r′ can be transformed to those acting on r by the chain
rule,

∂′i =
∂

∂r′i
=
∂rk
∂r′i

∂

∂rk
=
∂(r′k − uk)

∂r′i
∂k = (δik − ∂′iuk)∂k. (4.53)

Applying this expression recursively, we see that ∂′iuk = ∂iuk − ∂′iul∂kul. Ne-
glecting the higher-order term, we see that

∂′i = (δik − ∂iuk)∂k +O(∇u2), (4.54)
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and by letting this operator act twice on a function ψ, we find the second-order
derivative given by

∂′ijψ = (δjl − ∂jul)∂l [(δik − ∂iuk)∂kψ]

= ∂ijψ − ∂j (∂iuk∂kψ)− ∂juk∂ikψ +O(∇u2). (4.55)

From these expressions, we can see that see that the differences ∂′i−∂i and ∂′ij−∂ij
are linear in the displacement gradient∇u and are therefore small parameters. We
therefore linearize the free energy density of equation (4.52) in these differences.
Writing f ′ = f(ψ, ∂′iψ, ∂

′
ijψ) for brevity, we find

f ′ = f +
∂f

∂(∂iψ)
(∂′i − ∂i)ψ +

∂f

∂(∂ijψ)
(∂′ij − ∂ij)ψ

= f − ∂f

∂(∂iψ)
∂iuk∂kψ −

∂f

∂(∂ijψ)
[∂j(∂iuk∂kψ) + ∂juk∂ikψ] . (4.56)

If the integrand were expressed as a linear function of the displacement gradient
∂iuj , the stress would follow from the definition F [ψ′] =

∫
σij∂iujd

2r. The first
term inside the square brackets above is not on this form, however, so we perform
an integration by parts on this term. Also relabeling the indices in order to factor
the displacement gradient out of the integrand, we find

F [ψ′] =F [ψ] +

∫
(∇ · u)fd2r−

∫
∂f

∂(∂ijψ)
∂iuk∂kψdΣj

−
∫ [

∂f

∂(∂iψ)
∂jψ − ∂k

∂f

∂(∂ikψ)
∂jψ +

∂f

∂(∂ikψ)
∂jkψ

]
∂iujd

2r, (4.57)

where dΣj = njdΣ is the surface normal element of the system boundary. This
results in an expression for the stress of an arbitrary state ψ, given by

σij = − ∂f

∂(∂iψ)
∂jψ + ∂k

∂f

∂(∂ikψ)
∂jψ −

∂f

∂(∂ikψ)
∂jkψ + δijf. (4.58)

For the particular free energy density f(ψ,∇2ψ) = 1
2
(Lψ)2 + r

2
ψ2 + 1

4
ψ4 with

L = 1 +∇2, we find that the stress is given by

σij = ∂iLψ∂jψ − Lψ∂ijψ + δijf. (4.59)

Since ψ will typically have oscillations with wavenumber ∼ 1, the resulting ex-

72



pression for the stress will also have such oscillations. This is because the stress
we have computed resolves the forces on each individual lattice site. Since we
are more interested in the bulk force on a mesoscopic volume element, we aver-
age this stress field over a region roughly corresponding to a unit cell to find the
mesoscopic stress field,

σij(r) = 〈σij(r′)〉UC =

∫
σij(r

′)C(r′ − r)d2r′, (4.60)

where C(r) is an appropriately chosen filter function. In practice, we choose C(r)

to be a Gaussian of width a, and compute the convolution as a multiplication in
Fourier space.

The elastic constants near equilibrium can then be derived by inserting the de-
formed amplitude expansion of equation (4.45), ignoring modes |g| > 1, into the
mesoscopic stress. We also ignore the isotropic term δijf , which is second-order
in the displacement. The resulting computations are tedious but straightforward,
and are outlined in the paper. For the microscopic stress σij , one obtains terms of
the form

∂iuj
∑

g,g′

AgAg′ei(g+g′)·(r−u). (4.61)

Taking the average of this over a unit cell of the triangular lattice, we can use
that the deformation field varies slowly to take the factors related to u outside the
integral and use that 〈

ei(g+g′)·r
〉
UC

= δg,−g′ , (4.62)

which simplifies the double sum into a single sum. The end result is

σij = 8A2
T∂kul

∞∑

n=1

qni q
n
j q

n
k q

n
l , (4.63)

which upon inserting the reciprocal lattice basis vectors yields Lamé parameters
λ = µ = 3A2

T , consistent with earlier results [68, 76]. Numerical tests confirmed
this result.

4.8.1 Dislocations in the PFC

To see how dislocations are represented in the phase-field crystal, consider an
amplitude Ag in the deformed amplitude expansion of equation (4.45), where the
displacement u leads to a factor e−ig·u in the phase. Using the loop integral in
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equation (4.23), the phase of the amplitude carries a circulation given by
∮

C

d(argAg) =

∮

C

d (−g · u) = −g ·
∮

C

du = −g · b, (4.64)

showing that any dislocation with Burger’s vector b is associated with a quantized
vortex of circulation −g · b, which is an integer multiple of 2π as long as b is a
lattice vector. This fact allows us to adapt the method of Halperin and Mazenko for
studying the motion of quantized vortices which we outlined in chapter 3, to the
motion of dislocations in the PFC. Considering the three amplitudesAn, we define
for each dislocation the three corresponding vortex charges sαn = 1

2π
qn · bα. The

quantized vortex in the phase of An must correspond to a zero in the magnitude
with multiplicity |sαn| if this charge is nonzero. Hence, arguing as we did for
vortices in the BEC, we find

1

2π
qn ·B(r) =

∑

α

sαnδ(r− rα) = −Dnδ(An), Dn = Im(∂xA
∗
n∂yAn), (4.65)

where the minus sign is due to the vortex having charge−sαn. The three reciprocal
lattice basis vectors satisfy the identity [78]

3∑

n=1

qni q
n
j =

3

2
δij, (4.66)

as can be seen by checking all cases. This identity lets us invert the above relation
by multiplying with 4π

3

∑
n qn, giving an expression for the dislocation density

which depends only on the amplitudes An,

Bi(r) =
2

3

3∑

n=1

qni q
n
jBj(r) = −4π

3

3∑

n=1

qni Dnδ(An). (4.67)

This expression lets us compute the motion of dislocations by following the mo-
tion of the amplitudes. The fieldDnδ(An) has conserved current given by Jnδ(An),
where Jn has components

J
(n)
i = εij Im (∂tAn∂jA

∗
n) , (4.68)
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which gives a corresponding conservation equation for B(r),

∂tBi = −4π

3

3∑

n=1

qni ∂t [Dnδ(An)] = ∂j

(
4π

3

3∑

n=1

qni J
(n)
j δ(An)

)
. (4.69)

This equation shows that current of the i’th component of B along the rj direction
is defined as

Jij = −4π

3

3∑

n=1

qni J
(n)
j δ(An). (4.70)

Comparing with the current corresponding to each dislocation having velocity vα,
Jij =

∑
α b

α
i v

α
j δ(r− rα) gives the expression for the velocity,

vαj =
2

3

3∑

n=1

(qn · bα)2

|bα|2
J

(n)
j (rα)

Dn(rα)
=

1

S2
α

3∑

n=1

(sα)2
J

(n)
j (rα)

Dn(rα)
, (4.71)

where we defined S2
α =

∑3
n=1(sα)2. Numerically, we computed this velocity by

taking the average of the numerator and the denominator within a thresholded re-
gion, weighted by a Gaussian approximation of δ(An), then dividing. When com-
puting the current Jn, we used a value for ∂tAn found by a numerical amplitude
expansion of ∂tψ (see chapter 5), thus the result did not depend on the validity of
equation (4.48) for the amplitude evolution. The resulting velocity was compared
with a finite time difference of vortex positions, giving excellent agreement.

Finally, we computed the response of a dislocation to external deformations in
the same way as we computed the motion of vortices in BECs in chapter 3. Con-
sidering a stationary dislocation at the origin with Burger’s vector b, we assumed
that the amplitude takes the form of an isotropic solution near the origin. This is
a stationary solution of equation (4.48) near the origin as long as |sn| ≤ 1, but
it is not necessarily the true form that the amplitude would take. Indeed, given
the anisotropic nature of the Ln = ∇2 + 2iqn · ∇ operator, we might expect an
anisotropic vortex solution, but general solutions of L2

nAn = 0 are difficult to find.
Applying a smoothly varying displacement field Ãn = Ane

−iqn·ũ, we computed
∂tÃn and the resulting dislocation velocity, giving

vi =
4bm
πS2

εij∂kũl

3∑

n=1

qnmq
n
j q

n
k q

n
l =

1

4πA2
0

εijσ̃jkbk, (4.72)

where σ̃jk is the mesoscopic stress corresponding to the displacement field ũ,
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that is, ignoring the singular stress associated with the dislocation at the origin.
This is proportional to the Peach–Koehler force of equation (4.30), showing that
dislocations in this case move as overdamped particles. Notably, the mobility is
equal for both glide and climb. This might be correct in the near-critical |r| � 1

regime where equation (4.48) is valid, though numerical measurements suggest
that this is not the case. Possibly the isotropic vortex solution we chose for An
gives rise to this discrepancy, or the fact that we ignored the density variation due
to volumetric deformations.

Numerical verification of this result was difficult because of the need to com-
pute the stress σ̃ij with the dislocation itself subtracted. We made a rough compar-
ison by computing the stress induced from the other dislocations assuming elastic
equilibrium, using equation (4.32). This gave comparable velocities in the glide
case, however climb motion deviated significantly. In any case, the assumption
of elastic equilibrium is dubious because of the purely diffusive dynamics of the
PFC, as discussed above.

At deeper quenches, the amplitude equation (4.48) is not valid, so the over-
damped motion of equation (4.72) gives way to more complicated behavior. Nu-
merically, we saw that the glide velocity oscillates on the scale of the lattice in
this case. We attribute this to the lattice itself exerting forces on the dislocation
depending on the quench depth, similar to Peierls forces.

4.9 Paper V

Having obtained a good understanding of the elastic and plastic behavior of the
PFC, we now aimed to use this understanding for enforcing elastic equilibrium
during diffusive time evolution in paper V [5].

The idea was to apply a smooth deformation r′ = r + uδ to ψ such that
ψeq(r′) = ψ(r), where uδ was chosen so that ψeq(r) is in elastic equilibrium. The
PFC satisfies linear elasticity far away from dislocations, hence the stress field of
ψeq is related to uδ through the residual stress σδij ,

σeq
ij = σψij + σδij, σδij = λδije

δ
kk + 2µeδij, eδij =

1

2

(
∂iu

δ
j + ∂ju

δ
i

)
. (4.73)

This allowed us to determine uδ by requiring ∂iσ
eq
ij = ∂i

(
σψij + σδij

)
= 0. We

solved this equation using the Airy stress function χ, setting σeq
ij = εikεjl∂klχ.

Recall that the stress function must be determined by the incompatibility equation
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(4.21). We can simplify this equation further by noting that, since the applied de-
formation uδ is smooth, its corresponding strain tensor eδij is compatible. Hence,
determining eeq

ij from σeq
ij and applying the double curl, we find

1− κ
2µ
∇4χ =

1

2µ
εikεjl∂kl

(
σψij − κδijσψmm

)
+

1

2µ
εikεjl

(
σδij − κδijσδkk

)

=
1

2µ

(
εikεjl∂klσ

ψ
ij − κ∇2σψkk

)
. (4.74)

Solving this equation using spectral methods, we could obtain σeq
ij , which again

determines the residual strain eδij by subtracting the original stress σψij and in-
verting the stress–strain relation. The residual strain field was then integrated to
determine the deformation field uδ.

In this way we could, at each point in time, determine the deformation that
would bring the state ψ into elastic equilibrium. We applied this deformation be-
tween each timestep using a Taylor expansion of the relation ψ′(r) = ψ(r − u).
Numerically, we observed that the motion of dislocations deviate significantly
from the speed obtained by inserting equation (4.32) into (4.72) in the standard
PFC. Applying the deformation, the two agreed well up to oscillations in the dis-
location speed at deep quenches, which as mentioned above we attribute to Peierls
forces from the lattice.

This shows that we have obtained a version of the PFC model where elastic
deformations are relaxed to elastic equilibrium at each point in time, which is a
significant step towards modeling realistic crystal systems. We hope to apply this
model in the future towards modeling the large-scale temporal evolution of an en-
semble of dislocations, in order to better understand the plastic yielding transition.
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Chapter 5

Numerical methods

In this chapter, we describe the numerical methods that we employ throughout
the thesis project. The Gross–Pitaevskii equation for quantum turbulence and
the equation governing the phase-field crystal are very similar in structure, be-
ing weakly nonlinear. We describe the exponential time differencing method for
solving such equations, as well as a symplectic time integration method that we
employed for the point-vortex simulations of paper III. Finally, we describe a use-
ful method of numerically obtaining the slowly varying amplitudes of a phase field
ψ in the amplitude decomposition of equation (4.46).

5.1 Exponential time differencing

Fourier transformation is a very powerful technique for computing numerical
properties of fields defined on a uniform grid with periodic boundaries. A good ex-
ample of this power is through the technique of spectral differentiation, which al-
lows the solution of linear time-independent partial differential equations (PDEs)
by solving algebraic equations in reciprocal space. For example, the biharmonic
equation (4.35) for the Airy stress function χ is expressed in spectral space by

1− κ
2µ

k4χ̃(k) = iεijkiB̃j, (5.1)

which can be solved for k > 0 by simply dividing with k4 as well as the constant
coefficients. The choice for k = 0 corresponds to a constant term in the solution
of χ, which is immaterial because the stress is given by derivatives of χ; hence we
simply choose χ̃(0) = 0. A similar example of using spectral methods for solving
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PDEs is used in paper V for integrating the residual strain eδij to a deformation
field uδ.

Similarly, linear time-dependent PDEs decouple in spectral space into a col-
lection of time-dependent ordinary differential equations, one for each wavenum-
ber k. Each of these equations can be solved exactly, giving a large advantage
over numerical time difference schemes. This can also be exploited to derive bet-
ter time difference schemes for the weakly nonlinear PDEs we use in this thesis,
by the method of exponential time differencing [79].

Because we will use this method for both the Gross–Pitaevskii equation (3.13)
and the PFC evolution equation (4.43), we write the two PDEs in a common form
given by

∂tψ(r, t) = ω(∇)ψ(r, t) +N(r, t), (5.2)

where ω(∇) is a linear differential operator and N(r, t) is a general function of
time and space denoting the nonlinear part of the PDE. Taking the Fourier trans-
form, we find

∂tψ̃(k, t) = ω̃(k)ψ̃(k, t) + Ñ(k, t), (5.3)

where Ñ(k, t) = F [N(r, t)], and ω̃(k) is computed by replacing∇ by ik in ω(∇).
We can solve the linear part of this equation by multiplying by the integrating
factor e−ω̃(k)t, giving

∂t

(
ψ̃(k, t)e−ω̃(k)t

)
= e−ω̃(k)tÑ(k, t). (5.4)

Integrating this equation from t to t+ ∆t, we find the formal solution

ψ̃(k, t+ ∆t) = eω̃(k)∆tψ̃(k, t) + eω̃(k)(t+∆t)

∫ t+∆t

t

e−ω̃(k)t′Ñ(k, t′)dt′

= eω̃(k)∆tψ̃(k, t) + eω̃(k)∆t

∫ ∆t

0

e−ω̃(k)τ Ñ(k, t+ τ)dτ, (5.5)

where we made the substitution τ = t′ − t. We now approximate Ñ(k, t′) as
linearly time-dependent in the interval (t, t+ ∆t), given by

Ñ(k, t+ τ) = N0 +
N1

∆t
τ, (5.6)

where N0 = Ñ(t) and N1 = Ñ(t+ ∆t)−N0. Evaluating the integral in equation
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(5.5), we find the solution

ψ̃(k, t+ ∆t) =eω̃(k)∆tψ̃(k, t) +
N0

ω̃(k)

(
eω̃(k)∆t − 1

)

+
N1

ω̃(k)

[
1

ω̃(k)∆t
(eω̃(k)∆t − 1)− 1

]
. (5.7)

Computing the value for N1 requires knowledge of the state at t + ∆t before we
compute it. A predictor–corrector scheme is therefore employed, where we first
evaluate equation (5.7) setting N1 = 0, which corresponds to assuming that Ñ(t′)

is constant in the interval (t, t+∆t). This gives an estimate for the state at t+∆t,
providing a value N1 which we can use to add the last term of the equation and
correct for the error we made in setting N1 = 0. In principle, this procedure can
be iterated over more steps, however we use only one such correction step in our
work.

In order to apply this method to the GPE (3.13) for quantum turbulence, we
choose

ω̃(k) = (i+ γ)

(
1− 1

2
k2

)
, N(r, t) = −(i+ γ)

[
V ψ + |ψ|2ψ

]
. (5.8)

When solving this equation, we use the Thomas–Fermi ground state ψ =
√

1− V
for the initial condition, which is only an approximately stationary state. We there-
fore apply a short period of dissipative relaxation before starting the simulation.
This is achieved by replacing the i + γ prefactor with 1 while keeping the ex-
ternal potential constantly equal to V (t = 0), which corresponds to evolving the
conservative GPE (3.4) in imaginary time, as is common practice for computing
quantum-mechanical ground states numerically. For the PFC equation, we choose

ω̃(k) = −k2
[
(1− k2)2 + r

]
, N(r, t) = ∇2ψ3. (5.9)

Because this equation is purely dissipative, the accurate choice of initial condition
is less important in this case.

5.2 Symplectic method for the point vortex model

In paper III, we studied quantum turbulence by treating point vortices as the only
dynamical degrees of freedom. Since the dynamical equations 3.44 of the point
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vortex model have the structure of a Hamiltonian system apart from the small dis-
sipation constant, a time integration scheme which is compatible with this struc-
ture, known as a symplectic method, is preferable in order to accurately conserve
the energy of the vortex gas. Explicit time difference schemes which are sym-
plectic exist for separable Hamiltonians, that is, if the Hamiltonian can be decom-
posed into terms depending on the two sets of conjugate variables independently,
H = V ({xα})+T ({yα}) [80]. Unfortunately, the ln rαβ terms of the point vortex
Hamiltonian show that this system is not separable. We therefore use an implicit
time difference scheme for integrating the conservative part of this system, namely
the fully implicit Gauss–Legendre method of fourth order. Denoting the conser-
vative velocity of vortex α depending on the N vortex positions rβ by vcα (rβ), a
time step is performed by finding a set of 2N velocities wα,i that solve the system
of equations

wα,j = vcα (xβ + ∆taijwβ,i) , (5.10)

where

a11 = a22 =
1

4
, a12 =

1

4
−
√

3

6
, a21 =

1

4
+

√
3

6
. (5.11)

The new set of vortex positions r′α is then computed by

r′α = rα +
∆t

2
(wα,1 + wα,2) . (5.12)

We solve the nonlinear set of equations (5.10) by fixed-point iteration. Setting
w

(0)
α,i = vα(rβ), we iterate the equation

w
(n+1)
α,j = vcα

(
xβ + ∆taijw

(n)
β,i

)
(5.13)

until the distance between successive values is below a threshold. This simple
iteration can be improved by extrapolating from previous values of w, but we did
not implement such optimizations.

Finally, the dissipative part of the evolution is computed by a simple explicit
Euler scheme,

rα(t+ δt) = r′α + ∆tvdα(rβ). (5.14)

This scheme is sufficient because |vdα| � vcα due to the dissipation parameter γ
being small. In addition, phenomenological vortex creation and annihilation rules
are applied; these are described in the paper.
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5.3 Numerical amplitude decomposition

In papers IV–V, we evolved the PFC equation (4.43) numerically in order to
test the nonequilibrium behavior of the PFC. In the analysis of these numeri-
cal results, it is very useful to compute the slowly varying amplitudes An(r) =

|An(r)|e−iqn·u(r) numerically, because they contain information about the dis-
placement field as well as the position of dislocations.

If the states were in equilibrium, the constant amplitudes could be recovered
simply by Fourier transforming the phase field ψ. This suggests that slowly vary-
ing amplitudes could be recovered by taking the Fourier transform over a region
that is small compared to the variation, but still large enough that the eiqn·r oscil-
lation of ψ is visible. Hence, we might guess that the amplitude can be estimated
by taking a spatial average given by

An(r) =
〈
ψe−ig·r

′
〉
r′ close to r

. (5.15)

Here we will provide a more careful argument for such a procedure, following
a similar technique developed for the analysis of transmission electron micro-
graphs [81].

Consider therefore a state ψ in the amplitude expansion with slowly varying
amplitudes, given by

ψ(r) =
∑

g

Ag(r)eig·r, (5.16)

such that ψ0 = Ag=0 and A∗g = A−g. Taking the Fourier transform and using the
convolution theorem, we obtain

ψ̃(k) =
1

(2π)2

∑

g

∫
Ãg(k− k′)F

[
eig·r

]
(k′)d2k′ =

∑

g

Ãg(k− g), (5.17)

where we also used that F [eig·r] (k′) = (2π)2δ(k′ − g). The assumption that the
amplitudes Ag vary slowly compared to the lattice constant a = 4π/

√
3 corre-

sponds to their Fourier-transformed versions being strongly peaked near 0 with
width ∼ 1/a =

√
3/4π. This allows us to isolate an amplitude Ag by multiplying

with a similarly peaked function, for example a Gaussian of width 1/a,

e−a
2(k−g)2/2ψ̃(k) ≈ e−a

2(k−g)2/2Ãg(k− g). (5.18)

Transforming the right-hand side of this equation back to real space using the shift
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property and the convolution theorem, we find a locally averaged version Ag of
the amplitude,

eig·rAg(r) = eig·r
∫
Ag(r′)C(r− r′)d2r′ ≈ F−1

[
e−a

2(k−g)2/2ψ̃(k)
]

(5.19)

where C(r) is a real-space normalized Gaussian of width a = 4π/
√

3, given by

C(r) =
1

2πa2
e−r

2/2a2 . (5.20)

This shows that Ag can be computed numerically by the expression

Ag(r) ≈ e−ig·rF−1
[
e−8π2(k−g)2/3ψ̃(k)

]
=

∫
e−ig·r

′
ψ(r′)C(r− r′)d2r′, (5.21)

where we substituted the value for a = 4π/
√

3. The first expression in terms of
Fourier transforms is the most useful for numerical computation, while the second
expression in terms of a convolution shows that our initial guess in equation (5.15)
is correct, except for the local averaging of the resulting amplitude.

84



Chapter 6

Summary and outlook

We have studied the two fields of quantum turbulence and plasticity, focusing on
topological defects as a common feature of both systems. Two-dimensional quan-
tum turbulence is well described by the interaction of nondiffusive point vortices
with an additional thermal drift, while point-like or line-like dislocations are es-
sential in understanding the complex yielding behavior of microscopic crystals. In
both cases, the complex macroscopic behavior is associated with the emergence
of particular spatial structures of vortices or dislocations.

In chapter 3 and papers I–III, we demonstrated how the inverse energy cascade
in two-dimensional quantum turbulence is associated with a diverse set of vortex
clusters with different sizes and circulation signs, collectively expressing a self-
similar structure. We introduced the weighted pair correlation function gw(r) as
a novel statistical measure to express this collective structure. The self-similar
structure of vortices leads to the k−5/3 Kolmogorov scaling law in the energy
spectrum, as well as self-similar scaling laws in other statistical quantities such
as vortex number fluctuations and the distribution of vortex velocities. Taken
together, these facts clarify how the inverse energy cascade is expressed on the
scale of the quantized vortex.

By connecting the weighted pair correlation function with two-point corre-
lations in the vorticity, we have found a new relationship between the scaling
arguments of classical turbulence and the statistics of singular point vortices in
quantum turbulence. Further exploration of the correspondence between classical
and quantum turbulence would be interesting. For example, the self-similar scal-
ing of the vorticity pair correlation has been related to the conformal invariance
of constant vorticity lines in 2D classical turbulence, which again corresponds
to these lines being equivalent to a particular form of Brownian motion [82]. A
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similar property cannot hold for point vortices without coarse-graining out the
delta functions in the vorticity field. On the other hand, the stream function takes
continuous values between the vortices and shows complicated streamlines which
might be related to the self-similar statistics of vortex positions.

The particular microscopic processes leading to the emergence of self-similar
vortex clusters are still not understood. Vortex clusters are the natural result of
an evaporative heating process due to dipole annihilation [27], but the self-similar
structure of these clusters cannot be explained by equilibrium thermodynamical
considerations. A detailed understanding of the nonequilibrium behavior of the
vortex gas is an important step towards understanding this self-similarity. The
diffusive behavior of a collection of vortices has been studied theoretically using
the point vortex model [83], as well as numerically using both the point vortex
model and the Gross–Pitaevskii equation [84]. A hydrodynamical theory for the
flow of conservative point vortices was developed in ref. [85], which shows that
the coarse-grained vortex gas does not exactly follow the fluid velocity, because of
anomalous stresses in the hydrodynamical equations for the vortex flow. A study
of such coarse-grained descriptions of the vortex gas in the presence of small-scale
driving forces and large-scale dissipation might lead to progress on this front.

In chapter 4, we described how the complicated response of microscopic crys-
tals under heavy loads is associated with the depinning of complicated disloca-
tion patterns. Dislocations, being topological defects of codimension two, are
very similar to the quantized vortices of quantum turbulence. In particular, two-
dimensional dislocations are point-like singularities in the deformation field with
logarithmic interaction potentials, just like quantized vortices in 2D quantum tur-
bulence. One important difference is that dislocations behave purely dissipatively,
instead of the mostly conservative motion of vortices. However, given a nonequi-
librium steady-state where the dissipated energy is balanced by a driving force,
comparisons could possibly be made between the two systems. We might there-
fore expect the origins of vortex structures of quantum turbulence to be related to
the origins of dislocation structures in crystal plasticity.

Unfortunately, the response of dislocations to driving forces is more compli-
cated than the simple advection of well-separated point vortices, because of effects
like the pinning of dislocations to the crystal lattice. Such effects could be studied
rigorously through a proper mesoscale model of the crystal lattice. The phase-
field crystal is a good candidate for such a model, but suffers from the missing
separation of timescales between elastic and plastic deformations. In papers IV–V
we developed a better understanding of the elastic and plastic behavior of the PFC,
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which we used to propose a more realistic mesoscale model for crystal plasticity.
We hope that this model is useful in studying the behavior of dislocations in the
presence of applied forces, leading to a better understanding of how dislocations
form spatial patterns, and the avalanche-like depinning of these patterns.
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We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using
the Gross-Pitaevskii equation. We find that a universal −5/3 scaling law in the turbulent energy spectrum is
intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also
characterized by a similar scaling behavior. The −5/3 scaling law appearing in the power spectrum of vortex
number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent
superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered
vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a −5/3 exponent.
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I. INTRODUCTION

Richardson’s cascade picture of turbulence captures, in
essence, the transport of energy across scales in three-
dimensional (3D) classical fluids: Energy is injected at large
scale, and a self-similar breakdown of vortices transports
energy down to the dissipative, small scales. This direct energy
cascade develops because the kinetic energy in 3D turbulence
is the dominant statistically invariant quantity, and is associated
with Kolmogorov’s law for the energy spectrum E(k) ∼ k−5/3

for wave numbers k in the inertial range, i.e., between the
injection and dissipation scales.

By contrast, two-dimensional (2D) classical turbulence
manifests itself in a spectacularly different way due to the
absence of vortex stretching and twisting. Apart from the
kinetic energy, the total vorticity is also a statistical invariant
which leads to two inertial cascades, namely, an inverse energy
cascade from small to large scales with the emergence of
coherent rotating structures at large scales, and a direct cascade
of enstrophy associated with the conservation of vorticity [1].
Even though the energy flows in the opposite direction, the
turbulent energy spectrum still follows the Kolmogorov k−5/3

law in the inverse cascade regime, up to the injection scale
below which it crosses over to a k−3 scaling associated with
the forward enstrophy cascade [1]. There is no full consent
on the physical mechanism behind the inverse energy cascade.
In fact, several physical processes have been proposed, such
as Kraichnan’s picture of “thinning” of small-scale vorticity
by strain at large scale [2,3], and the Onsager’s picture of
clustering of same-signed vortices [4].

Albeit the turbulence phenomenon and its spectral energy
transport emerge from the formation and interaction of
vortices, the relationship between the statistical properties of
turbulence and vortex dynamics is still an open and challenging
problem. The role of vortices as the primary structures in
turbulence has been long recognized since the pioneering work
of Onsager on the statistical description of 2D turbulence in
terms of an ensemble of interacting point vortices [4]. This
reduction of turbulence to a complex bundle of vortices has
become an effective way of studying turbulence since the
realization of turbulent states in quantum fluids [5,6], and the

*audun.skaugen@fys.uio.no

remarkable discovery that quantum turbulence shares similar
large-scale statistical properties as classical turbulence [5,7].

Unlike classical vortices which have a diffusive, continuous
size and vorticity, quantum vortices are defined by a quantized
circulation, i.e., � = ∮

C
�v · d�l = nκ , where n is an integer and

κ = h/m is the quantum circulation, which leads to vortex
filaments (in three dimensions) and pointlike vortices (in
two dimensions) with well-defined vortex cores. Quantum
turbulence is generally referred to as a complex tangle of
these quantized vortices. Despite their quantum nature, the
turbulent energy spectrum generated by the interaction of
these vortices is characterized by Kolmogorov’s classical k−5/3

scaling law on scales larger than the mean separation between
vortices in superfluids [5] and Bose Einstein condensates
[6]. The similarity between classical and quantum turbulence
underscores the universality of turbulence, and the approach
to turbulence from vortex dynamics.

In 3D quantum turbulence, the energy spectrum is associ-
ated with a direct energy cascade [5,8]. The vortex statistics in
the turbulent regime has a particular signature. For instance,
vortex line density L is a fluctuating quantity due to vortex
interactions. Its frequency power spectrum density decreases
as f −5/3, which is at odds with the classical interpretation of
L as a measure of superfluid vorticity, ω = κL [9]. However,
this puzzle was cleared out by a phenomenological model in
which the vortex line density L is decomposed into polarized
and unpolarized filaments, and the analogy to a passive field
advection by turbulence is used to explain the f −5/3 spectrum
[9–11]. This scaling law of the power spectrum of vortex
line fluctuations was observed experimentally in both 4He
[12] and 3He-B [13], as well as in numerical simulations of
vortex filament model [10,11]. In addition to the vortex line
statistics, the fluctuations in the superfluid turbulent velocity
are also broadly distributed and characterized by a universal
v−3 power-law tail which has been reported experimentally
in superfluids [14] and in numerical simulations of 3D
trapped Bose-Einstein condensates using the Gross-Pitaevskii
equation and the vortex model [15].

While a Kolmogorov −5/3 scaling regime in the incom-
pressible kinetic energy spectrum has also been observed in 2D
quantum turbulence, the direction of the energy cascade here
is more controversial because the compressibility of quantum
fluids introduces additional small-scale dissipation by pair-
vortex annihilations with phonon emission [16–19]. Since
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it is more tricky to determine the energy flux across scales
due to vortex-phonon interactions, the cascade is typically
inferred by indirect methods. In systems where energy is
injected at long wavelengths and dissipation is most effective
at small scales due to compressibility effects and vortex
annihilations, a direct energy cascade is proposed to dominate
the inertial scaling. This was inferred either from the temporal
evolution of the energy spectrum [16,20], or the energy flux
across a black-hole event horizon in a holographic gravity
dual model of superfluid turbulence [20]. On the contrary,
an inverse energy cascade is attributed to the dynamical
regime dominated by vortex clustering and energy injection on
scales comparable to the vortex-core size [17,18,21]. Vortex
clustering serves to suppress annihilation events, restoring
the conservation of enstrophy in a statistical sense. Several
numerical studies of the 2D Gross-Pitaevskii equation and
point vortex model [17–19,21] have been focusing on the
effect of vortex clustering on the inverse cascade of the
incompressible kinetic energy.

The aim of this paper is to study the particular signature
of an inverse energy cascade on the statistical properties of
vortices. We use the damped Gross-Pitaevskii equation with a
stirring potential as proposed in Ref. [17], which can simulate a
statistically steady state turbulent regime of a 2D trapped BEC
undergoing stirring, where vortices are emitted in clusters in
the wake of the stirring obstacle. As shown previously [17],
the incompressible energy spectrum develops a k−5/3 power
law in the clustering regime. By investigating the effect of
vortex clustering on the vortex statistics, we find that both
the power spectrum of vortex number fluctuations and the
distribution of clustered vortex velocities are characterized by
a universal power-law behavior with a −5/3 exponent, similar
to the scaling law for the energy spectrum.

The structure of the paper is as follows. In Sec. II, we
present the damped Gross-Pitaevskii model with a Gaussian
stirring potential for simulating 2D turbulence in trapped
Bose-Einstein condensates (BECs). The numerical method
of tracking vortices and the clustering algorithm for finding
clusters of like-signed vortices are detailed in Sec. III. The
incompressible energy spectrum is discussed in Sec. IV, while
the statistics of vortex number fluctuations and vortex velocity
fluctuations are presented in Secs. V and VI. Finally, Sec. VII
contains a brief summary and concluding remarks.

II. GROSS-PITAEVSKII EQUATION

We consider a 2D Bose-Einstein condensate described by
the wave function ψ(�r,t), with |ψ |2 related to the particle
density of the condensate. The evolution of the wave function
ψ(�r) is described in the mean-field approximation by the
damped Gross-Pitaevski equation (dGPE). We use an aug-
mented GPE with a time-dependent external potential for
generating statistically steady state quantum turbulence as
proposed in Ref. [17]. In two dimensions, the dynamics is
described by

∂ψ

∂t
= (i + γ )

(
1

2
∇2 + 1 − V (�r,t) − g|ψ |2

)
ψ, (1)

with the damping rate γ which models phenomenologically the
energy dissipation by interaction with a thermal bath. Equation
(1) is written in dimensionless units by appropriate rescaling of
space and time in characteristic units of the coherence length
ξ and typical time ξ/c = �/μ, where c = √

μ/m is the speed
of sound determined by the chemical potential μ and the
particle’s mass m. The parameter g describes the nonlinear
self-interaction of the condensate, and can be eliminated from
the equation by a rescaling of the wave function ψ → √

gψ ,
thus

∂ψ

∂t
= (i + γ )

(
1

2
∇2 + 1 − V (�r,t) − |ψ |2

)
ψ. (2)

The time-dependent external potential V (�r,t) is measured
in units of chemical potential μ, and consists of a trapping
potential Vt (�r) and a time-dependent stirring potential Vext(�r,t)
used to generate quantum turbulence as proposed in Ref. [17].
The trap is given by the harmonic potential as

Vt (�r) = 1

2
ω2

t r
2, (3)

such that it causes the Thomas-Fermi solution of ψ to vanish
when the harmonic potential exceeds the chemical potential,
thus for radii larger than the Thomas-Fermi length RT F =√

2/ωt . Given a desired size of RT F of the condensate, we can
therefore choose the parameter as ωt = √

2/RT F .
The time-dependent stirring potential Vext(�r,t) is given by

a Gaussian obstacle centered at �rext(t),

Vext(�r,t) = V0 exp

{
− |�r − �rext(t)|2

w2

}
, (4)

where V0 > 1 is the height of the obstacle, and the width is
set to w = 4ξ . The center of the obstacle moves in a circle of
radius Rext = 0.4RT F with a speed vext, so that

�rext(t) = Rext

[
cos

(
vext

Rext
t

)
�i + sin

(
vext

Rext
t

)
�j
]
, (5)

where �i and �j are unit vectors in the x-y plane.
We set the values of the model parameters in the parameter

space associated with the turbulent regime [17]. We consider
the particular values V0 = 1.4μ, RT F = 0.8 × 256ξ , and γ =
0.009, and vary the stirring speed vext of the Gaussian obstacle
so that we obtain a more robust clustering of vortices in the
wake of the obstacle.

We solve the dGPE from Eq. (2) numerically by using
spectral methods with exponential time differencing, and study
different dynamical regimes depending on the different values
of the stirring speed vext.

III. TRACKING AND CLUSTERING OF VORTICES

We locate the position and velocity of quantized vortices
directly from the wave funtion ψ using the field formulation
of Halperin [22] and Mazenko [23]. A similar numerical
implementation of this method was studied numerically for
Ginzburg-Landau and Swift-Hohenberg dynamics in Ref. [24].
The key insight behind this method is that vortices occur
exactly where the wave function vanishes inside the Thomas-
Fermi radius, i.e., for V < μ. The zeros of the ψ(�r,t) field can
be related to the density of vortices ρ(�r,t) by the transformation
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FIG. 1. Time snapshot of (a) the density field |ψ |, (b) the measure
of the quantized vorticity, and (c) clustering of the like-signed
vortices.

ρ(�r,t) = δ(ψ)D(�r,t), with the Jacobian determinant given by
[23,24]

D =
∣∣∣∂x Re ψ ∂y Re ψ

∂x Im ψ ∂y Im ψ

∣∣ = Im(∂xψ
∗∂yψ). (6)

This Jacobian field is zero everywhere except within a vortex
core, and its sign indicates the rotational direction of the vortex.
We can therefore apply a threshold to the determinant in order
to locate these vortex cores. However, due to the presence
of the external potential V , the maximum value of D will
vary roughly as |ψT F |2 = 1 − V . We therefore normalize the
field D by this factor, and search for regions where D/(1 −
V ) exceeds a given threshold. There are two spatial regions
where this method becomes inapplicable. One is the boundary
region close to RT F , where the wave function vanishes quickly.
The other one is the stirring obstacle and its wake where a
dense collection of vortices are frequently nucleated and vortex
cores might not be isolated from each other. To remove these
boundary effects, we apply two masks to the normalized D
field before applying the threshold. The boundaries of these
masks are drawn on the absolute value of the wave function
in Fig. 1(a), and correspond to setting to zero the value of D
outside a circle of radius 0.9RT F and inside an ellipse with
the stirrer at one focus. The resulting normalized D field with
these boundary masks applied is shown in Fig. 1(b).

Vortex positions can now be located by calculating the
center of mass of each connected region found. As discussed in
the Introduction, an inverse energy cascade is associated with
clustering of vortices of the same circulation. We therefore
implement a clustering algorithm using the method outlined
in Ref. [18]. In this algorithm, a pair of oppositely charged
vortices are considered a dipole if they are closer to each other
than either is to any other vortex. Two like-charged vortices are
considered part of the same cluster if they are closer to each
other than either is to any oppositely charged nondipole vortex.
The resulting vortex positions and the clusters of like-signed
vortices are shown in Fig. 1(c).

The clustering analysis allows us to measure the clustered
fraction, defined as the number of clustered vortices relative to
the total number of vortices. The fluctuations in the clustered
fraction is compared with those in the number of vortices as
shown in Fig. 2 for different values of the stirring velocity. We
notice that the vortex count is increasing from zero and then
is fluctuating around a steady-state value after a few rounds of
the stirring obstacle. There is an initial spike in clustering, as
the stirring obstacle readily creates clusters. This high amount
of clustering is however not sustainable, and the clustered
fraction settles at a lower level. The vortex counts fluctuate
very little in the initial stages, when the amount of clustering
is large. This makes sense because clustered vortices seldom
interact with opposite-signed vortices to annihilate with. As
the amount of clustering settles down, the fluctuations increase
in strength. We also observe that there is a tendency for the
clustered fraction to fluctuate towards larger values when the
stirring obstacle moves slower.

IV. ENERGY SPECTRUM

Quantum turbulence in BECs is characterized by a cascade
of energy across inertial scales analogous to that of a turbulent
flow in classical fluids. An energy cascade is associated with
a kinetic energy spectrum which exhibits a −5/3 power law
over the inertial wave numbers. The classical energy spectrum
is obtained by a spectral decomposition of the kinetic energy
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FIG. 2. Time windows of the vortex density fluctuations versus
fraction of vortex clusters for different values of the stirring velocity
vext. Vertical lines mark times where the stirrer has moved in a
complete circle around the condensate.

of an incompressible fluid,

Ekinetic = 1

2

∫
d2�rρv2 =

∫
dkE(k), (7)

where the classical fluid density ρ is constant, and the energy
spectrum is the accumulated energy in a shell in the �k space,

E(k) =
∫

|�k|=k

d2�kE(�k). (8)

Using homogeneity and the convolution theorem, this spec-
tral density can be calculated from the Fourier-transformed
velocities as

E(�k) = 1

2
ρ�v(�k) · �v(−�k). (9)

By analogy, the same definition of the energy spectrum
for the BEC holds, but with two modifications due to the
compressibility of a quantum fluid [25]. First, as the density
of the superfluid is not constant, the superfluid velocity field
obtained by the Madelung transformation must be weighted
by the square root of the density as

�u(�r) =
√

ρ(�r)∇θ (�r), (10)

where θ (�r) is the phase of the wave function ψ . Second, this
weighted velocity field is decomposed into compressible and
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FIG. 3. Log-log plot of the incompressible energy spectra at
t = 5060ξ/c for the various stirring velocities. The two vertical
lines mark kξ = 1, where the core structure becomes important, and
the approximate wave number kl = 2π/l corresponding to the mean
intervortex distance l. The different spectra are shifted vertically for
comparison.

incompressible parts, as follows:

�u = �uc + �ui , where ∇ · �ui = 0 and ∇ × �uc = 0. (11)

The incompressible energy spectrum is then calculated as

Ei(k) =
∫

|�k|=k

d2�k[�ui(�k) · �ui(−�k)]. (12)

We calculate the incompressible energy spectrum from
Eq. (12) for different speeds of the stirring obstacle and the
result is shown in Fig. 3. We notice that at wave numbers
larger than 1/ξ (corresponding to scales smaller than 2πξ ),
the energy spectrum follows a universal k−3 power-law tail
independent of the stirring velocity and the model parameters.
Although the −3 exponent is the same as that for the enstrophy
cascade in two-dimensional classical turbulence, in the case of
quantum turbulence this regime is determined by the quantum
vortex core structure [21]. The energy injection scale falls in
the intermediate scales between the vortex core size and the
mean vortex separation l, where the k−3 scaling also crosses
over to a different regime. On length scales larger than l

but smaller than the Thomas-Fermi radius, equivalently for
2π/RFT < k < 2π/l, a k−5/3 starts to develop in association
to vortex clustering. Admittedly, this wave-number range is
too narrow to confidently claim the existence of an inertial
scaling regime, although it was assumed in previous similar
studies [17,18]. In fact, it was recently shown in Ref. [19] that
an accidental k−5/3 may occur as a crossover regime between
the two asymptotic scaling regimes of the energy spectrum
of isolated vortices, i.e., k−1 at large k’s and k−3 at small
k’s, and that it disappears when the effect of vortex-core size
is removed. To test that the k−5/3 is indeed a true scaling
regime, but very limited by finite size effects and an insufficient
separation of scales, we seek to control these effects by
separating out the contribution due to vortex clusters.

Energy spectrum of clustered vortices

One possible reason for the poor Kolmogorov scaling signal
in Fig. 3 is the fact that there are many more isolated vortices
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and dipoles compared to vortex clusters, as we can see in
Fig. 2. Another important effect that we believe may dominate
the statistics is the limited separation of scales between the
Thomas-Fermi radius and the mean vortex separation.

As discussed in previous works, e.g., [17–19,21], the
inverse energy cascade in two-dimensional quantum turbu-
lence is attributed to clustering of like-signed vortices. In
order to isolate the contributions of clustered vortices to the
energy spectra, we use the analytical approach from Ref. [21]
to calculate the energy spectrum resulting from a given
configuration of vortices taken from our numerical simulations
of the dGPE.

Based on the superposition principle of the velocity induced
by N well-separated vortices, the incompressible energy
spectrum can be determined by the energy spectrum of a single
vortex and the configurational distribution function of vortices
as [21]

EN
i (k) ∝ F
(kξ )GN (k), (13)

where F
(kξ ) is the single-vortex energy spectrum calculated
as

F
(kξ ) = 
−1f (kξ
−1), (14)

with 
 being the slope of the wave function of the center of
the vortex core and

f (z) = z

4

[
I1

(
z

2

)
K0

(
z

2

)
− I0

(
z

2

)
K1

(
z

2

)]2

. (15)

The configurational function GN (k) for N vortices with
positions �rp and circulation signs κp = ±1 is calculated as
[21]

G(k) = 1 + 2

N

N−1∑
p=1

N∑
q=p+1

κpκqJ0(k|�rp − �rq |). (16)

We use the clustering analysis described in the previous
section to extract the position of clustered vortices from vortex
configurations obtained numerically. We then calculate the
separate contribution to the energy spectrum of various subsets
of vortices using Eq. (13). The result is illustrated in Fig. 4.
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FIG. 4. Analytical incompressible energy spectra calculated from
the vortex configuration found at t = 5060ξ/c with vext = 0.5c. This
is compared to the numerical energy spectrum directly calculated
from the velocity field, as described in Sec. IV.

The energy spectrum due to all vortices follows the measured
energy spectrum closely, apart from lower measured energies
at low wave numbers. This is because the analytical solution
does not take into account the density profile of the superfluid,
which drops off to lower values at larger scales. If we isolate the
contribution of vortex clusters, the Kolmogorov k−5/3 scaling
laws extend to much smaller wave numbers, and approaches a
decade of scaling. Also, we have checked that this scaling law
persists for k < 2π/l even when we remove the effect of the
core size.

V. VORTEX NUMBER FLUCTUATIONS

To understand the connection between the statistical proper-
ties of turbulence, e.g., energy spectrum and vortex dynamics,
we study the statistics of vortex number fluctuations and vortex
velocity.

We investigate the effect of the vortex clustering on vortex
number fluctuations, in terms of their power spectrum. Tempo-
ral fluctuations of vortex counts are marked by a transient pe-
riod due to the nucleation of vortices in the wake of the stirring
obstacle. This transient time is excluded from the statistics,
therefore we look at fluctuations in the steady-state regime,
i.e., t > 4000ξ/c. The resulting power spectra are shown in
Fig. 5. We see a power-law decay with an exponent close to
−5/3, at least for the lower values of the stirring velocities.

The same power-law exponent for the power spectra of
the vortex line density was reported experimentally and
numerically for 3D counterflow turbulence in the superfluid
helium [10–12]. A phenomenological explanation of this
scaling behavior based on the passive advection by turbulence
was proposed in Ref. [9]. The argument is that the vortex
line density L can be decomposed into two parts, L|| + L×,
which behave differently. The polarized vortex line density L||
consists of vortex lines arranged in parallel, so as to set up a
large-scale rotational flow which follows the k−5/3 spectrum
of the turbulent normal fluid. The unpolarized part, L×, is
a complex tangle of vortices, so that the resulting velocity
field tends to cancel out. Because of this cancellation, the
unpolarized vortex lines do not actively affect the velocity
field and can be considered as a passive vector, which is simply
advected by the normal fluid. Hence, the spatial fluctuations
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FIG. 5. Log-log plots of the power spectra of vortex number
fluctuations, at different stirring velocities. The spectra are shifted
vertically to keep them from overlapping.
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FIG. 6. Power spectra for the number of vortices contained in
clusters of a given size s, with vext = 0.5c. The larger the cluster size,
the more the power spectrum falls off from the f −5/3 power law at
low frequencies.

of the L× field follows the same k−5/3 scaling as that of a
passive scalar advected by the turbulence in the Obukhov-
Corrsin theory [26–28]. By Taylor’s frozen hypothesis, the
frequency power spectrum has the same scaling form as the
wave-number power spectrum, hence f −5/3. The fluctuations
in the total line density is dominated by the L× fluctua-
tions, because the polarized vortices tend not to interact by
reconnections.

We propose that a similar scenario also holds in two
dimensions and can account for the f −5/3 power spectrum of
vortex counts. The vortex density n can be decomposed into the
density of clustered vortices nc and the density of unclustered
vortices nu. The clustered vortices set up a velocity field �vc

which follows the k−5/3 scaling, as discussed in the previous
section. Their density does not fluctuate as rapidly as that of
the isolated vortices, i.e., clustered vortices can be envisaged
as the persistent structures. The unclustered vortices do not
contribute to the energy scaling, but are passively advected
by the �vc field. Hence the temporal fluctuations in the vortex
counts is dominated by those of the isolated vortices and, using
the passive scalar analogy, the power spectrum is described by
a f −5/3 on time scales corresponding to the inertial-convective
regime.

In Fig. 6, we show that indeed the power spectrum of
isolated vortices follows a f −5/3 scaling consistent with the
passive advection model, whereas the scaling regime tends to
disappear as we look at vortex clusters of increasing size.

VI. VORTEX VELOCITY STATISTICS

As discussed in Sec. IV, the kinetic energy spectrum
is calculated from the superfluid velocity field given by
Madelung transform as �vs = ∇φ, where φ is the phase of
the wave function ψ . The statistics of large turbulent velocity

fluctuations is however dominated by the single-vortex effects.
It is known that the probability distribution of the velocity
induced by a single point vortex has a power-law tail given by
p(vs) ∼ v−3

s , which can also be predicted from a simple scaling
argument. Given that the velocity induced by an isolated vortex
decays as 1/r at the distance r from the vortex, then from the
transformation of variables in the probabilities, p(vs)dvs =
q(r)dr , it follows that p(vs) = q[r(vs)]| ∂r

∂vs
| where q(r)dr is

the probability of finding a vortex between r and r + dr . Thus,
for a uniform distribution of isolated vortices in the plane,
q(r) ∝ r , it follows that p(vs) ∼ v−3

s . This can also be derived
from the point vortex model for configurations of N uniformly
distributed vortices [29].

Because high velocity fluctuations are induced in the
proximity of a vortex, and the distance between vortices
is bounded below by the vortex size ∼ξ , the single-vortex
velocity distribution dominates the high-velocity tail, at least
for vs > c. This is one reason that it has also been observed
experimentally in quantum turbulence in superfluids [14] and
reproduced numerically in BEC [15]. However, because the
tail distribution of the superfluid velocity is dominated by
contribution of single vortices, it cannot be used as a measure
which can signal a turbulent cascade.

On the other hand, the statistics of vortex velocities is
an indicator of vortex clustering hence can be used as an
indirect way to determine if the quantum turbulence exhibits
an inverse energy cascade. As shown in Refs. [21,30], the
k−5/3 energy spectrum is associated with vortex clusters, where
vortices follow a fractal spatial distribution inside a cluster with
the probability distribution q(r) ∼ r−1/3. The simple scaling
argument predicts that such clustering gives rise instead to a
v−5/3 power-law tail. In a separate study [31], we show that
the v−5/3 also follows from the point-vortex model with a
nonuniform distribution of vortices. In principle, this scaling
appears in the superfluid velocity distribution at intermediate
velocities vs < c, but it may be difficult to observe it in practice
if there are not sufficiently many vortex clusters compared to
isolated vortices.

In order to sample cluster velocities more efficiently we
turn to the vortex velocities. The method of locating vortices
from the zeros of the wave function ψ also provides a way of
calculating the velocity of a vortex from the time derivative and
gradients of ψ [24]. Namely, the velocity of a vortex located
at position �r is determined by the current of vortex charge, and
given as

vx = 1

D Im(ψ̇∂yψ
∗), vy = − 1

D Im(ψ̇∂xψ
∗). (17)

Numerically, we calculate the weighted average of this value
across the region where D exceeds a threshold.

As there are only a few hundred vortices present at a given
time step, we have to gather velocity values over time in order
to collect sufficient statistics for a vortex velocity histogram.
The advantage, however, is that we can pick out only those
vortices which belong to a cluster of a given size. This allows us
to specifically sample the velocity statistics of vortices inside
a cluster, and compare this to other vortices.

Such a comparison is shown in Fig. 7, where we have
three different velocity distributions: (i) for all vortices, (ii)
for isolated vortices, and (iii) for vortices belonging to clusters
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FIG. 7. Vortex velocity distributions using three different sets
of vortices: All vortices, single vortices, and vortices belonging to
clusters of size 4. Inset: Vortex velocity distributions for clusters
of size 3 for different stirring velocities, shifted vertically for
comparison. Solid lines indicate the slope corresponding to a v−5/3

scaling law.

of size equal to four vortices. We see that the distribution of
velocities corresponding to clustered vortices seems to follow
a v−5/3 scaling regime up to an ultraviolet cutoff at v � 0.5c.
Like for the energy spectrum, an insufficient separation of
scales limits the extent of the scaling range for P (v), and
additional insights are needed in order to identify the power
law. In Ref. [31], we showed that the scaling range for the
tail distribution is controlled by the mean density of clustered
vortices, and that a sufficiently low density is necessary for
the onset of a scaling range. Thus, we attribute the narrow
power-law tail in the numerical simulations to a high density
of vortices inside clusters, which in turn is related to the fact
that the vortex core size and Thomas-Fermi radius are not
sufficiently far apart.

In addition, we notice that the probability distribution of
velocities sampled on isolated vortices lacks a scaling regime.
This we attribute to the fact that clustered vortices and dipoles
act like “obstacles” that prevent a uniform spread of the
isolated vortices within the disk. We have checked that the
v−3 scaling appears when we redistribute the isolated vortices
uniformly in the plane disregarding the presence of these
obstacles.

The inset plot in Figure 7 shows the distribution of velocities
of clustered vortices of size 3 for different stirring velocities.
We notice that the −5/3 power-law tail seems to be more
strongly expressed at lower stirring velocities where the
contribution from clustered vortices becomes important. At
higher stirring velocities, the lifespan of clustered vortices is
reduced and the statistics is dominated by the isolated vortices,
which do not exhibit a scaling range.

VII. SUMMARY AND CONCLUSIONS

In summary, we have shown that the spectral energy
transport in 2D quantum turbulence can be signaled from
the statistics of vortex number and velocity fluctuations. This
connection depends on the spatial clustering of like-signed
vortices. To show that the inertial k−5/3 regime of the spectral
energy is due to the vortex clustering, we have studied
separately the contribution of clusters and isolated vortices
to the energy spectrum.

Moreover, vortex clustering is also central to explaining
the f −5/3 scaling which we observe in the power spectrum
of the vortex number fluctuations. The explanation relies on
decomposing the vortex density field into clusters, which set
up a prevailing velocity field, and single vortices which are
passively advected by this field. Of the various signals of the
inverse energy cascade, the power spectrum scaling is the most
striking, as it covers a larger range of frequencies than the
energy spectrum. One possible reason for this is that finite-size
effects are less strongly expressed in the temporal domain. The
inverse energy cascade due to vortex clustering corresponds
to a particular statistical signature on the vortex velocity. We
find that the clustered vortex velocity probability distribution
develops a v−5/3 power-law tail which we observed in our
dGPE numerical simulations and can predict from a fractal
distribution of vortices inside a vortex cluster [31].

We believe that the power spectrum of vortex number
fluctuations is an experimentally accessible quantity like in
3D experiments, so the predicted scaling law corresponding
to the 2D inverse energy cascade can also be tested in highly
oblate BECs.

A connection between the superfluid velocity distribution
and the quantum energy spectrum was also established in the
hydrodynamic approximation in Ref. [32], and used to study
the emergence of coherent rotating structures in decaying 2D
turbulence.

We have focused on the lowest order turbulence statistics
in the regime dominated by vortex dynamics. It would be
interesting for the classical-quantum analogy to however go
beyond the energy spectrum and study the intermittency
effects. While intermittency corrections to scaling of higher
order structure functions have been observed in 3D quantum
superfluids [7,33,34], this has not yet been investigated in
the 2D quantum turbulence. The obvious question would be
whether the direct cascade is intermittent, while the inverse
cascade is nonintermittent.
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Within the point-vortex model, we compute the probability distribution function of the velocity fluctuations
induced by same-sign vortices scattered within a disk according to a fractal distribution of distances to the origin
∼r−α . We show that the different random configurations of vortices induce velocity fluctuations that are broadly
distributed and follow a power-law tail distribution P (V ) ∼ V α−2 with a scaling exponent determined by the α

exponent of the spatial distribution. We also show that the range of the power-law scaling regime in the velocity
distribution is set by the mean density of vortices and the exponent α of the vortex density distribution.

DOI: 10.1103/PhysRevE.93.042137

I. INTRODUCTION

Two-dimensional (2D) turbulent flows are known to exhibit
an inverse energy cascade, where the kinetic energy is
transferred from smaller to larger scales, which can lead to a
condensation of energy at low wave numbers [1]. This results
in the formation of transient, large-scale rotating structures
by an aggregation process or clustering of same-sign vortices
by analogy to the Richarsdon’s cascade of energy through a
breakdown of vortices in three-dimensional turbulence [2]. For
this reason, the vorticity dynamics is crucial in 2D turbulence.
Onsager’s point-vortex model [3] provides an approximate sta-
tistical description of turbulence, where vorticity is represented
as a set of localized point vortices described by a Hamiltonian
dynamics that generates dynamical regimes of clustering
of same-sign vortices. Since the experimental realization of
quantum turbulence in 2D Bose-Einstein condensates [4], the
point-vortex model has become a particularly powerful way
to study both the statistical properties of interacting quantized
vortices and the analogy between the classical and quantum
turbulent cascades [5–8].

Several studies on the clustering regime of same-sign
vortices show that an inverse energy cascade develops for a
self-similar spatial distribution of clustered vortices where the
distance between vortices inside a cluster follows a power-
law distribution ∼r−α , where α = 1/3 corresponds to the
Kolmogorov scaling of the incompressible energy spectrum
in the wave number space E(k) ∼ k−5/3 [5,9]. In a recent
numerical study of 2D quantum turbulence [8], we investigated
the relationship between statistical properties of vortices and
the inverse energy cascade, using the damped Gross-Pitaevskii
equation. In particular, we showed that the vortex clustering
regime, contributing to the formation of k−5/3 scaling in the
incompressible energy spectrum at length scales above the
mean vortex distance, is also signaled by a power-law tail
in the probability distribution of vortex velocity fluctuations
P (V ) ∼ V −5/3. However, in these kinds of numerical studies,
the scaling range in both the energy spectrum and velocity
probability distribution is limited by finite-size effects and
mean vortex density and it is numerically challenging to reduce
these effects. Therefore, the aim of this paper is to provide an
analytical calculation of the P (V ) for clustered vortices where

*audun.skaugen@fys.uio.no

we can vary the mean vortex distance and the system size. This
way, we are able to show that the range of the power-law tail
increases with decreasing mean density of clustered vortices,
while it is relatively robust to finite-size effects related to a
low number of cluster vortices within a small radius as long
as the mean density is kept fixed. Moreover, the power-law
exponent for P (V ) is directly related to the fractal distribution
of clustered vortices as P (V ) ∼ V α−2.

The statistical distribution of velocity fluctuations induced
by uniformly distributed random vortex configurations is
known to follow P (V ) ∼ V −3 that can be predicted from the
point-vortex model [10]. Similar analytical techniques have
been applied to studying fluctuations in the force of gravity in
stellar systems. The statistics of the gravitational force induced
by a fractal distribution of stars in d dimensions was shown to
give rise to a power-law tail distribution W (F ) ∼ F−γ [11].
In particular, in two dimensions the force of gravity has a 1/r

dependence, so these results are applicable to the point-vortex
model. Here W (F ) ∼ Fα−2 was found, consistent with our
results.

In this paper we calculate the general velocity distribution
induced by nonuniform random vortex configurations that
have a fractal distribution r−α with a particular focus on
the range of the universal velocity scaling regime. We start
by describing our point-vortex model for the inertial cluster
in Sec. II and derive a formal expression for the velocity
distribution W ( �V ) in Sec. III. The high-velocity cutoff due
to finite core size is studied in Sec. IV, while the power-law
scaling regime is derived in Sec. V. We study the range
of this scaling regime in Sec. VI and verify our results
using numerical sampling in Sec. VII. We summarize in
Sec. VIII. Some detailed calculations are presented in the
Appendixes.

II. POINT VORTEX MODEL FOR A CLUSTER

We consider an ensemble of N identical point vortices
distributed within a disk of radius R such that the probability
of having a vortex at position �r follows a power law with
the distance τ (�r)d�r ∝ |�r|−α−1d�r [9]. Hence, the probability
distribution T (r) of the distance from the origin r = |�r| will
pick up a factor 2πr from the 2D measure, so

T (r) ∝ 2πrr−α−1 ∝ r−α, (1)

2470-0045/2016/93(4)/042137(9) 042137-1 ©2016 American Physical Society
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with α = 1/3 corresponding to the distribution of clustered
vortices associated with the inverse energy cascade in two-
dimensional quantum turbulence [5,9].

Because vortices of opposite sign annihilate when they get
within a distance a related to the coherence length ξ , we modify
the distribution τ (�r) by introducing a lower cutoff a ∼ ξ

coming from finite vortex cores. Using the normalization
condition

∫ R

|�r|=a

|�r|−α−1d�r = 2π

1 − α
(R1−α − a1−α), (2)

we derive the normalized probability distribution of a vortex
position inside a cluster as

τ (�r) = 1 − α

2π (R1−α − a1−α)
|�r|−α−1 = nα

N
r−α−1. (3)

Here we have introduced the fractal mean density

nα = N (1 − α)

2π (R1−α − a1−α)
, (4)

where fractal alludes to the fact that this cluster is self-similar
with fractal dimension 1 − α. This nα is the mean density that
is kept fixed when we later take the thermodynamic limit of
N,R → ∞.

A vortex at position �r induces a velocity at the origin given
by [3,10,12]

�φ(�r) = − γ

2π

�r⊥
r2

, (5)

where γ = 2πξc is the quantized circulation. The ⊥ subscript
denotes the counterclockwise rotation of a vector with an angle
π/2. Hence, for a configuration of N vortices at positions �ri , the
velocity induced at the origin is a superposition of the velocity
generated by each vortex from Eq. (5), i.e.,

∑N
i=1

�φ(�ri).
The velocity at the origin will fluctuate from one cluster

configuration to another and the probability of observing a
velocity �V can be calculated by averaging over all possible
configurations of clustered vortices that yield a velocity �V at
origin, namely,

W ( �V ) =
∫ [

N∏
i=1

d�riτ (�ri)

]
δ

(
V −

N∑
i=1

�φ(�ri)

)
. (6)

We have assumed that the positions of vortices inside the
cluster are uncorrelated such that the N -point configurational
distribution factorizes into the N product of the probability τ

of finding a vortex.

III. FORMAL SOLUTION

In order to decouple the N -dimensional integral from
Eq. (6), we Fourier expand the Dirac delta function as
δ(�x) = 1

(2π)2

∫
e−i �ρ·�xd �ρ and insert it into Eq. (6), giving

W ( �V ) = 1

(2π )2

∫
d �ρ e−i �ρ· �V

N∏
i=1

∫
d�riτ (�ri)e

i �ρ· �φ(�ri ). (7)

Upon noticing that the N inner integrals are identical, this can
be simplified to

W ( �V ) = 1

(2π )2

∫
d �ρ

(∫
d�r τ (�r)ei �ρ· �φ(�r)

)N

e−i �ρ· �V

= 1

(2π )2

∫
d �ρ A( �ρ)e−i �ρ· �V , (8)

where A( �ρ) is the Fourier transform of W ( �V ) in the velocity’s
conjugate space �ρ and is given by

A( �ρ) =
(

nα

N

∫ R

|�r|=a

r−α−1ei �ρ· �φ(�r)d�r
)N

=
[

1 − nα

N

∫ R

|�r|=a

r−α−1(1 − ei �ρ· �φ(�r))d�r
]N

. (9)

Here we made use of the identity nα

N

∫
r−α−1d�r = 1 in order

to write the integral in a form that converges to the exponential
function in the large-N limit, i.e.,

lim
N→∞

(
1 − x

N

)N

= e−x. (10)

This identity is valid as long as x increases less rapidly than
N . Thus, in the thermodynamic limit of large R and N , we can
write A( �ρ) = e−nαC( �ρ), where

C( �ρ) =
∫ R

|�r|=a

r−α−1(1 − ei �ρ· �φ(�r))d�r, (11)

as long as C( �ρ) increases less rapidly than N .
We now change variables from �r to �φ, giving a Jacobi

determinant ∥∥∥∥ ∂(�r)

∂( �φ)

∥∥∥∥ = −
(

γ

2π

)2

φ−4. (12)

Since | �φ| = γ /2πr , we have r = γ /2πφ, so

C( �ρ) =
(

γ

2π

)1−α ∫ γ /2πa

| �φ|=γ /2πR

φα−3(1 − ei �ρ· �φ)d �φ, (13)

where the negative sign from the Jacobian is canceled by
interchanging the limits of integration. Switching to polar
coordinates measured relative to the direction of �ρ and
rewriting the limits using γ = 2πξc,

C( �ρ) =
( γ

2π

)1−α
∫ cξ/a

cξ/R

φα−2
∫ 2π

0
dθ (1 − eiρφ cos θ )dφ

= × 2π

(
γ

2π

)1−α ∫ s ′c

sc

φα−2[1 − J0(ρφ)]dφ, (14)

where s = ξ/R gives the separation of scales between the
coherence length ξ and the system size R and s ′ = ξ/a � 1
relates the lower cutoff a to the coherence length. Finally,
substituting x = ρφ, we find

C( �ρ) = 2π

(
γρ

2π

)1−α ∫ s ′ρc

sρc

[1 − J0(x)]xα−2dx

= 2πκ(ρ; s,s ′)
(

γρ

2π

)1−α

, (15)
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where κ(ρ; s,s ′) is the dimensionless number given by the
integral. The behavior of this κ function in different regimes
is the key to investigating the various regimes of W ( �V ), as we
will see in the following sections. Summarizing, we have the
formal solution

W ( �V ) = 1

(2π )2

∫
A( �ρ)ei �ρ· �V d �ρ

= 1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
ρe−nαC(ρ)eiρV cos θdρ, (16)

where we introduced polar coordinates with the angle mea-
sured relative to the direction of �V .

IV. HIGH-VELOCITY CUTOFF

As we have noted, we have introduced a lower limit a to
how close a vortex can get to the origin. This limits the velocity
that a single vortex can induce to Va = γ /2πa = s ′c, so we
should expect a cutoff in the velocity distribution around this
value. For velocities larger than s ′c, values of ρ larger than
1/s ′c will tend to cancel out by the oscillating factor eiρV .
It therefore suffices to consider ρ < 1/s ′c. In this case, the
κ(ρ; s,s ′) integral has limits s ′ρc < 1 and sρc 	 1. The lower
limit can be taken to be zero, while the small upper limit means
that we can expand the Bessel function as J0(x) = 1 − x2/4,
so

κ(ρ; s,s ′) =
∫ s ′ρc

0
xαdx = 1

1 + α
(s ′ρc)1+α. (17)

Using s ′ρc = γρ/2πa, we therefore see that

C( �ρ) = 2π

(1 + α)a1+α

(
γρ

2π

)2

. (18)

Thus the A( �ρ) is a Gaussian function, which is invariant
upon Fourier transformation. We therefore obtain a Gaussian
distribution for the cutoff tail of W ( �V ),

W ( �V )V 
c = (1 + α)
a1+α

2nαγ 2
exp

(
−(1 + α)

πa1+α

2nαγ 2
V 2

)
.

(19)

V. POWER-LAW TAIL DISTRIBUTION

We now explore the intermediate scaling regime, where
a power-law tail distribution can develop when sc 	 V <

s ′c. For these velocities, the main contribution to the Fourier
transform is when 1/s ′c < ρ 	 1/sc. In the κ(ρ; s,s ′) integral,
this means that the lower limit sρc 	 1 and can be taken to be
zero. The upper limit is larger than 1 and since the integrand
falls off rapidly for x > 1 we can extend this limit to infinity.
Thus we find that in this regime, κ(ρ; s,s ′) = κ is a constant
and is equal to (see Appendix B)

κ =
∫ ∞

0
[1 − J0(x)]xα−2dx

= − 1

π
sin

πα

2

(α − 1)B

(
1 − α

2
,
1

2

)
, (20)

where B(a,b) is the Beta function. This is a positive number
in the range −1 < α < 1. Since κ is constant C(ρ) ∼ ρ1−α ,

so A( �ρ) does not have Gaussian behavior. We explore the
consequences of this by studying the Fourier transform integral
from Eq. (16).

Using the symmetry of the cosine function, we can restrict
the polar integration from 0 to π in exchange for a factor of
2. Changing variables to t = cos θ and z = ρV , we find that
Eq. (16) is equivalent to

W ( �V ) = 1

2π2V 2

∫ 1

−1

dt√
1 − t2

∫ ∞

0
zeizt e−nαC(z/V )dz. (21)

In order to analyze the high-velocity behavior of this dis-
tribution, we would like to expand e−nαC(z/V ) in powers of
z/V and integrate term by term. However, this interchange of
limits requires the inner integral to be an analytical function
of t . However, as any neighborhood of real numbers contains
numbers with an imaginary part of either sign, the eizt factor
will cause the integral to blow up on any neighborhood of t .

We can however deform the integration contours in order
to ensure that the real part of izt is always strictly negative.
The trick is to rotate the ray of the z integration by an angle
ω(t) that depends on the argument of t . In order to avoid a
discontinuous change of arg t from π to 0, we first deform the
t integral to the unit semicircle S in the positive imaginary half
plane, as illustrated in Fig. 1. Thus arg t will go continuously
from π to 0.

The exponent izt now has the argument arg(izt) = π/2 +
ω(t) + arg t and ω(t) should be chosen so that this is kept
between π/2 and 3π/2 for the real part to be negative.
We also need to keep the real part of C(z/V ) ∝ z1−α

positive, which means that arg z1−α = (1 − α)ω(t) must be
kept between −π/2 and π/2. These constrains are satisfied by
the choice [10]

ω(t) = 1

8

(
π

2
− arg t

)
. (22)

We can now expand e−nαC(z/V ) in powers of 1/V and integrate
term by term

W ( �V ) = 1

2π2V 2

∞∑
n=0

1

n!
(−2πnακ)n

(
γ

2πV

)n(1−α)

×
∫

τ

dt√
1 − t2

∫
ωt

zeizt zn(1−α)dz. (23)

FIG. 1. Deforming the contours of integration.
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After this interchange of limits, we can again rotate the ray
of integration so that izt is negative real by choosing ω(t) =
π
2 − arg t . We then substitute y = −izt , making this integral
a real integral on the positive real axis:

W ( �V ) = − 1

2π2V 2

∞∑
n=0

1

n!
(−2πnακ)n

(
iγ

2πV

)n(1−α)

×
∫

τ

dt

t2+n(1−α)
√

1 − t2

∫ ∞

0
e−yy1+n(1−α)dy. (24)

In Appendix A we show that the t integral from the n = 0 term
vanishes, ∫

τ

dt

t2
√

1 − t2
= 0, (25)

while the n = 1 integral does not,

λ =
∫

τ

dt

t3−α
√

1 − t2

= − i

2
(1 + eiπα)B

(
3 − α

2
,
1

2

)
. (26)

Thus, recognizing the Gamma function for the y integral, the
velocity distribution is, to leading order in 1/V , given by

W ( �V ) = 2πnακ

2π2V 2

(
iγ

2πV

)1−α

λ
(3 − α)

= κλ

π

(3 − α)eiπ(1−α)/2nα

(
γ

2π

)1−α

V α−3. (27)

In Appendix C we show that the dimensionless prefactors
combine to unity,

κλ

π

(3 − α)eiπ(1−α)/2 = 1, (28)

so that we are left with the simple expression for the tail,

W ( �V ) = nα

(
γ

2π

)1−α

V α−3. (29)

The distribution for the velocity norm picks up a factor
2πV from the 2D measure

P (| �V | = V ) = 2πnα

(
γ

2π

)1−α

V α−2. (30)

Taking the limit α → −1 recovers the familiar V −3 velocity
tail associated with a uniformly random distribution of point
vortices. On the other hand, by substituting α = 1/3 as in the
vortex clustering associated with the inverse energy cascade,
we obtain that the tail distribution develops a V −5/3 scaling
regime.

VI. RANGE OF THE POWER-LAW SCALING

The series expansion for W ( �V ) in Eq. (24) contains terms
of higher order in 1/V , which will become increasingly
important for lower velocities V . When these terms are
included we no longer have a simple power-law scaling, so
studying these terms will tell us the expected scaling range for
the high-velocity tail.

The n = 2 term in Eq. (24) is

W2( �V ) = P2n
2
α

(
γ

2π

)2−2α

V 2α−4, (31)

where the dimensionless prefactor can be shown to equal

P2 = −41−α tan
πα

2
B

(
1 − α

2
,
1

2

)2

. (32)

Note that this prefactor is positive when α < 0. This means
that for negative α the distribution will initially increase above
the expected power law, before higher-order terms cause the
distribution to fall off. Thus the deviation from the power-law
tail distribution will manifest itself as a bulge below the scaling
regime. For α > 0 the prefactor is negative, so no such bulge
appears.

For α = 0 the second-order contribution vanishes, so we
will need to use the third-order contribution in order to analyze
the range of the power-law scaling. The relevant prefactor is

P3(α = 0) = −6π2. (33)

The velocity where the n = 2 contribution is as important
as the n = 1 term can now be found by solving the equation

|P2|n2
α

(
γ

2π

)2−2α

V 2α−4 = nα

(
γ

2π

)1−α

V α−3, (34)

which gives us a cutoff velocity

Vcut = γ

2π
(|P2|nα)1/(1−α). (35)

Solving a similar equation for the third-order term gives the
α = 0 case

Vcut(α = 0) = γ

2π

√
6πn0. (36)

This means that the V α−3 scaling can only develop between the
lower cutoff velocity Vcut and the upper cutoff s ′c. Notice that
the lower cutoff value for a given α is entirely controlled by the
mean density: The larger the gap between the vortex core size
and the mean vortex separation, the wider the range of velocity
scaling. When nα = aα−1/|P2| we find that Vcut = s ′c, so there
is no room for a power-law scaling to develop at densities of
this order. Similarly, in order to get a full decade of power-law
scaling we need the density to satisfy nα < (10a)α−1/|P2|.

VII. NUMERICAL SAMPLING OF
CLUSTERED VORTICES

We check the analytical predictions of the velocity distri-
bution arising from a fractal configuration of N -point vortices
{�ri}Nn=1, by using the same kind of numerical sampling method
as described in Ref. [5]. The spatial sampling method gener-
ates a localized finite configuration of power-law-distributed
vortices with respect to their distances from the origin ri by
taking into account the finite vortex core size a ∼ ξ and system
size ∼R. In this case we fix a = ξ , so the sampled fractal
distribution normalized in the interval bounded by these cutoffs
[ξ,R] is

Tα(r) = 1 − α

R1−α − ξ 1−α
r−α. (37)

042137-4



VELOCITY STATISTICS FOR NONUNIFORM . . . PHYSICAL REVIEW E 93, 042137 (2016)

10 -4 10 -3 10 -2 10 -1 10 0

V

10 -2

10 -1

10 0

10 1

10 2

10 3

P
(V

)

 = -2/3
 = -1/3
 = 0
 = 1/3
 = 2/3

FIG. 2. Velocity probability distribution P (V ) of a spatially sam-
pled fractal configuration of point vortices with power-law exponents
α ranging from −2/3 (steepest power law) to 2/3 (shallowest power
law). The mean density is fixed to nα = 10−3. Straight lines show
the corresponding power law 2πnαV

α−2, while the asterisks show
the points where the next-order contribution from the power-law
expansion is as large as the first-order contribution. Notice that
the range of power-law scaling increases with α and the positive
second-order contribution at negative α, as predicted in Sec. VI.

We choose ξ as the unit of space and c as the unit of velocity, so
ξ = c = 1. To sample vortex distances ri from this distribution,
we first generate N random numbers ui in the unit interval
[0,1]. The uniformly distributed random numbers are then
mapped onto the set of distances {ri} that follow a fractal
distribution given by Eq. (37) upon the transformation

ri = [uiR
1−α + (1 − ui)ξ

1−α]1/(1−α). (38)

The vortex angles θi are assumed to be uniformly distributed
within [0,2π]. Therefore, the position vector of vortex i is
�ri = ri(cos θi �ex + sin θi �ey).

From the configuration of vortex positions {�ri}Ni=1, we then
compute the velocity induced at the cluster’s origin using the
superposition principle and Eq. (5), i.e., �v = ∑N

i=1
�φ(�ri). In

Figs. 2–4 we show how the range of power-law scaling of
P (V ) depends on parameters such as the exponent α, the mean
vortex density nα , and number of clustered vortices N at a
fixed density nα . For a fixed mean density, we notice that the
range of the power-law scaling increases with α (see Fig. 2),
whereas it remains relatively robust to the number of clustered
vortices as shown in Fig. 4. On the other hand, the scaling
range extends over more decades in velocity fluctuations as
the mean vortex density decreases, as shown in Fig. 3, also
consistent with the theoretical prediction of lower velocity
cutoff Vcut from Eq. (35), which only depends on the mean
density. We can scale out this dependence on nα as defining
Ṽ = V/n

1/(1−α)
α , which means that the probability distribution

of V can be written as P (V ) = n
−1/(1−α)
α P(V/n

1/(1−α)
α ). In

the scaling regime of P (V ), the rescaled distribution follows
P(Ṽ ) ∼ Ṽ α−2 independently of nα . This data collapse is
shown in Fig. 3(b).

We can understand the weak dependence on N for fixed
nα by noting that the thermodynamic limit N → ∞ was used
only once during our derivation, namely, by making use of the
exponential identity in Eq. (10). The accuracy of this identity
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α
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V/n 1/(1- α)
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n
α

α

1/
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-
α

) P
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)

(b)

n
α
 = 0.001

n
α
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n
α
 = 0.03

n
α
 = 0.14

FIG. 3. (a) Plot of P (V ) of a spatially sampled fractal configura-
tion of point vortices with α = 1/3 and the mean density nα varying
from 10−3 to the critical value 0.14 where the scaling vanishes.
Straight lines and asterisks are as in Fig. 2. (b) Data collapse in
the scaling regime of P (V ) when the dependence on nα is scaled out,
i.e., P (V ) = n−1/(1−α)

α P(V/n1/(1−α)
α ).

is controlled by the ratio x
N

= nα

N
C(ρ). In the scaling regime

we have ρ 	 1/sc, which implies

nα

N
C(ρ) = nα

N

(
γρ

2π

1−α

2πκ 	 1 − α

R1−α − a1−α
R1−ακ, (39)

and therefore, since a 	 R,
x

N
	 (1 − α)κ. (40)

We notice that (1 − α)κ is independent of N and R and is of the
order of unity, except for the limit case of a uniform distribution
of vortices α → −1, where it diverges. Thus x

N
	 1, so the

exponential identity is a good approximation. This means that
finite-size effects due to small system size and number of
clustered vortices have small corrections to the scaling range
compared to the dominant effect, which is given by the mean
density nα of clustered vortices. We have checked that the
dependence of the sampled distribution on N and R for fixed
nα remains weak for a wide range of mean densities nα and
scaling exponents α > 0.

VIII. CONCLUSION

We have determined the probability distribution of velocity
fluctuations arising from fractal configuration of clustered
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FIG. 4. Sampled velocity distributions at different cluster sizes N ,
but at the same density nα = 0.01 and power-law exponent α = 1/3.
We notice that the size of the cluster has a minimal effect on the
scaling regime, even quite far away from the thermodynamic limit
N,R → ∞ at fixed nα .

vortices. We recovered two limit cases that are particularly rel-
evant for turbulent flows. The uniform distribution of vortices
that corresponds to α = −1 is the stationary configurational
probability of a free system of uncorrelated vortices and
is used as a proxy to describe 2D turbulent flows with no
transfer of energy across scales [9,10]. In this case, the induced
velocity fluctuations follow the known V −3 tail distribution. A
similar tail distribution has been observed in 3D superfluid
turbulence and attributed to vortex reconnections [13] and
also reproduced in 3D simulations of quantum turbulence in
Bose-Einstein condensates [14,15]. While it is plausible that a
forward energy cascade in three dimensions can be described
through a uniform tangle of quantized vortices, the inverse
energy cascade in 2D turbulence is built on a self-similar
distribution of clustered vortices, such that the Kolmogorov
spectrum E(k) ∼ k−5/3 is attributed to α = 1/3. This spatial
self-similarity of vortices induces a different power law in
the tail distribution of the velocity fluctuations, namely, as
∼V −5/3.
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APPENDIX A: DERIVATION OF THE λ INTEGRAL

We are considering integrals of the type

Im =
∫

τ

dt

tm
√

1 − t2
, (A1)

where m is a possibly fractional power. Of particular interest
are the cases m = 2 and m = 3 − α, which appear as Eqs. (25)
and (26), respectively.

Our strategy will be to deform the integration contour back
to the real axis. However, the pole of order m at the origin
is likely to cause problems, which is exactly the reason why

FIG. 5. Branch cuts and contours of integration.

we lifted the contour to the complex plane in the first place.
We therefore avoid the origin by enlarging the contour to the
intervals [−1,−∞] and [1,∞] (see Fig. 5).

When doing this, we will need to keep any branch cuts out
of the way. The fractional power tm has a branch cut along
the negative real axis, which we can simply rotate away to
the negative imaginary axis by the standard transformation
tm → e−iχ (eiχ/mt)m, with an appropriate choice for χ . This
transformation leaves the integral invariant and can thus be left
implicit.

For the square root we apply the transformation
√

1 − t2 =
±i

√
t2 − 1 in order to keep the branch cuts out of the way

on the [−1,1] interval. However, we do need to be careful in
choosing the sign of the imaginary unit. As arg t descends from
π to 0, the argument of 1 − t2 stays in the interval [−π/2,π/2],
not crossing the branch cut of the square root. On the other
hand, the argument of t2 − 1 crosses the negative real axis at
arg t = π/2.

In order to work out the correct sign of the imaginary
unit, we calculate the argument of t2 − 1 using the polar form
t = eiθ :

arg(t2 − 1) = arg(e2iθ − 1) = arg[eiθ (eiθ − e−iθ )]

= arg(2i sin θeiθ ) = arg ei(θ+π/2)

= P(θ + π/2), (A2)

where P(θ ) normalizes the angle to lie in the principal branch
interval (−π,π ]. Similarly, the argument of 1 − t2 is P(θ −
π/2). The principal branch of the square root halves these
angles, so

arg

√
1 − t2

√
t2 − 1

= 1

2
P(θ − π/2) − 1

2
P(θ + π/2). (A3)

By checking cases in this expression, we can now verify that
√

1 − t2

√
t2 − 1

=
{
i for π � θ < π/2
−i for π/2 � θ � 0.

(A4)

Thus the sign of the imaginary unit changes when the contour
crosses the imaginary axis.
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The integral can now be written

Im =
(∫

ε−
+

∫ −R

−1−ε

+
∫

|t |=R

+
∫ 1+ε

R

+
∫

ε+

)
dt

±itm
√

t2 − 1

= Iε− + I− + IR + I+ + Iε+ . (A5)

For the radius R semicircle, we substitute t = Reiθ and find

|IR| � R
∫ π

0
dθ

Rm|√1−R2e2iθ |

→ R
Rm+1 π → 0, (A6)

as long as m > 0, which is true for both our cases. Similarly,
we find that the ε quarter-circle integrals go like

√
ε and thus

vanish when ε → 0. Taking R → ∞ and ε → 0 and flipping
the limits on the positive integral, we are left with

Im = I− + I+ =
(∫ −∞

−1
−

∫ ∞

1

)
dt

±itm
√

t2 − 1
. (A7)

For the negative part we substitute t → −t , which trans-
forms dt/tm to −(−1)−mdt/tm. Inserting the proper signs for
the imaginary unit in each part of the integral, this gives us

Im = −i(1 − e−iπm)
∫ ∞

1

dt

tm
√

t2 − 1
. (A8)

We now recall the definition of the Beta function

B(a,b) =
∫ 1

0
xa−1(1 − x)b−1dx. (A9)

Our integral can be transformed into this form with a
substitution x = 1/t2, which leads to dt = − 1

2x−3/2dx. Thus,

Im = − i

2
(1 − e−iπm)

∫ 1

0

dx

x−m/2x3/2
√

1/x − 1

= − i

2
(1 − e−iπm)

∫ 1

0
xm/2−1(1 − x)−1/2

= − i

2
(1 − e−iπm)B

(
m

2
,
1

2

)
. (A10)

With m = 2, or indeed m any even number, this integral
vanishes due to 1 − e−2iπ = 0, which proves Eq. (25). For
the other case, we substitute m = 3 − α and find

λ = I3−α = − i

2
(1 + eiπα)B

(
3 − α

2
,
1

2

)
. (A11)

APPENDIX B: DERIVATION OF THE κ INTEGRAL

We are considering the integral

κ =
∫ ∞

ε

[1 − J0(x)]xα−2dx = ID − IJ , (B1)

with the understanding that ε should be taken to zero. We
would like our results to be valid for α ∈ (−1,1), which
includes the interesting case α = 1/3 and allows us to take
the limit α → −1. The first term yields a divergence in ε,

ID =
∫ ∞

ε

xα−2dx = 1

1 − α
εα−1, (B2)

but by series expanding the Bessel function we know that the
full integral contains no such divergence. Thus the second term

must contain a divergence that cancels the first one. Studying
this term, we use the integral representation of the Bessel
function to write

IJ = 1

π

∫ ∞

ε

∫ π

0
cos(x cos θ )xα−2dθ dx

= 1

π

∫ 1

0

∫ ∞

ε

2 cos(xt)xα−2dx
dt√

1 − t2
, (B3)

where we substituted t = cos θ and made use of the symmetry
of the cosine to halve the integration limits in exchange for a
factor of 2. We now study the the integral over x, which can
be written as∫ ∞

ε

xα−2eixtdx +
∫ ∞

ε

xα−2e−ixt dx = Ix + I ∗
x . (B4)

These integrals are suggestive of Gamma function integrals.
However, substituting y = −ixt takes the integration contour
to the negative imaginary axis. To avoid this, we first rotate
the contour of integration to the positive imaginary axis:

Ix =
(∫

C(ε)
+

∫ iR

iε

−
∫

C(R)

)
xα−2eixtdx, (B5)

where C(r) is the quarter circle of radius r going from the real
to the positive imaginary axis and R is to be taken to infinity.
The outer quarter-circle integral vanishes,

lim
R→∞

∫
C(R)

xα−2eixtdx = 0, (B6)

but on the inner contour we pick up a divergence in ε.
Substituting x = εeiθ ,

Iε =
∫

C(ε)
xα−2eixtdx

= iεα−1
∫ π/2

0
ei(α−1)θ eitεeiθ

dθ. (B7)

For small ε we can expand the second exponential. In order to
keep track of all divergences when α < 0 we need to expand
to first order,

Iε = iεα−1
∫ π/2

0
ei(α−1)θ (1 + itεeiθ )dθ

= εα−1

α − 1
(−ieiαπ/2 − 1) + i

tεα

α
(eiαπ/2 − 1). (B8)

Here we assumed α �= 0; the α = 0 case is handled below.
In the integral along the imaginary axis we can substitute
y = −ixt , bringing it to the Gamma function form

∫ i∞

iε

xα−2eixtdx =
(

i

t

)α−1 ∫ ∞

εt

yα−2e−ydy

= − ieiπα/2

tα−1

(α − 1,εt), (B9)

where 
(α − 1,εt) is the upper incomplete Gamma func-
tion. Because α − 1 < 0, this does not actually converge to

(α − 1) when ε → 0. However, the incomplete Gamma
function satisfies


(s,x) = 
(s + 1,x)

s
− xs

s
e−x, (B10)
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as can be verified from an integration by parts. We can make
use of this in order to separate out all the diverging terms,


(α−1,εt) = 
(α,εt)

α−1
− (εt)α−1

α−1
e−εt

= 
(α+1,εt)

α(α−1)
− (εt)α

α(α−1)
e−εt− (εt)α−1

α−1
e−εt .

(B11)

The first term converges to 
(α − 1). To order εα , we obtain


(α − 1,εt) = 
(α − 1) − (εt)α−1

α − 1
+ (εt)α

α
. (B12)

Thus we can see that Ix combines to

Ix = − εα−1

α − 1
− it

εα

α
− i

eiπα/2

tα−1

(α − 1), (B13)

which combines with the complex conjugate to

Ix + I ∗
x = 2

εα−1

1 − α
+ 2

tα−1
sin

πα

2

(α − 1). (B14)

Inserting this result back into the Bessel function integral in
Eq. (B3), we find

IJ = 2

π

∫ 1

0

(
εα−1

1 − α
+ sin

πα

2

(α − 1)t1−α

)
dt√

1 − t2

= εα−1

1 − α
+ 2

π
sin

πα

2

(α − 1)

∫ 1

0

t1−α dt√
1 − t2

. (B15)

Notice the first diverging term here, which will cancel the
divergence in Eq. (B2) exactly. We can reduce the final integral
to a Beta function using a substitution u = t2,∫ 1

0

t1−α dt√
1 − t2

= 1

2

∫ 1

0
u−α/2(1 − u)−1/2du

= 1

2
B

(
1 − α

2
,
1

2

)
, (B16)

so the final result of the κ integral is

κ = ID − IJ = − 1

π
sin

πα

2

(α − 1)B

(
1 − α

2
,
1

2

)
. (B17)

Returning to the α = 0 case, Eq. (B8) can be written

Iε = iε−1
∫ π/2

0
e−iθ (1 + itεeiθ )dθ

= iε−1(−i − 1) − t
π

2
. (B18)

The integral along the imaginary axis in Eq. (B9) is
simplified to ∫ i∞

iε

xα−2eixtdx = −it
(−1,εt), (B19)

which diverges logarithmically when ε → 0. However, as the
incomplete Gamma function is always real, this term is purely
imaginary and vanishes when we add the complex conjugate.
The only contribution is from the Iε integration,

Ix + I ∗
x = Iε + I ∗

ε = 2ε−1 − πt, (B20)

which we can insert back into Eq. (B3) to obtain

IJ = 1

π

∫ 1

0
(2ε−1 − πt)

dt√
1 − t2

= ε−1 − 1. (B21)

Canceling the divergence from Eq. (B2), the result is simply

κα=0 = ID − IJ = 1. (B22)

This is also what one would obtain by taking the limit α → 0
in the general result from Eq. (B17).

APPENDIX C: COMBINING THE PREFACTORS

The dimensionless prefactor to the power-law tail
distribution is

P = κλ

π

(3 − α)eiπ(1−α)/2

= − 1

π2
sin

πα

2
CGB, (C1)

where C collects the complex number factors, G collects the
Gamma functions, and B collects the Beta functions. The
complex numbers combine to

C = − i

2
(1 + eiπα)eiπ(1−α)/2 = cos

πα

2
, (C2)

so that

C sin
πα

2
= 1

2
sin πα. (C3)

For the Gamma functions, we use the well-known properties


(x + 1) = x
(x), 
(x)
(1 − x) = π

sin πx
(C4)

in order to write

G = 
(3 − α)
(α − 1)

= (2 − α)(1 − α)

α − 1

(1 − α)
(α)

= −(2 − α)
π

sin πα
. (C5)

The Beta function satisfies

B(a,b) = 
(a)
(b)


(a + b)
, (C6)

so we can simplify the B factor to

B = B

(
1 − α

2
,
1

2

)
B

(
3 − α

2
,
1

2

)

= 

(
1 − α

2

)



(
1
2

)



(
3−α

2

) 

(

3−α
2

)



(
1
2

)



(
2 − α

2

)

= π



(
1 − α

2

)
(
1 − α

2

)



(
1 − α

2

) = 2π

2 − α
, (C7)

where we also used that 
(1/2) = √
π . Combining everything

we see that the various factors cancel each other, so in total we
have

P = 1. (C8)

042137-8



VELOCITY STATISTICS FOR NONUNIFORM . . . PHYSICAL REVIEW E 93, 042137 (2016)

[1] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[2] P. Tabeling, Phys. Rep. 362, 1 (2002).
[3] L. Onsager, Nuovo Cimento 6, 279 (1949).
[4] T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney, E. M.

Wright, K. J. H. Law, R. Carretero-González, P. G. Kevrekidis,
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We establish a statistical relationship between the inverse energy cascade and the spatial correlations of
clustered vortices in two-dimensional quantum turbulence. The Kolmogorov spectrum k−5/3 on inertial scales
r corresponds to a pair correlation function between the vortices with different signs that decays as a power law
with the pair distance given as r−4/3. To test these scaling relations, we propose a forced and dissipative point
vortex model that captures the turbulent dynamics of quantized vortices by the emergent clustering of same-sign
vortices. The inverse energy cascade developing in a statistically neutral system originates from this vortex
clustering that evolves with time.

DOI: 10.1103/PhysRevE.95.052144

I. INTRODUCTION

The condensation of energy into large-scale coherent
structures and the prevailing flow of energy from small to large
scales referred to as the inverse energy cascade [1] are two
important signatures of two-dimensional (2D) classical flows.
The inverse energy cascade is associated with the statistical
conservation laws of energy and enstrophy (mean-square vor-
ticity). This is in stark contrast to three-dimensional turbulence
where energy cascades towards small dissipative length scales
by the proliferation of vorticity. Quantum turbulence (QT) in
highly oblate Bose Einstein condensates (BECs) provides a
close experimental realization of 2D turbulence through the
dynamics of quantized vortices and a well-defined theoretical
framework to study turbulence from the statistical properties
of a quantized vortex gas. In recent years, there have been
indirect experimental evidence [2] and tantalizing numerical
results [3–5] of the existence of an inverse energy cascade that
follows the Kolmogorov scaling analogously to the classical
turbulence. The condensation of energy on large scales has
also been investigated in decaying quantum turbulence [6–8].
A crucial link between these two phenomena is that there is
a net transport of energy from small to large scales and this
happens in quantum turbulence due to the spatial clustering
of quantized vortices of the same circulation. Here we show
that this vortex interaction leading to clustering implies that
the energy spectrum is directly related to spatial correlation
functions, in particular to the vorticity correlation.

Large-scale vortices were first predicted by Onsager [9]
as the negative temperature equilibrium configuration of point
vortices in a statistical description of 2D turbulence bounded in
a finite domain. These vortex condensates are formed by clus-
tering of vortices of the same sign and occur through an SO(2)
symmetry-breaking phase transition with negative critical
temperature [10]. Recent studies of decaying QT propose that
such negative temperature states can be achieved dynamically
by an evaporative heating process through the annihilation
of vortex dipoles (effective heating of vortices by removing
the coldest ones, i.e., the smallest dipoles) [6]. Clustering of
vortices is also at the origin of an inverse energy cascade in
driven QT [3,5,11], but in this case the mere existence of vortex

*audun.skaugen@fys.uio.no

clusters is not enough; their structure is crucially important and
different from the equilibrium Onsager vortices emerging in
decaying turbulence. Novikov [12] showed that, in principle,
an inverse energy cascade with the Kolmogorov spectrum can
be produced by a single cluster of same-sign vortices when
there are long-range correlations in their spatial distribution
such that the pair distribution function decays as a power law
r−4/3 with the separation distance r . The dependence of the
energy spectrum on the vortex configuration was further ex-
plored in this idealized case of same-sign point vortices [4,13].
However, any realistic model of driven QT needs to include
both vortex signs, which complicates this idealized picture.

Our aim is to show that the inverse energy cascade in driven
QT is the result of the interaction between diverse clusters of
corotating and counterrotating vortices. The largest of these
clusters will be the nonequilibrium analog of Onsager vortices,
in the sense that they will dominate the large-scale rotating
flow. However, there is a spectrum of vortex clusters of various
sizes and their interactions and internal structures lead to per-
sistent long-range fluctuations in the vorticity field, measured
by the weighted pair correlation function. Moreover, we show
that the Kolmogorov spectrum is related to scale-free two-point
statistics of quantized vorticity 〈ω(0)ω(�r)〉 ∼ r−4/3, similar to
Novikov’s prediction for the idealized same-sign vortices. This
would be analogous to the Kraichnan-Kolmogorov scaling ar-
gument for the classical coarse-grained vorticity on an inertial
scale r , ωr ∼ vr/r , with the eddy velocity vr ∼ r1/3 [1]. To
investigate the origin of the inverse energy cascade in driven
quantum turbulence without having to concern ourselves with
the compressibility effects in quantum fluids [2], we propose a
driven and dissipative point vortex model as described below.

The structure of the paper is as follows. In Sec. II
we describe the point vortex model as applied to quantum
turbulence. In Sec. III we give a statistical argument relating the
energy spectrum to the vorticity correlation. This connection
is further explored numerically within a driven and dissipative
point vortex model, which is introduced in Sec. IV. We
show that this model develops a turbulent steady state in
Sec. V. In Sec. VI we discuss the numerical results on the
vorticity correlation function and in Sec. VII we show that
this is associated with a negative spectral energy flux and
a Kolmogorov k−5/3 energy spectrum. Conclusions and a
discussion are presented in Sec. VIII.

2470-0045/2017/95(5)/052144(8) 052144-1 ©2017 American Physical Society
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II. POINT VORTEX MODEL

Point vortices in BECs are realized as codimension-2
topological defects in the complex order parameter repre-
senting the many-particle wave function. These vortices have
a characteristic core structure determined by the balance of
kinetic energy and distortion energy, leading to a core size
on the order of the healing length ξ [4,14]. Vortices with
overlapping cores have complicated dynamics that couple the
vortex gas to phonon excitations in the BEC and lead to the
annihilation of vortex-antivortex pairs. On the other hand,
well-separated vortices will move according to the point vortex
model. A collection of vortices with circulation signs {qi} and
positions {�ri} in a bounded container of size R set up a velocity
field characterized by the stream function ψ(�r,t), given by a
superposition of contributions from each vortex [15]

ψ(�r,t) = −
N∑

j=1

qj ln |�r − �rj | +
N∑

j=1

qj ln
(∣∣�r − �r v

j

∣∣rj

)
. (1)

The second sum gives the contributions from image vortices
located at �r v

j = R2

r2
j

�rj , which are necessary in order to ensure

the no-flux boundary condition at r = R, as well as image
vortices located at the origin giving the extra factor of rj = |�rj |
in the logarithm. Note that the winding number qj = ±1
is constant for quantized vortices in 2D QT, unlike the
continuously varying circulation of classical vortices subjected
to merging rules in vortex models for 2D CT [16]. Well-
separated vortices follow this velocity field passively,

�̇ri = �∇⊥ψ (i)(�ri), (2)

where �∇⊥ = (−∂y,∂x) and the (i) superscript indicates that we
omit the singular self-interaction from the i = j term of the
stream function (although we keep the i = j term in the image
sum, which gives a nonsingular interaction between a vortex
and its image). This is equivalent to a conservative dynamics
described by the Hamiltonian

H = 1

2

∑
i

qiψ
(i)(�ri)

= −1

2

∑
i �=j

qiqj ln |�ri − �rj | + 1

2

∑
i,j

qiqj ln
(∣∣�ri − �r v

j

∣∣rj

)
,

(3)

reflecting the conservation of kinetic energy in the velocity
field.

Although we can always make sure that the initial vortex
positions are well separated from each other, the dynamical
evolution might cause pairs of vortices to get close enough
that the coupling to the phonon field becomes important. It is
therefore necessary to include phenomenological rules such
as dipole annihilation in order to properly represent BEC
dynamics in a point vortex model.

The Hamiltonian point vortex model, describing conserva-
tive dynamics, cannot capture dynamical aspects of turbulence
such as the energy cascade or the buildup of large-scale
coherent structures. It is however useful for investigating
equilibrium statistical properties for inertial turbulent fluctu-
ations [17]. The phase space of the point vortex Hamiltonian

coincides with the configuration space and hence is finite
for a bounded domain. This implies that the microcanonical
entropy has a maximum at finite energy, giving rise to negative
temperature T states at higher energies. Onsager [9] predicted
that these negative-T states correspond to spatial clustering of
same-sign vortices, resulting in large-scale vortices. Recently,
it has been proposed that the Onsager vortices in the strongly
coupled regime undergo a condensation similar to the Bose-
Einstein condensation, but this requires much higher energies
than those present in decaying turbulence or in the inverse
energy cascade [18].

For dynamical exploration of these vortex clustered con-
figurations from initial conditions with positive T , one needs
to include phenomenological dissipation mechanisms, such as
dipole annihilation rules [6] and/or thermal friction [19]. In
Ref. [20] it was proposed that the annihilation of the smallest
vortex dipoles acts as an effective viscous dissipation in QT.
However, as pointed out in Ref. [6], this effective viscosity is
not constant, but instead depends on the spatial configuration of
vortices and vanishes for clusters of same-sign vortices. By re-
moving the smallest vortex dipoles, the total energy will slowly
decrease with decreasing number of vortices. Since the energy
of the smallest dipole is smaller than the mean energy per
vortex, the net energy per vortex keeps increasing. Hence it acts
like an evaporative heating mechanism and leads to the emer-
gence of same-sign vortex clusters in decaying turbulence [6].

III. ENERGY SPECTRUM AND
VORTICITY CORRELATION

The kinetic energy spectrum of N point vortices is deter-
mined by their spatial configuration and charges as derived
by Novikov [12] and in more recent studies of BEC vortices
with a characteristic vortex core structure [4]. For a given
vortex configuration, the energy spectrum of N vortices in an
unbounded plane is given as [12]

EN (k) = π

k

⎛
⎝N +

∑
i �=j

qiqjJ0(krij )

⎞
⎠, (4)

where J0(x) is the zeroth-order Bessel function and rij =
|�rij | = |�ri − �rj |. To study this statistically, Novikov considered
a cluster of same-sign vortices and introduced the pair corre-
lation g(�r) = 1

ρ〈N〉 〈
∑

i �=j δ(�r − �rij )〉 with the vortex number
density ρ = 〈∑i δ(�r − �ri)〉. For vortices inside the given
cluster the sign factors qiqj will equal 1, so averaging the
kinetic energy spectrum we find

〈EN (k)〉 = π

k

⎛
⎝〈N〉 +

∫
J0(kr)

〈∑
i �=j

δ(�r − �rij )

〉
d2�r

⎞
⎠

= 〈N〉π
k

(
1 + ρ

∫
J0(kr)g(�r)d2�r

)
. (5)

A scaling g(�r) ∼ 1 + Cr−α will then give rise to two new terms
∼δ(k) and ∼kα−3 in the energy spectrum, in addition to the
∼k−1 term from the single-vortex solution. This is Novikov’s
statistical relationship between the scalings in energy and pair
correlation of the same-sign vortex gas.

However, even if the vortices organize into clusters with
a characteristic pair correlation g(r), it is not clear that the
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clusters would be decoupled sufficiently from each other for
the energy spectrum to be a simple superposition of the spectra
of each cluster. We therefore argue that simply performing
the average inside a given vortex cluster does not give the
complete statistical description of turbulence with two vortex
signs. Instead, one should perform this derivation accounting
for all the different vortex signs.

Averaging Eq. (4) and keeping all the sign factors, we find

〈EN (k)〉 = π

k

⎛
⎝〈N〉 +

〈∑
i �=j

qiqjJ0(krij )

〉⎞
⎠

= π

k

⎛
⎝〈N〉 +

∫
d2�r J0(kr)

〈∑
i �=j

qiqj δ(�r − �rij )

〉⎞
⎠

= 〈N〉π
k

(
1 +

∫
d2�r J0(kr)ρgw(�r)

)
, (6)

where the weighted pair correlation ρgw(�r) is defined as

ρgw(�r) = 1

〈N〉

〈∑
i �=j

qiqj δ(�r − �ri + �rj )

〉
. (7)

This function can be interpreted as the probability of finding
two same-sign vortices at a separation �r , minus the probability
of finding two opposite-sign vortices at the same separation.
For vortices of the same sign, we recover the simple pair
correlation ρg(�r), which decreases monotonically such that
limr→∞ gw(r) = 1, reflecting that the vortex positions are
uncorrelated at large distances. However, for the neutral system
the two probabilities will cancel out, giving limr→∞ gw(r) =
0, reflecting the fact that there should be no excess of one sign
over the other at large distances.

At intermediate distances the gw(r) function indicates the
predominance of vortex clusters, giving positive values, and
vortex dipoles, giving negative values. A characteristic scale
might indicate the typical size of clusters, while a scale-free
behavior might indicate either the coexistence of clusters
of different sizes or a scale-free spatial structure of each
cluster. Similarly to Novikov’s argument, the Kolmogorov
k−5/3 energy scaling corresponds to a Cr−4/3 scaling in the
weighted pair correlation, by the relation

〈E(k)〉
〈N〉 ∼ π

k
+ 2π2 ρC

k5/3

∫
dx J0(x)x−1/3. (8)

The vanishing limit of the weighted pair correlation means
that there is no singularity ∼δ(k) in the energy spectrum. The
dimensionless integral equals

√
π


(5/6) in an unbounded system,
but may introduce corrections in a finite-size system.

The weighted pair correlation function is related to corre-
lations in the vorticity field ω(�r) = ∑

i qiδ(�r − �ri). Assuming
a statistically homogeneous system, two-point correlations in
vorticity can be found as

〈ω(�r)ω(�r ′)〉 =
〈∑

i,j

qiqj δ(�r − �ri)δ(�r ′ − �rj )

〉

= ρδ(�r − �r ′) +
〈∑

i �=j

qiqj δ(�r − �ri)δ(�r ′ − �rj )

〉

= ρδ(�r − �r ′) + ρ2gw(�r − �r ′). (9)

Hence the r−4/3 scaling in the weighted pair correlation
relates to a similar scaling in the vorticity correlation. Such
a scaling in the vorticity is analogous to the Kraichnan-
Kolmogorov scaling in classical turbulence, which follows
from dimensional analysis based on statistical self-similarity
of turbulence.

IV. DRIVEN AND DISSIPATIVE POINT VORTEX MODEL

In order to numerically investigate the relationship between
the energy spectrum and vorticity correlations, we propose
an extension to the point vortex model that can capture
driven quantum turbulence, by adding driving and dissipation
mechanisms to the equations of motion. A natural source of
dissipation in QT is the nonconservative vortex motion due
to thermal friction. This adds a longitudinal component in
the vortex motion, with repulsion between same-sign vortices
and attraction between opposite-sign vortices. Hence, the
point vortices follow a non-Hamiltonian equation of motion
given as

�̇ri = �∇⊥ψ (i)(�ri) − γ qi
�∇ψ (i)(�ri), (10)

where γ is the dimensionless thermal friction coefficient and
the sign factor qi is necessary in order to give different motion
for same- and opposite-sign vortices. As discussed in Ref. [19],
γ quantifies the main source of dissipation in the system and is
directly related to the damping coefficient commonly used in
Gross-Pitaevskii dynamics to account for thermal dissipation
[3,4].

This dissipative evolution will cause vortex-antivortex pairs
to collapse into ever tighter dipoles. To avoid a singularity we
introduce a phenomenological annihilation rule for such pairs
when the distance is closer than a constant la . This constant
can, for example, represent a length scale on the order of the
healing length ξ in a BEC. Vortices in a bounded disk will also
be attracted to the boundary, so we need a similar rule causing
vortices close to the boundary to annihilate with their image.
Although same-sign vortex pairs also behave differently in
BECs when they get close enough together, we do not add any
phenomenological rules for this case, as we do not expect any
such pair to come within a distance much smaller than la in
our dynamics.

To generate forced turbulence, we include a small-scale
stirring mechanism by spawning vortex-antivortex dipoles
with a fixed separation ls > la . This is different from the
stirring mechanism with an effective negative-viscosity pro-
posed by Siggia and Aref [21] and more relevant for QT. Our
stirring mechanism is consistent with the setup for 2D QT
in BECs [3,5,11], where a moving obstacle causes dipoles
to be spawned into the system at a distance ls bigger than the
coherence length ξ and with annihilation occurring on the scale
ξ due to phonon emission from the Gross-Pitaevskii dynamics.
When the dipole spawning and evaporation happen at equal
rates, the total energy will increase roughly by ln(ls/ la) with
each event. The increase in mean energy per vortex causes
the spawned dipoles to decouple into free vortices, which then
form clusters of same-sign vortices. Moreover, this driving
occurs on a length scale ∼ls , so by choosing this distance to be
small compared to the system size, we can achieve small-scale
stirring. In the Supplemental Material [22] we have included
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TABLE I. Parameters used in the simulations, along with some
measured quantities.

Parameters Measured quantities

103γ c 〈N〉 10−3 Re 〈εtot
d 〉

10 10 144 1.20 6.59
3 10 227 5.02 5.77
1 1 100 10.0 0.541
1 2 131 11.4 1.13
1 5 187 13.7 2.79
1 10 246 15.7 5.33
1 20 320 17.9 10.5

two movies with the vortex dynamics during the transition
to the steady state versus that in the statistically stationary
turbulent regime.

We solve the system of ordinary differential equations given
by Eq. (10) using the symplectic, fully implicit fourth-order
Gauss-Legendre method for the conservative part [23]. After
each time step of the symplectic method, we evolve the
dissipative part using a simple forward Euler scheme, which
is sufficient because γ 
 1, so the dissipative evolution is
slow compared to the conservative evolution. We use an
adaptive time step based on the minimum distance d between
vortices and vortex-image pairs. Since the maximum velocity
is v ∼ 1/d, the typical time until a collision 
t ∼ d/v ∼ d2

is a reasonable choice for the adaptive time step. With each
time-step increment, we remove all vortex dipoles with dipole
moments less than la and any vortex within a distance less than
la from its image vortex. Finally, we pick a random number n

from a Poisson distribution with the rate parameter c
t (with
c being the dipole injection rate) and spawn n dipoles with
dipole moment ls at random positions and dipole orientations
such that neither of the spawned vortices is within ls of another
vortex.

During these simulations, we set R = 10, ls = 0.4, and la =
0.2. The thermal friction coefficient γ and the spawning rate
c were varied to generate different regimes of turbulence. The
values are given in Table I, along with measured values for the
mean vortex number 〈N〉 with the resulting Reynolds number
(see Sec. V) and the time-averaged total energy dissipation
〈εtot

d 〉 (see Sec. VII).

V. STEADY-STATE TURBULENT REGIME

As a consequence of spawning and evaporation of vortex
dipoles, the total number of vortices fluctuates in time. Starting
from zero vortices, the number of vortices increases by spawn-
ing events dominating over dipole evaporation events. After a
transient time, the number fluctuations reach a statistically
steady-state regime as shown in Fig. 1 for different Re. By
a rescaling of time with the crossover time tc and of number
fluctuations with their mean value 〈N〉, we find that all data
collapse onto a universal curve that is nicely fitted by the
tanh(x) function, i.e., the solution of the mean field kinetic
equation Ṅ = −N2 + 1, written in rescaled units of t/tc and
N/〈N〉. The first term is the leading-order contribution due to
dipole annihilation and the last term is the constant spawning

10 -2 10 -1 10 0 10 1 10 2 10 3

t/t
c
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N
/<
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4.2
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g 10

(R
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t
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N

FIG. 1. Collapsed data in rescaled units plotted against tanh(x).
The inset shows the temporal evolution of the total vortex number
for different Re numbers. We extract the mean number 〈N〉 and the
crossover time tc by fitting each curve with the tanh function.

rate. Small deviations from this mean-field trend are the effect
of higher-order terms due to collective interactions in dipole
evaporation [24], but also because we neglected the small effect
of a linear decay term corresponding to the evaporation of
single vortices near the boundary of the disk.

After the vortex number has stabilized, the energy of the
system [as measured by Eq. (3)] keeps increasing as dipoles
decouple into free vortices, which then form clusters. Higher
energy leads to a higher energy-dissipation rate from the
dissipative evolution, eventually balancing the small-scale
forcing, so the energy eventually also stabilizes. By carefully
balancing the spawning and dissipation rates we can make
sure that the steady-state energy is such that the system is
dominated by clusters.

For the statistically stationary regime (a snapshot of the
vortex configuration is illustrated in Fig. 2 and a video
corresponding to this regime is included in the Supplemental
Material [22]), we can define a Reynolds number Re by the
balance between inertial forces (where the typical distance is

Positive Vortex
Negative Vortex
Streamline
Boundary

FIG. 2. Snapshot of a vortex configuration.
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the disk’s radius R and the typical field velocity is U ∼ 1/〈l〉
with 〈l〉 ∼ R/

√〈N〉) and dissipative forces (thermal friction
characterized by γ ), hence Re ∼ √〈N〉/γ .

VI. WEIGHTED PAIR CORRELATION
FUNCTION IN A DISK

In a statistically homogeneous and isotropic system, the
weighted pair correlation function defined in Eq. (7) is also
isotropic and therefore is equivalent to

ρgw(r) = 1

2πr

∫ 2π

0
ρgw(�r)r dθ

= 1

2πr〈N〉
∑
i �=j

〈qiqj δ(r − rij )〉, (11)

where rij = |�ri − �rj |. For a numerical estimate of this expecta-
tion value, we can discretize the δ function into bins of width d,
by δd (r) = [H (r + d

2 ) − H (r − d
2 )]/d, where H (x) is the step

function. This gives the contribution gs
w(r) to the correlation

function from a given realization as

〈N〉ρgs
w(r) = 1

2πrd

∑
i �=j

qiqjdδd (r − rij ). (12)

Thus we can estimate the weighted correlation function by
iterating over each vortex, counting the number of vortices
that fall within a shell of radius r and width d, weighting them
by whether they have equal or opposite sign, and dividing
by the area of the shell. By time averaging over many vortex
configurations in the statistically stationary regime, we can
divide by the mean vortex number and density, giving an
estimate of the correlation function.

A complication to this method arises from the fact that
our system is finite with a circular boundary of radius R. This
breaks homogeneity and isotropy, especially when considering
particles close to the boundary. We will however still assume
that the system is as homogeneous and isotropic as possible,
by which we mean the following: Considering a vortex close
to the boundary, the system is assumed to look the same in all
directions as it would look from the center, as long as we do
not see the boundary. Taking the contribution from each vortex
separately,

〈N〉ρgs
w(�r) =

∑
i

qig
i
w(�r),

gi
w(�r) =

∑
j �=i

qj

1

r
δ(r − rij )δ(θ − θij ), (13)

we assume that gi
w(�r) is equal for all directions θ such that

�r + �ri does not cross the boundary.
These directions go from θ+

i = θi + 1
2
θi to 2π + θ−

i =
2π + θi − 1

2
θi (as illustrated in Fig. 3) and by the law of
cosines we have

R2 = r2 + r2
i + 2rri cos

(
1

2

θi

)
,


θi = 2 arccos
R2 − r2 − r2

i

2rri

. (14)

FIG. 3. Directions not crossing the boundary for a given vortex at
�ri (black point). The solid circle gives the boundary, while the dashed
circle gives the shell of radius r .

By our assumption of near isotropy we can integrate over the
allowed directions

gi
w(r) = 1

(2π − 
θi)r

∫ 2π+θ−
i

θ+
i

gi
w(�r)r dθ

= 1

(2π − 
θi)r

∑
j �=i

qj δ(r − rij ), (15)

where we used that θij certainly lies within the integration
range if r = rij ; otherwise �rj would be outside the boundary.
Thus we can account for the boundary effects by estimating
the correlation function in the same way as for an unbounded
system, only reducing the area of the shell of radius r around
vortex i from 2πrd to the area given by the directions not
crossing the boundary,

Ai =
(

2π − 2 arccos
R2 − r2 − r2

i

2rri

)
rd.

We measured gw(r) taking into account this boundary
effect and time averaging over 103–104 statistically stationary
realizations outputted at regularly spaced time intervals (about
the typical time scale it takes an injected dipole to cross the
disk). The resulting distribution is shown for different Re in
Fig. 4, where we removed the spurious contributions of single
(unclustered) vortices, using the same clustering analysis as
in Ref. [11]. For the smallest Re, gw(r) < 0 for most of its
range, indicating that the system is dominated by dipoles. At
larger Re it develops a peak around a characteristic cluster
size rc and falls off rapidly after this, which indicates that
the system is dominated by small vortex clusters with similar
sizes. However, at sufficiently large Re, we observe instead
a scaling regime developing and approaching the power law
Cr−4/3, indicating a diverse range of different cluster sizes.

VII. ENERGY SPECTRUM IN A DISK

For N vortices, the energy spectrum from Eq. (4) can be
computed in O(N2) steps straightforwardly. However, with
the imposed circular boundary at radius R, there are additional
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FIG. 4. Weighted pair correlation function for different Re
numbers, ignoring isolated vortices. The case with the lowest Re
Re ∼ 1000 is excluded because this system is dominated by dipoles,
so gw(r) < 0 in most of its range.

contributions due to image vortices. With these contributions
worked out in Ref. [25], the energy spectrum is given as

E(k) = π

k

⎧⎨
⎩N + 2

∑
i<j

qiqjJ0(krij )

+
∞∑
l=0

εlJl(kR)
∑
i,j

qiqj

(
ri

R

)l[
Jl(kR)

(
rj

R

)l

− 2Jl(krj )

]
cos(lθij )

⎫⎬
⎭, (16)

where ε0 = 1, εl = 2 for l � 1, and θij = θi − θj is the angle
between vortices i and j .

Numerically, these extra sums are expensive to compute
because they involve N2L terms, where L is the number of
terms we use in the l summation. However, the extra terms can
be transformed into products of single sums over the number
of vortices, decreasing the cost to NL and making it simpler
to implement.

The key insight is that both the finite-size sums can almost
be factored into independent sums over i and j , if not for the
cosine terms coupling them. This allows us to split the sum
into two new sums, which can then be decoupled,

E(k) = π

k

⎧⎨
⎩N + 2

∑
i<j

qiqjJ0(krij )

+
∞∑
l=0

εlJl(kR)

⎡
⎣∑

i

ail cos(lθi)
∑

j

bjl cos(lθj )

+
∑

i

ail sin(lθi)
∑

j

bjl sin(lθj )

⎤
⎦

⎫⎬
⎭, (17)

where

ail = qi

(
ri

R

)l

, bil = qj

[
Jl(kR)

(
rj

R

)l

− 2Jl(krj )

]
. (18)
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FIG. 5. Energy spectrum per vortex for different Re numbers,
ignoring single vortices. The vertical lines correspond to a typical
intervortex spacing 〈l〉 and the spawning length scale ls . In the inset
we compare two different energy spectra for the highest Re, where
we ignore the contribution from the image vortices: including all
vortices (dashed line) and excluding isolated vortices (solid line).
Clearly, excluding isolated vortices is necessary to show Kolmogorov
scaling.

Here all the finite-size sums over N vortices are independent,
giving much faster numerical evaluation.

In Fig. 5 we show the energy spectrum per vortex
〈E(k)〉/〈N〉 for the different Re, time averaged in the same
way as with the correlation function. We notice that the energy
spectrum transitions from the 1/k scaling attributed to the
self-energy of a single vortex to the Kolmogorov −5/3 scaling
law on wave numbers smaller that 2π/〈l〉 at high Re. As can
be seen from Eq. (8), both contributions will be present in
the energy spectrum and even though the −5/3 contribution
should in principle dominate the scaling at low k, the finite-size
effects may prevent this.

In order to clearly see this inertial scaling regime for both
gw(r) and 〈EN (k)〉, we removed from the statistical analysis the
contribution of single (unclustered) vortices, which can hinder
the collective effects for small system sizes. The inset of Fig. 5
shows the spectral analysis for the highest Re, when we include
or exclude the effects of single vortices. The best inertial
scaling seems to follow when we take out these effects and only
look at the spectrum induced by clustered vortices. Including
the contribution of the vortex images in the statistical analysis
did not significantly change this picture, but merely introduced
some minor oscillations around the trend line, which are visible
in the main part of Fig. 5. The presence of an inverse energy
cascade indicates that the energy dissipation introduced in Eq.
(10) mostly acts on large scales, so energy needs to transfer
from the small injection scale to the larger dissipation scale.
We now turn to measuring whether this is true.

Spectral energy flux and dissipation rate

The energy fluxes can be found by time differentiating the
energy spectrum from Eq. (4), giving

dE(k)

dt
= −2π

∑
i<j

qiqjJ1(krij )
�rij

rij

· (�vi − �vj ). (19)
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FIG. 6. (a) Normalized spectral dissipation rate and (b) spectral flux for different Reynolds numbers. At high Re the dissipation rate
concentrates at large scales. The spectral flux is negative in the inertial range, especially for high Re.

Splitting the velocities into a dissipative part and a conservative
part �vi = �vc

i + �vd
i , we have that

dE(k)

dt
= −2π

∑
i<j

qiqjJ1(krij )
�rij · �vd

ij

rij

− 2π
∑
i<j

qiqjJ1(krij )
�rij · �vc

ij

rij

= εd (k) + εc(k). (20)

The second term is due to conservative evolution and can
therefore only serve to redistribute energy in the spectrum

∫ ∞
0 εc(k)dk = 0. Integrating this up to a given wave number k

gives the spectral flux across k, �(k) = − ∫ k

0 εc(k)dk. While
this integral can be carried out analytically, the finite-size
contributions will make numerical integration necessary, as
discussed below. The energy dissipated at a given wave number
is measured by εd (k).

The spectral quantities εc,d (k) can be measured at a given
time step by explicitly inserting the conservative or dissipative
velocities and the vortex positions into Eq. (20). One can then
average the quantities over different realizations or time steps.

So far, this calculation does not include the contribution
from image vortices in Eq. (17). By a time differentiation of
Eq. (17), we find that the finite-size correction to the spectral
energy flux in Eq. (19) is

dEf (k)

dt
= π

k

∞∑
l=0

εlJl(kR)

⎧⎨
⎩

∑
i

[ȧil cos(lθi) − lail θ̇i sin(lθi)]
∑

j

bjl cos(lθj ) +
∑

i

[ȧil sin(lθi) + lail θ̇i cos(lθij )]
∑

j

bjl sin(lθj )

+
∑

i

ail cos(lθi)
∑

j

[ḃj l cos(lθj ) − lbjl θ̇j sin(lθj )] +
∑

i

ail sin(lθi)
∑

j

[ḃj l sin(lθj ) + lbjl θ̇j cos(lθj )]

⎫⎬
⎭, (21)

where the remaining derivatives can be found as

ȧil = lail

ṙi

ri

, (22)

ḃj l = lbjl

ṙj

rj

+ 2kJl+1(krj )ṙj , (23)

ṙi = �ri · �vi

ri

, θ̇i = �r⊥
i · �vi

r2
i

. (24)

Equation (21) is still linear in the velocities, so it can
be decomposed into a dissipative and a conservative part.
However, the products of several Bessel functions makes the
integral �(k) = − ∫ k

0 εc(k)dk analytically intractable. One can
still measure the time-averaged 〈εc(k)〉 and then perform the
integral numerically by the trapezoidal rule.

The time-averaged spectral energy flux 〈�(k)〉 and the
spectral energy dissipation rate 〈εd (k)〉, normalized by the total
dissipation rate 〈εtot

d 〉 = −〈 dH
dt

〉 for comparison, are shown
for different Re in Fig. 6. We see that for sufficiently high
Re, the dissipation is mainly localized on the largest scales,
while the spectral energy flux is negative in the inertial range
corresponding to an inverse energy cascade towards the large
scales.

VIII. CONCLUSION

By generalizing Novikov’s theory for the energy spectrum
of a neutral vortex gas, we found that the Kolmogorov scaling
law of the turbulent energy spectrum corresponds to the −4/3
scaling law of the vorticity correlation function on inertial
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length scales. This is analogous to the Kraichnan-Kolmogorov
scaling of the vorticity correlation in classical turbulence.

In order to explore this statistical correspondence, we
proposed a forced and dissipative point vortex model that is
able to produce a statistically steady-state turbulent regime,
where there is a coexistence between the large-scale Onsager-
like vortices of various sizes and the inverse energy cascade.
We showed that in a system of two-sign vortices, the inverse
energy cascade originates from the vortex clustering, which
also results in persistent correlations in the vorticity field.
Hence, the Kolmogorov −5/3 scaling law is directly connected
to the scale-free statistics of vorticity, measured by the
weighted pair correlation function gw(r) ∼ r−4/3. To unify our
data obtained for different values of stirring and dissipation
parameters, we defined a dimensionless Re analogously to
its classical definition and found that this Re for a vortex gas
depends solely on the mean vortex number and thermal friction
coefficient.

We studied vortex dynamics in a disk similar to the
experimental setup of the highly oblate BEC, so that our results
could be compared with future experiments. In particular, with
the recent experimental advances in in situ imaging of vortices
in BECs [26], it may be possible to compute the pair correlation
function from experimentally obtained vortex configurations
and infer the presence of an inverse energy cascade. Because
of the boundary effects, we also had to carefully take into
account the finite-size corrections. This way, we showed that
the vortex-image interactions do not affect the scaling laws, yet
they can limit substantially the scaling range, i.e., the spectral
gap between the scales where energy is injected and where it
is dissipated.
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A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to
study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free
energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next
on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly
nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers
vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the
slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is
shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional
simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application,
we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it
with the analytical predictions.

DOI: 10.1103/PhysRevB.97.054113

I. INTRODUCTION

The description of plastic response in crystals at a mesoscale
level poses fundamental challenges because of collective
effects in dislocation dynamics that give rise to multiple-scale
phenomena, such as spatiotemporal dislocation patterning
[1,2] and intermittent deformations [3]. Different multiscale
models, including discrete dislocation models, stochastic mod-
els, and cellular automata, have been proposed and used to
explore various aspects of collective dislocation dynamics
[4–6]. We focus here on a phase-field description of a crys-
talline solid, the so-called phase-field crystal, first introduced
by Grant and collaborators [7–9]. This model has allowed
the study of defect configurations and their kinetics that
are difficult to address with either microscopic or atomistic
simulation techniques or with classical continuum mechanics.
Examples include large strain formulations of dislocation
motion [10], creep motion mediated by diffusion [11], and
defect core transformations that are seen to be key to the motion
of grain boundaries [12].

A mesoscale theory is also timely given that defect imaging
techniques are beginning to reveal strain and rotation fields
created by one or a small number of defects in atomic
detail. High-energy diffraction microscopy and Bragg coherent
diffractive imaging represent the state of the art in imaging
at advanced synchrotron facilities [13,14]. The former can
provide three-dimensional maps of grain orientations with
micron resolution, whereas the latter can determine atomic-
scale displacements with�30 nm resolution. Advanced image-
processing methods allow the determination of the strain-field

*audun.skaugen@fys.uio.no

phase around a single defect, clearly evidencing its multivalued
nature. Indeed, single dislocations have been successfully
imaged, and their motion has been tracked quantitatively just
recently [13]. Experiments also go beyond the determination
of strain fields and determine other quantities sensitive to the
topology of the defects. For example, lattice rotation has been
imaged and analyzed in nanoindentation experiments [15] and
in two-dimensional graphene sheets [16].

Mesoscale models aim at bridging fully atomistic descrip-
tions and macroscopic theory based on continuum mechanics.
Along these lines, we mention the so-called generalized discli-
nation theory [17,18]. This theory is a fully resolved nanoscale
yet continuum dynamical description of dislocations that
preserves all topological constraints necessary in the kinematic
evolution of the singular fields. Singularities are replaced by
topologically equivalent but smooth local fields that allow a
full derivation of the governing dynamical equations following
the principles of irreversible thermodynamics. The newly
introduced fields are similar to a phase-field model, except that
they are constructed to satisfy all conservation laws, including
those of topological origin. On the other hand, the dynamical
part of the theory requires constitutive input for both the free
energy at the mesoscale functional of the smooth fields and
mobility relations for their motion.

Conventional phase-field models have also become one
of the tools of choice in the study of dislocation and grain
boundary motion in a wide variety of circumstances. Contrary
to kinematic models, a phenomenological set of dynamical
laws for the phase field are introduced, with topological
invariants appearing as derived quantities. There are two dif-
ferent classes of phase-field models in the plasticity literature.
In one approach, the elementary dislocation is described as
an eigenstrain, which is then mapped onto a set of phase

2469-9950/2018/97(5)/054113(10) 054113-1 ©2018 American Physical Society
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fields [19–21]. If b is the Burgers vector of the dislocation and
n is the normal to the dislocation line, then the corresponding
eigenstrain is defined as

u∗
ij = binj + bjni

2a
, (1)

where a is the crystal lattice spacing. The connection to the
phase fields φα(x), where α label all the slip systems of a
particular lattice, is made through the decomposition

u∗
ij =

∑
α

ε∗α
ij φα(r). (2)

The phase fields are assumed to relax according to purely
dissipative dynamics driven by minimization of a phenomeno-
logical free energy. This free energy includes a nonconvex
Ginzburg-Landau-type contribution that has the same func-
tional form as in related studies in fluids [22]. This contri-
bution is supplemented by an elastic interaction energy that
depends only on the incompatibility fields associated with the
eigenstrains [23–25] and hence, ultimately, on the phase fields
themselves [19–21].

The second approach, which we adopt here, is based on
a physical interpretation of the phase field as a temporally
coarse grained representation of the molecular density in the
crystalline phase. Such as model is also known as the phase-
field crystal (PFC) model [8,9]. The evolution of the phase
field is diffusive and governed by a Swift-Hohenberg-like free-
energy functional, which is minimized by a spatially modulated
equilibrium phase with the periodicity of the crystal lattice. The
chosen free energy determines not only the crystal symmetry of
the equilibrium phase but all other thermodynamics quantities
and response functions such as its elastic constants [8]. As is
generally the case with phenomenological free energies, it is
only a function of a few free parameters, and hence, the range
of physical properties that can be attributed to the resulting
macroscopic phase is somewhat limited. Nevertheless, the PFC
model has been used in numerous numerical studies, including
crystal growth, grain boundaries and polycrystalline coarse-
graining phenomena [12,26–29], strained epitaxial films [30],
fracture propagation [8], plasticity avalanches from disloca-
tion dynamics [31,32], and edge dislocation dynamics [9]. It
appears to us that this second approach is more natural from
a physical point of view in that once the mesoscopic order
parameter and the corresponding free energy are introduced,
defect variables such as the Burgers vector and slip systems
emerge as derived quantities. This seems preferable to intro-
ducing Ginzburg-Landau dynamics for slip-system amplitudes
defined a priori. Also, this second approach can nominally
describe highly defected configurations in which a slip system,
even in a coarse-grained sense, can be difficult to define.

In this paper, we address the important theoretical question
of to what extent the PFC model is actually capable of cap-
turing mesoscopic plasticity mediated by dislocation dynam-
ics. Although previous numerical simulations of dislocation
dynamics [9,32] suggest that dislocation motion is controlled
by local stress, a theoretical derivation from the PFC model
is still lacking. To address this question, we consider the PFC
model and its amplitude expansion formulation, where we can
show that the complex amplitudes are order parameters that
support topological defects corresponding to dislocations in

the crystal ordered phase. This allows us to accurately define a
Burgers vector density field from the topological charges and
predict the dislocation velocity directly from the dissipative
relaxation of the amplitudes. We show that elastic stresses
can be obtained from the PFC free-energy functional through
standard variational means and recover known expressions for
the linear elastic constants of the medium. Furthermore, we
show that the dislocation velocity, near the bifurcation from
the disordered state, follows Peach-Koehler’s force and is given
by the product of the Burgers vector and the elastic stress. Our
theoretical predictions are consistent with previous numerical
PFC studies of dislocation dynamics [9,33].

The rest of the paper is organized as follows: In Sec. II,
the phase-field crystal model and its elastic equilibrium prop-
erties are discussed for the two-dimensional case. Here, we
also derive the elastic stress by variation of the free-energy
functional and express it in terms of the crystal density field.
Plastic motion mediated by dislocation dynamics is treated
in Sec. III, where we use the amplitude expansion and the
connection to an order parameter that supports topological
defects. In Sec. IV, we verify the theoretical results by direct
numerical simulations of the PFC model for a hexagonal lattice
with a dislocation dipole. A summary and concluding remarks
are presented in Sec. V.

II. LINEAR ELASTICITY IN THE PHASE-FIELD
CRYSTAL MODEL

The phase-field crystal model that we employ involves
a single scalar field ψ(r,t), a function of space r in two
dimensions (2D) and time t , and a phenomenological free
energy given by [9]

F[ψ] =
∫

d2r f (ψ,∇2ψ)

=
∫

d2r
{

1

2
[(∇2 + 1)ψ]2 + r

2
ψ2 + 1

4
ψ4

}
, (3)

where r is a dimensionless parameter. In equilibrium, the
free-energy functional (3) is minimized with respect to ψ

while keeping the average density constantly equal to ψ0, so
that ( δF

δψ
)
0

= μ0, where μ0 is a constant Lagrange multiplier.
When r > 0, ψ = ψ0 is the only stable solution, whereas for
r < 0, equilibrium periodic solutions of unit wave number
are possible for stripes and hexagonal patterns in 2D [8].
The crystalline phase with density distribution n(r) is related
to the phase-field crystal through ψ(r,t) = n(r,t)/n0 − 1,
where n(r,t) = ∑

i〈δ(r − ri)〉 is the statistical average number
density of the equivalent crystal and n0 is its spatially averaged
density.

We focus below on the range of parameters for which a 2D
hexagonal lattice is the equilibrium solution [8],

ψ = ψ0 +
∑

g

A(0)
g eig·r, (4)

where the sum extends over all reciprocal lattice vectors g of a
hexagonal lattice. We distinguish below three reciprocal lattice
wave vectors qn, of unit length in the dimensionless units of
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Eq. (3), which are given in Cartesian coordinates by

q1 = j, q2 =
√

3

2
i − 1

2
j, q3 = −

√
3

2
i − 1

2
j, (5)

which fixes the lattice constanta = 4π√
3
. These three vectors sat-

isfy the resonance condition
∑3

n=1 qn = 0. The corresponding
amplitudes A(0)

n are all constant and equal.
We first examine the change in free energy �F =

F[ψ(r′)] − F[ψ(r)] due to a small affine distortion r′ =
r + u(r). The free-energy change �F[ψ,u] associated with
such a distortion is given, after a transformation of variables
from r′ to r, by

�F =
∫

d2r{(1 + ∇ · u)f [ψ(r′),∇′2ψ(r′)] − f (ψ,∇2ψ)},
(6)

where the transformed derivatives are given by

∂ ′
i = ∂i − (∂iuj )∂j + O(|∇u|2),

∂ ′
ijψ = ∂ijψ − ∂i[(∂juk)∂kψ] − (∂iuk)∂kjψ + O(|∇u|2).

(7)

After a Taylor expansion of Eq. (6) for small deformation
gradients ∂iuj , we obtain

�F =
∫

d2r
[
− ∂f

∂(∂iψ)
(∂iuj )∂jψ − ∂f

∂(∂ijψ)
{∂i[(∂juk)∂kψ]

+ (∂iuk)∂kjψ} + (∇ · u)f

]
+ O(|∇u|2). (8)

Because of the translational invariance of F , the change �F
does not depend on the distortion but depends only on its spatial
gradients. Furthermore, the first term on the right-hand side
vanishes since f does not depend on the gradient of ψ . The
second term on the right-hand side can be transformed to a
total divergence term and one proportional to the deformation
gradient. Changing summation indices in order to factor the
deformation gradient out and using Stokes’ theorem on the
divergence term, we obtain

�F =
∫

d2r E +
∫

dSi

∂f

∂(∂ijψ)
(∂juk)∂kψ, (9)

where dS is the surface-element vector on the boundary of the
integration domain and

E =
[
− ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + δijf

]
∂iuj .

(10)

Equation (9) yields the elastic stress defined as the conjugate
to the displacement gradient,

σij = ∂E
∂(∂iuj )

= − ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + f δij . (11)

Substituting Eq. (3), the corresponding stress is in our case

σij = [∂iLψ]∂jψ − [Lψ]∂ijψ + f δij , (12)

with L = 1 + ∇2. Hence, the elastic stress can be straightfor-
wardly evaluated from the phase field ψ . Below we will show
that this stress gives rise to the expected stress-strain relation
in the linear elasticity regime, in agreement with earlier results
for modulated phases [34,35].

The stress gives rise to a body-force density Fj = ∂iσij

given by

Fj = L2ψ∂jψ − LψL(∂jψ) + ∂if. (13)

For an incompressible deformation, the Jacobi determinant is
unity; the second term is the gradient of − 1

2 (Lψ)2 and can be
included in a pressure term ∂jp as a gradient force. Thus, we
can write the body force up to its gradient force contributions
as

Fj = μ∂jψ, (14)

as the additional terms in the chemical potential μ = δF
δψ

=
L2ψ + rψ + ψ3 also lead to gradient terms.

More generally, the additional contribution of a compress-
ible deformation to the body force is

∂i(δijf ) = ∂jf = LψL(∂jψ) + rψ∂jψ + ψ3∂jψ. (15)

Hence, the body-force density induced by a deformation is the
same in both the compressible and incompressible cases (up
to a gradient force in the incompressible case) and is given as

Fj = ∂iσij = (L2ψ + rψ + ψ3)∂jψ = μ∂jψ. (16)

Thus, the body force associated with a small distortion in the
phase-field crystal density is expressed, in general, as μ∇ψ .
Analogous results have been derived by using microforce bal-
ances in the context of continuum mechanics [22] or invoking
thermodynamic relations arising from broken symmetries [36].

In the weakly nonlinear region of |r| � 1, the order
parameter ψ can be expanded in terms of the slowly varying
amplitudes An of the resonant modes qn of Eq. (5). A weakly
distorted configuration relative to the reference hexagonal
configuration can then be written in this expansion as [33,37]

ψ = ψ0 +
∑

n

Ane
iqn·(r−u) + c.c., (17)

where both the mean density ψ0 and the amplitudes An are
slowly varying on length scales much larger than the lattice
spacing. After straightforward differentiation of ψ in Eq. (17),
we obtain

∂i(Lψ) = 2iA0∂luk

∑
q

qlqkqi exp[iq · (r − u)],

[∂i(Lψ)]∂jψ = −2A2
0∂luk

∑
q,q′

qlqkqiq
′
j

× exp[i(q + q′) · (r − u)], (18)

where the sums involve the components of the vectors ±qn,
with the negative vectors included for the complex conjugate
(we have dropped the subindex n for ease of notation).
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Similarly, we find

[Lψ]∂ijψ = −ψ0A0

∑
q

(qiqj − qiqk∂juk − qjqk∂iuk)

× exp[iq · (r − u)] − 2A2
0∂luk

∑
q,q′

qlqkq
′
iq

′
j

× exp[i(q + q′) · (r − u)]. (19)

Finally, by averaging this result over a unit cell of the lattice
and given that the slowly varying deformation gradients are
constant over a lattice spacing, all single q terms vanish,
whereas exp[i(q + q′) · (x − u)] factors integrate to δq,−q′ .
Therefore, the averaged stress field from Eq. (12) becomes

〈σij 〉 = 4A2
0∂luk

∑
q

qlqkqiqj . (20)

Since the coefficients multiplying ∂luk are symmetric under
the interchange l ↔ k, we can also write the relation in terms
of the symmetrized strain ulk = 1

2 (∂luk + ∂kul). Reintroducing
the vectors qn and their negatives −qn explicitly, we find

〈σij 〉 = 8A2
0ulk

3∑
n=1

qn
i qn

j qn
k qn

l . (21)

Equation (21) is a linear stress-strain relationship which
depends only on three crystal reciprocal lattice vectors and
the slowly varying amplitudes. For a hexagonal lattice, in-
serting the reciprocal lattice vectors given in Eq. (5) yields
C11 = C22 = 9A2

0, C12 = 3A2
0, and C44 = 3A2

0 (cf., e.g.,
Ref. [9]). This result can also be written in terms of Lamé
coefficients as 〈σij 〉 = λδijukk + 2μuij , with λ = μ = 3A2

0,
giving a Poisson’s ratio of ν = λ

2(λ+μ) = 1
4 . This is different

from the Poisson’s ratio of 1
3 obtained in Ref. [27], as they use

the plane-stress condition, while we are assuming plane strain
without loss of generality.

III. PLASTIC FLOW AND DISLOCATION DYNAMICS

At the mesoscale level, the evolution of the phase field is
driven by local relaxation of the free-energy functional,

∂ψ

∂t
= ∇2 δF

δψ
, (22)

where we have assumed a constant mobility coefficient (equal
to unity in rescaled units). Equation (22) governs both conser-
vation of mass and the evolution of crystal deformations. We
will focus here on 2D systems, although a similar development
can be applied in three dimensions.

There are no topological singularities in the phase field
ψ(r,t). However, under conditions in which the amplitude
expansion of Eq. (4) is valid (mean density ψ0 and amplitudes
An that vary on length scales much larger than the wavelength
of the reference pattern), topological defects can be identified
from the location of the zeros of the complex amplitudes
[38,39]. Evolution equations for ψ0 and An have been derived
by several techniques, such as renormalization-group methods
[40] and multiple-scale analysis [41]. In the lowest derivative
approximation that preserves the rotational invariance of the
phase-field model [42], the resulting equations are given

as [41]

∂ψ0

∂t
= ∇2

[
(1 + ∇2)2ψ0 + ψ3

0 + 6ψ0

∑
n

|An|2

+ 6

(∏
n

An + c.c.

)]
,

∂An

∂t
= −L2

nAn − (3ψ2
0 + r)An − 6ψ0

∏
m
=n

A∗
m

− 3An

(
2

∑
m

|Am|2 − |An|2
)

, (23)

where n = 1,2,3, Ln = ∇2 + 2iqn · ∇, and qn are the three
reciprocal vectors of Eq. (5). Variation of ψ0 at constant An

needs to be interpreted as vacancy diffusion. These amplitude
equations are themselves variational and can be written as [41]

∂ψ0

∂t
= ∇2 δFCG

δψ0
,

∂An

∂t
= −δFCG

δA∗
n

, (24)

where FCG{ψ0,An} is the free-energy function of the
amplitudes alone. Recall that all of these equations ignore
higher Fourier components |q| > 1, so they are only valid
close to the bifurcation point, |r| � 1.

A. Transformation of field singularities
to dislocation coordinates

In order to make contact with the classical macroscopic
description of plastic motion in terms of the velocity of a
dislocation element under an imposed stress, we describe
the transformation of variables that is required to relate the
evolution of the phase field to the motion of the singularities
associated with the amplitudes. Assume a spatial distribution
of point dislocations, and define a Burgers vector density
as B(r) = ∑

α bαδ(r − rα), where rα is the location of the
dislocation with Burgers vector bα in some element of volume.
For each Burgers vector bα we define the three integers
sα
n = 1

2π
(qn · bα), which satisfy the relation

∑3
n=1 sα

n = 1
2π

bα ·∑3
n=1 qn = 0.
A dislocation at rα corresponds to a discontinuous defor-

mation field u(r) with
∮

du = bα around a contour containing
only rα . This deformation field is associated with a phase factor
in the complex amplitudes, given by An(r) = |An|e−iqn·u+iφ ,
with φ(r) smooth inside the contour. The phase circula-
tion of the amplitude around the same contour can then be
found as∮

d(arg An) = −qn
j

∮
∂kujdrk +

∮
∂kφdrk

= −qn
j bα

j = −2πsα
n , (25)

using the fact that φ has no circulation, being smooth in-
side the contour. Thus, the amplitude An has a vortex with
winding number −sα

n at r = rα . This induces the following
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transformation of δ functions [43–46]:

Dnδ(An) = −
∑

α

sα
n δ(r − rα)

= − 1

2π

∑
α

(qn · bα)δ(r − rα) (26)

for a given amplitude An, where

Dn = Im(∂xA
∗
n∂yAn) = 1

2i
εij ∂iA

∗
n∂jAn (27)

is the Jacobian of the transformation from complex amplitudes
An to vortex coordinates rα and εij is the antisymmetric tensor.
Multiplying the above expression with a reciprocal vector qn

and summing over n, we find the dislocation density is

B(r) = −4π

3

3∑
n=1

qnDnδ(An) (28)

by making use of the fact that
∑3

n=1 qn
i qn

j = 3
2δij (see the

Appendix for why we use reciprocal lattice vectors in this
expansion rather than real-space lattice vectors).

In order to obtain the equation governing the motion of the
Burgers vector density, we use that the determinant fields Dn

have conserved currents given by [46]

J
(n)
k = 1

2i
εkl

(
∂An

∂t
∂lA

∗
n − ∂A∗

n

∂t
∂lAn

)
=εkl Im

(
∂An

∂t
∂lA

∗
n

)
,

(29)

so that ∂Dn

∂t
= −∂kJ

(n)
k , as can be verified by substitution. The

amplitude evolution at the vortex location ∂An

∂t
can be found

from an amplitude expansion of ∂ψ

∂t
, such as Eq. (23).

We also have a similar continuity equation for the delta
functions,

Dn

∂

∂t
δ(An) = −J

(n)
i ∂iδ(An), (30)

which can be proved by differentiating through the delta
functions and inserting for Dn and J

(n)
i . Hence, differentiating

the dislocation density with time, we find the Burgers vector
current

∂Bi

∂t
= −4π

3

3∑
n=1

qn
i

[
∂Dn

∂t
δ(An) + Dn

∂

∂t
δ(An)

]

= 4π

3

3∑
n=1

qn
i

[
∂jJ

(n)
j δ(An) + J

(n)
j ∂j δ(An)

]

= ∂j

[
4π

3

3∑
n=1

qn
i J

(n)
j δ(An)

]
= −∂jJij . (31)

Whenever Dn = 0, we have δ(An) = 0; otherwise, we can
transform back to physical coordinates using Eq. (26),

Jij = −4π

3

3∑
n=1

qn
i J

(n)
j δ(An)

= 2

3

3∑
n=1

qn
i J

(n)
j

∑
α

qn · bα

Dn

δ(r − rα). (32)

On the other hand, if the dislocations are moving with velocity
vα , we have

Jij =
∑

α

bα
i vα

j δ(r − rα). (33)

Hence, equating the two expressions for Jij at r = rα and
contracting with the Burgers vector bα , we find

vα
j = 2

3

3∑
n=1

(qn · bα)2

|bα|2
J

(n)
j

Dn

= 1

S2
α

3∑
n=1

(
sα
n

)2 J
(n)
j

Dn

, (34)

where we set S2
α = ∑3

n=1(sα
n )2 and used that |bα|2 = 8

3π2S2
α .

This is a general result and the central relation between the
velocity of a point singularity and the equation governing
the evolution of the phase-field amplitudes. We apply this
expression below to obtain an estimate of the velocity response
of a single point dislocation under an applied strain.

B. Dislocation motion

At a dislocation core, assumed at r = 0, the amplitude An

will vanish as long as 2πsn = qn · b 
= 0. Since s1 + s2 + s3 = 0,
any dislocation must give rise to vortices in at least two of
the three amplitudes, so these two amplitudes vanish. This
means that the amplitude evolution equation (23) for vanishing
amplitudes at the dislocation position reduces to

∂An(r = 0)

∂t
≈ −L2

nAn

∣∣∣
r=0

(35)

whenever sn 
= 0. The equations governing the defect ampli-
tudes entering Eq. (34) decouple, and hence, we can study the
motion of each amplitude independently.

We now consider a dislocation which would be stationary in
the absence of any externally imposed stress, L2

nAn|r=0
= 0. If

a smooth deformation ũ is imposed in addition to the singular
deformation field associated with the stationary dislocation,
the total displacement field can be written as u = using + ũ.
This displacement includes the singular deformation using for
the stationary dislocation described by the amplitudes An

and a smooth “phonon” part (e.g., as described in Eq. (2.8a)
of Ref. [24]). The defect amplitude under this distortion is
Ãn = Ane

−iqn·ũ+hn(r), where the unknown function hn models
how the defect core responds to the deformation [45]. We
assume that these core perturbations are small compared to the
driving force due to the deformation gradient, |∇hn| � |∇ũ|
and neglect them. The applied smooth deformation will cause
the dislocation to move,

∂t Ãn = −L2
nÃn 
= 0, (36)

and our aim is to compute how the resulting dislocation motion
depends on the imposed deformation.

Let us focus on one particular n and write Ã = Ae−iq·ũ,
with its associated wave vector q. Then,

∂iÃ = (∂iA − iAqk∂i ũk)e−iq·ũ,

∂ij Ã = (∂ijA − i∂iAqk∂j ũk − i∂jAqk∂i ũk)e−iq·ũ. (37)

Continuing in this manner and using the fact that A is the
stationary vortex solution (L2A = 0), we then have that

∂t Ã = −L2Ã = 4iqj [(∂i + iqi)LA]∂i ũj e
−iq·ũ. (38)
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If s = ±1, one solution of L2A = 0 is the isotropic vortex
solution A ∝ x − isy. We will assume the vortex takes this
form, although other solutions are possible. For this solution,
we have LA = 2iqk∂kA and ∂iLA = 0. Hence, ∂t Ã simplifies
to

∂t Ã = −8iqiqj qk∂kA∂iũj e
−iq·ũ. (39)

Inserting this into the defect current in Eq. (29), we find

Ji = −8εij qkqlqm∂kũl Im(i∂mA∂jA
∗). (40)

Since the defect density is unchanged under the smooth
deformation, the Jacobi determinant at the dislocation position
is unchanged,

D = 1

2i
εij ∂iÃ

∗∂j Ã = 1

2i
εij ∂iA

∗∂jA. (41)

The isotropic vortex A ∝ x − isy satisfies

i∂iA = −1

s
εij ∂jA, (42)

so that

Ji = 8

s
εij εmoqkqlqm∂kũl Im(∂oA∂jA

∗). (43)

We can show that Im(∂oA∂jA
∗) = εjoD, which means that

Ji = 8

s
εij qjqkql∂kũlD. (44)

Thus, for a simple dislocation with all |sn| � 1, we find that
the vortex velocity from Eq. (34) is

vi = 8εij

S2

3∑
n=1

snq
n
j qn

k qn
l ∂kũl

= 4bm

πS2
εij

3∑
n=1

qn
mqn

j qn
k qn

l ∂kũl

= 1

4πA2
0

εij 〈σ̃jk〉bk, (45)

where we used the stress-strain relation from Eq. (21) to relate
the gradient of the smooth deformation ũ to its associated stress
σ̃ij .

Thus, we obtain an expression for the dislocation veloc-
ity which agrees with the Peach-Koehler force of classical
dislocation theory [4] and gives an explicit form of the
dislocation mobility. The derivation has excluded the singular
deformation using associated with the dislocation, as well as
any defect core variations in the amplitudes which would be
contained in the functions hn(r). Within our approximations,
the mobility coefficient is isotropic. This probably follows
from our assumption that the vortex solution of L2

nAn = 0 is
isotropic.

In what follows, we calculate numerically the dislocation
velocity by tracking the position of the dislocation and compare
it with the velocity determined by Eq. (34) from the topological
defect currents. We also discuss the numerical challenge to
verify overdamped motion with isotropic mobility, the Peach-
Kohler force Eq. (45), as well as the extent to which we expect
our analysis to be valid.

IV. NUMERICAL RESULTS

We test our predictions by directly simulating a perfect
hexagonal crystal containing a dislocation dipole in two scenar-
ios of pure glide and pure climb, respectively. The dislocations
move under the mutual interaction force between them until
they annihilate.

We use two parameter sets r = −0.01 and ψ0 = −0.04
(small amplitude near the bifurcation) and r = −0.8 and
ψ0 = −0.43 (finite amplitude). The initial state is prepared by
setting ψ(r) = ψ0 + ∑

n Ane
iqn·r + c.c., where the amplitudes

contain vortices with the appropriate charges for each disloca-
tion An = A0 exp [−∑

α isα
n θ (r − rα)]. We use two different

initial geometries for measuring glide and climb motion. For
the glide case, we put two dislocations with opposite Burgers
vectors pointing along the x direction, i.e., b = (±a,0), and
located in the same glide plane on the x axis with some initial
separation. For climb, we place the same dislocations directly
above each other on the y axis on different glide planes. We
then evolve Eq. (22) using an exponential time differencing
method [47] and track the motion of dislocations as topological
defects.

The amplitudes of the phase field are computed by per-
forming a local amplitude decomposition, which corresponds
to averaging ψe−iq·r over a region roughly corresponding
to a lattice unit cell [48]. For numerical stability we use a
convolution with a Gaussian of width a = 4π/

√
3 instead of

hard limits to the averaging region. This convolution is most
efficiently evaluated in Fourier space, using the expression

An(r) = e−iqn·rF−1{e− 8
3 π2(k−qn)2

F [ψ]}, (46)

where F and F−1 denote the Fourier and inverse Fourier
transforms, respectively. Similarly, the time evolution of the
amplitude can be extracted from the PFC dynamics as

∂An(r)

∂t
= e−iqn·rF−1

{
e− 8

3 π2(k−qn)2
F

[
∂ψ

∂t

]}
. (47)

Figures 1(a) and 1(b) show the magnitude and phase of the
complex amplitude A2 for the initial dislocation dipole after a
short period of relaxation.

From the amplitudes we can calculate a Gaussian approxi-
mation to the δ(An) function as

δ(An) = 1

2πw2
e
− |An |2

2w2 , (48)

where smaller w’s give sharper δ functions. Along with the Dn

fields obtained by numerically differentiating the amplitudes
[Fig. 1(c)], we obtain approximations to the Burgers vector
density from Eq. (28), shown in Fig. 1(d).

The total displacement field away from defect cores can be
obtained by writing An = |An|e−iqn·u, so that

Im
∂jAn

An

= −qn
k ∂juk. (49)

This relation can be inverted to find

∂juk = −2

3

∑
n

qn
k Im

∂jAn

An

, (50)

thus giving numerical values for the total strain. Figure 2
summarizes our results. We show the distortion ∂yux given
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FIG. 1. (a) Magnitude and (b) phase of the A2 amplitude, showing
the initial vortices corresponding to the initial dislocations. (c) The
D2 field showing the sign of the vortex charge. (d) The resulting Bx

dislocation density in the x direction, with w = A0/5. Here x and y

are given in units of the lattice constant a = 4π√
3q0

.

by Eq. (50) along with the corresponding stress field evaluated
from Eq. (12) with a Gaussian average. Of course, this stress-
strain relation is not expected to hold near the defect cores
where the distortion is large. However, we also plot the shear
stress as a function of y along the line shown in Fig. 2 and
show that the linear stress-strain relation, Eq. (21), does hold
away from the cores.

Properties of a given dislocation can be computed by taking
averages weighted by the Burgers vector density B(r) inside
a thresholded region. Thus, we compute the location of each

FIG. 2. (a) Map of the stress field 〈σxy〉, as computed directly from
the formula in Eq. (12), with a Gaussian average. (b) Map of the strain
field ∂yux , computed from the amplitudes by Eq. (50). Note that the
color scale is saturated, and the measured strain field diverges at the
dislocation. (c) Comparison of the stress computed along the indicated
horizontal line in two different ways: Using the direct expression for
the stress in Eq. (12) (solid line) and using the stress-strain relation
from Eq. (21) (dashed line). Both expressions agree in the crystal bulk
but break down close to the dislocation.

0 1000 2000 3000 4000
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0.15
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Peach-Koehler force
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(c)Glide, r = -0.8

FIG. 3. The dislocation velocity as a function of time until the
annihilation time for (a) and (b) low quenches versus (c) deep
quenches, given in the dimensionless units of Eq. (22). In (c), vertical
lines indicate points in time when the dislocation has traveled a
distance a from its initial point.

dislocation by taking centers of mass of the Burgers vector
density and dislocation speeds by averaging the topological
defect currents of Eq. (34). In Fig. 3, we compare glide and
climb velocities predicted from Eq. (34) and a direct numerical
determination of the velocities by performing a finite-time dif-
ference between successive dislocation positions. In Figs. 3(a)
and 3(b), the glide and climb velocities are presented for small
|r|, showing excellent agreement. The glide velocity for finite
r is presented in Fig. 3(c) and shows a stick-and-slip-like
behavior with periodicity related to the lattice constant a,
consistent with previous numerical simulations from Ref. [9].
These are lattice effects affecting the motion of the amplitudes
when r is not small due to nonlinear couplings, the phase-field
analog of Peierls pinning stresses [49]. Note that we observe
no climb motion at the deep quench parameter r = −0.8.

The velocity computations shown are robust with respect to
the δ function width parameter w from Eq. (48). However, the
dislocation center-of-mass location used in the tracked velocity
shows artificial fluctuations for width parameters larger than
≈ A0/20.

Directly verifying Eq. (45) is more difficult due to the
required separation of stress fields into a singular part and
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a phonon part σ̃ij . As an indirect test, one can assume as a
first approximation that the stress field on each dislocation is
due only to the other, and it is approximately given by the
equilibrium shear stress induced by an edge dislocation in an
infinite space,

σxy = b

2π

2μ(λ + μ)

λ + 2μ

cos φ cos 2φ

d
,

σxx = − b

2π

2μ(λ + μ)

λ + 2μ

sin φ(2 + cos 2φ)

d
, (51)

whered andφ are the instantaneous distance and angle between
the dislocations, respectively. Inserting this expression into
Eq. (45) and using appropriate values for the angle φ for the
glide and climb geometries, we find

vglide
x = vclimb

y = ± a2

2π2d
, (52)

with the sign depending on which of the two dislocations we
are considering. This equilibrium velocity is denoted as the
“Peach-Koehler force” in Figs. 3(a) and 3(b). For glide velocity
we find a reasonable agreement with the measured velocity,
but the climb velocity shows a different functional form. The
deviations from the predicted evolution from Eq. (52) are due
to simplifying assumptions used in deriving the Peach-Koehler
force, the most important being the isotropic solution of the
stationary vortex structure. In practice, the profile of the vortex
near the core may be anisotropic and dependent on the driving
force. This means that the core structure would deform in
the presence of external forces, which would be described
by having the hn(r) functions depend on ũ. Note that the
decoupling of the amplitude equations and the assumption of
an isotropic vortex solution were what allowed us to ignore
the effect of vacancies. It is known that vacancy diffusion is
important for climb motion, and therefore, we expect greater
deviations from the theoretical prediction in the case of climb,
as is evidenced in Fig. 3(c).

V. CONCLUSIONS AND DISCUSSION

We have introduced a phase-field model of a crystalline
phase to describe the topological singularity that corresponds
to isolated dislocations. The phase field itself is regular
(nonsingular) at defect cores. The singularity appears through
consideration of the slowly varying amplitudes or envelopes
of the phase field in a macroscopically defected configuration.
These amplitudes allow the computation of local stresses near
the defect, as well as the velocity of the point defect from
the kinetic equations governing the evolution of the phase
field. The combination of both results allows the derivation
of the classical Peach-Koehler force on the defect as well as
an explicit calculation of the defect mobility, although these
depend sensitively on the dislocation core structure. Our main
results have been verified by direct numerical solution of the
equation governing the evolution of the phase field for the
case of a dislocation dipole in a two-dimensional hexagonal
lattice.

Phase-field crystal models of the type discussed in this paper
lack a dependence on lattice deformation as an independent
variable. However, we have shown explicitly that it is possible
to calculate the elastic stress directly from the phase-field free

energy by considering its variation with respect to a suitably
chosen phase-field distortion. The stress thus derived is consis-
tent with linear elasticity and leads to known expressions for
the elastic constants of the phase-field crystal. Furthermore,
the phase-field description can also describe defected config-
urations. While the phase field remains nonsingular no matter
how large the local distortion of the reference configuration is,
the location of any isolated singularities can be accomplished
through the determination of the zeros of a slowly varying (on
the scale of the periodicity of the field) complex amplitude or
envelope of the phase field. Such a coarse graining is essential
to defining singular fields from the regular phase field. On this
slow scale, we have then derived the Peach-Koehler force on
a topological defect, subject to some simplifying assumptions.
As expected, this force depends only on a slowly varying
stress (distortion) and not on other fast variations of the phase
field near the defect that constitute the singular strain field.
However, more work is needed to fully understand the effect of
the core structure and vacancy diffusion on this Peach-Kohler
force.

Our results also clarify the relationship between dissipative
relaxation of the phase field and plastic motion. Equation
(45) relates the velocity of a dislocation with its Burgers
vector and the slowly varying stress 〈σ̃ij 〉. Such a relation
follows directly from the equation governing the relaxation
of the phase field, Eq. (22), in the range of r � 1, in which
it can be described by an amplitude equation. This equation
also gives an explicit expression for the dislocation mobility
which depends on the specific functional form of the free
energy considered. More generally, the role of the free-energy
functional introduced includes the definition of a Burgers
vector scale and topological charge conservation over large
length scales. Of course, any fast variations of the phase field
near defects are still described and very much included in
Eq. (22). Short-scale effects such as dislocation creation and
annihilation and any nonlinearities of both elastic and plastic
origin evolve according to the dissipative evolution of the phase
field.
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APPENDIX: CALCULATION OF THE
DISLOCATION CURRENT

Equation (28) gives an expression for the dislocation density
in terms of the three reciprocal lattice vectors qn. Since the
Burgers vector is a vector in the real-space lattice, it would
seem more natural to express the dislocation density in terms
of the two real-space lattice vectors an, where qn · am = 2πδmn

(for n,m = 1,2). Indeed, using that
∑2

n=1 an
i qn

j = 2πδij , we
find the alternative expression

B(r) = −
2∑

n=1

anDnδ(An), (A1)
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which, of course, is equal to Eq. (28). Going through the same
derivation as in Sec. III A leads to a Burgers vector current

Jij = −
2∑

n=1

an
i J

(n)
j δ(An). (A2)

However, this current does not agree with the current in
Eq. (32).

The missing point is that the conservation equation for the
field Dnδ(An),

∂t [Dnδ(An)] + ∂i

[
J

(n)
i δ(An)

] = 0, (A3)

determines its current I
(n)
j only up to an unknown divergence-

free vector field K
(n)
j , i.e.,

I
(n)
i = J

(n)
i δ(An) + K

(n)
i , (A4)

where ∂iK
(n)
i = 0. To determine this residual current, we

observe that
3∑

n=1

Dnδ(An) = − 1

2π

∑
α

bα
i δ(r − rα)

3∑
n=1

qn
i = 0 (A5)

due to the resonance condition
∑

n qn = 0. Hence, it is natural
to require that the current of this field vanishes identically,

3∑
n=1

I
(n)
i =

3∑
n=1

J
(n)
i δ(An) +

3∑
n=1

K
(n)
i = 0. (A6)

This condition is fulfilled by setting K
(n)
i =

− 1
3

∑3
m=1 J

(m)
i δ(Am), which has vanishing divergence.

With this choice, the dislocation current in Eq. (32) is modi-
fied to

Jij = −4π

3

3∑
n=1

qn
i J

(n)
j δ(An) + 4π

9

3∑
n=1

qn
i

3∑
m=1

J
(m)
j δ(Am),

(A7)

where the second term vanishes due to resonance. Hence, the
additional fields K

(n)
i give no contribution when we express

B(r) in terms of the three reciprocal lattice vectors. On the
other hand, if we used real lattice vectors an instead, the extra
term would not vanish.
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A consistent, small scale description of plastic motion in a crystalline solid is presented based on
a phase field description. By allowing for independent mass motion given by the phase field, and
lattice distortion, the solid can remain in mechanical equilibrium on the timescale of plastic motion.
Singular (incompatible) strains are determined by the phase field, to which smooth distortions are
added to satisfy mechanical equilibrium. A numerical implementation of the model is presented,
and used to study a benchmark problem: the motion of an edge dislocation dipole in a hexagonal
lattice. The time dependence of the dipole separation agrees with classical elasticity without any
adjustable parameters.

PACS numbers: 46.05.+b,61.72.Bb,61.72.Lk,62.20.F-

A phase field theory of a crystalline solid is one of the
contending approaches to model defect mediated plas-
tic motion at the nanoscale [1, 2]. Due to the diffusive
nature of the evolution of the phase field, existing for-
mulations do not maintain mechanical equilibrium dur-
ing defect motion, and hence are not adequate models
of plastic motion. We reinterpret the phase field as the
source for singular strains in defected configurations, and
add smooth distortions to maintain mechanical equilib-
rium at all times. The relative motion of two edge dis-
locations of opposite Burger’s vectors under each other’s
stress field is studied in a hexagonal lattice. In contrast
with a direct solution of the phase field equations, we
recover the classical law in which the dipole separation
scales with time as

√
t0 − t.

Crystal plasticity theory assumes coarse grained vol-
umes that contain a large number of defects, and hence
is valid at scales on the order of microns or larger. On
the other hand, recent theoretical efforts [1, 3–11] focus
on the nanoscale, as new high resolution experiments and
large scale simulations are producing a wealth of infor-
mation about defect motion at the atomic scale. State
of the art Bragg Coherent Diffractive Imaging can de-
termine atomic scale displacements with ≤ 30 nm res-
olution [12, 13]. Advanced image processing methods
allow the determination of the strain field phase around
a single defect, clearly evidencing its multivalued nature.
Indeed, single dislocations have been successfully imaged
and their motion tracked quantitatively just recently [14].
At the same time, nanoscale experiments are revealing
new phenomenology that shows that plastic distortion is
a rather complex process, characterized by strain bursts
and dislocation avalanches [15–21]. These phenomena lie

∗audun.skaugen@fys.uio.no

squarely outside of classical crystal plasticity theory.
A continuum theory of plasticity starts from the state-

ment of incompatibility of the deformation gradient ten-
sor

εilm∂lwmk = αik, wmk = ∂muk (1)

where εilm is the anti symmetric Levi-Civita tensor, αik
the dislocation density tensor, and wmk the distortion
tensor [22, 23]. The integral of αik over a surface is the
sum of the Burger’s vectors b corresponding to all the
dislocation lines n that pierce the surface

∫
S
αijdSj =∑

n b
n
i . For any given distribution of topological defects

in the material, α is fixed, but not the distortion, which
can be decomposed into a singular part, the curl of which
yields αij , and a smooth strain which we denote by uδij .

The smooth strain is compatible εikmεjln∂klu
δ
mn = 0. Re-

gardless of the state of distortion, plastic motion is slow
on the scale of lattice vibration, and occurs in mechanical
equilibrium, as the stress σij adiabatically follows the in-
stantaneous distribution of dislocations, ∂jσij = 0. Clo-
sure generally requires a constitutive relation involving
the stress and the smooth deformation. These considera-
tions and appropriate boundary conditions are sufficient
to specify the static problem. Dynamically, over the time
scale appropriate for plastic flow, an evolution equation
needs to be introduced for the dislocation density ten-
sor [3, 7, 24]. In field dislocation dynamics theories, its
evolution is kinematically related to the velocity of the
dislocation lines, which in turn require a constitutive def-
inition in terms of a local free energy and a dissipation
function [25]. The phase field crystal model of defect mo-
tion, as currently formulated [1, 6, 26, 27], can be used
to specify most of the static and dynamic features just
described, but not all, as discussed below.

The phase field, a scalar function of space and time,
is a physical order parameter that describes the dimen-
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sionless mass density of the crystalline phase ψ(r) =
ψ0 +

∑
g Age

ig·r, where the sum extends over all re-
ciprocal lattice vectors g of the lattice. A non con-
vex free energy functional for an isothermal system F
is introduced so that its minimizer ψ∗ has the desired
symmetry of the crystalline phase. Lattice constants
appear as parameters. In dimensionless units, we use
F [ψ] =

∫
drf(ψ,∇2ψ) with f(ψ,∇2ψ) = (Lψ)2/2 +

r2ψ2/2 + ψ4/4, and L = 1 + ∇2 [1, 8, 28]. The only
remaining constant parameter r is the dimensionless dis-
tance away from the symmetry breaking bifurcation. For
r > 0, ψ∗ = 0 is the only stable solution. For r < 0,
and depending on the conserved spatial average ψ0, ψ∗

is periodic with wavenumber unity in our dimensionless
units, but of various symmetries. For simplicity, we con-
sider here a two dimensional system where the equilib-
rium configuration is a hexagonal phase with lattice con-
stant a = 4π/

√
3. The Burger’s vector density in 2D is

Bk(r) = α3,k(r), k = 1, 2. Our results, however, can be
readily extended to three dimensions. The temporal evo-
lution of the phase field ψ is defined to be relaxational
and driven by free energy reduction

∂tψ(r, t) = ∇2 δF
δψ(r, t)

(2)

where δ/δψ(r, t) stands for the variational derivative with
respect to the phase field.

For smooth distortions of ψ∗, the free energy F suf-
fices to determine the stress-strain relation [6]. For small
distortions, we define a non-singular stress σψ [29]

σψij =
〈
σ̃ψij

〉
c
, σ̃ψij = [∂iLψ] ∂jψ− [Lψ] ∂ijψ+fδij , (3)

with σ̃ψij = ∂f/∂(∂iuj), and 〈·〉c denoting a spatial av-
erage across a region roughly corresponding to a unit
cell. σψij is symmetric and related to the strain field
uij = (∂iuj + ∂jui)/2 according to linear elasticity. For
the hexagonal phase under discussion, the relation is that
of isotropic elasticity

σψij = λδijukk + 2µuij (4)

with Lamé coefficients λ = µ = 3A2
0 [29]. The quantity

A0 is the amplitude of the uniform mode in a multiple
scale amplitude expansion of ψ∗.

The phase field model has been used extensively to de-
scribe static and dynamic defected configurations. Fol-
lowing early work on dislocation motion and grain bound-
aries in roll patterns [30, 31], the phase field crystal the-
ory has been used to study dislocation [7, 26] and grain
boundary motion [32, 33]. Strain fields have been ex-
plicitly extracted [34], or imposed to analyze strained
film epitaxy [35], and considered as the limiting case of
phonon degrees of freedom [27]. More complex proper-
ties of defect motion such as specification of slip systems,
defect mobilities, and Peierls barriers are also given by

phase field kinetics [29, 36, 37] thus opening the door
to the study of defect pinning, bursts, and avalanches.
However, whereas for a specified and fixed defected con-
figuration minimizers of F with appropriate boundary
conditions can be found that are in mechanical equilib-
rium, any local deformation of ψ(r, t) propagates only
diffusively according to Eq. (2). The relevant transverse
diffusion constant is small, and can even vanish [38]. This
is not physical for a crystalline solid, as has been al-
ready recognized [26, 27, 39, 40]. In ordinary crystals,
unlike the phase field model, elastic equilibrium compat-
ible with a transient distribution αik(r, t) and boundary
conditions is established quickly, in a time scale deter-
mined by damping of elastic waves in the medium.

To overcome this difficulty, we propose to use the phase
field ψ(r, t) only as an indicator function of defect lo-
cation and topology, as well as governing local relax-
ation near defect cores. The field ψ(r, t) determines the
source for lattice incompatibility in Eq. (1), the solution
of which is only a particular singular solution for the de-
formation field. A smooth distortion uδ (in the null space
of the curl) must be added to this particular solution to
enforce elastic equilibrium. Equation (2) for the newly
displaced phase field ψ′(r) = ψ(r+uδ) provides for defect
motion in a manner that is consistent with the Peach-
Kohler force [29]. Plastic motion is uniquely specified,
with the only constitutive input being the free energy
functional F . We discuss in what follows the details of
our computational implementation, and specifically ad-
dress the relative motion of a dislocation dipole in a 2D
hexagonal phase.

We decompose the stress field into a singular part aris-
ing from the current phase field configuration, σψ, and a
small contribution arising from the smooth distortion σδ,
so that σ = σψ+σδ is in mechanical equilibrium∇·σ = 0.
This condition is satisfied by introducing the Airy func-
tion χ, which in two dimensions reads σij = εikεjl∂klχ.
Inverting Eq. (4), we have in 2D

uij =
1

2
(∂iuj + ∂jui) =

1

2µ
(σij − κδijσkk) , (5)

where κ = λ
2(λ+µ) . Inserting Eq. (5) into the incompati-

bility relation in 2D εikεjl∂kluij = εij∂iBj(r) (e.g. [22])
and expressing the stress in terms of χ-function, we ob-
tain that

1− κ
2µ
∇4χ = εij∂iBj(r), (6)

where Bj(r) =
∑
α b

n
j δ(r− rn) is the dislocation density

in 2D for a configuration of dislocations with Burgers
vector bn at locations rn. In Ref. [29], we explicitly com-
puted B(r) through complex demodulation of the phase
field ψ(r, t). Demodulation yields both the amplitude
and phase of the deformation field; the former going to
zero at the defect core, the latter undergoing a discon-
tinuity across a line that terminates at the core. Figure
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1(a) shows a dislocation dipole in a 2D hexagonal lattice,
and Figure 1(d) the right hand side of Eq. (6)) obtained
by demodulation. We proceed differently here and intro-
duce a more efficient numerical procedure that does not
require demodulation. The smooth strain uδij is compat-

ible (εikεjl∂iju
δ
kl = 0) and therefore, with Eq. (5), the

corresponding stress satisfies,

εikεjl∂ij
(
σδkl − κδklσδll

)
= 0. (7)

We now proceed as if the linear decomposition σ = σψ +
σδ holds everywhere, including near dislocation cores as
defined by the phase field. This is not strictly correct,
but this decomposition results in a distortion uδij which
is everywhere compatible. However, as discussed below,
the computed stress field σ will be divergence free only
away from any defect core. Given this decomposition
σδij = εikεjl∂ijχ − σψij , we find an analogous result to
Eq. (6),

(1− κ)∇4χ =
(
εikεjl∂ijσ

ψ
kl − κ∇2σψkk

)
. (8)

Note that the stress σψ (as defined in Eq. (3)) is smooth
and bounded, so the right-hand side of Eq. (8) can only
give a nonsingular approximation to the singular right
hand side of Eq. (6). Figure 1(c) shows the right-hand
side of Eq. (8) obtained numerically for the disloca-
tion dipole which is in good agreement Eq. (6) obtained
through demodulation (Fig. 1(d)). Both methods act as
regularizations of the singular density at defect cores.

From a given phase field configuration at time t, ψ(r, t),
we compute σψ from Eq. (3), and then solve Eq. (8) to ob-
tain χ and therefore σ. The difference σδij = εikεjl∂ijχ−
σδij leads to the smooth strain uδij = 1

2µ (σδij − νσδkkδij)
which is, by construction, compatible. It can, there-
fore, be integrated to obtain a compatible deformation
uδ. The final step in the computation is to redefine the
phase field ψ′(r, t) = ψ(r + uδ, t).

Both the stress-strain relation and stress superposition
only hold far from defect cores. We define the stress of
this newly deformed configuration everywhere as

σij = σψij + σδij = σψij + λδiju
δ
kk + 2µuδij , (9)

which satisfies ∂jσij = 0 only far from defect cores, not
at short distances. This is not a problem as standard
diffusive evolution of the phase field suffices to equilibrate
the stress near cores in time. We discuss this further
below, and in Fig. 2.

The integration of the compatible strain uδij to obtain

uδ is carried out through a Helmholtz decomposition into
curl-free and divergence-free parts uδi = ∂iV + εij∂jA.
Applying the divergence to this expression, one obtains a
Poisson equation for the potential V , ∂iu

δ
i = uδii = ∇2V,

which is easily solved by spectral methods. On the other
hand, taking the curl we find εij∂iu

δ
j = εijεjk∂ikA =

FIG. 1: (a): Phase field ψ for an initial condition comprising
two dislocations with opposite Burger’s vectors on the same
glide plane. Crystal planes in the [11] and [11] directions
are indicated to illustrate the structure of the dislocations in
the hexagonal lattice. (b): Coarse-grained shear stress σψxy
showing two characteristic stress dipoles. (c): Right hand
side of Eq. (8), divided by 2µ, showing dipolar sources at
the dislocation positions. (d): Curl of the Burger’s vector
density as computed by demodulation in ref. [29], showing
good agreement with (c).

−∇2A, which is a Poisson equation for A. Unfortunately
the source term depends on the antisymmetric part of the
smooth deformation gradient, which we do not obtain di-
rectly from the elastic stress, as this only depends on the
symmetric part. We therefore apply another Laplacian
operator to the equation, and use the compatibility rela-
tion εij∂iju

δ
k = 0 to find

∇4A = −εij∂ik(∂ku
δ
j + ∂ju

δ
k) = −2εij∂iku

δ
jk. (10)

This is a biharmonic equation for A with a known source
term, which is again easily solved by spectral methods.
In particular, if ki are the components of the k vector and
ûδij are the Fourier components of the residual strain, the
Fourier components of the residual deformation can be
expressed as

ûδi = − iki
k2
ûδjj + 2iεijεrs

kjkrkl
k4

ûδsl, (11)

with the k = 0 component chosen to be zero to avoid
rigid body displacements. We then compute the distorted
phase field ψ′(r) = ψ(r + uδ) on the original grid r by
expanding in Taylor series up to fifth order in uδ.

We present next the results of a numerical study of
a benchmark configuration: the relative motion of two
edge dislocations along their glide plane, Fig. 1(a). The
computational domain is assumed periodic containing
120x120 unit cells with a spatial resolution of a/8 =
π/2
√

3 in the x direction, and 2π/7 in the y direction.
The initial distance between dislocations is 24a, and we
consider two sets of values r = −0.2, ψ0 = 0.265 and
r = −0.8, ψ0 = −0.43. We prepare the initial condition
in the same way as in Ref. [29], and numerically solve
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FIG. 2: (a) Shear stress σψxy along the line joining the two
dislocation cores from direct integration of Eq. (2) (solid line)
compared with Eq. (12) (dashed line). (b) Constrained stress
according to the simultaneous solution of Eqs. (2), (8), and
(9), also compared with Eq. (12). (c) and (d) are the enlarged
tail regions of (a) and (b) respectively.

Eq. (2) using an exponential time differencing method
with a time step of ∆t = 0.1 [41]. According to linear
elasticity theory for an isotropic medium, the shear stress
in such a configuration is,

σxy =
2µ(λ+ µ)

λ+ 2µ

∑

α

bnx
2π

cosφn cos(2φn)

|r− rn|
, (12)

where φn is the azimuth relative to dislocation n. Fig-
ures (2)(a,c) show σψ along a line that includes the two
dislocation cores at time t = 700 obtained by direct in-
tegration of Eq. (2), and compares it to Eq. (12). Diver-
gences in Eq. (12) are regularized by the phase field, and
the stress near the cores is relatively well described by
σψ. Far from the cores, however, the two stresses show
qualitatively different asymptotic dependence. Figures
(2)(b,d) show the stress in a configuration in which the
smooth distortion (11) has been applied between time
steps. The stress is still regularized near defect cores,
yet, by construction, agrees with linear elasticity away
from them.

Figure 3 shows the time dependence of the disloca-
tion velocity as a function of dipole separation as given
by direct integration of the phase field model, Eq. (2),
Fig. 3(a), and by our model, Fig. 3(b). For reference, we
also show the expected result from elasticity theory by
using the Peach-Kohler force with stress (12), and mo-
bility derived from F (Eq. (45) in Ref. [29]). There are
no adjustable parameters in the calculation of the ana-
lytic velocity. The two dislocations move towards each
other until they annihilate, with a velocity inversely pro-
portional to their separation. Our model captures this
result well for a range of parameters r, with slight stick-

10 0 10 1
10 -3

10 -2

10 -1

10 0
(a)

10 0 10 1
10 -3

10 -2

10 -1

10 0
(b)

r = -0.8
r = -0.2
Analytical

FIG. 3: Dislocation velocity as a function of dipole separation.
Velocities from the numerical computations are obtained from
the locations of the zeros of the complex amplitudes of ψ as
described in Ref. [29]. The analytic result follows from the
Peach-Kohler force with stress given by Eq. (12), and mobility
computed from F as given in [29]. There are no adjustable
parameters in this calculation. (a), Numerically computed
velocity by direct integration of Eq. (2). (b), Velocity given
by our model.

slip motion observed at larger |r|, visible as oscillations
in the dislocation velocity.

To summarize, we have argued that the phase field
crystal model currently in use lacks deformation as an
independent variable, and as a consequence fails to main-
tain proper mechanical equilibrium during plastic mo-
tion. We retain the model because it provides for lat-
tice and topological defect structures as derived proper-
ties from the phenomenological free energy. It also al-
lows regularization of defect cores and singular stresses.
Phase field kinetics is also consistent with the classical
Peach-Kohler force, with mobility that is again specified
by the free energy F . We take the view, however, that
the phase field is not adequate to describe the distortion
of the lattice away from moving defect cores, and hence
supplement it with a smooth distortion field, compati-
ble with the topological content of the phase field, but
defined so as to maintain mechanical equilibrium every-
where away from defect cores. When the evolution of
ψ′(r, t) is thus constrained to satisfy mechanical equilib-
rium at all times, we show numerically that our model
agrees with the classical law of motion for a dislocation
dipole in isotropic, linear elasticity. These results put the
phase field crystal model on firmer ground to study more
complex defected configurations at the nanoscale.
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[1] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant,
Phys. Rev. Lett. 88, 245701 (2002).



5

[2] H. Emmerich, H. Lwen, R. Wittkowski, T. Gruhn, G. I.
Tth, G. Tegze, and L. Grnsy, Advances in Physics 61,
665 (2012).

[3] A. Acharya, J. Mech. Phys. Solids 49, 761 (2001).
[4] M. Haataja, J. Müller, A. D. Rutenberg, and M. Grant,

Phys. Rev. B 65, 165414 (2002).
[5] M. Koslowski, A. M. Cuitino, and M. Ortiz, J. Mech.

Phys. Solids 50, 2597 (2002).
[6] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605

(2004).
[7] S. Limkumnerd and J. P. Sethna, Phys. Rev. Lett. 96,

095503 (2006).
[8] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and

M. Grant, Phys. Rev. B 75, 064107 (2007).
[9] A. Acharya and C. Fressengeas, Int. J. of fracture 174,

87 (2012).
[10] A. Acharya and C. Fressengeas, in Differential Geometry

and Continuum Mechanics (Springer, New York, 2015).
[11] I. Groma, Z. Vandrus, and P. D. Ispánovity, Phys. Rev.

Lett. 114, 015503 (2015).
[12] A. D. Rollett, R. Suter, and J. Almer, Annu. Rev. Mater.

Research 47 (2017).
[13] R. Suter, Science 356, 704 (2017).
[14] A. Yau, W. Cha, M. Kanan, G. Stephenson, and A. Ul-

vestad, Science 356, 739 (2017).
[15] J. Weiss and D. Marsan, Science 299, 89 (2003).
[16] M. Koslowski, R. LeSar, and R. Thomson, Phys. Rev.

Lett. 93, 125502 (2004).
[17] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and

S. Zapperi, Science 318, 251 (2007).
[18] P. D. Ispánovity, I. Groma, G. Györgyi, F. F. Csikor,

and D. Weygand, Phys. Rev. Lett. 105, 085503 (2010).
[19] P. D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zap-

peri, and M. J. Alava, Phys. Rev. Lett. 112, 235501
(2014).

[20] J. M. Tarp, L. Angheluta, J. Mathiesen, and N. Gold-
enfeld, Phys. Rev. Lett. 113, 265503 (2014).

[21] Y. Cui, G. Po, and N. Ghoniem, Phys. Rev. Lett. 117,
155502 (2016).

[22] A. M. Kosevich, in Dislocations in Solids, Vol. 1, edited

by F. R. N. Nabarro (North-Holland, New York, 1979)
p. 33.

[23] D. R. Nelson and J. Toner, Phys. Rev. B 24, 363 (1981).
[24] J. M. Rickman and J. Viñals, Phil. Mag. A 75, 1251
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97, 054113 (2018).

[30] E. D. Siggia and A. Zippelius, Phys. Rev. A 24, 1036
(1981).

[31] G. Tesauro and M. C. Cross, Phil. Mag. A 56, 703 (1987).
[32] A. Adland, Y. Xu, and A. Karma, Phys. Rev. Lett. 110,

265504 (2013).
[33] D. Taha, S. K. Mkhonta, K. R. Elder, and Z.-F. Huang,

Phys. Rev. Lett. 118, 255501 (2017).
[34] E. J. Schwalbach, J. A. Warren, K.-A. Wu, and P. W.

Voorhees, Phys. Rev. E 88, 023306 (2013).

[35] Z.-F. Huang and K. R. Elder, Phys. Rev. Lett. 101,
158701 (2008).
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