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Abstract 
Flux towers provide important climatic information about surface exchange processes 

in the land-atmosphere system. At the Finse flux tower in alpine Norway, the inhomogeneous 

surface and hilly terrain influence the quality of the eddy covariance (EC) measurements. Due 

to the large variation in surface cover, including bare ground, different vegetation types, and 

open water, it is challenging to provide a representative estimation of net surface radiation 

around the flux tower.  

This study investigates the effect of non-corresponding footprints between the net 

surface radiation and the turbulent fluxes measured with the EC technique. This was done by 

measuring net surface radiation for different surface types, where the surface types were 

provided from a detailed vegetation map over the Finse study site. By fitting linear regression 

models (LMs) and training artificial neural networks, continuous time series of net surface 

radiation for different surface types for the period 18.08.18 – 25.08.18 where predicted. The 

time series from the LM were used to derive an overall value of net surface radiation, ෨ܴ௡௘௧, 

which accounted for the heterogeneity of the surface cover. Doing so, a better comparable value 

of net surface radiation was obtained for the evaluation of the surface energy balance closure.   

Based on the linear model predictions, the study found a difference, with statistical 

significance of 99%, in net surface radiation between almost all the alpine surface types 

investigated. This implies that considerable differences of albedo and properties controlling the 

emissions of longwave radiation, occur in the surface cover which contributes as source area to 

the measurements of the turbulent fluxes. The energy balance ratio was found to be 58% when 

evaluated with the LM predicted ෨ܴ௡௘௧. Thus, the energy balance closure increased by 4.40 

percent points when allowing for the effect of surface heterogeneity on the net surface radiation. 

However, when the energy balance closure was evaluated with the ordinary least squares 

regression technique, the closure was found to be only 37%. No improvement of the energy 

balance closure was found when the heterogeneity of surface cover was allowed for by this 

evaluation method. The work presented here is a proof-of-concept study, showing how 

heterogeneity at flux sites can be accounted for using the methodology presented.  
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1  Introduction 
Net surface radiation (ܴ௡௘௧) constitutes the fundamental parameter controlling the 

climate in the lower atmosphere (Iziomon et al., 2000). The parameter plays an important role 

in the land-atmosphere interaction by determining the amount of energy available for sensible 

heat (H), latent heat (LE), soil heat (G), net advected energy (ܣௗ), and storage of energy (ܵ௧) – 

both physical and biochemical. For a heterogenous land surface, the energy balance will vary 

among the different surface patches. This is dependent on the unique interactions between 

surface albedo, vegetation physiology, the biogeochemical cycling and the state of the 

atmospheric boundary layer (Majozi et al., 2017).  

Because of climate change, changes in terrestrial ecosystems and vegetation are leading 

to a changed land cover. Especially at high latitudes in the northern hemisphere, where the 

influence of global warming is more predominant than in other regions, we experience rapid 

land surface changes. Studies that have investigated the vegetation in Arctic biomes, clearly 

observed expansions of shrubs and trees since the 1950s and 1960s (Myers-Smith et al., 2015; 

Frost and Epstein, 2014). To further improve the understanding of local and regional climate 

change at high northern latitudes, and how the feedback mechanisms in the land-atmosphere 

system are developing, knowledge about the surface energy exchange is needed. A precise 

estimation of the net surface radiation for different land covers is therefore essential as an 

important input for climate processes, modeling and validation.  

Despite the importance of ܴ௡௘௧, the parameter is measured only at a few metrological 

stations. This is partly due to problems of providing a standard surface, but also because the net 

radiometers used to measure ܴ௡௘௧, at least in the past, were difficult and time consuming to 

maintain and calibrate (Monteith and Unsworth, 2013). Therefore, different regression models 

for calculating net surface radiation from other climatic parameters are widely used 

(Kjaersgaard et al. 2007). More recent studies have during the last years tested models based 

on artificial intelligence for determination of net surface radiation for a given location. Geraldo-

Ferreira et al. (2011a) and Mahalakshmi et al. (2016a) reported successful estimation of ܴ௡௘௧ 

by using artificial neural network (ANN) based on meteorological measurements. However, 

the risk of overfitting increases with fewer observations, and in these situations, statistical 

regression models are often useful and reliable. 

The Land-ATmosphere Interactions in Cold Environments (LATICE) project at the 

University of Oslo, established an eddy flux tower at Finse in Norway in 2016  to monitor and 
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evaluate the surface exchange processes between the land and the atmosphere. The 

establishment of the tower provides important knowledge about the surface energy processes 

in the low alpine zone. Although the eddy covariance (EC) method is arguably the most 

accurate and reliable measuring technique for the exchange processes between the atmosphere 

and terrestrial surface (Finkelstein and Sims, 2001), there are some restrictive conditions for 

the atmospheric surface layer which must be met for a proper use of this technique. The 

assumptions include steady state, fully developed turbulence and a flat surface with horizontal 

homogeneity. For most EC measurement sites these conditions are not fully satisfied. At 

Finse, an especially large variability of vegetation and topography is challenging for the 

validity of the measurements. This means, among other things, that the different sizes of the 

source areas contributing to the measurements of different energy fluxes lead to a mismatch. 

The nonidentical footprints of the energy measurements is thus a potential cause for the 

energy imbalance between incoming and outgoing energy, which is observed today. 

In 2017, Anders Bryn and Peter Horvath, at the Natural History Museum of the 

University of Oslo, mapped the nature of one square kilometer around the Finse flux tower 

based on the Nature in Norway (NiN) system. NiN is a type and description system for all 

nature types in Norway. Their work resulted in a detailed vegetation map, which corresponds 

to the area contributing to the energy flux measurements at the Finse flux tower. 

The purpose of this study was first and foremost to investigate the effect of non-

corresponding footprints between the turbulent fluxes (from EC) and the net surface radiation 

(from a radiometer) on the energy balance closure at the Finse flux tower. Due to the large 

variability in surface cover, it was hypothesized that considerable differences in the net 

surface radiation occurred across the surface. Since the radiometer at the flux tower only 

provides a one-point measurements of net surface radiation, it was anticipated that these 

measurements were non-representative for the whole surface cover contributing to the 

turbulent fluxes. To investigate this, the main objectives of the study were to 1) predict net 

surface radiation for different surface types and 2) use this information to obtain a more 

representative value of net surface radiation accounting for the heterogeneity of the surface 

cover around the flux tower.  Spatially distributed measurements of net surface radiation were 

collected for different surface types based on a classification of the nature types in the 

vegetation map over Finse. Based on earlier studies with successful estimations of net surface 

radiation from meteorological variables, linear regression models were fitted, and artificial 

neural  networks trained for  predicting  continuous time  series of net surface radiation for  all 
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the different surface types. The linear model predicted time series were used to derive an 

overall value of net surface radiation which accounted for the heterogeneity of the surface 

cover. By doing so, the study intended to estimate a more correct value of net surface 

radiation which was better comparable to the source area contributing to the turbulent energy 

exchange than the regular net surface radiation provided by the flux tower.  
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2  Background 
2.1 Surface energy fluxes of an ideal surface  

Terrestrial surfaces are continuously interacting with the overlying atmosphere. 

Through the exchange of energy, CO2, water and other atmospheric constituents, the earth’s 

surface influences the atmospheric boundary layer above and vice versa. Since most terrestrial 

surfaces have heterogenous land cover with spatial variability, it is convenient to consider such 

land cover consisting of a patchwork of individually ideal surfaces (Shuttleworth, 2012). For 

an ideal surface, illustrated in Figure 2.1, homogeneity across a horizontal patch is assumed. 

This means that the vertical energy flow across the surface, which is characterized by albedo, 

thermal emissivity, aerodynamic roughness and the ability to store and capture water in the 

plant canopy and soil, is equal across the entire surface. The components influencing the surface 

energy balance, all given with unit Wm-2, are as follows.   

The net surface radiation (ܴ௡௘௧) is the driving input to the surface energy balance. The 

parameter determines the energy available for physical and biophysical processes, such as 

evapotranspiration, and soil and air warming of the surface element (Geraldo-Ferreira et al., 

2011a). The flux is a net balance of radiant energy over all wavelengths (Shuttleworth, 2012), 

calculated by the sum of shortwave, ܵ௡௘௧, and longwave, ܮ௡௘௧, radiation, i.e.   

ܴ௡௘௧ ൌ ܵ௡௘௧ ൅	ܮ௡௘௧ ൌ 	 ܵ↓ െ	ܵ↑ ൅	ܮ↓ െ	(2.1)                         ↑ܮ 

Here ܵ↓ represents the incoming shortwave solar radiation, while ܵ↑ represents the shortwave 

radiation reflected from the surface, dependent on the surface’s albedo. ܮ↓ and ܮ↑ represents the 

longwave downward and upward radiation emitted respectively from the atmosphere and the 

earth surface. In both cases the longwave radiation is dependent on the temperature and 

emissivity of the emitting spheres. In the used sign convention, the net surface radiation is 

defined as positive when directed toward the surface. At daytime ܴ௡௘௧ is dominated by the solar 

radiation, while at night there is typically a negative longwave radiation balance controlling the 

flux.   

As opposed to ܴ ௡௘௧, the sensible heat (H) is defined positive when directed upward from 

the surface, see Figure 2.1. The parameter represents the transportation of energy between the 

earth surface and overlying atmosphere when the overlying air is either cooled or warmed in 

contact with the surface element (Shuttleworth, 2012). The flow of energy is thus dependent on  
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Figure 2.1: The surface energy balance for an ideal terrestrial surface element represented by the fluxes of net 
surface radiation (ܴ௡௘௧), sensible heat (H), latent heat (LE), soil heat (G), and horizontally advected energy (ܣ௜௡ 
and ܣ௢௨௧). ܵ௧ represents the energy stored in the surface element by physical storage and biochemical storage. The 
arrows illustrate the positive direction of the fluxes. All components with units Wm-2. Adapted from Shuttleworth 
(2012). 

both the temperature of the lower atmospheric air and the temperature within the surface 

element. Typically, at daytime when solar radiation heats the surface, the sensible heat flux is 

outward, while at night there is a tendency of negative sensible heat fluxes. 

The other turbulent flux is the latent heat flux (LE). It describes the energy transfer 

associated with the phase change of water. For surfaces without snow and ice, the latent heat 

flux is found as the product of the evaporation rate in kgs-1m-2 multiplied by the specific heat 

of vaporization of water, λ, in Jkg-1. The latent heat transports energy away from the surface 

during evaporation, while during condensation the energy is transported towards the surface, 

defined as a negative latent heat flux. 

The soil heat flux (G) describes the heat transferred by thermal conduction in the soil. 

The thermal conduction occurs when the temperature difference between the soil surface and 

subsurface develops during the day due to the heating of the soil surface from solar radiation 

(Shuttleworth, 2012). G is typically positive during the day by transferring heat downward, 

while at night the vertical temperature gradient is positive, which results in a negative soil heat 

H LE

Rnet

Ain Aout
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flux directed toward the surface. Oke (1987) explains the importance of the thermal 

conductivity and heat capacity for the heat transfer in soils. These thermal properties represent 

the ability of a soil to conduct heat and the ability of a soil to store heat, respectively. This is 

dependent on the soil type and the presence of moisture in the soil, and determines how the soil 

heat flux responds to temperature changes at the surface.  

As shown in Figure 2.1, the net advected energy (ܣௗ)  is simply calculated by 

ௗܣ ൌ ௜௡ܣ	 െ	ܣ௢௨௧ (2.2) 

Here ܣ௜௡ and ܣ௢௨௧ are horizontally advected energy parallel with the wind, which enters and 

leaves the surface element, respectively. ܣௗ is defined as positive when bringing energy into 

the surface element. Most often net advected energy is neglected when investigating the surface 

energy balance, but in situations with “Oasis effect” (heat advection due to evaporative cooling 

over a local humid source existing in an arid area), the term may become significant (Oke, 

1987). 

The term ܵ௧ represents the energy stored within the surface element either physically as 

heat in the ground and canopy, or biochemically through capture/release of energy dependent 

on photosynthesis/respiration. The physical energy storage between level ݖଵ in the soil and the 

reference level ݖଶ in the atmosphere, shown in Figure 2.1, is typically dependent on the depth 

 For short crops this term is often neglected, while for tall canopies with more biomass and .ݖߜ

surrounding air, the physical energy storage can become significant (Shuttleworth, 2012). 

Haverd et al. (2007) reports the importance of the physical energy storage in a forest canopy, 

by rising the surface energy balance closure from 90% to 101%. 

By adapting the first law of thermodynamics to an ideal terrestrial surface (Wilson et 

al., 2002) and using the sign convention for the fluxes, defined by the arrows in Figure 2.1, the 

energy balance equation for an ideal terrestrial surface is written as  

ܴ௡௘௧ െ ܩ ൅	ܣௗ െ	ܵ௧ 	ൌ ܪ	 ൅ 			ܧܮ	 (2.3) 

The left side of the equation is referred to as the available energy, because these components 

together define the energy available for the turbulent fluxes of latent and sensible heat during 

daytime conditions.  
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2.2  Eddy covariance method 

The eddy covariance (EC) method is frequently the most accurate and reliable 

measuring technique used to measure the exchange of heat, momentum and trace gases between 

the atmosphere and terrestrial surface (Finkelstein and Sims, 2001). The technique is based on 

direct measurements of the vertical velocity of the wind and the concentration of the substance 

of interest by using fast-response sensors in a turbulent flow. When estimating their covariance, 

it is possible to calculate the vertical flux, with the advantage that no applications of empirical 

constants are required (Foken, 2008a). However, the method requires some theoretical 

conditions to be fulfilled. These involve steady state conditions and fully developed turbulence 

in the atmospheric surface layer, and a horizontal, flat homogenous surface (Foken and 

Wichura, 1995). Today there are more than 500 long-term operating eddy flux towers around 

the world as a part of the FLUXNET network. The EC method thus provides a considerable 

contribution to the study of environmental, biological and climatological controls of the surface 

exchange between the atmosphere and terrestrial ecosystems (Baldocchi et al., 2001).     

To understand how EC is used to calculate the exchange of sensible and latent heat 

between land and atmosphere, it is fundamental to understand the principle of turbulent mixing. 

The lowest part of the atmosphere, the atmospheric boundary layer, is normally ~1-2 km thick 

(Wallace and Hobbs, 2006). The boundary layer is affected by the earth’s surface, which 

generates turbulence. As Bonan (2016) visualizes, the air flow can be represented as consisting 

of many discrete air parcels, where each air parcel has its own characteristic of temperature and 

water vapor. The turbulent flow creates eddies, which are irregular and stochastic motions in 

the air that mix the air parcels either upward or downward (Foken, 2008a). The mixed air 

transports heat and moisture, dependent on the temperature and water vapor characteristics of 

the air parcels being mixed.  

When observing entities of an atmospheric turbulent flow by using fast-response 

sensors, it appears that the entities have random, short-period fluctuations from their longer 

mean value (Wallace and Hobbs, 2006). It is favorable to represent this air flow of a quantity x 

by a mathematical decomposition of the variable into its time-mean value, 	ݔ	തതത, and its random 

fluctuating component, x´ (Figure 2.2). This decomposition is known as Reynold’s 

decomposition and is represented as 

	ݔ ൌ തതത	ݔ	 	൅ 	´ݔ (2.4) 
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Figure 2.2:  Illustration of Reynold’s decomposing into mean component and fluctuating component. Figure 
adapted from Foken (2008a).   

For further application of the Reynold’s decomposition we require some conditions imposed 

on the averaging rules, known as Reynold’s conditions or Reynold’s postulates 

I 	ݔ´തതത 	ൌ 	0 

II 		ݔ	തതതݕ	തതതതതത 	ൌ 	  തതത	ݕ	തതത	ݔ	

III 	ݔ ൅ തതതതതതതതത	ݕ 	ൌ 	 തതത	ݔ	 ൅ 	തതത	ݕ	

IV 	ܽݔ	തതതതത 	ൌ  	തതത	ݔ	ܽ	

Here both x and y are variables, while a is a constant.  

The vertical surface flux of a scalar of interest, ܿ, is the product of the vertical velocity 

of air flow, w, and the scalar (Bonan, 2016). This implies that the mean time-period of the 

vertical surface flux, is given as: 

തതതതܿݓ 	ൌ 	 ሺݓ	തതത 	൅ ഥ	ܿ	ሻሺ	´ݓ	 	൅ ܿ´	ሻതതതതതതതതതതതതതതതതതതതതതതതതതതത (2.6) 

								ൌ ഥ	ܿ	തതതത	ݓ	 	൅	 		´തതതതܿ	ݓ	 ൅ ഥ	ܿ		´ݓ	 	൅  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത´ܿ´ݓ	

								ൌ ഥ	ܿ	തതതത	ݓ	 	൅	 ܿ´തതത	തതതത	ݓ	 	൅	 ഥ	ܿ		തതതത´ݓ	 	൅	  തതതതതതത	´ܿ´ݓ	

തതതതܿݓ  ൌ ഥ	ܿ	തതതݓ	 	൅	  തതതതതതത (2.7)	´ܿ´ݓ	

Here averaging rules I-III from Reynold’s conditions are used. 	ܿ	ഥ  and 	ݓ	തതതത are the mean value 

of respectively the scalar of interest and vertical velocity, while c´ and w´ are the corresponding 

fluctuating components around their mean values (and themselves have means equal to zero). 

The scalar flux in eq. 2.7 is just the sum of the transport by mean motion, 	ݓ	തതതത	ܿ	ഥ , and the transport 

by turbulence, 	ݓ´ܿ´	തതതതതതത. In the atmosphere a few meters from the ground, the mean transport is 

generally small (Shuttlewort, 2012; Bonan, 2016). This implies the assumption that 	ݓ	തതതത equals 

 (2.5) 
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0, and the vertical movement of atmospheric entities is entirely dominated by the turbulent flux 

transport. It is therefore assumed that convergence/divergence of the air flow is negligible. The 

mean flux reduces to (where N is the number of data points in the sample)  

തതതതܿݓ ൎ തതതതതതത	´ܿ´ݓ	 ൌ ଵ

ே
∑ሺݓ௜	 െ	 തതതതሻሺ	ݓ	 ܿ௜	 െ 	 	ܿ	ഥ ሻ 	ൌ ,ݓሺ	ݒ݋ܿ	 ܿሻ (2.8)

This is the covariance between the vertical velocity and scalar of interest, which represents how 

the vertical velocity and the concentration of the scalar co-vary. 	ݓ´ܿ´	തതതതതതത > 0 means that air with 

high density of the scalar of interest is rising and air with low density of the scalar of interest is 

sinking, therefore having a mean flux transport of the given scalar into the atmosphere away 

from the ground. Greater covariance implies stronger flux.     

The estimated sensible heat flux (H) is calculated from the measured EC between the 

vertical velocity (w with unit ms-1) and the sonic temperature ( ௦ܶ in K) as  

	ܪ ൌ ´ݓ	ܿ௣	௔ߩ ௦ܶ´	തതതതതതതത (2.9) 

Here ߩ௔ is the mass density of moist air in kgm-3 and ܿ௣ is heat capacity at constant pressure of 

moist air in Jkg-1K-1. Both ߩ௔ and	ܿ௣ are based on meteorological measurements from the flux 

tower (for their calculations, see equations in section 7 in LI-COR, 2017). 

By using the measurement of ݎுమை, which is the mixing ratio of mole of water vapor per 

mole of dry air in mmol mol-1, together with the vertical velocity, one finds the EC for the latent 

heat flux, i.e. 	ݎ´ݓ´ுమை	തതതതതതതതതതത. The evaporation rate, ܨுమை in 10-3kgs-1m-2, is found by multiplying the

covariance with 
ଵ

௩೏
  and ܯுమை, i.e. 

ுమைܨ 	ൌ
ଵ

௩೏
തതതതതതതതതതത	ுమை´ݎ´ݓ		ுమைܯ            (2.10) 

Here, ܯுమை is given in kg mol-1 and represents the molecular weight of water vapor, which is a 

constant, and ݒௗ is given in m3 mol-1 and represents the ambient molar volume of dry air. The 

latter is calculated by  
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ௗݒ ൌ
ܴ ௔ܶ

௔ܲ െ 	݁
 

 

where R is the universal gas constant (8.314 J mol-1 K-1) and ܶ ௔ is averaged ambient temperature 

in K. e is partial pressure of water vapor in Pa, which is the product of the mole fraction of 

water vapor per mole of air, ܺுమை, and the ambient average pressure ௔ܲ in Pa. Both ܺுమை and 

 ுమை are derived directly from the measurements of the tower. Finally, the specific heat ofݎ

evaporation (ߣ) given in Jkg-1, which is a function of the ambient air temperature ( ௔ܶ) is given 

by 

 

ߣ ൌ 10ଷሺ3147.5 െ 2.37	 ௔ܶሻ	                 (2.12) 

 

By multiplying the evaporation rate with ߣ, the estimated latent heat flux (LE in Wm-2) is found 

as 

 

ܧܮ ൌ ுమைܨߣ 	ൌ ߣ ଵ

௩೏
 തതതതതതതതതതത                                    (2.13)	ுమை´ݎ´ݓ		ுమைܯ	

  

 

2.3  The energy balance closure problem 

 The energy balance closure problem arises when the surface energy balance equation 

(eq. 2.3) is not fulfilled. This means that the incoming energy into a surface element is not equal 

the outgoing energy and any energy stored in the element. Already during the late 1980s it 

became obvious that the energy balance at the earth’s surface could not be closed with 

experimental data (Foken and Oncley, 1995). In a comprehensive study performed across 22 

sites and 50 site-years in FLUXNET for different ecosystems and climates, Willson et al. (2002) 

found a general lack of the energy balance closure at most sites, where the mean imbalance was 

calculated in the order of 20%. It turns out that at most flux measurement sites the sum of 

turbulent eddy fluxes of the latent and sensible heat is less than the available energy. This is a 

result of underestimation of turbulent fluxes and/or an overestimation of the available energy. 

Still, the surface energy balance closure is unsolved for most eddy flux towers, and among 

several studies it appears that the following reasons are important for the energy imbalance:   

(2.11) 
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1) Systematic measurement errors of the eddy covariance measurements

2) Neglected advection

3) Systematic measurement errors of the net radiation measurements

4) Neglected energy storage and/or incorrect estimation of soil heat flux

5) Mismatching between the source area for the different measurements

To make accurate eddy covariance measurements a careful calibration is crucial. This

is obvious, but regular maintenance may become difficult to accomplish when instruments are 

in the field. The turbulent flux measurements are often exposed for loss of high and/or low 

frequency (i.e. small eddy/large eddy) contribution to the covariance. The low frequency errors, 

which increase with the height of the measurements, need to be assessed by evaluating the 

average time used to measure the covariance (Leuning et al., 2012).  At the same time a failure 

to meet the fundamental assumptions of a homogenous surface with fully developed turbulence 

and steady state conditions causes important errors one need to consider.   

The systematic measurement errors of net radiation measurements cannot be assumed 

to have a significant effect on the energy imbalance today. This is firstly explained by the 

tendency of greater underestimation than overestimation, thus not matching the overestimated 

available energy, and secondly the increase of the accuracy of the radiation measurements 

during the two last decades (Foken, 2008b). Despite this, evaluating the net surface radiation 

for heterogenous surfaces in terms of varying land cover and topography may become difficult. 

Typically, radiation instruments are mounted horizontally, but the strong dependency between 

the incoming radiation and the slope and aspect of the surface, can cause accurate estimates of 

the net surface radiation to be difficult to achieve. Especially during daytime in summer months 

at the northern hemisphere the absorbed radiation at south-facing slopes will differ substantially 

from a measurement by a horizontal radiometer. To capture the differences of absorbed 

radiation in a varying terrain, one should therefore consider if the measurements should be 

performed in a horizontal plane or not. In terms of variation of vegetation and surface cover 

and varying albedo, one single point measurement of the net surface radiation cannot be 

considered representative for a heterogenous land surface around a flux tower.  

The neglection of energy storage is somewhat important for the closure of the surface 

energy balance, but the importance of this factor varies depending on the site and type of surface 

where the measurements are performed. The energy storage is typically large for tall forest 

canopies. As mentioned in section 2.1.6, the influence of the storage, at least the canopy- and 

biochemical storage, is generally dependent on the vegetation and its height, and therefore 
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almost negligible for bare surfaces and short vegetation (Shuttleworth, 2012). However, the 

physical energy storage in the upper soil layer above the heat flux plate may have a significant 

influence on the energy balance closure (Foken, 2008b). Since the soil heat flux varies with 

temperature and depth, the change of energy storage in the soil must be measured to obtain an 

accurate estimate of the soil heat flux (Leuning et al., 2012).  Heusinkveld et al. (2004) report 

that lack of accounting for the storage term can cause errors in the soil heat flux of 10-200 Wm-

2 for bare soil or sparse vegetation. The fact that the thermal properties for the heat transport is 

highly dependent on the soil type and the moisture content in the soil may complicate the 

representation of a representable value for the soil heat flux.  

Mismatch of the source areas where the different measurements are performed, can be 

particularly crucial for the surface energy balance closure at heterogenous surfaces. Figure 2.3 

illustrates an eddy flux tower with typical heights for the sensors and their measurements, and 

the different horizontal scales or footprints of the surface energy components. As opposed to a 

hypothetical, ideal surface, the energy components are not measured directly at the surface, but 

either in the air above or in the soil beneath.  The measuring height for the net surface radiation 

is approximately 2 m, and the footprint is in the order of only a few square meters closest to the 

tower (Foken, 2008b). The soil heat flux plate often covers an even smaller source area. For the 

turbulent fluxes the sensors are usually installed at an elevation of 2-5 m, and their footprint of 

the underlying surface may cover up to 200-300 meters in the upwind direction (Foken, 2008b). 

The nonidentical footprints of the measured surface energy fluxes cause the information used 

to analyze the surface energy balance to represent different surface covers. This may obviously 

induce a lack of surface energy balance closure at many sites.  

Figure 2.3: Flux tower, illustrated as the column to the right, with typical measurement height and the horizontal 
source areas for the different energy fluxes. The cone illustrates the radiation sensor with its footprint, while the 
left side illustrates the much bigger footprint of the turbulent fluxes. Arrows indicate the positive direction of the 
fluxes. Figure adapted from Foken (2008a).     
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2.4  Artificial neural network  

An artificial neural network (ANN) is a model developed for information processing 

inspired by the biological neural network in human beings. By adapting the structure and 

performance of our biological neural system into machine learning, we develop models to 

perform pattern recognition tasks. The basic construction of an ANN is the processing units, 

often called artificial neurons, that are interconnected according to some topology 

(Yegnanarayana, 1999). The construction of one single processing unit is shown in Figure 2.4. 

In general, a neuron consists of an activation function and an output part. The activation 

function receives N numbers of input variables, ܽ௜, where each input value is weighted by a 

coefficient, ݓ௜. These coefficients are termed synaptic weights and represent the connectivity 

between the neurons in the network (Geraldo-Ferreira et al., 2011a). The synaptic weights are 

either described as excitatory, meaning that their sign is positive, or inhibitory, which normally 

is represented by a negative sign (Gershenson, 2003). Therefore, synaptic weights will either 

increase or decrease the activation of a neuron.  For the multilayer perceptron model, which is 

one of the classical models for an artificial neuron and the one used in this study, the synaptic 

weights are adaptive. This means that they are adjustable (Yegnanarayana, 1999). The 

activation part of the neuron computes a weighted sum from all the weighted input values based 

on a summing rule and the activation function, ߮. This sum, x, often called the activation value, 

is received by the output part of the neuron, which finally produces a signal to be outputted by 

the neuron.  

Figure 2.4: Construction of a neuron (processing unit) in an ANN following the perceptron model. Adapted from 
Yegnanarayana (1999). ߮ represents the activation function, while ∑ܽ௜  ௜ illustrates the summing rule. ܽ௜ݓ
represents input variable i, while ݓ௜ represents the weighting coefficient of input i.   

Activation part: 

ݔ ൌ ߮෍ܽ௜  ௜ݓ

ܽଵ

ܽଶ

ܽே

 ଵݓ

ଶݓ

ேݓ
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Output 

Output layer 

Input layer 

Figure 2.5: Framework of the multilayer perceptron model. Here one circle illustrates one neuron. Adapted from 
Geraldo-Ferreira, A. et al. (2011b). 

The development of a network’s topology is crucial for the desired pattern recognition 

task one wants to accomplish. The topology is explained as the arrangement of the network’s 

processing units, connections and pattern of input/output (Eshwar and Singh, 2012).  This 

means that the neurons should be organized and connected in a suitable manner for the specific 

task, otherwise the network is useless. A full neural network is put together by connecting many 

simple neurons together. This is done by grouping neurons having the same activation dynamics 

and output function together in a joint layer (Yegnanarayana, 1999). In this way, all the neurons 

in one layer consist of the same processing mechanism and are to some extent similar. In 

general, an ANN consists of at least three layers, known as the input layer, a hidden layer and 

the output layer, as shown in Figure 2.5. Sometimes multiple hidden layers are used, where 

their common characteristic is that their values are not observed in the training set, as opposed 

to both the input and output layers. 

The connections between the different neurons can be made both between processing 

units within the same layer (intralayer connections) and from a processing unit from one layer 

to a processing unit in another layer (interlayer connections) (Yegnanarayana, 1999). This 

implies that the output of one neuron works as the input of another neuron, and neurons may 

also produce output which is used as input to themselves. For the interlayer connections, the 

Inputs 

Hidden layer(s) 
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signals flow either as a feed forward mechanism or as a feedback mechanism. The latter 

mechanism allows information to flow in both directions, while for feed forward networks, the 

signal flows only in the direction from the input layer towards the output layer. For a fully 

coupled multilayer perceptron model, all the neurons in the input layer receive all the different 

input variables, and all neurons in the hidden layer receive the outputs from all the neurons in 

the input layer. Based on this architecture, each neuron in the input layer represents a specific 

characteristic of the input data, and each neuron in the hidden layer represents different 

functions of the original data by the different weighting. In this way, the different synaptic 

weighting represents the varying strength of the connections between the neurons, and thus the 

network has the ability to learn complex non-linear input-output relationships (Eshwar and 

Singh, 2012). 

To develop the ANN to accomplish a specific task, it is necessary to adjust the synaptic 

weights of each neuron to obtain the desired output from the specific inputs (Gershenson, 2003). 

This process is known as neural dynamics. In general, neural dynamics consist of two parts, 

one corresponding to the dynamics of the activation function and the other part corresponding 

to the dynamics of the synaptic weights (Yegnanarayana, 1999). The activation dynamics 

determines the activation values of all the neurons for every time unit, and this is followed to 

recall a pattern stored in the network (Eshwar and Singh, 2012). In addition to storing a pattern 

in the network, it is necessary to adjust and change the synaptic weights of each neuron. This 

part of the neural dynamics corresponds to the dynamics of the synaptic weights. By 

implementing models, known as learning laws or algorithms, an incremental update of the 

weights will in the end give a useful, desired output from the network. The process is carried 

out by using training data (a data set where the correct outputs are already known) as input to 

the network. Then the generated output from the neurons is compared to the desired output by 

measuring the deviation between the two outputs. The deviation is expressed in terms of the 

error function or loss function, which is chosen for the specific network. By repetitively 

updating and adjusting the synaptic weights, the loss function slowly decreases, and the ANN 

is ready for the desired purpose.    
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3 Materials and Methods 
The work done in the current study is presented schematically in the diagram in Figure 

3.1. Each of the different steps will be explained in the following subsections.  

Figure 3.1: Diagram showing the different steps in the study. The main objectives were 1) to predict net surface 
radiation for different surface types and 2) use this information to obtain a more representative value of net 
surface radiation accounting for the heterogeneity of the surface cover around the flux tower. 

Response variable Explanatory variables 

Surface types: 
Categorical classification of the surface 
cover into different surface types based 

on the vegetation map over Finse 

Fieldwork:  
In-situ measurements  

of Rnet for each surface type 

Statistical sensitivity analysis: 
Pre-analysis of meteorological 

variables 

Models: 
Predict continuous time series of Rnet for each surface type by using 

artificial neural network and linear regression model 

Footprint analysis: 
Calculation of the footprint of the 

turbulent fluxes from the flux tower and 
calculation of the corresponding 
footprint for Rnet, weighted by the 

different contribution of each surface 

Meteorological measurements: 
Meteorological variables measured at 

the flux tower 

 :࢚ࢋ࢔෩ࡾ

Net surface radiation weighted 
by the contribution from each 
individual surface types, and 

thus representing the 
heterogeneity of the surface 

cover 

Flux tower: 

Soil heat flux and turbulent fluxes of 
latent and sensible heat 

Assessment of the surface energy balance 
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3.1  Site description 

Figure 3.2: Location of Finse flux tower. Adapted from Kartverket (2018).  

Finse eddy flux tower is located nearby Finse Alpine Research Center (60° 36’ N, 7° 

30’ E) in the southern central Norway (Figure 3.2). The area is found in the northwestern corner 

of the Hardangervidda mountain plateau, ~1200 m above sea level in the low alpine zone. The 

Hardangerjøkulen Glacier, with an altitude ~1800 m above sea level, is located southwest of 

Finse, while in the north we find the Hallingskarvet National Park. Because of Finse’s high 

altitude, the area has an arctic tundra climate. Nevertheless, the climate consists of relatively 

mild winters, while the summers are cool. This is a result of the transition zone between easterly 

continental and westerly oceanic climate, where warm, moist westerly winds from the Atlantic 

Ocean dominate (Leinaas and Schumacher, 2005). The monthly normal temperature for the 

period 1961-1990 was highest in July with 7.0°C, while lowest in January with -10.1°C. The 

annual mean temperature was -2.1°C. The cold summer temperature is somewhat explained by 

the influence of the Hardangerjøkulen Glacier (Leinaas and Schumacher, 2005), where cold air 

from the glacier tends to sink down to Finse. The normal annual average precipitation for the 

same period was 1030 mm. The typical low temperatures during summer induce mist and cloud 

cover, which increase the precipitation in the summer. On the other hand, Finse is occasionally 
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in the rain shadow behind the Hardangerjøkulen Glacier in events of moist, oceanic 

southwesterly winds (Gjessing, 1997).   

Since the tower is placed in a larger valley, the wind direction distribution in the area is 

strongly affected by this. The valley extends in the northwest-southeast direction, causing a 

channeling effect to force the wind to flow along this axis. Therefore, the predominant wind 

directions are west/northwest and east/southeast. This results in a wide-spread footprint for 

turbulent fluxes in these directions.  The tower is placed on a small ridge running in the 

northeast-southwest direction, with great variability of topography and surface cover in the 

surrounding area (Figure 3.3). Closest to the tower the vegetation is dominated by lichens heaths 

on wind exposed ridges and narrow zones of dwarf shrub heath on the lee-sides. Further 

downslope, the snow cover increases, and moss snow-beds dominate until the topography 

flattens out towards the wetlands and river. In the flat areas, water accumulates to generate 

mires and small ponds. Along the river and streams there are narrow bands of willows (Bryn, 

n.d).

Figure 3.3: Aerial photo with 1 m height contours showing the varying surface cover around the Finse flux 
tower. Bryn and Horvath (2017).  

 N 
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3.2  Flux tower instrumentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Detailed view of the Finse flux tower. A horizontal boom is installed at an elevation of 4.4 above 
ground, where the anemometer and the infrared gas analyzer are seen to the right. The radiometer is seen on the 
left side of the boom (on the southern end).   
 
 

The flux tower (Figure 3.4) consists of a 10 m tall mast equipped with sensors described 

in Table 3.1. The net surface radiation is measured by a four-component radiometer, which 

consists of two pyranometers and two pyrgeometers. The pyranometers take measurements of 

shortwave radiation both upward and downward and have a spectral range of 300-2800 nm. 

The field of view is 180 degrees. The pyrgeometers measure the incoming and outgoing 

longwave radiation and have a spectral range of 4.5-42 μm with a field of view of 150 degrees.  

The eddy covariance measurements (gas analyzer and 3D anemometer) are sampled with a 

frequency of 10 Hz, while the other meteorological measurements are sampled at 0.2 Hz. The 
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EC-system is connected to a flash drive, where the data are stored. The other ancillary 

meteorological measurements and fluxes from the tower are stored on a Campbell Sci. CR6 

logger.  

The EddyPro v6.2.0 (LI-COR Inc 2016) software was used to process the raw data from 

the EC-system at Finse. The analysis and processing from raw data to flux estimates was done 

automatically after the setup programming, which has been performed by Norbert Pirk. A 

necessary processing involves checking raw data for instrument errors, coordinate system 

rotation of wind vector components, extracting turbulent fluctuations from the raw signal, a 

spectral correction of potential loss of the flux transport for high and/or low frequencies, and a 

quality control analysis existing of spike filtering and tests to assess the method assumption of 

steady state and fully developed turbulence. A detailed description of the processing of the 

meteorological measurements and calculation of fluxes at the Finse flux tower is found in 

Vatne’s (2018) master thesis. 

 

 
Table 3.1: Instruments installed, and measurements taken at the Finse flux tower. Some sensors are operated by 
the Norwegian Meteorological Institute (MET).  

No. Instrument Description Measurement 

1 3D sonic anemometer (CSAT3, 
produced by Campbell Sci)  

Installed at 4.4 m height  Wind speed in three 
directions and speed 
of sound (SOS) 

2 Closed path infrared gas 
analyzer (LI7200RS, produced 
by LI-COR) 

Installed at 4.4 m height Concentration of 
H2O and CO2 

3 Four-component radiometer 
(CNR4 net radiometer, 
produced by Kipp & Zonen) 

Installed at 3.5 m height Net surface radiation 

4 Two soil heat flux plates Installed ~0.1 m below 
surface and 0.5 m from 
each other 

Soil heat flux 

5 Air temperature sensor (MET) Installed at 10 m and 2 m 
height 

Air temperature 

6 Relative humidity sensor 
(MET) 

Installed at 10 m at 2 m 
height 

Relative humidity 

7 2D ultra sonic wind 
anemometer (MET) 

Installed at 10 m height Horizontal wind 
component 

8 Infrared thermometer (MET) Installed at 4.4 m height  Surface temperature  
9 Barometer (MET) Installed at 2 m height  Air pressure 
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3.3 Classification of the surface cover into different surface types    

During 2017, Anders Bryn and Peter Horvath mapped the vegetation of the area of one 

square kilometer around the Finse flux tower by using the Nature in Norway (NiN) system. 

NiN is a full coverage system that describes all nature variation in Norway. The high-resolution 

vegetation mapping at Finse made it possible to characterize the footprint of the flux tower from 

the vegetation. This knowledge is important for understanding which types of vegetation and 

surface covers that contribute the most to the measurements of the turbulent fluxes by the tower. 

The vegetation map for Finse consists of 32 different nature types and is shown in Figure 3.5.  

Before in-situ measurements of net surface radiation could be performed during field 

work, it was necessary to do a categorical classification of the land surface at Finse by 

categorizing nature types with similar structure and albedo into new, joint surface types. This 

was necessary to achieve a sufficient number of measurements within each surface type during 

the time available for field work and to ensure that the footprint of the radiometer used for the 

measurements was approximately on the same order of magnitude as the extent of the patches 

of the different surface types. This adaption ensured that net surface radiation was only being 

measured for one surface type at a time.  

The categorical classification was performed in collaboration with Anders Bryn and 

Peter Horvath, where the classification was mainly based on the main type (i.e. T01, T03, V1, 

V4 etc.) of the nature types, with some exceptions. A classification based on the main types 

implied that nature types with approximately similar albedo were classified into the same 

surface type. At the same time, nature types with the same vegetation structure, vegetation 

function and the same access of water were grouped into the same surface type. The different 

surface types were therefore representing different regimes of biological productivity and 

different ability to store and capture precipitation. These are important factors that control the 

heat balances within the different surface types, which is vital for the emissions of longwave 

radiation. The classification resulted in 11 new surface types numbered from 0-10. In Table 3.2, 

all the nature types are described. The far-left column in the table describes which surface type 

each nature type has been classified into. Surface type 0, which consisted of nature type T35-

C1, T35-C2 and T39-C4, have been ignored in this study, since this surface type is strongly 

affected by human activities (buildings and gravel roads) and was therefore not of interest.  

By using the geographical information system ArcMap, a new layer containing the 11 

surface types was derived from the vegetation map. This was done by merging the area of all 

the nature types that belonged to the same surface type. The area of each surface type was 
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calculated to detect how large area the different surface types constitute of the land cover around 

the flux tower. Surface types 2, 8 and 9 were found to only account for 1.07%, 0.21% and 

1.74%, respectively, of the total mapped area around the tower. Due to their insignificant 

contributions to the flux tower’s footprint, these surface types were excluded from the fieldwork 

and the study. The remaining seven surface types investigated in this study are shown in the 

surface type map in Figure 3.6.  

Surface type 1 consisted of open water ecosystems and was found as open ponds north-

west of the tower and as the river running south-east of the tower. Surface type 6 consisted of 

open flood plain on coarse sand and rock found along the river and smaller streams. Surface 

type 3, 4 and 7 represented vegetation of lighter lichen on ridges, mountain heathlands on the 

lee sides, and fens, respectively. Surface type 5 consisted of snow beds and boulder fields, while 

surface type 10 consisted of late and extreme snow beds. Photos shown in Figure 3.7 illustrate 

typical characteristic of each of the seven surface types.  
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Figure 3.5: Vegetation map for the Finse flux tower. The nature types are described in Table 3.2.  Mapped by 
Horvath and Bryn (2017).  

 N 
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Table 3.2: The 32 nature types with their descriptions, which are mapped at the Finse flux tower. The column to 
the far left numerates which surface type each nature type was classified into. The second column describes 
typical surface characteristic, and the terminology used, for the surface types that were investigated in this study.  

Surface 
type 

Surface 
characteristic 

Nature 
type 

Description 

0 

T35-C1 Strongly modified loose soil 

T35-C2 Strongly modified loose gravel and sand 

T39-C4 Strongly modified hard inorganic substrates 

1 Water L Limnic benthic ecosystem 

2 

T01-C1 Drought-resistant lime-poor rock 

T27-C1 Lime-poor and intermediate boulder field 

T27-C6 Lime-poor and intermediate ridge-like boulder field 

3 
Lichen-

heathlands 

T03-C3 Lime-poor mountain lichen-heathlands 

T03-C6 Intermediate mountain lichen-heathlands 

T14-C1 Lime-poor and intermediate ridge 

4 
Mountain 
heathlands 

T03-C1 Lime-poor lee side 

T03-C2 Lime-poor mountain heathlands 

T03-C4 Intermediate lee side 

T03-C5 Intermediate mountain heathlands 

T03-C7 Slightly lime-rich lee side 

5 
Moderate 
snow beds 

T07-C1 Very lime-poor moderate snow bed 

T07-C2 Slightly lime-poor moderate snow bed 

T07-C3 Intermediate moderate snow bed 

T07-C6 Slightly lime-rich moderate snow bed 

T07-C12 Intermediate spring-water-influenced snow bed 

T27-C2 Lime-poor and intermediate snow-bed boulder field 

V6-C1 Lime-poor and intermediate moderate wet snow bed 

V6-C7 Lime-poor and intermediate late wet snow bed 

6 Flood plains T18-C1 Open flood plain on coarse sand and rock 

7 

V1-C2 Lime-poor open fen 

Fens V1-C5 Very lime-poor open fen margin 

V1-C6 Lime-poor open fen margin 

8 
V4-C1 Fairly lime-poor and intermediate spring 

V4-C2 Moderately lime-rich spring 

9 T03-C13 Intermediate tall-herb mountain meadow 

10 
Late snow 

beds 
T07-C4 Intermediate late snow bed 

T07-C5 Intermediate extreme snow bed 
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10: Late snow beds 

7: Fens 

100 m 

6: Flood plains 

Figure 3.6: Surface type map showing the seven final surface types that were investigated in the study. The 
classification of each surface type was based on the nature types in the vegetation map in figure 3.5. For an 
explanation of the different surface types, see Table 3.2. The grey regions show the area of surface type 0, 2, 8 and 
9, which were excluded from the study. The black cross displays the location of the Finse flux tower. The black 
dots show the location of the measuring points where the mobile radiation tower was placed during fieldwork.  

Surface types 

0, 2, 8, 9 

1: Water 

4: Mountain heathlands

5: Moderate snow beds 

3: Lichen-heathlands 

 N 
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Figure 3.7: An overview showing typical surface characteristics of the seven different surface types where net 
surface radiation was measured; (a) surface type 1: water, (b) surface type 5: moderate snow beds, (c) surface type 
3: lichen-heathlands, (d) surface type 6: flood plains, (e) surface type 7: fens, (f) surface type 4: mountain 
heathlands,  and (g) surface type 10: late snow beds.   

(a) (b)

(g) (f) 

(e) (d) 

(c) 
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3.4 Fieldwork  

The in-situ measurements of net surface radiation of the different surface types were 

performed in the period 18.08.18 to 25.08.18.  In advance of the fieldwork, a mobile radiation 

tower was built specially for the current study. In this way, necessary equipment for the 

measurements was easily moved around between the different surface types. The tower is 

shown in Figure 3.8. It consists of a CNR1 four-component radiometer (produced by 

Kipp&Zonen), which was connected to a CR6 datalogger (produced by Campbell Scientific). 

A motor cycle battery connected to the datalogger worked as power supply. The net surface 

radiation was sampled with a sampling frequency of 0.2 Hz, before the measurements were 

estimated to half-hourly fluxes. The four-component radiometer have the same sensor 

properties as the four-component radiometer of the stationary flux tower described in section 

3.1.2. The manufacturer of the net radiometer suggested that the radiometer should be mounted 

at a height of at least 1.5 m above ground, but this height was found to capture measurements 

from a spatial scale larger than most of the extent of the patches of the different surface types. 

A mounting height of 1.1 m was therefore chosen as a compromise to ensure that the radiation 

was measured only within the same surface type at a time and to minimize shading effects of 

the instruments on the surface. In addition, the tower became more stable and sturdier when the 

radiometer was installed at a lower elevation above ground.  

Based on the seven surface types, two to three measuring points within each surface 

type were selected. This was done to consider the variation of the surface cover within each 

surface type and to consider the varying topography in terms of differences in aspect and slope 

of the terrain, which may impact the radiation balance at place. Since 99% of the outgoing 

radiation from the surface is measured for a circular area of radius 10 times the measurement 

height (Kipp&Zonen, 2002), the patches with the largest extent of each surface type were 

chosen as suitable measuring points. The black dots marked on the surface type map in Figure 

3.6 show the selected measuring points.    

During the fieldwork the tower was placed at a measuring point for four hours at a time 

before it was moved to the next measuring point. This procedure was performed during daytime 

from 8 am to 8 pm. While during night time, from 8 pm to 8 am, the tower was measuring at 

the same measuring point. By following this procedure, it was possible to do measurements 

within each of the seven different surface types evenly distributed throughout the whole period 

of the fieldwork. This procedure also assured that all surface types were represented by at least 

one measurement from all times of the day. When the tower was placed at a measuring point in 
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field, a compass was used to ensure that the radiometer always pointed to the south. Due to 

uneven and non-horizontal surfaces at some measuring points, the radiometer was sometimes 

placed parallel to the surface instead of horizontally.  

Figure 3.8: Photos showing the mobile radiation tower (a) used for measuring net surface radiation for the different 
surface types. A CNR1 four-component radiometer (b) was connected to a CR6 datalogger and a power supply 
(c).  

(a) (c) 

(b) 
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3.5  Predicting net surface radiation by using linear regression model  

In this study, linear regression models (LMs) were used to provide continuous time 

series of net surface radiation for the different surface types investigated. LMs have been widely 

used to predict net surface radiation based on meteorological parameters (Geraldo-Ferreira et 

al., 2011a; Mahalakshmi et al., 2016; Iziomon et al., 2000; Kjaersgaard et al., 2007). However, 

the predictions of various regression models are dependent on the local fitting of the regression 

coefficients, which implies that regression models are dependent on the surface type and its 

meteorological conditions, thus only valid for a restricted area. According to Kjaersgaard et al. 

(2007), the two most commonly used linear regression models for predicting net surface 

radiation are simple models with either incoming shortwave radiation, or both albedo and 

incoming shortwave radiation as explanatory variables. In the current study, measurements of 

incoming longwave radiation were also provided. Three different models were tested: a simple 

model with only incoming shortwave radiation as explanatory variable, a second model with 

both incoming shortwave and longwave radiation as explanatory variables, and a third model 

with incoming shortwave and albedo as explanatory variables.  The best model found for 

predicting ܴ௡௘௧ for the different surface types was  

ܴ௡௘௧ ൌ ߙ ൅ ଵߚ ∗ ܵ↓ ൅ ଶߚ ∗ ↓ܮ 	൅  (3.1) ߝ	

Here α, 1ߚ and 2ߚ are regression coefficients, while ܵ ↓ and ܮ↓ represents the incoming shortwave 

and longwave radiation, respectively. ߝ represents the error term, which is assumed to be 

uncorrelated and normally distributed with expectation zero and constant variance. The in-situ 

measurements of net surface radiation for each surface type were used together with the 

measured ܵ↓ and ܮ↓ by the mobile radiation tower for fitting individual regression models for 

each surface type. Then continuous times series of ܴ௡௘௧ were predicted for each surface type 

by using the individual fitted regression coefficients, equation 3.1 and the data of continuous 

measured ܵ↓ and ܮ↓. The accuracy of all the models were assessed through the coefficient of 

determination (R2) and the root mean square error (RMSE). The coefficient of determination 

indicates the quality of the fitted model by quantifying how much of the variation in ܴ௡௘௧ that 

is explained by the models for the different surface types. RMSE is a measure of how well the 

different estimated models fit to the observed data. 

Since only a small number of in-situ measurements of ܴ௡௘௧ were collected for each 

surface type during fieldwork, all the measured data were used as training data for fitting the 
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linear regression models. In the absence of test data, a cross-validation for each of the linear 

regression models was performed to further assess their suitability as predictive models. Here, 

a leave one out cross validation (LOOCV) was conducted. The LOOCV is an extreme case of 

the leave-p-out-cross-validation, but still frequently used to assess how good a statistical model 

is when it is generalized to independent data. The technique is thus a valuable indication for the 

accuracy of the regression models for the different surface types. The LOOCV is performed by 

computing the root mean square error prediction (RMSEP) by the following procedure: for 

every i’th iteration, the i’th observation is excluded when fitting the linear model, then the i’th 

observation is used for obtaining the prediction error. After repeating the procedure for all 

observations, the RMSEP is calculated as the square root of the average of the squared 

prediction errors. As a corresponding measurement to R2, the coefficient of determination for 

prediction (ܴ௣௥௘ௗ
ଶ ) based on the LOOCV was calculated to measure how well the LMs predicted 

net surface radiation based on new, independent observations of incoming shortwave and 

longwave radiation.  

3.6 Predicting net surface radiation by using artificial neural network 

3.6.1 Selection of input variables 

A prerequisite for developing an artificial neural network (ANN) fitted for a specific 

pattern recognition task, is to carefully select input and output variables to the network. Since 

an ANN is a model developed after the selection of input variables, a strong relationship among 

the predictors and the response is crucial, and output data must be influenced by changing input 

variables (Caner and Kecebas, 2011). According to this, a sensitivity analysis was performed 

for the meteorological variables measured at the Finse flux tower. This was done to; (i) find the 

strongest relationships between the output variable ܴ௡௘௧ and the other meteorological input 

variables, to (ii) assure that variables with little or no predictive power were removed and to 

(iii) examine potential correlations between the input variables. A selection of input variables 

is thus important for avoiding noise and disturbances, potential overfitting, and 

multicollinearity and redundancy among the data. Based on a successful estimation of ܴ௡௘௧ by 

using ANN reported by Geraldo-Ferreira et al. (2011a) and Mahalakshmi et al. (2016a), the 

meteorological data investigated in the statistical sensitivity analysis were air temperature (AT), 

relative humidity (RH), wind direction (WD), wind speed (WS), shortwave incoming radiation 

(ܵ↓) and longwave incoming radiation (ܮ↓). All the measurements were collected at the Finse 
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flux tower, except the incoming radiation. Due to a technical error with the upward looking 

pyrgeometer at the Finse stationary flux tower, which resulted in wrongly measured incoming 

longwave radiation, the incoming radiation was provided by the mobile radiation tower instead 

of the stationary flux tower. However, all incoming radiation is assumed to be homogenous for 

an area corresponding to the size of the study area at Finse. This means that the incoming 

radiation measured by the stationary flux tower should equal the radiation measured by the 

mobile radiation tower. The data were collected in the period of 18.08.2018 – 25.08.2018.  

3.6.2 Training process and model evaluation 

Based on the statistical sensitivity analysis of the meteorological variables, it was 

decided to train two different artificial neural networks. In the first neural network (NN1), all 

the meteorological variables (ܵ↓, ܮ↓, AT, RH, WS and WD) were used as input variables. In the 

second neural network (NN2), all variables, except the incoming radiation, were omitted. This 

was done to investigate how a reduction of the input variables affected the predictive power of 

the neural networks.  

The package neuralnet in R was used for developing both NN1 and NN2. This is a 

package built for training models concerning regression problems. Neuralnet is a multilayer 

perceptron model (MLP) where the synaptic weights are adaptive, organized in a feedforward 

mechanism with only intralayer connections. In this study the resilient backpropagation with 

weight backtracking (RPROP+) learning algorithm was chosen when training the network. This 

was chosen as the learning algorithm due to its rapidity when training neural networks for 

regression problems (Günther and Fritsch, 2010). The training algorithm RPROP+ is similar to 

the traditional backpropagation algorithm, but with the advantage that a separate learning law, 

which can change during the training process, is included for each weight. Thus, the network 

uses a learning rate which is appropriate for the whole training process and the entire network 

(Günther and Fritsch, 2010). The network is trained by comparing the given output of ܴ௡௘௧ 

from the data to the predicted output of ܴ௡௘௧, and then an error function is calculated. For every 

time this procedure is repeated, the synaptic weights are adjusted to find the local minimum of 

the error function. This implies that the error slowly approaches convergence. In this study, the 

neural networks were trained with the sum of squares (SSE) as error function, while a threshold 

value of 0.01 was used as stopping criterion. The activation function was chosen to be logistic, 

which required that a normalization of the data was necessary before training could be 

performed.  
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In addition to considering the input variables, the selection of the architecture with the 

right numbers of layers and neurons is crucial for developing a successful predictive model. 

The optimal number of hidden layers and neurons is problem specific. This depends on more 

factors, such as the number of input and output variables, training data available, the complexity 

of the problem, the training algorithm used, and the function to be learned. A neural network 

with a complex architecture consisting of too many hidden layers and neurons, will most 

probably not learn the underlying statistical properties of the data, but rather overfit to the 

training data. An architecture that is too simple will result in a network that fails to work as a 

predictive model due to poor signal representation of the dataset. 

According to this, a more extensive model selection was performed by training and 

comparing many different models. Due to the small dataset of observations of net surface 

radiation for every surface type, all the collected data was used for training the neural networks. 

For all the seven surface types, and for both NN1 and NN2, one single hidden layer neural 

network with the number of neurons varying from one to six were trained. Then neural networks 

with two hidden layers with the number of neurons in the first layer varying from one to six 

and the number of neurons in the second layer varying from one to three, were trained. For all 

different combinations of hidden neurons, the RMSE for fitting the models were calculated. In 

the absence of test data, a LOOCV was performed for calculating the prediction RMSE for all 

the different models. For every surface type, the model with the lowest RMSEP and RMSE was 

selected for predicting the net surface radiation. In Table 3.3, the final models used in predicting 

ܴ௡௘௧ for the different surface types are shown. 

Based on the individually trained neural networks for every surface type, continuous 

time series of net surface radiation were predicted by using the continuous measurements of 

incoming shortwave and longwave radiation as input variables. The accuracy of all the models 

were assessed through the coefficient of determination (R2) and coefficient of determination for 

the prediction (ܴ௣௥௘ௗ
ଶ ) from LOOCV.  
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Table 3.3: The neural networks used for predicting net surface radiation for each of the different surface types. 
The networks are selected based on the RMSEP and RMSE from the model evaluation process.   

Surface type Input 
variables 

# Neurons in the first 
hidden layer 

# Neurons in the second 
hidden layer 

1: Water ܵ↓, 0 2 ↓ܮ 
3: Lichen-heathlands ܵ↓, 3 2 ↓ܮ 
4: Mountain heathlands ܵ↓, 0 4 ↓ܮ 
5: Moderate snow beds ܵ↓, 0 5 ↓ܮ 
6: Flood plains ܵ↓, 0 6 ↓ܮ 
7: Fens ܵ↓, 0 2 ↓ܮ 
10: Late snow beds ܵ↓, 0 1 ↓ܮ 

3.7 Comparison of net surface radiation for the different surface types 
The predictions provided by the linear models of net surface radiation for the different 

surface types were compared by performing an analysis of covariance (ANCOVA). This was 

done to investigate whether there was a significant effect of the surface characteristics affecting 

the net surface radiation between the different surface types. Since the main purpose of the 

ANCOVA was to test if there was an overall difference between the different surface types, it 

was not tested explicitly whether there was a significant difference between the ߙ’s or ߚ’s fitted 

in the different models. If a statistical difference was detected, it meant that there was a 

significant difference in albedo and/or properties for emissions of longwave radiation between 

the surface types.  

The comparison was performed by pairwise analysis of two and two surface types. First, 

a categorical variable (dummy variable) representing which surface type the measurement 

belonged to, was added to the dataset. Then a model consisting of incoming shortwave 

radiation, incoming longwave radiation, the categorical variable and the interactions between 

the categorical variable and the continuous radiation variables, was fitted. This model was 

called the full model. Then a similar model, but where the categorical variable and its 

interactions were omitted as predictor variables, was fitted for the same dataset. This model 

was called the reduced model. By doing a partial F-test of the full and reduced model, it was 

revealed whether the categorical variables should be included or not. If a significant 

contribution from the categorical variable was found, it meant that there was a statistically 

significant difference in net surface radiation between the two surface types tested against each 

other. 21 different partial F-tests were performed to compare all the seven surface types against 

each other. The test statistic was set to a level of significance of 1 %. A 1% level was considered 
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as conservative, and was therefore chosen as a Bonferroni-like (Miller, 1981) compensation for 

the increased probability of erroneous rejection of the hypothesis of no difference between the 

surface types when several tests were performed on the same data. 

 3.8 Footprint analysis 

To characterize the footprint of the flux tower from the different surface types, it was 

necessary to perform a footprint analysis. The footprint of the turbulent fluxes may be 

visualized as the horizontal source area of the upwind direction of the surface containing 

effective sources and sinks contributing to the measurement point (Kljun et al., 2002). The 

footprint calculations averaged over a longer measurement period, is known as the footprint 

climatology. For a given measurement height of the EC system, the footprint is dependent on 

the wind speed, wind direction, turbulence intensity and atmospheric stability. The wind speed 

and direction are particularly important when determining the footprint area for a heterogeneous 

surface cover. The turbulence intensity and atmospheric stability are influenced especially by 

the variation of the topography and surface elements. The footprint of the EC system was 

derived by using the Flux Footprint Prediction (FFP) online data processing, where the method 

of estimation is given by Kljun et al. (2015). The measurement height above ground was set to 

4.4 m and the displacement height was set to 0. In addition to this, the coordinates of the flux 

tower, wind speed, wind direction, friction velocity, Obukhov length and the standard deviation 

of lateral velocity fluctuations after wind component rotation, were needed. These parameters 

were derived from the EC measurements from the flux tower. The footprint climatology was 

calculated with half-hour input data from the period 18.08.18 - 25.08.18. 

The calculation of the footprint climatology was outputted as two-dimensional raster 

data from the online processing. These data were assigned to the surface type map by using a 

linear transformation in ArcMap.  The area of each surface type within the turbulent footprint 

climatology was then calculated to detect the percentage contribution, ݌௜, from each of the 

different surface types. The weighted value (when assuming a uniform weighting among the 

different surface types within the area corresponding to the footprint climatology) of net surface 

radiation, ෨ܴ௡௘௧, were found by 

෨ܴ௡௘௧ 	ൌ 	∑ 	௜௜݌ ∗ 	ܴ௡௘௧,௜ (3.2) 
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Here ܴ ௡௘௧,௜ represents the net surface radiation from surface type i = 1, 3, 4, 5, 6, 7 and 10.  ෨ܴ௡௘௧ 

thus represents the corrected value which takes the heterogenous surface cover around the flux 

tower into account. In this way, the non-corresponding footprints of the turbulent energy fluxes 

and the net surface radiation are corrected. However, the assumption of uniform weighting 

among the different surface types is a simplification. Different locations and surface types may 

have different weights.   

 

 

3.9 Assessment of the energy balance closure 

The energy balance closure was investigated for the period 18.08.2018 – 25.08.2018. 

This was done by calculating the energy balance ratio (EBR) and by performing an ordinary 

least squares (OLS) regression between the turbulent fluxes (H + LE) as the response variable 

and the available energy (ܴ௡௘௧ – G) as the predictor variable. A perfect energy balance evaluated 

with the OLS regression implies an intercept of zero, and coefficient of determination and slope 

of the regression line equal to one. This method assumes that there are no random errors in the 

independent variables of ܴ௡௘௧ and G, which is a simplification (Majozi et al., 2017). 

The energy balance ratio was found by calculating the ratio of the sum of turbulent 

fluxes of latent heat (LE) and sensible heat (H) to the sum of available energy of net surface 

radiation (ܴ௡௘௧) and soil heat flux (G), i.e.  

 

	ܴܤܧ ൌ
∑ 	ሺ௅ாାுሻ

∑ 	ሺோ೙೐೟ାீሻ
     (3.3) 

 

The ideal closure is reached if EBR equals one. This method allows us to evaluate the 

energy balance at longer timescales by averaging over random errors in the half-hour 

measurements from the eddy flux tower. It will also tend to remove systematic effects, like the 

tendency of overestimated daytime fluxes and underestimated nighttime fluxes (Majozi et al., 

2017).  

In both methods the energy balance closure was investigated with the measurements of 

ܴ௡௘௧ measured by the tower, in addition to the footprint corrected value of net surface radiation, 

෨ܴ௡௘௧, provided by the predictions from the LMs. 

 To assure that the measurements of the turbulent fluxes used for evaluation of the 

energy balance closure were of high quality, all the half hour estimates without the highest 
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measure of quality, i.e. turbulent flux estimates with quality flag 1 or 2, were discarded. Also, 

the half hour estimates of the turbulent fluxes where the mean wind speed was less than 2 ms-1 

were discarded. This was done to ensure that the assumption of well-developed turbulence was 

fulfilled.  
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4 Results 
4.1  Meteorological data 

4.1.1  Meteorological conditions 
Numerical statistics of meteorological variables measured for the period 18.08.2018 – 

25.08.2018 at the Finse flux tower are shown in Table 4.1. The incoming radiation and the net 

surface radiation are also included in the table.  The maximum half hour average of incoming 

shortwave radiation of 781 Wm-2 was measured 21.08.2018 at 01.30 pm, while the maximum 

half hour average of incoming longwave radiation of 361 Wm-2 was measured 22.08.2018 at 

02.30 pm. Their mean values for the period were 145 Wm-2 and 313 Wm-2, respectively. The 

minimum half hour average of incoming shortwave radiation was measured to < 0. This is most 

likely to be explained by noise that occurred in the measurements.  The weather during the 

period was characterized by unstable and cloudy weather with changing cloud cover. There 

were only a few longer periods of some hours with a clear sky and sunny weather at daytime 

during the period of the study. The daily accumulated precipitation is shown in Table 4.2. There 

were two days with considerable amounts of rain. These rainfalls were caused by two small 

storms that hit Finse on 19.08.18 and 23.08.18. The highest wind gust was 22.30 ms-1, while 

the mean wind speed for the whole period was 5.91 ms-1, as shown in the left histogram in 

Figure 4.1. The right panel in Figure 4.1 shows the histogram of the wind direction. The 

predominant wind direction for the period was west-northwest. 

 

 

Table 4.1: Numerical statistics of half hour meteorological variables measured at the Finse flux tower for the 
period 18.08.18-25.08.18.   

Meteorological parameters Min. value Max. value Mean St. deviation

Net surface radiation (Wm-2) -89.69 605.98 84.10 150.64
Shortwave incoming radiation (Wm-2) -2.71 780.88 145.22 204.79
Longwave incoming radiation (Wm-2) 248.60 361.10 312.90 24.43
Air temperature (°C) 1.96 11.99 5.97 2.26
Relative humidity (%) 35.40 88.27 74.67 9.68
Wind direction (degree) 92.31 333.48 257.81 62.37

Wind speed (ms-1) 0.61 15.81 5.91 2.83
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Table 4.2: Daily accumulated precipitation in mm at the Finse flux tower for the period 18.08.18-25.08.18. 

Date Accumulated precipitation in mm 

18.08.2018 2.80 
19.08.2018 18.90 
20.08.2018 0.60 
21.08.2018 1.80 
22.08.2018 0.20 
23.08.2018 15.10 

24.08.2018 0.90 

25.08.2018 6.00 

 

 

 

 

Figure 4.1: Histograms showing the wind speed (left panel) and wind direction (right panel) for the period 
18.08.18-25.08.25, based on half hourly calculated mean values from the Finse flux tower. The y axes show the 
relative frequencies.   

4.1.2  Sensitivity analysis 

A visual inspection of the time series of shortwave incoming radiation, longwave 

incoming radiation, relative humidity and air temperature (Figure 4.2) revealed that there were 

to some extent dependencies among the variables. In the lower panel, a typical pattern was 

found with peaks of air temperature occurring at the same time as minimum values of relative 

humidity, and vice versa. This was quite coincident with the diurnal variation of the shortwave 

incoming radiation, as shown in the upper panel of Figure 4.2. 
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A correlation plot, including scatter and distribution plots, of net surface radiation, 

incoming shortwave and longwave radiation, air temperature, relative humidity, wind speed 

and wind direction, is shown in Figure 4.3. The strongest correlation (Pearson’s correlation 

coefficient) of 0.9880 was found between ܴ௡௘௧ and the shortwave incoming radiation. This is 

also visualized by the strong linear dependence in the scatter plot panel. While both ܴ௡௘௧ and 

shortwave incoming radiation were positively correlated to the air temperature, they were, as 

expected, negatively correlated to the relative humidity. I.e. the increase/decrease in solar 

radiation was to some extent resulting in increased/decreased air temperature and 

decreased/increased relative humidity, as visualized in Figure 4.1. On the other hand, a positive 

correlation of 0.5180 was found between the longwave incoming radiation and relative 

humidity. This is reasonable, since an increase of especially low-level clouds and mist is closely 

related to the level of relative humidity. All three factors strongly impact the amount of 

incoming longwave radiation. The diurnal cycles probably explain much of the correlations 

found between the meteorological variables.   The diagonal in the correlation plot shows the 

distribution of each of the radiative and meteorological variables investigated. As expected 

there was a peak in the distribution of observations for ܴ௡௘௧ close to zero, which is related to 

the absence of shortwave radiation during night, as shown by the blue line in Figure 4.2.  
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Figure 4.2: Time series of incoming shortwave and longwave radiation (upper panel) for the period 18.08.18 – 
25.08.18. Lower panel shows time series for relative humidity and air temperature. An opposite pattern of peaks 
and minimum values is seen for the variables in the lower panel. This is to some extent dependent and coincident 
with the incoming shortwave radiation (blue curve) in the upper panel.  

aug 19 aug 21 aug 23 aug 25

40

50

60

70

80

90

Date

R
e

la
tiv

e
 h

u
m

id
ity

 (
%

)

Date

 

2

4

6

8

10

12

T
e

m
p

e
ra

tu
re

 (
C

e
ls

iu
s)

Relative humidity
Air temperature



41 

Figure 4.3: A correlation plot of the meteorological and radiative variables. The diagonal visualizes the 
distribution of the observations for each of the variables, while the part to the left of the diagonal shows the 
scatterplot between the variables. The part to the right of the diagonal gives the corresponding correlation 
coefficients (Pearson’s correlation coefficient).  

4.2 LM predictions of net surface radiation for different surface types  

Visual inspection of normal Q-Q plots of the error distribution from the linear regression 

models fitted for the different surface types (Figure 4.4) revealed a moderate departure from 

normality. When emphasizing the central values of the plots of the error distribution, the normal 

distribution was a reasonably good approximation for all the different surface types. However, 

there was an overall tendency for all residual distributions to deviate from normality in the tails. 



 
 

42 
 

-2 -1 0 1 2

-1
5

-5
5

Surface type 4: Mountain heathlands

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
Especially for the surface types lichen-heathlands, water and late snow beds, heavier tails were 

found at the extremes. This indicated that the largest residuals were larger than expected, while 

the smallest residuals were smaller than expected. A subsequent analysis of the extreme errors 

revealed that the Cook’s Distance errors were smaller than 0.35 for all models. This is thus an 

indication of no data observations with great influence for the performance of the linear 

regression models. For some surface types the biggest Cook’s Distance was even smaller than 

0.1. All models were also investigated by the studentized residual error. This error measurement 

revealed that all models except the regression model fitted for moderate snow beds, had a few 

studentized residuals greater than twice the standard deviation. This was thus an indication of 

some errors being statistically significant at 95 % level for the fitted regression models. The 

regression models for lichen-heathlands, mountain heathlands, water and extreme snow beds 

had all one big studentized residual of magnitude 3.19, -3.28, 3.06 and 3.18, respectively. These 

residuals should be considered as outliers.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Cont.  
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Figure 4.4: Normal Q-Q plots of the residual distribution for the linear models fitted to each of the different surface 
types.  

The prediction of net surface radiation by using linear regression was dependent on the 

local fitting of the regression coefficients, which implied that the surface cover affected the 

regression coefficients (Table 4.3). The α’s, which represent the intercept with the y axis, varied 

from -466 Wm-2 (lichen-heathlands) to -233 Wm-2 (late snow beds). A difference of more than 

230 Wm-2 between the lowest and highest α’s was thus found between the surface types. The 

 ଵ’s, which may be interpreted as the mean change of net surface radiation when the incomingߚ

shortwave radiation increases/decreases with one Wm-2 at the same time as the longwave 

radiation is kept constant, varied from 0.71 to 0.78 for all the vegetation surface types. For 

water, the ߚଵ was estimated to 0.93. The highest ߚଶ, of 1.38, was found for lichen-heathlands, 

while the second highest, 1.02, was found for water. The ߚଶ’s may be interpreted as the mean 

increase/decrease of net surface radiation for the different surface types when the longwave 

incoming radiation increases/decreases with one Wm-2 and the shortwave incoming radiation 

remains unchanged. 
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Table 4.3: Regression coefficients for the individual fitted linear regression models used for predicting net surface 
radiation for the different surface types.  

Surface type 
Regression coefficients 

α ࢼ૚ ࢼ૛ 
1: Water -365.16 0.93 1.02 
3: Lichen-heathlands -466.55 0.74 1.38 
4: Mountain heathlands -286.99 0.72 0.84 
5: Moderate snow beds -223.96 0.77 0.65 
6: Flood plains -312.14 0.75 0.93 
7: Fens -314.03 0.78 0.91 
10: Late snow beds -224.13 0.71 0.66 

Table 4.4: Statistical results for both the linear regression models and artificial neural networks used for predicting 
net surface radiation for the different surface types. The R2 and RMSE is an evaluation of the training 
process/fitting to the data, while the RMSEP and ܴ௣௥௘ௗ

ଶ  evaluate the predictive power and accuracy of the models 

based on a LOOCV.  

Surface type Number of 
measurements 

Model R2 RMSE RMSEP ࢊࢋ࢘࢖ࡾ
૛  

1: Water 44 
ANN 0.9982 0.70 8.64 0.9978 
LM 0.9988 5.77 5.85 0.9987 

3: Lichen-
heathlands 

49 
ANN 0.9979 0.43 10.31 0.9946 
LM 0.9952 10.02 10.51 0.9943 

4: Mountain 
heathlands 

44 
ANN 0.9983 0.10 7.46 0.9973 
LM 0.9985 5.13 5.51 0.9981 

5: Moderate 
snow beds 

39 
ANN 0.9957 0.24 5.14 0.9973 
LM 0.9971 4.98 5.18 0.9966 

6: Flood plains 48 
ANN 0.9988 0.58 8.40 0.9981 
LM 0.9990 5.59 5.69 0.9989 

7: Fens 47 
ANN 0.9972 0.28 10.52 0.9957 
LM 0.9971 7.51 7.76 0.9966 

10: Late snow 
beds 

48 
ANN 0.9988 0.15 10.30 0.9977 
LM 0.9967 11.07 11.54 0.9962 
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According to the statistical results given in Table 4.4, the LMs showed a high quality 

for the fitted models for all surface types, by explaining more than 99% of the variation in net 

surface radiation by the models. The small decrease from the R2 to ܴ ௣௥௘ௗ
ଶ  revealed that the fitted 

LMs predicted net surface radiation well for new independent observations. The LMs’ RMSE 

was between 4.98 – 11.07 Wm-2, while the RMSEP was found to be in the range of 5.18 – 11.54 

Wm-2. For all surface types there was only a small increase from the RMSE to the RMSEP. The 

biggest difference was found to be 0.49 Wm-2 (lichen-heathlands), but for the other surface 

types the difference between RMSE and RMSEP was considerably smaller. This indicated that 

the linear models were well fitted to both the training data and the independent observations of 

incoming shortwave and longwave radiation.  

Predictions of continuous time series of net surface radiation (for both the LMs and the 

ANNs) for the whole period are shown in Figure 4.5. Each surface type is plotted in a separate 

panel. The diurnal variation in net surface radiation was predicted well for all surface types, 

with evident peaks during midday due to the dominating incoming shortwave radiation at 

daytime. At night time a typical pattern of small negative values of net surface radiation was 

found. This is reasonable due to the absence of incoming shortwave radiation, which means 

that long wave radiation is the only controlling mechanism for the radiative balance. The 

visualization revealed that the predictions for all surface types managed to capture the sudden 

change in incoming shortwave radiation caused by change in cloud cover very well. This is 

shown as the rapid shift in spikes for most days during daytime. For all surface types the 

predictions of the LM’s were in good agreement compared to the actual measurements 

(illustrated as the blue circles in Figure 4.5). 
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Figure 4.5: Predicted time series of net surface radiation for the different surface types (different panels) for the 
period 18.08.18 – 25.08.18. The solid-drawn, green lines are for the LMs, while the dotted, purple lines show the 
predictions of the ANNs. The blue circles visualize the actual measurements of ܴ௡௘௧ for each of the different 
surface types, which were used to train the models.  

4.3 ANN predictions of net surface radiation for different surface types  

According to the statistical results given in Table 4.4, the ANN showed a high quality 

for the fitted models for all surface types by explaining more than 99% of the variation in net 

surface radiation by the models. No distinct pattern regarding coefficients of determination for 

ANNs versus LMs was found. Coefficients of determination displayed greater variation among 

the different surface types. Nevertheless, a clear tendency of a larger decrease from the R2 to 

ܴ௣௥௘ௗ
ଶ  was found for the ANNs than for the LMs. This may be interpreted as the LMs were 

predicting the net surface radiation evenly well, regardless of whether the observations of 

incoming shortwave and longwave radiation were independent of the training data or not. The 

quality of the ANNs and their predictive power were more dependent of the change from 

training data to new independent input observations. For the ANN fitted for moderate snow 

beds, the correlation coefficient was 0.9957, while ܴ௣௥௘ௗ
ଶ  was calculated to 0.9973. 

The ANNs’ RMSE were in the range between 0.10 – 0.70 Wm-2. When comparing 

RMSE for the LMs and the ANNs for all the surface types, a much higher RMSE was found 
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for the LMs. However, the difference between the RMSE and RMSEP, was found to be greater 

than a factor of 10 for all ANNs, and for some of the surface types the ANN’s difference 

between RMSE and RMSEP increased with a factor of 74. For all surface types except lichen-

heathlands, the RMSEP of the ANNs exceeded the RMSEP of the LMs. The findings of the 

abnormal large increase of RMSE to RMSEP of the ANNs, revealed an overfitting of the ANNs. 

Overall, the time series revealed a fairly good pattern of accordance between the ANN 

predicted and LM predicted net surface radiation. However, a main feature from the 

visualization was that for almost all surface types the LMs predicted the extreme values and 

peaks of net surface radiation during daytime better than the ANN. Especially for surface type 

5, moderate snow beds, and surface type 7, fens, the difference in daytime predictions between 

the LM and ANN were considerable, with the largest differences of 285 Wm-2 and 221 Wm-2, 

respectively. This was found at 13.30 pm on 21.08.18. For surface type 10, late snow beds, an 

almost perfect match between the LM and ANN predicted ܴ௡௘௧ occurred for the whole time 

series. The comparison of the predicted times series provided by the ANNs and actual 

measurements (illustrated as the blue circles in Figure 4.5), revealed that there was an 

inconsistence between the predictions and measurements. This was mainly pronounced during 

daytime, especially found for the peaks and extremes during midday and for the sudden changes 

due to clouds.  

4.4  Comparison of net surface radiation for different surface types 

The ANCOVA revealed that there were statistically significant differences in LM 

predicted net surface radiation among all surface types except for three of them. The exceptions 

of difference were found between late snow beds and flood plains, between late snow beds and 

moderate snow beds, and between flood plains and fens. It was thus a statistically significant 

difference in albedo and heat balances for almost all surface types. The smallest p-values from 

the ANCOVA were found between water and the other surface types, where all of them were 

< 2.2*10-16. The strong distinction of water was also revealed from the visualization of the time 

series of the seven surface types (Figure 4.6).  Here it was found that water had considerably 

higher net surface radiation during daytime than the other surfaces. At the same time, the 

visualization showed that during daytime, especially with clear sky without clouds, net surface 

radiation was found to be systematically lowest for lichen-heathlands. These findings seem 
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reasonable due to the low albedo of water, ~0.05 - 0.10, and the much lighter surface provided 

by lichens. For the remaining surface types, the plotted time series revealed that during daytime, 

net surface radiation was found to be highest for moderate snow beds, followed by fens, flood 

plains, late snow beds and mountain heathlands.  

Another interesting observation found during nighttime, were that both water and 

lichen-heathlands excelled with systematically lower net surface radiation than the other surface 

types. The net surface radiation at night is mainly controlled by the longwave components. Such 

a clear distinction between water and lichen-heathlands on one hand and the other surface types 

on the other, was thus explained by (i) higher emissivity, (ii) higher temperatures and/or (iii) 

considerable difference of the mechanisms controlling the heat balances. These mechanisms 

are photosynthesis, evapotranspiration, ability to capture and store precipitation and the access 

of water. According to Brewster (1992) the thermal emissivity (for surface temperatures of 300 

K) is 0.92 – 0.96 for vegetation, ~0.96 for water and 0.88 – 0.92 for rocks. The high emissivity

of water may therefore to some degree explain the large outgoing longwave radiation found 

during night. However, since lichens are spectrally similar to other vegetation for thermal 

infrared wavelengths (Abbot et al., 2013), the low net surface radiation for lichen-heathlands 

was mainly explained by the higher temperature during night compared to the other vegetation 

surfaces. The difference of 30 Wm-2 in net surface radiation between mountain heathlands and 

lichen-heathlands found 21.08.18, at 2 am was therefore mainly explained by temperature 

differences. However, for surface type 5, which consists of boulder fields and moderate snow 

beds, a potential lower emissivity of the rocks (according to Brewster, 1992) may play a 

noticeable role for emissions of longwave outgoing radiation.  
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Figure 4.6: Comparison of net surface radiation predicted by LMs for the different surface types. 
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4.5  Footprint analysis 
 The estimated footprint climatology, i.e. the aggregated footprints estimated for all half 

hourly measurements of the time series of the turbulent fluxes, is shown in the surface type map 

in Figure 4.7. The shaded area covers 80% of the area where the turbulent energy has exchanged 

between the surface cover and overlying atmosphere for the investigated period between 

18.08.18 and 25.08.18. The footprint climatology revealed that approximately two thirds of the 

contribution of the turbulent energy fluxes came from the surface lying northwest of the tower, 

while the last one third came from the southeastern area. Thus, ~28% of the contribution to the 

measurements came from open water (Table 4.5). The river running southeast of the tower was 

a predominant source. Among the vegetation surface types, it was found that fens, mountain 

heathlands and lichen-heathlands contributed the most to the turbulent energy exchange for the 

period. 93.91% of the total footprint area was covered by the seven surface types investigated 

in the study, while 6.09% was covered by nature types not investigated in this study. One half 

of these contributions came from surface type 0, anthropogenic nature types, while the last half 

originated from surface type 2. As shown, and expected, there was a high agreement between 

the predominant wind direction for the period (Figure 4.1, right panel) and the main source area 

contributing to the flux tower’s footprint.  

 

 

Table 4.5: The percentage contribution of each surface type to the 80% footprint climatology of the turbulent 
energy fluxes.   

Surface type 
Percentage contribution, ࢏࢖, to the 

turbulent fluxes’ footprint (%) 

1: Water 27.95 
3: Lichen-heathlands 12.02 
4: Mountain heathlands 13.05 
5: Moderate snow beds 10.56 
6: Flood plains 6.29 
7: Fens 17.21 
10: Late snow beds 6.83 
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Figure 4.7: As Figure 3.6. The shaded area visualizes the 80% footprint climatology area during the 18.08.18 – 
25.08.18 period, estimated by the method of Kljun et al. (2015) for the turbulent fluxes by using the online service 
data processing provided by Kljun et al. 

 
 

 The comparison of net surface radiation measured by the Finse stationary flux tower 

and the LM predicted net surface radiation where the heterogeneity of the surface cover was 

accounted for by weighting with the contribution from different surface types, ෨ܴ௡௘௧, are given 

in Figure 4.8. The percentage contribution of each surface type which was used to compute the 

weighted net surface radiation, is shown in Table 4.5. Inspection of Figure 4.8 showed that there 

was a high degree of consistency between the LM predicted ෨ܴ௡௘௧ and the net surface radiation 
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measured by the tower. Generally, the most pronounced difference was found during night, 

where the LM predicted ෨ܴ௡௘௧ had greater negative values than the ܴ௡௘௧ measured by the 

stationary flux tower. This was an indication that the LM predicted ෨ܴ௡௘௧ had higher values of 

outgoing longwave radiation than ܴ௡௘௧. There were also tendencies of higher extreme values 

(peaks) at daytime for ܴ௡௘௧ measured by the stationary flux tower, than for the LM predicted 

෨ܴ௡௘௧, but these findings were not consistent throughout the whole period.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Upper panel: The solid, green line represents net surface radiation where the surface heterogeneity is 
accounted for by weighting the LM predictions of the different surface types by their percentage contribution of 
the turbulent flux tower footprint. The dashed, blue line represents ܴ௡௘௧ measured by the stationary flux tower at 
Finse. Lower panel: The pink line represents the difference between net surface radiation measured by the Finse 
flux tower and the LM predicted footprint weighted net surface radiation.  
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4.6  Energy balance closure  

 42% of the half hour data were discarded due to low quality of the estimates of the 

turbulent fluxes of sensible and latent heat. Figure 4.9 shows the half hourly averaged fluxes 

throughout the day for the period 18.08.18 – 25.08.18. The sensible heat flux was found to 

transport heat away from the surface in daytime from 9 am to 10 pm, while at night there was 

a transport of heat from the atmosphere towards the surface due to lower temperature of the 

surface than for the overlying air. The latent heat flux revealed a transportation of energy as 

vaporization heat from the surface towards the atmosphere throughout the whole day. As 

expected, the soil heat flux played a minor role of the energy exchange, with positive values 

between 12 am to 10 pm, thus indicating an energy transport into the soil. A time lag of 

approximately two to three hours was found between the net surface radiation and the soil heat 

flux.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Half hourly averaged fluxes, for the period 18.08.18 – 25.08.18, showing the diurnal variations of the 

latent heat (LE), the sensible heat (H), the soil heat flux (G), the net surface radiation (ܴ௡௘௧ሻ measured by the Finse 

flux tower, and the LM predicted net surface radiation ( ෨ܴ௡௘௧) accounting for the heterogeneity of the surface cover.   

 

 

 The relationships between the LM predicted ෨ܴ௡௘௧ and the flux measurements of 

respectively sensible heat (H), latent heat (LE) and soil heat flux (G) were 
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H = 3.62 + 0.23 * ෨ܴ௡௘௧    (4.1) 

LE = 19.20 + 0.13 * ෨ܴ௡௘௧    (4.2) 

G = -4.58 + 0.05 * ෨ܴ௡௘௧    (4.3) 

 

According to these results, the sensible heat flux and the latent heat flux accounted for 23% and 

13% of the LM predicted ෨ܴ௡௘௧, respectively. The soil heat flux accounted for only 5% of the 

LM predicted ෨ܴ௡௘௧.  

 The energy balance closure (Figure 4.10) was calculated to 37% when assessing the 

energy balance with the ordinary least squares regression and by using the net surface radiation 

measured by the Finse flux tower.  A similar closure of 37% was calculated for the same 

technique, but where LM predicted ܴ ෨௡௘௧ was used as available energy instead of ܴ ௡௘௧. However, 

the coefficient of determination for the two energy closures were found to be 0.5789 and 0.5913, 

respectively. Thus, a small increase of 1.24 percent points was found between the two 

regressions. This indicated that the variation of the turbulent fluxes of sensible and latent heat 

was explained slightly better by the LM predicted ෨ܴ௡௘௧ than by the ܴ௡௘௧ measured by the Finse 

flux tower. 

 The calculations of the energy balance ratio revealed that the turbulent fluxes accounted 

for 53.80% of the incoming available energy measured by Finse flux tower. When the footprint 

corrected net surface radiation based on the predictions of the LMs was used as available energy 

together with the soil heat flux, the EBR was found to be 58.20%. An increase of 4.40 percent 

points was thus found for the energy balance closure when the heterogeneity of the surface 

cover was accounted for. From the visual inspection of half hourly averaged fluxes (Figure 4.9), 

it was reasonable to believe that a major cause of the increase of the EBR was a lower net 

surface radiation at night from the heterogenous surface than measured by the Finse flux tower. 

Thus, the higher emissions of long wave radiation from the heterogenous surface cover at night 

led to a decrease of the available energy for the period. The imbalance between the incoming 

and outgoing energy was therefore decreased.  
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Figure 4.10: A comparison of the energy balance closure investigated with net surface radiation measured by the 
Finse flux tower (upper panel) and the energy balance closure investigated with the LM predicted net surface 
radiation corrected for the heterogeneity of the surface cover (lower panel). Both energy closures were investigated 
for the period 18.08.18 – 25.08.18. The red lines illustrate the regression lines obtained by OLS regression between 
the available energy (x axis) and the turbulent energy (y axis). The dashed black lines visualize the perfect energy 
balance closure of 100 % with an intercept of zero and a slope equal to 1. The energy balance ratio (EBR) is 
represented in the legends in both panels.  
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5 Discussion  
5.1 Suitability of ANN and LM as predictive models for net surface 

radiation 
The statistical evaluation of the LMs showed a high quality for the fitted models for all 

the different surface types, with correlation coefficients for the prediction in the range of  0.9943 

– 0.9989 (Table 4.4). The RMSEP for the LMs was found to be in the range between 5.18 –

11.54 Wm-2. For the surface types lichen-heathlands, moderate snow beds and late snow beds, 

both RMSEP and ܴ௣௥௘ௗ
ଶ  was higher for the ANNs than for the LMs. However, by inspection of 

the visual times series of lichen-heathlands and moderate snow beds (Figure 4.5), a better match 

was found between the measurements and the predictions for the LMs, than between the 

measurements and the ANN’s predictions. This disagreement is explained by the failure of the 

ANNs to predict net surface radiation well for extreme values and peaks during daytime. The 

LMs predicted net surface radiation very well for all surface types throughout both day and 

night, with an almost perfect match between the measurements and predictions. Thus, it was a 

general tendency that the ANNs were unable to predict the extreme values and peaks in net 

surface radiation at midday for most surface types as well as the LMs.  

When evaluating a model used for predicting net surface radiation, a decisive 

characteristic for the model is to be able to capture the extreme values when having clear sky 

during day and rapid shifts of shortwave incoming radiation caused by clouds. A model that 

fails to account for the huge variation of shortwave incoming radiation and which is not capable 

of predicting the extremes of net surface radiation, is thus not suitable for the purpose. 

Especially when investigating the different surface types’ ability to reflect the incoming 

shortwave radiation, an accurate prediction of net surface radiation at midday is essential. 

Otherwise, incorrect and biased evaluations of the albedo characteristic may be the result.  

From the comparison of the RMSE and RMSEP (Table 4.4) for the ANNs, a clear 

indication of overfitting was found. Artificial neural networks are quite complicated models, 

and overfitting is not uncommon. Their ability to learn non-linear relationship and make 

advanced memorizations of the training data is advantageous when having complex data sets 

and may therefore be an important complement to statistical models. Mahalakshmi et al. 

(2016a) and Geraldo-Ferreira et al. (2011a) reported a successful estimation of net surface 

radiation based on meteorological variables, for both LMs and ANNs. However, in these studies 

data were collected for respectively 11 months and four months, thus providing a much greater 
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data basis when training models for generalized purpose. In this study, it is believed that an 

overfitting is mainly explained by the small datasets with too few observations available for the 

training process. Therefore, the ANNs were too complex even though it was a strong 

relationship between output and input variables and even though all ANNs, except for the neural 

network fitted for lichen-heathlands, had only one single hidden layer with few hidden neurons. 

5.2 Importance of different surface types for net surface radiation 

The ANCOVA revealed that there was a statistically significant difference in net surface 

radiation between the different surface types. Only between moderate snow beds and late snow 

beds, between late snow beds and flood plains, and between flood plains and fens, no statistical 

difference was found. It was not always possible to detect a clear difference between the surface 

characteristic of the moderate snow beds and the extreme snow beds when the surfaces were 

investigated in field. It is therefore reasonable that a minor difference was found between those 

two. The moderate snow beds were also the surface type which consisted of most different 

nature types. This was reflected in the large variation of the surface cover between the different 

measurement sites within this surface type. 

The higher temperatures of the lichen-heathlands and water during nighttime give a 

clear distinction between these surfaces and the others. Due to water’s high heat capacity, a 

damped diurnal variation in surface temperature is likely to occur, compared to vegetation. It is 

therefore reasonable that water has more negative net surface radiation than the other surfaces 

during night. The high emissions of longwave radiation during night for lichen-heathlands is 

likely to be related to the lichens’ large water storage capacity. Their sponge-like behavior leads 

to a maximum saturation after just some minutes when exposed to water. The saturation 

happens when exposed to rain, fog, dew or only high air humidity. Since the weather during the 

study period was quite humid and rainy, the lichen-heathlands remained quite wet during both 

days and nights. The lichen-heathlands were therefore storing considerably amounts of water 

despite their relative shallow height above the solid rock. The high emissions of longwave 

radiation from the lichen-heathlands during night is therefore likely to happen because of the 

damped diurnal variation of temperature in the surface cover. If the lichen-heathlands had been 

dehydrated during the period, the emissions of longwave radiation would have been lower 

during night (Kershaw, 2010).  
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The differences in net surface radiation obtained between the different surface types at 

midday, were mainly caused by significant differences in the reflecting properties of the 

shortwave incoming radiation of the surfaces. The longest period of sunny and clear sky 

weather, which provided considerable amount of direct incoming shortwave radiation, was 

during midday, ~12.30 pm – 14.30 pm, 21.08.18. The largest differences in net surface radiation 

obtained throughout the whole study period occurred for some of the different surface types 

during these hours. Worth noticing was the difference between fens and lichen-heathlands of 

62 Wm-2, the difference between mountain heathlands and fens of 39 Wm-2, and the difference 

between moderate snow beds and mountain heathlands of 50 Wm-2. This can be understood as 

a significant difference of albedo between the surface types. An even more pronounced 

distinction in net surface radiation due to the albedo effect is expected to be detected when 

longer periods with stable direct incoming shortwave radiation occurs.  

It must be expected that shadows and disturbances of the radiation tower and logger-

box influenced the measurements performed in field. However, these influences are assumed 

to not differ substantially between the different measurement sites and the different surface 

types. Due to uncertainty in the vegetation map and uncertainty in the precision of the GPS 

used to navigate to the measurement points, it must be expected that for some measurements 

smaller contribution from other surface types may have occurred.   

5.3 Assessment of the energy balance closure 

As one of the main goals, this study intended to investigate how the effect of non-

corresponding source areas between the turbulent fluxes and net surface radiation contributed 

to the energy imbalance between the turbulent fluxes and the available energy at Finse. The 

Finse flux tower is placed in a highly heterogenous environment, both in terms of surface cover 

and topography. A thorough understanding of how net surface radiation differs for different 

surface types is thus important when analyzing potential causes for the inconsistence between 

incoming and outgoing energy. 

Based on the energy balance closure investigated by OLS regression, no improvement 

was found between the available energy and turbulent fluxes when correcting for the 

heterogeneity of the surface cover. Both closures were calculated to 37%. However, the 

coefficient of determination increased by 1.24 percent points. In this study, the footprint 

climatology  was  used  to  weight  the  different  surface  types  to  find  ܴ෨௡௘௧.  The  footprint 



61 

climatology represents the footprint averaged for the whole study period, which means that 

෨ܴ௡௘௧ has been weighted with only one weight estimate. However, the OLS regression 

evaluates the energy balance closure for every half hour observation of available and turbulent 

energy. The evaluation of the energy balance closure by the OLS regression based on the on 
ܴ෨௡௘௧ weighted by the footprint climatology is therefore a shortcoming. It would have been 

more correct to calculate every half hour footprint during the study period and use this to find 

a precise weight for the different surface types for every half hour measurement. 

Another disadvantage of using the OLS regression for evaluating the energy balance 

closure, is the requirement of no random errors of the independent variables. This assumption 

is not valid when using the available energy of soil heat flux and net surface radiation as 

predictor variables. Therefore, the regression produces a downward bias in the regression 

slope coefficient, and a flatter curve is obtained. This means that the energy balance closure is 

found to be lower than it actually is. To avoid the incorrectly fulfillment of this assumption, 

Wilson et al. (2002) investigated, among other things, the performance of the reduce major 

axis (RMA) regression for the energy balance closure. This is simply a regression technique 

which switches the independent available energy and the dependent turbulent energy. The 

slope is then evaluated as geometric mean of the OLS and switched regression (Wilson et al., 

2002). Their findings showed that when using RMA regression instead of OLS regression, the 

mean closure for the tested sites increased from 79% ± 1% to 83% ± 1%.  

When the energy balance closure was investigated by the energy balance ratio, it was 

found to be 53.80% when evaluated with ܴ௡௘௧ from the Finse flux tower and 58.20% when 

evaluated with LM predicted ܴ ෨௡௘௧. Thus, the energy balance closure increased with 4.40 percent 

points when accounting for the heterogeneity of the surface cover. The increase is explained by 

the fact that the accumulated LM predicted ෨ܴ௡௘௧ during the period 18.08.18 – 25.08.18 was 

found to be lower than the accumulated ܴ௡௘௧ provided by the Finse flux tower for the same 

period. The effect of higher emissions of longwave radiation during night for the heterogenous 

surface cover, was especially important for this result.  

By using EBR, it is possible to evaluate the energy balance closure overall for longer 

periods by averaging over random errors in the half-hour measurements. This probably explains 

to some extent why the energy balance closure, when evaluated with the LM predicted ෨ܴ௡௘௧, 

was found to be 21 percent points higher for the EBR than the OLS regression. When 

investigating the energy balance closure at a time scale corresponding to the half hourly 

measurements, there was a low balance between incoming and outgoing energy. But when the 
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energy balance was investigated overall for the whole period, a bigger portion of the incoming 

energy was explained by outgoing energy processes. For the period investigated at Finse, it was 

found to be a surplus of energy during daytime, while at night the negative net surface radiation 

and positive latent heat contributed to a deficit of energy. Therefore, a technique which 

investigates the energy balance by calculating the ratio between accumulated available and 

turbulent energy for a longer period are allowing for the surplus/deficit during day/night. For 

the OLS regression the same energy surplus/deficit during day/night was a major source for the 

flat slope, and thus the low energy closure.     

In addition to measure the net surface radiation for the different surface types, a few 

days (19.08.18 – 21.08.18) of measurements of soil heat flux were also performed for some of 

the different surface types. This was done to legitimately exclude that the mismatching between 

the one-point measurement of soil heat flux and the footprint of the turbulent fluxes was an 

important cause for non-closure. The mean difference between the soil heat flux measured by 

the Finse flux tower and the soil heat flux measured at the different surface types were 

calculated to 10 Wm-2. This indicated thus, as assumed, that potential differences of the soil 

heat flux between different surface types is not a considerable cause for the energy imbalance.  

The energy storage is still unexplored at the Finse flux tower. In this study, no 

investigations of potential sources and sinks of energy have been performed. It remains to be 

investigated if storage of energy plays an important role for the energy imbalance. It is not 

expected that neither the physical storage of heat in the canopy nor the biochemical storage of 

energy in the vegetation constitute a significant contribution of the total energy storage in the 

surface element at Finse. This is simply explained by the scanty vegetation at place. However, 

the subsurface storage of energy should be explored to improve and provide more accurate 

estimates of the soil heat flux.  

When future investigations of the energy balance for the Finse flux tower are done at 

longer time scales, such as a seasonal scale, storage of energy in the water should be paid 

attention. As shown by the surface type map (Figure 4.7), an important source of the footprint 

of the turbulent fluxes northwest for the tower is open water as ponds and smaller streams. 

According to the very high heat capacity of water, it is reasonable to assume that an extensive 

amount of energy is accumulated into the water masses throughout the summer season.  When 

ignoring this effect at seasonal scale, the water ponds act like an enormous sink of energy. This 

leads to an incorrect evaluation of the energy balance. It could therefore be interesting to 

perform estimations of the energy accumulated in these sinks for future assessment of the 
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energy balance during summer seasons, and test whether this effect has significant influence on 

the energy balance ratio or not. 

The advection of water in the river Utsekveikja, running southeast of the tower, was 

neglected in this study. Especially when the predominating wind directions are from south and 

east, a considerable part of the footprint of the turbulent fluxes comes from the river. Just before 

the river enters the source area of the flux tower, the river from lake Finsevatnet meets the 

meltwater and the streams from the Hardangerjøkulen Glacier.  A massive amount of cold water 

is thus advected through and into the surface cover which is contributing to the measurements 

of the energy exchange. Lack of energy closure may thus be explained by missing estimates of 

the advected energy in the river. A project at the Department of Geosciences at the University 

of Oslo is investigating this potential effect. This is done by measuring the temperature and 

discharge at different places in the river. By comparing the measurements of these components 

before and after the water enters and leaves the source area of the flux tower, it is possible to 

estimate if any energy is accumulated and stored within the river before it is advected out of the 

system. 

Failure to meet the requirement of a flat and homogenous surface, which is a 

fundamental assumption for satisfying one-dimensional transport of a single eddy covariance 

system used for measuring net exchange between surface and the atmosphere (Leuning et al., 

2012), will be an everlasting challenge for the Finse flux tower. The fact that the Finse flux 

tower is placed in a highly heterogenous environment, violates the assumption that no advective 

flux is contributing to the exchange process. It is therefore reasonable to assume that a source 

of both mass and energy is advected through the measurement site. As stated by Leuning et al. 

(2012): “Inability to satisfy the highly demanding criterion of horizontal homogeneity in both 

surface fluxes and air flow is likely to be a major cause of incorrect measurements at many flux 

stations”. 

In a study that investigated the EC measurements conducted in fields with non-ideal 

conditions, Panin et al. (1998) pointed to the relationship between energy imbalance and the 

inhomogeneity of the land surface. They found a positive correlation between the increase of 

the heterogeneity of the surface in the vicinity of the flux tower and the increase of the energy 

imbalance. Because of surface inhomogeneity, a tendency of horizontal advection may generate 

an internal boundary layer, which cause problems for the EC measurements in the low 

frequency part of the covariance spectrum. As noted by Panin et al. (1998), “The point 

observation (instrument) interprets these influences as long waves that have an effect similar to 
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a process of non-stationarity”.  Then the lack of stationarity in the atmospheric boundary layer 

is important for the energy non-closure at site by contributing to the underestimation of the 

turbulent fluxes. A neglected transport through the sides of a terrestrial surface element is 

therefore invalid when the assumptions of horizontal homogeneity and steady state are not 

fulfilled at site, such as Finse.   

Not only small-scale heterogeneity in topography and surface cover around the Finse 

flux tower complicates the estimation of the turbulent fluxes. The fact that the flux tower is 

located nearby both the lake Finsevatnet and the river Utsekveikja, may be problematic by 

causing breeze effects. When having two substantially different surfaces, differences in the 

thermal properties will occur due to different radiation properties and heat capacities of the two 

surfaces. The river and lake will cool and warm at a different rate than that for land. Thus, a 

breeze may appear. Aubinet (2008) explains that the movement of the breeze could develop in 

a shallow boundary layer and decouple the eddy covariance system from the surface. Such, a 

considerable advection of energy is likely to occur, and the turbulent transport would be poorly 

represented under such conditions. This leads to an underestimation of the turbulent fluxes, and 

the lack of capturing the energy exchange as advection increases the energy imbalance. 

Another potential mechanism explaining the energy non-closure at Finse is the effect of 

drainage winds or mountain winds. Since the flux tower is placed in a valley, cold and dense 

air tends to sink down during conditions where the valley slope is cooled due to emissions of 

long wave radiation. The steep slope of the valley is accelerating the cold air downwards to the 

bottom of the valley. Here the surface is covered of flows of cold air, which creates a shallow 

sublayer. Aubinet (2008) states that under such conditions a decoupling between the surface 

and the measuring point often occurs. A considerable amount of energy can be transported by 

advection under these conditions. The lack of measuring the energy exchange by this 

mechanism is probably the most important source of error for night eddy flux measurements 

(Aubinet, 2008). The drainage effect at the Finse flux tower can even be strengthened by the 

fact that Hardangerjøkulen Glacier is located just a few kilometers southwest of the tower. 

Potential katabatic winds during daytime can cause erroneous estimates of the turbulent fluxes 

due to a decoupling between the surface and measuring point even during daytime.   

As discussed, there are many potential sources explaining the low energy balance 

closure found at the Finse flux tower in this study. Further investigations of the potential causes 

will hopefully give a better understanding of the energy exchange processes and their 

significance for the energy balance closure.  
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6 Conclusion 
This study has demonstrated that there is a significant difference of net surface radiation 

for the different alpine surface types investigated at the Finse flux tower. This implies that 

considerable differences occur between the surface cover which contributes as source area to 

the measurements of the turbulent fluxes. One should therefore strive to obtain an estimation 

of net surface radiation which accounts for the heterogeneity of the surface cover. An increase 

of 4.40 percent points was found for the energy balance closure (evaluated with the EBR) when 

correcting for the non-corresponding footprint between net surface radiation and the turbulent 

fluxes. When evaluated with OLS regression no effect on the energy balance closure was found 

when the non-corresponding footprint was corrected. The energy balance closure was found to 

be 37% when investigated with the LM predicted ෨ܴ௡௘௧ through the OLS regression, and 58% 

when investigated with the LM predicted ܴ ෨௡௘௧ through the EBR. The disagreement between the 

different techniques is most likely to be explained by EBR’s advantage of evaluating the energy 

balance closure at longer time scales than the half-hour measurements. The EBR allows for the 

accumulated surplus of energy during day and the accumulated deficit of energy during night. 

The unfulfilled assumption of no random errors in the net surface radiation and soil heat flux, 

may also contribute to an underestimation of the energy balance closure when evaluated with 

the OLS regression. 

A very high accuracy was found when predicting net surface radiation for the different 

surface types by using linear regression model with incoming longwave and shortwave 

radiation. An exceedingly large increase of the RMSE to the RMSEP of the ANNs revealed 

that the ANNs were overfitted. They also failed to predict the extremes and big variation of net 

surface radiation which occurred during daytime. Therefore, the study concludes that the ANNs 

are not preferable when predicting net surface radiation for small data sets (≤ 50 observations) 

of climatic variables.    

The work presented here, is a proof-of-concept study, showing how heterogeneity at 

flux sites can be accounted for. At the Finse flux tower, the unfulfilled conditions of the EC-

system and the large-scale heterogeneity (in terms of the glacier, the river and the valley) 

surpasses the effect of the net surface radiation corrected for the heterogeneity of the surface. 

Even though this study did not find a major increase in the surface energy balance closure, it 

still demonstrates the importance of accurate estimation of net surface radiation for different 

surface types.   
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