Development and decline of the hippocampal long-axis specialization and differentiation during encoding and retrieval of episodic memories

Running title: Hippocampal anterior-posterior specialization through the lifespan

Espen Langnes¹, Didac Vidal-Piñeiro¹, Markus H. Sneve¹, Inge K. Amlien¹, Kristine B Walhovd¹,², Anders M Fjell¹,²

1) Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
2) Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

Address correspondence to:
Anders M Fjell
Pb. 1094 Blindern
0317 Oslo, Norway
andersmf@psykologi.uio.no
Abstract

Change in hippocampal function is a major factor in lifespan development and decline of episodic memory. Evidence indicates a long-axis specialization where anterior hippocampus is more engaged during encoding than during retrieval, and posterior more engaged during retrieval than during encoding. We tested the lifespan trajectory of hippocampal long-axis episodic memory-related activity and functional connectivity (FC) in 496 participants (6.8-80.8 years) encoding and retrieving associative memories. We found evidence for a long-axis encoding-retrieval specialization that declined linearly during development and aging, eventually vanishing in the older adults. This was mainly driven by age effects on retrieval, which was associated with gradually lower activity from childhood to adulthood, followed by positive age-relationships until 70 years. This pattern of age effects characterized task engagement regardless of memory success or failure. Especially for retrieval, children engaged posterior hippocampus more than anterior, while anterior was relatively more activated already in teenagers. Significant intra-hippocampal connectivity was found during task, which declined with age. The results suggest that hippocampal long-axis differentiation and communication during episodic memory tasks develop rapidly during childhood, are different in older compared to younger adults, and that the age-effects are related to task engagement, not the successful retrieval of episodic memories specifically.

Keywords: Aging, development, hippocampus, memory, fMRI
Introduction

Episodic memory function declines in normal aging (Nyberg et al. 2012; Ronnlund et al. 2005), with changes in hippocampal function appearing to be a major cause (Fjell et al. 2014). However, although hippocampus (HC) is critical for encoding, consolidation and retrieval of episodic memories (Schacter et al. 2012; Tulving 1984, 2002), its specific role is still debated (Moscovitch et al. 2016; Tulving 2002, 1984; Schacter et al. 2012; Klein 2014). What is clear is that the role of HC during encoding and retrieval is not uniform, and that the different aspects of hippocampal involvement must be supported by partly different anatomical regions or subfields closely communicating to allow successful episodic memory operations (Moscovitch et al. 2016; Strange et al. 2014; Collin, Milivojevic, and Doeller 2015). For instance, recent studies have suggested a long axis specialization of HC in memory processing (Poppenk et al. 2013; Chase et al. 2015; Kühn and Gallinat 2014), where the anterior hippocampus (aHC) is especially engaged in encoding, and the posterior hippocampus (pHC) is more heavily engaged in retrieval and reconstruction (Kühn and Gallinat 2014; Lepage, Habib, and Tulving 1998; Poppenk et al. 2013; Nadel, Hoscheidt, and Ryan 2012).

This long axis specialization may be caused by fundamental differences in the specific cognitive processes supported by aHC vs. pHC. For instance, encoding of novel episodes usually includes forming relations between random items, which is known to be associated with activation in aHC (Maass et al. 2014; Milivojevic, Vicente-Grabovetsky, and Doeller 2015), while retrieval in response to an external stimulus will include encoding of a repeated event possibly requiring more attention to perceptual aspects of the stimulus, which requires more communication with posterior cortical regions (Moscovitch et al. 2016; Poppenk et al. 2013). A recent study showed aHC activity in response to violation of narrative predictions rather than novelty per se (Milivojevic, Vicente-Grabovetsky, and Doeller 2015). Another suggestion is the hippocampal encoding/ retrieval network model (HERNET), according to which switching between the anterior hippocampus/ dorsal attention network and the posterior hippocampus/ default mode network accounts for the observed
differences in encoding vs. retrieval-related hippocampal long axis activity (Kim 2015).

As many of the cognitive processes underlying the hippocampal long-axis specialization vary with age to different degrees, the purpose of the present study was to test whether hippocampal activity across the anterior-posterior long axis during encoding and retrieval relates to chronological age in development, adulthood and aging, and whether such differences in long axis specialization are specifically related to successful vs. unsuccessful encoding and retrieval of episodic memory, or rather to encoding and retrieval processes regardless of accuracy. To this end, 496 cognitively healthy participants from 6.8 to 80.8 years underwent functional magnetic resonance imaging (fMRI) during encoding and retrieval in an associative memory task, allowing testing of activity and connectivity in and between the aHC vs pHC.

Previous studies have shown age-effects on activation differences between aHC and pHC. It has been suggested that protracted structural and functional development of hippocampal sub-regions along the anterior-posterior axis contributes to age-related differences in episodic memory performance in children and youth (DeMaster et al. 2014; DeMaster and Ghetti 2013; Sastre Iii et al. 2016). A previous study suggested higher degree of hippocampal sub-region specialization during retrieval in adults compared to children (Sastre Iii et al. 2016). Towards the other end of the lifespan, the literature is divergent. While many studies find age-related reductions in hippocampal activity associated with successful episodic memory (Cabeza et al. 2004; Daselaar et al. 2006; Dennis et al. 2008; Dennis, Kim, and Cabeza 2008; Murty et al. 2009), others find lack of age effects (Cansino et al. 2015; de Chastelaine et al. 2016b; Duverne, Habibi, and Rugg 2008; Park et al. 2013) (for reviews, see (Leal and Yassa 2013; Nyberg 2017), or that differences are affected by factors such as task performance (de Chastelaine et al. 2016a). Longitudinal studies show that hippocampal activity may be preserved in older adults with stable memory (Pudas et al. 2013) and reduced in those who decline (Persson et al. 2012). Recent results also suggest that age-correlations may be restricted to certain hippocampal regions (Carr et
al. 2017), such as aHC during encoding (Salami, Eriksson, and Nyberg 2012; Daselaar et al. 2003). Interestingly, a meta-analysis found that older participants tended to activate right aHC more compared to younger participants during retrieval of episodic memory or future envisioning (Viard et al. 2012). These findings suggest that increasing age may be selectively related to lower aHC activation during encoding and higher aHC activation during retrieval. Another study found a specific pHC cluster that was sensitive to relational memory retrieval in older adults but not in younger (Wang and Giovanello 2016). Thus, although previous studies directly addressing this question are scarce, it is likely that differential age effects on hippocampal long-axis specialization exist in development and aging. These would again need to be grounded in the basic cognitive processes underlying the long axis differentiation, as discussed above.

Much focus has been on the age-vulnerability of frontally supported cognitive functions, but recent research has shown that substantial age-decline in structural integrity is seen also in posterior regions, including the posterior parts of the temporal lobe (Fjell et al. 2014). This could be consistent with a gradual degradation of the long axis differentiation with higher age, in line with a general dedifferentiation model (Wang, Dew, and Cabeza 2015; Grady 2012), but evidence so far is lacking. Hence, a large-scale investigation of long-axis activity during both encoding and retrieval through the lifespan is needed.

Although any functional specialization will require close communication between aHC and pHC, tracer studies in animals have revealed few direct connections. Rather, different parts of the hippocampus seem to display distinctive, topographically arranged, neuronal connectivity patterns (Fanselow and Dong 2010). Still, aHC and pHC have multiple routes through which they interact to ensure coordinated information processing (Fanselow and Dong 2010), and a reasonable hypothesis would thus be that the communication between them increases during memory processing (Robinson, Salibi, and Deshpande 2016). A recent meta-analysis found partially overlapping and partly separate connectivity patterns between aHC vs. pHC and the rest of the cortex using task-related fMRI as well as diffusion tensor imaging (Robinson, Salibi, and Deshpande 2016). Studies focusing on successful episodic memory retrieval
typically (Ranganath et al. 2005; Schott et al. 2013) find connectivity between the hippocampus and other cortical areas (but see (King et al. 2015)). Source memory-related connectivity has been reported to be higher in younger than older (King, de Chastelaine, and Rugg 2017) but to our knowledge, age effects on intra-hippocampal connectivity have not been tested.

Hypotheses

The main aim of the study is to test degree of hippocampal long-axis specialization and differentiation during encoding and retrieval through the lifespan, with regard to activity and connectivity. With specialization, we refer to a two-way long-axis (anterior vs. posterior HC) × condition (encoding vs. retrieval) interaction, where aHC is more engaged during encoding than during retrieval, and pHC more during retrieval than during encoding. Of similar interest is what we refer to as age differentiation, which represents an effect of age on long-axis differences within each of the conditions, i.e. encoding and retrieval. In the present study, we tested both HC specialization as well as age effects on HC differentiation.

We hypothesized that:

1. An encoding-retrieval hippocampal long-axis specialization will be seen, in that aHC will be more activated during encoding than during retrieval, and pHC will be more activated during retrieval than during encoding.

2. The long-axis functional differentiation will show an inverted U-shape through the lifespan, i.e. be more evident with increasing age in development, reach a plateau in young adults, and then break down in older adults. This is speculative as clear evidence is lacking, but based on expectations of higher specialization of hippocampal sub-regions with age during development and the reversed pattern previously seen in the other end of the lifespan.

3. FC between aHC and pHC will increase during both encoding and retrieval.

4. Task-related FC increases will overall show a U-shaped age-trajectory, with higher FC in children and possibly older adults compared to younger adults. This hypothesis was speculative, based on indirect evidence from previous studies suggesting that children (Sastre Iii et al. 2016) and older adults (Salami, Pudas,
and Nyberg 2014) tend to use the hippocampus in a less specialized way, possibly due to neural inefficiency or lack of inhibition.

Materials and Methods

Participants

The participants were recruited from ongoing studies coordinated by the Center for Lifespan Changes in Brain and Cognition (LCBC) at the Department of Psychology, University of Oslo, Norway. The final sample consisted of 496 well-screened cognitively healthy participants (337 females, age, 6.8–80.8 years; mean 39.1 years, standard deviation = 17.6 years). All participants gave written informed consent, and the Regional Ethical Committee of South Norway approved the study. The participants reported no history of neurological or psychiatric disorders, chronic illness, premature birth, learning disabilities, or use of medicines known to affect nervous system functioning. At scanning a separate clinical sequence (T2-FLAIR) was included for neurological evaluation by a neuroradiologist, and the scans were required to be free of significant injuries or conditions. They were further required to speak fluent Norwegian, and have normal or corrected-to-normal hearing and vision. The participants were compensated for their participation. The participants were required to score ≥26 on the Mini Mental State Examination (Folstein, Folstein, and McHugh 1975). Participants above 8 years were tested on Vocabulary and Matrix Reasoning subtests of the Wechsler's Abbreviated Scale Intelligence Scale (WASI) (Wechsler, 1999). Participants under the age of eight years were tested on the same subtest from the Wechsler Preschool and Primary Scale of Intelligence (WIPPSI-III) (Wechsler 2002). All scored within the normal IQ range (>85) and a T-score of ≤30 on the California Verbal Learning Test II—Alternative Version (CVLT II) (Delis et al. 2008) immediate delay and long delay. Participants were further excluded due to experimental and operator errors (incorrect order of the sequence, participants failing to understand the task, disabled button response, etc.), low number of trials available for fMRI analysis (n = 24; <6 per condition of interest) and extreme movement (n = 1; >1.5 mm mean movement). Participant demographics are summarized in Table 1. The sample partially overlaps with the samples used in Sneve et al. (Sneve et al.
2015), where encoding activity for 78 adults were included, and Vidal-Piñero et al. (Vidal-Pineiro et al. 2017), where encoding and retrieval activity for 143 adult participants were analysed. In neither of these studies were activity along the hippocampal long axis studied.

Experimental design - fMRI tasks
Participants were scanned using BOLD fMRI during an experimental task that consisted of an incidental encoding task and a subsequent memory test after ≈ 90 minutes. After the encoding task, the participants were taken out of the scanner, and were not given any specific instructions about what to do during the retention interval. Importantly, they were not informed that they would be tested for the encoded material. The memory task was optimized to allow for the investigation of individual differences in item-source associative memory performance, i.e., the ability to remember a previously encountered item together with information about the encoding context. This task was optimized to allow us to investigate the neural correlates of source memory/associative memory. A schematic presentation of the design is shown in Figure 1, and the task has also been described in Sneve et al. (Sneve et al. 2015). The participants were verbally instructed minutes before both experimental tasks and did not go through any practice session before entering the scanner.

The encoding and the retrieval tasks consisted of two and four runs, respectively, that included 50 trials each. All runs started and ended with a 11s baseline period, which was also presented once in the middle of each run. The stimulus material consisted of 300 black and white line drawings depicting everyday objects and items. During encoding, the participants went through 100 trials of a task in which they performed simple evaluations of everyday objects and items. A trial had the following structure: a female voice asked either “Can you eat it?” or “Can you lift it?” Both questions were asked equally often and were
pseudorandomly mixed across the different objects. One second after question onset, a black and white line drawing of an object was presented on the screen along with response indicators. Participants were instructed to produce yes/no-responses based on their subjective evaluations of object/task-contingencies, and that there were no correct responses to the task. Button response was counterbalanced across participants. The object remained in the screen for 2 s, when it was replaced by a central fixation cross that remained throughout the intertrial interval (ITI; 1-7s exponential distribution over four discrete intervals).

During the surprise memory test, 200 line drawings of objects were presented; 100 of these had been shown and evaluated during encoding while the remaining 100 objects were new. A test trial started with the presentation of an object (old or new, pseudorandomly picked) and the auditory presented question (Question 1) “Have you seen this item before?”. Each object stayed on the screen for 2 seconds. Participants were instructed to respond “Yes” if they remembered seeing the item during the encoding condition, and “No” otherwise. If the participant indicated that (s)he remembered seeing the object, a new question followed (Question 2): “Can you remember what you were asked to do with the item?” A “Yes”-response to this question, indicating that the participant also remembered the action associated with the object during encoding, led to a final two-alternative forced choice question (Question 3): “Were you asked to eat it or lift it?” Here, the participant indicated either “Eat” (“I evaluated whether I could eat the item during the encoding condition”) or “Lift” (“I evaluated lifting the item”). The specific questions asked during scanning were simplified to fit within the temporal limits of the paradigm. Despite the response-dependent nature of the fMRI regressors, the design efficiency was tentatively optimized to ensure sufficient complexity in the recorded time series (http://surfer.nmr.mgh.harvard.edu/optseq/).

Analysis of behavioural data
The main behavioral measure of interest was the source memory score. A participant's raw source memory score was calculated as the proportion of
encoded items that were recognized with correct source memory of the associated encoding action. Source memory for a trial was considered when: a participant correctly recognized an item (correct “Yes” response to test Question 1), stated that (s)he remembered the associated action (“Yes” response to test Question 2), and picked the correct associated action in the two-alternative forced-choice question (correct response to Question 3). A corrected source memory score was calculated from the raw source memory score by subtracting the number of times a participant produced a wrong source response (i.e., wrong response to test Question 3). This correction tentatively accounts for processes such as false memories, threshold criteria in Question 2 or guessing (Vidal-Pineiro et al. 2017). Corrected source memory scores was the only behaviour measure considered in the analyses.

MRI scanning and preprocessing

Imaging was performed at a Siemens Skyra 3T MRI unit with a 24-channel head coil at Rikshospitalet, Oslo University Hospital. For the functional imaging scanning the parameters were equivalent across all runs: 43 slices (transversal, no gap) were measured using T2* weighted BOLD EPI (TR=2390ms; TE=30ms; flip angle=90°; voxel size=3x3x3mm; FOV=224x224; interleaved acquisition; GRAPPA=2). Each encoding run produced 131 volumes while the number of volumes per retrieval run was dependent on participants’ responses (mean 207 volumes). Three dummy volumes were collected at the start of each fMRI run to avoid T1 saturation effects in the analyzed data. Additionally, a standard double-echo gradient-echo field map sequence was acquired for distortion correction of the EPI images. Anatomical T1-weighted MPRAGE images consisting of 176 sagittally oriented slices were obtained using a turbo field echo pulse sequence (TR = 2300 msec, TE = 2.98 msec, flip angle = 8°, voxel size = 1 × 1 × 1 mm, FOV= 256 × 256 mm). Visual stimuli were presented in the scanner environment with a 32-inch InroomViewing Device monitor while participants responded using the ResponseGrip device (both NordicNeuroLab, Norway). Auditory stimuli were presented to the participants’ headphones through the scanner intercom.
Cortical reconstruction and volumetric segmentation of the T1-weighted scans were performed with FreeSurfer 5.3 (https://surfer.nmr.mgh.harvard.edu/). This processing included segmentation of the subcortical white matter and deep grey matter volumetric structures (including the hippocampus) (Fischl et al., 2004a, 2002), surface inflation (Fischl et al., 1999a), and registration to a spherical atlas which utilized individual cortical folding patterns to match cortical geometry across subjects (Fischl et al., 1999b).

fMRI data was initially corrected for B0 inhomogeneity, motion and slice timing corrected, smoothed (5mm FWHM) in volume space and high-pass filtered (at 0.01Hz) using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Next, FMRIB's ICA-based Xnoiseifier (FIX) (Salimi-Khorshidi et al., 2014) was used to auto-classify noise components and remove them from the fMRI data. The classifier was trained on a task-specific dataset in which task fMRI data from 36 participants had been manually classified into signal and noise components (age span in training set: 7-80; fMRI acquisition parameters identical to the current study). Motion confounds (24 parameters) were regressed out of the data as a part of the FIX routines. Transformation matrices between functional-native, structural-native and freesurfer average space were computed to delineate hippocampal structures and and bring them to the functional-native space. Next, the preprocessed fMRI data, at the functional space, was introduced in a first-level GLM analysis.

fMRI analysis

A first-level general linear model (GLM) was set up with FSFAST (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast) for each encoding and retrieval run, consisting of several conditions/regressors modeled as events with onsets and durations corresponding to the trial events during encoding and retrieval and convolved with a two-gamma canonical hemodynamic response function (HRF). At retrieval, each "old" trial (test item presented during encoding, \(n = 100 \)) was assigned to a condition based on the participant’s response at test. Two conditions of interest were modeled both at encoding and at retrieval. 1) The source memory encoding condition consisted of items that
were later correctly recognized with correct source memory (Yes response to test Questions 1 and 2 and correct response to Question 3). 2) The miss condition consisted of items that were not recognized during test (incorrect No response to test Question 1). In addition, several regressors were included to account for BOLD variance associated with task aspects not included in any investigated contrast. During both encoding and retrieval, an item memory condition was included that consisted of items that were correctly recognized but for which the participant had no source memory (Yes response to Question 1 and No response to test Question 2 or incorrect response to Question 3) as well as a fourth regressor that modeled trials in which the participant did not produce any response to the first question. For the retrieval runs, four additional regressors were included to model the response to the new items (i.e. correct rejections and false alarms) and to model the second and third test questions (Questions 2 and 3). Temporal autocorrelations [AR(1)] in the residuals were corrected using a prewhitening approach. For difference in subsequent memory analyses (DSM; see below), a contrast of interest consisting of source – miss memory conditions was computed for each participant.

Hippocampal segmentation

Moving anteriorly through the coronal planes of an MNI-resampled human brain, \(y = -21 \) corresponds to the appearance of the uncus of the parahippocampal gyrus. In line with recent recommendations for long-axis segmentation of the hippocampus in human neuroimaging (Poppenk et al. 2013), we labeled hippocampal voxels at or anterior to this landmark as anterior HC while voxels posterior to the uncal apex were labeled as posterior HC. Specifically, for each participant, all functional voxels for which more than 50% of the underlying anatomical voxels were labeled as hippocampus by Freesurfer were considered functional representations of the hippocampus. While keeping the data in native subject space, we next established hippocampal voxels’ locations relative to MNI \(y = -21 \) by calculating the inverse of the MNI-transformation parameters for a given subject’s brain and projecting the back-transformed coronal plane corresponding to MNI \(y = -21 \) to functional native space. All reported activity- and connectivity measures thus represent averages from hippocampal sub-
regions established in native space. A hippocampal segmentation from a representative subject is shown in Figure 1.

While there have been concerns that the hippocampal volume estimations from FreeSurfer differ from manual segmentations (Wenger et al. 2014), associations between FreeSurfer estimated volumes and manually estimated volumes are satisfactory (Schoemaker et al. 2016), and ICV-adjusted age-trajectories are near identical (Schmidt et al. 2018).

Hippocampal connectivity. Correlational PPI analysis. Task-dependent functional connectivity between hippocampal sub-regions was tested by correlational psychophysiological interaction (PPI) analyses (Fornito et al. 2012) implemented using routines from the gPPI toolbox for Matlab® (McLaren et al. 2012). The PPI analysis allows studying connectivity shifts associated with task engagement while controlling for systematic variations in BOLD activity triggered by the experimental design. The correlational PPI analysis is a variation of the canonical PPI analysis in which the PPI term is derived from a partial correlation instead of a GLM, and thus creates symmetric PPI values between each pair of nodes. For each participant and HC sub-region (anterior, posterior × left, right), the time series from the first-level design matrix representing the different stimulus conditions of interest were multiplied separately by the deconvolved neural estimate and convolved with a canonical HRF, creating the PPI terms. That is, we first deconvolved ROI BOLD time series into underlying neural estimates, then zeroed out time periods in which no stimulation of interest occurred, and finally re-convolved the condition-specific neural estimate by the canonical HRF. The degree of connectivity between each pair of HC sub-regions was estimated by partial correlations in which each HC sub-region’s PPI time-series was partialled out by the original convolved task regressors and each HC sub-region’s time-series. Finally, all the PPI connectivity terms were z-transformed using Fisher’s r-to-z transformation. Source vs. baseline was used as contrast of interest for the PPI analyses. Importantly, this represents a measure of covariance (corrected for baseline connectivity) rather than a GLM-type contrast used in canonical PPI analyses. Thus, we refer to this as
source memory connectivity. PPI analyses for source > miss were not performed due to a relatively low number of miss trials in a number of participants, which creates substantial problems with statistical power in PPI since the interaction term (PPI term) tends to exhibit a similar time course to the ROIs and psychological time courses (O’Reilly et al. 2012).

Statistical analyses
Generalized additive models (GAM) were run as implemented in the mgcv package for R (https://www.r-project.org) using Rstudio (www.rstudio.com) IDE. (Wood 2011, 2006). GAMs were run to test the continuous age-relationship of the different fMRI and task performance variables. For all fMRI analyses, estimated mean absolute and relative motion per participant over all six runs were included as nuisance covariates, i.e. two motion terms were included as covariates in all analyses. A smooth term for age was used. The smoothness of the age-curve is estimated as part of the model fit, and the resulting effective degrees of freedom (edf) was taken as a measure of deviation from linearity. The p-values associated with the smooth terms are only approximate, as they are based on the assumption that a penalized fit is equal to an unpenalized fit with the same edf, and do not take into account uncertainty associated with the smoothing parameter estimation. The major advantage of GAM in the present setting is that relationships of any degree of complexity can be modelled without specification of the basic shape of the relationship, and GAM is thus especially well-suited to map life-span trajectories of neurocognitive variables which can be assumed to be highly non-linear and where the basic form of the curve is not known (Fjell et al. 2010).

Separate GAMs were run for activity in aHC, pHC and the pHC-aHC difference, as well as the different memory performance variables (proportion of correctly remembered items with source memory [source memory hit], items with wrong source memory [source memory - incorrect], corrected source memory score [source memory hit - source memory incorrect]). All activity analyses were run based on two different contrasts. First, activity during successful memory was compared to the implicit baseline. The results of this analysis reflected the
difference in hippocampal activity during successful completion of the memory task compared to implicit baseline activity, but did not reflect activity specifically associated with successful vs. non-successful memory. In the following, this is referred to as “baseline contrast” for simplicity. In the second set of analyses, difference in subsequent memory (DSM) was used as the measure of interest to allow isolation of activity related to memory success. [The term DSM is most often used to refer to encoding trials, but for simplicity we use the same term to refer to retrieval data also.] DSM was calculated as the difference in activity between items correctly recalled with source information (source trials) and activity to forgotten items (miss trials). To reduce the number of tests, these GAM analyses were run using mean values of right and left regions. Possible hemispheric differences were addressed by general linear model (GLMs) analyses especially suited to address such kind of interactions (see below).

To test for specific interaction effects, general linear models (GLM) with the factors HC axis (anterior, posterior) × condition (encoding, retrieval) × hemisphere (right, left) × accuracy (source-baseline, source-miss) × age group (8 groups) × Sex (female, male), with motion (mean absolute and relative) as nuisance variables. The use of 8 age groups was motivated by the results of the preceding GAM fits which showed that the age-trajectories were too complex (edf > 6) to be modelled with fewer age groups.

Further, we tested whether fMRI activity was related to memory performance by running additional GAMs with corrected source memory as dependent variable, and age and brain activity as smooth terms. This was done for aHC, pHC as well as the pHC-aHC difference, for both the source memory – baseline contrast and the DSM effect.

In the next set of analyses, we tested the lifespan trajectories of source memory connectivity between aHC and pHC, both within and across hemispheres. We estimated connectivity within the PPI framework. In short, we tested whether connectivity between hippocampal regions was different during the memory task than during baseline. This difference was then quantified and used in
Results

Behavioral results
Mean corrected source memory score was 0.44 (SD = 0.18). Scatterplots illustrating individual scores in memory performance against age are shown in Figure 2. GAMs were run with the corrected source memory score, source memory hits and source memory incorrect in turn as independent variables and age as smooth term. Age was in all cases highly significantly related to memory (all p’s < 2e-16), and the trajectories were also highly non-linear (corrected source memory score adjusted R² = .37, edf = 5.25; source memory hits adjusted R² = .18, edf = 5.69; source memory incorrect adjusted R² = .31 edf = 3.87). The mean number of trials included for correct source memory and miss memory was 51.60 (Sd = 10.60) and 23.05 (SD = 14.39), respectively. Detailed descriptives for all response classes are presented in Supplemental information.

Hippocampal activity – interaction effects
To identify the long-axis encoding-retrieval specialization, GLMs with the factors long-axis (anterior, posterior) × condition (encoding, retrieval) were run for three different contrasts: source memory vs. baseline, source memory vs. miss and source memory vs. familiarity [familiarity refers to items correctly recognized but with no or wrong source memory] (See Figure 3). While the source vs. baseline (F = 162.4, df = 1, 494, p < 2.36e-32) and the source vs. miss (F = 26.5, p < 3.73e-7) contrasts yielded strong long-axis × condition effects, there was no significant effect for the source vs. familiarity contrast (F = 2.6, p = .11). Thus, further analyses were run for the two former contrasts only.

To explore the long-axis effects in more detail, a GLM with the factors long-axis
(anterior, posterior) × condition (encoding, retrieval) × hemisphere (right, left) × accuracy (source-baseline, miss-baseline) × age group (8 groups) × sex (female, male) were run. The results are presented in Table 2, and only the most relevant results will be highlighted here.

[Insert Table 2 about here]

There was a strong effect of accuracy, with higher activity for source vs. baseline than miss vs. baseline (see Figure 4). This confirms that the paradigm produced the expected DSM effect. There was an accuracy × age interaction, with children showing larger difference between activity for source memory vs. miss. Also, we found an anterior-posterior activity × condition interaction, with aHC showing higher activity during encoding than during retrieval, and the opposite pattern for the pHC. There was a strong age × anterior-posterior interaction, caused by generally higher activity in the posterior than the anterior hippocampus in children and young adults, with the difference gradually diminishing in older adulthood. Finally, there was a tendency (p = .09) towards an age × anterior-posterior × condition interaction. This appeared due to lower anterior-posterior activity differentiation during retrieval in older age, combined with a tendency for higher anterior than posterior encoding activity in middle adulthood.

[Insert Figure 4 about here]

These results showed the expected hippocampal long axis specialization for encoding vs. retrieval, and that the long-axis activity was related to age. There was a significant accuracy × anterior-posterior interaction, suggesting that the hippocampal long axis effects did not reflect activity related to unsuccessful [miss] memory. There was also an accuracy × anterior-posterior × condition interaction, which was caused by a breakdown of the long-axis encoding-retrieval specialization during encoding miss trials (see Figure 5).

[Insert Figure 5 about here]
Hippocampal activity – age trajectories
First, to map the general effects of age on activation in anterior and posterior hippocampus, GAM models with activity as dependent variables and age as a smooth predictor were run, with movement as nuisance covariates. Scatterplots with imposed GAM fits corrected for motion parameters are shown in Figure 6. For encoding, no significant effects of age were found for either anterior (Baseline contrast: edf = 1.0, F = 0.8, adj R² = 0, p = .4/ DSM: edf = 1.7, F = 0.7, adj R² = 0, p = .5) or posterior (Baseline contrast: edf = 1.0, F = 2.4, adj R² = 0.01, p = .12/ DSM: edf = 1.2, F = .6, adj R² = 0, p = .6) hippocampal activity. However, a significant negative effect of age on the posterior-anterior source memory vs. baseline contrast (Baseline contrast: edf = 1, F = 6.6, adj R² = .02, p = .011/ DSM: edf = 1.0, F = 0.2, adj R² = 0, p = .67) was found.

For retrieval, however, robust age effects were seen for both anterior (Baseline contrast: edf = 6.4, F = 9.3, adj R² = .13, p = 4.61e-11 / DSM: edf = 5.6, F = 3.7, adj R² = 0.06, p = .0007) and posterior (Baseline contrast: edf = 6.0, F = 6.4, adj R² = .08, p = 3.01e-07/ DSM: edf = 5.0, F = 3.2, adj R² = 0.03, p = .004) hippocampal activity. Inspections of the trajectories showed a highly non-linear pattern across the life-span, which was confirmed by the high edf values. Both the anterior and the posterior source memory vs. baseline effects and the DSM effects were smaller with advancing age during development. From about 20 years, however, the curves were positive, indicating higher activity with higher age, before a negative slope was observed from about 70 years. This pattern was somewhat more evident for the anterior compared to the posterior hippocampus.

Interestingly, at retrieval, a direct test of the posterior-anterior DSM effects did not show a significant effect of age for DSM (edf = 1.8, F = 0.6, R² = 0, p = .26) but a significant effect for the baseline contrast (edf = 1, F = 42, R² = 0.10, p = 2.12e-10). The posterior advantage was high in early development, and showed a linear negative relationship with age throughout the age span. The lack of effects when
using the DSM contrast suggests that the age effect on the anterior-posterior differentiation is related to execution of the retrieval task per se, not the successful retrieval of episodic memory content.

Hippocampal activity – relationships with performance

GAM models were run with the corrected source memory score as dependent variable, and age and hippocampal activity as smooth terms, with the movement variables as covariates. Separate models for aHC and pHC, and for encoding and retrieval were tested. Additional models included the posterior-anterior difference as predictor. The analyses were run both for the baseline contrast and for the DSM contrast. The relationships were weak, with only one reaching an uncorrected significance level of p < .05 (aHC retrieval, \(t = 2.12, p = .035 \)). Due to the number of tests, this relationship did not survive proper correction for multiple comparisons (False Discovery Rate [FDR]) and was thus not considered further. Since these analyses did not reveal other significant relationships, further analyses testing interactions were not performed.

Functional connectivity – psychophysiological interaction analysis

The age-trajectories for task-related hippocampal connectivity are shown in Figure 7. Connectivity between all hippocampal regions, i.e. aHC vs pHC and right vs left hemisphere, was higher during task than during baseline (all p’s <1e^{-16}, see Table 3). The degree of connectivity between hippocampal regions was similar during encoding and retrieval (\(F = .8, p = .4 \), see Table 4). A main effect of connectivity region (\(F = 255.3, p < 1e^{-16} \)) revealed that the highest task-related connectivity was observed for aHC - pHC connectivity within the same hippocampus, both for the left and the right hemisphere. Further, inter-hemispheric connectivity was higher for aHC than pHC during the memory task. Both these effects were observed regardless of condition, i.e. encoding versus retrieval.
In general, source memory connectivity between sub-regions showed a monotonic reduction with increasing age (main effect of age \[F = 9.3, p = 8.1 \times 10^{-11} \]). For most connections, the youngest children showed the highest connectivity which then decreased continuously throughout adulthood. This general trend was consistent both for encoding and retrieval connection, except for intra-hippocampal anterior-posterior encoding connectivity which remained somewhat stable across life. This exception was reflected in a three-way interaction between age × connectivity pair × condition \(F = 1.9, p = .007 \).

Further, we tested whether task-related connectivity correlated with memory performance. No significant relationships were observed independently of age, neither during encoding nor during retrieval (all tests \(p > .05 \) uncorrected).

Analyses of motion

Mean absolute and relative movement across all six runs were included as covariates of no interest in all analyses. Still, we ran additional analyses testing the effects of movement. First, we ran GAMs on the relationships between age and movement, confirming that movement varied significantly with age (absolute movement edf = 6.6, \(F = 28.0, p < 2 \times 10^{-16} \); relative movement edf = 7.6, \(F = 49.5, p < 2 \times 10^{-16} \)), see Figure 8. We then ran separate GAMs testing the effects of motion on fMRI activity (baseline contrast and DSM) and task-connectivity (PPI), controlling for age, as well as GAMs testing for age × motion interactions. Separate GAMs were run for absolute and relative motion, yielding 96 tests in total. The results are presented in detail in Supplemental Information. For activity, the age × motion interactions were weak, reaching an uncorrected alpha threshold of .05 for two of 24 tests. Direct effects of motion on activity were seen for 9 of 24 tests. For the PPI analyses, the age × motion interactions were also modest, but reached the uncorrected threshold for 8 of 24 tests. Direct effects of motion on connectivity were seen for all tests.

[Insert Figure 8 about here]

Discussion
Three main sets of findings were obtained: First, we found the encoding-retrieval specialization along the hippocampal long axis, with higher anterior activity during encoding than during retrieval and higher posterior activity during retrieval than during encoding. While this was according to our hypothesis, a novel result was that long-axis specialization was not specific to successful source memory retrieval. Rather, when isolating the source memory component by contrasting source memory activity with activity to items remembered without source (i.e. familiarity), the long-axis specialization was not detected. Thus, the long-axis hippocampal specialization characterized successful memory encoding and retrieval, but was not specific to successful source memory processes. Second, degree of long-axis differentiation correlated with age, mainly caused by higher posterior activity in children, with gradually higher anterior activity in adulthood and older age. Age effects on long-axis differentiation was according to our hypothesis, but we expected an inverse U-shaped rather than a linear age-relationship. Thus, long-axis differentiation across the lifespan did not adhere to a “from-less-specialized to more-specialized” principle in development and the inverse in aging. Further, while retrieval activity showed a markedly non-linear age-trajectory, encoding activity was stable across age. The retrieval trajectory indicated a rapid developmental phase and substantial reduction in aging. Finally, FC between aHC and pHC increased during the memory task, and the degree of increase was related to age for all within- and between hippocampus connections for both encoding and retrieval, except for the anterior-posterior during encoding. As expected, children showed unspecific task-related increase in FC both within and between hemispheres, possibly indicating that their ability to distribute tasks to more specialized regions is not yet mature. However, we did not observe increased connectivity among the older adults, as we would expect if lower connectivity indexes higher degree of specialization. The implications of these main findings are discussed below.

Long axis specialization for encoding vs. retrieval
Support for the long axis specialization for encoding and retrieval in humans comes from functional brain imaging studies (Lepage, Habib, and Tulving 1998), including meta-analyses (Spaniol et al. 2009; Kühn and Gallinat 2014). The
present results supported this pattern. There was a statistically significant interaction between condition and the anterior-posterior axis when contrasting source memory with baseline or miss responses, but not when contrasting it with recognition without source (familiarity). This shows that the long-axis specialization is not specifically dependent on successful source memory per se. The authors of a previous meta-analysis suggested that the specific contrast used to define encoding and retrieval success was important, since different contrasts reflect activity differences between cognitive processes that activate hippocampal sub-regions to various degrees (Spaniol et al. 2009). The present results suggest that the hippocampal long-axis specialization for encoding vs. retrieval exists, but that it does not depend on the successful encoding or retrieval of episodic memories specifically. This specialization was mostly driven by retrieval, where activity was clearly higher in pHC vs. aHC. During encoding, aHC and pHC activation was comparable. Importantly, the encoding-retrieval specialization may reflect a range of cognitive processes involved in execution of the task, and is not specific to encoding/ retrieval. Several long-axis specializations have been suggested, such as between global vs. local spatial representations, gist vs. detail, emotion/ motivation vs other cognition, and other cognition vs. spatial memory (for a comprehensive review, see (Poppenk et al. 2013)), and switching between dorsal attention and the default mode networks (Kim 2015).

As discussed above, these models have implications for how age effects on activity and connectivity along the axis should be conceptualized. However, they cannot easily be applied to explain the complete lack of specialization seen when source memory was contrasted with familiarity memory. In this case, aHC was more active than pHC both during encoding and retrieval. Thus, it seems that aHC is more involved in processing of the specific source aspect of source memory than pHC, regardless of encoding or retrieval. Poppenk et al. also argue that there are instances where aHC will be more involved in recollection of memories than pHC, but suggested that this would typically be the case in situations where recollection of gist-level associations occur (Poppenk et al. 2013). This is hardly a precise characterization of the source retrieval demands
of the current task. However, the authors also proposed that aHC might retain associative links between actions and actors of an event, while the pHC might retain the exact spatial or temporal context. We have previously shown that the specific instruction given to the participants in this study yields content-specific activation differences during retrieval in the sensorimotor regions (Vidal-Pineiro et al. 2017), which would mean that an associative link between an action and an object of an event has been retained. In contrast, correct source memory performance in the present task would not require the participant to recall the exact spatial or temporal context of the event. Thus, it can be argued that the present finding of higher aHC than pHC activity during both encoding and retrieval of source memories vs. familiarity memories fits within this general framework proposed by Poppenk et al.

Age effects on hippocampal long axis differentiation

We made two major observations. First, the hippocampal long-axis differentiation was linearly negatively related to age throughout the age-span of almost 75 years. Thus, we did not identify a clear developmental end-point or aging-related start-point. Rather, the posterior preference in the youngest children was replaced by gradually higher aHC relative to pHC activity with higher age, continuing for most of the life-span. This indicates that the hippocampal long-axis differentiation is sensitive to age both in development and aging, but not in a simple “less-specialization-versus-more-specialization” framework. The results fit better with a posterior-to-anterior shift in activity, suggested to characterize the development to adulthood phase (Sastre lli et al. 2016). Some of these effects may be related to ongoing structural maturation and age-reductions of the hippocampus (Ostby et al. 2009; Krogsrud et al. 2014; Daugherty et al. 2016; Walhovd et al. 2005), which has been related to episodic memory performance (Ostby et al. 2012; Tamnes et al. 2014; Lee, Ekstrom, and Ghetti 2014; Keresztes et al. 2017; Daugherty, Flinn, and Ofen 2017; DeMaster et al. 2014; Fjell et al. 2013). These studies suggested that differential maturation of hippocampal subfields is relevant for development of episodic memory, which fits with the present fMRI results. The positive relationship between age aHC retrieval activity between 20 and 70 years fits with a previous meta-analysis
(Viard et al. 2012). However, the age-relationship was not linear, and lower activity was seen in the last part of the life-span. While the general form of the trajectories was relatively similar for aHC and pHC retrieval activity, the gradual reduction of the posterior-anterior difference can be understood within a general dedifferentiation model (Wang, Dew, and Cabeza 2015; Grady 2012). This pattern can also be conceptualized with the general HERNET framework suggesting anterior hippocampal activity reflecting dorsal attention network activity (Kim 2015), proposed to mediate top-down voluntary allocation of attention (Corbetta and Shulman 2002), in combination with models such as PASA [Posterior-Anterior Shift in Aging], postulating high frontal activity in older adults to optimize memory function (Davis et al. 2008). Accordingly, higher-order, frontally-based cognitive processes may be engaged during attempted memory retrieval, which according to the HERNET model may be reflected in aHC activity. Future research could combine memory tasks with tasks designed to measure more basic cognitive functions further to illuminate this question, ideally in combination with longitudinal designs (Nyberg et al. 2010).

Importantly, the age effect on the hippocampal long-axis differentiation was not seen for the DSM effect, suggesting that this effect is not specific to successful memory and hence does not necessarily reflect successful retrieval of episodic memory content. This is in line with a previous aging study finding long-axis hippocampal specialization of anterior-encoding and posterior-retrieval by use of a non-memory contrast task (Salami, Eriksson, and Nyberg 2012).

The second major finding was that retrieval activity was much more sensitive to age than encoding activity, both in development and aging. Even though we found a significant effect of age on long-axis differentiation also for encoding, encoding activity was not related to age in aHC or pHC per se. In contrast, retrieval activity showed complex age-functions. Highest activity was seen in the children, with a negative trajectory suggesting a developmental end-point at around 25 years. From this age, a positive age-relationship was seen up to almost 70 years, after which the curve again was negative towards the end of the age-range. The observation that activity during retrieval in older adults approached
the same levels as that seen in children is interesting, and could reflect more
effortful processing. ‘Over-recruitment’ in aging has for instance been
interpreted as a sign of neural inefficiency (Duverne, Habibi, and Rugg 2008).
The high levels of activation are not likely to be a direct result of higher task
demands in these groups or reflect task performance per se, as activity was not
correlated with memory performance, and the age-effects were clearly
attenuated when the DSM effect was used instead of the baseline contrast. As
activity was measured for source memory trials, this means that participants
who remember less well do not necessarily show lower activity to those items
they actually do remember. The gradual increase in anterior relative to posterior
hippocampal retrieval activity through development and into young adulthood
fits well with the results of a previous large study (n = 126) (Sastre Iii et al.
2016). In that study, age-differences occurring along the longitudinal axis were
identified, with selective activation in the hippocampal head in high performing
adults but not in children.

The presently observed age-effects are in line with some previous fMRI studies
(DeMaster and Ghetti 2013; Paz-Alonso et al. 2008) but not others (Guler and
Thomas 2013; Ofen et al. 2012; Ofen et al. 2007), which reflects that age effects
on hippocampal memory-related activity are not universally found. The
combination of a continuous and wide age-range combined with scanning during
both encoding and retrieval, and the use of two different contrasts to define
memory activity, enables us to shed some light on the conditions for finding age
effects on hippocampal activation. First, age effects were much larger for
retrieval than encoding activity both in development and aging. Second, age
effects were clearly attenuated when a DSM contrast was used instead of a
baseline contrast, which may indicate that hippocampal activity related to
memory success per se (Cansino et al. 2015) may be less sensitive to age than
activity related to performance of a memory task not specifically depending on
memory success (Salami, Eriksson, and Nyberg 2012). Third, retrieval activity
showed a complex, non-monotonic trajectory, which means that continuous
sampling across larger age ranges will likely yield more information than
comparing groups of restricted age. Finally, although age effects tended to be
stronger in aHC than pHC, implying that studying sub-regions may increase age-sensitivity (Carr et al. 2017; Sastre lii et al. 2016), this factor was of relatively less importance in the present study than those discussed above.

Age effects on task-related connectivity

Psychophysiological interaction analysis has been applied in studies of development and aging of episodic memory. Development of connectivity between medial temporal lobe and prefrontal cortical regions during retrieval appears to continue into young adulthood (Ofen et al. 2012). In a study of adults, FC increases were generally reduced with higher age, but such a reduction did not apply to hippocampal connections (King, de Chastelaine, and Rugg 2017). Over-recruitment in activity in older adults is an interesting although controversial concept (Reuter-Lorenz and Cappell 2008; Nyberg et al. 2010). If over-recruitment in aging exists for a given task as a result of cognitive compensation, then one could envision that also task-connectivity would be higher. This was the case in a study where greater connectivity was seen in older compared to younger adults between the contralateral prefrontal cortices in a lateralized word matching task (Davis et al. 2012). Age effects on intra-hippocampal connectivity during memory tasks have to our knowledge not previously been tested. As hypothesized, we found significant FC within and between hippocampi during encoding and retrieval. This increase was much higher within the hippocampus than between homologous contralateral regions. Of most relevance for the present study, the children showed higher connectivity increases than any other age group. This was seen for all tested connections except anterior-posterior FC during encoding. The high FC in the children could in principle signify less developed sub-regional specialization of communication, less efficient neural processing or lack of inhibition. However, the mostly linear age-trajectories indicate that if high connectivity in the children signify lack of maturation, then the older adults may appear to have the most efficient FC, which is a less likely interpretation. As we did not find a correlation between FC and memory performance, the findings are more in line with the children using their brains differently than adults to accomplish the task. More research is needed to understand the implication of the age effects on hippocampal FC. Still,
these results indicate that in addition to age-effects on hippocampal sub-region activity, there are also substantial differences in task-related hippocampal connectivity across the lifespan when participants are engaged in memory encoding and retrieval tasks.

Limitations

There are multiple limitations with the present study. First, since all analyses are based on cross-sectional analyses, the results only regards age differences, not changes per se. Few longitudinal fMRI studies of development or aging exist (for exceptions, see (Pudas et al. 2013; Persson et al. 2012)), but cross-sectional analyses can sometimes yield spurious results (Nyberg 2017; Nyberg et al. 2010). Further, although the division of hippocampus in an anterior and a posterior section has merit (Poppenk et al. 2013), this division crosses established hippocampal subfields running along the anterior-posterior axis (Fanselow and Dong 2010). With higher field strengths, e.g. 7T, other subfield divisions could be valuable to test (Carr et al. 2017; Berron et al. 2016). Further, as discussed above, a long-axis specialization may be valid for many types of cognitive processes (Poppenk et al. 2013; Maass et al. 2014; Kim 2015; Moscovitch et al. 2016), which means that subtle differences in task demands may alter the relative impact of aHC vs pHC, and possibly also their lifespan trajectories. It must also be noted that although the focus of the study is lifespan development, we did not sample children below 6 years. This is a limitation, as this period is likely the most important in development of episodic memory function. A major challenge is to design experimental tasks that are suitable for both adults and very young children. Finally, movement during scanning may affect the results, especially when children and older adults are included. In the present study, care was taken to minimize movement during scanning, to remove effects of movement during pre-processing, and both absolute and relative movement were included as covariates in the analyses. Additional tests revealed limited age × motion interactions, which makes it unlikely that movement had a profound impact on the reported age-trajectories. Still, completely removing effects of motion on fMRI activity and especially connectivity in a sample with large age-variance is challenging, as evidenced by
the substantial relationship between motion and age (Figure 8). Our strategy of including absolute and relative motion as covariates in all analyses ensures that the reported effects cannot be explained by motion, but this conservative approach runs the risk of under-estimating the true age-effects due to shared variance between age, memory activity/ connectivity and motion.

Conclusion

We identified a clear anterior-posterior hippocampal long-axis specialization for encoding vs. retrieval, which was linearly related to age across almost 75 years. Still, a posterior-to-anterior shift in activity from childhood to adulthood was the most prominent age-effect on the hippocampal long-axis. This effect was driven by the strong influence of age on retrieval activity both in development and aging. Connectivity between hippocampal sub-regions increased during execution of the memory task, and children showed substantially higher connectivity than adults. Effects were seen when source memory activity was compared to baseline activity or miss trials, but not when compared to recognition without source (familiarity). Thus, the hippocampal long-axis specialization and differentiation did not depend on the pure source memory component of successful recognition performance.
Acknowledgement

We thank Lars Nyberg for valuable comments to an earlier version of the manuscript.

Funding

This work was supported by the Department of Psychology, University of Oslo (to K.B.W., A.M.F.), the Norwegian Research Council (to K.B.W., A.M.F.) and the project has received funding from the European Research Council’s Starting/Consolidator Grant schemes under grant agreements 283634, 725025 (to A.M.F.) and 313440 (to K.B.W.).
References:

Daselaar, S. M., M. S. Fleck, I. G. Dobbins, D. J. Madden, and R. Cabeza. 2006. 'Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study', *Cereb Cortex*, 16: 1771-82.

Davis, S. W., J. E. Kragel, D. J. Madden, and R. Cabeza. 2012. 'The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity', *Cereb Cortex*, 22: 232-42.

Robinson, J. L., N. Salibi, and G. Deshpande. 2016. 'Functional connectivity of the left and right hippocampi: Evidence for functional lateralization along the

Figure legends

Figure 1 Experimental paradigm – fMRI task
(A) Schematic overview of an encoding trial. The green (✓) and the red (X) symbols were present on the screen to indicate which button indicated “Yes” and “No”, respectively. (B) Schematic overview of the test condition of the experiment. Test Questions 1 and 2 required a Yes/No response whereas Question 3 consisted of a two-alternative forced choice task. The trial ended if the participant responded “No” to either one of the two first questions. ISI: InterStimulus Interval, s: second. Adapted from Sneve et al. (Sneve et al. 2015). (C) Overview of the hippocampal long-axis segmentation scheme. Top panel: aHC and pHC in MNI305-space. Bottom panel: sagittal view of the functional definitions of left aHC and pHC for a representative participant in native subject space. Voxels colored red represent the FreeSurfer-segmented left hippocampus in high-resolution (1mm³) structural space. AHC (blue) / pHC (red) voxels are overlaid in functional resolution (27mm³).

Figure 2 Lifespan trajectories of performance
Individual memory performance scores plotted across age. The curves represent the smooth function of age from the generalized additive models. Panel A represents the corrected source memory score (recollection – source memory incorrect) used in all analyses. The shaded area around the curves represent 2 standard errors of the mean. * p < .05.

Figure 3 Long-axis specialization
Anterior and posterior hippocampal activity for encoding and retrieval for three different contrasts: source memory vs. baseline (panel A), source memory vs. miss (panel B), and source memory vs. familiarity (panel C). A significant long-axis × condition interaction was seen for the left and the middle plots. *** represents a significant interaction effect.

Figure 4 Interaction plots
Panel A: Activity associated with source memory vs. miss across age groups.
Panel B: Source memory-related activity in anterior and posterior hippocampus across age groups (baseline contrast).
The plots are residualized on sex and movement during scanning. The interactions represented by each plot were significant (p < .05).

Figure 5 Breakdown of specialization during unsuccessful memory
There was a significant accuracy × anterior-posterior × condition interaction, which was caused by the long-axis encoding-retrieval specialization to break down during encoding miss trials. Panel A: Encoding. Panel B: Retrieval.

Figure 6 Lifespan trajectories of fMRI activity
Individual fMRI contrast values plotted across age. The curves represent the smooth function of age from the generalized additive models. The plots are residualized on absolute and relative movement during scanning. Panels A and B depict values based on the difference between source memory and implicit baseline. Panels C and D depict the difference in subsequent memory (DSM) effect, i.e. the difference in activity to correct source memory vs. miss trials. “Posterior-Anterior” represents the difference between posterior and anterior hippocampal activity.
The shaded area around the curves represent 2 standard errors of the mean. * p < .05, ns: not significant.

Figure 7 Lifespan trajectories of task-related connectivity
The curves represent the smooth function of age from the generalized additive models. The fit line is residualized on absolute and relative movement during scanning. The shaded area represents 2 standard errors of the mean.

Figure 8 Effects of age on motion
Both relative (Panel A) and absolute (Panel B) motion showed significant relationship to age. The shaded area around the curves represent 2 standard errors of the mean.
<table>
<thead>
<tr>
<th>Group</th>
<th>All</th>
<th>Age1</th>
<th>Age2</th>
<th>Age3</th>
<th>Age4</th>
<th>Age5</th>
<th>Age6</th>
<th>Age7</th>
<th>Age8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>496</td>
<td>15</td>
<td>30</td>
<td>161</td>
<td>90</td>
<td>59</td>
<td>52</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>Females/males</td>
<td>337:158</td>
<td>10.5</td>
<td>12.18</td>
<td>121:40</td>
<td>66.24</td>
<td>42.17</td>
<td>37.15</td>
<td>36.24</td>
<td>12.16</td>
</tr>
<tr>
<td>Age range</td>
<td>6.8-80.8</td>
<td>6.8-13.9</td>
<td>14.4-19.6</td>
<td>20.1-29.9</td>
<td>30.0-399</td>
<td>40.1-50.0</td>
<td>50.0-60.0</td>
<td>60.0-69.9</td>
<td>70.0-80.8</td>
</tr>
<tr>
<td>Age mean (SD)</td>
<td>39.1 (17.6)</td>
<td>9.9 (2.2)</td>
<td>16.9 (1.2)</td>
<td>25.6 (2.7)</td>
<td>33.9 (2.7)</td>
<td>45.6 (2.7)</td>
<td>55.1 (2.9)</td>
<td>65.0 (3.1)</td>
<td>74.0 (3.4)</td>
</tr>
<tr>
<td>MMSE*</td>
<td>29.1 (1.0)</td>
<td>--</td>
<td>--</td>
<td>29.2 (1.0)</td>
<td>29.4 (0.8)</td>
<td>29.2 (1.0)</td>
<td>29.0 (0.9)</td>
<td>28.7 (1.2)</td>
<td>28.3 (1.4)</td>
</tr>
<tr>
<td>CFT Recallb</td>
<td>21.0 (6.4)</td>
<td>19.1 (6.6)</td>
<td>30.6 (3.7)</td>
<td>22.5 (5.7)</td>
<td>21.2 (6.3)</td>
<td>22.3 (5.6)</td>
<td>19.1 (6.4)</td>
<td>17.8 (6.1)</td>
<td>17.3 (5.8)</td>
</tr>
<tr>
<td>Vocabularyc</td>
<td>62.3 (9.1)</td>
<td>37.7 (12.7)</td>
<td>56.1 (4.9)</td>
<td>62.6 (6.1)</td>
<td>64.1 (6.4)</td>
<td>63.4 (8.6)</td>
<td>65.9 (5.0)</td>
<td>65.3 (7.5)</td>
<td>66.8 (7.4)</td>
</tr>
<tr>
<td>Matricesd</td>
<td>28.3 (6.1)</td>
<td>23.7 (5.5)</td>
<td>29.9 (2.8)</td>
<td>29.0 (3.7)</td>
<td>29.3 (2.7)</td>
<td>28.9 (6.5)</td>
<td>28.7 (9.7)</td>
<td>25.6 (5.0)</td>
<td>25.7 (13.0)</td>
</tr>
<tr>
<td>CVLT Learninge</td>
<td>58.4 (9.5)</td>
<td>50.5 (11.1)</td>
<td>61.2 (7.9)</td>
<td>61.5 (8.3)</td>
<td>61.0 (8.6)</td>
<td>59.3 (9.4)</td>
<td>55.6 (8.9)</td>
<td>52.6 (9.6)</td>
<td>51.4 (8.5)</td>
</tr>
<tr>
<td>CVLT 30oxetine</td>
<td>13.0 (2.5)</td>
<td>10.9 (2.9)</td>
<td>13.4 (2.0)</td>
<td>13.7 (2.2)</td>
<td>13.9 (2.1)</td>
<td>13.3 (2.3)</td>
<td>12.4 (2.3)</td>
<td>11.6 (2.9)</td>
<td>10.9 (2.7)</td>
</tr>
</tbody>
</table>

Table 1. Main demographic and neuropsychological variables for the complete sample, as well as broken down in 8 separate age groups.
*a = 410; b = 352; c = 319; d = 459; e = 457.
Within-subject effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>47.30</td>
<td>1.9e-11</td>
</tr>
<tr>
<td>Accuracy × Age</td>
<td>4.13</td>
<td>.001</td>
</tr>
<tr>
<td>Accuracy × Condition</td>
<td>11.17</td>
<td>.001</td>
</tr>
<tr>
<td>Accuracy × Age × Condition</td>
<td>2.69</td>
<td>.01</td>
</tr>
<tr>
<td>Accuracy × Anterior-Posterior</td>
<td>0.01</td>
<td>.91</td>
</tr>
<tr>
<td>Accuracy × Anterior-Posterior × Age</td>
<td>0.64</td>
<td>.72</td>
</tr>
<tr>
<td>Accuracy × Anterior-Posterior × Condition</td>
<td>5.81</td>
<td>.05</td>
</tr>
<tr>
<td>Anterior-Posterior</td>
<td>6.58</td>
<td>.05</td>
</tr>
<tr>
<td>Anterior-Posterior × Age</td>
<td>8.32</td>
<td>1.3e-9</td>
</tr>
<tr>
<td>Hemi</td>
<td>1.48</td>
<td>.23</td>
</tr>
<tr>
<td>Hemi × Age</td>
<td>0.85</td>
<td>.55</td>
</tr>
<tr>
<td>Condition</td>
<td>1.39</td>
<td>.24</td>
</tr>
<tr>
<td>Condition × Age</td>
<td>4.40</td>
<td>.0001</td>
</tr>
<tr>
<td>Anterior-Posterior × Hemi</td>
<td>0.13</td>
<td>.71</td>
</tr>
<tr>
<td>Anterior-Posterior × Hemi × Age</td>
<td>0.31</td>
<td>.95</td>
</tr>
<tr>
<td>Anterior-Posterior × Condition</td>
<td>10.62</td>
<td>.001</td>
</tr>
<tr>
<td>Anterior-Posterior × Condition × Age</td>
<td>1.80</td>
<td>.09</td>
</tr>
<tr>
<td>Hemi × Condition</td>
<td>2.62</td>
<td>.11</td>
</tr>
<tr>
<td>Hemi × Condition × Age</td>
<td>0.92</td>
<td>.49</td>
</tr>
<tr>
<td>Anterior-Posterior × Hemi × Condition</td>
<td>0.69</td>
<td>.41</td>
</tr>
<tr>
<td>Anterior-Posterior × Hemi × Condition × Age</td>
<td>0.74</td>
<td>.64</td>
</tr>
</tbody>
</table>

Between-subject effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>3.89</td>
<td>.001</td>
</tr>
</tbody>
</table>

Table 2 General linear model results

Age was divided in 8 different groups and entered as a factor in the analysis. The Greenhouse-Geisser method was used for correction of violation of sphericity. Absolute and relative movement and sex were used as covariates. Contrasts of no interest were omitted from the table. Accuracy refers to the source memory - baseline contrast vs. the miss - baseline contrast. Condition refers to encoding vs. retrieval. Hemi refers to hemisphere. **Bold** indicates p < .05
<table>
<thead>
<tr>
<th>PPI - Connectivity pair</th>
<th>Task - Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCODING</td>
<td>t</td>
</tr>
<tr>
<td>Left aHC – Left pHC</td>
<td>101.06</td>
</tr>
<tr>
<td>Left aHC – Right aHC</td>
<td>63.69</td>
</tr>
<tr>
<td>Left aHC – Right pHC</td>
<td>50.12</td>
</tr>
<tr>
<td>Left pHC – Right aHC</td>
<td>50.60</td>
</tr>
<tr>
<td>Left pHC – Right pHC</td>
<td>46.15</td>
</tr>
<tr>
<td>Right aHC – Right pHC</td>
<td>113.91</td>
</tr>
<tr>
<td>RETRIEVAL</td>
<td>t</td>
</tr>
<tr>
<td>Left aHC – Left pHC</td>
<td>108.72</td>
</tr>
<tr>
<td>Left aHC – Right aHC</td>
<td>63.72</td>
</tr>
<tr>
<td>Left aHC – Right pHC</td>
<td>53.92</td>
</tr>
<tr>
<td>Left pHC – Right aHC</td>
<td>55.90</td>
</tr>
<tr>
<td>Left pHC – Right pHC</td>
<td>51.58</td>
</tr>
<tr>
<td>Right aHC – Right pHC</td>
<td>109.94</td>
</tr>
</tbody>
</table>

Table 3. Task related changes in connectivity (source-memory connectivity)

Statistics represent one-sample t-test with significance adjusted for multiple comparisons with FDR (n = 12).
<table>
<thead>
<tr>
<th>PPI ANOVA</th>
<th>F</th>
<th>p<</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task ANOVA (source memory connectivity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>0.75</td>
<td>.39</td>
</tr>
<tr>
<td>Connectivity pair</td>
<td>255.29</td>
<td><1e^-16</td>
</tr>
<tr>
<td>Age</td>
<td>9.29</td>
<td>8.13e^-11</td>
</tr>
<tr>
<td>Condition × Connectivity pair</td>
<td>1.72</td>
<td>.15</td>
</tr>
<tr>
<td>Condition × Age</td>
<td>1.72</td>
<td>.10</td>
</tr>
<tr>
<td>Connectivity pair × Age</td>
<td>2.65</td>
<td>8.80e^-5</td>
</tr>
<tr>
<td>Condition × Connectivity pair ×</td>
<td>1.87</td>
<td>.007</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 General linear model results for PPI

Age was divided in 8 different groups and entered as a factor in the analysis. The Greenhouse-Geisser method was used for correction of violation of sphericity. Absolute and relative movement and sex were used as covariates. The F and p statistics represent results from two GLMs where PPI coefficients from source memory connectivity were introduced as the predicted variable. Contrasts of no interest were omitted from the table

Bold indicates p < .05