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Abstract

Available on the internet today, there exists a increasing amount of cheap
gadgets and sensors that can be used for medical purposes. However,
standardized methods for determining the quality of the sensors are often
expensive and require special expertise. The potential high cost for testing
and implementing these sensors into medical use is a obstacle for speeding
up the diagnosis of well known and easy identifiable disorders such as
obstructive sleep apnea(OSA). The traditional method of determining the
quality of pulse oximeters includes for subjects to breath gas mixes, and
analysis of blood drain from the subjects by a CO-oximeter. Instead, we
design a non-invasive breathing script to guide subjects through a series of
breath hold from functional residual capacity (FRC) while breathing room
air. Then we compare the resulting SpO2 values from the low-cost oximeter
against a more expensive reference oximeter. In this thesis, we compare
Cooking Hacks MySignals (CH) and BITalino pulse oximeters against NOX
T3 Sleep Monitor (NOX) as the reference oximeter. We calculate the
industry standard metric accuracy (Arms), and perform a Bland-Altman
analysis to find the precision (standard deviation of the difference) and
mean bias (mean of the difference). In addition to the well known analysis
method, we also perform a simple apnea detection analysis to decide the
oximeters ability to detect the fall in arterial oxygen saturation (SaO2)
associated with sleep apnea, with NOX as the reference oximeter.

For CH, 3250 matched samples over a period of 19 minutes were
obtained and paired with NOX for each from 10 test subjects. Results
show that the accuracy is 1.34%, with NOX as the ground truth (or 3.34%
including the NOX accuracy), in SpO2 values between 100% and 70%
(>90% of the values was spread between 95% and 100%). The mean
precision of all subjects is 1.78, and combined results give a precision of
2.61. Mean bias is 0.14%. Further, of the total 79 desaturations recorded
by CH, 88.7% is true positives, 15.2% is false positives, and 11.3% is false
negatives. For BITalino, we were not able to determine the quality of
the pulse oximeter. The collected data contained a perturbation pattern,
affecting the signal, that we did not find the source of. Our research suggest
that low-cost pulse oximeters might be suitable for detecting desaturation
associated with sleep apnea, and it is possible to determine the quality of
oximeter for such use by using the non-invasive methods mentioned in this
thesis.
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Chapter 1

Introduction and motivation

1.1 Introduction

Health care monitoring has traditionally been reserved for hospitals and
health clinics, i.e., places where the medical expertise is located. This
situation has resulted from the earlier relatively high price of health
sensors systems. Lately, the development of smartphone technology has
enabled small sensing devices and sensors to be connected to portable
computers. Simple health monitoring has been implemented for some
years in apps on smartwatches and smartphones, which are using sensors
such as pedometers or accelerometers to track or measure physical activity.
Recently, however, a growing number of portable health sensor devices
have emerged to record and measure the metrics used in diagnosing more
advanced physical health conditions, such as the respiratory patterns or
blood oxygen values used to detect sleep apnea. Such recordings can
also be a good supplement for medical doctors, since they allow a fairly
inexpensive monitoring of the patient at home. Proper software recordings
can also serve as health safety monitors for individuals who are sick,
physically disabled, elderly, etc.

Projects exist that take advantage of this “revolution” in the low price
and mobility of the new market of health sensor platforms, which we
introduce below. Many of these sensors are not certified for clinical use.
Measuring tools are therefore needed to determine the quality of these
sensors and their value for the intended use. The CESAR project aims to
develop a tool for the diagnosis of obstructive sleep apnea (OSA). OSA is
a sleep disorder caused by partial or complete blockage of the respiratory
passage. The gold standard for sleep studies and diagnosis of OSA is by
an overnight sleep study known as polysomnography (PSG). In PSG the
patient is attached to a various number of sensors by medical personnel
or specialists, and stays overnight at a laboratory to have his or her sleep
recorded. Afterwards the result, called a polysomnogram, is analysed by
medical personnel who score sleep apnea events and the degree of severity
of the disorder. Because of the nature of the study, the process of diagnosing
a patient for OSA through traditional PSG is fairly expensive, and it may
also be experienced as intrusive.
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Nevertheless, the consequences of remaining undiagnosed may lead
to both mental and physical illnesses. While there are known negative
health consequences of sleep disorders (from subtle consequences such
as sleepiness and decrement in mood and quality of life, to the more
harmful hypoxia, cardiac dysfunctions or death), estimates show that most
occurrences remain undiagnosed and that the prevalence is increasing [33].
In Norway it is estimated that about one in six persons suffer from the sleep
disorder[21], and indications are that as many as 70-80% of those affected
remain undiagnosed[37]

The growing number of health sensors, which vary in both price and
quality, raises the question of their value in the monitoring and diagnosis
of patients and disorders. If possible, the use of more inexpensive sensors
would also lower the threshold for implementing more use of home
monitoring in the health sector.

1.2 Problem Description

The CESAR project aims to improve home monitoring and diagnosis with
the use of low-cost sensors. Patients are monitored at home by a private
market pulse oximeter, unattended by health personnel. The records of
the night sleep may reveal abnormalities in their sleeping patterns. The
doctor of a patient could potentially identify a sleep disorder based on
the recorded data, but only if they are of sufficient quality. If high-quality
data are analyzed, the doctor has a good foundation to evaluate whether
the patient should be referred to a specialist in sleep studies for further
diagnosis.

Pulse oximeters for private markets are often very inexpensive in
contrast to medical-grade oximeters. They are increasing in number,
and doctors, patients, researchers or developers can buy them at a
lower cost. However, the low price introduces a question of whether
the sensor is suitable for use in a medical setting. Even though the
manufacturers often specify the quality of their sensors according to
international recommendations, we can assume, if not otherwise stated in
its documentation, that a sensor is probably not clinically certified or tested
by an independent actor. Testing in a professional laboratory is expensive,
and the methods are often intrusive. The industry standard for measuring
the quality of pulse oximeters is generally to use CO-oximetry or other
spectral analysis of blood drain, therefore requiring medical attendance
and expertise.

As just described, to expand our knowledge of the quality of inexpen-
sive oximeters, we either have to request a potentially expensive laboratory
study or implement invasive testing procedures requiring medical equip-
ment and personnel. As a result, from initially being a low-cost sensor,
testing the quality might raise the expenses to a total where the solution
is no longer a low-cost, first-step alternative to more standardized diag-
nosis tools. The intended low threshold for buying inexpensive medical
equipment (e.g., for use in the home monitoring of patients) is therefore
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undermined by the total cost of the implementation.
It is possible to use an oximeter without a quality check, although

omitting a third-party examination of medical equipment might lead to
unfortunate consequences. The use of equipment with inadequate quality
assurance might give wrongful indications about a person’s physical
condition. Results from such sensors may falsely support or disprove
medical health assumptions, thus causing unnecessary expenses from
either an extended sleep study or, even worse, false conclusions found that
no further diagnosis is needed.

Based on the challenges described, therefore, this thesis addresses
quality testing of pulse oximeters in the setting of apnea detection, using
a non-invasive method and with no additional equipment or medical
supervision needed. However, even though we focus on oximeters in this
thesis, other sensors might be used in combination with them. In addition
to the sensors, our computer science lab is equipped with other common
technological devices, such as computers and smartphones. Accordingly,
by limiting the need for resources, and by only including the equipment
mentioned, we contribute in lowering the financial expenses and limit or
obviate the need for medical expertise to evaluate the quality of oximeters.
With this strategy, we hopefully also lower the threshold for buying, testing
and using inexpensive physiological sensors.

1.3 Claims

The main work of this thesis is the design and evaluation of the use of
a noninvasive benchmarking protocol, i.e., a testing procedure, to test the
quality of pulse oximeters. Our work has been developed as an inexpensive
alternative to the industry’s standardized testing methods, which require
medical attendance. Therefore, our protocol is an easy-to-follow, step-
by-step manual that can be used as a guide when benchmarking pulse
oximeters, with no need for medical attention or equipment. It includes
the fundamental considerations and precautions for implementation, in
addition to the specific testing procedures.

This paper also covers the implementation of the researched bench-
marking protocol, and we complete a quality study of pulse oximeters from
the mentioned BITalino and Cooking Hacks. Results from experiments are
analysed, and we calculate the accuracy (root mean square error), precision
(standard deviation of the difference), mean bias (mean of the difference)
and limits of agreement of the oximeters. We also provide statistical data of
their ability to correctly identify the desaturations recorded by the reference
pulse oximeter.

1.4 Approach

As our research depends on technology that measures physiological
factors, this paper contains a survey of the Health Sensor Platform domain.
We also present the process of pulse oximetry and the theory and diagnosis
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of sleep apnea. In addition to surveying the health sensor and sleep apnea
domains, our literature review is rooted in these three points:

• What are the standardized methods for establishing the quality of
pulse oximeters, and are there alternatives?

• Are there any challenges in recording the brief physiological event of
apnea with a inexpensive pulse oximeter?

• What dependencies determine the success grade of our benchmark-
ing protocol, and how can we improve it?

To address the first point, we examine both accepted standards and
related work on quality testing of pulse oximeters. This investigation
provides us with knowledge of possible alternatives to standardized
methods. For the second point, we discuss pulse oximetry as a technology,
and the possible challenges attached to an oximeter’s capability to measure
desaturations associated with sleep apnea correctly. Last, in addition to
exploring sleep apnea, we look into papers that investigate the use of
awake apnea simulation as a method to achieve desaturations. This step
also gives us an impression of what to expect from different levels of
oxygen saturation.

As mentioned, we have three sensor kits at our disposal, from Nox
Medical, Cooking Hacks, and BITalino. A medical-grade home monitoring
set, Nox Medical is used as the reference monitor. Our testing procedures
start with exploring the abilities of the platforms mentioned empirically
in a series of preliminary experiments. We determine methods for data
acquisition and synchronization, inspect the sensor data and discuss
the need for data filtering and processing. For BITalino, related work
in the CESAR project has already developed and implemented a data
acquisition method, and the quality of the data is therefore the main topic
of discussion. The platform from Cooking Hacks, MySignals, is new to
the CESAR project, and it is therefore explored more thoroughly than the
other two platforms. We examine the relevant code from documentation
in detail, and write and implement new code that fits our purpose better.
Then, based on our findings and the background material, we identify
requirements and design the benchmarking protocol. The evaluation of
our research is accomplished through a series of experiments. Introduced
not merely to determine the quality of the pulse oximeters, the tests also
provide data we use when evaluating our protocol. The experiments are
therefore divided into two parts. First, we run two tests with different test
subjects, and then we evaluate if the benchmarking protocol is an object for
optimizations. The second part continues with the full set of experiments,
using the now- updated protocol. We summarize experimental results
and analyze characteristics in data, in addition to providing a final
quality statement about the oximeters tested. Conclusions about our non-
medical, non-invasive benchmarking protocol are evaluated against our
expectations and goals.
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1.5 Paper Organization

After the introduction in Chapter 1(including problem statement, claims
and approach), our research is presented in Chapter 2 with a general
introduction of the platforms and sensors available to us. There we also
look into technologies and terms used in this paper. Then, in Chapter 3,
we cover the basics of pulse oximetry technology, including physiological
processes and challenges. We also discuss different methods for analysis of
sensor data. The last chapter in the first part of this paper, Chapter 4, covers
the taxonomy and diagnosis of obstructive sleep apnea. As an important
step for our design of the benchmarking protocol, we investigate breath-
held apneas.

Part II includes the design and implementation of our benchmarking
protocol. First, in Chapter 5, we conduct a series of preliminary
experiments to establish methods of data acquisition, and investigate
the issue of data quality. There we also test different methods of
synchronization, and their possible consequences. In Chapter 6 we, include
the requirements for our benchmarking protocol and define the limitations
and scope of our tool. Next, methods for determining its quality are
established. We also define the purpose and methods of the benchmarking
protocol. The design of our benchmarking tool is presented in Chapter
7, as well as the considerations, preparations and guidance pertinent to
the benchmarking process. Chapter 8 contains the implementations of the
scripts needed in the benchmarking process.

Evaluation is the topic of Part III. Chapter 9 contains the experimental
results. Information is included about the test population and synchro-
nization, and the quality of the pulse oximeters from BITalino and Cooking
Hacks are determined. In addition to calculating the values from our de-
fined metrics, we determine the ability of the pulse oximeter from CH to
record desaturations in Chapter 10, which includes an investigation into
the classification failures. And last, Chapter 11 consists of discussions
about the design of the benchmarking protocol, and how well suited our
benchmarking method is for determining the quality of pulse oximeters.

Part IV begins with a contributions summary ( Chapter 12). Chapter 13
outlines several research challenges we faced, while Chapter 14 suggests
relevant topics for future investigations. The last components of our
research are Appendixes, where A contains source code location, B work
on the Cooking Hacks platform, and C important documents for our
benchmarking method.
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Chapter 2

Sensor Technologies

As we will learn in this thesis, portable sensor devices now exist for
monitoring patients outside of hospitals and laboratories. These small,
portable devices can be useful as an initial investigation into a person’s
health, before referral to a specialist for further diagnosis. The more
expensive devices are often certified for medical use by physicians and
other specialists. Dentists today often use them to diagnose problems
such as sleep apnea before installing oral appliances. An example of such
device is the NOX T3 from Nox Medical[27]. Even though the device is
less costly than those used at a clinic, and certainly more portable, it is still
fairly expensive to purchase. Lately, an increasing number of inexpensive
devices have emerged that include many different sensors. In contrast to
the NOX T3, most of them are not certified for medical use or verified by
a third party. Instead, these are development kits, which can be used to
monitor physiological processes. We consider in our research both types
of device as health sensor platforms, and we provide definitions later in this
chapter. An example of an inexpensive health sensor platform would be
the BITalino [6]. Apart from the price, the difference between the two is
their purpose. NOX T3 is designed to perform sleep studies, and BITalino
is, as mentioned, a development kit. In this chapter, we explore the subject
of health sensor platforms, and further examine the ones mentioned.

In the next section, we establish a common understanding of terms and
technologies introduced in this paper. In Section 2.2, we dive into the
different health sensor platforms. Various types of sensors and their use
is described in Section 2.3

2.1 Terms and Technologies

In this section, we go through the terms and technologies used later in this
paper.

Gold Standard and Ground Truth: In medicine, the “gold standard”
refers to the method proven to be the best practice for measurement, such
as monitoring physiological processes. The “ground truth” is the reality of
the situation; it is what actually happens. Then, the gold standard is the
one method out of all methods that give the most accurate estimation of

9



the ground truth. New methods are often tested, or calibrated, against the
gold standard.

Arduino and MCU: Arduino1 is an open-source electronic platform that
serves as a controlling and processing unit for sensors or boards. It contains
a microcontroller(MCU), which is a lightweight internal computer, with pro-
cessing, storing, interfacing and communication capabilities. The Arduino
platform also offers its own Integrated Development Environment(IDE),
Application Programming Interfaces(API), and both wired and wireless
connectivity abilities.

API: A common task for APIs is that they enable communication between
software or hardware components. For instance, the Arduino boards have
a set of C/C++ functions used for communications, defined in the language
reference list. In our research, we use APIs to setup the devices and collect
data.

Android and Bluetooth: Android2 is an open-source operating system(OS)
mainly used in mobile devices and smartphones. The advantage with
Android, is that users can install own applications without any form for
approval. Bluetooth is a short-range wireless protocol for the exchange of
data between mobile devices. It is one of the most used communication
technologies today, together with WiFi. We learn more about Bluetooth
below.

Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a version of Bluetooth designed especially
for smart devices, and is a lightweight subset of classic Bluetooth [46].
Because of the low energy use, BLE is often implemented in small devices,
such as portable devices and sensors. The basic characteristics of BLE
technology and its use are explained below. Generic Access Profile (GAP)
is what defines and controls how to connect with the BLE unit. There
are two types of devices, the peripheral (slave) and central (master). To
simplify, we can think of these two as the sender and receiver of sensor
data, respectively. GAP handles the advertising payload of the device,
which can be either advertising data or scan response. Both payloads
contain up to 31 bytes of data: the only difference is that the scan response
payload can contain additional information about the peripheral device.
The scan response payload is a result of a scan response request from the
central device. After the central unit and the peripheral unit establish
contact, the devices can then start to exchange data. The peripheral unit
cannot then connect to other central units until connection is broken.

The Generic Attribute Profile (GATT) defines the way the BLE units
transfer data. GATT can be seen as a server/client relationship. A GATT

1http://www.arduino.cc
2http://www.android.com
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transactions contains profile, services and characteristics, which can be stored
in the master device. A profile can be seen as a frame for the data
transaction, and it involves standardized profiles (e.g. pulse oximetry).
Each profile consists of one or more services that are used to break data
into chunks of data, called characteristics. Both services and characteristics
distinguish themself by universally unique identifiers (UUID).

2.2 Health Sensor Platforms

In this paper, we use the term Health Sensor Platform (HSP) to refer to
devices with sensors that record physiological data, and most of these
platforms usually come with software. To determine what is HSP’s, and to
exclude other sensor devices, we now provide a definition. Since to the best
of our knowledge no such definition exists in the literature, we propose the
following: A Health Sensor Platform is a combination of hardware and software,
including APIs, that provides digital data from health sensors
Therefore, an HSP is the hardware we use to connect to sensors, along
with the accompanying software or APIs that enable extraction of data with
health value. While all the platforms in this paper can provide us with the
physiological health data of a person or a patient, the XeThru platform we
describe in Section 2.2.5 is also used in many other nonmedical tasks, such
as position or movement detection. Its sensors lack the specific purpose of
measuring physiological signals. With the definition above in hand, we can
therefore argue that the XeThru is not an HSP. The next sections explore the
classification of sensors, comparing those used in this essay in detail.

2.2.1 Type of sensors

In this paper we use the term health sensor (further defined in Section 2.3)
to cover all devices that can measuring a person’s physiological processes.
These devices differ in complexity and placement. As the goal of our
thesis is to develop an noninvasive method for testing pulse oximeters, it
would be useful to investigate the different levels of sensor invasiveness.
First, we can examine the Oxford Living Dictionary’s definition of invasive
of medical procedures as “involving introduction of instruments or other
objects into the body or body cavities” [13].

A sensor’s degree of invasiveness can therefore be determined by
whether it is inside, going into, or completely outside the body. We can
also see invasiveness in relation to intrusiveness. For example, we can
assume most people would regard an invasive sensor requiring access to
the arteries for blood drains as intrusive, as both the procedure and the
environment of operation, could be experienced as unpleasant.

Da Silva et al. define categories of hardware devices (health sensors)
used to monitor the health condition patients or subjects [42]. We use their
definitions to classify and discuss the different types of health sensors.

• In-the-person - Covers implantable health sensors such as pacemak-
ers; often involves an operation followed by a hospitalization. The
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location of this type of sensor is mostly invasive, and the implemen-
tation process is often experienced as highly intrusive.

• On-the-person - Covers stationary and ambulatory devices. Often
large and used at clinics and hospitals, stationary devices record sig-
nals from a person through wires to a stationary recording/process-
ing unit. Ambulatory devices can be used with portable units such as
a smart clock or “necklace” that is implemented either in the unit or
connected through wires or Bluetooth. These kind of health sensors
we define as non-invasive, as they are not inside the body. How-
ever, they are attached to the person, and are therefore experienced
as intrusive. Devices in this category are the platforms NOX T3 and
BITalino mentioned earlier.

• Off-the-person - Covers devices with contact-based sensors. Instead
of being worn on or within the person, the sensors are implemented
in everyday life gadgets such as a gaming control or a keyboard.
Other devices covered by this category are those that never touch
the user or patient. The presence of these kind of sensors may not
experienced by the monitored person at all; therefore, they are both
non-invasive and experienced as non-intrusive. An example of a
platform in this category is XeThru, which uses a contactless radar
sensor.

2.2.2 BITalino

BITalino profiles itself as a low-cost, do-it-yourself toolkit, that can be used
for developing health care applications. However, the platform works out
of the box, and real-time data streams can be visualized by using their free
software, OpenSignals. As the data are also made available through APIs in
different programming languages, you have the ability to write your own
software and to stream the recorded data (e.g., to an Android device). The
price of the various kits ranges from 150 to 200€, including all sensors and
cables. It is the least expensive of the platforms mentioned in this paper.

Technical Description

Shown in Figure 2.1 are the board components of the kit used in this
thesis: the (r)evolution Plugged Kit BLE. It comes with about 10 sensors
and actuators, cables, technology blocks and a battery. It is also possible to
connect one’s own developed sensors.

The device does not have storing capabilities. It is therefore necessary to
connect it to a computer(e.g., laptop or smartphone) to extract or visualize
the data. The previously mentioned OpenSignals software includes both
an interface to connect to the BITalino board and options for visualization
of recorded data. Even though the kit contains multiple sensors, it does not
include a pulse oximeter. Instead, a separate sensor is obtained, the Contec
CMS-50+. The pulse oximeter also comes with a cable designed to fit the
BITalino boards. The cost of this oximeter at a BITalino shop is 165€, about
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Figure 2.1: BITalino (r)evolution plugged kit

the same as the complete Plugged kit, and its functionality is not dependent
on the board. It can record up to 24 hours of data, and configuring is set up
with the help of its LED screen and function button. It is also possible to
set alarms according to defined conditions.

Instead of using the OpenSignals software, we use a data acquisition
tool developed earlier by Svein-Petter Gjøby [18]. This work uses Android
apps to send commands to the BITalino, storing the data received from the
sensors either on a phone or on an external database.

2.2.3 Cooking Hacks

Cooking Hacks is also a fairly low cost platform providing tools for
developing health care applications and products. The kit used in this
paper, MySignals HW BLE Complete, costs 1,350€.

In contrast to BITalino, MySignals, is more a sensor and technology
board that serves as an interface for the sensors to be connected. It also
includes a WiFi module, a Bluetooth Low Energy module, and a module to
connect a TFT screen. Then the MySignals board is connected either to an
Arduino, a Raspberry Pi or a Waspnote, all of which are computing devices
It is possible to get a pre-programmed, all-in-one device, the MySignals SW
box, which is ready to use with the MySignals App. The second version,
MySignals HW, is a development version that is programmable without
pre-installed software. We have the MySignals HW v2 that uses Arduino
as a computing device. The kit is visible in Figure 2.2, with the MySignals
Board to the left and Arduino to the right.

Technical Description

The platform provides a wide variety of both connectable analog and
wireless BLE sensors and hardware, and it is possible to connect your own
sensors. The kit includes a power connection; however, a battery may be
connected to the Arduino board.
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Figure 2.2: MySignals HW and Arduino Uno

The pulse oximeter from Cooking Hacks as a wireless BLE device, with
no display or other buttons than an on button. Its values are available
through visualization on the TFT screen, as seen in Figure 2.3, or through
data collection in an external device. Neither the BLE profile nor any other
documentation about the internals of the oximeter are provided by the
manufacturers. However, through their forum they report the accuracy
as ±2% between 80 and 100%, and ±3% between 70 and 79%

When using Arduino as processing board, MySignals can be pro-
grammed with the Arduino IDE on a computer. The documentation [19]
contains code examples with many possibilities for collecting the data.
These are explored further later in this thesis. It is worth noting that
the documentation contains a capabilities overview and basic instructions;
however, it lacks deeper technical explanations about how sensors operate,
such as the internal protocol of the pulse oximeter. This platform is unique
in that it can store data in the Libelium Cloud and give authorized access
to it from a remote location.

2.2.4 NOX T3 Sleep Monitor

The NOX T3 Sleep Monitor from Nox Medical [27] is a portable home
monitor device for sleep diagnosis. It is the most expensive of the platforms
in this thesis, and in contrast to the two above, this one is medically graded.
The price is more than 5,000€ .It is ready to use, with pre-programmed
features for monitoring physiological signals. It is strictly portable, and
the components seem very robust (whereas the two platforms mentioned
above have open circuits etc.). It comes with a complete sleep analysis and
diagnosis tool, Noxturnal, for analyzing the data produced.

Technical Description

The device consists of a central recording unit(Figure 2.4), a pulse oximeter
unit, along with other sensors commonly used in sleep studies (more in
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Figure 2.3: MySignals HW with TFT screen

Figure 2.4: NOX T3 Sleep Monitor[27]
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Figure 2.5: NOX T3’s Pulse Oximeter[27]

Section 4.3. All sensors are connected to the central unit, which both
controls the recordings and stores the data from the sensors.

The pulse oximeter, Nonin WristOx2, is a wireless Bluetooth device
that is automatically linked to the central device when the user inserts
a finger into the clip. The oximeter has a separate finger clip (with
the sensor) and computing device, although, they are linked via a short
cable. The computing device has a screen that displays live data of SpO2
values, pulse and technical information, while the clip is of flexible plastic
for improved comfort. The accuracy of this oximeter is labeled in the
technical description to be 2% between 100 and 70%. This pulse oximeter
is displayed in Figure 2.5.

In order to collect data, the central unit is connected to a computer
with a USB cable. To our knowledge, the only way to set up the device
for recording, and to extract data afterwards, is by using the Noxturnal
software(Figure 2.6). However, it is possible to extract raw sensor data from
each channel using copy/paste. Otherwise, the data from a monitoring
session are analyzed with the software, which includes common scores
from classification systems in sleep studies.

2.2.5 Other Platforms

In our research, the time frame limited our possibility of exploring more
platforms than those described earlier in this chapter. However, as an
example of contactless sensor technologies, we can inspect the XeThu from
Novelda.

As mentioned earlier in this essay, the XeThru stands out as an off-the-
person platform, while the others are of the on-the-person type. It uses
an ultra wide-band impulse radar as its sensor device, and the main uses
are presence detection, respiration and sleep monitoring. Their software,
Module Connector, is available for most operating systems, and is used for
communication with the XeThru devices. Due to this platform’s sensor
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Figure 2.6: The Noxturnal Software[27]

technology, the data stream may not provide any health value without
extensive processing with the provided software. In a blog post3 on its
website, it is claimed that XeThru can provide hospital-grade sleep data.

2.2.6 Summary of Platforms

Table 2.1 presents an overview of the platforms we used in our research. In
general, the on-the-person platforms have approximately the same sensors
available, and all but the NOX T3 has Bluetooth with an API available as an
interface for data acquisition in real time. With NOX T3, it is only possible
to extract the sensor data through their software, after the recording is
done. With a programmable micro controller unit (MCU) only, the BITalino
and Cooking Hacks (MySense HW v2) have little processing or storing
capabilities on their board by default.

2.3 Health sensors

To obtain physical health recordings about a patient or user, we have to
use sensors. These usually output raw data about a specific physiological
process as a stream or record, and a combination or estimation of measures
from more than one sensor may be used. To give the data meaning,
the results from the recording are typically processed by software, then
analysed by either health personnel and/or the software itself. In this
section, we seek an understanding of common sensors used in health
monitoring.

First, we differentiate between logical and physical sensors by using
the definitions from Kristiansen et al. [43], which classify them based on

3https://www.xethru.com/blog/posts/xethru-delivers-hospital-grade-sleep-data,
acc. 2017-10-2
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Platform Software Internal
MCU/CPU

Sensors Communication
interface

Storage

BITalino API,
OpenSignals

MCU ECG,
EEG,
EMG,
EDA,
PO

Bluetooth
2.0

External

Cooking
Hacks

API, MySig-
nals

Connected
Arduino
UNO

ECG,
EMG,
GSR,
PO,
Air-
flow

Bluetooth,
Cloud

Cloud,
Exter-
nal

NOX T3 NOXturnal Internal
CPU

ECG,
EEG,
EMG,
RIP,
PO,
Air-
flow

USB Intern
1GB

Table 2.1: Overview of the health sensor platforms, key features and
specification

input and implementation. A physical sensor converts an analog signal from
the real world into a digital data stream. Implemented through software,
a logical sensor analyzes sensor data from one or more data streams and
produces a data stream as output.

In Figure 2.7 we see that output A is a result of one physical sensor. This
sensor is an accelerometer, which is designed to output digital data based
on acceleration input. Another example would be a digital thermometer,
the input of which is the (analog) variable of temperature, and the output
is temperature as degree Celsius.

The digital outputs B and C are results from sensors that process
analog signals from electrodes. An electrode can measure electrical
changes in the skin or body, and is useful for monitoring different organs.
However, both the implementation and the interpretation of the data from
electrodes may differentiate between (logical) sensors. Even though both
electrocardiography (ECG) and electroencephalography (EEG) constitute
methods for monitoring physiological processes, we call them sensors in
this thesis.

As we pointed out, the terms sensors and methods are often used
interchangeably, and we use sensors in our work. Below we show the most
commonly used sensors of the health platforms named in this thesis. With
this discussion we also learn about the importance and use of sensors in
medicine.

• Electrocardiography (ECG) is used for measuring electrical activity
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Figure 2.7: Example of logical and physical sensors

of the heart. In medicine, ECG is used in screening and diagnosis
of heart conditions, such as myocardial infarction (“heart attack”). In
short, a stationary, clinical ECG device is attached to the patient using
electrodes, which is then able to record electrical activity of the heart,
referred to as an electrocardiogram.

• Electrodermal Activity (EDA) / Galvanic Skin Response (GSR) is
used for measuring electrical activity of the skin. EDA/GSR sensors
are most commonly used in psychological research and therapy. They
can record the electrical conductance of the skin (in practice, the
moisture level), and the values measured can be used to indicate
certain emotions.

• Electromyography (EMG) is used for measuring electrical activity
produced by muscles. In EMG, we detect an electrical potential; that
is, a voltage difference in two points of time generated by muscle
cells. In medicine, the record, called an electromyogram, can be used
to identify neuromuscular diseases. Both intramuscular and surface
EMGs are available; however, the sensors available to us are surface
EMGs.

• Electroencephalography (EEG) is used for measuring electrical activ-
ity of the brain. Placed along the scalp, electrodes measure voltage
fluctuations in the brain. In medicine, the recordings can help to di-
agnose epilepsy and sleep disorders.
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• Respiratory inductance plethysmography (RIP) is used for measuring
movements of the chest. The procedure is done by placing one
transducer band around the chest of the patient, and in some cases
a second one around the lower stomach. RIP record analysis can help
to describe various respiratory patterns and disorders.

• Airflow (nasal) is used for measuring the airflow and breathing
patterns of a patient. Commonly, either thermocouple, GSR or nasal
pressure sensors are placed in the nostrils to detect and measure
changes caused by inhalation and exhalation.

• An accelerometer (ACC) is used for measuring acceleration. In
medicine, this sensor is useful for recording positioning and move-
ment, or nonmovement (e.g., to monitor a person’s sleep behavior in
a sleep study).

• A pulse oximeter (PO) is used for monitoring pulse, oxygen satura-
tion in blood, and sometimes other physiological signals. The pulse
oximeter is usually placed on a patient’s finger, with a photodiode
absorbing lights from LEDs. They are widely used in in sleep studies
and in medicine to monitor respiratory and cardiac patterns.

2.4 Benchmarking Sensors

Benchmarking is the measuring of an object’s performance, based on well-
defined metrics, in which the result is often represented as a single value
or a collection of values. These values should say something about the
object’s performance relative to other tested objects, a ground truth or
best performance result. It is important that the testing is adequately
documented, to make the results reproducible and comparable to other
similar tests.

When we benchmark sensors, we may assume that output from one
specific group of sensors from different manufacturers produce output
that is similar in character and in most cases comparable. However, the
format and the frequency of the output are likely to differ. As an example
of the complexity of the process of benchmarking health sensors, we can
inspect the experiment presented by Da Silva et al. [42]. They tested the
performance of two contrasting devices from BITalino and Philips ECG,
which differ in both price and technology. While the expensive Philips is
a gold standard certified for clinical use, with almost a dozen electrodes,
BITalino focuses on low cost and ease of use and has few electrodes.
First, data acquisition methods for the devices must be established. As
we described for the platforms at our disposal for this paper, the storing
capabilities of sensor devices may vary. Next, because of their technical
differences, preprocessing and synchronization algorithms are needed. The
sampling rate may differ, or the values may not be directly comparable,
need to be scaled/filtered, etc. Last, the data are analysed with metrics
commonly used for signals from ECG sensors.
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The example above contains the overall elements that are also found in
our process of benchmarking. We can therefore identify these 4 objectives:

• Defining the benchmarking procedures.
• Determining suitable methods for data acquisition.
• Processing of data in order for the devices to be comparable.
• Analysis of data in regard to the appropriate metrics.

After completing the objectives and the benchmarking process, we have
a good foundation on which to draw conclusions about the platforms
tested.

2.4.1 Metrics

As we described in the last section, we should define the appropriate
metrics to use in analysing the data. To better understand the term metric,
we can inspect the description provided by Suri et al. [47]: “a standard of
measurement stated in quantitative terms which captures the performance
in relative to standard on the occurrence of event.” Simply put, a metric
is a quantification of an event that describes the characteristic of the
measurement relative to the reference. The reference can be the ground
truth or the gold standard. In our setting, an event can be a fall in oxygen
saturation in a person, and the reference our expensive pulse oximeter.
Then a metric should quantify the event (e.g., count the desaturation in
the reference and the test oximeter).

2.4.2 Testbed and Data Acquisition

In software development, a testbed is a platform or setup to test new
development in an isolated environment. Its purpose should be suited
to the situation or item being benchmarked. If we are to measure
analog signals converted to digital data, and in addition transport the
data through WiFi or Bluetooth, we have to consider the location of the
setup, minimizing signal interference or disturbance. Furthermore, a pulse
oximeter that uses photodiode to measure light might be vulnerable to
light, and the testbed may therefore limit light sources. The testbed is
therefore defined on the basis of factors such as signal type and data
acquisition method. In addition, the setup of the experiments should be
adequately documented for the purpose of enhancing their reproducibility.

2.4.3 Data Quality Phenomena

The quality of data might be affected by many different phenomena. Both
physical and logical sensors are likely to be affected by environmental
perturbations such as light, movement and static. Hopefully, in most
of the characteristic we see in the data is expected, such as a fall in
saturation when a person holds his or her breath. An other example would
be the thermometer showing a plausible estimate of a person or of the
temperature in a room. However, some events shown by data might be
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unexpected. If the thermometer suddenly indicates a fall in temperature
for no reason, we consider it to be unexpected.

Whether the characteristics of data is expected or not, the reason can
be known or unknown. If someone opens a window, then we know the
reason for the drop in temperature. Or a person moving may explain the
loss of a physiological signal. We place the events in signal data as one of
the following phenomena.

• Fundamental: Holding one’s breath causes oxygen saturation to fall,
while breathing causes it to rise again. This is expected and desired
characteristics we can explain.

• Environmental: Light and movement are artifacts, as are wireless
perturbations or static. These affects is commonly unwanted;
however, they may be either expected or unexpected.

• Random: Unwanted events and patterns we cannot explain includes
sudden loss of signal and outliers in data signals.
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Chapter 3

Pulse Oximetry

After the spectrometer was invented in the late 19th century, research and
experiments from individuals and groups throughout the 20th century led
to the modern pulse oximeter [40]. Pulse oximetry uses the principles
of the Beer-Lambert law, which states that it is possible to calculate the
concentration of an absorber in a solution simply by the use of light
[50]. The calculation is made possible by measuring the light transmitted
though a solution, using variables such as light intensity, path length and
extinction coefficient of the substances at a particular wavelength. In
simpler words, pulse oximetry uses the Beer-Lambert law to determine the
oxygen concentration in the blood by measuring light transmitted through
living tissue.

Today, a pulse oximeter is a well known physiological monitor that can
record events related to hypoxemia, which is a condition of low oxygen
in the body. By monitoring the oxygen saturation in blood, it is possible
to discover health conditions preventing oxygen uptake in the body close
to real-time. Therefore, they are used in critical care, in anesthesia, and in
tracking the oxygen saturation of neonates. Oximeters is also one of the
common sensors used in sleep studies. The sensor is small and minimally
intrusive. It may be attached to different body parts: a finger, an ear or
the forehead are most common, in addition to feet for neonates. Pulse
oximeters fall mainly into two groups: reflectance and transmittance. The
time frame of this research project only allows us to explore transmittance
oximeters, the most common variety. On the other hand, even though we
do not discuss their differences, most of the principles of pulse oximetry we
explain in this chapters are also applicable to reflectance oximeters. In this
context, it is worth noting that a common feature of pulse oximeters is that
they provide a real-time estimation of heartbeats per minute (heart rate),
and some also provide other physiological data. However, such features
are also excluded from our research, as we focus on pulse oximetry as a
technology.

We start this chapter by explaining pulse oximetry and the physiologi-
cal processes it depends on in Section 3.1. Then we go on with an examina-
tion of the standards for quality testing oximeters in Section 3.2, including
test procedures and considerations. In Section 3.2.2, we review common
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metrics and analysis methods, before exploring related work on accuracy
in Section 3.4. Last, in Section 3.5, we present a summary of our findings in
this chapter.

3.1 Pulse Oximetry and Hemoglobin

In this section we explore the basics of pulse oximetry, and the physiologi-
cal processes on which it depends. It is based the work of Wukittsch et al.
[50], and Crapo et al. [12].

Pulse oximetry uses a method based on a two-wavelength, non-
invasive spectral analysis of the blood, a technique that produces an
estimation of the arterial oxygen saturation (SaO2). Oxygen is transported
in blood from oxygen-rich environments, to peripheral tissue though the
arterials. In general, most of the oxygen transportation in humans is done
by the hemoglobin (Hb) protein found in red blood cells, each able to bind
(or load) up to four oxygen (O2). An oximeter takes advantage of this
property, and the oxygen saturation is an estimation of the proportion
of oxygenated hemoglobin (HbO2), relative to the total amount hemoglobin.
The binding process is also reversible, as oxygenated hemoglobin becomes
a deoxygenated hemoglobin (Hb), also known as reduced hemoglobin or
just hemoglobin, after unloading the oxygen to a peripheral tissue. The
(reduced) hemoglobin then travels with the blood back to the lungs
through the veins for re oxidation.

As mentioned in the Introduction, it is possible to calculate the
concentration of an absorber of light by analysing the light transmitted
through tissue. A pulse oximeter measures the absorption of red and
infrared light by the aforementioned oxygen-carrying hemoglobin protein.
The absorbance of light, valued as the extinction coefficient, by hemoglobin
and oxyhemoglobin is shown in Figure 3.1. There we see that the
absorbance of red light (wavelength 650 to 750nm) by oxyhemoglobin is
less than for (reduced) hemoglobin, and the reverse is true for infrared light
(wavelength 900 to 1000nm). Therefore, it is possible to calculate the ratio
between hemoglobin and oxygenated hemoglobin by emitting red and
infrared light through human tissue and measuring the transmitted light
with a photodiode. The SpO2 value of a pulse oximeter can be expressed
as the following equation:

SpO2 =
HbO2

Hb + HbO2
(3.1)

Pulse oximeters are calibrated against the gold standard for SaO2
estimation, the CO-oximeter. A CO-oximeter analyse blood samples taken
of the subjects with a multi wavelength spectrometer. Different from a
pulse oximeter, a CO-oximeter is also able to measure the concentration of
methemoglobin (MetHb) and carboxyhemoglobin (COHb), which also supplies
the CO in the name of this particular oximeter. These two, together with Hb
and HbO2, are the major absorbers of red and infrared light in the blood.
As a consequence, a CO-oximeter is able to take all of the major absorbers
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Figure 3.1: Hemoglobin Extinction Curves

in the blood into account when calculating the SaO2 value, and therefore
provide an accurate SaO2 estimation.

Where the CO-oximeter only transmits the light through the blood
sample, a pulse oximeter has to filter out other physiological components
such as cartilage, bones and tissue from the equation. As the “pulse” in
the name pulse oximetry might suggest, in addition to just emitting light
and measuring the transmitted light with a photodiode, it uses the variable
of pulsating blood in the calculation process. The nature of the pulsating
blood circulation is used to filter out, or subtract, the absorbance done by
non-blood artifacts, in order to calculate the SpO2 value. By emitting the
red and infrared light, and recording the minimum and maximum values
within a heart beat, the pulse oximeter is able to calculate an R-value:

R − value =
IR max

min
Red max

min
(3.2)

The R-value does not represent the SpO2 value in itself, but it is
empirically related to the SaO2. When calibrating a pulse oximeter, the
SaO2 value from the CO-oximeter is compared against the R-values, and
the relationship is stored in a table in the pulse oximeter’s processing unit.
When used afterwards, the oximeter can measure the Hb and HbO2 values,
and the internal microprocessor will estimate the oxygen saturation.

As expressed above, the value that indicates oxygen saturation mea-
sured by a pulse oximeter is called SpO2, and it is a percentage estimation
of the total load of oxygen by hemoglobin proteins. The blood might still,
and often do, contain more oxygen that is not carried by hemoglobin. The
total amount of oxygen in blood is indicated by the partial pressure of oxy-
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gen (PaO2). PaO2 describes the arterial oxygen tension, and it is measured
in millimeters of mercury (mmHg). It is useful to understand the relation
between SaO2 and PaO2 when explaining the process of desaturation and
(re)saturation, as explored below (this information is also important later
to both the design of the oximeter tests and in explaining our results).

The hemoglobin follows the blood through the circulatory system,
unloads oxygen to peripheral tissue, and as a consequence the PaO2 falls.
The oxygen-hemoglobin dissociation curve shows the relation between
PaO2 and SaO2, and is presented in Figure 3.2. In the figure we observe
oxygen saturation on the y axis of the blue graph and the total pressure of
oxygen on the x axis. We start with an investigation of the graph’s sigmoid
shape. At high PaO2 levels over 80 mmHg, the SaO2 value has little effect
of increased oxygen pressure on the blood. As we move leftwards in the
graph and the PaO2 falls, especially below 50 mmHg, the oxygen pressure
has a more linear influence on the SaO2 value. Let us further explore the
this behavior with an example: In order to lower the SaO2 value from 97%
to 90%, a corresponding 30 mmHg or greater drop from the initial 100 PaO2
is needed. On the other hand, a 10 mmHg drop in pressure from 60 PaO2
results in a drop from 80 to 70% SaO2.

From these data we can learn that most hemoglobins bind new oxygen
at a slow rate when they are fully loaded. Additional oxygen is instead
transported in the blood. Furthermore, the SaO2 value falls at a slow rate
from a high initial value. For example, an initial SaO2 of 97% indicates
that the PaO2 is also high, and given a fixed rate of unloading oxygen
to peripheral tissue, the fall in PaO2 will not have a considerable affect
on the SaO2 until it falls closer to 80 mmHg. By observing this, we can
identify an important property of the oxygen transportation. When the
blood containing oxygen and oxyhemoglobin arrives at peripheral tissue,
we assume (at least practically) that mainly the oxygen floating in the blood
is being released to the tissue. Next, after reaching a certain point (usually
between 60 and 80 mmHg), the oxyhemoglobin starts unloading its oxygen.

We have now discussed normal behavior in the oxyhemoglobin
dissociation curve. However, additional impacts could also be considered.
The red and green graphs in Figure 3.2 are models of a left or right shift
of the curve, which is caused by factors such as pH or temperature. Even
though the potential shift of the graph causes the relation between SaO2
and PaO2 to vary, this is not important to us. What we should note from
the curve is its sigmoid shape, and how the SaO2 behaves at higher PaO2
values. In the next section we will learn more about the calibration and
accuracy testing procedures of pulse oximetry.

3.2 Accuracy

A variety of studies exists on the accuracy of pulse oximeters, which
is the standard evaluation indicating their quality. Newer studies on
determining the accuracy of an oximeter reference the ISO 80601-2-61:2011
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Figure 3.2: Hemoglobin’s Oxygen Disassoation Curve

[22] (hereafter referred to as ISO of 2011), which is seen as an international
standardization document for pulse oximeters. In December of 2017, the
International Organization for Standardization published a revised version
[23] (hereafter referred to as ISO of 1017, and the writers as the committee),
which was further corrected and updated very recently, in February 2018.
Most resources we found in the research process of this paper reference
the 2011 version. Therefore, the time limit of our master’s thesis does not
allow us to rewrite this section according to the recently revised version.
However, information in papers that is in conflict with the newest ISO
standard is corrected. Also, it is worth noting that while the US Drug
and Food Administration (FDA) recommendation document [17] (hereafter
referred to as FDA 510k) often cited below refers to the ISO of 2011, the
2017 version of ISO 80601 also uses the FDA 510k below as a reference. We
therefore also use the FDA 510k as a reference in some parts, and use the
ISO 2017 as a control instance. The FDA 510k is a guidance document that
is meant to assist the industry in preparing the documentation needed to
demonstrate the safety of new medical equipment.

3.2.1 Testing procedures

The gold standard for both the calibration and measurement of accuracy
is comparing measurements from the pulse oximeter against values
from blood gas analysis done by a multi-wavelength CO-oximeter, or a
radiometer [36] [24] [23]. The Food and Drug Administration (FDA) in the
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Figure 3.3: Oxygen Saturation Plateaus [23]
.

United States has premarket guidelines [17] on how to assess the accuracy
of pulse oximeter. The FDA recommend an in vivo(i.e., clinical) testing of
accuracy, which should include at least 200 blood drain samples analyses
paired with the corresponding reading from the pulse oximeter. The 200
matched samples must be evenly spread out in the SaO2 range, from 70
to 100%. They further recommend that at least 10 healthy subjects be
tested who vary in age, sex and skin pigmentation; the greater of two
persons or 15% of the group should be of dark skin pigmentation. The
ISO 2017 specifies inclusion criteria of ages between 18 and 50, in addition
to persons being classified as ASA Category 1, which also means no or
minimal alcohol use [1].

The most common method to achieve a spread of test samples with
saturation values between 70 and 100% is by having the test subjects
breathe a gas mix containing nitrogen (N2), carbon dioxide (Co2) and oxygen
(O2). Changing the ratio between oxygen and nitrogen in the mix causes
more stable periods, called plateaus, of PaO2 values than is otherwise
caused by breathing normal room air. As a result, arterial blood draws
can be taken, R-value calculated, before the latter is matched against a
simultaneous (or correlated in time) reading from the pulse oximeter. The
relation is then stored as the resulting SpO2 values in a table in the pulse
oximeter[24].

Figure 3.3 shows a visualization of the plateaus mentioned above. The
vertical line is the SaO2 values and the plateaus, and dots represent the
blood draws. In the ISO of 2017, the recommendation is that the readings of
a plateau should stabilize for at least 30 seconds before the first samples are
matched, and additionally 20 seconds between each set of samples. With
this method it is possible to achieve the range of samples as described and
shown in Table 3.1. It is important to note for later discussion that the
process of creating stable plateaus, as described above, requires medical
considerations and possible supervision of medical personnel.

Non-invasive testing

The ISO of 2017 states that non-invasive laboratory testing is theoretically
possible against other pulse oximeters, but such methods have not yet
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Table 3.1: Example of target plateaus and ranges [23].

been shown to successfully demonstrate correct Arms. However, the ISO of
2017 provides a suggestion for a non-invasive testing procedure. Instead
of testing a pulse oximeter against a CO-oximeter, it is possible to test
against a second pulse oximeter used as a reference, if the second oximeter
is traceable to a CO-oximeter. By doing this, it is possible to drop the
procedures that include blood draws from test subjects. Still, the rest of
the testing procedure, and requirements for data analysis, are the same as
with in vivo testing.

The paper suggests a testing procedure that includes breathing gas
mixes in order to achieve oxygen saturation plateaus between 100 and
70%. Then, a total number of acceptable data pairs should be acquired
to demonstrate statistically the specified SpO2 accuracy (for instance, by
following the plateau scheme similar to that of Figure 3.3, a total of 200
matched samples distributed on 10 subjects, from each 20 sample periods
during different plateaus). As with use of the SaO2 values from a CO-
oximeter, SpO2 values from the second pulse oximeter are used as the
reference value from which the Arms is calculated. It is important to note
that the Arms value would be relative to the gold standard CO-oximeter,
including the error for the reference pulse oximeter.

Last, the standard proposes that other profiles for noninvasive testing
are possible (e.g., a continuous data collection during gradual changes in
saturation).

Functional Testers

Pulse oximeters are not intended to be recalibrated after being released to
market. However, devices exits that can test oximeters without the use
of in vivo test procedures such as described in the last section [51] [29].
These kinds of devices are known by different names, such as calibrators,
simulators or functional testers. While differences exist in purpose and
use, in this paper we follow the definition of the ISO of 2017 and call them
functional testers.

A common feature amongst functional testers is that human tissue is
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not required in order to test pulse oximeters. In short, and as a high level
of generalization, these devices instead use a simulated finger or other
simulated tissue to give the impression to the oximeter that a finger is
placed between the LED and photodiode of the device. Then, instead of
letting light pass through the tester, the simulated finger itself also contain
a LED and a photodiode, which then “communicates” with the pulse
oximeter. By doing this, the functional tester is able to (1) measure the light
from the LED of a pulse oximeter and (2) send light into the photodiode and
read the resulting SpO2 values. They can therefore control the wavelength
of the light emitted, and whether the R-curve is defined correctly. Hence,
such testers are purely mechanical and electrical devices, and they do not
measure oxygen, hemoglobin or other physiological factors.

Therefore, the ISO of 2017 states that no other means of verifying
correct calibration of pulse oximeters exists besides methods mentioned
in Section 3.2.1. Functional testers cannot test the accuracy of oximeters;
rather, they ensure that the devices are acting according to the design of the
manufacturers. Likewise, testers cannot determine if the design has been
done correctly. Since pulse oximeters cannot be re calibrated, to correct
potential errors the defective components must be replaced, or the oximeter
redesigned.

Nevertheless, functional testers could prove useful in instances such as
the periodic control of oximeters in use. In the work of Milner and Mathews
[29], they used a tester to check over 800 oximeters currently in use in
hospitals in the UK, and found that over 30% had technical issues that may
lead to malfunction or wrongful SpO2 estimations. This result suggests
that even with pulse oximeters not designed to be recalibrated, use may
cause sensor errors. Therefore, the use of functional testers or other similar
devices may be useful to control oximeters already implemented in medical
environment. A possible case in point would be a doctor testing the
equipment lent out to a patient.

3.2.2 Data Analysis

To investigate the state of the art in pulse oximeter quality analysis, we
examine the two documents most used as references in the literature, the
ISO of 2017 and the FDA 510k . In Chapter 3.4 of this thesis, we also
explore related work on quality testing of pulse oximeters, which may add
additional tools for analysis suited to our purpose.

The ISO of 2017 states that accuracy is the metric for pulse oximeter
quality. The time limit of our research does not allow us to delve into the
argumentation, but the committee states that their definition of accuracy
represent a combination of both systematic and random components of
error. The definition of accuracy, Arms, which is also commonly used today
by the manufacturers, is expressed as the root mean square between the
tested pulse oximeter and the CO-oximeter used as reference. The formula
is displayed in Equation 3.3.
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(3.3)

The standard also provides specific instructions for determining quality.
The accuracy of pulse oximeters shall be a root-mean-square difference
of less than or equal to 4% over the range of 70% to 100 % SaO2. The
standard for the SpO2 values from the reference oximeters is that they shall
be traceable to SaO2 values from a CO-oximeter. Furthermore, the CO-
oximeter should have a SaO2 performance of 1% (1 standard deviation).
The accuracy testing must be done according to the standard, using the
methods we describe in Section 3.2.1. Then the paired SaO2 and SpO2 data
points are pooled for all subjects, and Arms is calculated using the formula
in Equation 3.3. All pulse oximeters released to market should be labeled
with the accuracy values, either within specific ranges or between 70 and
100% in general.

In addition to those described above, the FDA 510k guidelines add rec-
ommendations for analysis methods and graphical visualizations methods
for the premarket documentation. The first is a Bland-Altman plot (which
we learn more about in Section 3.2.2) and the second is an error plot, which
can be understood as the distance between the reference value and the test
object value (i.e., SaO2 versus SpO2-SaO2).

The guidelines also include specifications about the demographic
information to record under testing in laboratory conditions. Studies to
determine accuracy should include number of subjects and samples taken,
inclusion and exclusion criteria, specific laboratory conditions and subject
motion, as well as information about the desaturation profile, the target
plateaus and ranges.

Relation plot

A relation plot, or scatter plot, is a commonly used presentation of the
correlation between two sets of data. Typically, data are paired in time and
then plotted, with one value on x axis and the other on the y axis. When
using pulse oximeters, one can plot the reference SpO2 value on one axis
and the test SpO2 values on the other. In addition, a correlation coefficient
can be calculated and plotted as a trend line.

Bland-Altman plot

In most of the related literature we mention in this paper, the authors base
their discussion and analysis around results of a visualization called Bland-
Altman plot. This statistical analysis method was introduced by J Martin
Bland and Douglas G Altman [8], and further discussed in their paper
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Figure 3.4: Bland-Altman plot example[8]

“Measuring agreement in method comparison studies” [7]. This section
is based on these two papers.

The background for the work of Bland and Altman is their perception
that the commonly used methods for measurement comparison, using
correlation coefficients, often analyzed the results inappropriately and
were misleading. When comparing measurement methods, the goal is to
determine if the agreement between them is sufficient. If the differences
are not clinically important, we can replace the old method, or use the
two methods interchangeably. However, it is worth noting that defining
what is clinically important is a matter of clinical judgement, and cannot
be answered by statistical methods.

Therefore, Bland and Altman developed a new analysis method that
tries to assess the degree of agreement, i.e, how much a new method is
likely to differ from the old, famously known as the Bland-Altman plot (or
analysis). The method is particularly useful when we cannot be certain
if either of the measurements provides the right results. Even methods
assumed to be the gold standard may not be without errors. Therefore,
they argue that the new method should be plotted against the mean of
the two. Therefore the Bland-Altman plot the differences between two
methods against their mean.

Further, Bland and Altman provide a method to estimate the variation,
or to predict where the range of the differences fall (called the limit of
agreement in their argument). They estimate that the differences fall within
a 95% limit of agreement, assuming they are distributed normally. The
limit of agreement is defined as the mean of difference (d̄), ±1.96*sd of the
differences sd). The mean of the difference is also known as bias, and the
standard deviation as precision.

Figure 3.4 shows a Bland-Altman plot of measurements of oxygen
saturation from pulse oximeters. In the x axis we see the mean of the
two different measurements ranging from 70% to 100%. Each circle is
the difference between the first and the mean of the first and second
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measurement. As we explain above, the mean marked with a dashed line
is the mean of all the differences. The other two dashed lines at the top and
bottom show the limit of agreement, or the standard deviation — 2 (1.96)
— of the differences. By observing the figure, we learn three characteristics
about the differences. The first is that the circles are spread out, and the
differences are assumed to be distributed normally. If we observe strange
patterns in the plot (e.g., by a histogram), we can check so see if the
differences are abnormally and execute corrective actions. However, Bland
and Altman note that non-normal distributions may still fall within the
limits of agreement, though the outliers might be weighted on one side of
the mean. The second characteristic is that the differences are concentrated
around 0.4. The third is that the limit of agreement is -2 to 2.8%. As a result,
we can therefore expect 95% of the measurements to be within the ±2.4%
from the mean difference of the mean difference of 0.4%.

3.3 Inaccuracy and Limitations

The accuracy of a measurement from a pulse oximeter can be affected by
different known and unknown variables, such as static perturbation from
other electrical devices, device malfunction from use, and physiological
characteristics in patients. The fact that pulse oximeters are medical
equipment that record physiological processes also add factors we would
not usually see in sensors recording environmental events. In this section
we go through the both the technical and implementation challenges of
pulse oximetry.

3.3.1 Averaging

Sample rate is the rate of which pulse oximeters measure and calculate
SpO2 values. In the research for this thesis, the time did not allow
us to investigate the sample rate of each pulse oximeter, or how the
manufacturer designed it. We can instead analyze what we now know
about the calculation ofSpO2 values, and then present possible outcomes
and implications of different sampling rates.

The pulse oximeter calculates a SpO2 value at each heartbeat. The
calculated value may or may not be a correct measure of the real SaO2
value. In order to filter out, or attempt to correct inaccurate values
and outliers, the pulse oximeter is implemented with a filtering method
known as averaging, also called averaging time. Averaging (A) is a mean
calculation of a number of samples, and it is to filter, or smooth out data [14].

To illustrate the effect of averaging let us inspect the example in Figure
3.5. A person holds their breath for 10 seconds, and the oxygen saturation
is recorded with a pulse oximeter at 1 Hz. The blue line is the hypothetical
ground truth change of the SaO2 value. The oximeter estimates and out-
puts raw values (red line) without averaging. For some unknown reason,
the raw SpO2 values (in red) is up to +-2% of the SaO2 values. The yellow
line is a mean of 3 measures, A = 3. As we can see, it smoothes out the raw
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Figure 3.5: Example of averaging and its impact

measures of red, and shows a trend more similar to the blue SaO2 graph
representing the real values. The start, the rate of fall in oxygen saturation,
and the lowest SpO2 level are about the same. We may therefore say it is a
better estimation of the SaO2 value than the blue line representing the raw
output. However, it takes 2 seconds longer than the blue line for saturation
to back to 89%. With even higher averaging, the smoothing effect is more
visible, as shown with the green and violet lines. At A = 10, the lowest
saturation level is 3% higher than the lowest SaO2 value. In Chapter 4 we
further analyze this effect, and also learn about the possible consequences
averaging has on detection of apneas.

3.3.2 Response Time

The fact that pulse oximetry uses the physiological characteristics of blood
circulation in humans to estimate a SpO2 value, implies that there may be
accuracy parameters related to delay. Called response time in this thesis,
the total delay can be explained mainly by the three factors we describe
below.

The first is the time elapsed for the blood to be transported from certain
locations within the body to its destination. To explain this further, Figure
3.6 shows the circulation of blood. As a general abstraction, it demonstrates
that the oxygen-poor blood travels from the heart to the lungs (in blue),
where it is oxygenated. It then goes back through to the heart and out
though the arteries to peripheral tissues in the body (capillaries in figure).
In our case, we understand the delay as the travel time of oxygen-rich blood
from the lungs to the pulse oximeter placed on a finger.

The second factor in response time is the averaging described above.
The displayed SpO2 value of a pulse oximeter is a mean value calculated
over a range of seconds or readings, usually between 2 and 20 seconds.
A long averaging time may cause “smoothing” out variations of blood
saturation levels, and will therefore cause delay before desaturations is
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Figure 3.6: The Circulatory System[5]
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notable in data.
A third factor concerns purely technical aspects such as data acquisition

and microprocessor calculation time. We can assume that these factors have
little importance for us as we consider milliseconds to be too short to effect
our project in the scale of the two other factors.

However, since we do not know everything about the internal workings
of each pulse oximeter, there may be additional design factors we do not
mention in this section. In any case, studies show that the time elapsed
from de- or (re)saturation, caused by breathing in reduced oxygen gas
mixes or holding the breath until it is visible in the SpO2 readings can vary
from half a minute to up to a few minutes [35] [41] [10]. It is important
to recognize these findings later when we analyze requirements for our
testing procedures.

3.3.3 Environmental

In addition to the general design properties of pulse oximeters and
the physiological nature of humans, we also need to consider possible
environmental effects. Potential factors affecting accuracy are listed below.

• Movement artifact: it is well known that movement can cause
disconnection or wrongly indicate desaturation of SpO2 [3] [34].

• Ambient lights: a recent study with five sources of light reports a
less than 0.5% difference between the control and the light source
measurements on subjects of light skin [16].

• Nail polish. Minerals and other ingredients in nail polish may
impacts the results of readings [11] [9]

• Low perfusion: the ISO of 2017 mentions low perfusion as a possible
source of error.

• Hygiene and cleaning: universal precautions towards infection
control [36], and that cleaning the sensors might affect accuracy [29].

• Positioning: the sensor for the pulse oximeter should be positioned
according to the documentation or manual. Its design does not allow
us to test more than one sensor at the same location. A subject’s
medical condition may disturb the baseline oxygen saturation of one
of the fingers, resulting in errors in the readings.

• Building material quality: one possible unwanted effect of low
quality would be for even small errors in emission wavelength of
the LEDs produces error on the photodiode readings and resulting in
incorrect calculations on the SpO2 estimation [29]. Low-cost sensors
may cause less accurate measures.

• Temperature: in Section 3.1 we noted that temperature changes may
affect the hemoglobin extinction curve.

36



3.4 Relevant assessments on accuracy

Some important related work on accuracy was mentioned earlier in this
paper. However, it is also useful to investigate other literature that assesses
tests for the accuracy of pulse oximeters. From this we can also learn about
suitable methods for testing, their procedures, and tools for analysis.

Lipnick et al. [24] tested the accuracy of six inexpensive pulse oximeters
not cleared by the FDA, against a CO-oximeter.

They did so with the hypothesis that the pulse oximeters did not meet
the ISO standard for accuracy. Executed by a professional laboratory, the
study used FDA guidelines for (invasive) accuracy testing, which also meet
the ISO of 2017 requirements. Three pulse oximeters were placed on each
subject. They breathed a gas mixture to reach 10 to 12 stable plateaus in
the range of 70 to 100% SaO2. Hands were wrapped in warming band to
ensure good blood circulation. A total of 536 matched samples from 22
healthy subjects were obtained. A demographic table included ethnicity
and skin tone. Bias was plotted against SaO2, and precision was the SD of
the bias. Arms was also calculated, and the requirement of ≥3% accuracy
used. Further, Bland-Altman analysis with mean bias of differences, SD of
differences and regression lines was included.

A table of the results was also presented, with results from 10% ranges
and all paired observations, mean bias, precision, Arms, and limits of
agreement. Their conclusion on the accuracy of the pulse oximeters is
based on the calculated Arms value, and if it meets the FDA standard.

Phattaraprayoon et al.[35] measured the accuracy of two sets of pulse
oximeters with non-invasive methods, one for wrist compared with one
for palm, and one for ankle compared with for sole. They tested the
pulse oximeters to see if the different locations were comparable. In
addition, they also recorded the response time for obtaining the first
sample. The study hints that they used heartbeat from a third device for
synchronization; nevertheless, readings from two oximeters were paired at
the same time at intervals. The time to obtain the SpO2 samples was also
obtained; however no method or definition was provided. Demographic
data were also collected. The test samples were taken when the subjects
had SpO2 values at the range of 85 to 98%. For analysis, they used
Student’s t-tests and regression analysis. In addition they provide a Bland-
Altman analysis, including bias and precision. The study included 150
subjects, and 145–147 tests for each of the paired test objects. Figures were
presented with plots for relations with correlation coefficient and p value,
in addition to a Bland-Altman plot. A table with data for each oximeters
was also listed. Their conclusions are based on both the calculated limits of
agreement and the correlation.

Macknet et al. [26] compared the first commercialized pulse CO-
oximeter with standard CO-oximeters, both of which measure the total
hemoglobin in blood. They included specific procedures, with prepara-
tions, presentation of the physical examination and test procedures, and
criteria for process termination. For analysis they calculated bias, precision,
and the Arms. The results are presented in scatter plots, with linear regres-
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sion statistics and a Bland-Altman analysis. The authors also included a
table with the accuracy by range.

Most of the literature for comparing pulse oximeters use the same
procedures and analysis methods. The most common procedure is by
comparing a pulse oximeter to a CO-oximeter, which also is the Gold
Standard in the industry. Furthermore, in order to achieve desaturations,
test subjects usually breathe gas mixes, or experience a natural change in
saturation [48] [10]. Some authors also include criteria for inclusion and
exclusion [49]. Of the studies we investigated written after Bland and
Altman’s first paper in 1986[8], use Bland-Altman analysis in addition to
calculating the Arms of the pulse oximeters.

In their clinical practice guidelines about patients’ purchase of pulse
oximeters, Pretto et al. [36] note that they are used in unsupervised en-
vironments and generally lack device specifications, regulatory approval,
or clinical evaluation; therefore, they cannot be recommended at this time
(2014).

3.5 Summary

In this chapter we explored pulse oximetry and learned about the
important events in the process of estimating SpO2. A summary of
our findings is visualized in Figure 3.7, which represents an abstract
generalization of the chapters highlights.

First, pulse oximetry depends on the circulatory system, or blood-
stream. The blood travels from the heart to the lungs, back through the
heart, and out to the pulse oximeter location, which in our case is on one or
more fingers. Oxygen is loaded by hemoglobins in the lungs, and unloaded
to peripheral tissue in the finger. Then the blood travels back to the heart
to begin circulating anew. We can see the blood circulation in red at the top
left of the figure. For the purpose of this thesis, it is sufficient to assume that
the response time (t) of an oximeter is determined primary by the elapsed
time for a particular amount of blood being transported from the lungs to
the pulse oximeter. As we see in the top right part of our high level figure;
HbO2 and Hb are transported from the lungs with the blood and irradi-
ated with light; absorption is then measured and calculated before SpO2 is
shown as output.

Within the microprocessor (or other similar processing unit) we have
the 5 important events displayed in the bottom part of the figure. First,
a light emittance diode (LED) sends red and infrared light through tissue,
and a photodiode on the other side of the tissue measures the

remaining light that is not absorbed by HbO2 and other absorbers.
The results from the reading appear as point 1. In point 2, R values are
calculated by using the absorbance properties of oxygenated hemoglobin
and reduced hemoglobin. Then a stored calibration table is used to look up
the R value, and an SpO2 estimation is found in point 3. In 4, samples may
be averaged intentionally to smooth out outliers and perturbations. It can
be an average of n samples. Last, the estimated output in point 5 is the sum
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Figure 3.7: General abstraction of pulse oximetry
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of all the previous steps.
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Chapter 4

Obstructive Sleep Apnea

We start with identifying the characteristics of sleep apnea in Section 4.1.
Taxonomy and scoring rules appear in Section 4.2. In Section 4.3 we delve
into the diagnosis of sleep apnea, before a discussion in Section 4.4 of apnea
events and breath-holding.

4.1 Characteristics

Sleep apnea is a sleep disorder caused by irregular breathing during sleep
caused by apneas. An apnea is a partial or complete collapse of the upper
airway [37], and has many causes. A normal cause is the tongue of a
sleeping person moving backwards in the mouth and causing a blockage
of the airways. The respiratory passage blockage often causes reduction or
absence of oxygen supply. To resume normal breathing, the brain awakens
the person. Sleep apneas therefore often involve periods of awakenings
throughout the night for affected persons. The day after, the person usually
does not remember any snoring, breathing cessations, or being in a waking
state. For this reason, indications of a sleep disorder are often discovered by
partners or roommates who experience snoring or gasping from an affected
person.

Most people diagnosed with a sleep disorder have obstructive sleep
apnea (OSA), which is defined as repeatedly having either complete or
partial blockage of airways throughout the night. OSA is further defined
in the next section. Central sleep apnea (CSA) is a less common form
of sleep apnea. Rather than blockage of airways, the common reason
is irregularities in the part of the central nervous system handling the
respiratory effort that signals the body to inhale [2]. The symptoms and
health implications are the same as for those suffering from OSA; however,
it may be difficult to diagnose CSA before OSA is treated. A third kind of
sleep apnea is mixed sleep apnea (MSA), which can be a mix of symptoms
from both OSA and blockaCSA.
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4.2 Taxonomy

As we outline in the introduction to this chapter, OSA is a breathing
disorder caused by partial or complete blockage, of the airways during
sleep. The total blockage of the airway during a nights sleep is apnea, while
the reduction in airflow caused by partial blockage is defined as a hypoapnea
[20]. Berry et al. have set rules to score apnea and hypoapnea [4]. In
general, the former is scored by a 90% drop in signal from a respiratory
sensor, and the latter is scored by a drop ≥30% drop, associated with a 3%
drop in oxygen saturation. Also, both events should last ≥10 seconds.

The standard method for diagnosis of OSA is polysomnography, and
the result from such a sleep study result in a polysomnogram. The data
contain readings from the different sensors, and by analysing the data from
different sensors, a specialist in sleep studies can both diagnose OSA and
determine its severity.
AHI: A common measurement score for the severity of sleep apnea is the
Apnea Hypoapnea Index (AHI) [20] [38], which is expressed as the number
of apnea and hypoapnea events per hour. The severity of a potential sleep
disorder diagnosis is defined by this classification. Persons with fewer than
5 event per hour are deemed to be without a sleep disorder. From there, the
severity increases with the frequency, as seen below.

• None/minimal: AHI < 5 per hour
• Mild: AHI ≥,but < 15 per hour
• Moderate: AHI ≥15, but < 30 per hour
• Severe: AHI ≥30 per hour.

ODI: The oxygen saturation index (ODI) reflects respiratory events per
hour associated with desaturation. It is defined as number of arterial oxy-
gen saturations/hour ≥3% by Berry et al.[4]. Health sensor platforms
for home diagnosis often use the ODI to accompany respiratory events to
calculate AHI. However, because the ODI algorithms may differ between
manufacturers [30], and the accuracy of the ODI depends on various fac-
tors we discuss in Section 3.3, it can not rule out mild OSA with certainty
[36].

RDI The respiratory disturbance index (RDI) is defined as ODI + respira-
tory effort related arousals (RERA) per hour of sleep. This index is used for
the classifications of sleep monitors below.

4.3 Diagnosis

The most common sleep study is polysomnography (PSG), which is the
standard test for the diagnosis of sleep apnea [37]. The traditional labora-
tory study involves recording physiological signals using methods such as
electroencephalography (EEG), electromyography (EMG), electrocardiog-
raphy (ECG), airflow, and oxygen saturation among others. The process
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also requires the patient to stay overnight in a laboratory for observation
by medical personnel and for the data to be recorded.

In Figure 4.1, the top (A) shows a typical setup for polysomnography
in a laboratory. Sensors measuring airflow are placed in the nostrils.
Wired electrodes are attached to measure brain activity, eye movement and
snoring. In addition, a respiratory belt around chest and belly measures
respiratory effort, and a pulse oximeter finger clip estimates arterial oxygen
saturation. It is also common to monitor heart activity.

The Polysomnogram marked as B in Figure 4.1 is a result of the sleep
study. In the breathing event row, we see that breathing was absent for a
period, which was followed by a decrease in oxygen levels in the top row.
As a consequence, the patient had a period of wakefulness or easy sleep,
visualized in the REM sleep stage row.

As we see in the illustration, the number of sensors attached makes
the patient immobile, and the study may be experienced as uncomfortable
or intrusive. In recent years, developments in mobile health devices have
enabled monitoring with a different type of setup. Whereas the standard
sleep study is executed in a laboratory, it is now possible to acquire mobile
monitoring devices for home use. An example of a clinically certified
monitor is the NOX T3 we learn about in this paper. As described
in Chapter 2, this type of portable device enables physiological data
to be recorded at the patient’s home. The differences between regular
polysomnography and the mobile NOX T3, for example, is the number of
channels included to record physiological data. Furthermore, while PSG
requires medical attendance, NOX T3 is a home monitoring device that
can be set up by a doctor or technician and then used at home without
supervision. Classification and requirements for the different types of sleep
study are is presented by the Center for Medicare and Medicaid Servics
[28]. In Type I, the sleep must be attended by a sleep technologist, and a
full set of sensors are commonly used in PSG. Type II and Type III require
a minimum of 7 and 4 channels, respectively, and are used unattended. So
are Type IV monitors, which require channels that allow calculation of AHI
or RDI from airflow or thoracoabdominal movement (breathing).

4.4 Events

Berry et al. [4] define desaturation associated with a respiratory event
as “a drop from a baseline SpO2 preceding the event to the nadir in the
SpO2 following the event”. In simpler words, for measurements from a
pulse oximeter, an apnea event is a continuous drop in oxygen saturation
from a baseline, and the event proceeds until the saturation rises again.
However, they state that identifying the baseline saturation may be difficult
if the desaturation events occur back-to-back. This challenge may also be
reinforced by factors we learned about in Chapter 3, as well as factors
investigated above.

As we have learned, both the sigmoid shape of the oxyhemoglobin dis-
sociation curve and averaging affect pulse oximetery’s ability to measure
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Figure 4.1: Polysomnography(A) and polysomnogram(B)[31]
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desaturation events (e.g., at sea level, the normal baseline oxygen satura-
tion of healthy persons is 97±2% [12]. For a pulse oximeter to measure the
3% desaturation from an initial level of 97%, the PaO2 must drop signifi-
cantly more than from an initial level of 93%. In addition, a high averaging
may smooth out potential dips in saturation. In this section we examine
the desaturations and averaging in detail.

4.4.1 Averaging

In Section 3.3 we noted that averaging can cause the pulse oximeter to
smooth out events. As a study from Farre and colleagues [14] points out,
underestimations of oxygen desaturation are systematic, and are caused
by the limitation in what they call the dynamic response of an oximeter.
This dynamic response can be understood as the pulse oximeters ability
to measure the real SaO2 values of the test subject, and is affected by
averaging time and other filtering algorithms. The example in Figure 4.2
illustrates the impact of averaging.

A supposed test subject hold their breath for 10 seconds, and 4 identical
pulse oximeters estimate the SpO2 values. Their only difference is the
internal averaging (T). The calculated output from the oximeters is given
with T = 0 (blue), 3 (red), 5 (yellow) and 10 (green). Sampling rate is 1 Hz,
shown as dots on each line graph. We assume the initial saturation to be
93%, with an mean drop rate of 0.45% per second. The calculation of each
sample is done by computing the mean of the T‘s last measurements. That
means for T = 0, the output simply drops 0.45% for each new sample, since
there is no averaging. For T = 3, a mean of the 3 last SpO2 measurements is
calculated and given as output, etc.

We start by observing T = 0. The SpO2 level drops by about 4% over the
time period of 10 seconds. That is a higher drop than the ≥3% requirement
from AASM to score an apnea event. Next, for T = 3, we see a reduction in
drop from the baseline to the nadir in about 0.40%. The drop is still above
3%, and we can still score an event, but the value is closer to the limit. At
T = 10, the desaturation is no longer a desaturation event, since it is only
a drop by 2.3%. In general, we see that the higher averaging, the flatter
desaturation period. In addition, the rise in saturation back to baseline
may be slowed down.

This example is only an illustration of the effect of the pulse oximeter’s
averaging when estimating a person’s SpO2. In reality, oximeters may have
other, similar implementations of averaging, and may also contain other
algorithms (e.g., to filter outliers). Therefore, in sleep studies it is important
for the averaging to be as low as possible, and for the oximeter to provide
samples at a satisfying rate. For use in sleep studies, the recommended
averaging is 3 seconds, and sampling rate 10Hz [36] [45]

4.4.2 Rate of Fall and Breath Hold

Apnea is defined as a partial or complete blockage of airways. In this
section we use the term to refer to complete blockage. It is possible to
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Figure 4.2: Illustration of averaging time(T)[14]

simulate apnea in a waking state, by breath being held. The result of both
sleep and waking apnea is that no air, and therefore no oxygen, finds its
way down to the lungs. The difference is that one is involuntary and the
other takes place of the person’s free will. Although the mechanisms are
the same, when you start holding your breath, its saturation begins to fall.
The rate of that fall is the object of closer investigation is this section.

Strohl et al. present a study to examine the relation between
desaturations from breath-held apneas and those during sleep [44]. They
instructed one group of healthy subjects to simulate apneas by breath
holding, and compared the SaO2 values against a second control group
of patients having apneas in sleep. They simulated both obstructive and
non-obstructive apneas; breathing with and without respiratory effort on
a closed airway. The breath-holds lasted 10 to 25 seconds, and were
initiated from functional residual capacity (FRC), which is the state of the
lungs after a normal passive exhalation. The study found no significant
difference between obstructive and normal breath holding. Also, the rate
of fall is not affected by simulating obstructed breathing using the Mueller
or Valsalva maneuvers1. Furthermore, the results in the study indicated
no difference between apneas simulated while awake and real apneas in
sleeping patients. The study does not rule out other explanations; however,
it suggest that the rate of fall in saturation is much determined by the initial
oxygen saturation. In Figure 4.3 we see the relation between the initial
SaO2, and the rate of fall in SaO2 from two subjects (black and white dots)
during sleep. From an initial 94 to 96% SaO2, we can expect the rate of fall
to be half of an initial saturation from 84 to 86%.

A second a newer study on breath holding from FRC is presented by
Sasse and colleagues [39]. Here, the nonsmoking test subject was instructed
to not perform any respiratory maneuvers while holding their breath for
35 seconds. Meanwhile, blood draws were obtained and later analysed
to measure the PaO2. The results revealed a greater drop than observed

1ihttps://en.wikipedia.org/wiki/M%C3%BCller%27s_maneuver
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Figure 4.3: Rate of fall in saturation

in earlier studies at the time, including the one described above. Over
the period of the first 35 seconds of breath holding, the PaO2 declined an
average of 50 mmHg from the initial 110 mmHg. Since the breath holding
was initiated from a high initial PaO2 value above what a pulse oximeter
is able to measure, the study indicates that holding the breath long enough
causes measurable changes in SpO2 values.

In this regard, it is interesting to investigate the reason for the
breakpoint of breath holding. M.J. Parkes[32] dives into possible rationales
while discussing the difficulties of explaining it.

He states that the easiest way to quantify breath holding is by the
duration, which may be affected by various of factors. He points out that
the tolerance of discomfort is not equal for all subjects. And even within
subjects, duration may be increased by distractions and successive trails,
physiological factors such as the starting long volume, or an unconscious
effort to breathe. All of these factors are likely to affect the breakpoint of
breath holding. It is mainly the physiological signals that work against the
strength of will of the person. When holding the breath, the respiratory
signals from the brain do not stop; instead, the person rather closes the
airway and controls the muscles. Parkes therefore sees the breakpoint
as being determined by the relation between the effort of the person and
the physical (negative) return from breath holding. He also cites the
common misconception that if you hold your breath long enough, you fall
unconscious.

4.4.3 Alternatives to Breath Hold

In this paper we identify breath holding as the best option to influence
changes in arterial oxygen saturation. Within our limits of our benchmark-
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ing tool being non-medical, we see other alternatives that might affect the
oxygen saturation as less suitable.

The commonly used method for lowering oxygen saturation involves
breathing gas mixes normally found in breathing air but using a different
ratio between oxygen, nitrogen and carbon dioxide. Since we did not have
such gas mixes available for this research, we evaluated an alternative
method of changing the ratio of the gas mixes in air, consisting of a subject
breathing in a locked container. Even though this might give us more
stable and gradual changes in oxygen saturation, it introduces even more
medical considerations for us to investigate. By holding breath, the oxygen
saturation falls very rapidly; however, this occurs over a short period of
time (usually between 10 and 30 seconds). By having test subjects breathe
in an locked container, they will be exposed to a potential shortage of
oxygen for an extended time. By using this option, a more thorough
medical investigation is needed. We evaluate breath holding as safe,
because when a person hold his or her breath, at some point the brain
overrules the strength of will and starts the breathing process again. In
contrast, we see breathing in a container as introducing the risk of a sort of
slow suffocation or carbon dioxide accumulation in the body. The brain of
a healthy person therefore acts as a “fail safe” in our research, as the person
would eventually start to breathe when the urge to do so is higher than
the strength of will. Therefore, we avoid any methods of altering the air’s
oxygen composition. It is also worth noting that we found no methods in
the literature for lowering arterial oxygen saturation other than breathing
gas mixtures or holding the breath.
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Part II

Design and Implementation
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Chapter 5

Preliminary experiments

In this chapter we report on a series of experiments conducted on the
health sensor platforms used in the benchmarking process to investigate
their behavior. In Section 5.1 we discuss our goals and expectations
for our experiments. We start with our reference sensor, NOX T3, in
Section 5.2. Next, we explore the BITalino in Section 5.3, and the CH in
Section 5.4. Finally, in Section 5.5, we investigate the different methods of
synchronization and their usability.

5.1 Introduction

In this thesis we test pulse oximeters that are unique in design and
technology. We may therefore expect data output to be distinct in
both character and format. Typically, a platform provides software for
displaying the data, or as a method of data acquisition. However, in our
research we are not interested in a visual representation of the data. In
order to test quality, we ideally want sensor data as raw and as unprocessed
as possible.

The experiments described later in this paper focus on the benchmark-
ing of pulse oximeters. To make this process as smooth as possible, it is use-
ful to detect possible difficulties, errors and unwanted incidents concerning
a possible implementation at an early stage. As follows, we describe pre-
liminary experiments done with the goal of determining methods of data
acquisition. We also discuss the state of the data quality and possible chal-
lenges. Next, we establish the possibilities for methods of synchronization
between sensor data. We can specify the goals of these experiments as fol-
lows: We can specify the goals of these experiments as the following:

1. Establish a method of data acquisition and data storage. The method
should also be able to provide the best possible representation of the
data (within a reasonable time frame). By “best”, we mean to strive to
limit perturbations within our control, such as noise and other factors,
that have negative effects on the data quality.

2. Find synchronization methods for the oximeters between the plat-
forms.
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Consequently, all experiments in this chapter follow a common pro-
cedure. First, we do not need any additional expectations beyond those
indicated in the documentation of the sensors. We only want to observe
the behavior of data from each particular sensor, and to discuss the possi-
ble challenges introduced. However, it is important to note that our brief
testing in this chapter is insufficient to indicate any quality statement; we
mean only to survey the sensors and their possibilities.

5.2 NOX T3

5.2.1 Data Acquisition

As previously described in Section 2.2, the NOX T3 is a closed environment.
Data are presented to us only through their software Noxturnal.

We connect the device to a computer manually with the pre-installed
software. We can then observe the results in the program. However, we
want the data in a file as we want to compare the data with other sensors.

By searching through our alternatives in the software, we found two
for output. We could export the data as an Noxturnal file type. This option
is not practical since it can only be opened and viewed by the Noxturnal
software. The second alternative allows us to copy the data as comma
separated values, with rows of timestamp and value pair separated by tab
space. If we want data from a second sensor, these data has to be copied to
a second file.

5.2.2 Data Characteristics

The readings from NOX constitute the reference values in our benchmark-
ing. We can observe the behavior of the samples of SpO2 data from this
platform, and assume that this is as good as it gets. Below we see a dump
of a recording.

1 11:17:28:868 97

2 11:17:29:202 97

3 11:17:29:535 97

4 11:17:29:869 97

5 11:17:30:202 97

6 11:17:30:535 98

7 11:17:30:869 98

8 11:17:31:202 98

9 11:17:31:535 98

10 11:17:31:869 98

11 11:17:32:202 98

12

13 ...

14

15 11:36:54:944 98

16 11:36:55:277 98

17 11:36:55:610 98

18 11:36:55:944 98
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19 11:36:56:277 98

From this we learn that the sample rate is set to 3 each second, at a fixed
interval. Even though this interval is changing a little over a period of about
20 minutes, we can say that the sensor provides a new estimation ≈ 333ms.
However, this interval changes between sensors (e.g, for an accelerometer,
a new reading is presented every 100ms, as seen below).

1 11:17:28:959 0,00973402754377517

2 11:17:29:059 0,0194995858738656

3 11:17:29:159 0,039062234057039

4 11:17:29:259 0,00976555869808937

5 11:17:29:359 0,0195852199838154

6 11:17:29:459 0,0390489576270459

7 11:17:29:559 0,0194637376432305

8 11:17:29:659 0,00976555857576278

9 11:17:29:759 0,00979711847651998

10 11:17:29:859 0,00979711847651998

11 11:17:29:959 0,00976555857576278

12 11:17:30:059 5,40032268547819E-05

We are not able to find specifications about the averaging in the
documentation. However, as stated earlier in this paper, the recommended
averaging for sleep monitoring is leq3 seconds. We may therefore assume
that this frequency is implemented in NOX as it is a sleep-monitoring
device.

5.3 BITalino

5.3.1 Data Acquisition

For data acquisition from BITalino we use software developed by Svein
Petter Gjøby, which consists of one application (app) for storing data, and
one specifically adapted to fit the protocol of BITalino [18]. The Collector
app collects and stores data to either a file or an external database. For our
use, we store the data to a file on an Android smartphone with the apps
installed. The second Android app, called Bitalino, is a wrapper application
to collect data from the BITalino platform. In this app it is possible to
control the functionality within the BITalino device, including channels and
sampling rate.

5.3.2 Data Characteristics

As the SpO2 values are presented in a 10-bit format. In order to compare
them against other SpO2 they are converted into 8-bit values with the
formula in Equation 5.1, where nbits is the number of bits in the channel.

(0.25 ∗ (2 ∗ ∗(10 − nbits)) ∗ spo2value)− 0.8 (5.1)
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Figure 5.1: BITalino pulse oximeter plot

Figure 5.2: BITalino oximeter pattern cut

Noise

Figure 5.2 shows a plotted recording from a pulse oximeter from BITalino.
The dark blue dots illustrate the values from the individual samples, with
blue as the trend line. The first thing we notice is that there is no clear line
showing stable SpO2 values. The blue samples show that two parallel lines
run throughout the recording. That might indicate that each SpO2 value
is represented by more than one 10 bit value. In Figure 5.1 we see a close
up of the signal. If we ignore the pattern indicated in red, we see that the
values are not spread more than 0.2 to 0.3%. Therefore, we could use the
value to the nearest integer to get stable values. However, as we also see in
the figures, a periodic pattern occurs in the data. This pattern is about 2%,
from high to low. Using different channels does not eliminate this pattern,
which persisted through testing of the three BITalino boards used in this
thesis.
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5.3.3 Summary

As we mention earlier in this thesis, the pulse oximeter from BITalino
is a stand-alone device that can be used without being connected to the
BITalino platform. The oximeter has both drivers and software to visualize
recordings and store them on a computer. However, we are not able to
complete this option. The device is not found as such when we connect it to
a Windows 10 computer. The reason might be that we did not find the right
drivers, an incompatibility with Windows 10, or some other unknown.
However, a search through common problems on the Internet reveal that
a special USB mini-cable is needed. When purchased from the BITalino
web shop, the pulse oximeter comes with a special USB mini-to-channel
cable. Therefore, we have to use the BITalino platforms as a part of the
data acquisition. The CMS-50+ can be found in various web shops on the
Internet. An investigation of the literature did not identify any common
problems such as the one described above. We can therefore assume that
what seems to be a disturbance pattern, as described above, is caused by
the BITalino board and not by the pulse oximeter itself. We do not see
it as our task to try to identify or fix the signals from the BITalino board,
nor does the time frame of this research allow us to do so. As we have
established a method for data acquisition, we therefore use the data as it is
in later experiments.

It is worth noting that the application does not always work according
to the instructions. It is not easy to start the data acquisition process, and it
may stop while recording. Instead of developing a new data-acquisition
method for BITalino, we chose to use it regardless of the perturbations
in data and the problems with the mentioned applications. Instead we
introduce guidelines in the benchmarking experiments. First, changing
channels for the oximeter between recordings may eliminate bad channels.
Second, the time frame available for each experiment should be long
enough to make sure the app is working and providing data. Other than
that, we use the data as is.

5.4 Cooking Hacks

5.4.1 Data Acquisition

In contrast to the two platforms discussed earlier in this chapter, Cooking
Hacks lacks an already implemented method of data acquisition for our
purpose. Therefore, we examine this platform more thoroughly.

Cooking Hacks provides documentation [19] that highlighting the
possible methods of connectivity, visualization and extraction of data.
For each sensor, different code snippets presented serve as examples of
intended use. In general, you can either display your data at the TFT
display or send it though a serial port to your computer. As we are
interested in raw data to be compared against other pulse oximeters, we use
the code example for displaying the data in Arduino IDE’s serial monitor.

First we use the code from documentation(Section 6.2.2.4) without
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Figure 5.3: Serial output from Cooking Hacks

Figure 5.4: Serial output from Cooking Hacks with failed reconnections

any modification but specifying the media access control address(MAC
address) to our pulse oximeter. Our first result is shown in Figure
5.3. MySignals connects to the pulse oximeter, then disconnects after
data are received. Then it waits for the oximeter to reconnect, which
introduces some problems. The time until a successful reconnection
follows no apparent pattern, and may vary from 6 to 30 seconds, even
never reconnecting. Additionally, when connected, the board may not be
able to receive any data from the oximeter before disconnecting, as we see
in Figure 5.4. As a consequence, we are not even close to receiving updated
SpO2 estimations at a rate that is satisfying for our benchmarking.

Limiting external factors

Both of the code examples in the documentation specify the described
behavior of disconnection, except for the failing reconnection. Therefore,
the problems we experience may be caused by what we defined as
environmental phenomena, as discussed in Section 2.4.3. Our research lab
includes several computers and other devices, and it is located near other
workrooms. Our first approach was to limit external factors that might
affect MySignals’ ability to reconnect with the pulse oximeter. The new
location is checked by scanning for Bluetooth and WiFi signals, and WiFi
and Bluetooth were deactivated on the laptop. However, the connection
problem did not improve, even with no electrical devices sources other
than the laptop used for data acquisition.
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Figure 5.5: Data acquisition for Cooking Hacks’ MySignals

We therefore assume that environmental phenomena are not the main
problem. MySignals is connected to a laptop computer, which also
provides power to the unit. In addition, a power supply can be connected
directly to the Arduino unit. In this context, other connection possibilities
are explored for removing the Serial/USB connection with the laptop, and
the possible source of connection disturbance.

Writing New Code

An overview of how we investigated the documentation, and identified
the different data acquisition method is presented in Figure 5.5. As we
see in the figure, there are many different possibilities for data exchange
with the pulse oximeter. We can program the Arduino to send data to a
computer with Bluetooth (4), WiFi (5), and Serial (6), as described above.
In addition, the documentation describes use of the MySignals APP (1,
which was not possible at the time); connecting to an Android device over
Bluetooth (2 and 3), and showing results on the TFT screen (1). However,
none of the alternative methods gave better results or proved easier than
trying to improve alternative 6. The series of experiments exploring these
alternatives is presented and discussed in B.1 at the end of this paper.

The documentation for MySignals HW v2 fails to explain the reason
for the code behavior, providing only a short description about some of
the functions. As a result, initial testing with modifying the example code,
such as simply removing disconnection lines or changing delays, halted the
data stream or provoked other unwanted behaviors. However, without a
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deeper understanding of the code, solving the connection issue by altering
the example code is an experimental task. As it appears to us, repeated
attempts to connect to the pulse oximeter should be avoided. We therefore
investigate how MySignals operates the pulse oximeter and write new code
in this section.

A basic description of Bluetooth Low Energy technology is presented
in Section 2.1. With this information in mind, and with the help of the
similar example code of the Body Temperature BLE sensor in Section 6.2.5.4
of the MySignals documentation (which is similar to our code example), we
investigate the example code. The following code snippet shows important
parts of the code, and is explained in the comments above the function calls.

1 // Scan for BLE devices

2 MySignals_BLE.scanDevice(MAC_SPO2, 1000, TX_POWER_MAX);

3

4 // Connect to oximeter

5 MySignals_BLE.connectDirect(MAC_SPO2)

6

7 // Subscribe to data

8 MySignals_BLE.attributeWrite(connection_handle_spo2, SPO2_HANDLE,

0x01, 1)

9

10 // Wait for data

11 MySignals_BLE.waitEvent(1000)

12

13 // Get the value stored

14 spo2 = MySignals_BLE.event[13];

15

16 // Unsubscribe to the oximeter stream

17 MySignals_BLE.attributeWrite(connection_handle_spo2, SPO2_HANDLE,

18 0x00 , 1);

19

20 // Terminate connection to oximeter

21 MySignals_BLE.disconnect(connection_handle_spo2);

After we identified the parts needed for subscribing to the data stream
from the pulse oximeter, we read and reverse engineered the source code
in the installed MySignals library. Figure 5.6 presents a Unified Modeling
Language (UML) diagram showing the flow (from top to bottom) of calls
used to connect to the oximeter and to subscribe to its data stream. In the
figure we see that commands are not sent directly to the pulse oximeter;
they go through the BLE module on the MySignals board. Against the end
(bottom) of the diagram, we inserted a loop. This is our desired behavior,
as we unsubscribe after the loop.

Figure 5.7 shows the internal logic of how data are moved from the
serial buffer to output. In short, data are placed in the serial buffer and
actively gathered by the Arduino device. We come back to this stage later
in this section.

In the new program we write we do not want to unsubscribe from the
stream. Instead, we reset the module and reconnects in case of discovered
errors such as a continuous series of out-of-bound values (such as 0). When
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Figure 5.6: Flow model of protocol to connect and subscribe to the SPO2
device.

Figure 5.7: FLow model of waitEvent’s internal functions
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we do this, we hope to avoid a situation in which an entire benchmarking
experiment becomes of no use because of an early error that could have
been fixed by restarting the module. Other than that, we want all of the
data received from the pulse oximeter to be at the highest possible sampling
rate, with no filtering done by the Arduino processing unit. The output
format is modified to present data as comma-separated values. The code is
presented in Section B.2.

5.4.2 Data Characteristics

In the previous section we identified and chose a data acquisition method
for Cooking Hacks’ oximeter. By testing CH against NOX, we get two
types of results that differ in character. Shown in Figure 5.21, the first is an
example of a recording we can use as is in our benchmarking. The second
type of results we discuss in this section.

Normally, healthy persons have 97±2% arterial oxygen saturation at
sea level. We also know that to avoid volatile readings, it is common
for pulse oximeters to have implemented averaging, and possibly other
algorithms.

In the recordings from Cooking Hacks, we have sudden drops in the
SpO2 values, resulting in values around 0–50% SpO2, as shown in Figure
5.8. Since the SpO2 value is usually a mean value calculated over a period
of time, we can assume it is unlikely that the SpO2 levels drop and rise 50
to 90% in milliseconds. We therefore can define those figures as invalid
or out of bound values. These values appear on certain conditions, as
detailed in the Appendix. We cannot know the exact reason; however, we
assume that it has to do with our design of the data acquisition tool, how
Arduino communicates with the MySignals board, or/and how MySignals
communicates with the pulse oximeter. An example appears in Figure 5.7,
where we detail how the Arduino fetches data from the BLE serial buffer.
The library code for fetching data from the pulse oximeter is done in two
operations: first, checking available bytes in the buffer then fetching the
data. A possible explanation of outliers in data might be that the Arduino
fetches invalid data, caused by an empty buffer or a buffer containing
garbage.

We further explore our theory by comparing data from CH with a
simultaneous recording from NOX T3 (NOX). We place the NOX and CH
pulse oximeters on index and ring finger, correspondingly. Then we both
start and stop each of the recordings about the same time. We manually
synchronize the two sets of data by comparing the SpO2 values to best fit,
and then plot the data.

The graphical plot is visualized in Figure 5.9. As mentioned in the last
section, the new program we upload to the Arduino contains no value
filtering. The plot therefore includes the outliers we discussed above, and
the lines cover a huge portion of the graph.

When we plot a dotted representation instead, as seen in Figure 5.10, a
clear pattern of values close to the NOX values in orange is visible. Most
outliers are placed below 40% SpO and appear to be random. It is evidently
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Figure 5.8: Cooking Hacks SpO2 values, extract from recording

Figure 5.9: Cooking Hacks line representation of recording

61



Figure 5.10: Cooking Hacks Dotted graph representation

not meaningful to compare the raw data from Cooking Hacks against data
from NOX. Instead, we argue that outliers we define as invalid SpO2 values
be removed with a simple filter.

In Section 4.4.2, we learned about the rate at which the oxygen
saturation level falls under breath holding. It is unlikely for the oxygen
saturation to drop more than 1% from one sample to the next, when the
sampling rate is above 3Hz (3 per second). The filter therefore should be
“drop values that fulfil the following condition”:

1 filtered.spo2values = ch.spo2values[(ch.spo2values[i] -

ch.spo2values[i-1]) > -2]

The filtered values only contains those where any one sample sub-
tracted with the last sample is more than –2. We thereby remove values
that constitute a drop in more than 1% SpO2. We also remove all values
above 100%. All other values are taken into account in the data analysis.

An alternative to simply removing values, would be to calculate new
values for each we remove, e.g. by using interpolation. However, there
is two reasons for why we do not think this solution is necessary. The
first is the sample rate. In order to compare data samples from CH and
NOX, we need to align samples in time. This means we have to either
up- or downsample, and interpolate the values in the CH data. “Missing”
values is therefore calculated in this process. The second reason is that the
SpO2 values only differs from the previous and subsequent values by 1.
However, for most of the samples the change would be 0(as seen in the
example data in Figure 5.8). We therefore argue that because of the small
value difference, and the possibility of the values being garbage values as
described earlier„ we see it as sufficient to filter out the values and leave
the interpolation to the data synchronization process.

5.5 Synchronization

Each of the health sensor platforms uses different data acquisition methods.
When we benchmark pulse oximeters, we need synchronization methods
to compare data. In the chapter about pulse oximetry, we described the
normal methods for testing pulse oximeters, and how the data samples are
synchronized. However, the non-medical specification of our research does
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Platform NOX Other
Cooking Hacks Accelerometer, newline Nasal Airflow Time, SpO2 pattern
BITalino Accelerometer, RIP, button Time, SpO2 pattern

Table 5.1: Overview of synchronization methods

not allow us to have stable periods of oxygen saturation achieved through
breathing gas mixes. Instead, we have to explore alternatives.

In this section we look into synchronization methods involving other
sensors, time and the SpO2 value itself. The sensors available for each
platform are identified in Section 2.2.6. We use this information to define
a matrix of possible synchronization methods between the platforms. The
condition for a suitable sensor is that the output of the sensor from one
platform must have the same characteristics as a corresponding sensor of
NOX T3. To give an example, the breathing pattern from a nasal airway
sensor has the same repeatable pattern as one from a RIP band; they both
measure the respiration of a person. As for exclusion premise, sensors
we use cannot be personal or not intended for reuse, as it would include
additional expenses for equipment. ECG is an example of a sensor that
we exclude as a synchronization sensor, as it uses disposable electrodes.
Because of the time limit of our research, we also prefer synchronization
methods that are easy to use and implement.

In Table 5.1 we see a summary of suitable synchronization sensors and
other methods.

Column 1 contains the platforms, Column 2 the sensors in common
with NOX, and the last column other alternatives to explore. Generally
we see that we can use sensors that record acceleration and respiration. We
also look into the possible consequences of the use of time and the SpO2
value as synchronization methods. The rest of this chapter explores our
alternatives and draws a conclusion on each of them.

5.5.1 Respiratory Synchronization

Since the test subject necessary breathes through the benchmarking
process, it could prove useful to have a synchronization mechanism that
involves respiratory patterns. For that reason, sensors that record breathing
pattern are discussed in this section.

Cooking Hacks

MySignals HW comes with a Nasal Airflow sensor, Figure 5.11,for
measuring breathing rates. The three thermocouple sensors placed on
prongs measure both oral and nasal thermal airflow.

We start the test procedure to analyse the sensor data in relation to our
use. First we copy the example code in the documentation and upload it
to the MySignals board. Then we place the nasal airflow sensor according
to the instructions and pictures in the documentation. Last we start the
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Figure 5.11: Cooking Hacks’ Nasal Airflow Sensor

sensor recording and observe the result to establish a sense of behavior of
the sensor data as a subject of discussion.

The graphs in Figure 5.12 show the output from NOX RIP bands at the
top and output from CH at the bottom. In this thesis we define NOX’s
output as the reference behavior, and the top subplot shows a normal
breathing pattern expected from a person who is awake. On the other
hand, the output from CH below does not show a clear breathing pattern.
Watching the stream live and adjusting the placement of the sensor did not
result in the desired behavior.

Our brief testing shows that the nasal airflow sensor was either too
sensitive for us to identify the best placement for use, or that it is not
able to provide a stable stream of data. On another note, using nasal and
mouth sensors requires a high level of hygiene effort. Moreover, a closer
inspection of the sensor reveals that it consists of movable/bendable parts
of sensor technology that may be damaged while running benchmarking
procedures on multiple subjects, potentially causing additional expenses
for replacement if broken. As a result, Cooking Hack’s nasal airflow sensor
is impractical to use as a synchronization method in our study.

BITalino

BITalino include two RIP bands in their kit, both of which show strange
behavior in the data. Presented in Figure 5.13, one recording shows the
typical behavior of the signals from both RIP bands. The bands are placed
at the indicated locations in the instructions, chest and belly, and there is no
apparent difference between the two locations, or between bands. Values
range between –50 and 50. At the start of a recording, the pattern may or
may not show a breathing pattern. Generally, the data have three states:
noise, dead or breathing pattern. At the start of the recording in Figure
5.13, we see 1.5 minutes of noise. Then we have 5 minutes with a more
or less stable breathing pattern. Last, just before the 7-minute mark, the
signals “dies,” and locks up at –50.
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Figure 5.12: Graph of breathing pattern from NOX and CH

If we were to adjust the bands by either gently moving, stretching or
twisting them, the signal may change from one of the mentioned states to
another. In addition, if we are to achieve a breathing pattern, the signal is
likely to eventually “lock” itself in the dead state until the band is adjusted.

We do not see it as our task to further explore or explain the behavior of
BITalino RIP bands in our research. Nevertheless, the instability of their
output proves them to be unfit for our use. If we were to use them, a
likely consequence might be that we would not be able to synchronize some
records with the NOX.

Figure 5.13: BITalino rip bands graph
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Figure 5.14: Cooking Hacks body position sensor

Figure 5.15: Synchronized accelerations from NOX and CH

5.5.2 Acceleration

All three platforms have an accelerometer available for possible use in
synchronization. Unlike the two other platforms, NOX’s accelerometer is
inside the central unit. The sensor is used to indicate sleeping position
when used for sleep study, as the central unit is usually attached to a t-shirt
at the chest of the user. As we describe when speaking of data acquisition
in this chapter, data from each sensor are separate, and even have different
sampling rates. However, we assume the timestamp on the sensor data to
be equally related in time.

Cooking Hacks

Cooking Hacks’ body sensor is a belt that can be placed on a person to
record their body position. It uses a three-axis accelerometer that provides
individual values. However, we only need one axis to synchronize an event
with NOX, which we specify in the code. We attach the accelerometers to
the NOX central unit and begin the recording. We flip the sensors three
times at the start, a few times in the middle, and three times at the end of
the recording. Then we normalize the data around zero and plot it into the
same graph. The accelerometer is shifted to where the start is aligned with
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Figure 5.16: BITalino accelerometer

Figure 5.17: Accelerometer plot of NOX and BITalino.

NOX accelerometer data, indicated by the first three vertical pillars, as seen
in Figure 5.15. The orange is the CH plot and the blue is the NOX plot.

Each sample from Cooking Hacks, contains all sensor data. Therefore,
the accelerometer is related in time to each data sample from its pulse
oximeter.

BITalino

In Figure 5.16 we see the accelerometer that can be connected to the
BITalino board with a cable. It has a three-axis sensing feature.

We use same approach to test the acceleration sensor as we describe
above for Cooking Hacks. In Figure 5.17 we also see the same type of pillars
for BITalino (blue) and NOX (orange), although the values from BITalino
are also located below zero. As for Cooking Hacks, each data sample from
the platforms consists of data from all specified sensors.

5.5.3 Timestamp

In sensor data records, each sample is often paired with a timestamp. The
timestamp might be from an internal clock, and it might represent actual
or elapsed time. The platforms we use in our research each use different
timestamp methods. The NOX uses its internal clock to apply timestamps
on each sample, and BITalino has its timestamps from the Android with the

67



Figure 5.18: Example of the synchronization and time skew problem.

installed BITalino APP. The last platform, Cooking Hacks, uses the Arduino
mills function, which represent milliseconds elapsed from the starting the
device.

Using timestamp as synchronization introduces a challenge, as the
clock might not run at the same speed. This might also be a problem
in general when calculating accuracy, since we then compare two data
streams against each other. The problem is illustrated in Figure 5.18.
We have two platforms, A and B. The clock calculating the timestamp
in platform B is faster than the clock for platform A. The stippled lines
illustrate the correlation between the readings. Then we see that platform
B is further and further behind as the time goes forward. If we were simply
to compare the two data sets without testing the speed, we would not get
the right results.

If we the clock of one platform to be faster than the other, it is possible
to account for this by applying the difference to each sample. As an
example, platform B is 1% faster than platform A, so we can add 1% to
each data sample. the We continue to use NOX as the gold standard, and
the time stamp of the two other platforms is compared against it. The
accelerometers explored in the last section do clearly indicate acceleration
events. Therefore, we investigate our results from them.

Cooking Hacks

In order to investigate the time skew, we take a closer look at the start and
end of a plot from CH and NOX. Displayed in Figure 5.19, a zoom into
the start shows four synchronized acceleration events. In blue, the NOX
acceleration consists of either one or two vertical spikes. In orange, each
CH event is represented by one vertical spike in the graph. At the same
time, Figure 5.20 shows the end of the same recording. If we then look at
the last spike from CH, we see that the difference is less than a second over
this period of about 15 minutes. Our benchmarking experiments later in
this paper are likely to be less than 20 minutes.

BITalino

Conducting a similar experiment with BITalino and NOX showed no
visible time skew over a period of 30 minutes. This result might be
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Figure 5.19: Accelerometer data from NOX and CH, at beginning.

Figure 5.20: Accelerometer data from NOX and CH, at end.
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explained by similar quality of the time hardware in both the NOX T3
central unit and the Android smartphone.

5.5.4 SpO2 Synchronization

It might be possible to synchronize the data using only the oxygen
maturation. We know that by holding breath, SpO2 values would
eventually start to fall. Repeated desaturation can make it possible to
synchronize two sets of data using only the oxygen saturation.

Two 12-minute recordings from NOX and CH are presented in Figure
5.21. Here we see that it is possible to synchronize the desaturations by
comparing them visually.

5.5.5 Sample Synchronization

When we find a suitable synchronization method for data, we are able to
find start and end points in the data, and events are therefore synchronized.
However, in order to compare data, the difference between two samples
must be calculated. Each data sample can either be the raw measurement
from a sensor, or an estimated sample. Since sampling rates from different
platforms are not equal, one or both records are objects of resampling.

The time limit of our research does not allow us to investigate the best
practice for resampling. However, we want to leave the data from NOX
mostly unchanged. NOX has a fixed sample frequency set at new sample
every 333ms, with 334ms every third. To achieve a fixed interval between
samples, we downsample NOX to 334ms, as mean. With that as a basis,
we have to downsample the data from the other two platforms to fit NOX
because of their higher sample rate.

5.5.6 Summary

The synchronization methods we explore above show different degrees of
success. Using the respiratory pattern as synchronization did not provide
stable data for either CH or BITalino. The best method is found to be
synchronization with an accelerometer. By simply plotting data into a
graph it is easy to identify both the start and end of recordings.

The time skew experiment showed that that for CH there is a time skew
of about <1 second in 20 minutes. In our short setting of benchmarking, we
claim that <0.1% time skew is too short to affect the quality of our results.
Nevertheless, even though the time skew is barely notable in the short time
of our benchmarking experiments, the differences would have to be taken
care of when recording a night’s sleep over 7–9 hours.
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Chapter 6

Requirement Analysis

In Part I of the thesis we learned about health sensor technologies,
pulse oximetry and obstructive sleep apnea. We identified important
definitions, guidelines and procedures for our research. In order to better
understand the technical challenges and what kind of data to expect, we
did preliminary experiments, as described in the last chapter. In this
chapter we analyse and present the requirements for the design of the
experiments.

Section 6.1 goes through important requirement limitations, and the
scope of our benchmarking tool. In Section 6.2 we discuss desaturation
events. Data quality and defining the metrics for our analysis are the topics
in Section 6.3. We define the requirements for the benchmarking protocol
in Section 6.4, before we conclude this chapter with a summary of our
requirements in Section 6.5.

6.1 Limitations and Scope

In this paper we develop a benchmarking environment and tool for pulse
oximeters. Even though we want our tool to provide conclusive results,
and to follow industry standards as much as possible, the nature of our
non-invasive, non-medical testing method introduces some limitations.
This section also covers the framework and scope of the experiments.

6.1.1 Non-invasiveness

As described in the last section, our protocol for accuracy testing is
non-invasive. According to the ISO of 2017, implementing alternative,
noninvasive methods for testing accuracy is possible, if not recommended,
if the reference pulse oximeter is directly comparable to a CO-oximeter.

The content of benchmarking methods we define must dispense with a
need for health personnel. Earlier in this paper we demonstrated that the
common procedure to obtain comparable samples from a certain range of
oxygen saturations includes the test subject breathing in gas mixes with a
certain ratio between nitrogen and oxygen. Even though these sorts of gas
mixes usually contain only gas already in the air that we normally breath,
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our protocol cannot rely on having test subjects breathe gas mixtures that
we offer. Likewise, the gold standard for testing accuracy is by matching
the SpO2 values with blood draws analysed with a CO oximeter, requiring
medical assistance. Therefore, the methods we use in our benchmarking
protocol are both non-invasive, and non-medical, which means that it
should obviate the need for any medical guidance.

Furthermore, we are not in possession of medical equipment to use in
the benchmarking process. In addition to the oximeters and platforms, the
tools at our disposal are common devices such as smartphone and com-
puter for data acquisition and analysis. Nevertheless, it is important that
we achieve results that are comparable with the international standards
mentioned.

6.1.2 Scope

To enhance the usability of our method in benchmarking pulse oximeters,
the protocol should be generic and not depend on a specific technology.
The oximeters mentioned in this paper are meant to represent a variety
of pulse oximeters from a subset of the market. Our research aims
to develop a benchmarking tool for testing inexpensive pulse oximeters
without medical certification. They are ambulatory devices intended for
home monitoring, or devices in a relevant development stage of home
health monitoring.

Although we test oximeters from different sensor platforms, we do
not benchmark or test the platforms themselves, such as their ease of use
or grade of adequate documentation. Nonetheless, we describe possible
behavior of the platforms or other circumstances that may affect our results
in a report of the benchmarking experiment.

6.1.3 Test population and ethics

The test subjects we recruit should be healthy persons varying in age, sex
and skin pigmentation according to the ISO of 2017. As physiological
variations between the subjects may affect the results, we need to
document their demographic details. At the same time, environmental
circumstances such as location, temperature, and setup are also subjects
of documentation.

Furthermore, it is important to define inclusion and exclusion criteria
for the test population, according to the ISO of 2017, in addition to other
potential illnesses that may cause a physical risk for the subjects. Therefore,
each subject fills in a predefined health declaration before the experiment.

As specified in the last section and above, the experiments are designed
to be carried out without the need for supervision by health personnel. The
test population is specified so that subjects can be drawn easily from the
general population, excluding those who might introduce medical risks.
We mean to include specific instructions and precautions in the protocol to
avoid medical issues. However, it is important to note that our research
originates from a technological point of view. Even though we discuss
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medical implications, and test procedures are explained in detail, we
cannot know and do not mean to fully explore all of the health implications
that may be introduced by using our benchmarking protocol. Therefore we
emphasize that any participation in our work is strictly voluntary, and the
accomplishment is founded on each person’s own strength of will.

6.2 Desaturation Events

Sampling rate, response time, technical differences or external differences
may cause data streams to be noisy and not easy comparable. To be
consistent in our identification of events of desaturation and apnea in data,
we also need to define the characteristics of desaturation events. In Section
4.2 we learn about the definitions of sleep apneas. With this in mind, we
observe a cut from a recording done in preliminary experiments (Chapter
5), as displayed in Figure 6.1.

There we can see two plots from NOX (blue line with red sample
dots), and CH (orange line with green sample dots) over a period of about
3 minutes. Light green lines show events from NOX, and purple lines
events from CH. The terms used in the characteristics have the following
meanings.

• Baseline saturation, the saturation level from where the desaturation
event starts, and/or level after a post-event re-saturation.

• Start of a desaturation, the start of a period of desaturation from
baseline saturation.

• Nadir, the bottom of the lowest value in a desaturation, succeeded by
a (re)saturation.

• End, the point when saturation levels increase after the nadir.
• Length of the desaturation, from start to stop.

In Figure 6.1 we can see points of start, the nadir and the end of the
desaturation event. According to the AASM manual, this desaturation
event can be scored as an apnea, following the criteria of ≥3% desaturation,
in a respiratory event of ≥10 seconds.

However, in the figure we see that the starting point of the apnea event
is not at the indicated baseline saturation. The reason for this is that both
sensors had a previous drop in oxygen saturation, but the event was either
too short or the desaturations too low to be defined as an apnea.

To simplify the data examination process, we do not pay that much
attention to baseline oxygen saturation in our analysis. We are still be able
to identify desaturations. The length of the desaturations we define as the
start to the end of the nadir. It is worth noting that our definitions may
depart from those in the literature. Notwithstanding, desaturations alone
are not enough to score apnea or hypoapnea in sleep studies.

To underline the importance of clear instructions on how to score a
desaturation event and (equally important) to be able to tell them apart,
we can examine Figure 6.2. Even though the figure is a cut of the
same recording as the one we investigate above, it is not trivial in this
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Figure 6.2: A second section of the same recording as Figure 6.1

case to pinpoint the starts and the following nadirs associated with each
desaturation event. In the recording from which both figures are taken,
the test subject did not follow a breathing script. The test person was
lying in a supine position, simulating apneas at his own convenience. This
might also be a case close to a real world setting, as frequent desaturations
may simulate a person with a severe obstructive sleep apnea diagnosis.
However, for the sake of our research, results such as those in Figure 6.2
can be very complicated to analyze.

The discussion above of indeterminable desaturation events leads to
the conclusion that the testing procedure we design has to include specific
instructions for the test subject to follow. The instructions must both
facilitate the analysis process and enhance variety in SpO2 values. This
is the topic of the next section.

6.3 Data Quality and Metrics

As we discovered in earlier chapters, the related work on accuracy testing
uses the practices and procedures recommended by guidelines from the
FDA and the ISO of 2017. Most studies have used results from gold
standard CO-oximeters to match against the tested pulse oximeter, and
almost all of them use the method of breathing in a gas mixture to gain
stable saturation plateaus for sample taking and matching.

Most pulse oximeters are calibrated according to defined standards;
additionally, they can be certified for clinical use. Clinical certification
is not specifically discussed in this thesis; however, we can assume that
a certification at least includes the requirements of the ISO of 2011, as
it is recommended by the FDA and often mentioned in the literature.
Furthermore, we can also assume that accuracy testing is done by a third-
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party laboratory and/or a control protocol is used.

On the contrary, the pulse oximeters within the scope of this thesis have
not been tested by a third party. Therefore, as users of the oximeter, we
cannot know with certainty the correctness of the recorded data. Earlier
we referenced the CESAR project, which aims to develop an automatic
sleep apnea diagnosis tool as an alternative to polysomnography, the
gold standard of sleep diagnosis. CESAR depends on inexpensive health
sensors aimed for the private market, and is not bound to specific or
medical grades ones. It is conceivable that inaccurate data from an
inexpensive oximeter might obscure the success and usability of such a
project, since the tool may trigger incorrect decisions about a person’s
possible sleep disorder.

In addition to be able to measure the accuracy of pulse oximeters,
it is also important to design the benchmarking tool with the goal of
determining their usability in the detection of apneas. We want to
determine a oximeter’s rate of success for detecting desaturations or, in
contrast, the rate at which it falsely indicates them.

As an example of the difference between accuracy and the ability to
detect desaturations, we can inspect the following example. A doctor
investigates the record of a night’s sleep of one of her patients. Let
us assume for simplicity that a pulse oximeter only was used in the
monitoring, even though the use of additional channels is more common in
home-monitoring devices. In preparation, the accuracy of the inexpensive
pulse oximeter was determined. The result was within the predefined
4% root mean error, and the device was approved for use in the sleep
study. Now, when examining the records, the doctor finds a only a
few desaturations ≥3% per hour, too few to even indicate a mild sleep
disorder. However, the reality of the situation was different. Throughout
the night, this particular patient actually did have apneas frequently, with
desaturations up to 4%. Still, they extended for only 10–12 seconds. Even
though the averaging of the pulse oximeter was set at 3 seconds, design
decisions from the manufacturer caused this oximeter to underestimate
desaturations to avoid erroneous readings.

For this reason, our benchmarking tool should implement metrics to
track and quantify behavior such as the one described above. The goal for
our benchmarking tool is not to revise or disprove manufacturers’ labeled
accuracy values, and without including standardized methods our method
is likely to be insufficient for doing so. Instead, we test the oximeters in
relation to obstructive sleep apnea, using the international standards as
guidelines. Accordingly, the metrics we define assess both (1) accuracy
according to industry standard and (2) the oximeter’s performance in
detecting desaturations. Then, our research and benchmarking tool
combine to act as a control instance, or a third party controller, for the
implementation of inexpensive pulse oximeters in sleep apnea monitoring.

T
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6.3.1 Accuracy

The standardized method for determining the quality of a pulse oximeter
is to calculate the Arms between the tested oximeter and the CO-oximeter
used as the reference. We argue that this quality measure, known as
accuracy, is also the most appropriate quality metric to be used in our
benchmarking tool. We therefore calculate Arms for each experiment and
also as a total. In addition to determining the accuracy of the pulse
oximeter, we also perform a Bland-Altman analysis. As stated earlier in
this paper, this analysis method is common when comparing two methods
of measurement. By using it we can gain valuable data to evaluate any over
and underestimations. Here we calculate the limits of agreement, bias and
precision. In addition, we implement a relation plot.

Earlier in this paper we point out that the accuracy of pulse oximeters
tends to decrease towards lower oxygen saturation levels. Research shows
that a pulse oximeter is most accurate near 100% SpO2, and remains
unchanged down to 70% at best. Because of the characteristics of our
methods, we can assume that our quality measures will remain the upper
bound, regardless of the metrics we choose. Therefore, even though
we do not implement testing procedures recommended by international
standards, we are at least able to determine the upper bound of quality.

This thesis has not investigated how much data are necessary to prove
equally significant to the 200 data samples required in the international
standards. The validity of our accuracy testing depends on the variations
of SpO2 values for all subjects. In advance of the experiments, we cannot
know how the total spread in SpO2 might be. Therefore, we leave the
question of sufficient data quantity to be discussed when evaluating the
benchmarking protocol.

6.3.2 Classify Desaturations

In addition to having a metric for accuracy, we see it as necessary to
implement a classification system for desaturations. We need this in the
analysis process of the results, to better understand the behavior of the
pulse oximeters in measuring desaturations.

To quantify a pulse oximeter’s ability to measure changes in saturations
correctly, we use a binary classification system, including true positives,
false positives and false negatives. We exclude the true negatives from our
classifications system, as explained at the end of this section.

Our classification is strictly based on events we can identify in the data,
by comparing synchronized recordings from the reference pulse oximeter
and the test pulse oximeter. For each desaturation in the reference data,
we classify either a true positive or a false negative. If the test object also
detected a desaturation within the same time frame as the reference, it is
labeled as true positive; otherwise, it is deemed a false negative. In contrast,
desaturation indicated in the test object data, where there is no desaturation
in the reference data, is labeled as a false positive.

Our classification system can be seen in Table 6.1. The first column
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Reference Test object
True positives 1 1
False negative 1 0
False positive 0 1

Table 6.1: Desaturation Classification System

contains our classes, the second is desaturations identified by the reference
pulse oximeter, and the last is desaturations found in the test object data.

Until now, we have purposely only used the term desaturation. A
desaturation is defined as SpO2 values of ≥3%, with no requirement of
duration. On the other had, we also want to identify apneas in the data.
We use the AASM definition that requires a ≥3% drop in oxygen saturation
over a respiratory event period of ≥10 seconds. The reason we want to
differentiate between the two of them is because we also want to analyze
and discuss any patterns regarding the duration and depths of the drops
in desaturation. Note that all desaturations are included in the calculation,
not merely the ones accompanying simulated apneas.

The classification system described above is based on events identified
in data. In this case, it is not easy to quantify a true negative. Let us say
there are no desaturation events in the data from both oximeters. And let
us quantify the true negative and give it the number 1; in 1 of 1 cases there
are true negatives. Then let us assume 1 desaturation in the reference data
and 2 desaturations in the test object data. Now we see the challenge: the
reference data are no longer negative. Nevertheless, we can argue that the
test object has at least one less true negative than the reference. Or to see
it from another perspective, the test object has 1 more false positive than the
reference.

Without dividing the data into fixed phases or time frames to quantify
the true negatives, we cannot implement it into our binary classification
system. Also, we argue that counting the false positives covers the absence
of true negatives.

6.3.3 Procedures

The ISO of 2017 defines “procedures for non-invasive laboratory testing
on healthy adult volunteers.” It states that a pulse oximeter’s values can
be compared against a second one, if the latter is directly traceable to
a CO-oximeter. Further, the data pairs acquired need to be sufficient
to demonstrate the specified SpO2 accuracy statistically. It also states
the number of samples to be matched and the diversity of the study
population.

The standard procedure for determining accuracy includes matching
samples (data points) paired relative to time. This process is achieved
by having test subjects breathe a specific gas mix, resulting in saturation
plateaus. The stable periods of saturation make it convenient to pair data
points, since the SpO2 value is unlikely to be very volatile. However, as
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defined earlier in this chapter, our methods exclude any use of medical
equipment or personnel. Therefore, we have to consider our options.

The first choice is to record SpO2 values from subjects, without
simulating any apneas or provoking any desaturations. This option may be
sufficient to measure the stability of the pulse oximeters, and to determine
the rate of false positive desaturation. It is also possible to study additional
literature and conduct statistical experiments to explain the behavior and
the effect on accuracy towards lower SpO2 values. However, since we want
to determine a pulse oximeter’s ability to detect desaturation correctly,
a better experimental procedure would be to simulate apnea. Then, we
would both be able to investigate the behavior of desaturations, and to
measure the accuracy towards lower saturations levels.

Results from preliminary experiments show that comparing one raw
data stream against a second may not be easy or best practice (at least
without guidance, and subjects acting freely). In the chapter about OSA,
we learned that desaturations is scored based on specific terms. After
establishing a baseline saturation, an apnea is scored if the desaturation
exceeds 10 seconds, and the drop from baseline saturation to the nadir
is ≥3%. As noted in the literature, and experienced in the preliminary
experiments, identifying a baseline saturation may not be trivial if the
desaturations appear back-to-back without a break.

Even though we include the awake apnea simulations in our proce-
dures, we have to assure that data from the test pulse and reference pulse
oximeters are comparable. This can be assured by including synchroniza-
tion techniques when possible, yet, the simulated apneas should be clearly
distinguishable in time. We have to consider the length of the apneas, the
possible design of the pulse oximeter, and the physiological processes on
which oxygen saturation depends. The next section offers a deeper inves-
tigation into desaturation events.

6.4 Benchmarking protocol

The previous section illustrated the challenge of data sampling and
clarified why we need specific instructions for testing pulse oximeters. As
a start, we define all of the procedures we develop that are relevant to
testing as being part of a benchmarking protocol. This protocol consists of
elements that together take into account all of the requirements described
in this chapter.

In general, we can divide the benchmarking protocol into two parts:
preliminary tasks and benchmarking procedure. The goal for the former is
to ensure that the latter is properly completed. Included in the first part are
all of the preparations, considerations, necessary documents, and forms
resulting from the requirements previously mentioned in this chapter.
However, other necessary elements (such as recruiting for test population),
or technical aspects (such as deciding the appropriate data acquisition
method from each oximeter) are not part of the benchmarking protocol.
Our protocol’s purpose is as a guide for the completion of benchmarking
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experiments.
The second part comprises the instructions for the benchmarking

procedure. The ISO of 2017, and the guidelines from the FDA, recommend
that 200 samples be paired to determine the accuracy of a pulse oximeter
statistically. With a proposed test population of 10 subjects, 20 paired
SpO2 and SaO2 samples are needed from each subject. In addition, the
samples should be evenly spread in the range from 70 to 100%. Our non-
invasive, non-medical method does not allow us to pair samples in the
standardized manner. Instead we have to establish our own agreement of
the amount of data required. When doing this, we need to consider the
time frame of our research and the feasibility, in addition to how much
data is sufficient to determine the quality of a pulse oximeter in the setting
of OSA. Unfortunately, the time limit of our research does not allow us to
delve into the theory of statistics. As a consequence, we want to collect
as much data as possible, although, within the limits of the following two
specific items. First, the actual benchmarking should be short enough to
not be exhausting for the test subject, or lead to any medical risks. Second,
we may assume that the ISO instructions have considered the total subjects
to ensure diversity in the test populations, and it is therefore sufficient to
recruit 10 test subjects.

Breathing Script

The breathing script has to take into consideration the physiological, ethical
and technological limitations we identified earlier in this thesis. Then,
within its limits, it should assess the two main tasks for the testing. In
order to get the spread of SpO2 values between 100% and down as low as
to 80%, we have to enhance the possibility of lowering SpO2 values. As we
know from the theory of pulse oximetry, the partial pressure of oxygen in a
person decreases over time as oxygen is unloaded from the hemoglobin to
peripheral tissues. It is therefore essential that the breathing script include
periods where the test subject halts the oxygen supply. In Section 4.4.2,
we also learned that any effort to breathe or change the pressure in the
lungs does not affect the rate of fall in saturation. Therefore, we see breath
holding after a normal breath out as the best practice for this purpose.
As we also discover in Section 4.4.2, the rate of fall might be determined
by the initial saturation. The breathing script should therefore encourage
breathing that potentially lowers the baseline saturation.

Ensure readability: The script must facilitate easy interpretation of the
experimental results, as explained in Section 6.2. In addition to testing their
overall accuracy, we also test the oximeters’ ability to detect changes in the
oxygen saturation when simulating OSA events.

6.5 Summary

Based on the discussions in this chapter, we identify the following general
requirements for our benchmarking tool:
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• We develop a tool for inexpensive, non-invasive, non-medical bench-
marking of health sensors.

• There is no need for extra tools beyond the pulse oximeter sensor, e.g.
- easy of use, structure

• Test population should be within the healthy general population

• The location of the experiments should be flexible

• We design and implement a benchmarking protocol, with breathing
script.

• The benchmarking tool should be able to benchmark other sensors
not covered in this essay with ease.

In addition to our general requirements, the requirements for our
benchmarking protocol are as follows:

• It must ensure good benchmarking flow, through pre-experiments,
guidance and practice.

• Accomplish goals for benchmarking script:

– Aim for lower initial baseline oxygen saturation

– Simulate 8 apneas, to meet ISO 80601-2017 accuracy guidelines.

– To avoid ethical or medical issues, encourage lower oxygen
saturations without pushing the subject.

Analysis requirements

• We should define a benchmark for pulse oximeters where one
oximeter is the test object, one oximeter is directly traceable to a CO-
oximeter as the reference, and measured the quality according to the
accuracy standards in the ISO of 2017.
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Chapter 7

Design

In Chapter 6, we analysed the requirements for our benchmarking
tool. We also identified the limitations of developing non-invasive, non-
medical quality testing of pulse oximeters. First, Section 7.1 contains
the considerations for our design, including simulation of apnea, the test
population, and the environment. In Section 7.2, we unveil the design a
benchmarking protocol that includes proper premises, dependencies and
experiment procedures.

7.1 Considerations

Our benchmarking depends on physiological processes, and in order to
assure successful test results we now discuss considerations pertaining
our benchmarking protocol. First we discuss the process and challenge
of simulating apnea. Then we discuss and define the test population. We
also summarize material presented earlier in this thesis on baseline oxygen
saturation, before defining a benchmarking environment.

7.1.1 Simulating Apnea

As we found in Section 4, to score a hypoapnea a drop of ≥30% in sensor
data must occur from nasal pressure or alternative hypoapnea sensor,
with a duration ≥10 seconds and associated with a drop of 3% from the
baseline oxygen saturation. In this context, we ideally want to test the
pulse oximeter’s ability to record oxygen desaturation when we simulate
hypoapnea for 10 seconds or more. However, apart from its perhaps being
(1) practically difficult for the test subject to properly simulate hypoapnea
and (2) hard to give satisfying feedback and instruction in the process,
we consider complete blockage of the airways to produce the best results.
The potentially high initial baseline oxygen saturation may prove that
simulating hypoapnea (also possibly incorrectly) might not be lowering
the PaO2 enough for a pulse oximeter to measure any drop in SpO2.
Also, as stated earlier, we want to test one particular pulse oximeter’s
ability to measure a drop in SpO2, compared to a second reference one.
Consequently, the most important goal for a breathing script is to enhance
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the possibility of a fall in SpO2 values. The benchmarking protocol
therefore instructs test subjects to hold their breath from FRC with total
blockage of airways.

7.1.2 Test Population

In our requirement analysis we specified that we want to recruit people
from the general population, and according to ISO of 2017, the test subject
must be healthy. According to the ISO standard study, the protocol should
include rules for population inclusion/exclusion and for experiment termi-
nation. The former criteria are used for recruiting the test population. In
addition, we designed a health declaration document (see Appendix C.3)

Inclusion criteria: The ISO of 2017 includes female and male subjects
between 18-50, with ASA category 1.
Exclusion criteria: As in the standard, we exclude pregnant woman and
smokers. Also, since we do not use medical personnel in our study, any
persons self-reporting ongoing heart, lung, or brain problems/conditions
are excluded. The test person must therefore sign a health declaration
document before starting the benchmarking.
Termination criteria:: The test subjects can stop the experiment at any time.

7.1.3 Baseline Oxygen Saturation

The main purpose for this thesis is to investigate the possibility to
benchmark pulse oximeters with a non-invasive method and without
medical supervision. A possible conclusion of this research may be
that benchmarking with our procedures is only possible with certain
test subjects having particular physiological qualities. In this context,
we should record and acquire additional data associated with oxygen
saturation behavior. An example would be to monitor and record the
oxygen saturation of a certain test subject during sleep. These experiments
are not defined in the design, but are rather introduced when needed.

7.1.4 Environment

The benchmarking environment should be defined by the testbed and
workbench. However, we allow our environment to be generic. The only
requirement is that the location include furniture or place for the person to
lie down. Next, external disturbances should be minimized to allow the
individual subject to relax and stay focused.

Benchmarking configurations

As identified earlier, the sample rate should be at least 1Hz. We understand
the sample rate as the time at which the pulse oximeter provides an
updated SpO2 calculation value as output. Further, from the preliminary
tests we learned that pulse oximeter users are not given the option to adjust
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averaging time. However, when possible, averaging should be the mean of
3 samples, or 3 seconds.

7.2 Benchmarking Protocol

In the process of benchmarking it is important that test objects have the
same premises and environment. In the requirement analysis, we argued
that we need a benchmarking protocol to assure both the correctness of
the benchmarking output, and as a guide to follow for both setup and
completion. We include both instructions for the prearrangements, such as
documentation needs and forms to be filled out, and specific instructions
for the participants in the benchmarking process. The benchmarking
protocol is included in the Appendix. Each part is described below. We
start with defining names for the roles and objects in the design, as follows.

• Test object: The pulse oximeter to be benchmarked
• Test standard: The pulse oximeter traceable to a CO-oximeter, used

as ground truth
• Test population: All of the individuals recruited as test subjects
• Test subject: A person within the test population
• Test manager: Observer or test researcher

In Section 7.2.2, we first include the necessary preparations for the
protocol. This is a routine for us to follow to avoid medical risks and
ethical or technical challenges. Section 7.2.3 contains a guidance manual
for the researcher to follow under the benchmarking process, while Section
refch:design:script supplies the breathing guidance for the test subjects.
The complete benchmarking protocol documents are included in Appendix
C.

7.2.1 Project Description

Although we designed one benchmarking protocol, we need to implement
two separate test documents, one each for the manager and the subject. The
benchmarking description should be as informative as possible.

7.2.2 Prearrangements

First, to avoid any medical risk factors, we include a health declaration
document for the test subjects to fill out. This document is not based on a
study of the medical implications of holding the breath; rather, it checks for
any illnesses or medical problems that may pose medical risks. Answering
yes on any of the questions exclude the test subject from the experiments.
The document is displayed in full in Appendix C.3

Next, we include the following instructions for the benchmarking
manager. We do this to avoid any uncertainties, questions or breaks during
the benchmarking process.
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• Investigate the health declaration document before preceeding with
the experiment.

• Carry out the technical preparations.

• Make sure that the test subject understand all parts of the benchmark-
ing process, including the objective of the experiment.

• Remove any nail polish on affected fingers.

7.2.3 Benchmarking guidance

As we know, desaturations after simulated apneas are not shown instantly,
with the response time being about 35 seconds to 1 minute. Therefore, it is
not easy to guide the test person to achieve the desired baseline saturation.
What we can do is observe the SpO2 values after each apnea, and then
give feedback to the test subject. Inform the test subject when 30 seconds
are left to apnea. When it is time to hold the breath, make sure to specify
that it should be held from breath out. Then notify the subject when 10
seconds have passed. Ideally, we want a spread in SpO2 values between
100 and 70% from all experiments., Based both on experiments from the
literature and from our earlier preliminary experiments, it is realistic that
most subjects will be able to hold their breath for just above 10 seconds,
thus lowering the saturation 10% at most.

However, as we know the rate of fall in oxygen saturation produces
two positive effects: the initial baseline oxygen saturation at the start of the
breath holding and its length. The test subject should therefore try to lower
their SpO2 values before each apnea. That means that calm, slow, and/or
short breaths are encouraged. Also, the test subject should suppress the
need for deep breaths, to avoid high levels of oxygen before an apnea. The
second positive effect is the duration of the breath held. Even though all
subjects should be able to hold their breath for 10 or more seconds, we
expect that the total duration of breath holding to vary greatly from subject
to subject. However, as the test population consists of healthy subjects only,
we should also encourage the subjects to hold their breath for as long as
possible, extending the 10 seconds. The discomfort that comes with the
breath holding is not dangerous.

In our research we found no indication of the test subjects’ positioning
affecting the pulse oximeter’s data quality. However, the subject should
remain as still as possible under the benchmarking period, especially when
holding his/her breath. To prevent the need for repositioning, subjects
should therefore make themselves as comfortable and relaxed as possible.
With that precaution, we hope to minimize possible movement artifacts in
the data stream.

Our setup does not involve other sensors to monitor other physiological
processes, such as the duration of the breath hold. The test manager
has to visually observe and register the length of each apnea in an event
document. Any movement, external disturbance or other unexpected event
should also be noted there as well.
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7.2.4 Breathing Script

Based on the requirements in Section 6.4, we describe our breathing script
design in this section. An important requirement for the breathing script
is that it should not be exhausting or cause any medical risks. Therefore,
we limit the duration of the breathing script to 20 minutes or less. With a
short time frame for the experiment, we ensure that the test subject stays
focused.

Our investigation of the literature revealed (1) that subjects cannot hold
their breath easily for more than 35 seconds and (2) that by repetition
the breath holding time until the breakpoint of the breath hold can be
improved. Therefore, to enhance the possibility of a spread in SpO2 values,
as many apneas as possible are implemented in the breathing script. As
noted in the requirements, however, it is important that the apneas be
visually distinguishable in the data. Furthermore, the breaks between the
apnea simulations should be long enough for us to observe the results and
give feedback before the countdown to the next apnea starts.

With these two limitations in mind, we propose the following breathing
script: Begin each experiment with 3 minutes calm breathing to stabilize the
breathing. Then every two minutes simulate an apnea from FRC (normal
breath out). The test subject should be able to hold their breath for at least
10 seconds, which we define as a minimal duration. Every apnea, including
the last, is followed by two minutes of relaxed breathing. In total, this
process results in 8 apneas per test subject.

Definitions of events

• Breath-held - The test subject holds his/her breath for 10 seconds or
more.

• Relaxed breathing - Subject takes long/slow “shallow” breaths.
• Withheld complete inhalation - Subject tries to withheld the urge for

deep inhalation during relaxed breathing.
• Breath hold after exhalation - After regular exhalation, the test subject

holds back the inhalation, i.e., performs a complete blockage of the
airways, for at least 10 seconds.

Expected behavior

At each breath held period, the PaO2 level will start to fall, and continue
to fall as long as the test subject does not inhale. The change in SpO2
values in the apnea period, measured by the pulse oximeter, depends on
the initial baseline saturation and the duration of the breath held. At high
initial levels, we might not be able to recognize any desaturation patterns,
especially in situations where breath holds are just above 10 seconds. To
our knowledge, the rise back to an old or new saturation baseline starts
shortly after the test subject starts the inhalation. We do not see the changes
of SpO2 values in the data feed immediately after breath holding, as they
depend on the averaging and response times.
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By repeating the same procedure 8 times, the test subjects should also be
able to learn more about their limits, and to push themself gently without
pressure from the test manager. With that approach we avoid any ethical
implications. We expect the test subject to improve in the duration of the
breath holds and to achieve lower initial baseline oxygen saturation as the
experiments proceed.

With this procedure we can achieve the recording of SpO2 values
containing up to 80 simulated apneas from 10 subjects, plus any other
desaturation events. The grade of success of having SpO2 values
distributed between 70 and 100%, cannot be controlled. However, we
evaluate our original design of the benchmarking protocol continuously,
and implement improvements if needed.

7.2.5 Processing

As discussed, we do not see it as our objective to process signals from the
test objects. We may apply filters to remove outliers that are unlikely to be
real readings.
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Chapter 8

Implementation of Tools

Filtering

In our research, we use a number of Python scripts for analysis and for
visualizing our results and data. A reference to these scripts can be found
in Appendix A.

Documents of Importance

We implement three different documents, beginning with the benchmark-
ing instructions (C.2), which contain considerations and a guide for the
researcher to follow. Next are the test subject instructions (C.2), along with
a description of the purpose of the experiment. We also have a short health
declaration document (C.3) to fulfil our exclusion criteria for nonhealthy
test subjects. Last, we have an apnea event document (C.4) in order to note
the apnea durations and other events.
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Part III

Evaluation
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Chapter 9

Evaluation

In the first part of this thesis, we covered the background information of
health sensor platforms, pulse oximeters, and sleep apnea. Requirements
for our benchmarking protocol were discussed, and we designed one that
frames our non-invasive experiments to derive a method of benchmarking
pulse oximeters in relation to sleep apnea.

Our methodology is based partly on theory from medicine. Our
research does not mean to provide a complete picture of physiological
processes; rather, we build our benchmarking protocol components on a
basic medical understanding of relevant topics. Since our assumptions
are mostly made by a high-level understanding of physiological processes,
some of them may prove to be inaccurate, defective or, in worst case,
wrong. For that reason, we divide the experiments into two parts. While
the preliminary experiments in Chapter 5 focus on what data to expect
as output for the given input on each platform, we test the output by
using our benchmarking protocol in a Phase I of the experiments. Here
we perform an analysis from the perspective of our expectations, and also
discuss possible improvements to the benchmarking protocol. By doing
this we hope to address any uncertainties, and also to gain the benefits of
an advanced review of the benchmarking protocol before we do a larger-
scale testing.

Section 9.1 contains phase one of the experiments, with a discussion
of the first experiments, and suggestions for protocol improvements.
An overview of the test population is presented in Section 9.2, before
the synchronization is explained in Section 9.3. Section 9.4 contains an
overview of the results, and calculations for their accuracy, and the Bland-
Altman analysis.

9.1 Experiments Phase I

The goal for this part is to obtain an early review of our expectations
towards the outcome of the experiments by using our benchmarking
protocol and breathing script, and to evaluate the need for improvements
and before we go deeper into the full set of experiments.

First, we test the three pulse oximeters from Nox Medical (NOX),
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BITalino and Cooking Hacks (CH) previously reviewed in this paper, using
two test subjects and our benchmarking protocol. As we see in the results
section below, the first two benchmarking experiments are highly different
in character. We therefore introduce side experiments, as mentioned in
design(Section 7.1.3). These particular experiments are not part of the
benchmarking of the pulse oximeters, however. The data used in the
discussion of the results come from the first two experiments. Therefore,
we include monitoring of the oxygen saturation during sleep of the first
two test subjects, and then we examine the records to see if our assumptions
of lower baseline SpO2 levels during sleep at night are correct and useful
for our benchmarking. Last, we conduct an experiment with a second
and separately developed breathing script that aims to simulate breathing
patterns during hypo- and central apnea.

The results of the two benchmarking, two sleep studies and one other
breathing script are discussed in Section 9.1.1. The improvements on the
benchmarking protocol is presented in Section 9.1.2. Last, we discuss the
results from BITalino in Section 9.1.3.

9.1.1 Results and Discussion

In contrast to our analysis in the next part, in this first part we analyse each
test individually, and we identify them by experiment number. It is useful
to observe test results from each individual experiment to identify their
different characteristics.

First, the data from BITalino and MySignals have element of noise in
them. This was also discovered in the preliminary experiments, and we
argued that we could therefore apply simple filters on the data sheets.
For MySignals we apply the filter we detailed in Section 5.4.2. BITalino
is discussed in its own section.

Experiment 1

Test subject 1 is self-reported as being a healthy nonsmoker in his mid-
thirties. Before the experiment started, he had received neither breath-
holding training nor familiarity with the script. The test was also started
without initial training, knowledge or expectations about the oxygen
saturation behavior. However, the subject did read the instructions
document.

Figure 9.1 shows the output of the three pulse oximeters from NOX,
CH and BITalino. The first thing we note in this graph, in general, is the
absence of a desaturation period over 3% for NOX and CH. The output
from BITalino is a matter of its own investigation in Section 9.1.3. When we
omit BITalino from the plot in Figure 9.2 and use NOX as the ground truth,
we see that the test subject has a high SpO2 value, ranging from 98 to 96%.
Our earlier models predict that with a high baseline oxygen saturation,
holding the breath for 10-20 seconds may not be long enough for the PaO2
to fall below a level measurable by a pulse oximeter. Also, from a high
initial PaO2 level, the rate of fall may be too low. CH has a desaturation
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Figure 9.1: Output from NOX, CH and BITalino in Experiment 1.

Figure 9.2: Graph of Experiment 1, with CH and NOX only

at the 7-minute mark, with a short (<10 seconds) top period of 98% SpO2
before the 3% drop. However, according to the AASM Manual, the top
might be adjusted to a mean baseline of 97% instead, and therefore no
desaturation drops of ≥3% occur in this experiment. A third observation
is that it is not possible to synchronize the data and graphs accurately by
using the SpO2 values, given no or few desaturation periods.

Follow-up questions about the subject’s physical condition were asked
for the purpose of gaining possible explanations for the test results. He
reported a good physical condition, with a higher oxygen uptake than the
general population. We also registered a low pulse throughout the test,
with a mean of 54. In questions about the benchmarking process, the
subject reported that he did know little about his progress in lowering
the SpO2 levels. These levels were reported by the experiment manager
only after the third simulated apnea, as the subject was not able to see the
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Figure 9.3: Results from Experiment 2, from NOX and CH.

display on the NOX wrist unit of the pulse oximeter. Furthermore, the
health implications were not explicitly addressed in the information note,
which added an element of uncertainty about the discomfort experienced.

Experiment 2

Subject 2 from the second experiment was a healthy non-smoker in his
early 30s. In contrast to the first test subject, he was familiar with
the breathing script and had prior experience in holding his breath, as
described in the benchmarking protocol.

In Experiment 1, we learned that if the desaturation periods were few or
absent, could not synchronize on the SpO2 values only. Therefore, we then
used the accelerometer to synchronize and mark the apneas. In addition,
we used the Noxturnal internal event detection tool as a visual indication
of desaturation, and marked the desaturation periods (pink) in the figure
with the results. In Figure 9.3 the top subplot shows SpO2 values from
NOX and CH, including desaturation periods. On the bottom subplot, the
aligned data from the two accelerometers are indicated by vertical lines,
where the last 14 consist of start/stop pairs of simulated apneas. In the
first experiment, the test subject held his breath for about 10-13 seconds,
while Subject 2 was able to do so for about 10-24 seconds. As we know
persons can extend their breaking point (included in background) with
repeated actions. These data also suggest that Subject 2’s previous training
may have helped him hold his breath for longer from the start. In post-test
questioning, he also reported being very conscious of his limits and of how
to control his breathing.

As mentioned, the pink overlays in Figure 9.3 represent the Noxturnal’s
definition of the desaturation periods. The duration is the standard start
until the end of an apnea where desaturations is ≥3%. If we then compare
the pink desaturation with the apnea starts indicated by the accelerometers
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Duration Desaturation
Apnea NOX CH NOX CH

1 × × × ×
2 8s 12s 3% 3%
a × 30s × 3%
3 11s 11s 4% 3%
4 15s 25s 4% 7%
b 10s 32s 3% 3%
5 × × × ×
c 23s 18s 3% 4%
6 × 7s × 3%
d × 26s × 4%
7 9s 12s 5% 6%
e 24s × 3% ×
8 9s 9s 4% 6%

mean 13.5 17.5 3.5 4

Table 9.1: Overview of the desaturations in Experiment 2 from NOX and
CH

in the lower subplot, we see that the desaturation periods are also occurring
without a corresponding simulated apnea. This may be caused by the test
subject’s controlled shallow breathing. The desaturation events of both CH
and NOX are presented in Table 9.1. In the first column we number the
simulated apneas. The corresponding row contains possible desaturations
that may appear after the apnea. The character a-e represents desaturation
not resulting from apnea. If there is no desaturation, × is inserted instead
of data. The desaturations are counted, both in total and after simulated
apnea. The statistics are presented in Table 9.2. In total, 11 periods of
matched desaturations with a SpO2 drop of ≥3% are identified, with NOX
present in 8 and CH in 10 of them. Under column desaturations, we see
that 7 of the 10 desaturations for CH have a corresponding desaturation in
the NOX data. One of the 8 desaturations from the NOX data is not present
in the CH data, a false negative. The remaining three desaturations from
CH are false positives, with no corresponding desaturations in NOX data.

In the column of AASM apneas, we count only desaturations we
associated with apneas according to the AASM manual for scoring
hypoapnea. This means that we count the apneas occurring about 30
seconds after at least a 10-second breath hold. In this case, NOX recorded
5 desaturations, and CH also recorded 5 at the same time. However, CH
also recorded a 7-second desaturation of 3% after apnea number 6, whereas
NOX did not. Instead of counting them as false positives, we instead argue
that they are neither a true nor a false positive. Since we know an apnea
occurred, it is likely that a desaturation was present in the blood. We
therefore do not count false positives following simulated apneas.

When we observe the graph in Figure 9.3 in general, we can see a
trend of CH having in SpO2 value than estimates NOX in the desaturation
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Desaturation AASM apneas
NOX T3 8 5
CH 10 6
True Positive 7 5
False Positive 3 ×
False Negative 1 0

Table 9.2: Apnea events counted in Experiment 2

periods. In Table 9.1, we see that the mean of the events is longer for CH,
and the fall in saturation is higher.

This disparity can be explained either by an overly careful estimation
of the SpO2 value done by the NOX, or an overestimation of oxygen
saturation changes by the CH oximeter. In Table 9.2, we see how
Noxturnal classified events. In these cases, it is interesting that CH reported
longer periods of desaturation. In Section 3.3.1, we explored the effect
of averaging. However, as seen in the graph, the rates (steepness) of
desaturation and (re)saturations appear to be similar for both NOX and
CH. Also, a third explanation for the duration and desaturation in events
might be placement. According to our requirements, the oximeter is placed
on alternate fingers between experiments. This factor might be important
for further analysis as data from additional experiments become available.

Experiment 3 and 5

In our benchmarking protocol, we regard it as important to lower the
baseline oxygen saturation because of how it affects the SpO2 values
under breath-holding. We do this mainly for the practical reason that
while breath-holding an oximeter fails to measure fall in PaO2 until it
reaches approximately 100 mm Hg, depending on factors such as pH and
temperature. Based on data from work on apnea simulation, we further
assume that the baseline oxygen saturation during sleep is normally lower
than in the waking state [44]. For this reason, we saw it as valuable
to record the SpO2 levels during sleep of the first two test subjects. In
doing so, we could both verify our assumptions, and possibly explain why
different test subjects are more or less successful in holding their breath, or
in achieving different baseline oxygen saturation.

The sleep recordings of the subjects suggest that our assumption of
oxygen saturation being lower when sleeping than when awake state
may be correct. However, the oxygen saturation did not fall after a
period of time in which the subjects would presumably have fallen asleep.
Rather, the data indicate that a test subject already has lower initial oxygen
saturation at night before going to sleep. Figures 9.4 and 9.5 show sleep for
Subjects 1 and 2. The top graph in both figures shows the first 30 minutes
after turning on the device, and the bottom graph the entire recording. For
Subject 1, 7 hours of sleep were recorded, while Subject 2, had only ≈3
hours, due to battery depletion.
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Figure 9.4: Experiment 3 result from Noxturnal

The data from both recordings indicate that the initial SpO2 level in
the first half hour guides the SpO2 values for the rest of the recording. For
Subject 1, the mean SpO2 is 96%, with a mean of 97% in the first 30 minutes.
Similarly, the mean of the first half hour is 95% for Subject 2, and the mean
of all three hours is 94%. In neither of the two recordings does the SpO2 fall
as the time goes by.

In Section 3.1, we learned that the hemoglobin extinction curve moves
depending on pH and temperature, thus affecting the SpO2 readings at
evening and night. In addition, other unknown physiological factors are
likely to be causing a lower oxygen uptake at night. As a result, we cannot
assume that a slower or calmer breathing alone, for example, is causing
lower oxygen saturation during nocturnal sleep.

Experiment 4

As a second additional experiment, we wanted to test our defined
breathing against a breathing script designed to simulate sleep apneas and
record the effect on RIP bands [25]. In advance of the experiment, the
difference between the breathing scripts can be seen as the cause and the
effect of sleep apnea events. While our benchmarking measures the effect
of apneas on the oxygen saturation of a person, the RIP breathing script is
designed to simulate the breathing pattern of a person having apneas.

In our benchmarking research we test accuracy and the oximeters
ability to record desaturation periods. A sleeping person is not voluntarily
holding his or her breath, so the blockage of airways may continue for
longer periods than the breaking point of a person being awake. For that
reason, we found it more useful to have test subjects try to lower their
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Figure 9.5: Experiment 5 result from Noxturnal

baseline oxygen saturation, and to hold their breath completely for as long
as possible. Our assumption was, therefore, that by having Subject 2 test
this script, the results would show little to no desaturation periods.

The RIP breathing script contains simulations of apnea, hypoapnea and
deep breathing both lying on the back and on the side. For a person
diagnosed with obstructive sleep apnea, all of these events can cause a drop
in oxygen saturation. In total, there might be 8 periods of desaturation,
located after the 3, 4, 5, 12, 13, and 14 minute marks.

Figure 9.6 shows a graph of the results of NOX, CH and BITalino in
Experiment 4. The oxygen estimation from NOX T3 is 97 or above for
the duration, and it measured no desaturation above 2%. On the other
side, both CH and BITalino measured occasional drops in SpO2 levels (e.g.,
after the 3-minute mark we can see that both have drops of 3% or more).
However, examining the black plot for NOX only, no desaturations >3%
SpO2 occurred. Since the breathing script is tested on one subject only,
we cannot determine that simulating both apnea and hypoapnea does not
cause desaturations. However, Experiment 1 also indicated that holding
the breath for just above 10 seconds might not be enough to lower oxygen
saturation. Therefore, prolonging the duration of the events might cause
different results.

9.1.2 Protocol Improvements

The experiments in this section show the breathing script’s importance
in the benchmarking experiment’s degree of success. Furthermore,
comparing the two subjects’ tests indicates that their physical limitations
and understanding of the test procedures are crucial. To address this
gained knowledge, we need to include the following three specifications
in our benchmarking protocol.
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Figure 9.6: Experiment 4: respiratory breathing

Progress feedback

The first test subject said he was unaware of the progress of the desatu-
rations. A method for subjects to see their SpO2 values in real time is to
be implemented. As the benchmarking is based partly on their strength of
will and ability to control the breathing process, visual feedback could help
them lower both the baseline SpO2 and the length of the apneas. However,
it is important to emphasize that the data are delayed by the response time,
which may confuse and diminish the subject’s ability to concentrate on the
tasks.

Training

The points of distinctions in the results from the test subjects in Experi-
ments 1 and 2 suggest that pre-experiment training in breath holding is
more vital in the success of the benchmarking than first anticipated. As
each experiment’s discussion explains, the first test subject had no prior
training (even in the lab). The second had experience with breath holding
on FRC (Section 4.4.2), and knew his physiological limitations and how to
control the breathing between the simulation of apneas. It is possible that
the differences in the data sets in Experiment 1 and 2 could be caused and
explained by physiological factors unknown to us. However, when we also
take into account the feedback mentioned after the experiments, we deem
it necessary to implement a training period before we start to benchmark
the oximeters. Additionally, a period during which test subjects train in
both breath-holding and practice calm breathing may be indicated before
the benchmarking can arrive at the expected level of success. The test man-
ager may also be able to provide better guidance if they known the subject’s
limitations and possibilities.

In the benchmarking protocol, we therefore include the following:
After the preliminaries, a period of testing physiological reactions to the
elements of the breathing script is to be carried through. In this period,
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Figure 9.7: Cut from Experiment 1, NOX and BITalino

the test subject trains in both breath-holding and lowering baseline oxygen
saturation, and the possible drops in SpO2 values are observed. The
training may proceed until the subject feels comfortable with a duration
of breath holding that results in a fall in SpO2 values. The test manager
should note the hold time, baseline saturation levels, and oxygen drop to
better guide the test subject while benchmarking.

Extended Information

The documentation for test subjects should include specific information
about the risks of holding one’s breath. As described earlier, we have
no reason to believe that the experiments cause major health for the
included test population. In most cases the participant might feel dizzy or
disoriented. The document must emphasize that the experiment is strictly
voluntary and can be terminated at any time by the test subject.

9.1.3 BITalino

Before our experiments in this part of the thesis, we received a new BITalino
board is identical to those used in the preliminary experiments, although it
came from an other production batch.

The result from Experiments 1 and 2 show that noise is still present in
the data. As shown in Figure 9.7, a closer investigation of the signal reveals
the same pattern (in red) discovered in the preliminary experiments. It
might be possible to identify the trend through filtering, as seen in Figure
9.8. However, we specified earlier that we do not see it as our task to
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Figure 9.8: Experiment 1, trend line (red)

investigate possible noise filtering algorithms and apply them to the raw
data. Therefore, it would also be difficult to determine if we found the
“right” filter and values when the repeated noise pattern is higher than a
rapid change in the saturation. In Figure 9.8 we can observe the pattern
between 11 and 16 minutes (we inserted trend lines manually to highlight
the possible change in saturation). As we see, the noise (in vertical blue
lines) has a higher range than the assumed saturation change between 98
and 99. Therefore, we cannot know with certainly the difference between a
noise pattern and the start of a desaturation.

In our work with BITalino, we depended on earlier work for data
acquisition. From the preliminary experiments, we became aware of
problems with the connection between the mobile device and the BITalino
board. In addition to the problems of starting the data acquisition process,
we also experienced the Collector app halting during a benchmarking
experiment. At this stage, the time limit of our research does not allow
us to investigate the reason for the app not working, nor to develop
other methods for data acquisition. Therefore, we made a decision on
the using the BITalino pulse oximeter before the rest of the benchmarking
experiments.

It is possible to calculate the accuracy of the data from BITalino and
to perform a Bland-Altman analysis on it. However, we do not see it as
valuable, as the state of the data indicate that the device is not working as
intended. Applying our apnea detection analysis would also be a tedious
task, if even possible. The pulse oximeter is a stand-alone device without
the need of the BITalino board; therefore, one can assume that the data
noise is a result of the latter’s malfunction. We also experienced problems
with collecting data, making the experiments last longer than necessary.
Therefore, we omit BITalino from future experiments.
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9.2 Test population

Ten healthy subjects were recruited for the benchmarking experiment: 5
women and 5 men, ranging between 26 to 54 years, with a mean of 35.
A level 2 was considered as medium skin colour and 8 light skin. We
were not able to recruit test subjects characterized by darkly pigmented
skin. However, we found this to be an optional configuration, as dark
pigmentation is likely to have a maximum effect of 10% on the quality
below 80% [15] . All subjects were able to complete the experiment and
simulate the apneas as specified.

Demographics
Number of subjects 10
Age in years 35+-19
Sex
Male 5
Female 5
Skin tone
Light 8
Medium 2

9.3 Synchronization and samples

Earlier we specify that we use an accelerometer for synchronization.
However, plots show that this synchronization should be considered as
guidance only, as the internal implementation of the pulse oximeter might
not be the same. The delivery time for data acquisition or the time it take to
store data may therefore differ. In data where the rate of the desaturation
is steep, synchronization of data is utterly important. Slightly shifting the
data forward or backwards produces highly different accuracy estimates.
Therefore, we take advantage of our already implemented calculation of
accuracy, the Arms. After synchronizing the data with the accelerometer,
we shift the CH data set 200ms forwards or backwards, until Arms reaches
its lowest point.

We can observe the effect by using data from Subject 3 as an example.
First, we synchronize the plot in Figure 9.9 with the accelerometer,
obtaining an Arms at ≈2.9%. However, by looking at the data plot, we
see that the graphs may be aligned better in SpO2 values. Therefore, we
shift the CH data approximately 6 seconds to the left, obtaining an Arms
≈2.1%. Now the graphs are much more aligned, as we see in Figure
9.10. The differences in accuracy between the two results is 0.8% , a 32%
difference. We also chose Subject 3 as example because of the steepness
of the desaturations. Seconds of wrongful synchronization may result in
percentage difference to best fit synchronization. However, a flatter graph
such as shown in Figure 9.2 will not be affected as much by shifting the CH
data.

In addition to shifting the alignment between the two data sets, we
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Figure 9.9: Subject 3 plot with NOX and CH

Figure 9.10: Subject 3 plot with NOX and CH, shifted

use the 19 minutes in our recording that gives us most stable values. For
instance, pulse oximeters dropping out at the start or end of the recording
allows us to shift the graph to the side. Also, the test subject tended to
move a little to adjust their position at the start of the recording. As a
consequence, apneas in data might be up to a minute earlier than expected
according to time labels in the plots showing results. For relation plots and
Bland-Altman analysis, 3,250 samples were paired for each subject. In total
3,254 data samples were paired, with the distribution displayed in Figure
9.11.

9.4 Accuracy

We have specified two tasks for the analysis of our results. The first
is determining the accuracy of the pulse oximeter, and then performing
an Bland-Altman analysis of each individual subject, and all subjects
combined into one data sheet. First we present the results in Section 9.4.1,
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Figure 9.11: Histogram of all results

Subject no. Accuracy Precision Mean Bias Upper LoA Lower LoA
1 1.46 1.16 -1.33 -0.17 -2.49
2 0.87 1.66 -0.22 1.44 -1.88
3 2.09 2.10 1.80 3.90 -0.30
4 1.51 2.78 0.51 3.29 -2.27
5 1.10 1.99 -0.44 1.55 -2.43
6 1.31 2.05 -0.43 1.63 -2.48
7 1.86 1.05 1.78 2.83 0.73
8 0.74 1.47 0.01 1.48 -1.46
9 0.88 1.67 -0.19 1.48 -1.86
10 1.08 2.11 0.04 2.15 -2.07
Mean 1.29 (±0.8) 1.78 (±1) 0.18 (±1.62) 1.96 (±2.13) -1.65 (±2.38)
All 1.34 2.61 0.14 2.75 -2.47

Table 9.3: Accuracy results for each subject

before discussing them in Section 9.4.2.

9.4.1 Results

Table 9.3 show all of the results from the experiments. For each row we
find calculated values for accuracy (Arms), precision (2 standard deviation
of difference), and mean bias(mean of the difference) for each individual
subject. We also provide the upper and lower limits of agreement for
all experiments. In last chapter we discussed individual experiments.
However, for the rest of this paper we refer experiments that are a part
of our test pool by naming the subject id. Each row in the figure labeled
with Subject is therefore a experiment counted into the test pool.

In the second column we see the calculated accuracy for each individual
subject. The pulse oximeter from Cooking Hacks has a labeled accuracy of
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Figure 9.12: Bland-Altman plot of Subject 1 and 7.

2% between 100 and 80% and 3% between 80 and 70%. However, since little
of our data falls below 80%, and only for one subject, it is not necessary to
inspect or calculate these two ranges separately.

In the table we see that all subjects but Subject 3 have a calculated
accuracy under 2%, and even Subject 3 is just above 2%, with 0.09%. The
mean accuracy of Cooking Hacks against NOX is 1.29% for all subjects,
within a range of ±0.8%. A calculation of all samples combined shows a
total 1.34%.

In the third column, the mean precision for the subjects is 1.788%,
within a range of ±1%, while all test subjects combined is 2.61%. Where
the combined accuracy varied from the mean accuracy by <0.05%, the
difference between the calculated combined precision and the mean
precision is 0.83% points. This can be explained as follows. While Bland-
Altman plot for each subject is concentrated around their individual mean,
a plot where all data are combined would result in a spread around the
mean difference. To illustrate this effect, we can observe a Bland-Altman
plot of Subject 1 and Subject 7 combined, with the mean bias being -1.33 and
1.78, respectively. The result, shown in Figure 9.12, is a mean bias of 0.23,
which is also the mean of adding the two individual precisions. However,
the precision of the combined data is 3.24, in contrast to the mean of adding
their precision, which is 1.12. Related work does not include calculations of
the mean; neither is the use of Bland-Altman analysis unique for our work
of comparing data from pulse oximeters. However, in standard accuracy
testing procedures it is common to compare just above 200 paired data
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Figure 9.13: Bland-Altman plot of all results

samples equally spread between 70 and 100%. In comparison, our Bland-
Altman plot contains 32,480 paired data samples, with most of them falling
between 100 and 90% (as seen in Figure 9.11). This also means that the top
2–3% also has most weight in the calculation of the precision and the limits
of agreement. In the figure, the values between 95 and 98% are spread
around the mean bias, while the lower 3% is mostly between the mean bias
and the upper limits of agreement. For this reason, we see it necessary
to highlight both the combined results and the mean of the adding them.
It is also interesting to analyse the difference between accuracy and the
precision. Accuracy is the mean difference between each individual paired
sample.

In the Bland-Altman plot of all results (Figure 9.13) we see a mean bias
of 0.14%, and 2.75 and -2.47 as the upper and lower limits of agreement
respectively. This means that 95% of the readings are expected to be within
± 2.61% of 0.14. The standard deviation, ≈ 1.30, is close to the accuracy of
1.34%.

9.4.2 Accuracy v. Bland-Altman

Accuracy, the Arms, is the standard metric in the industry to determine the
quality of a pulse oximeter. However, this metric is usually calculated using
the gold standard method of blood draws on stable saturation plateaus.
Our calculation is from two sets of continuous data, where about 2/3
of the data values are either 97 or 98% SpO2 for both NOX and CH.
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Figure 9.14: Relation plot of all results

Therefore, it is useful to compare the results of the accuracy calculation
to Bland-Altman analysis. Whereas Arms is calculated by comparing the
test oximeter against a reference, Bland-Altman compares the test oximeter
against a mean of the test and reference oximeters. In Table 9.3, the lowest
accuracy estimation comes from the test subject that achieved the highest
fall in saturation values, Subject 3. This might be explained by degrading
accuracy against lower levels. However, an inspection of the results
provides us with an alternative explanation. First we see in the graph in
Figure 9.10 that the SpO2 values at the baseline saturations are already
off by 2% before each desaturation. This seems to be a consequence of a
systematic overestimation of the saturation in this subject. The relational
plot in Figure 9.10 confirms this, where each dot is a paired data sample,
with NOX in the x axis and CH on the y axis. The trend line in black shows
most CH values being about 2% above the NOX values. Figure 9.16 show
the Bland-Altman plot of Subject 3, with a calculated mean bias of 1.8% and
precision at 2.1%. We also see some values as low as –5%, and as high as
6%. This is the highest spread in any of the results of any subject. However,
the relational plot in Figure 9.15 shows a almost linear trend between the
two data sets.

Then we can investigate the results from Subject 4, which has a higher
accuracy but a lower precision. The plot of NOX and CH in Figure 9.17
shows a graph in which CH moves more between values than we saw
from Subject 3 in Figure 9.10. Also, while the relational plot in Figure 9.15
shows an almost 1.0 ratio trend line between CH and NOX, the same plot
for Subject 4 shows a 0.5 trend line. Then we can observe the Bland-Altman
plot for Subject 4 in Figure 9.19, and the same plot in Figure 9.16 for Subject
3. In these graphs we see that the precision for Subject 3 is 0.68% higher
than for Subject 4. Even so, the accuracy of Subject 4 is 0.58 higher than for
Subject 3.
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Figure 9.15: Subject 3 relation plot

Figure 9.16: Subject 3 Bland-Altman plot
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Figure 9.17: Subject 4 plot

Our example above indicates that the majority of the data samples,
being the baseline saturation, have a huge impact on the calculated Arms.
Inspecting the mean bias and comparing the accuracy, we see that the four
subjects falling within a range ±0.22% from zero — 2, 8, 9 and 10 — also
have the highest accuracy estimations. And on the other end of the scale,
the four with the highest mean bias — 1, 3, 4 and 7 — have the lowest
accuracy estimations.

A second factor affecting accuracy when comparing data streams is
characteristics of the desaturation. In Section 9.3 we discuss synchroniza-
tion of the test oximeter record and the reference record, and we argue
that because of possible design and implementation differences of the pulse
oximeter we shift CH data until arriving at a best fit calculated by accuracy.
Even so, the shape of the desaturations may not be equal. As mentioned,
implementation of the oximeter might result in a slightly different behavior
in the desaturation, or a rise in saturation. Figure 9.20 shows a zoom into
the desaturation curve at the 11-minute mark. Here, both the duration and
the total drop in desaturation are about the same for CH and NOX. How-
ever, while NOX’s desaturation is shaped more as a line from the start to
the end of the desaturation, CH desaturation is more a slope with a slow
desaturation rate at start and a higher rate of fall about midway in the de-
saturation. Consequently, such results will worsen accuracy, even though
the total duration and fall in saturation in the test oximeter data are close
to the reference data.
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Figure 9.18: Subject 4 relation plot

Figure 9.19: Subject 4 Bland-Altman plot
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Figure 9.20: Subject 3 desaturation curve
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Chapter 10

Apnea Detection

In addition to establishing the accuracy of the pulse oximeter, we also want
to investigate the rate at which CH estimates desaturations where NOX
also indicated them. First we present an overview of the desaturations in
Section 10.1. In Section 10.2 we go into details about the desaturations and
the simulation of apneas, before investigating the possible explanation of
the results in Section 10.3.

10.1 Results

First we identified the desaturations ≥3% in NOX and CH data. Then,
for each desaturation in NOX, we checked for a corresponding ≥3%
desaturation in CH data within the same time frame. Each is classified
as either true positive (TP), or false negative (FN). In total, the TP and FNs
are equal to the total NOX desaturations. And conversely, if there is no
corresponding desaturation from NOX where CH indicates a desaturation,
a false positive (FP) is scored. Table 10.1 shows the results for each subject
and in total. It also show total results without Subject 10, which is discussed
below. For CH, some of the desaturation periods were split into two
by a 1% rise in saturation, before continuing with desaturation. All of
these were in the same desaturation period recorded by the NOX. The
parentheses in the TP column are the total desaturations matching the
total desaturation from CH. The other value is matching desaturation from
NOX, as noted above.

Of 71 desaturations recorded by the NOX T3 oximeter, a total of 63
desaturations was also recorded by the MySignals BLE oximeter in the
same time frame. CH therefore failed to record 8/71, or ≈11.3% of the
desaturations NOX recorded. If we generalize this number, our data
indicate that about one in ten desaturations is likely to be missed by the CH.
As we know from the Apnea Hypoapnea Index (AHI), mild sleep apnea
is scored for 5 or more apneas per our. For a person having a mean of
5 desaturation per hour over a night sleep, the results from CH will still
give indications about a possible sleep disorder even without one in ten
desaturations. If we look at the data from Subject 1 to 9, excluding subject
ten, we see that the CH only failed to record 3 of the total 58 desaturations,
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Subject no. NOX desat. CH desat. TP FP FN
1 0 0 0 0 0
2 8 10 7 3 1
3 8 10 8(10) 0 0
4 8 11 6(7) 4 2
5 8 9 8 1 0
6 9 9 9 0 0
7 7 8 7 1 0
8 3 4 3 1 0
9 7 9 7 2 0
10 13 9 8(9) 0 5
Total 71 79 63 12 8
w/o Subject 10 58 70 58 12 3

Table 10.1:

AASM Apneas Desaturations
Simulated apneas 80 -
Mean duration 22sec -
NOX total 61 71
CH total 60 79
True Positive 58 ≈ 95.1% 63 (55) ≈ 88.7%
False Positive 2 ≈ 3.4% 12 (12) ≈ 15.2%
False Negative 3 ≈ 4.9% 8 (3) ≈ 11.3%

Table 10.2: Overview of the total desaturations

which corresponds to about 5%. The reason for which it is tempting to
exclude Subject 10 is discussed in Section 10.3.

10.2 Breath holding

In this section we discuss results of breath holding in general. All the
subjects were able to hold their breath for longer than 10 seconds in all
the simulated apneas. Neither of the test subject had training in breath
hold, except Subject 3. Subject 3 was currently practising free diving, and
was therefore able to both hold a controlled breathing between apneas, and
hold the breath for longer than any subject.

A total account for all simulated apneas and desaturation is presented
in Table 10.2. Column two and three contains desaturations event, the
total number of desaturations, and the those that follow a simulated
apnea(respiration reduction according to the AASM manual). First we
observe the AASM Apnea column. We see that all subject was able to
simulate each 8 apneas for at least 10 seconds, resulting in a total of 80
apneas. The mean duration was for 22 seconds, with a minimum of 11 to
the maximum of 54 seconds. From these 80 simulated apneas, we were
able to identify corresponding 61 desaturations for NOX, and 60 from
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Subject no. Apnea du Dedu NOX Dedu CH De NOX De CH Finger
1 11s 0.0s 0.0s 0.0% 0.0% N=m, C=i
2 17s 13.5s 17.5s 3.5% 4.0% N=r, C=i
3 34.5s 25.0s 21.0s 12.5% 10.0% N=i, C=m
4 22s 12.5s 18.0s 4.0% 4.0% N=m, C=i
5 21s 16.5s 20.5s 7.6% 6.0% N=m, C=i
6 15.5s 18.0s 15.0s 8.0% 9.0% N=m , C=i
7 19s 21.0s 14.5s 4.5% 4.5% N=i, C=m
8 28s 22.0s 18.0s 3.5% 5.5% N=m, C=i
9 24.5s 29.0s 25.5s 7.5% 6.5% N=i , C=m
10 29.5s 29.0s 19.0s 7.0% 4.0% N=i , C=m
Total mean 22s 18.5s 16.5s 6.0% 5.5%

De = Desaturation, du = duration, C=CH, N=NOX, i = index, m = middle,
r = ring, s = seconds

Table 10.3: Results of simulated apneas, average

CH. However, CH failed to record 3 desaturations that NOX did record,
resulting in 3 false negatives. 95.1% was therefore classified as true positive.
CH did record 2 desaturations after simulated apneas where NOX did not
record a desaturation. In these two cases, CH recorded 3% desaturation
over 7 and 13 seconds. Nevertheless, 3.4% of positives were false positives.

In the Desaturation column, we take all desaturations into account.
Then, NOX recorded 71 desaturations where CH recorded 79. 63, or 95.8%
of the desaturation were true positives. A total of 8 were false negatives,
11.3%. In addition, the pulse oximeter from CH did record 12 more
desaturations where none was indicated by NOX, 15.2%. The numbers in
parenthesis in the third column are results without the results from Subject
10. As we see, most of the false negatives, 5 out of the 8, is a result of this
recording. This is why it is interesting to observe the results without this
recording, and we also discuss this later in this chapter.

In Table 10.3 we see the account for each individual subject, and the total
mean. The second column contains the mean apnea duration. In column
three and four we show the mean desaturation duration of NOX and CH.
Then, in column five and six we show the mean desaturation percentage
measured by the oximeters. The placement on fingers is presented in the
last column. Most notable in this figure is the relation between the duration
of the simulated apneas and the desaturation. As we earlier predicted,
longer duration of breath hold result in higher drop in SpO2. In general,
NOX did record both longer desaturation period and a higher drop in
desaturation than CH. There is no clear connection between the finger
location, and the results. However, in the cases where NOX was placed on
the index finger, the oximeter measured an equal or higher drop in SpO2
values than CH did.
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10.3 Classification Failures

In order to identify an explanation for the false negatives and false
positives, we investigate the data from three subjects that affected these
results the most. The data from subject 2, 4 and 10 is together responsible
for 7 out of 12 false positives, and 5 out of 8 false negatives. The first thing
we can note, is that the results from these three Subjects is within the top 4
of number of NOX and CH desaturations, with 8 and 10 for Subject 2,8 and
11 for Subject 3, and 13 and 9 for Subject 10. Each subject simulated apneas
every 2nd minute, and we therefore ahead of the experiments expect a plot
showing desaturations such as in Figure 9.10. There we can clearly see
desaturations every 2nd minute, right after minute mark 2, 4, 6, etc. Most
experiments have the same characteristics, except for Subject 2, 4 and 10.

The Subject 2 plot is displayed in Figure 10.1, Figure 9.17 contains
the plot for Subject 4, and Figure 10.2 Subject 10. The plots have the
same characteristics, they do all have multiple rise and fall in saturation
values within a two minute time frame. In order to explain the behavior,
we discuss the reason for non-periodic desaturations. Based on earlier
discussion in our research, we have four possible theories.

First is that the desaturations are movement artifacts. However, all
subjects were instructed, and did also in fact lay still over the time frame of
the experiments. We can therefore with a high certainty exclude movement
artifacts as a possible explanation of the behavior. Second, we can not with
certainty know that the placement of both pulse oximeter was optimal.
However, the calculated accuracy and precision of the experiments did
not show to be less accurate than the rest of the experiments. We may
therefore assume that placement was likely to be correct, or equally wrong.
Third, it is possible for physiological factors in patients to cause arterial
blood saturation, even with a steady breath. On the contrary, all subjects
reported no earlier or present conditions with blood, heart or lungs. The
last and most likely explanation is that the subjects did not breathe in a
steady pattern, and therefore did not have a steady oxygen supply for the
hemoglobins to load. We instructed them to try to breathe slowly and
shallowly to lower their baseline oxygen saturation. Therefore, it may be
possible that some subjects did breathe so little that the oxygen saturation
fell even when they were breathing. As we know, hypoapnea is a reduction
in respiration. Therefore, the recording of a night’s sleep from someone
diagnosed with obstructive sleep apnea is likely to contain a reduction in
respiration, in addition to any apneas. The results from Subjects 2, 4 and 10
might be more representative of obstructive sleep apnea patients than the
other results. Testing with additional breathing sensors would have helped
us verifying our assumption above, though, the time limit of our research
do not allow us to complete further experiments.

With this in mind, we discuss the consequences of possible wrongful
classifications. In all three plots we discuss in this section, especially for
Subjects 2 and Subject 10, we see that the desaturation of both NOX and
CH is similar in character. Hence, it is likely that when analysing the
data from CH, a specialist will be able to identify desaturation patterns,
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Figure 10.1: Subject 2 plot

Figure 10.2: Subject 10 plot
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even though our research finds multiple false negatives. That is also true
for the other test subjects. Where NOX data show desaturation events,
CH also has similar characteristics. On the contrary, if CH data showed
few desaturation events while NOX had multiple ones, its pulse oximeter
would not be suitable for sleep studies. The same conclusion is true if CH
data show multiple desaturation events where NOX’s show none or few.
With this in mind, we can see in Table 10.1 that the number of desaturations
for CH in Subjects 1–9 is the same or up to 2 more. The mean desaturations
are 7.1 for NOX and 7.9 for CH, a roughly 11% difference. We inspect
the results ‘possible effect on the Oxygen Saturation Index by calculating
the desaturation event per hour. For NOX, that calculates to a mean of 25
desaturation per hour, and 22.5 for CH.

In this thesis we classify desaturation and apnea events based on the
AASM definition of hypoapnea. We therefore only count desaturation
≥3%. In Table 6.1 we see that for Subject 10, the mean drop of NOX’
desaturations was 7%, against CH’s 4%. The mean of all subjects
desaturation differs only 0.5%.
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Chapter 11

Discussion

In this thesis we research a benchmarking protocol to determine both the
accuracy of pulse oximeters and the ability to identify desaturation events
associated with sleep apneas. In this chapter, we discuss various parts of
the protocol. First we address our choice of test population (Section 11.1).
Next, we inspect our breathing script (Section 11.2), and last (Section 11.3)
we discuss the value of our benchmarking protocols in determining the
quality of pulse oximeters.

11.1 Test Population

Ideally, we wanted oxygen saturation values from all subjects in the range
from 100% and close to 70%. However, in the preliminary experiments we
discovered that most subjects might not even lower their saturation below
90%. In total, 5 subjects were able to lower their oxygen saturation below
90% as measured by the reference oximeter; however, only 2 below 85%
and 1 below 80%.

In our work, we argued that the test population should be easy to
recruit. We did this because drawing subjects from the general population
would also lower the threshold for using our work to benchmark pulse
oximeters. Even though we only have one person with diving experience
in our test population, we assume that the achievement of reaching
levels below 80% is a result of the subject’s training in breath holding
and respiratory control. Therefore, we can also assume that with a test
population consisting of free divers only, we would have more spread in
values than in our experiments. On the other hand, more training in breath
holding for each subject might also improve the results. We instruct our test
subjects to practice breath holding from FRC for several minutes ahead of
the benchmarking. This brief period is considered more as getting to know
one’s limits than as training in breath holding. In Section 4.4.2, we briefly
inspect what decides the breaking point of breath holding. However, more
research into how to improve it, and specifically training the subject in how
to do so, is considered to be an option for improving results from the test
population.

123



11.2 Breathing Script

With the breathing script, the subject successfully achieved desaturation as
measured by both the reference pulse oximeter and the test object. Even
though results depend on the test subjects’ training, as discussed in the last
section, we now look into possible improvements to the breathing script.

The first two subjects were instructed to breathe as little as possible to
lower the oxygen saturation in advance of holding their breath. However,
this may have lowered their ability to hold the breath. Therefore, for the
last 8 subjects, we did stress breathing as little as possible. Instead, we
instructed them to breath slowly and calmly. As we see in Table 10.1, while
Subjects 1 and 2 held their breath for 11 and 17 seconds on average, the
rest of the test population did so for at least 19 seconds. As the results
suggest, the duration of the breath holding may be more important for total
desaturation than lowering the oxygen saturation in advance.

We instructed the test subjects to hold their breath for at least 10
seconds, based on the AASM classification guide’s statement that the
respiratory event of an apnea is ≥10 seconds. Even though the minimum
was 10 seconds, subjects were asked to hold their breath as long as they
were able. From Table 10.1 we learn that 7 in 10 subjects did so for
more than 20 seconds on average, or 7 in 8 subjects with the modified
benchmarking protocol. It is possible they would have pushed themselves
harder if the duration of the breath holds had been 20 seconds, for example
— therefore improving the fall in arterial oxygen saturation.

Our breathing script was developed to induce desaturations by having
the subject simulate apneas only. A key point in our research is that
the pulse oximeters are part of a health sensor platform. Therefore, a
breathing script that also can be used mundanely to test other respiratory
sensors, such as RIP bands, would be useful. The breathing script then
would include hypoapnea and other events associated with a sleep apnea
diagnosis. In this setting, the duration of the simulated events should be
long enough to cause the appropriate fall in arterial oxygen saturation.

11.3 Determining Quality

The industry standard for accuracy testing uses breath gas mixes to achieve
different plateaus of arterial oxygen saturation. In our work, we rely on
breath holding to lower the oxygen saturations. The value frequencies
in Figure 9.11 show that the distributions of values for all subjects are
concentrated from 98% to 96%. Therefore, even though we get values
below 90%, and below 80%, calculations of accuracy and the Bland-Altman
analysis are most affected by the top 3% on the oxygen saturation scale. It
is likely that statistical analysis methods exist to even out this challenge;
however, the time limit of our research did not allow us to investigate
them. Furthermore, the ISO of 2017 states that methods not using direct
pairing with a CO-oximeter should apply the accuracy of the reference
pulse oximeter to the result. For NOX and for most oximeters, this is 2%.
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Then the accuracy for CH ends up being 1.34% (+2%). In addition, the
literature shows that accuracy degrades towards lower levels, especially
below 80% and 70%. We argue that our accuracy calculation is at best the
upper bound of the accuracy of the pulse oximeter.

Instead of depending entirely on accuracy metrics and the Bland-
Altman analysis, we also introduced an apnea analysis method to investi-
gate the pulse oximeter’s value in sleep studies. To investigate the relation-
ship between our metrics, Table 11.1 combines the accuracy and precision
results with those of the apnea analysis. In addition, we sort the table by
descending precision and descending accuracy. In the top part of the table,
we see that Subjects 10 and 4 have the most false negatives and the lowest
precision as well. On the bottom part, where accuracy is sorted, no appar-
ent pattern is discernible in the distribution of false negatives. For false
positives, neither sorting condition demonstrates a relation between the
two metrics. This indicates that calculating precision rather than accuracy
is a better metric for our method of testing pulse oximeters. We do not see
it as a part of our research to analyse this observation further. However, we
can conclude that with the data we have from our experiments, accuracy
calculated from the results from our benchmarking method cannot indicate
the grade of success in detecting desaturation events. We cannot conclude
either that Bland-Altman analysis might decide the quality. Instead, by us-
ing breath holding to gain desaturations, it is more likely that comparing
desaturations from an oximeter against a reference one will give correct
estimations of pulse oximeters’ usability in sleep studies.
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Subject no. Accuracy Precision TP FP FN
7 1.86 1.05 7 1 0
1 1.46 1.16 0 0 0
8 0.74 1.47 3 1 0
2 0.87 1.66 7 3 1
9 0.88 1.67 7 2 0
5 1.10 1.99 8 1 0
6 1.31 2.05 9 0 0
3 2.09 2.10 8 0 0
10 1.08 2.11 8 0 5
4 1.51 2.78 6 4 2
8 0.74 1.47 3 1 0
9 0.88 1.67 7 2 0
2 0.87 1.66 7 3 1
10 1.08 2.11 8 0 5
5 1.10 1.99 8 1 0
6 1.31 2.05 9 0 0
1 1.46 1.16 0 0 0
4 1.51 2.78 6 4 2
7 1.86 1.05 7 1 0
3 2.09 2.10 8 0 0

Table 11.1: Results sorted by precision(top) and accuracy(bottom)
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Part IV

Conclusion
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Chapter 12

Contributions Summary

Section 12.1 summarizes of the evaluation of the quality of CH pulse oxime-
ter. After describing our research with the BITalino pulse oximeter (Section
12.2), we summarize of our evaluation of using a non-invasive benchmark-
ing method when determining the quality pulse oximeters(Section 12.3)

12.1 Cooking Hacks

We determined the accuracy of the Bluetooth low-energy pulse oximeter
from Cooking Hacks based on a total of 32,458 paired data points from 10
subjects. We also performed a Bland-Altman analysis of each individual
subject, and tallied the combined results. We find an accuracy of 1.34%
compared with our reference pulse oximeter between 70 and 100%, where
>90% of the values is between 95 and 100%. The mean precision is 1.71%
between subjects and 2.61% for all data combined. The mean bias is 0.14
and the mean upper and lower limits of agreement are 1.96% and -1.65%
(2.75% and -2.47% of the data combined).

More important, for reasons discussed in Chapter 11, we analysed
CH’s ability to record desaturations compared with NOX. We established
that the CH pulse oximeter was able to identify 88.8% of the total 71
desaturation events recorded by NOX. Where NOX identified desaturation,
CH failed to in 8 (11.3%) of the cases. In addition to the 63 true positive
cases, CH recorded an additional 12 more desaturations, resulting in 15.2%
false positives.

We also investigated the desaturations resulting from apnea simula-
tions separately. Of the 61 apnea events measured by NOX, CH recorded
58 desaturation events, a total of 95.1%. From the desaturations identi-
fied in the NOX recordings, 3 were false negatives (4.9%). In addition, CH
measured 2 desaturations after apneas where NOX did not measure ≥3%
desaturation, which may or may not imitate real arterial oxygen saturation.
However, as we use NOX as the reference monitor, we classify 3.4% of the
CH events as false positives.

Based on the data from our experiments, we see the CH pulse oximeter
as being suited for detecting desaturations in sleep studies. However,
we stress that we have only tested our methods on simulated apneas.
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Even though the literature indicates that the behavior of desaturation in
simulated and real apneas is similar, our methods can be validated by
applying the data from a sleeping person with sleep apnea disorder.

12.2 BITalino

We discussed the characteristics of the BITalino data and its possible expla-
nations. Because of problems with data acquisition, and the unlikelihood of
our being able to interpret and analyse the data, we omitted this oximeter
in the benchmarking process, as discussed in Section 9.1.

12.3 Non-invasive Benchmarking

Our main objective in our research is to evaluate the use of non-invasive
testing procedures for determining the quality of pulse oximeters, without
the need for medical attendance. Based on background information
about pulse oximetry and oxygen transport in the circulatory system, we
designed our benchmarking protocol around breath holding. The results
show that in recruiting test subjects with no prior training in breath holding
from the general population, it is not trivial to have them hold their breath
until they reach the desired saturation. Since 90% of the values are between
95 and 100%, whereas we want an even spread between 70% and 100%, we
argue that our accuracy estimation is rather a confirmation or validation of
the labeled accuracy of the pulse oximeter, instead of actually determining
its accuracy. If we were to determine with certainty the accuracy of pulse
oximeters, the test population should consist of subjects trained in breath
holding. However, we see the use of gas mixtures with different oxygen
levels to be a much better method of determining accuracy.

Bland-Altman analysis is often implemented for comparing two meth-
ods of measurement. Even though the reference or gold standard method
is acknowledged as the best, it may not be free of errors. Therefore, Bland-
Altman analysis compares the new method of measurement against the
mean of the new and the gold standard method. The gold standard for
determining the accuracy of pulse oximeters is to compare them against
CO-oximeters. In our work, we use a second pulse oximeter as a reference.
Where the reference accuracy should be added to the calculated accuracy
of the test oximeter (according to ISO of 2017), Bland-Altman analysis uses
only the mean as reference. Therefore, we see Bland-Altman analysis as
being more useful for indicating the quality of a pulse oximeter than its
metric accuracy.

Instead, we argue that using our benchmarking protocol is better
suited to determining the quality of a pulse oximeter’s ability to identify
desaturation in a sleep study. This specific action is easy to control and
does not depend on a spread of oxygen saturation levels. Instead, it is
sufficient to investigate the different consequences of the classifications and
to look at the behavior of the data to determine the pulse oximeter’s ability
to record desaturations. In conclusion, we argue that the non-invasive,
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breath-holding method for testing the quality of pulse oximeters is most
useful when it is related to a specific task, such as detecting sleep apnea.
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Chapter 13

Open Problems

Through our research, we found problems and tasks we could not
solve within the time frame of our project; most of them concerning
perturbations issues and outliers in data. Early on, we specified that our
task was not to perform filtering on the data acquired from the pulse
oximeters. However, we did remove outliers in the data from Cooking
Hacks’ oximeter. When doing so, we stated that they may have resulted
from our code. More time might have solved this matter or found the
reason for it.

In our benchmarking process, we concluded that continuing testing
the BITalino pulse oximeter only added extra tasks and time to each
experiment. This was based on issues with the Collector app and the
perturbations in data. First, since we had earlier work available for data
acquisition for the BITalino, we had less time available for the review of the
platform than we had for CH. Therefore, we relied on already developed
data acquisition software. In addition to the issues with starting the data
acquisition, we discovered in the experiments that the software might halt
the collection of data. Therefore, we see two open problems with BITalino.
First, a closer investigation of the software might reveal explanations for
both the start and halts we experiences. Second, a closer investigation
into the board might reveal why we experienced the disturbance pattern
in data. Furthermore, we did not see it as our task to apply filters to the
data from BITalino. However, because of the repeated pattern in the data,
the disturbance might be removed by adding filters.
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Chapter 14

Future Work

Our work shows that it is possible to determine a pulse oximeter’s
ability to detect desaturations associated with sleep apnea. However, the
desaturations in our data are superficial, and the arterial oxygen saturation
of a sleeping person with sleep apnea may not be of same character as our
data. It might also depend on severity of the sleep disorder. Therefore, we
see it as a task for future work to compare our results against results from
sleep studies.

In order to use our benchmarking method to calculate the real accuracy
of a pulse oximeter, we see it as necessary to perform a statistical analysis
of the variation of results. We know from the literature that 200 samples
paired with a CO-oximeter, evenly spread between 70 and 100%, are
sufficient to determine the quality of a pulse oximeter. What this means for
comparing continuous streams of data was not an object for discussion in
our research. Instead, we focus on the feasibility of testing pulse oximeters
in a non-invasive, non-medical manner.

A third object of later investigation is the relation between accuracy
and precision, and the ability to detect desaturations in apnea. Even
though such studies exist [24], it is possible by a testing a high number
of different pulse oximeters to look into whether the labeled accuracy from
the manufacturer is a correct indicator for quality in apnea detection. In
Section 11.3, we discussed a possible relation between precision and the
pulse oximeter’s ability to measure desaturations. To investigate the direct
relation, however, additional research is needed that includes more subjects
and more pulse oximeters.

For our work, we wrote several scripts to handle the recorded data.
Nevertheless, some tasks we chose to do manually to control the results,
and also because of the time limit of our research. Even though we
have implemented all of the scripts needed for analysis, a complete
software application(e.g., Android app) that include two sets of sensor
data and performs the analysis mentioned in this paper would ease the
implementation and use of our benchmarking method. Classifying the
desaturation is particularly time consuming, and may produce incorrect
apnea classification.
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Appendix A

Source Code

The source code used in processing can be found at github.uio.no/kennetaf/
DMMS
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Appendix B

Cooking Hacks

B.1 Procedures

In Figure 5.5 earlier in this paper, we present the options for data
acquisition. In our work with the Cooking Hacks MySignals and data
acquisition methods, we tried different approaches that we did not find
necessary to include earlier in the main work of this paper. However,
these findings may be important for future work with the CH pulse
oximeter We also reference different sections in the MySignals online
manual (OM). Therefore, our investigations of other options that is not
previously mentioned are listed in this section.

B.1.1 TFT display, Option 8

On our first attempt to extract data from the pulse oximeter, we connected
the CH board to a computer with an Serial/USB connection. As a reference,
and to compare against the serial example(OM 7.1.2), we tested the second
and last code example for the SpO2 BLE sensor. It sends the data stream
output to the on-board TFT screen on the MySignals HW. The procedure
was as follows:

1. Connect the MySignals board to a computer through serial UART
2. Upload the code from Arduino IDE to the MySignals board
3. Disconnect MySignals from the computer
4. Connect MySignals to a power source, and turn on the MySignals
5. Place the SPO2 sensor on the right index finger
6. Turn on the SPO2 sensor
7. Observe the response on the TFT screen

As a note, the example code provided misses enabling of BLE module
power, and the BLE init fails. It is fixed by bitSET bit6:1. By trying this
option, we can make the following observation. Where our first try with
the example code with a serial port failed to reconnect with the SpO2 sensor
immediately, this option of not having the MySignals unit connected to
a laptop with the USB cable (using only a power adapter) results in the
oximeter reconnecting after about 1 second and provides us with a new
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SpO2 estimation. The oximeter might still fail to reconnect, but where the
first code example reconnects after periods of several minutes, this code
example usually provides us with a new estimation about every 6th-7th
second.

The attempts described below follow about the same approach as in the
list above; code is uploaded to the MySignals hardware when needed, and
instructions from the documentation are followed.

B.1.2 MySignals App, Option 1

Next we inspect Option 1. Using only the MySignals app to connect to the
pulse oximeter, it does not involve a MySignals unit. Although it would
be interesting to check the result using this option for extracting data, after
testing we found that the option is not available. There was no indication
of this in the documentation.

B.1.3 Bluetooth, Option 2, 3 and 4

Options 2, 3 and 4 require an internal understanding of the MySignals Pulse
Oximeter and its Bluetooth LE profile to communicate and acquire data
through the BLE module. As noted in the background of this paper, no
documentation is available about the matter. Therefore, we did not see this
option as being suitable at the time because of the assumed lengthy process
of reverse engineering the MySignals library.

Nevertheless, even though we were not able to receive data, we did
connect to the pulse oximeter using the example code in the documentation
(OM 7.4.2) for Bluetooth connection. We therefore include some notes
from our experience. The passkey for connecting to the MySignals is
generated by the hardware and written out on screen. After connecting
once with a computing device, the bondings have to be deleted from
both the connected and MySignals devices. This can be done by adding
MySignals_BLE.deleteBonding() at the start of the MySignals program.
Then all bonding is deleted from the internal memory at start up.
As we noted, however, software for data acquisition must be written
once connected (typically server/client or master/slave), which requires
internal MySignals BLE knowledge.

B.1.4 Other BLE Devices

We also checked other Bluetooth sensors accompanying the oximeter in the
MySignals HW v2 kit to see if they had the same connection problem. In
the documentation we find five different BLE sensors, including the pulse
oximeter. However, three of them do not have the same connection type:
the Body Scale BLE, the Glucometer BLE and the Body Scale BLE. If the ON
button on the sensors is pressed, they connect to the MySignals platform
once to deliver its test result, and turn off afterwards. The last sensor,
Body Temperature BLE, did not accompany the kit, and we was not able
to inspect it.
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B.1.5 WiFi connection 5

Because of Option 1, in which we do not connect the pulse oximeter to a
computer, we suspected that other connection options not including a serial
cable might be able to solve the reconnection issue. Having the MySignals
device connected to the computer with a cable might cause static and/or
perturbations on the signal, either in the MySignals board/modules or on
the Bluetooth connection. Having a wireless connection is also beneficial if
we want the data stored on a remote device such as a database server.

For testing this option, the following setup was used: TCP/IP server on
ubuntu OS, programming MySignals as a client, and connecting through
Access Point on an Android device. We experienced a couple of issues
when investigating this option. First, enabling the WiFi module after the
BLE module results in errors in the BLE module, so we were not able to
connect the MySignals to the pulse oximeter. Next, the delay after first
connection from the MySignals to the ubuntu server must be at least 5
seconds, or else no values are received from the pulse oximeter. Last, we
were not able to both collect data from the pulse oximeter and send it over
WiFi. However, sending data from other cabled sensors (such as the body
position sensor) over WiFi did not introduce any unexpected issues.

B.2 Coding

Attempts to acquire data through options other than serial port to
computer were unsuccessful and did not provide us with the required
results. As explained in Section 5.4, we ended up with reverse engineering
the MySignals library to write new code for the serial port options fit for
our purpose.

First, from the library we have a note about the description of methods.
As we want to subscribe to the data stream of the SPO2 device, we inspect
the following in the example code:

1 //To subscribe the SpO$_{2}$ measure write ``1'' in SPO2_HANDLE

2 char attributeData[1] = { 0x01 };

3 if (MySignals_BLE.attributeWrite(connection_handle_SpO$_{2}$,

4 1.7.2.0.4 SPO2_HANDLE, attributeData, 1) &=& 0)

5 { ...

Then we inspect the documentation and the source code library
description of attributeWrite:

1 // write an attribute from a remote BLE device

2 // Function: write an attribute from a remote BLE device * att

handle in

3 decimal.

4 uint16_t attributeWrite(uint8_t connection, uint16_t

5 atthandle, uint8_t * data, uint8_t length);

By looking into the attributeWrite function, we can learn that we are
sending the data as payload to the SPO2 device, telling it we have
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subscribed to its data stream. We may therefore assume that a description
such as “write an attribute to the pulse oximeter” is better suited.

The important events identified in the preliminary experiments re-
sulted in an implementation such as the one shown below:

1

2 #include <MySignals.h>

3 #include <MySignals_BLE.h>

4

5 /* Write here the MAC address of BLE device to find */

6 char MAC_SPO2[14] = "00A05004182F";

7

8 /* Global variables */

9 uint8_t available_spo2 = 0;

10 uint8_t connected_spo2 = 0;

11 uint8_t connection_handle_spo2 = 0;

12 uint8_t pulse_spo2 = 0;

13 uint8_t spo2 = 0;

14 uint8_t reset = 0;

15

16 #define SPO2_HANDLE 15

17 #define BLE_DEBUG 1

18

19 /* Setup of the modules */

20 void setup()

21 {

22

23 MySignals.begin();

24

25 Serial.begin(115200);

26

27 MySignals.initSensorUART();

28 MySignals.enableSensorUART(BLE);

29 MySignals.initBodyPosition();

30

31 //Enable BLE module power -> bit6: 1

32 bitSet(MySignals.expanderState, EXP_BLE_POWER);

33 MySignals.expanderWrite(MySignals.expanderState);

34

35 //Enable BLE UART flow control -> bit5: 0

36 bitClear(MySignals.expanderState, EXP_BLE_FLOW_CONTROL);

37 MySignals.expanderWrite(MySignals.expanderState);

38

39 /* Why disable and enable the unit again? */

40 //Disable BLE module power -> bit6: 0

41 bitClear(MySignals.expanderState, EXP_BLE_POWER);

42 MySignals.expanderWrite(MySignals.expanderState);

43

44 delay(500);

45

46 //Enable BLE module power -> bit6: 1

47 bitSet(MySignals.expanderState, EXP_BLE_POWER);

48 MySignals.expanderWrite(MySignals.expanderState);

49
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50 delay(1000);

51

52 MySignals_BLE.initialize_BLE_values();

53 if (MySignals_BLE.initModule() == 1)

54 {

55 if (MySignals_BLE.sayHello() == 1)

56 {

57 MySignals.println("BLE init ok");

58 }

59 else

60 {

61 MySignals.println("BLE init fail");

62 while (1){};

63 }

64 }else{

65 MySignals.println("BLE init fail");

66 while (1)

67 {};

68 }}

69

70 void loop(){

71 /* Connect to the pulse oximeter */

72 available_spo2 = MySignals_BLE.scanDevice(MAC_SPO2, 1000,

TX_POWER_MAX);

73

74 if (available_spo2 == 1) {

75

76 if (MySignals_BLE.connectDirect(MAC_SPO2) == 1) {

77 connected_spo2 = 1;

78 connection_handle_spo2 = MySignals_BLE.connection_handle;

79

80 /* Subscribe to stream */

81 char attributeData[1] = {0x01};

82 if (MySignals_BLE.attributeWrite(connection_handle_spo2,

83 SPO2_HANDLE, attributeData, 1) == 0){

84 unsigned long previous = millis();

85 uint8_t noEvents = 0;

86

87 /* Continuous data reading */

88 do {

89 uint8_t eventRet = MySignals_BLE.waitEvent(1000);

90 if (eventRet == BLE_EVENT_ATTCLIENT_ATTRIBUTE_VALUE) {

91

92 /* Read value from Serial, and output as csv */

93 spo2 = MySignals_BLE.event[13];

94 spo2 &= 0b01111111;

95 MySignals.disableMuxUART();

96 Serial.print(millis());

97 Serial.print(F(","));

98 Serial.print(spo2);

99 Serial.print(F(","));

100 Serial.print(pulse_spo2);

101 MySignals.enableMuxUART();

102
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103 noEvents = 0;

104 /* Handles disconnection and continuous unwanted events */

105 } else {

106 if(eventRet == BLE_EVENT_CONNECTION_DISCONNECTED)

107 break;

108 noEvents++;

109 if(noEvents > 5)

110 break;

111 }

112 }

113 while(1);

114

115 /* Error handling */

116

117 } else {

118 MySignals.println("Error subscribing");

119 }

120 }else{

121 connected_spo2 = 0;

122

123 MySignals.println("Not Connected");

124 }

125 } else if (available_spo2 == 0) {

126 //Do nothing

127 }else{

128

129 MySignals_BLE.hardwareReset();

130 MySignals_BLE.initialize_BLE_values();

131 delay(100);

132 }}

B.3 Data Quality

In this section we discuss an odd experience that results in outliers thought
our research.

In this section we discuss an odd experience that results in outliers
throughout our research. Depending on delays and sample rates, the
values we get from the pulse oximeter vary. Inserting a delay ≥5000ms
(0.2Hz) between each attempt to receive data from the pulse oximeter
always results in values within the probable SpO2 range of the tested
person. A faster sample rate results in values displayed in Figure 5.8.
However, when we remove all delays and disable all modules other than
the BLE module, we achieve a sample rate between 8Hz and 10Hz. Then
we also experience the disappearance of outlier values. As a result, if
sample rate of where the BLE module of the MySignals ask for values
(loop through the code) from the oximeter is <0.2Hz, and >8Hz, no outliers
are present in the data. In our benchmarking we use the module for the
accelerometer, which slows down the MCU from 3Hz to 6Hz. Therefore,
outliers are present in the data in all of our experiments.

We did not find the cause for this behavior. However, we can speculate
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that it has something to do with the disconnection and reconnection
implemented in the pulse oximeter example code, which is meant to avoid
overflow values or redundant data in the serial buffer.

B.3.1 Sampling Rate

As mentioned in the section above, by enabling body position module on
MySignals we are slowing down the sampling rate/data acquisition from
the pulse oximeter, and activating modules is therefore a direct reason for
outliers in data. In order to try to understand this behavior, we can inspect
the following quote from the MySignals documentation:
“Q: Can I use all the sensors at the same time?
A: In the case of MySignals SW, yes you can. In the case of MySignals HW
the Arduino processor is limited, so you can not manage all the sensors, wireless
communication and others features at the same time. You should select a correct
combination of the options available. Check the documentation for that.“

Even though it is possible to enable more than one module at a time, we
can assume that the limited processor ability does not allow it if our goal is
to receive only data from the different modules, not including bad values
or outliers.
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Appendix C

Benchmarking Protocol
Documents
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C.1 Benchmarking Protocol

Benchmarking instructions

1. Go through prearrangements, and fill out requested documents

(a) Health Statement: Answering yes to any questions about health
condition automatically excludes the test subject from the test
population.

(b) Test subject may add additional information about the physical
condition in the relevant section in the Event Document.

2. Go through description section with test subject.

3. Carry though a brief testing period, where the test subject practice
both breath-holding and lowering the baseline oxygen saturation.
Observe the monitor.

4. Begin the benchmarking. Remember to register events in document

Prearrangements:

• Translate “Test Subject Instructions” document to native language
of the test subject if needed/possible. The degree of the subjects
understanding of the instruction may affect the test results.

• Equipment:

– Room with couch, bed or similar for testing
– One reference pulse oximeter
– One or more pulse oximeters as object for testing
– Read usa instructions for each oximeter. Note information about

placement.
– Devices with installed methods for data acquisition, such as

computer or smart phones
– Stop-watch
– Pencil and document for registering events (Document C.4)

• Remove nail polish if present

• Both test subject and test manager read the instructions. Make sure
test subject knows what is meant by each event.

• Register:

– Fill in “Statement of Privacy and Personal Condition” docu-
ment.

– Record location and altitude.
– Roughly estimate temperature in room.
– Register oximeter’s finger locations or picture of setup. (It is

important that the test oximeters to be located at the same hand
as on the reference oximeters.)
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Descriptions

Description of the breathing procedure:

We are testing pulse oximeters and their ability to measure oxygen
changes in the blood. Basically, test subjects are holding his or her
breath for a specified time period, with the intention to lower the oxygen
saturation. The rate of the fall is determined by initial oxygen level, at the
time breath holding starts.

To achieve the best result, you should therefore try to lower the oxygen
saturation upfront of breath holding. You are not expected to be able
to do this, but it would have a positive influence on the test results if
possible. While holding your breath, it is important that you should not
push yourself to an extent where you feel dizzy or unwell during the test
period. But holding your breath after exhalation is more unpleasant then
regular breath being held.

Note that the benchmarking process can be terminated at any stage, at
your own will. Even though there is no indication that holding one’s breath
for short periods of time inflicts physiological damage, some persons might
feel dizziness for several minutes afterwards. Studies show that without
training it is very rare for persons to be able to hold their breath until they
faint. Studies also indicate that the breaking point of your breath holding
is mainly determined by your own strength of will.
Explain concepts

• Calm breathing, imagine that your breathing is as calm as when
you relax or sleep. Try shallow or slow breathing. For best results,
and as a guideline, very shallow breathing might make you feel
uncomfortable and breathless.

• Hold breath, from normal expiration (normal breath out without
forcing air out of lungs). It might also be important not to hold your
breath so long that you “burst”. You should be able to control your
breathing within moments after breath holding.

• Contain the need for deep breaths, if possible desist from deep
breaths, as they will increase oxygen saturation back to normal.

Test procedures

Register in process:

• Register events on document, with time elapsed timestamp.

– Start of breath held

– Stop of breath held

– Position if changed

– Movement

– Other events such as external disturbance or interference
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Breathing Script

1. Calm breathing, 3 minutes
2. Hold breath on expiration at least 10 seconds
3. Calm breathing, 2 minutes
4. Repeat points 2 and 3, a total of 8 times.
5. End

• Remember: 2 minutes calm breathing at the end.
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C.2 Test Subject Instructions

Description of the breathing procedure:
We are testing pulse oximeters and their ability to measure oxygen changes
in the blood. Basically, test subjects are holding his or her breath for a
specified time period, with the intention to lower the oxygen saturation.
The rate of the fall in oxygen level is determined by the initial level at the
beginning of the breath held.

To achieve the best results, you should therefore try to lower the oxygen
saturation of breath held upfront. You are not expected to be able to do
this, but if possible, it would have a positive influence on the test results.
While holding your breath, it is important that you do not push yourself
to an extent where you feel dizzy or unwell during the test period. But
holding your breath after exhalation is more unpleasant than regular breath
holding.

Note that the benchmarking process might be terminated at any stage,
at your own will. Even though there is no indication that your holding
breath for short periods of time inflicts physiological damage, some
persons might feel dizziness for several minutes afterwards. Studies shows
that without training it is rare for persons to be able to hold their breath
until they faint. Studies also indicate that the breaking point of your breath
holding is mainly determined by your own strength of will.
Concepts

• Calm breathing, imagine that your breathing is as calm as when
you relax or sleep. Try shallow or slow breathing. For best results,
and as a guideline, very shallow breathing might make you feel
uncomfortable and breathless.

• Hold breath, from normal expiration (normal breath out without
forcing air out of lungs). It might also be important not to hold your
breath so long that you “burst”. You should be able to control your
breathing within moments after breath holding.

• Contain the need for deep breaths, if possible desist from deep
breaths, as they will increase oxygen saturation back to normal.

Breathing Script

1. Calm breathing, 3 minutes
2. Hold breath on expiration at least 10 seconds
3. Calm breathing, 2 minutes
4. Repeat points 2 and 3, a total of 8 times.
5. End

• Remember: 2 minutes calm breathing at the end.
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C.3 Physical Health Statement

The purpose of this document is to avoid any health risks and to ensure that the
inclusion and exclusion conditions are followed.

Subject ID:
Age:
Sex:

Answer yes or no to the following questions(answer yes if in doubt):
Pregnant?
Smoker?
Any lung disease or respiratory problems?
Illness causing low level of oxygen in the blood?
Any heart condition?
Any brain issues?
Other health conditions or illnesses at the moment?

Name:

Date and Signature:

C.4 Event Document
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exp id = [      ], subject id = [      ], Altitude ≅ _________ 
 
Oximeters finger 
location:______________________________________________________ 
 
Ax = Apnea x, Ix = Incident x,  
 

Hendelse Start m:s End m:s Note 

Start    

A1 - 3 min    

A2 - 5 min    

A3 - 7 min    

A4 - 9 min    

A5 - 11 min    

A6 - 13 min    

A7 - 15 min    

A8 - 17 min    

end 19 min    
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