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Abstract
1.	 Species composition is a vital attribute of any ecosystem. Accordingly, ecological 
restoration often has the original, or “natural,” species composition as its target. 
However, we still lack adequate methods for predicting the expected time to com-
positional recovery in restoration studies.

2.	 We describe and explore a new, ordination regression-based approach (ORBA) for 
predicting time to recovery that allows both linear and asymptotic (logarithmic) 
relationships of compositional change with time. The approach uses distances be-
tween restored plots and reference plots along the successional gradient, repre-
sented by a vector in ordination space, to predict time to recovery. Thus, the 
approach rests on three requirements: (a) the general form of the relationship 
between compositional change and time must be known; (b) a sufficiently strong 
successional gradient must be present and adequately represented in a species 
compositional dataset; and (c) a restoration target must be specified. We tested 
the approach using data from a boreal old-growth forest that was followed for 
18 years after experimental disturbance. Data from the first 9 years after distur-
bance were used to develop models, the subsequent 9 years for validation.

3.	 Rates of compositional recovery in the example dataset followed the general pat-
tern of decrease with time since disturbance. Accordingly, linear models were too 
optimistic about the time to recovery, whereas the asymptotic models provided 
more precise predictions.

4.	 Synthesis and applications. Our results demonstrate that the new approach opens 
for reliable prediction of recovery rates and time to recovery using species com-
positional data. Moreover, it allows us to assess whether recovery proceeds in the 
desired direction and to quantitatively compare restoration speed, and hence ef-
fectiveness, between alternative management options.
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1  | INTRODUC TION

In a world of progressive ecosystem degradation, the discipline of resto-
ration ecology has become ever more important and now plays a signif-
icant role in sustainable development efforts across the globe (Brudvig, 
2011; Perring et al., 2015; Roberts, Stone, & Sugden, 2009; Suding, 
2011). It is, however, still a young science and as such in need of meth-
odological improvements (Brudvig, 2017; Laughlin, 2014; Urban, 2006) 
to more effectively inform management (Suding, 2011). For restoration 
ecology to become a predictive science (Brudvig, 2017; Brudvig et al., 
2017), there is an urgent need to develop appropriate methods for pre-
dicting time to recovery after disturbance that is until specific restoration 
goals are achieved.

Metrics commonly used to evaluate restoration success (SER, 2004) 
can be ordered in four categories from general to specific by the eco-
system properties they address (Brudvig et al., 2017): (a) physical struc-
ture; (b) diversity that is richness and evenness measures that do not take 
species’ identity into account; (c) functional and phylogenetic diversity 
that is measures for which species may be functionally redundant of one 
another; and (d) species (taxonomic) composition. While their informa-
tion content increases from the general to the specific metrics, the preci-
sion of predictions that can be made from them is expected to decrease 
(Brudvig et al., 2017). Accordingly, several authors have argued that 
large and unpredictable variation in species composition among resto-
ration sites makes composition-based metrics less useful for measuring 
restoration success than the more general metrics (Brudvig et al., 2017; 
Laughlin et al., 2017). Others have argued that species composition is a 
fundamental attribute of restored ecosystems (Clewell & Aronson, 2013; 
Reid, 2015), and that the rate and direction of vegetation change (suc-
cession) are fundamental properties that must be considered when res-
toration success is evaluated (Urban, 2006). Furthermore, monitoring of 
compositional change during restoration and prediction of time to recov-
ery may actually guide the restoration process (Zedler & Callaway, 1999). 
Such prediction is particularly valuable in harsh environments where res-
toration may take decades or even centuries (Harper & Kershaw, 1996; 
Jorgenson, Ver Hoef, & Jorgenson, 2010; Rydgren, Halvorsen, Odland, & 
Skjerdal, 2011). Several authors therefore regard data on species com-
position as particularly informative for evaluation of restoration success 
(Heslinga & Grese, 2010; Matthews, Spyreas, & Endress, 2009; Reid, 
2015; Waldén & Lindborg, 2016).

Previous approaches have used floristic dissimilarity measures to pre-
dict time to recovery after disturbances (Curran, Hellweg, & Beck, 2014; 
Prach et al., 2016; Woodcock, McDonald, & Pywell, 2011) or multivari-
ate methods such as constrained and unconstrained ordination (Rydgren 
et al., 2011; Sarmiento, Llambí, Escalona, & Marquez, 2003) with the 
implicit assumption that successions are linear, namely, that the rate of 
plant compositional change with time is constant. Floristic dissimilari-
ties have proved unsuitable for this purpose because of the three basic 
problems associated with use of compositional dissimilarity as a proxy for 
distance along an ecological gradient (Gauch, 1973; Økland, 1986, 1990): 
(a) the internal association problem that is small ecological distances 
cannot be separated from ecological replicates by floristic dissimilarity; 
(b) the indetermination problem that is the ecological distance between 

observations with no species in common cannot be deduced from their 
species composition, and (c) the nonlinearity problem, that is, the pres-
ence of a general, nonlinear relationship between ecological distance and 
floristic dissimilarity. Constrained ordination might seem a plausible alter-
native for summarising compositional change in response to one, given, 
variable (here: time since disturbance). However, constrained ordination 
is also inappropriate for this purpose, because it expresses only linear re-
sponses of variables (or specific transformations of these) on ordination 
axes (ter Braak, 1986), and therefore fail to reflect nonlinear relationships.

Unconstrained ordination methods, on the other hand, summarise 
compositional gradients regardless of these gradients’ relationship with 
time or other explanatory variables. Therefore, it could potentially also 
summarise compositional change along successional gradients. But for 
these methods to provide robust predictions for time to recovery, five 
issues need to be addressed: (a) To ascertain that potentially distorted 
axes are not used for predictions for time to recovery, they must be iden-
tified by applying more than one ordination method to the same dataset 
(van Son & Halvorsen, 2014). (b) Compositional change along a specific 
successional gradient must be identifiable as a vector in ordination space, 
for example, the gradient must be strong (see Philippi, Dixon, & Taylor, 
1998). This is, however, almost always the case after major disturbances. 
(c) A reference that the restored sites can be compared to must be es-
tablished. Since nature is not static, this reference should be dynamic, 
allowing change with time, rather than fixed to a historic, ideal time point 
(Choi, 2004; Hiers et al., 2012). (d) Compositional differences (as given 
by distances in the ordination space) must be modelled as a function of 
time. This is not straightforward, as shown in the few existing, ordination-
based restoration studies (e.g., Jacquet & Prodon, 2009; Rydgren et al., 
2011; Sarmiento et al., 2003). (e) Linear models will fail to account for 
decrease in successional rates with time (Rydgren, Halvorsen, Töpper, & 
Njøs, 2014). Therefore, an alternative approach for predicting time to 
recovery based on a nonlinear model must be developed.

The aim of this paper is to describe a novel ordination regression-
based approach (ORBA) for predicting time to recovery in restoration 
studies. The approach includes guidelines for how to select a refer-
ence for the restoration target, how to choose an appropriate func-
tional relationship between species composition at different time 
points and the reference to use in modelling, and how to choose 
time-to-recovery predictors. We demonstrate the approach for linear 
and asymptotic (logarithmic) relationships between species composi-
tional change and time, using an 18-year-long dataset recovery after 
experimental disturbance in an old-growth boreal forest.

2  | THEORY: A NOVEL APPROACH TO 
PREDIC T TIME TO RECOVERY

Our approach—ordination regression-based approach (ORBA)—to 
predict time to recovery consists of the following components: (a) 
availability of species composition data, recorded in plots that were 
established after, or ideally prior to, disturbances, and that have 
been reanalysed on later occasions; (b) an adequate reference for 
the targeted species composition (successful restoration); (c) a proxy 
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for the successional gradient obtained by ordination; (d) a regression 
model which relates “compositional distance” from restored plots, 
analysed at a given time point, to the temporal gradient; and (e) a 
predictor for time to recovery. Here, we will describe the analytic 
methods that constitute the approach, as well as data requirements.

2.1 | Input data

The basic data requirement is one matrix M with n observation 
units (the restoration plots), established at a time point te and re-
analysed with respect to the species composition s times after dis-
turbance (plots j = 1, …, n; time points t = 1, …, s, corresponding to 
recordings of species made vt years after disturbance). The matrix 
M thus contains n∙s columns, one for each restoration plot × time 
(RP × T) combination jt. Furthermore, one matrix Q of u (k = 1, …, 
u) observation units for the reference is required. The reference 
may be static that is it consists of plots analysed with respect to 
species composition at one time point. However, ideally a dynamic 
reference should be used, consisting of u undisturbed plots ana-
lysed at all or some time points t. The static reference may con-
sist of the restoration plots, analysed before disturbance, of plots 
from the undisturbed surroundings, analysed at any time point, or, 
in principle, any other species composition Q that represents the 
restoration target. With a static reference, the matrix Q contains 
u columns, one for each reference plot, while a full dynamic refer-
ence matrix Q contains u∙s columns. In the following, the approach 
is outlined for a static reference but it can easily be adapted to a 
dynamic reference.

The combined data matrix MQ, with n∙s + u recordings of the 
species composition, is subjected to ordination, preferably by two 
or more ordination methods in parallel, for identification of major 
gradients in species composition. The ordination(s) are subsequently 
checked for artefacts and interpreted ecologically by standard 
methods (Økland, 1990; van Son & Halvorsen, 2014). Plot scores 
xi along an interpreted ordination axis or another vector in the or-
dination space that represents the successional gradient are used 
as input for time-to-recovery prediction. The successional gradient 
vector is orientated in the direction from the disturbed plots to the 
restoration reference.

2.2 | Regression time to recovery (TR)

For each restoration plot × time (RP × T) combination jt, the suc-
cessional distance djt,0, that is the distance along the successional 
gradient, from the position x0 that represents the reference to xjt, is 
calculated (Figure 1a; see Appendix S1 for computer code):
 

The position x0 may be the centroid of observations in Q. 
Thereafter, model djt,0 as a function of vt, the time since disturbance 
(years), using an appropriate statistical modelling method. Methods 
derived from general linear models (GLM; Venables & Ripley, 2002) 
are obvious choices, and may be used with an untransformed or 

a logarithmically transformed response variable (Figure 1b). Two 
models are particularly relevant: (i) The linear response model ML—
obtained as a linear model with untransformed response variable 
(Figure 1b). According to ML, the composition of restoration plots 
changes at a constant rate so that these plots first approach the ref-
erence, then reach recovery (djt,0 = 0) and thereafter depart from the 
reference again (djt,0 <0). (ii) The asymptotic model MA—obtained as 
a linear model with logarithmically transformed response variable 
(Figure 1b). Predictions from MA approach djt,0 = 0 asymptotically. 
Temporal and spatial pseudoreplication due to repeated recording 
of species composition in permanent plots and nested sampling can 
be accounted for by general linear mixed-effects models (GLMM; 
Zuur, Ieno, Walker, Saveliev, & Smith, 2009).

Time-to-recovery predictors TRL and TRA—time to recovery 
predicted by use of the linear response model ML and the asymp-
totic model MA, respectively—are obtained by a two-step proce-
dure: (a) Define a threshold value for the successional distance djt,0 
at which restoration is regarded as successful. (b) The predictor 
TR is the value of vt, the predicted number of years since distur-
bance which, according to the model in question, corresponds to 
djt,0. Threshold values may be defined in at least three different 
ways: (a) The reference itself that is successional distance djt,0 = 0 
(Figure 1a). (b) A fixed successional distance c from the threshold, 
that is, djt,0 = c. (c) A “statistical threshold” s obtained as a parame-
ter that characterises the statistical distribution of reference plot 
scores along the successional gradient, for example, the standard 
deviation, the mean absolute value difference from the mean, or 
quantiles. With the exception that the zero threshold does not 
make sense for asymptotic models, predictors and models can 
be combined freely. The fixed successional distance is most rel-
evant for the asymptotic model, in particular for a low value of 
c for comparison with linear models using djt,0 = 0. We therefore 
concentrate on four combinations of model (L—linear and A—as-
ymptotic) and predictor (0—the reference, c—a fixed distance, and 
s—a statistical threshold) which will be referred to as TRL0, TRLs, 
and TRAc and TRAs, respectively. The use of statistical thresholds 
will facilitate cross-system and cross-study comparisons. One 
plausible choice of statistical criterion is +1 SD off the centroid of 
reference plot scores along the successional gradient, which we 
will refer to as the “+1 SD criterion” (Figure 1b), and denote TRAs+1. 
One plausible choice of fixed successional distance c is 0.01 from 
the threshold, which we will denote TRAc+0.01.

3  | WORKED E X AMPLE

3.1 | The dataset

To exemplify and explore the proposed approach, we used a data-
set that originates from an 18 years experimental disturbance 
study in a boreal old-growth forest in south-eastern Norway 
(Rydgren, Økland, & Hestmark, 2004). The dataset comprises 
records of the species composition of 80 permanently marked 
plots, each 0.25 m2. A nested sampling design was used, with 10 

(1)djt,0=x0−xjt
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subjectively placed blocks (5 × 10 m each), each with eight ran-
domly placed plots. The plots were established in 1993 prior to ex-
perimental disturbance and thereafter revisited yearly from 1994 
until 2003, in 2005, and in 2011, after 18 years of recovery. Three 
plots in each block served as controls while five were subjected 
to selective soil removal treatments, T1 (removal of vegetation), 
T2 (removal of vegetation and the litter layer), T3 (removal of veg-
etation, the litter, and the mor soil layers), T4 and T5 (removal of 
vegetation, organic, and bleached soil layers; with T4 bordering 
intact vegetation on two sides, whereas T5 had a minimum dis-
tance of 0.5 m to intact vegetation). Treatments T1–T5 thus made 
up a disturbance severity gradient (Rydgren et al., 2004). Species’ 
abundances were recorded as frequency in 16 equal-sized sub-
plots. The combined boreal forest matrix MQb consisted of 69 
taxa (20 vascular plants, 44 bryophytes, and 5 lichens) recorded 
for 1,031 plot × time combinations (80 plots × 13 time points; 
nine treatment plots in 1994 were devoid of species and omitted 

from further analyses). The boreal forest dataset exemplifies a 
near ideal dataset for restoration studies: relatively rapid recovery 
(Rydgren et al., 2004) and good temporal replication that covers 
most of the period from disturbance to recovery.

3.2 | Statistical analyses

We extracted the gradient structure of the species compositional data 
matrix MQb by parallel use of detrended correspondence analysis (DCA; 
Hill & Gauch, 1980) and global nonmetric multidimensional scaling 
(GNMDS; Minchin, 1987) as implemented in the vegan package version 
2.3.3 (Oksanen et al., 2016), see Appendix S2 for specification details. 
We calculated pairwise Kendall’s rank correlation coefficients τ between 
pairs of ordination axes to ensure that only axes representing true com-
positional gradients were used for further interpretation (Økland, 1996; 
van Son & Halvorsen, 2014; see Appendix S2 for details). The first DCA 
and GNMDS axes had |τ| >0.7 and both were confidently interpreted as 

F IGURE  1 Graphic illustration of the rationale behind the new approach for predicting time to recovery, exemplified by a dataset with 
restoration plots analysed at three different time points using a static reference with the centroid as large green circle (a) Calculation 
of successional distance, obtained by Equation (1), along the first ordination axis, which represents the successional gradient, between 
restored plots and the centroid of the reference plots. (b) Two models for successional distance as a function of time since disturbance; a 
linear model shown by the black line with grey 95% confidence interval and an asymptotic (nonlinear) model shown by the red line with red 
confidence interval. The three points of which we demonstrated the calculation of successional distance in (a) is shown as closed circles in 
their respective colours. Predicted time to recovery occurs when the modelled response reaches the confidence limit around the restoration 
target, indicated by the green band (of breadth +1 SD off the centroid of reference plot scores) or, alternatively, intersects or approaches the 
restoration target itself (y = 0)
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the successional gradient in response to disturbance. The DCA and the 
three-dimensional GNMDS solutions, orientated with reference plots 
at the high-score end, were used to represent the successional gradient 
and, hence, for prediction of time to recovery. R version 3.2.2 was used 
for all statistical analyses (R Development Core Team 2016).

We modelled successional distance djt,0 as a function of years 
after disturbance vt using general linear mixed-effects modelling 
(GLMM) implemented in the R packages lme4 (Bates, Mächler, 
Bolker, & Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, & 
Christensen, 2016). We parameterised models for the example data-
set by using data for the first 9 years after disturbance, t = 1, …, 9. 
For one plot, the value djt,0 = 0.000 (obtained for T1 disturbance in 
year t = 9) was replaced by djt,0 = 0.001 to allow a logarithmic trans-
formation. We evaluated the models visually by using data for 10, 
12, and 18 years after disturbance, and calculated the difference 
between predicted and observed values for the last observation 
(18 years after disturbance).

We used the species composition of restoration plots in 1993, be-
fore experimental disturbance, as a static reference in the analyses. 
Alternatively, we could have used control plots, which were mostly 
not significantly displaced along the successional gradient from 1993 
to 2011 (Table S1). We fitted a linear model and an asymptotic model 
to all combinations of five response variables, one for each of treat-
ments T1–T5 and two ordination methods to obtain time-to-recovery 
predictions TRL and TRA. For each of the 20 combinations of model 
type, treatment and ordination, we first obtained a model using data 
for all 9 years, thereafter successively left out observations for t = 1, 
then t = 2 and so on, to obtain the model with the best fit to the 
data based on the t value. The rationale behind this was to avoid the 
influence of the first chaotic years after disturbance (Rydgren et al., 
2004) since they provide poor estimators of time to recovery. The 
model with the best fit was used to predict time to recovery. In the 
few cases of negative or zero successional distances (see Figure S1), 
for which ln(djt,0) was undefined, they were not included in the as-
ymptotic models.

We modelled temporal and spatial stochasticity in species com-
positional change by parameterising random effects for each time 
point and block. The random block effect applied to control plots 
only since the disturbance treatments were not replicated within 
blocks. We tested if control plots were displaced along the succes-
sional gradient during the study period, using a backward elimination 
procedure with likelihood ratio tests (Hastie, Tibshirani, & Friedman, 
2009) to obtain minimal adequate models.

4  | RESULTS

Restoration trajectories along the first ordination axes (Figure 2, 
Table S2) were roughly similar for all treatments: the distance to the 
reference djt,0 increased (for 2 years with GNMDS and 3–6 years 
with DCA), before starting to decrease gradually. The maximum 
single-plot djt,0 values were 3.79 SD units and 3.22 H.C. (half-change) 
units, as obtained by DCA and GNMDS, respectively. This indicated 
that the most severe treatment (T5) affected some plots so severely 
that they, after disturbance, shared almost no species with the refer-
ence. From the time of maximum dissimilarity with the reference, 
yearly successional rates decreased with increasing t (Figure 2).

Eighteen years after disturbance, the two least severe treat-
ments (T1 and T2) had reached recovery according to the “+1 SD 
criterion,” that is with djt,0 values within +1 SD off the centroid of 
reference plot along the successional gradient (Figure 3).

The linear and asymptotic models ML and MA of successional 
distance djt,0, as a function of years after disturbance vt for combina-
tions of ordination method and treatment, were closely similar for the 
years used to parameterise the models. However, with increasing time 
since disturbance, predictions from the two models became increas-
ingly different (Figure 3, Figure S1). Using field observations 18 years 
after disturbance as a reference, the linear model clearly underpre-
dicted successional distance in all cases except two (T3 and T5) with 
DCA ordination (Figure S1; Table 1). Predictions from the asymptotic 

F IGURE  2 Ordination of the full example dataset (69 taxa × 1,031 plots): trajectories of restoration plots and control plots in (a) 
detrended correspondence analysis (DCA) and (b) global nonmetric multidimensional scaling (GNMDS) ordination spaces, illustrated by 
mean resultant displacement of each combination of treatment (T1–T5) and control (C), and year since disturbance. Ordination axes 1 and 2 
are shown. Successive years for the same treatment are connected by broken lines except for the two last years of observation (t = 12 and 
t = 18), which are connected by solid lines ending with an arrow
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model accorded generally well with observations, with no tendency 
for systematic under- or overprediction of successional distances after 
18 years of recovery (Table 1). Generally, predictions from the asymp-
totic GNMDS-based models fitted the data better than predictions 
from DCA-based models (Table 1).

For the linear ML models, the 10 TRL0 predictions for time to full re-
covery (5 treatments × 2 ordination methods) ranged between 13 and 
29 years, whereas the 10 TRLs+1 predictions gave 2–4 years shorter 
time to recovery. Comparison of DCA-based and GNMDS-based 
predictions indicated that the former gave equal or higher values 
than the latter (Figure 3; Figure S1). For the asymptotic MA models, 
the TRAc+0.01 and TRAs+1 predictions ranged between 28–100 and 
11–43 years, respectively. With the exception of T4, time to recovery 
increased with increasing disturbance severity (Figure 3; Figure S1).

5  | DISCUSSION

Our results suggest the compositional change over time is a non-
linear process as successional rates gradually decrease over time 
(Foster & Tilman, 2000; Lepš, 1987; Myster & Pickett, 1994). We 
show that such nonlinearity can be described precisely as a linear 

function of log-transformed compositional distances (in ecological 
space) from the expected successional end point. Linear models of 
untransformed distances, on the other hand, can only describe suc-
cessional rates over very short time periods, since they overpredict 
successional rates in the longer run and hence strongly underpredict 
time to recovery. In the following, we discuss basic methodological 
issues relating to prediction of time to recovery in restoration eco-
logical studies.

F IGURE  3 The example dataset: Best 
linear (black lines) and asymptotic models 
(red lines) for successional distance 
(distance along the successional gradient 
represented by the first global nonmetric 
multidimensional scaling (GNMDS) 
ordination axis) as a function of time 
since disturbance, with 95% confidence 
intervals indicated by grey and red 
shading, respectively. Both the linear and 
asymptotic models were parameterised 
using the first 9 years of data after 
disturbance, shown by open, black circles. 
Red dots represent the mean values for 
each year for the first 9 years. Blue dots 
indicate observations 10, 12, and 18 years 
after disturbance. Green shading indicates 
the recovery reference, that is, the 
centroid of reference plot scores along 
the successional gradient +1 standard 
deviation. T1—removal of vegetation; 
T2—removal of vegetation and the litter 
layer; T3—removal of vegetation, the 
litter, and the mor soil layers; T4—removal 
of vegetation, organic, and bleached soil 
layers bordering intact vegetation on two 
sides; T5—removal of vegetation, organic, 
and bleached soil layers with a minimum 
distance of 0.5 m to intact vegetation
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TABLE 1 Model evaluation results based upon the detrended 
correspondence analysis (DCA) and the global nonmetric 
multidimensional scaling (GNMDS) ordinations: difference in 
successional distance djt,0 between the mean plot position 18 years 
after disturbance for the five treatments (T1–T5) and the corresponding 
predictions from the linear and asymptotic models ML and MA

Treatment

DCA GNMDS

ML MA ML MA

T1 0.44 0.03 0.18 −0.04

T2 0.59 0.12 0.54 0.00

T3 −0.10 −0.24 0.72 0.06

T4 0.09 −0.07 0.58 0.02

T5 −0.05 −0.10 0.65 0.04
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5.1 | The functional relationship of succession 
models and time-to-recovery predictors

Our worked example shows that successful predictions of time 
to recovery strongly depend on appropriate specification of the 
functional relationship of successional distance to time since dis-
turbance. The boreal forest data presents five cases of very close 
fit to a nonlinear relationship between compositional distance and 
time. The fact that the same functional relationship seems to apply 
over a considerable span of disturbance severities, suggests that 
this functional relationship may apply to successions after dis-
turbance more generally. Until general validity of this functional 
relationship is proven, a priori specification of models for use in 
time-to-recovery prediction should be informed by knowledge of 
the studied system and expert judgements.

When the datasets include just two time points only a linear 
function is possible to fit (Rydgren et al., 2011). However, when 
successional rates decrease over time, as typically found in primary 
successions (Robbins & Matthews, 2010; Rydgren et al., 2014; 
Whittaker, 1989), predictors based upon a linear model will under-
predict time to recovery strongly and should therefore be avoided 
if the data allows it. Our results unequivocally point to TRA predic-
tors that are based on an asymptotic model (MA), as best choices. 
The minimum data requirement for MA models is a time series of at 
least three temporal recordings. An additional danger of obtaining 
mis-specified models from sparse data appears when compositional 
dissimilarity from the restoration target increase shortly after dis-
turbance (Auestad, Rydgren, & Austad, 2016; Kirmer, Rydgren, & 
Tischew, 2018). In succession, random variation in species composi-
tion between years may override a weak temporal trend. Thus, data-
sets used for time-to-recovery prediction should cover a temporal 
interval of sufficient length to describe the succession adequately. 
Another prerequisite for using the proposed approach (ORBA) for 
time-to-recovery prediction is that the imprint of the successional 
gradient on the species composition is strong enough to be rec-
ognised as a vector in ordination space. This requirement was sat-
isfied in our example dataset, and likely also in other restoration 
projects where disturbances have been severe. Typically, a strong 
successional gradient emerges as the main axis when postdistur-
bance revegetation data after severe disturbance are subjected to 
ordination (Alday, Marrs, & Martínez-Ruiz, 2011; Fagan, Pywell, 
Bullock, & Marrs, 2008; Matthews & Spyreas, 2010). In cases where 
the successional gradient appears on several ordination axes (i.e., 
as a vector that does not run parallel with one ordination axis), the 
vector of best fit to the time-after-disturbance variable should be 
used to estimate successional distance (see Rydgren et al., 2014). 
As the asymptotic approach handles decreasing successional rates 
over time, the modelled succession levels off and asymptotically 
approaches a limit, which is in accordance with assumptions of 
convergent succession. In the linear approach, the modelled suc-
cession principally goes on forever, which is why we consider the 
linear model as a generally inappropriate descriptor of the recovery 
process. This parallels the use of linear species response models for 

extraction of compositional gradients in ordination, which results 
in spurious ordination axes (Økland, 1990). We therefore caution 
against uncritical use of linear models for ecological data that de-
scribe single species’ or species compositional responses to envi-
ronmental gradients.

5.2 | Choice of reference for the restoration target

Selection of a suitable reference is crucial in time-to-recovery 
prediction from species compositional data, as in all restoration 
projects. Optimally designed field experiments provide suitable 
candidates for the reference, preferably the species compositions 
of control plots or predisturbance plots. If control plots show small 
compositional change during the experiment (as in our example 
data), predisturbance restoration plots represent an optimal choice 
of reference. When reference plots are located in exactly the same 
positions as restoration plots, effects of local environmental fac-
tors are efficiently ruled out. If, however, control plots undergo 
systematic changes in species composition during the restoration 
process, for example, due to climate change (Hobbs & Cramer, 2008; 
Timpane-Padgham, Beechie, & Klinger, 2017), use of control plots 
analysed at a latest possible time point should be considered. But 
since restoration projects seldom are planned experiments (see 
McKay, Christian, Harrison, & Rice, 2005; Rydgren, Hagen, Rosef, 
Pedersen, & Aradottir, 2017) restoration targets may be difficult to 
define precisely in terms of species composition. An important point 
is that the variation along major environmental gradients (and hence 
species composition) among reference plots must match the resto-
ration plots for the two datasets to be comparable (Rydgren et al., 
2011). Unclear restoration targets therefore necessarily translate 
into difficulties in defining a reference for predicting time to recov-
ery. We recommend choosing the reference by taking all available 
knowledge on the species composition of the restoration site and 
the successional process into account. Moreover, we recommend 
using a dynamic reference (Hiers, Jackson, Hobbs, Bernhardt, & 
Valentine, 2016; Hiers et al., 2012; Kirkman et al., 2013; Rydgren 
et al., 2011) based upon species composition of reference plots ana-
lysed simultaneously with restored plots, to handle changes in un-
disturbed control plots due to, for example, climate change (Prach 
& Walker, 2011).

Selection of a threshold for “successful” recovery to be used in 
time-to-recovery prediction also requires careful consideration. The 
choice of threshold value for acceptable recovery should be made 
after careful consideration of the goal of each restoration project. 
We used the centroid of the reference points +1 SD, but this partic-
ular solution needs further testing with other datasets before it can 
be generally recommended as a default value.

5.3 | The role of time-to-recovery prediction in 
restoration ecology

Development of methods for prediction of time to recovery based on 
the species composition, a fundamental ecosystem attribute (Clewell 
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& Aronson, 2013), will be a boon to restoration ecology (Urban, 
2006). Species composition data may appear variable and less pre-
dictable than other ecosystem properties (Brudvig et al., 2017; 
Laughlin et al., 2017), but our example nevertheless demonstrates its 
value for assessing the outcome of restoration and, more generally, 
its usefulness in predictive restoration science (Brudvig et al., 2017). 
Better methods for prediction of time to recovery may shift the per-
spective in restoration ecology, from a narrow focus on whether 
restoration goals are reached or not, to insights that may guide the 
entire restoration process. We need to assess different restoration 
measures, predict the time-scales involved in the recovery process, 
and propose knowledge-based management recommendations on, 
for example, additional restoration measures. Knowing that eco-
logical restoration may require decades or even centuries (Harper & 
Kershaw, 1996; Jorgenson et al., 2010; Prach, Fajmon, Jongepierová, 
& Řehounková, 2015), availability of reliable methods for prediction 
of time to recovery will significantly advance restoration ecology.

This paper describes and provides the first applications of new 
approach (ORBA) for time-to-recovery prediction, intended for use 
in restoration ecological studies. More studies are needed to get a 
full overview of the circumstances that influence the performance 
of the proposed predictors, for example, the quality and quantity of 
data required to obtain reliable predictions. Nevertheless, our re-
sults clearly indicate that predictors based upon asymptotic models 
for successional distance should be preferred over predictions based 
on linear models whenever adequate data are available.
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