
Libdalbe

A library for developing Deadline-Aware Less-than
Best Effort transport services

Hugo Matthijs Harstad Wallenburg

Thesis submitted for the degree of
Master in Programming and Networks

(Faculty of mathematics and natural sciences)
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Libdalbe

A library for developing Deadline-Aware Less-than
Best Effort transport services

Hugo Matthijs Harstad Wallenburg

© 2018 Hugo Matthijs Harstad Wallenburg

Libdalbe

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Acknowledgements

I would first and foremost like to extend my sincere gratitude to my supervisors, David
Hayes, David Ros, and Andreas Petlund, for their immense help and guidance throughout
this undertaking. Also deserving of thanks are my friends from the Simula Master’s lab, all
of us toiling on our theses, my family and friends who haven’t the faintest clue what “an
Internet” is but still helped me in my writing, and my roommates who had to endure me
coming home late every night. Thank you all.

Lastly, I absolutely could not have finished this project without ridiculous amounts of
coffee and, of course, Vim.

Abstract

Some data transfers on the Internet today don’t need to complete their transmission as
early as possible, yet they may still benefit from a loose guarantee of timeliness. Examples
include online backups, non-critical system updates, and large file downloads. Such transfers
can make use of a Deadline Aware Less-than Best Effort (DA-LBE) transport to prevent
degrading the quality of service for competing traffic while also upholding a loose notion
of timeliness. In this thesis we present Libdalbe, a library that provides this functionality in
an accessible and robust manner.

Libdalbe facilitates the development of metacontrollers, which adapt an underlying TCP
congestion control in the Linux kernel. The metacontrollers use various congestion event
statistics to calculate appropriate control parameters for the DA-LBE kernel component
created by Lars Erik Storbukås. With Libdalbe we provide two example metacontrollers
which use a Model-Based Controller to adapt TCP Cubic and TCP Vegas respectively.

We tested Libdalbe and the metacontrollers both on an emulated network and on the
Internet to verify that our solutions uphold all qualities required for DA-LBE service. Through
a quantitative evaluation we found that our metacontrollers succeed in attaining all behaviors
associated with DA-LBE service on the Internet, but our metacontroller for turning TCP Vegas
into a DA-LBE transport fails to meet the timeliness criterion on heavily congested network.

ii

Contents

1 Introduction 1
1.1 Problem Statement . 2

1.2 Goals of this Thesis . 2

1.3 Methodology . 2

1.4 Structure . 3

2 Background 5
2.1 Transmission of Data on the Internet . 5

2.1.1 Separation of Concerns . 5

2.1.2 IP . 7

2.1.3 Shared Resources . 7

2.2 Transmission Control Protocol . 8

2.3 Congestion Control . 9

2.3.1 Congestion Control Algorithms . 9

2.3.2 Bufferbloat . 12

2.3.3 Active Queue Management . 13

2.4 Delay-Based congestion control . 13

2.4.1 Underlying Mechanisms . 13

2.4.2 TCP Vegas . 14

2.5 Less-than Best Effort (LBE) Transport Protocols 15

2.6 Deadline Aware Less-than Best Effort (DA-LBE) 15

2.6.1 Modeling the Price of Network Congestion 15

2.6.2 DA-LBE metacontrollers . 16

2.6.3 Model-Based Controller for TCP Cubic . 17

2.6.4 Model-Based Controller for TCP Vegas . 19

2.6.5 Soft Deadline . 20

2.6.6 Previous work by Lars Erik Storbukås . 21

2.7 Summary . 21

3 Libdalbe 23
3.1 Structure . 23

3.2 Basic Operation and Design Decisions . 24

3.2.1 Library . 24

3.2.2 Daemon Worker Thread . 25

3.2.3 Allowing for Custom Metacontrollers . 25

3.3 Interface Overview . 25

3.4 Sample Usage . 26

3.5 Custom Metacontrollers . 26

3.5.1 Basic Usage by Example . 27

iii

3.5.2 Sample Implementations . 28

3.5.3 Debugging Libdalbe . 29

3.5.4 Error Handling . 31

3.6 Changes in the Kernel . 31

3.6.1 Generation of Phantom ECN Signals . 31

3.6.2 Calculation of EWMA . 32

3.6.3 Inflation of Queuing Delay . 32

3.7 Shortcomings . 32

3.7.1 Locks and Blocking . 32

3.7.2 Signals and Custom Intervals . 33

3.8 Summary . 34

4 Testing Setup 35
4.1 Test Bed Setup . 35

4.1.1 Setup specifics . 36

4.1.2 Kernel Modifications . 37

4.1.3 Testing with a Known Environment . 38

4.2 Emulation . 38

4.2.1 The Virtual Setup . 39

4.2.2 Router Node Emulation Specifics . 39

4.2.3 Rate Limiters . 40

4.2.4 Determining the Best Rate Limiter . 41

4.2.5 Netem as a Rate Limiter . 43

4.3 Cork Setup . 44

4.4 Test Execution . 45

4.4.1 Test Orchestrator . 45

4.4.2 Software on the Test Nodes . 46

4.4.3 Analysis Software . 46

4.5 Summary . 46

5 Results and Analysis 47
5.1 Test Bed Performance . 47

5.1.1 Cubic . 49

5.1.2 Vegas . 50

5.1.3 Test Bed Performance Summary . 55

5.2 Performance on the Internet . 55

5.2.1 Test Bed Comparison . 55

5.2.2 Performance on the Internet Summary . 59

5.3 Long-term Behavior . 59

5.3.1 Fairness . 60

5.3.2 Completion Times . 63

5.3.3 Long-term Behavior Summary . 71

6 Conclusion 73
6.1 Conclusions from our Evaluations . 73

6.2 Future Work . 75

6.2.1 Improvements to the Application . 75

6.2.2 Additional Testing . 76

6.2.3 Areas of Interest for Future Research . 76

6.3 Achieving our Thesis Goals . 77

iv

Appendices 87

A Interface details 89
A.1 Initializing the Library . 89

A.2 Disposing of the Library Resources . 89

A.3 Opening a DA-LBE Socket . 90

A.4 Closing a DA-LBE socket . 92

B DA-LBE Framework Interface Details 93
B.1 Mid-Flow Control . 93

B.2 Flow Options . 95

B.3 Available Statistics . 95

C Test Setup 97
C.1 Cork Traceroute . 97

D Analysis 99
D.1 Fairness Measurements . 100

D.2 Completion Times Measurements . 101

D.3 Vegas Cork Completion Times Libdalbe Debug 102

D.4 Cubic Test Bed Completion Times Extra . 103

E Graphs from Hayes et al. 107

F Source Code for Libdalbe, Metacontrollers, and Test Orchestrator 111

v

vi

List of Figures

2.1 The Internet Protocol Suite (TCP/IP) Network Stack 6

3.1 An overview of Libdalbe in relation to the user’s application, the kernel, and
the DA-LBE kernel component. 24

3.2 An application using a custom metacontroller . 27

3.3 Example of DA-LBE Cubic debug graphs . 30

4.1 Test bed physical setup . 35

4.2 Test bed virtual setup . 39

4.3 Network emulation in the router . 40

4.4 Burstiness example . 42

4.5 WAN topology for the Cork setup . 44

5.1 GANTT-chart for the experiment defined in table 5.1. 47

5.2 Test bed Cubic throughput graph . 50

5.3 Test bed Cubic Libdalbe debug graphs . 51

5.4 Test bed Vegas throughput graph . 52

5.5 Test bed Vegas Libdalbe debug graphs . 53

5.6 Cork Cubic throughput graph . 56

5.7 Cork Vegas throughput graph . 57

5.8 Cork Vegas Libdalbe debug graphs . 58

5.9 Libdalbe Cork fairness boxplot . 62

5.10 Most BE-like Cubic Cork throughput . 62

5.11 Most BE-like Vegas Cork throughput . 63

5.12 Libdalbe completion times . 65

5.13 Earliest finish Cork Vegas throughput . 66

5.14 Earliest finish Cork Vegas Libdalbe queuing/RTT debug 66

5.15 Last finish Cork Vegas throughput . 67

5.16 Last finish Cork Vegas Libdalbe RTT debug . 68

5.17 Last finish test bed Cubic throughput . 68

5.18 Earliest finish test bed Vegas throughput . 69

5.19 Earliest finish test bed Vegas Libdalbe debug . 69

5.20 Second earliest finish test bed Vegas throughput 70

5.21 Second earliest finish test bed Vegas Libdalbe debug 70

D.1 Earliest finish Vegas Cork Libdalbe debug (full) 102

D.2 Last finish Vegas Cork Libdalbe debug (full) . 103

D.3 Late finish fairness test bed Cubic throughput (no. 02) 103

D.4 Late finish fairness test bed Cubic throughput (no. 13) 104

D.5 Late finish fairness test bed Cubic throughput (no. 35) 104

vii

D.6 Late finish fairness test bed Cubic throughput (no. 47) 104

D.7 Late finish fairness test bed Cubic throughput (no. 48) 105

E.1 Figure 4 [24]. 108

E.2 Figure 8 [24]. 109

viii

List of Tables

4.1 Test bed hardware specifications . 36

4.2 Test bed operating systems . 37

4.3 Burstiness test results . 43

4.4 Cork setup hardware specifications . 44

5.1 Test definition for test bed setup . 48

5.2 Test definition for the long-term test . 59

5.3 Libdalbe Cork results, fairness . 61

5.4 Libdalbe Cork results, completion times . 65

5.5 Two within-limit test bed Vegas measurements . 71

C.1 Traceroute to Cork . 97

D.1 All fairness measurements . 100

D.2 All completion time measurements . 101

ix

x

Acronyms

ACK Acknowledgement

AIMD Additive Increase/Multiplicative Decrease

API Application Programming Interface

AQM Active Queue Management

BBR Congestion-Based Congestion Control

BDP Bandwidth Delay Product

BE Best Effort

BIC Binary Increase Congestion control

BaseRTT Base RTT

CC Congestion Control

CPU Central Processing Unit

Cubic TCP Cubic

D-ITG Distributed Internet Traffic Generator

DA-LBE Deadline Aware Less-than Best Effort

DHCP Dynamic Host Configuration Protocol

DupACK Duplicate Acknowledgement

ECN Explicit Congestion Notification

EWMA Exponentially Weighted Moving Average

FIFO First In First Out

FLOWER Fuzzy Lower-than-Best-Effort Transport Protocol

FTP File Transfer Protocol

HFSC Hierarchical Fair Service Curve

HTB Hierarchical Token Bucket

HTTP Hypertext Transfer Protocol

xi

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IFB Intermediate Functional Block

IPC Inter-Process Communication

IP Internet Protocol

IQR Inter-Quartile Range

ISOC Internet Society

ISP Internet Service Provider

LBE Less-than Best Effort

LEDBAT Low Extra Delay Background Transport

MBC Model-Based Controller

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NEAT New, Evolutive API and Transport-Layer Architecture

NTP Network Time Protocol

NUM Network Utility Maximization

OWD One-Way Delay

PID Proportional-Integral-Derivative

POSIX Portable Operating System Interface

RED Random Early Detection

RFC Request For Comments

RTT Round Trip Time

Reno TCP Reno

SMTP Simple Mail Transfer Protocol

TBF Token Bucket Filter

TCP/IP Internet Protocol Suite

TCP Transmission Control Protocol

TC Traffic Control

TFTP Trivial File Transfer Protocol

TTL Time To Live

xii

Tahoe TCP Tahoe

UDP User Datagram Protocol

VPN Virtual Private Network

Vegas TCP Vegas

WAN Wide Area Network

WWW World Wide Web

cwnd Congestion Window

rwnd Receiver Window

sACK Selective Acknowledgement

ssthresh Slow Start Threshold

xiii

xiv

Chapter 1

Introduction

A lot of data being transferred on the Internet can be categorized as quality constrained, that
is transfers for which rapid and reliable delivery are considered valuable traits. Content
delivery services where the end user can immediately notice latency or bandwidth problems,
such as media streaming or web browsing, require these qualities. File sharing applications
may consider all user-generated traffic quality-constrained as the timeliness of data delivery
is easily discernible to the users.

This is where Less-than Best Effort (LBE) services, also called scavenger services, shine:
Such services give precedence to other traffic by measuring the impact of their own traffic
upon the network and limiting their own sending rate accordingly. This naturally results
in lower expected sending rates, meaning they are unsuited for applications that require
speedy or consistent timely delivery. Conceivable use cases for such LBE services include
online backups, non-critical system updates, and large file downloads. The two latter cases
have already seen LBE services being used, with Apple using this kind of service for system
updates [2], and BitTorrent using an LBE service for massive peer-to-peer data transfers [66].

Some of these examples include services where one might want to favor user traffic, but
still be able to guarantee timeliness within reason. Online backup services may prefer to let
the user have network priority so that they perceive the backup service to not be intruding
upon their usage, but concurrently the very core of their service requires timeliness lest
the user’s backups run stale. An operating system manufacturer, e.g. Apple, wishing to
maintain software quality through frequent updates while not incurring traffic interruptions
upon their users, may want to push updates to their users using LBE services while also
setting a deadline for those updates to finish in order to maintain a level of quality in their
products.

This type of service requires a method of transfer that includes both the concept of
transferring data in a LBE manner as well as being able to enforce a deadline. Meeting both of
these requirements necessitates using a mode of transport, called Deadline Aware Less-than Best
Effort (DA-LBE), that can scale its own aggression depending on the sending rate required
to meet the deadline while also measuring its own impact on the network and scaling back
when aggression is not required. To the best of our knowledge this kind of transport has not
yet been implemented.

In this thesis we introduce Libdalbe, the DA-LBE library: A framework for providing this
set of functionalities to application developers. Libdalbe allows for developers to create their
own DA-LBE controllers that modify an existing TCP in the kernel, called metacontrollers. The
metacontrollers are given statistics about the underlying congestion control and a DA-LBE
kernel component, to allow for estimating network congestion and modeling one’s own
impact on the network. The DA-LBE transfers provided with Libdalbe are implemented as

1

custom metacontrollers themselves, serving as working and tested example metacontrollers.
The basis for this framework is a set of modifications to the Linux kernel, the DA-LBE

kernel component, provided by Lars Erik Storbukås [70]. Our library and the DA-LBE kernel
component make up the DA-LBE framework. His work provides an interface into the statistics
and inner workings of data transfers in the kernel, allowing both for gathering of data and
manipulation of the data flow during operation. The gathering and manipulation of this data
is for Linux-based operating systems protected by the system kernel, making it cumbersome
to access them. Libdalbe facilitates the use of these kernel modifications from user space,
allowing developers easier access.

Libdalbe was supposed to be included in the NEAT project [5], but the implementation
was not ready in time. New, Evolutive API and Transport-Layer Architecture (NEAT) is a
transport system that seeks to allow Internet applications to, instead of specifying a protocol
to use, specify a type of service. The NEAT system would then choose from an available set
of protocols and choose the best suited one for the requested service, based on hardware,
network conditions, and local policy. Libdalbe would have fit into a category of services that
could provide DA-LBE or just LBE service, and is structured in such a way as to allow the
easy control of many types of protocols.

1.1 Problem Statement

Large data transfers do not necessarily require the type of service offered by Transmission
Control Protocol (TCP), namely the guarantee that data will be transmitted as quickly as
possible given the network conditions. Applications that do not require these qualities, but
still choose to use standard TCP for data transfers, may degrade the service offered to other
services that might have a more pressing need for timely service. These large data transfers
can, if they do not require timeliness guarantees, employ an LBE transfer to limit their impact
on other traffic. However, many require some notion of timeliness, a quality that could be
provided by a Deadline Aware Less-than Best Effort (DA-LBE) service. In this thesis we aim
to provide this functionality in an accessible and robust manner.

1.2 Goals of this Thesis

In this thesis we aim to achieve the following:

1. Develop functionality that allows for the implementation of custom DA-LBE metacon-
trollers that access and act upon an underlying TCP directly in the kernel using kernel
modifications by Lars Erik Storbukås [70].

2. Develop two DA-LBE metacontrollers for TCP Cubic and TCP Vegas, available as default
metacontroller choices in the library.

3. Test the implemented library and metacontrollers to verify their performance in real
environments.

1.3 Methodology

Our methodology for implementing the functionality described in section 1.1 was as follows:

2

1. We examined the feasibility of several possible approaches to providing an accessible
and robust DA-LBE service. We initially imagined our service as an application in the
Linux tool-chain that would either read its data from a file or from standard input
and transfer this data using some DA-LBE enabled transport. Another approach we
considered was creating a DA-LBE tunnel which would have involved creating a virtual
networking interface, similarly to how VPNs operate, through which new connections
would be given DA-LBE properties. We settled on creating a library, offering more
control to application programmers in exactly how they want to apply DA-LBE services
to each of their distinct connections while remaining accessible.

2. The correct operation of our solutions relies on functionality in the kernel done by Lars
Erik Storbukås [70]. In order to first verify that the DA-LBE kernel component in the
kernel functioned correctly, we started by creating a minimal version of our library with
accompanying simple test application which we tested on virtual machines.

3. A proper test bed was created to further aid in development of our metacontrollers
when Libdalbe behavior on our virtual machines was not matching up with our
expectations. We spent a considerable amount of time verifying that the mechanisms
chosen for emulation were as accurate to a real network as reasonably possible.

4. We focused on implementing one DA-LBE congestion metacontroller at a time and
started with the one for TCP Cubic, which required the fewest changes from the theory
in the paper by Hayes et al. [24]. Each congestion metacontroller was developed using a
loop roughly consisting of the following steps:

(a) Implement new functionality or subroutine.

(b) Run test on the test bed designed to touch on most areas our DA-LBE
metacontroller should affect.

(c) Identify issues and discover their source, be it Libdalbe, the DA-LBE component,
or test misconfiguration.

(d) Repeat until desired functionality is achieved without errors.

5. For evaluation, perform experiments similar to those of Hayes et al. and verify similar
(or detect and rationalize or correct dissimilar) behavior in comparison with their
simulations.

6. Final evaluation of real world performance is carried out on a real Internet connection
with real cross traffic and noise, taking care to run experiments multiple times and rely
on the data set as a whole for conclusions.

1.4 Structure

The rest of this thesis is structured as follows:

Chapter 2, Background: In the Background chapter we explain fundamentals of the issues
that the work presented in this thesis aims to help solve. We explain the mechanisms
that we are implementing, what they do, how they work, and why they work.
Subsequently we will provide some context on what kind of situation and system this
solution is meant for, an example of recent development in the field, and the thesis on
which a lot of this work is based.

3

Chapter 3, Libdalbe: This chapter will present the library that we are implementing. We
will cover choices made in the design of the library, what functionality is available, and
how custom meta-protocols are handled. How the library is interfacing with the kernel
component is explained in detail, with a section on changes that needed to be made for
the proper performance of our library. Lastly, we will point out some shortcomings in
our final product and how changes could be made to remedy these issues.

Chapter 4, Testing Setup: In chapter 4 we explain how we will verify that our implementa-
tion works as specified in the background theory in chapter 2 and in the application
description in chapter 3. We go over setting up a highly configurable test bed that can
emulate a real network topology with reasonable accuracy, explaining the choices be-
hind setup specifics and possible pitfalls. We describe the setup for testing the actual
real world performance of our solution on the Internet. To facilitate the running and
analyzing of our experiments we developed a set of tools based on open technologies
which is described in the last sections of this chapter.

Chapter 5, Results and Analysis: The Results and Analysis chapter describes the experi-
ments that we performed to verify the functionality of our library along with the results
of said experiments and analysis of the data they show. We will examine the differences
in performance between the local test bed setup and the Internet setup and analyze how
their idiosyncrasies affect the behavior of our library. The analysis is backed by graphs
of both the throughput of our implementations and detailed output from our testing
application for each test. We verify that our library performs as specified through the
use of a fairness measure and transmission completion times.

Chapter 6, Conclusion: For the Conclusion chapter we will quickly summarize this thesis as
a whole, reiterate our findings from chapter 5, and draw final conclusions from our
results. We will relate our results to the problem statement from section 1.1. Lastly is a
section on future work; how our library can be improved, what other experiments can
be run, and finally some ideas for further research on topics touched, or skipped, in this
thesis.

4

Chapter 2

Background

This chapter will introduce the basic concepts of how computers communicate on the Internet,
how networking equipment remains functional under heavy load, and finally how we can
design and implement a type of data transport that gives way to competitors while remaining
capable of competing in order to reach a deadline. We will also touch on previous work that
enables the contributions made in this thesis as well as give examples of recent similar efforts.

2.1 Transmission of Data on the Internet

Modern developers need not worry much about the intricacies of Internet communication
when developing their applications; as long as their data arrive intact and in a timely manner,
how it is transferred does not matter. This notion of sending data from an application to
be received by an application at the other end, e.g. a web browser sending a request to a
server for a web page, can be envisioned as a layer of communication. In this multi-layered
protocol setup, the developer might only need to know to send a HTTP request, and the
HTTP implementation knows which lower-layer protocol to employ to perform its request.

2.1.1 Separation of Concerns

The separation of functionality into different layers makes it so that the implementation
of the functionality within a layer can stay minimal; the layer does not need to interface
with functionality that is far removed from its own and can thus focus on simplifying its
interface. An application needs not implement its own protocols to transfer data over Wi-Fi
or physical wires as this mechanism is hidden behind several layers of abstraction, requiring
the application only to communicate with the layer directly underneath it for data transport.
For the Internet, these layers are defined in RFC 1122 [47] and RFC 1123 [48] as the Internet
Protocol Suite or, more commonly known due to the two main protocols described therein,
TCP/IP.

The communication layers, as described in RFC 1122 [47] and RFC 1123 [48] are shown in
figure 2.1. The two stacks on each side of the figure encompass the protocol suite implemented
on the host denoted by the surrounding grey box. Hosts communicate, shown by the dashed
horizontal arrows in figure 2.1, by passing data down through their own network stack
until the data reaches the physical medium through which it is sent to another host, or all
hosts, connected to the same medium. Networking equipment along the route between the
communicating hosts implements parts of the protocol stack needed to forward the data to
the correct receiver.

From the bottom up, the layers are:

5

Sender host Receiver hostNetworking equipment

Application

Transport

Internet

Link

Physical Medium

Link

Internet

Application

Transport

Internet

Link

Figure 2.1: The TCP/IP Network Stack

• The Physical layer is the actual physical medium through which raw data propagates.
Ethernet [25] and Wi-Fi [26] are examples of technologies for communicating through
copper (or fiber) wires and the radio spectrum, respectively.

• The Link layer is responsible for ensuring communication between hosts connected to
the same physical medium. This includes, for example, the protocol determining how
two hosts communicate and how to ascertain for which host a data packet, an Ethernet
frame in the case of Ethernet, is destined.

• The Internet layer enables inter-network communication between hosts. The primary
protocol of this layer is the Internet Protocol (IP), which describes the transmission of
addressable datagrams between hosts on separate networks. IP is connectionless and
provides no guarantees as to the delivering of packets. As a result, further protocols are
required to ensure the correct delivery of data.

• The Transport layer provides data transport between processes by addressing ports,
tied to applications, on the receiving host. User Datagram Protocol (UDP) is a datagram
service acting as a simple wrapper around IP, supplying only data checksumming and
port-addressing as extra features. Many custom protocols are implemented on top of
UDP as it functions almost identically to IP and is directly available from the Application
layer, making it easy for developers to experiment with. On the other hand, TCP, further
described in section 2.2, transports a reliable byte-stream of data, shielding the user from
the duplication, damage, reordering, and dropping of packets that affect IP.

• The Application layer defines protocols for applications to communicate between each
other. RFC 1123 describes the protocols Telnet, FTP, TFTP, and SMTP. HTTP, the
defining protocol of the World Wide Web used for fetching and submitting web content,
belongs in the Application layer.

Each protocol in the TCP/IP network stack reserves some of the transmission bandwidth
for metadata such as addresses, checksums, and payload length by encapsulating the payload
data in a larger construct specific to that protocol. Ethernet on the Physical layer sends
payloads by way of Ethernet frames, IP wraps its payload in an IP packet, and TCP sends

6

data using TCP segments. Consequently, the actual data transmitted in the physical medium
is larger than the data transmission initiated on the Application layer.

2.1.2 IP

Transmission of data between hosts on the Internet is done through the Internet Protocol [61]
in the Internet layer. IP is responsible for routing data through potentially multiple networks
to the receiving host based on its IP address. No active error mitigation is performed. IP
packets may contain corrupt data, they may arrive twice, or in the wrong order, or not at all.
A checksum field guards against errors in the packet header, the metadata, — errors which
could risk the packet arriving at the wrong destination — but further errors must be caught
by other means such as employing a higher-layer protocol like TCP. This type of service
is termed Best Effort (BE); IP will make an effort to deliver packets, but makes no other
assurances.

Sources of packet loss other than being discarded as a result of corrupt metadata depend
on the networking equipment connecting the two hosts. Routers forward IP packets between
networks and use shared knowledge about the network state to determine the correct
destination network for each packet. Each IP packet carries with it a Time To Live (TTL)
counter that limits the number of times it can be forwarded to a new network1; packets that
have been in the network long enough for their data to be considered stale are dropped, a
situation which may occur if changing network conditions causes routers to forward packets
in a loop. The most common cause of lost packets in typical operation however is congestion
in the network, which occurs when shared resources are experiencing heavy load.

2.1.3 Shared Resources

Communication within a network relies on shared infrastructure in that network. A typical
home networking solution might have a single Wi-Fi enabled router connecting several family
members and their devices to the Internet. In this scenario all Wi-Fi devices share the medium
in which they communicate, the frequency band the router operates on, but more importantly
for our work, they must all share the one router and its connection to the Internet. Our
hypothetical family most likely is not connected to the Internet with the same link capacity
as the one supported locally on their own network [28] and so their devices must compete
for the limited bandwidth available to them; they share a bottleneck. Though the equipment
in the Internet supports much higher bandwidth rates than our hypothetical family network,
the problem of multiple hosts communicating over one link remains; the outgoing link might
be able to transmit at rates of 10 Gbit/s, but if the router is receiving traffic from 11 other
links supporting 1 Gbit/s each there is not enough bandwidth for all of them to transmit at
once. In both the case of the home network and the core Internet equipment, the routers are
congested.

2.1.3.1 Buffers, Queues, and Explicit Congestion Notification

To mitigate the effects of the target link not supporting the needed bandwidth, packet queues
are employed. Routers deliver packets to the network interface2 corresponding to the target
network of each packet. The network interfaces themselves have buffers, packet storage areas,
into which the packets are queued to await transfer onto the physical network. When
there are more packets being enqueued than the interface can transfer, its packet queue

1Termed network hops.

7

will eventually fill the buffer; when the buffer reaches capacity there is no option but to
drop packets. Historically, routers would drop the incoming packet [51, p. 3], known as
tail drop, and some routers would drop the oldest packet in the queue, drop from front [38],
but more recent development sees interfaces actively dropping packets from their queues
early to maintain network stability [16], [51], [63], [71], a mechanism termed Active Queue
Management (AQM).

When AQM solutions are employed there is also the possibility of notifying the sender
of congestion early without dropping packets through the use of Explicit Congestion
Notification (ECN), a functionality in IP [53]. ECN allows routers to set an ECN mark in
the packet to explicitly signal congestion; the receiver of an ECN-marked packet will echo the
congestion mark to the other host in the connection pair by setting an ECN mark of its own,
resulting in both hosts being notified of congestion early. In section 2.6.3 we describe how we
employ ECNs to artificially limit the sending rate of our own application.

2.2 Transmission Control Protocol

With IP offering a Best Effort (BE) service, higher level data transfer protocols must be
defined to facilitate reliable communication. TCP [62] is one of these protocols, fitting into the
Transport layer of TCP/IP and providing a connection oriented transport between processes
running on Internet hosts. TCP transmits a stream of data, a flow, using uniquely identifiable
TCP segments that are reassembled on the receiver host to reconstruct the byte-stream that
was given to the TCP by the sender side application. For every segment received, TCP will
answer with an Acknowledgement (ACK) packet stating which segment it expects next; if the
sender receives an ACK that it has already sent it knows that there has been either loss or
reordering, and that the missing packet might need to be retransmitted. If a set amount of
time passes without an expected ACK being received, the retransmission timeout, the packet
is considered lost and will be retransmitted; if the packet was simply reordered, the ACK
will probably arrive not too long after it was expected. This mechanism of sending an ACK
for every segment received can be described as a self-clocking signal, an ACK-clock, with new
segments being released into the network for every segment that leaves.

There is a real possibility that the recipient of a TCP data stream cannot consume data at
the same rate it is received; to counteract this problem, TCP on the receiver side must buffer
segments until the recipient application consumes their data. To prevent the receiver running
out of buffer space for the incoming byte-stream, the TCP receiver determines the amount
of segments it can buffer for the consumer application and advertises the size of their buffer,
their Receiver Window (rwnd), to the sender TCP on every ACK. The sender TCP uses a
sliding window marking the range of segments that are in flight and unacknowledged; this
window is kept in sync with the advertised rwnd from the receiver. This is flow control.

Like a TCP receiver may not be able to consume data fast enough, the network may not be
able to process packets at the rate they are received. As briefly introduced in section 2.1.3, if a
router is connected to two network links supporting different maximum transfer speeds and
the faster link is sending packets at maximum capacity to be forwarded to the slower link, the
router may need to drop packets as new ones arrive; the network has become congested. In the
worst case this can lead to significant drops in total network throughput, a congestion collapse,
as noted by Jacobson [29]. As flow control exists not to overwhelm the receiver, congestion
control must be employed to ensure the stability of the whole network.

2The physical interface through which a network link connects the router to a network.

8

2.3 Congestion Control

To prevent incurring unnecessary congestion on the network, TCP relies on Congestion
Control (CC) mechanisms that probe the network for available bandwidth and back off upon
indication of congestion. TCP must infer the state of congestion based on information such
as: Packets being lost [29]; a higher propagation delay signifying building router queues (e.g.
Vegas [6]); or ECNs, through which routers can alert end hosts of congestion early.

The first congestion control algorithms that were proposed used packet loss as a signal of
congestion, with the following reasoning: “ If packet loss is (almost) always due to congestion
and if a timeout is (almost) always due to a lost packet, we have a good candidate for the
‘network is congested’ signal. Particularly since this signal is delivered automatically by all
existing networks, without special modification [. . .]. ” ([29])

After Jacobson developed his loss-based congestion control algorithms, other mechanisms
have been suggested and implemented, two examples being Vegas and BBR. Vegas [6]
uses the Round Trip Time (RTT) to estimate the current sending rate, where the congestion
signal is the ratio between actual and estimated sending rate. Additionally, Vegas treats
loss as a congestion signal in order to ensure TCP fairness (described in section 2.3.1.4).
Vegas is more thoroughly described in section 2.4.2. BBR [8], a congestion control recently
developed by researchers at Google, “reacts to actual congestion” by using sending rate
and RTT measurements to establish a network model and probing for RTT and bandwidth
measurements with the model as a base. Notably, BBR disregards packet loss as a congestion
signal and thus runs the risk of sending faster than competing non-BBR TCPs in situations
with abundant loss. The dominant congestion control of the future might use hitherto
unthought of signals of congestion.

2.3.1 Congestion Control Algorithms

RFC3
5681 [54] defines four Congestion Control algorithms that most TCP implementations

use today: Slow Start, Congestion Avoidance, Fast Retransmission, and Fast Recovery. The
RFC also prohibits any TCP algorithm from pushing packets to the network any faster than
these four algorithms would allow; an algorithm exceeding this limit may cause unnecessary
network congestion and can, if widely employed, lead to congestion collapse.

2.3.1.1 Slow Start & Congestion Avoidance

Slow Start and Congestion Avoidance together estimate the capacity of the network and
attempt to find an equilibrium point, the point at which all senders in the network can transfer
data at the same rate. Because TCPs cannot communicate between each other, the algorithms
used for congestion control should provably converge on an equilibrium state, given that
they are employed on all network hosts. A behavior termed Additive Increase/Multiplicative
Decrease (AIMD) describes how a TCP sender increases its sending rate additively, by a
constant amount of data, while backing off multiplicatively, by a factor of its current rate,
upon receiving a congestion signal. AIMD is proven to converge to a fair allocation of
bandwidth for all users [30] and functions as follows.

Congestion window Each TCP connection maintains a Congestion Window (cwnd) on the
sender side that limits the maximum number of segments a connection may have in flight at

3 RFCs are publications by the Internet Engineering Task Force (IETF) and the Internet Society (ISOC). They
are typically submitted for peer review and some of them become Internet standards.

9

any one time. TCP will attempt to expand this window in order to probe for more bandwidth,
backing off on any signal of congestion so as to not overload the network. Two modes of cwnd
expansion exist: A mode where the sending rate increases exponentially, called Slow Start, to
quickly establish an initial measurement of the maximum capacity, and a mode in which the
sending rate increases slowly to carefully check for more bandwidth.

Slow Start Slow start is a mechanism to jump-start the ACK-clock by attempting to quickly
reach a point where the clock is self-supporting. The congestion window is first initialized
to a small size, typically allowing only 1 [49] or 2 [52] or, more recently, 10 segments [60] in
flight at the start of the connection. Subsequently the window is expanded by one segment for
each received ACK, thus if there is no loss the congestion window will double in size every
RTT; an exponential increase. Slow Start is used during the start of a flow, when the link
capacity is unknown, and potentially after a retransmission if the packet loss in Congestion
Avoidance mode cause the cwnd to drop below Slow Start Threshold (ssthresh) meaning
the sending rate is far off equilibrium. The Slow Start mechanism is essentially probing for
the maximum capacity of the network, more specifically the network path between the two
hosts of the connection, by deliberately causing congestion until the momentary capacity
is reached. Three events will cause TCP to exit the Slow Start state and enter Congestion
Avoidance:

1. Packet loss - TCP assumes there is congestion on the network.

2. rwnd limit reached - The congestion window cannot be extended further, as we cannot
overload the receiving host.

3. ssthresh reached - Upon exceeding the Slow Start Threshold (ssthresh), the flow
must enter Congestion Avoidance mode. ssthresh acts as a reasonable upper bound
on the currently estimated network performance; it is initially set to a maximum
value, “The initial value of ssthresh SHOULD4 be set arbitrarily high (e.g., to the
size of the largest possible advertised window)” ([54]), so as to not have an arbitrary
implementation specific setting controlling the probing phase. Upon packet loss,
ssthresh is set to half the current amount of data in flight, resulting in the threshold
being set to the active cwnd when the packet loss occurred (one RTT ago, when the
window was half as big).

Congestion Avoidance Where as in the Slow Start state the Congestion Window is doubled
in size every RTT, in Congestion Avoidance mode the cwnd may only increase by one segment
every RTT. After exiting Slow Start, the cwnd will be set to a value that is a decent estimation
of the network capacity, however, network conditions change; the congestion on the network
the moment the flow exited Slow Start is not indicative of the level of network congestion
for the whole flow. TCP will therefore continually probe the network for more bandwidth at
a much slower rate of increase than in Slow Start, and on the first reception of a congestion
signal reduce cwnd by a constant factor. If, as a result, the new cwnd is lower than ssthresh,
TCP will return to the Slow Start state to quickly get back to the equilibrium.

The first TCP implementation to make use of Slow Start and Congestion Avoidance has
since come to be known as TCP Tahoe.

4 “SHOULD” is an RFC “key word” meaning “that there may exist valid reasons in particular circumstances
to ignore a particular item, but the full implications must be understood and carefully weighed before choosing
a different course.” See RFC 2119 [50]. Throughout the explanation of TCP concepts, some of terms outlined in
RFC 2119 [50] will be used with the meaning defined therein.

10

2.3.1.2 Fast Retransmit & Fast Recovery

The basis for the Fast Retransmit and Fast Recovery algorithms is that the receiver end of
the TCP connection sends Duplicate Acknowledgement (DupACK) packets for every packet
received out of order; packets arriving in the wrong order can be a sign of reordering or
duplication of packets on the network, but is usually a signal of a packet having been lost.
According to [54], the TCP sender SHOULD use the Fast Retransmit algorithm to detect
and repair loss, based on incoming duplicate ACKs: receiving three DupACKs causes the
immediate retransmission of the lost segment, without waiting for the retransmission timer
to expire.

After having retransmitted the lost segment, the TCP sender enters the Fast Recovery
state, in which the TCP will artificially inflate the cwnd to allow the continued steady transfer
of data. The packets that triggered the DupACKs have left the network and are stored in
the receiver’s buffer; they are not contributing to network congestion and so the network has
room for as many packets as have been correctly received. Inflating the cwnd ensures that the
sending rate is not impaired and avoids the TCP having to reenter the Slow Start state. After
having received an ACK for the segment that was lost, TCP sets cwnd := ssthresh, thereby
deflating the artificially inflated window, and continues in Congestion Avoidance mode.

This improvement was first implemented in TCP Reno.

2.3.1.3 TCP Cubic

First presented by Ha and Rhee [22] in 2008, TCP Cubic [22], [65] is a congestion control
scheme in which the growth of the congestion window is governed by a cubic function in
terms of the elapsed time since the last loss event. It is an enhancement of Binary Increase
Congestion control (BIC) [80], which uses a similar though more involved growth algorithm,
that aims to improve on fairness both in relation to TCP in general and flows with different
RTTs.

The congestion avoidance scheme of Cubic is an improvement over BIC in the following
two ways: First, Cubic retains the advantages of BIC’s cwnd growth directly following a loss
event; the window is quickly expanded up to the size of the previous equilibrium point,
where it stays for a prolonged period of time. Ha and Rhee [22] note that their growth
function is easier to analyze than the multi-staged growth function of BIC. Second, Cubic
grows its cwnd as a function of real time, as opposed to BIC which grows its window in terms
of the RTT. Ha and Rhee further show that their approach yields better TCP friendliness in
both long- and short-RTT networks.

TCP Cubic has been the default congestion control algorithm in Linux for a long time
already [65], replacing BIC; being the default congestion control in Linux, it is safe to say that
it is widely deployed in the Internet today. In our experiments Cubic is being used as the
baseline of TCP performance on the assumption that an arbitrarily chosen competing TCP on
the Internet will be Cubic.

2.3.1.4 Fairness

The mechanisms described in section 2.3.1 are all described using the key word SHOULD,
meaning they are not deemed mandatory. RFC 5681 [54] advises however that “a TCP MUST
NOT be more aggressive than [these algorithms] allow”. Given that this is the standard
for TCP implementations it must be assumed that other hosts on the network are using the
mechanisms set forth by the standard; if a new congestion control would allow a higher

11

sending rate the hosts using this new algorithm would attain an unfair share of network
bandwidth, and likely starve competing hosts.

This fairness can be quantified using a fairness measure, such as Jain’s Fairness Index [31].
In their paper, Jain et al. equate fairness in throughput to fairness in cwnd size, which relates
to the recommendations in section 2.3.1 for TCP implementations to never scale their cwnds
past what a baseline TCP would.

Jain’s fairness index is defined as follows:

J(x1, x2, . . . , xn) =
(∑n

i=1 xi)
2

n×∑n
i=1 xi

2 (2.1)

where x denotes the allocation of the given resource for every source n, normalized by the
expected fair share. If the resource is not to be shared equally, e.g. one user is allocated
20 % of the resource and another gets 80 %, then the values must be normalized according to
what is considered a fair allocation of the resource. When measuring the fairness of greedy
TCPs competing against each other no normalization is needed, as they are each expected to
achieve an equal share of the resource, or 1

n . Jain’s fairness index gives a value 1
n ≤ x ≤ 1,

where the resource allocation is fairest when the result is 1 and most unfair when it is 1
n .

Any two TCPs, regardless of implementation, competing against each other on the same
route should ideally result in a fairness index of 1, though the actual situation is more
complicated. Ha and Rhee [22] show that five different TCP implementations, including
Cubic which they are presenting, show little fairness towards a reference “regular long-term
TCP” on a 220 ms RTT link at speeds of 100 Mbit/s or more.

2.3.2 Bufferbloat

In the loss-based schemes for congestion control described thus far, the TCP sender is
continually probing the network for more bandwidth by attempting to send more and more
data. This mechanism of detecting congestion, not taking rwnd into account, relies on the
fact that network equipment has a finite amount of storage; the filling of these storage buffers
is equated with network congestion through tail drop. As far back as 1985, in RFC 970 [64],
Nagle was able to show in experiments that sufficiently large network buffers would cause
TCP to time out. In a more recent scenario, Beijnum [3] describes how, when downloading
a large file on a router with a queue of about 80 packets connected to a 128 kbit/s network,
web browser traffic became practically unresponsive owing to being forced to compete with
a standing queue of 10 seconds of packets in the router. The situation in which one flow (or
a few flows) monopolizes the queue is called Lock-Out; in the case of [3] the browser traffic
is disadvantaged because its cwnd is never allowed to grow sufficiently to compete with the
flow currently inhabiting the queue. This problem of network equipment coming equipped
with excessively large buffers than is generally warranted is called Bufferbloat.

Limiting the buffer size is not a viable long-term solution, as a main benefit of large buffers
is that they absorb bursts of packets that can be forwarded in silent periods between bursts [51].
Decreasing the size of network buffers in order to improve the steady-state performance of
TCP would be counter-productive, as these flows too exhibit bursty behavior at times and
benefit from having large buffers to absorb these bursts. Braden et al. [51] note that the size
of network buffers should reflect the intended maximum supported burst size. A possible
solution would be one that could signal congestion on a router to TCP senders before the
buffer fills up completely.

12

2.3.3 Active Queue Management

Tail drop is a passive queue management scheme, in that it takes no steps towards early
notification of congestion; as long as the queue is not full, nothing is done. Two other possible
approaches to passive queue management are random drop on full and drop from front when full,
neither of which solve the problem described at the end of section 2.3.25.

AQMs actively drops packets from the existing queue, even when not full, so that the TCP
senders currently inhabiting the queue are signaled of congestion before it becomes a serious
threat. In this way, a TCP that reacts appropriately to such loss will not lose out on their
fair share, while not excessively congesting the network. Braden et al. offer that the active
management of router queues would lead to fewer packets being dropped in routers, lower
delays for interactive services through smaller queues on average, and less severe lock-out
behavior. Gettys and Nichols [21] warn that, even today, networks without an effective AQM
may be vulnerable to congestion collapse. RED [19] is an example of an AQM which drops
or ECN-marks a percentage of packets when the queue reaches a threshold.

2.4 Delay-Based congestion control

Packet loss as a congestion signal is reactive in nature; it implies that the network is already
congested. Delay-based congestion control schemes use propagation delay to approximate
network congestion, a signal that can indicate congestion by way of increasing RTTs. The
delay is measured by the difference in time between when a segment was sent and the receive
time of the corresponding ACK; the idea is that the network implicitly signals increasing
congestion by virtue of expanding router queues, resulting in higher round-trip times. In
this way, delay-based congestion control schemes may react to congestion before it becomes
a problem, while a loss-based congestion control would delay backing off until the network
is already congested which can potentially exacerbate the situation.

2.4.1 Underlying Mechanisms

Generally, one of two possible delay-based congestion signals are used: RTT or One-Way
Delay (OWD). RTT is the easiest to use in already established networks as it requires changes
only in the implementation of the TCP sender; the sender only needs to keep track of the
timestamps of packets sent and compare them to the timestamps of their corresponding
ACKs. The downside to using RTT as a measure of delay is that any measurement made
this way will include the delay for both the outbound route and the inbound one. If the
return path is more congested, the sender TCP will overestimate network congestion. The
route between the hosts is additionally not guaranteed to be equivalent for both directions,
in which case the RTT-based delay measurement will not be representative of the congestion
on the outbound path.

Conversely, OWD measures the time between the packet being sent and the packet being
received on the opposing end of the connection. The measurement does not consider the
return path, consequently it is not affected by congestion on the return path. A requirement
for OWD-based delay measurement is that the TCP on the receiving end must support the
mechanism as it is not supported in TCP by default [54]. Subsequently, most algorithms in
use today that feature OWD are implemented as custom protocols over UDP, such as the first
implementation of LEDBAT [66].

5Though they both solve the Lock-Out problem [51].

13

The receiver calculates OWD as the difference between a timestamp received with each
incoming TCP segment and the receiver’s own system clock, which it then communicates
back to the sender. Because the system clocks of the two hosts will never be exactly equal6,
the delay calculated using this method can never be the absolute OWD on the outbound path,
but rather an estimation can be made based on the relative differences in the measurements
[78]. Low Extra Delay Background Transport (LEDBAT), for example, uses a simple OWD
measurement to establish a base delay by taking the minimum of all measured OWDs and
subsequently using this base OWD measurement as a base for other measurements — thus
all delay measurements done in LEDBAT are relative to the minimal OWD seen7.

Getting a reliable estimate of the base delay is paramount, as underestimating the network
congestion may lead to erroneously adding packets to an already congested network. Upon
entering an already congested network, getting an accurate measurement of the base delay
is nearly impossible as this measurement requires a packet to traverse an empty router
queue, which in a congested network may never happen. LEDBAT as specified in RFC 6817

[59] famously suffers from latecomer advantage [9], in which a flow arriving at a congested
link includes the existing queue in its base delay causing it to underestimate its congestion
contribution and causing the existing connections to see ever-increasing queues, which is
even acknowledged in the specification of LEDBAT itself. FLOWER, a newer development in
LBE transport protocols, aims to solve the aggressiveness and latecomer issues in LEDBAT
by employing what they call a fuzzy congestion controller.

An additional problem for delay-based congestion controls is the fact that the delay signal
is noisy. As described in section 2.3.2, Internet traffic typically occurs in bursts which
naturally leads to bursts in the delay signal as well. Any significant use of delay as a
congestion signal must therefore smooth this value somehow.

2.4.2 TCP Vegas

Vegas [6], [40, Version 4.16] uses RTT for its delay measurements, specifically the delay
as given by the minimum RTT measured during the previous RTT. The minimum delay
measurement seen for the current flow is used for the base RTT measurement, consequently
Vegas may potentially exhibit latecomer unfairness similar to that of LEDBAT.

The congestion control of Vegas operates by calculating the expected sending rate, more
specifically the cwnd, given the base delay and the current cwnd, and subtracting this from
the actual sending rate including queuing delay. The derived value represents the difference
between actual and expected sending rate as segments in the cwnd. The parameters α, β, and
γ are boundary values that govern the behavior of Vegas based on the previously calculated
difference in expected and actual cwnd, essentially the number of queued segments Vegas is
allowed to incur on the network. In Slow Start, identical to that of Reno, γ decides how much
congestion Vegas is allowed to induce during Slow Start and functions as an additional trigger
point for Congestion Avoidance. Outside of Slow Start, α and β together define three zones
of behavior depending on the segments of extra queuing, diff, Vegas infers it is putting on
the network:

diff < α: Allowed to put more packets in the network; increase cwnd.

6The system clock is affected by external sources, thus no two system clocks will ever be exactly synchronized
or advance at exactly equal rates. An attack has even been demonstrated using CPU heat to produce extra clock
skew in order to identify a hidden service on the Tor network [44].

7Using only relative values eliminates the need to counteract clock offset, where the difference between two
system clocks is constant. In RFC 6817 [59, appendix A.2], clock skew is described as being an insignificant issue
for LEDBAT.

14

diff > β: Incurring too much congestion; decrease cwnd.

α ≤ diff ≤ β: Sending at an acceptable rate; change nothing.

Brakmo et al. claim that Vegas “is able to achieve between 40 % and 70 % better throughput
than Reno” ([6]), yet further analysis has revealed that Vegas performs significantly worse
than competing loss-based traffic for tail drop routers with large buffers [23]. Vegas is
available in Linux as a kernel module.

2.5 Less-than Best Effort (LBE) Transport Protocols

Typical transport protocols attempt to utilize as much of the network bandwidth as possible,
while remaining fair in relation to its peers. In an ideal situation, ten TCP flows sharing a link
would each be guaranteed at least 10 %, or 1

n for n flows, of that link’s capacity; this would
yield the maximum utilization of available resources and would be considered fair.

A LBE protocol strives to remain unobtrusive to other, potentially more aggressive, TCP
flows. It will, in the same way as typical TCPs, attempt to utilize as much of the available
network resources as possible, but when it shares a link with a more aggressive TCP flow,
LBE will yield its share of the network bandwidth for the benefit of its competitors. As such,
a LBE protocol is a scavenger protocol, taking what available bandwidth it can but never
directly competing. The most prevalent use of these kinds of algorithms in the real world
comes from BitTorrent (which uses LEDBAT) [66] and Apple [2]; LEDBAT was thought to
carry 13 % to 20 % of internet traffic in 2013 [67]. LEDBAT [59], similarly to Vegas, adjusts its
sending rate according to how much extra delay it perceives it is incurring in the network, but
while Vegas targets a (very low) maximum number of extra segments of queuing, LEDBAT
instead aims for a maximum latency, at most 100 ms [59].

2.6 Deadline Aware Less-than Best Effort (DA-LBE)

A DA-LBE service is one that aims to provide LBE service while also including a notion
of timeliness. Meant for applications that do not require assurances of capacity or latency
yet would still like to provide a loose timeliness guarantee, a DA-LBE transport service
can transfer data in the background, not impacting quality-bound competing traffic, while
providing the loose timeliness guarantee of a soft deadline. This soft deadline target allows a
data transfer to arrive after the given deadline if the network conditions prohibited it reaching
the deadline in time. When needed, the DA-LBE service may transmit with aggressiveness
on par with standard TCP.

In this section we will explore a way to achieve DA-LBE service by adjusting an existing
TCP for our goals. This is done through the use of a DA-LBE congestion metacontroller, a
service on top of the existing TCP, which periodically adjusts parameters on the TCP flow
while it is transmitting.

2.6.1 Modeling the Price of Network Congestion

Tuning the perceived congestion in a congestion controller requires the mapping of congestion
signals, along with knowledge about one’s own impact upon the network, to a universal
price of congestion. For a loss-based congestion control, the kind of which is described in
section 2.3.1.1, the loss of packets is feedback from the network about the congestion resulting
from one’s own sending rate. With a solid understanding of the mechanisms of one’s own

15

congestion controller along with the congestion controllers in use in the network it is possible
to use the aforementioned feedback to put a price on the congestion a congestion controller
is creating in the network.

This thesis uses work by Hayes et al. [24], wherein the authors use Network Utility
Maximization (NUM) [33], [34], [68] to map congestion control specific prices to a universal
price [72] for congestion measurement. NUM frames the network congestion control problem
as an optimization problem, where the aim is to maximize the bandwidth utilization for each
traffic source. The Lagrangian Dual is used to solve this optimization problem, and it is
specified that the Lagrange multiplier can be used as a price of congestion for each link.
Congestion controllers could artificially scale these congestion prices to change their relative
perceived fair share of the network capacity.

Trichakis et al. [76] investigate a situation in which certain flows, for certain periods, may
have a minimum sending rate requirement. To conform to the set rate, senders may deflate
the measured congestion price, allowing them to send faster than their fair share warrants.
In the case of a DA-LBE service, Hayes et al. state that flows would usually need to inflate the
measured congestion in order to offer parts of their fair share to competing flows, but may
also choose to deflate the measured congestion when ramping up aggressiveness to reach
a deadline. Section 2.6 elaborates on exactly how this is done for the parts of [24] that are
implemented in this work.

2.6.2 DA-LBE metacontrollers

The default congestion controllers, the metacontrollers, provided with this thesis are based on
work by Hayes et al. [24]. Hayes et al. describe possible metacontroller implementations using
both a Model-Based Controller (MBC) and a PID controller, of which we choose to focus on
the MBC given that its tuning is easier.

2.6.2.1 Weight

The LBE sender is modeled as a traffic source that inflates its measured network price, q, by
some weight w ∈ [wmin, wmax]. The limits are defined such that when w = wmin the service
is transmitting at its lowest possible level of aggressiveness, as LBE as it can be; and when
w = wmax, it is sending at rates equivalent to a BE sender. Throughout the lifetime of the
flow this weight is changed in relation to the network conditions so as to reach q̂, the price
for the sending rate required to meet the deadline exactly. It is adjusted at regular intervals,
designated tn, of time Tw apart, with an additional longer term adjustment at time intervals
of Tφ. This longer interval is meant to adjust for long term trends in network congestion, the
general traffic on the network, while the shorter interval accounts for short term more volatile
changes.

The weight in the short term is determined mostly by the actual measured rate in
proportion to the target rate. The target rate, the lowest required rate that will reach the
deadline, is defined as:

ζ(tn, tD) =
data remaining

tD − tn
(2.2)

where tn is the nth time interval since the start of the flow, and tD is the deadline.
Equation (2.2) is used to derive an error term: εn−1, where εn−1 is the error for the

preceding interval to the one being predicted; the error in the previous interval is used to

16

extrapolate network conditions for the next interval. This error term is calculated as follows:

εn−1 =
ζ(tn−1, tD)− x̄(tn−1, tn)

x̄(tn−1, tn)
(2.3)

where x̄ designates the measured sending rate for the given interval. Note that ζ(tn−1, tD) is
the target rate of the previous interval; we can now compare the target to the actual measured
rate for that interval, deriving an error term by which the price of the next interval can be
corrected.

The error term from equation (2.3) is then used to derive the weight ŵ needed to reach
the desired price q̂ for the next interval tn:

wn =

[
qn−1

q̂n
(1 + εn−1)

]wmax

wmin

(2.4)

where qn−1 is the measured congestion price for the last interval Tφ.
Additionally, a growth limit is imposed on the weight calculation such that the model

never experiences upward jumps in aggressiveness; the model errs on the side of caution and
assumes increased congestion in one interval is indicative of congestion in the next one. The
weight growth limit is defined as follows:

ŵn =

{
wn−1 + lwwn if (wn − wn−1) > lwwn

wn otherwise
(2.5)

where lx is the limit defined for growth of x, in this case the weight w.
Equation (2.5) limits the growth such that the value still increases in relation to the actual

new value, but never excessively. If the new value is lower than the limit however, it is
accepted; it follows that sudden drops in aggressiveness are allowed, which results in the
model favoring LBE behavior when adapting to network congestion.

2.6.3 Model-Based Controller for TCP Cubic

Hayes et al. suggest two ways of altering the perceived network congestion for a loss-
based congestion control: Generating phantom ECN signals, or adjusting the decrease factor.
The former is a fairly straight forward way to signal congestion to the controller without
causing actual loss, the primary congestion signal, which also means that this method does
not trigger unwarranted retransmissions. However, as we can only alter the chance of
generating phantom ECNs on every interval Tw, the controller is stuck in that specific mode of
aggressiveness scaling for the entire interval; it is not able to take advantage of small periods
of lower network congestion.

The latter of the two mentioned methods of adjusting the controller aggressiveness is the
adjustment of the Cubic decrease factor, or β. This parameter is the factor by which the
controller reduces its cwnd in response to congestion; a lower β results in backing off more on
each congestion event. As this method of scaling aggressiveness is tied to actual loss events,
it follows that for periods of little or no congestion — the aforementioned periods of low
congestion — the model behaves as aggressively as it would have without LBE adjustments.
Adjusting β is in principle the most suited method of tuning the aggressiveness of loss-based
TCP flows like Cubic.

However, due to how Linux handles kernel modules, the β parameter can not be changed
once the connection has been set up, which makes adjusting β in the middle of a connection
impossible in practice8. Furthermore, tampering with module parameters changes the

17

behavior of all other processes that depend on that module; seeing as Cubic is the default
congestion controller for Linux8, this means that all TCP flows would share the β parameter,
effectively negating our efforts in making just one specific flow LBE. Phantom ECNs remain
the preferred choice for adjusting the perceived network congestion of loss-based congestion
controllers.

The algorithm for adapting TCP Cubic to become a Deadline Aware Less-than Best Effort
controller using phantom ECNs as an extra congestion indication is as follows:

Every Tφ: Update q
q← P[loss]

Every Tw: Update P(Phantom ECN)

ĉwnd← ζ(tn, tD)× RTT

q̂n ←
RTTmin

ĉwnd
4
3
(

4(1−β)
(0.4(4−(1−β)))

) 1
3

εn−1 ← equation (2.3)

wn ← with εn−1, q, and q̂n , calculate a weight using equation (2.4)

ŵn ← limit wn using equation (2.5)

P(Phantom ECN)← q
(

1
ŵn
− 1
)

Algorithm 1: Model-Based Controller for DA-LBE Cubic, adapted from
Hayes et al. [24, Fig. 3]

P[loss] is the probability of a loss event, or more precisely a general congestion event,
being generated in the network, interpolated from the network state in the previous interval,
defined as:

P[loss] =
I
N

(2.6)

Where I is the number of loss events for the previous interval and N is the number of packets
acknowledged for the previous interval.

An additional control is introduced that attempts to allow DA-LBE Cubic to make use of
periods of low congestion: The model tracks the time between real congestion events, τcong,
and prevents triggering phantom ECNs if it detects that a significant amount of time has
passed since real congestion was detected. This time between congestion events is averaged
over the previous few events using Exponentially Weighted Moving Average (EWMA) and,
in deciding whether to inhibit phantom ECNs, is scaled by a factor v so as to err on the side
of acting Less-than Best Effort rather than Best Effort.

In the DA-LBE kernel component, the phantom ECNs are applied in the following
manner:

8As of Linux version 4.13.0.

18

On every received ACK:
tcong ← time since the last real congestion indication

τcong ← average time between real congestion events

if tcong > v× τcong then

if rand() < P(Phantom ECN) then
Trigger a phantom ECN

Algorithm 2: Algorithm for triggering phantom ECNs in the DA-LBE
kernel component.

2.6.4 Model-Based Controller for TCP Vegas

The DA-LBE Vegas controller described by Hayes et al. [24] does not map directly to the
supported mechanisms in this work, or that of the DA-LBE kernel component. As described
in section 2.6.3, the adjustment of kernel module parameters is not reflected in the code
until the module has been reloaded; as the β approach was rendered invalid, so too is the
α-adjustment approach outlined by Hayes et al. unfit [24, Fig. 7]. Using similar devices for
determining the price of network congestion, we can adjust the perceived load the congestion
control is putting on the network by modifying the congestion signal, instead of adjusting the
α parameter. For DA-LBE Vegas, the congestion being put on the network is measured as the
difference between the average RTT and the base RTT, known as the queuing delay.

The method for determining the price of DA-LBE Vegas congestion is more involved than
that of DA-LBE Cubic. Vegas reacts both to delay and loss, and so both must be considered
for the model to be correct.

The network price calculation from equation (2.6) must be expanded as follows:

q← W(loss-reno)P(loss-reno)[cong] + W(delay)P(delay)[cong]

W(loss-cubic)P(loss-cubic)[cong]
(2.7)

For the delay-based TCP we define the I for P(delay) to be the number of times the cwnd
has been reduced as a result of the delay congestion signal, that is every time the Vegas
perceives that it is incurring more than β segments of queuing delay in the network. W(z) is
the reduction in cwnd for the congestion controller z. For the loss-based congestion controllers
Reno and Cubic, their W is the factor by which they reduce their congestion windows on loss,
respectively 0.5 and 1.0− β ≈ 0.3. For Vegas the amount by which its cwnd is reduced varies
with the size of the congestion window, as it is adjusted up and down by just one segment in
congestion avoidance mode. We use the mean factor by which the Vegas’s congestion window
is reduced as a result of the delay congestion signal, as reported by the DA-LBE kernel
component. The network price calculation outlined in equation (2.7) is thus the chance for
Vegas to experience a congestion event of any kind, normalized by the chance of a congestion
event for the type of congestion controller that is active in the network, in our case defined to
be Cubic.

The algorithm for adapting TCP Vegas to become a DA-LBE controller using queuing
delay adjustment is as follows:

19

Every Tφ: Update q
q← equation (2.7)

Every Tw: Update µ

d̂n ←
α

ζ(tn, td)

dn ← RTT− RTTbase

wbase ←
(

dn

d̂n

)−q

εn−1 ← equation (2.3)

wn ← wbase × (1 + εn−1)

ŵn ← limit wn using equation (2.5)

µn ← qŵn

if ŵn = 1.0 then
B← 1.0− 1

µn

Algorithm 3: Model-Based Controller for DA-LBE Vegas, loosely adapted
from Hayes et al. [24, Fig. 7]

where the resulting µ is the factor by which the queuing delay is adjusted. B is the chance
to ignore a loss signal, only enabled when w is 1.0 and thus at its most aggressive. α is the
Vegas parameter.

In the DA-LBE kernel component, the queuing delay adjustments are applied as follows:

On every received ACK:

d← RTT− RTTbase

RTT← RTTbase +
d
µ

Algorithm 4: Algorithm for adjusting perceived RTT in the DA-LBE kernel
component.

where d is the measured queuing delay. The measured RTT is changed in place and is
then passed on to the underlying congestion controller as usual.

2.6.5 Soft Deadline

The word deadline should be read as soft deadline when used in relation to DA-LBE data
transfers, the reason being that deadlines for DA-LBE flows are not, and can never be,
absolute. The two ways to make data transfer deadlines absolute are either ensuring that
all data is transferred in time for the deadline or, should the transfer not be complete in
time for the deadline, stop the data transfer. Neither of these approaches are appropriate
for DA-LBE: The former might require allowing the sending rate to surpass the fair share
allocated for each flow; a practice which, as described in section 2.3, is unsafe for the stability

20

of the Internet. The latter is not appropriate for TCP, as it departs from what an application
expects from a TCP service. It follows that the responsibility of enforcing an absolute deadline
should lie with the application, which also puts absolute deadlines out of scope of this work.

How the DA-LBE metacontroller reacts to the deadline is dependent on the model being
used: In the models used in the implementation provided in Libdalbe the behavior is tied
to a measured error term derived from the proportional difference in the measured actual
sending rate versus the target sending rate9. The value for the target sending rate is capped
at a reasonable maximum value, for which the model will adjust the flow to be as aggressive
as is allowed. After the deadline has passed this maximum target sending rate is kept, thus
the model runs at maximum aggressiveness and will compete fairly with other TCP traffic
until the end of the flow.

2.6.6 Previous work by Lars Erik Storbukås

Our work is built on top of a Linux kernel DA-LBE component engineered by Lars Erik
Storbukås as part of his Master’s thesis [70]. His component provides mechanisms in
the Linux kernel to gather statistics and adjust congestion signals for an arbitrary CC,
which we employ in Libdalbe to implement DA-LBE control mechanisms. The API for
interfacing with the component, provided through the standard Linux TCP header, as well as
a detailed breakdown of the provided functionality and use cases for Libdalbe can be found
in appendix B.

Storbukås’s goal, as stated in his sections Problem statement, Motivation, and Research
questions [70, section 1.1–1.3], was to “Impose LBE behaviour with a notion of time in order to
support soft deadlines by dynamically adjusting the aggressiveness when competing with BE
network traffic [. . .]” and “Support a wide range of CCs as opposed to attempt to develop a
one-size-fits-all CC [. . .]”. In his thesis he describes how he has implemented functionality in
the Linux kernel to achieve these goals. He concludes that his implementation of controlling
arbitrary CCs is successful in limiting the sending rate of his chosen CC algorithms, Cubic and
Vegas. We found that we needed to make changes to the kernel for the DA-LBE component
to operate as presented by Storbukås. In section 3.6 we describe the changes we made.

2.7 Summary

In this chapter we outlined how applications wanting to transmit data with a lower
bandwidth allocation, but still with certain timeliness demands, can achieve this using a
DA-LBE transport service. We described how we can create a DA-LBE service by tuning
an existing BE TCP to exhibit LBE-like behavior and changing its parameters during the
connection to maintain a target rate with the goal of finishing transmission within a soft
deadline. The DA-LBE transport services we create, one for TCP Cubic and one for TCP
Vegas, are metacontrollers that estimate the congestion in the network and their own congestion
impact by mapping congestion signals to a price and applying adjustments to the underlying
TCP to achieve DA-LBE service. DA-LBE Cubic is adjusted through generating phantom
ECNs, as if a router in the network had signalled congestion, while DA-LBE Vegas has its
perceived queuing delay adjusted.

9The sending rate required to reach the deadline on time.

21

22

Chapter 3

Libdalbe

Libdalbe is an interface to the DA-LBE statistics and control mechanisms in the kernel.
The library allows application developers to create and experiment with their own meta-
congestion controllers (metacontrollers), potentially providing LBE or DA-LBE service, without
having to massively adapt their applications. The metacontrollers, by virtue of adapting
actual TCP machinery conceptually residing in the Transport layer in the TCP/IP-stack,
shown in figure 2.1, do not suffer from the protocol overhead caused by implementing a
transport over UDP and can directly make low-level changes to the transport being controlled.
Implementations of model-based controllers enabling DA-LBE functionality for both TCP
Cubic and TCP Vegas are provided as proof of concept, along with testing and validation in
chapter 5.

3.1 Structure

Libdalbe is a library which allows utilization of DA-LBE enabled sockets. Figure 3.1 shows
how an application interacts with the library interface and the kernel.

DA-LBE sockets are created using a function similar to that of the standard socket
system call, where the developer must additionally provide a deadline and the expected
size of the data transfer. They must also provide the underlying TCP congestion control
algorithm to adapt, selected from a list of supported protocols, and optionally their own
custom metacontroller. The function returns a standard Unix file descriptor, through which
the developer can send data as they would any other file descriptor as shown by the call to
send in figure 3.1.

New sockets are handed to a daemon thread which performs the necessary meta-
congestion control operations asynchronously on behalf of the developer’s application. Each
time interval the daemon will update the DA-LBE information on a socket and call the
corresponding control function. The daemon will never block access to a socket; the developer
may continue to write to the socket regardless of the deadline, until they desire to close it.

Sockets must be closed through a library-provided function identical to the close system
call. This allows the library to clean up the resources used for the given socket and close it
gracefully with the actual close system call.

When the developer desires to cease using DA-LBE sockets, they must call the dispose
function, which will stop the daemon thread and dispose of allocated resources.

23

DA-LBE Library

open()

Application

send()

close()
Interface

socket()

Daemon

close()

DA-LBE
Metacontrol

Control Get statistics

Kernel

Figure 3.1: An overview of Libdalbe in relation to the user’s application,
the kernel, and the DA-LBE kernel component.

3.2 Basic Operation and Design Decisions

The intent of Libdalbe is to enable manipulation of low-level congestion control options in the
kernel at runtime. Our aim is two-fold: (1) Provide an easy way for developers to use DA-LBE
enabled data transfers, and (2) Allow experimenting with congestion control metacontrollers
using the runtime control provided by our daemon. Secondarily, Libdalbe provides an easier
interface for applications to access DA-LBE socket parameters than by manually executing
cryptic system calls.

3.2.1 Library

Implementing the interface as a C library allows Libdalbe to expose the existing resources,
the DA-LBE kernel component1, in the kernel without wrapping them for use in another
language. Libraries are trivial to import into C or C++ applications and, with a little extra
work, can be exported for use in a multitude of popular programming languages [11],
[15], [32], [79]. The same functionality provided in the library could arguably have been
achieved through a Linux kernel module, a separate process, or a service instead of a library.
These solutions would have allowed the same metacontrol functionality, but they would
all have required an interface which would again warrant a library for ease of use instead
of requiring Inter-Process Communication (IPC) or system calls. Implementing all of the
required functionality in one library without having to rely on external setup was deemed
the easiest solution both in terms of ease of use and ease of development.

Keeping the interface consistent with the standard socket interface (see section 3.4) was
an important consideration. As a result, the changes required in the source code to replace
a TCP connection setup with the functionality from this library are trivial to implement for
anyone familiar with Unix sockets.

1The minutiae of the control algorithm being adapted are not accessible due to limitations in the user-facing
Linux socket interface.

24

3.2.2 Daemon Worker Thread

The daemon operates as a separate thread inside the process of the user’s application. The
library is structured such that the main thread — the one belonging to the application using
the library — is not tied up in socket control operations. Interface functions simply start
or stop the daemon and manipulate the list of sockets on which the daemon operates; this
way we can guarantee that each socket is updated at precisely the right time, barring heavy
calculations in the control function.

A process or service based implementation would have provided the same type of safety.
In Linux, file descriptors can be passed between processes using UNIX domain sockets [36,
sec. 61.13.3], which opens the possibility for using shared sockets to facilitate this kind of
metacontrol. The daemon being in a different process would have made it possible to use
signals to wake the worker thread from sleep without the potential of needlessly interrupting
the main application and without hijacking signals from the developer, as described in
section 3.7.2. Sharing sockets between processes, however, is neither trivial nor portable and
it would still have made a library desirable for comfortable use by application developers.

The daemon in the finished implementation is very simple; it iterates over its list of open
sockets, sleeps until the next socket is ready, and performs the chosen metacontrol operation.
Locks are in place to make sure the daemon always works on a valid open socket, assuming
the connection has not broken down, and that the main thread cannot remove sockets while
they are being worked on.

3.2.3 Allowing for Custom Metacontrollers

Libdalbe facilitates the implementation of custom metacontrollers. The daemon exposes
underlying statistics for the active congestion control along with DA-LBE metrics, allowing
the metacontroller to reason about the state of congestion on the network and adjust the
congestion control accordingly. On opening a socket, the user may provide their own
functions, metacontrollers, to adapt the underlying congestion control. They may optionally
provide a function to explicitly initialize their own data structures which will be called from
the daemon, alleviating the need for writing thread-safe code for this purpose.

Though the implementations provided with Libdalbe are DA-LBE controllers, the custom
controllers need not be. The kernel control interface may be used to provide a general LBE
service, or a service not related to LBE at all. A long lived flow could for example be controlled
to disregard the deadline and provide LBE service only during working hours. Libdalbe
allows for creative use of the custom metacontroller functionality beyond that of the intended
DA-LBE purpose.

3.3 Interface Overview

The basic user facing interface contains four functions with which to open and close
communication sockets and initializing and disposing of the library resources in a graceful
manner. Following is a brief description of the interface along with the basic operation of its
functions. A detailed explanation of parameters, return values, and inner workings can be
found in appendix A.

• dalbe init Initialize Libdalbe. Must be called before using any of the other functions
of the interface, otherwise their behavior is undefined.

25

• dalbe dispose Dispose of the resources generated by Libdalbe. Should be called
after the application has finished using library resources, so unneeded memory and the
inactive daemon can be reclaimed.

• dalbe open Open a new DA-LBE enabled socket. A new socket is opened with which
the user can transfer data, and optionally operate a TCP metacontroller.

• dalbe close Close a DA-LBE socket previously created by a corresponding call to
dalbe open. Closes the given socket and disposes of its resources.

3.4 Sample Usage

1 int sock;
2 sock = socket(AF_INET,
3 SOCK_STREAM,
4 IPPROTO_TCP);
5 connect(sock, addr, addrlen);
6 while (not_finished)
7 send(sock, data_ptr,

data_remaining, flags);
8 close(sock);

Listing 3.1: Typical minimal con-
nection setup and usage of a
socket on the sender side of a
TCP connection (error handling
omitted).

1 int sock;
2 dalbe_init(NULL);
3 sock = dalbe_open(AF_INET,
4 "cubic", flow_size, deadline,
5 NULL, NULL, 0,
6 NULL);
7 connect(sock, addr, addrlen);
8 while (not_finished)
9 send(sock, data_ptr,

data_remaining, flags);
10 dalbe_close(sock, NULL);
11 dalbe_dispose(NULL);

Listing 3.2: Typical minimal con-
nection setup and usage of a
DA-LBE socket (error handling
and custom metacontrol omit-
ted).

Listing 3.2 shows a simple usage example of Libdalbe. Note that this example does not
show the use of custom metacontrollers, for which one would make use of the arguments
on line 5. The argument given NULL on line 6 is the optional buffer for error messages. In
comparison to listing 3.1, a simplified example of standard socket usage, DA-LBE sockets
require only initialization and disposal of the library in addition to a slightly altered function
call to create a socket. A complete example application transferring a message arbitrarily
many times is included in appendix F.

3.5 Custom Metacontrollers

Figure 3.2 shows an overview of an application that has set a custom metacontroller. The
application interfaces directly with the kernel for typical socket operations, i.e. the sending
and receiving of data, while the daemon handles DA-LBE operation. The figure also shows
how the custom metacontroller acts directly on the DA-LBE kernel component, while the
daemon handles the gathering of DA-LBE metrics.

The library is set up to facilitate controller algorithms which make their decisions largely
based on the two sets of measurements, one for the current interval and one for the preceding
interval. This structure rose out of a specific need in the controllers being planned for
implementation and was kept as a simple baseline; the measurements used by both of the

26

Daemon threadMain thread

DA-LBE Library

Daemon

DA-LBEKernel
Daemon gets

statistics

Application Custom
Metacontroller

Daemon calls
custom metacontroller

Metacontroller
sets parameterssend()

Figure 3.2: Overview of an application using a custom metacontroller. The
application in this figure has defined their own custom metacontroller and
passed it to the socket opening call in Libdalbe.

controllers, described in detail in section 3.5.2, are always taken from either the current or the
previous time interval. Developers needing a longer history of measurements are free to set
up the needed structures in the initialization function without needing to concern themselves
with potential synchronization issues arising from sharing memory with the daemon.

Interface functions are available to aid in setting parameters on the DA-LBE kernel
component. Libdalbe translates from the floating point values supported in the metacontroller
to the required values for fixed point arithmetic in the DA-LBE kernel compenent [70, section
3.4.1]. Libexplain [42] provides helpful error messages for the kernel interface.

Mechanisms such as setting the chance for a delay-based flow to ignore cwnd backoff on
loss events, meant to let DA-LBE Vegas compete on par with Cubic if needed, can easily
be tuned to out-compete any TCP. Libdalbe does not have the ability to check whether an
alteration to the TCP would result in unfair behavior, so the user must take extreme care not
to run unsafe experiments on the Internet.

3.5.1 Basic Usage by Example

Upon opening a DA-LBE socket, the user may provide a function for the daemon to call in
order to perform metacontrol. The function takes the DA-LBE library representation of a
socket as its sole argument. No further restrictions are imposed; no values are required to
be set, no callbacks are required to signal completion to the library, and no value need be
returned.

Listing 3.3 shows an example metacontroller where the chance of triggering a phantom
ECN is mapped to the proportion of time passed in relation to the deadline without any
further modeling. No auxiliary storage is required in this case and thus there is no need for
an initialization function.

In listing 3.4 more functionality is showcased in a contrived example of a metacontroller
which increases the phantom ECN probability exponentially with different rates after a set
limit, resetting after hitting a probability of 0.5. The controller needs state to be kept between

27

1 uint32_t deadline = 600;
2 void linear_phantom_ecn_scale(struct socket *sock) {
3 uint32_t secs = sock->time_remaining.tv_sec;
4 double ph_ecn_p = secs / deadline;
5

6 dalbe_set_phantom_ecn_probability(sock->fd, ph_ecn_p, 0);
7 }

Listing 3.3: An example custom metacontroller.

1 struct cc_info {
2 double ph_ecn_p;
3 };
4

5 void init_cc(struct socket *sock) {
6 struct cc_info *data = sock->info_now->data;
7 data->ph_ecn_p = 0.001;
8 dalbe_set_phantom_ecn_probability(sock->fd, data->last_p, 0);
9 }

10

11 void cc_func(struct socket *sock) {
12 struct cc_info *info_now = sock->info_now->data;
13 struct cc_info *info_prev = sock->info_prev->data;
14

15 if (info_now->ph_ecn_p > 0.5)
16 info_now->ph_ecn_p = 0.01;
17

18 else if (info_prev->ph_ecn_p > 0.3)
19 info_now->ph_ecn_p = info_prev->ph_ecn_p / 2.0;
20

21 else
22 info_now->ph_ecn_p += info_now->ph_ecn_p;
23

24 dalbe_set_phantom_ecn_probability(sock->fd, info_now->ph_ecn_p, 0);
25 }

Listing 3.4: A example of a metacontroller showcasing saved state and
explicit initialization.

calls to the metacontrol function, consequently the first state must be initialized, as is shown in
the initialization function defined on line 5. Listing 3.4 would have required the developer to
give sizeof(struct cc info) as the argument for user data size, allowing the library
to allocate memory for the metacontroller state.

3.5.2 Sample Implementations

Provided as part of Libdalbe are two sample implementations of DA-LBE congestion
metacontrollers for controlling TCP Cubic and TCP Vegas as described in section 2.6.3 and
section 2.6.4. Both metacontrollers work by applying adjustments in intervals of 10 s with
longer intervals of 60 s to adjust for longer-term network behavior. They are both MBC,
meaning that they model the underlying TCP based on metrics read from the DA-LBE kernel
component and apply adjustments to achieve the desired behavior. If the model accurately
represents the TCP under control, and if the current network conditions hold, the MBC should
be able to achieve the exact desired outcome of its adjustments.

28

The source code for both of the metacontrollers can be found in appendix F.

3.5.2.1 MBC TCP Cubic

The metacontroller for controlling TCP Cubic is very close to that of algorithm 1. The main
change made is scaling the longer-term network price by the Cubic β parameter, so instead
of using the chance of a loss event as the network price, we are effectively using the average
change in cwnd size — similar equation (2.7) from the DA-LBE Vegas MBC.

In section 2.6.2.1 we mentioned how the network price was clamped to a value range,
scaling from least aggressive, for lower values, to most aggressive for higher values. For our
implementation of a DA-LBE Cubic metacontroller, we clamped w to [0.0001, 1.0], and the
growth in w is limited to 5 % of the new value. The w value used in intermediate operations,
such as the limiting of the rate of growth, is always limited so intermediate calculations don’t
yield ridiculous results.

3.5.2.2 MBC TCP Vegas

The DA-LBE Vegas metacontroller is almost identical to the one described in algorithm 3,
with the notable addition of a growth limiter for φ. The growth in w for DA-LBE Vegas is the
same as the weight growth limiter in DA-LBE Cubic, but the φ growth limit is set to 1 % of
the new value. We want φ to be a fairly stable value, as it is a factor in the final value used for
adjusting the Vegas queuing delay and can therefore greatly impact the final DA-LBE Vegas
behavior.

3.5.3 Debugging Libdalbe

Correct behavior of the sample DA-LBE metacontroller implementations required extensive
debugging to get right. For this purpose we made the metacontrollers output all of their
registered statistics and calculated socket parameters for each interval. This information
is used in chapter 5 to correlate DA-LBE statistics with flow features seen in the simple
throughput graphs, helping explain the behavior of Libdalbe.

Figure 3.3 shows an example of the debug graphs for a DA-LBE flow2. Each graph
represents separate statistics, with related values shown in the same graph where the scales
allow.

• Figure 3.3a shows the metacontroller weight parameter on the left axis and the
probability of triggering phantom ECNs on the right. The phantom ECN probability
is inversely related to the weight; a higher weight indicates that the TCP should send
more aggressively (less LBE-like), which is achieved by lowering the phantom ECN
probability.

• Figure 3.3b shows the two network prices that the DA-LBE Cubic metacontroller utilizes
to achieve DA-LBE behavior. The line labeled “Measured” is the measured price of
congestion on the network; a higher measured price indicates there is more congestion.
The “Model” network price is an estimation of the network price that will allow

2 This set of graphs is generated from the run described in section 5.1.1, though used here only as an example.
Analysis follows in chapter 5.

29

600 800 1000 1200 1400 1600
0.00

0.25

0.50

0.75

1.00

W
ei

gh
t

Weight
Phantom ECN p

600 800 1000 1200 1400 1600
10 5

10 4

10 3

10 2

Ne
tw

or
k

pr
ice Measured

Model
Proportion

600 800 1000 1200 1400 1600
Time

30

40

50

60

RT
T

m
s

600 800 1000 1200 1400 1600
0

50

100

Pa
ck

et
s

Congestion window
Slow start threshold
Estimated cwnd

600 800 1000 1200 1400 1600
0

10

20

Ph
an

to
m

 E
CN

s /
 in

te
rv

al

0.00

0.01

0.02

0.03

Ph
an

to
m

 E
CN

 p

0.0

0.2

0.4

a)

b)

c)

d)

e)

Figure 3.3: Debug graphs for Libdalbe DA-LBE Cubic, containing
metacontroller statistics for each interval the flow was active.

30

Libdalbe to achieve its target rate. The proportion between these two, plotted on the
right axis, is used to derive the weight3.

• Figure 3.3c shows the registered RTT, read from the underlying TCP socket. The value
is a slightly smoothed running average. This RTT reading is available through default
socket operations.

• Figure 3.3d shows the congestion window and slow start threshold of the TCP
congestion controller in packets. The line labeled “Estimated cwnd” represents the
estimated congestion window used to derive the model network price in figure 3.3b.

• Figure 3.3e shows the amount of phantom ECNs triggered from each interval. This
value can be approximated as the product of the current sending rate and the set
phantom ECN probability; plotting it allows us to ensure that the phantom ECN
probability is set and acting correctly.

3.5.4 Error Handling

Libdalbe handles errors that occur while performing socket related activities as well as errors
resulting from the user supplying invalid parameters. Out-of-memory errors are currently
not handled given the simplicity of the library and the magnitude of the heap memory used.

All library functions return a negative value on error, and an error message is copied into
an optional pointer provided by the user. Where applicable, the negative return value is the
one returned from the invocation of a system call or standard library function as part of the
standard library operation. This should help experienced users in debugging unexpected
behavior.

3.6 Changes in the Kernel

Although not originally part of this thesis, some elements of the DA-LBE kernel modifications
did not work as they should have and needed to be fixed before proper DA-LBE operation
could be achieved. The fixes are mostly workarounds to have the DA-LBE kernel component
function just well enough for our purposes4.

3.6.1 Generation of Phantom ECN Signals

The models that employ phantom ECNs as a price adjustment scheme are predicated on the
probability of triggering an ECN on every ACK. In the DA-LBE kernel component this was
not implemented as specified in its documentation; the phantom ECN calculation was being
done on every ACK only if the slow path of the acknowledgement handling code was entered.
This caused ECNs to only trigger on certain non-typical ACKs, resulting in a much higher
sending rate than the metacontroller was aiming for. Fixing this issue required ensuring
phantom ECNs could also be generated on the TCP fast path.

Additionally, there was a bug in how the phantom ECN probability scaled for ACKs
that acknowledged multiple segments. In such cases it is mathematically sound to multiply
the probability by the amount of segments being ACKed; however, in the slow path case,

3 Together with the “error”, the proportion between the target and actual sending rates. Neither the error, the
target rate, nor the measured rate are shown in this set of debug graphs. The debug graphs used in chapter 5 are
presented together with the throughput graph, a context in which rates are not needed as extra debug information.

4Supervisor David Hayes helped in the identification and fixing of the bugs mentioned here.

31

ACKs may occasionally acknowledge no packets at all. Acknowledgements for zero packets,
probably DupACKs, are still valid signals of congestion and must generate phantom ECNs;
the fix was a simple check to set a minimum of one packet ACKed for the probability
calculations.

3.6.2 Calculation of EWMA

The phantom ECN adjustment mechanism requires tracking the average time between
congestion events, used to aid in leveraging free bandwidth in the absence of congestion.
For this purpose the DA-LBE kernel component averages the delta between each received ack
using an EWMA with a weight specified by the user. The implementation had three errors,
two of which impacted our DA-LBE mechanisms:

1. The calculation requires calculating the difference between two unsigned integers. This
diff -variable was defined as also being of an unsigned type which, for the case where the
new value to be averaged is smaller than the existing value, means that the difference
variable underflowed. The error manifested itself as an oscillation in throughput, as the
phantom ECN machinery would routinely be turned off given massive EWMA values.
We made all relevant variables signed.

2. Milliseconds were being employed for the calculation of the moving average; for our
use case this is not granular enough. In testing we found that the rounding error
introduced by fixed point arithmetic proved too significant for the time scales required,
where calculating the difference between the current average and the new value results
in single digits of milliseconds or less. We made the calculations use nanoseconds,
which will be valid for as long as the timestamp can be represented in 263 bits.

3. Finally, there was a faulty check for whether the user had set a custom weight for
the EWMA calculation. The check was for an unsigned variable being either zero or
not-zero, which will always be true. We removed the check, but added a check to skip
calculations if the weight is ever set to zero; in this case the average value never changes.

3.6.3 Inflation of Queuing Delay

Another unsigned underflow error was found in the mechanism for adjusting perceived
queuing delay in delay-based controls. In addition, the calculation was inverted in terms
of the set congestion price: A high congestion price adjustment, µ values greater than 1.0,
should lower perceived delays in the underlying TCP, but this was initially not the case and
we had to flip the calculation.

3.7 Shortcomings

In this section we describe some weaknesses in libdalbe and features that could not be
implemented.

3.7.1 Locks and Blocking

Multithreaded code brings with it a multitude of complications. Concurrent access to shared
state, potential race conditions, and signal handling are but a few possible problems one must
tackle. Libdalbe is conservative in its use of multithreaded functionality. It does not utilize

32

signals, application programmers have to implement their custom metacontrollers as callback
functions, and all shared state is tightly locked. Still, some threading problems persist in the
final implementation.

Information about each opened socket is stored in a linked list which is shared with the
daemon. The list is sorted in chronological order based on the time until the next metacontrol
update; the daemon only ever has to sleep for the next socket in the list. The time interval is
hard-coded, resulting in a minimalistic update procedure: Given that the time until the new
socket must be worked on is always 10 seconds in the future, the new socket can always be
put after the socket with the current longest wait time. This solution requires no magic tricks
involving signals or polling in the daemon to check for new sockets as the new socket will
never need updating before the current sleep cycle is finished.

Given the simplicity of the socket list, the daemon sleep mechanism, and not making use
of signals, Libdalbe can not wake the daemon once it is sleeping in wait of a socket update.
Consequently, disposing of Libdalbe takes up to ten seconds as the main thread has to wait
for the daemon to wake in order to terminate it gracefully5. For our use case this did not
pose a major problem and time constraints towards the end of the project have led to it never
receiving further attention. The ideal fix for having to wait for the daemon is waking it using
signals — which brings with it significant problems — or sleeping in a trivial loop of e.g. 1

second at a time until the socket is ready for operation, checking for the shutdown condition
on each wake.

Another potentially major problem is inconsistent state reported from the DA-LBE kernel
component. Sockets should be safe for multithreaded use6, but exporting data to user space
from different threads might yield incorrect data. In an attempt to mitigate such a problem,
should it exist, Libdalbe only ever performs socket operations in the daemon thread.

3.7.2 Signals and Custom Intervals

Signals are a way for applications to send each other or themselves notifications; by way
of the kill system call for signalling a process or process group or, more relevant in the
case of Libdalbe, pthread kill to signal a thread in the same process. An application may
register a disposition, a function to call or a default action to perform upon receiving a signal;
this disposition is active for all threads in the process. Dispositions can be ignored on a
per-thread basis, but one cannot define multiple dispositions for one signal.

Signals can interrupt threads inside blocking system calls, meaning a thread blocking
on a sleep call will be woken up to handle the signal. They are a possible solution for the
problem of waking the daemon either for graceful shutdown or for operating on a newly
added socket. For Libdalbe to be able to support custom update intervals the daemon must
be able to dynamically wake from sleep to handle new sockets.

Linux defines up to 32 signals, not all of which support custom handling [35, signal(7)].
Two signals are open for developers to define for their own use, as well as up to 32 realtime
signals (depending on standard library implementation) as defined by POSIX [27, sec. 2.4.2].
Given that there is a fixed limit on active signals and that each signal can have only one
disposition, library developers should not claim signals as their own; they cannot be certain
the signal is not in use by the user of the library.

A solution fit for production use should use an existing, extensively tested, library for
time-keeping purposes. A possible candidate would have been Libuv [39]; a “support library

5The daemon is shut down gracefully by joining the thread.
6 As specified by POSIX [27, sec. 2.9.1], in which neither getsockopt nor setsockopt are explicitly listed

as thread-unsafe.

33

with a focus on asynchronous I/O” which supports firing events on a timer, socket updates
in the case of Libdalbe.

3.8 Summary

This chapter introduced Libdalbe. Libdalbe is a C library that gives access to DA-LBE control
mechanisms in the kernel, and facilities interacting with these on a per-flow basis through
a metacontroller. Application developers can utilize sockets opened through Libdalbe the
same way they would standard Berkeley sockets in Linux, and the API is structured such that
converting from using standard sockets to using Libdalbe sockets requires minimal effort. A
daemon thread updates flow statistics on each socket and performs metacontrol operations as
defined by the given metacontroller. Default metacontrollers are provided which implement
a DA-LBE transport service using either TCP Cubic or TCP Vegas.

34

Chapter 4

Testing Setup

In this chapter we describe the environment in which our tests are run, and how we
orchestrated the testing of Libdalbe. The goal in testing Libdalbe is verifying that the library
interface works as described in chapter 3, with focus on the interaction with the DA-LBE
kernel component. Verifying that the library performs correctly is done through testing that
the sample metacontroller implementations behave similarly to the metacontrollers described
by Hayes et al. [24].

We test on two setups: A local test bed with an emulated dumbbell setup, and over a
connection to Cork, Ireland over the Internet. The former is described in detail in section 4.1
and the latter is described in section 4.3. The local test bed is a controlled environment in
which we can perform rapid testing during development to identify and fix bugs and finally
confirming the correct operation of Libdalbe. The setup consists of five computers, with
separate network interfaces for management and testing, networked together with four of
them acting as edge nodes and one emulating the delays and bottlenecks of a real larger
network. Testing over the Internet will prove whether Libdalbe performs as expected in a real
environment.

4.1 Test Bed Setup

Sender A

Sender B

Router

Receiver A

Receiver B

Figure 4.1: Simplified overview of the connections in the physical test bed
setup.

The network situation we are targeting is an approximation of a real-world network, in
which hosts are communicating with each other using a standard loss-based TCP while we
are experimenting with new congestion controllers on a pair of nodes. A good configuration

35

for this kind of test scenario is that of the dumbbell topology, in which two networks
are connected by routers and the nodes in each network share the same router. When
communicating across the networks, all of the nodes in each network must share the resources
of the one connecting link. In testing, this one connecting link is used to shape traffic flowing
between the networks, so as to emulate the behavior of a real network.

As shown in figure 4.1, our test bed consists of two pairs of nodes, pair A and pair B.
These nodes will be communicating through different means depending on the configuration
for each test. Nodes in pair A will be communicating solely through communication channels
opened through Libdalbe, while the nodes of pair B primarily communicate using BE Cubic.
Pair B is responsible for all background traffic, including up to several TCP flows, and
additionally random background noise meant to alleviate the potential effects of global
synchronization.

All nodes are directly connected to the router using 1 Gbit network links with negligible
propagation delay. For the final test set up, rate limiters are set up and a propagation delay
is added to emulate a real network. This is further described in section 4.2.

4.1.1 Setup specifics

An exact description of the physical equipment and operating system setup for the test bed
is found in tables 4.1 and 4.2.

4.1.1.1 Test Bed Hardware

Processor specification

Node Model Frequency Memory Storage media Network interface

Sender A AMD Athlon 64 X2 4800+ 2.50 GHz 2 GB Seagate ST3320620AS Broadcom BCM5722

Sender B AMD Athlon 64 X2 4200+ 2.20 GHz 4 GB WDC WD1600JS-60M Broadcom BCM5722

Receiver A Intel Core 2 Duo E4600 2.40 GHz 4 GB Seagate ST3250310AS Intel 82571EB
Receiver B Intel Core 2 Duo E8400 3.00 GHz 2 GB Seagate ST3250310AS Broadcom BCM5722

Router Intel Core 2 Duo E6750 2.66 GHz 4 GB Seagate ST3320620AS Intel 82571EB

Table 4.1: Test bed hardware specifications.

There was a real concern that both the processors and the hard drives present in the
sender nodes, as shown in table 4.1, were not powerful enough for our experiments. In
testing, however, both of the nodes proved powerful enough to generate and send test data as
well as capturing packet data on the fly. Compression is employed to ensure data gathering
is not limited by slow hard drives.

The network interfaces named in table 4.1 are the ones connecting the test network, as
shown in figure 4.1. A separate set of network interfaces connects the test bed machines to a
management server, through which the test bed can access the Internet.

4.1.1.2 Test Bed Operating Systems

Table 4.2 shows the operating system set up used for the test bed. All machines were first
set up with Debian 9, after which the DA-LBE sender, sender A, was reconfigured with a
custom kernel containing the DA-LBE kernel component and the router was reconfigured for
better rate limiter performance, the latter of which is further elaborated on in sections 4.1.2

36

Operating system

Node Distribution Kernel release Kernel version Modifications

Sender A Debian 9 4.13.0-rc1 net-next [41, commit 736b9b9c506e] DA-LBE kernel compenent
Sender B Debian 9 4.9.0-5 Debian 4.9.65-3+deb9u2 (2018-01-04)
Receiver A Debian 9 4.9.0-6 Debian 4.9.82-1+deb9u3 (2018-03-02)
Receiver B Debian 9 4.9.0-5 Debian 4.9.65-3+deb9u2 (2018-01-04)
Router Debian 9 4.9.65 1 kHz, no dynticks

Table 4.2: Test bed operating systems and kernel specifics.

and 4.2.3. The custom DA-LBE kernel, elaborated on in section 4.1.2, present on Sender A is
based on a branch of the Linux kernel containing future changes to the network stack.

The exact kernel version for the router node was not registered before recompiling with
custom options. Given the reported kernel release, it should be safe to assume that the
kernel, excepting custom options, matches that of the B nodes. Receiver A was updated once
in conjunction with debugging rate limiter performance and is on a slightly newer version of
Debian.

4.1.2 Kernel Modifications

Both the sender of pair A and the router require modifications to the kernel for proper
operation. The sender requires a kernel containing the DA-LBE kernel component; a set
of modifications based off of the net-next1[41] Linux kernel branch. The router, however,
requires more subtle changes.

A higher tick rate is required for rate limiters to function properly on Linux. The tick
rate is the rate at which the operating system will wake to perform administrative tasks; for
some rate limiters, such as Hierarchical Token Bucket (HTB) [13], the tick rate governs how
often packets can be dequeued for sending. Linux distributions meant for use in desktop
computers, such as the Debian Linux we are using, are typically using a 100 Hz or 300 Hz tick
rate by default. Additionally they may be configured to use dynticks, a timer mode in which
the kernel is not woken for administrative tasks during idle periods to limit power usage.

The Linux manual page for HTB [35, tc-htb(8)] notes that in order to limit the sending
rate to an average of 10 Mbit on a kernel with a tick rate of 100 Hz, a burst allowance of
12 kB is required; meaning packets are allowed to be dequeued for sending 12 kB at a time.
Behavior of this kind does not occur on a physical link of the same maximum rate. Given
that the network links connecting the test bed support speeds of 1 Gbit and the rate is capped
at 100 Mbit, detailed in section 4.2, packets may in bursts be delivered at up to ten times
the speed which would have been physically possible on a real setup with 100 Mbit network
links. This burstiness is thus a potential problem for both test accuracy and the stability of
the DA-LBE kernel component and must be diminished where possible. The kernel on the
router machine has been configured to tick at a rate of 1 kHz, the maximum configurable tick
rate in Linux [35, time(7)], and dynticks have been turned off.

1Net-next contains changes to the network stack, often experimental, that have yet to make it into the main
Linux kernel.

37

4.1.3 Testing with a Known Environment

Linux employs several techniques to save power or increase the perceived responsiveness of
the system, some of which may have an impact on the integrity of our tests. It is important
that the tests are reproducible, to the extent that a network test allows; for tests on the Internet
this is impossible, but the test bed can be tuned so that the environment is constant between
tests. Following is a list of the parameters that need to be set for every test to operate in the
same environment.

• Pause frames [25] are a type of Ethernet frame (see section 2.1.1) that a node can send
to signal that it is overwhelmed. Included in the message is a count stating for how
long to pause. Should the networking equipment used in testing send pause frames, we
might get spikes in packets that would not be equal for every test run. To the best of
our knowledge, the network interfaces employed in our test bed do not support pause
frames, but they are explicitly turned off in case our reporting tools return wrongful
information.

• Interrupt coalescing [43] is the act of holding off on an interrupt, such as the notification
of data arriving, until more arrive in an effort to reduce system load. Coalesced
interrupts might, as pause frames, introduce burstiness that could be hard to account
for or reproduce. This mechanism can be toggled on a per-interface basis and is turned
off for all interfaces used in testing.

• Segment offloading [75, networking/segmentation-offloads.txt] is a mecha-
nism for the operating system to hand off unnecessary work to the network hardware.
If a user tries to send a large chunk of data the operating system would need to split
the data into segments of a size suitable for the network; segment offloading hands
this work off to the network card to save on CPU resources. Conversely, the network
interfaces can also pack segments back together for the kernel on the receiver.

Segment offloading can alter the timing of packets logged using our packet capture
tools and may cause unpredictable or unreproducible behavior. The mechanism can be
toggled on a per-interface basis and is turned off for all interfaces used in testing.

• tcp no metrics save [35, ip-tcp metrics(8)] is a parameter for the Linux TCP
machinery to cache information about previous TCP flows to each destination host.
The cache keeps metrics that allow for a faster handshake and information about the
route such as average RTT, RTT variance, reordering on the route, and the previous
ssthresh. The tcp no metrics save parameter is system-wide and is disabled
using a file in the /proc file system on all test bed nodes.

• Network Time Protocol (NTP) [55]–[58] keeps the system clocks of the test bed nodes
synchronized. NTP gradually skews the system clock into synchronization with an
Internet NTP server. System clocks must stay in sync so that packet data captured on
separate machines can be merged; running an NTP service while testing may render
the captured data worthless. Consequently, we turn NTP on between test runs to keep
the clocks synchronized and turn it off during testing.

4.2 Emulation

Ideally we want our tests to run on a real dumbbell test bed setup. Only five machines are
at our disposal; we must make the best of what is available. Emulation must be employed to

38

achieve the desired properties of a dumbbell topology that are missing in the physical setup.
For testing Libdalbe we want an RTT approximating that of an arbitrarily defined typical

data transfer. A round trip time of 30 ms is chosen, representing a transfer between Oslo and
somewhere in mainland Europe2. The capacity of the link should be representative of what
could be considered a good Internet connection3 but must also be low enough for the test bed
machines to record all data without loss; 100 Mbit is arbitrarily chosen as a good bandwidth
limit. The router’s buffer size should be equal to the Bandwidth Delay Product (BDP), which
should be large enough to allow TCP to achieve full bandwidth without being excessively
large: 100 Mbit/s× 30 ms = 250 packets.

4.2.1 The Virtual Setup

Receiver NetworkSender Network

Sender A

Sender B

Router

Receiver A

Receiver B

Router

Figure 4.2: Simplified overview of the virtual test bed setup. Nodes in
each separate network are connected to their own router which is in turn
connected to the router of the other network.

Figure 4.2 shows the emulated network setup of the test bed. Edge nodes, the senders
and receivers, are connected directly to their local router by 1 Gbit network links. The routers
themselves are connected by a 100 Mbit network link with a propagation delay of 15 ms.

Due to a quirk in the network emulation, described in section 4.2.2, traffic between nodes
in the same emulated network is delayed in the same fashion as the inter-network link.
Consequently nodes cannot, for testing purposes, be considered to be in the same network.
None of our tests depend on traffic between nodes in the same network; this traffic being
delayed is not detrimental.

4.2.2 Router Node Emulation Specifics

All emulation is done in the test bed node termed the router node, the node to which the other
four machines are connected. An overview over the emulation setup on the router node is
shown in figure 4.3.

Linux offers software routing facilities through the Iproute2 [74, networking/iproute2][35,
ip(8)] package, but additional measures were needed for our special use case of selectively
sending traffic to a shared queue. The shared queues are set up as virtual network interfaces
using IFBs [74, networking/ifb]. Network traffic from the nodes is filtered to one of two
IFBs based on the source and destination network; the two virtual interfaces each handle traf-
fic going in one direction between networks. Each of the virtual interfaces is equipped with

2The RTT to google.de as measured from Fornebu, Akershus, Norway is roughly 28.8 ms.
3Telenor, a Norwegian ISP, advertises speeds of 100 Mbit/s (bidirectional) as suitable for multiple users. The

250 Mbit/s package is targeted at “families that need extra network speed” [17].

39

Router node

Sender A

Sender B

Receiver A

Receiver BRate limiter
100Mbps

Rate limiter
100Mbps

Sender Network Receiver Network

Delay
15ms

Delay
15ms

Figure 4.3: How the network is emulated in the router. Messages that
cross the network boundary share a bottleneck with other traffic from the
source network, as denoted by the different colors for each network and
their paths through the router. Note that the colors in this figure denotes a
different grouping than that of figures 4.1 and 4.2.

a rate limiter and a fixed size buffer housing a FIFO (tail drop) queue. The addition of prop-
agation delay is done on the physical interfaces connecting the edge nodes using Netem [74,
networking/netem][35, tc-netem(8)]. Delay is added for outgoing traffic to all nodes
regardless of filtering as Netem showed inconsistent performance when applied only to the
virtual interfaces, described in section 4.2.5.

4.2.3 Rate Limiters

We are aiming to perform testing on a network with a virtualized 100 Mbit network link. The
underlying hardware could not be set to operate in native 100 Mbit mode4which might have
been the best solution for rate limiting. The rate limit must be done through rate limiting
software.

Rate limiting in Linux is often done through the use of token bucket algorithms such as
Token Bucket Filter (TBF) [35, tc-tbf(8)] or HTB [13], [35, tc-htb(8)]. Token bucket
algorithms work by having each packet to be sent pay for its size in tokens, spending one
token for each byte. A packet FIFO queue is kept, along with a queue for tokens called the
token bucket. The token bucket is replenished at a set rate, resulting in packets being dequeued
for sending at the same rate as tokens are refilled.

The size of the token bucket, typically called burst in the documentation, determines how
many tokens can be spent instantaneously should an incoming packet encounter an empty
packet queue. TBF and HTB both replenish tokens based on the kernel tick rate; to achieve
the desired sending rate the burst parameter has to be tuned so that enough bytes can be
dequeued for sending every tick. These algorithms are inherently bursty, depending on the
interval at which packets can be dequeued.

Another more advanced alternative for rate limiting is that of Hierarchical Fair Service
Curve (HFSC) [69], [35, tc-hfsc(7)]. HFSC allows giving different service to different
classes of data: Data classified as realtime are given bandwidth and delay guarantees, where
excess bandwidth is distributed evenly among the remaining classes. HFSC is more complex
than warranted by the simple purpose of applying a classless rate limit to all traffic. The
exact method by which HFSC dequeues packets is different from the token buckets; though
we cannot claim to know exactly how this is handled, it can be shown that these differences

4 The interfaces list 100baseT/Full as a valid mode of operation, “Full” specifying full-duplex. When
attempting to activate this mode the interfaces would fall back to half-duplex operation.

40

exhibit more favorable characteristics for correct emulation. The characteristics of each rate
limiter are described in section 4.2.4.

4.2.4 Determining the Best Rate Limiter

Working with a 100 Mbit rate limit on network links supporting 1 Gbit is not a perfect
representation of a real slower link. The documentation for both of the token bucket
algorithms is clear on the fact that they need to dequeue packets in bursts. It would seem
that the Linux Traffic Control (TC) network in general cannot operate faster than the kernel
tick rate.

HTB is chosen as the baseline rate limiter. We test HFSC against the baseline, along with
different options where applicable. For our use case, all classless traffic, the options for HFSC
are limited.

HTB, like HFSC, has options allowing for applying different rates to different classes of
traffic. Most of its options are meant for the cases where excess bandwidth can be split
amongst subclasses of traffic, but it is not clear how these same options operate when only
working with one class of traffic. We set rate to 100 Mbit, the maximum allowed transfer rate;
in practice the algorithm will target an average of this rate.

The two options of real interest are burst and cburst; both of which govern the size
of their respective token bucket. The burst parameter allows child nodes to temporarily
send as fast as their parent, primarily meant for use with multiple classes where subclasses
must share bandwidth. cburst however sets the size of a token bucket whose tokens allow
sending at infinite speeds, essentially the maximum speed of the network interface. Exactly
how these parameters work when set together is not thoroughly documented.

Another important consideration is the source of our packet timestamps. The network
interface hardware listed in table 4.1 does not provide hardware timestamped packets (or the
kernel driver does not support them), so the timestamps we use in our tests are gathered
from the Linux kernel which, as mentioned in section 4.1.2, are affected by the kernel tick
rate. Gathered timestamps being affected by the kernel tick rate probably affects the test
results in table 4.3 significantly, but for our test bed there is no way to remedy this issue.
Better hardware, or driver support, is needed for more accurate results in future work.

4.2.4.1 Burstiness

We set up a test to compare different combinations of parameters for HTB and compare them
against HFSC. The test consists of one sender transferring data to one receiver in the other
network, crossing the router node and its rate limiters. The test is run ten times, with each
run lasting five minutes.

We define a burstiness-metric by which we will judge the rate limiters: For a bit rate of
100 Mbit/s and a Maximum Transmission Unit (MTU) of 1500, the average time Δ between
packets arriving should be 120 µs. A packet is considered bursty if it arrives after less than
Δ time has passed since the last one was received, meaning it arrived faster than physically
possible on a real 100 Mbit connection. A bursty packet and its immediate predecessor are
part of a run of bursty packets. Finally, we define runs of bursty packets of length 3 or more
to be a burst of packets.

Figure 4.4 shows how packets arrive on a rate limited 1 Gbit/s link. The green packets and
arrows represent perfect spacing between packets, theoretically leading to an even 100 Mbit/s
rate as exemplified by the wholly green flow of packets on the second line of the figure. The
purple packets and arrows are arriving slower than the perfect 120 µs limit, but this is to be

41

Bursty region (b)Bursty region (a)

120 μs 120 μs 120 μs120 μs

120 μs

120 μs

> 120 μs

< 120 μs < 120 μs

120 μs

120 μs

120 μs

> 120 μs> 120 μs

< 120 μs

Figure 4.4: Example of burstiness. The blue packets show how packets
would arrive over a real 100 Mbit/s link, where one packet takes 120 µs to
receive and packets immediately follow each other. The other packets are
examples of a rate limiter being applied to a 1 Gbit/s link, where packets
take 12 µs to arrive and artificial pacing of packets enforces the 100 Mbit/s
limit. The grey vertical lines are 120 µs-markers. Note that the times listed
on the arrows represent the time between each packet being fully received,
thus the 12 µs needed to actually receive the packet are not counted.

expected when the link is not utilized at full capacity. The red packets are bursty, with the red
arrows denoting a too-short interval between the packets arriving. The two bursty regions are
runs of packets that arrive too quickly, including the immediately preceding packet. The first
bursty region, figure 4.4a, is not a burst because it only consists of two packets. Figure 4.4b,
the second bursty region, is an actual burst because it spans three packets. All of the red
packets in figure 4.4 would be marked as bursty, but only the second bursty group is counted
as a burst.

4.2.4.2 Rate Limiter Burstiness Test Analysis

For HTB, the burst parameter is not expected to show differing behavior from the norm,
but we expect the cburst parameter to affect the ability of HTB to achieve and enforce the
set sending rate. With cburst allowing bursts of infinite speed however, it is also expected
that this parameter leads to more recorded bursts as per our definition. How HFSC fares we
cannot guess at in advance, not knowing its internals.

Table 4.3 shows results from the burstiness tests with the parameters in use for each
test. First and foremost, HFSC along with HTB with the cburst parameter set are the
configurations that achieve actual sending rates of close to 100 Mbit/s. This points to the
remaining configurations adhering more strictly to the target rate in that packets are rarely
allowed to be sent too quickly, which is also reflected in the percentage of bursty packets
recorded. The sending rate for the HTB configuration with only burst set to 50000 and the
one with no bursting allowed at all are both sending at an average of 98 Mbit/s 5, almost a
whole megabit slower than the other configurations. TCP is not expected to average 100 %
bandwidth usage, but the configurations with the lower sending rate seem to be sending

42

Packets Bursts

Limiter Options Count Bursty Count Mean Median Stddev.

HFSC 24.7 Mpkts 29.6 % 15 197 6.82 pkts 3 pkts 8.68 pkts
HTB burst: 50000, cburst: 1 24.5 Mpkts 6.7 % 2779 15.11 pkts 25 pkts 11.65 pkts
HTB burst: 50000, cburst: 50000 24.7 Mpkts 30.2 % 16 435 5.05 pkts 3 pkts 6.52 pkts
HTB burst: 1, cburst: 50000 24.7 Mpkts 30.5 % 17 118 4.94 pkts 3 pkts 6.33 pkts
HTB burst: 1, cburst: 1 24.5 Mpkts 6.7 % 2823 15.44 pkts 25 pkts 11.62 pkts

Table 4.3: Results of the ten burstiness tests, with metrics totaled. Note that
an HTB parameter setting of 1 means the relevant parameter is disabled,
as setting a value of 0 results in HTB choosing the default setting for that
parameter. HFSC has no relevant available options.

artificially lowly.
Of the remaining choices, the ones that reach 24.7 Mpkts sent for ten tests, HFSC shows

the fewest bursty packets, 29.6 % as opposed to 30.2 % and 30.5 % for HTB, and the fewest
bursts total. With ten tests being run for each configuration, we deem these differences in
recorded bursty packets to be significant. Though the median burst consists of only 3 packets
for all of these configurations, HFSC does cause some longer bursts as revealed by its higher
mean burst length and standard deviation. We choose the total number of bursts and bursted
packets as the most important metrics for our use case and choose HFSC as our rate limiter.

4.2.5 Netem as a Rate Limiter

Netem [74, networking/netem][35, tc-netem(8)] is a tool meant to provide network
emulation facilities for testing purposes. It can emulate delay, loss, duplication, corruption,
re-ordering, and rate control. Netem would ideally go on the two virtual interfaces of the test
bed, applying a rate limit and delay for the shared queues. In practice, however, Netem could
not manage to consistently uphold the set rate limit, restricting its use to only apply packet
delay.

The most natural location to introduce delay would be on the shared network queues,
but due to how Linux applies these mechanisms to network interfaces, assigning Netem to
the IFBs directly would have made the underlying packet queue, the one for the rate limiter,
act as both a regular network buffer and additionally as a buffer for delayed packets. This
last requirement of also buffering delayed packets means we cannot set a FIFO queue with
a known limit as the number of packets needing to be delayed varies with the sending rate.
For the final setup Netem is thus used to delay all outgoing traffic regardless of source and
destination because it has to be applied on the outgoing physical interfaces of the router.
Packet delay being applied for all traffic means we can not run tests for which communication
between nodes in the same network, that is sender-to-sender or receiver-to-receiver, is a
factor6.

524.5 Mpkts/no. tests/no. seconds×MTU× 8/1000000 = 98
6 We are not doing experiments where this is an issue. We can however imagine experiments containing

traffic between hosts in the same network, for example they might include testing for the impact of Libdalbe
on Internet traffic, with the WAN connection being the bottleneck, when the DA-LBE flow, e.g. from a backup
service, is transmitting to another host in the same network at up to gigabit speeds. If the WAN connection in the
router is 100 Mbit/s, it could be interesting to see if Libdalbe managed to claim the remaining 900 Mbit/s without
negatively affecting the Internet traffic.

43

4.3 Cork Setup

The other main setup for our tests is one allowing for performing tests over the Internet. Tests
done in this environment will show how Libdalbe performs in a more real scenario. With the
amount of unpredictable background traffic we cannot draw conclusions about short-term
changes in the behavior of our metacontrollers; this will be reflected in the experiments we
perform in this environment, see the analysis in section 5.2.

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Application
requirements

Po
lic

ie
s

&
N

e
tw

o
rk

 i
n
fo

rm
a
ti

o
n

NEAT-enabled
client

SDN Controller
(OpenDaylight)

NEAT NBI

NEAT-enabled
serverMultipath datacenter network

cross traffic

NEAT client traffic

Figure 11: datacentre topology for the EMC use case (SDN experiments).

Backup test
server

DA-LBE enabled
senderEM

C
IN

FI
N

IT
E

te
st

be
d

Si
m

ul
a

la
b

Internet

Wide area path

cross traffic

DA-LBE traffic

Figure 12: WAN topology for the EMC use case (DA-LBE experiments).

(WAN) was considered. The test demonstrated file transfers targeting a predefined completion time
without adversely impacting concurrent network traffic.

2.4.1 Test topology

Figures 11 and 12 provide a high-level view of the two topologies which serve as the basis of the exper-
iments, as defined in the test plan in deliverable D4.2 [11]. The components are described in Table 20.
The topology in Figure 11 was used to evaluate an SDN datacentre scenario. The topology depicted in
Figure 12 was used to evaluate a WAN cloud provider scenario using DA-LBE.

2.4.2 Test implementation

Several tests were constructed to demonstrate that an integration between NEAT and a SDN controlled
network leads to improvements for both the application and the network, on the one hand, and the
benefits brought by the use of DA-LBE, on the other hand. Table 21 summarizes the experiments de-
fined in Deliverable D4.2 [11]. In the SDN experiments congestion was induced by replaying realistic
cross-traffic generated using existing traffic generator tools [1, 40].

37 of 77 Project no. 644334

Figure 4.5: WAN topology for the Cork setup [7, figure 12]. Used with
permission.

Owing to Dell EMC being a contributor to the NEAT project7, we have access to a server
on their premises in Cork, Ireland for running Internet tests. In contrast to the local test bed,
we know nothing about the network connecting the two machines, excepting the gateway
machines through which the local sender reaches the Internet. An overview of the Cork
setup is shown in figure 4.5.

Processor specification

Node Model Frequency Memory Storage media Network interface

Sender A AMD Athlon 64 X2 4800+ 2.50 GHz 2 GB Seagate ST3320620AS Broadcom BCM5755

Sender B AMD Athlon 64 X2 4200+ 2.20 GHz 4 GB WDC WD1600JS-60M Broadcom BCM5755

Cork (receiver)8 Intel Xeon E5-2609 2.40 GHz Sufficient9 Sufficient9 Intel 82599ES

Table 4.4: Hardware specifications for the Cork setup.

Table 4.4 shows the hardware specifications of the Cork test setup. Note that the network
interfaces of the senders are different from the ones noted in table 4.1; the listed network
interfaces are the ones connecting to the test bed management machine, through which the
sender access the Internet. Simula’s Internet link has a capacity of 500 Mbit/s. The exact
capacity of the link connecting our Cork machine to the Internet is not known, but we can
conclude from testing that it supports rates of up to 500 Mbit/s.

The expected RTT for the Cork setup is measured to be 41 ms or more. At the time
of testing there were seventeen network hops between the sender and the receiver, see
appendix C.1. It is likely that one or more of these gateways employs an AQM that might
affect Libdalbe performance, see section 5.2.1 for some discussion on this.

7Thanks to Zdravko Bozakov at Dell EMC.
8We did not have access to full hardware specs on the Cork receiver.
9The memory and storage hardware was more than sufficient for our purposes, though the exact figures are

unknown.

44

4.4 Test Execution

For testing Libdalbe we were looking for a tool with a specific set of capabilities. Evolved
from simple shell scripts used in the beginning of the project, we over time developed a suite
of tools to perform the needed tasks. As the set of requirements grew, so too did the tooling.

The tools used for testing the final implementation of Libdalbe have the following
capabilities:

• Invoke any procedure for initialization and teardown.

• Call on any program for testing or analysis.

– The program may be a binary on the target system, one we upload prior to testing,
or a script file with a custom way to invoke it.

– Each program can set a starting delay

– A duration can be set. The corresponding duration parameter for the application
is used if available, otherwise the program is killed.

– Programs may overlap in duration.

• Automatic gathering of test results.

• Require no user input to function.

• Robust enough to run for hours without intervention

The capabilities of the developed tooling all rose out of requirements of the desired
tests. Initialization procedures may involve setting kernel module parameters, operations on
network interfaces, and Linux TC [35, tc(8)]. Proper testing of any TCP requires analysis of
its behavior when competing with up to multiple other TCPs, therefore any test orchestrator
must be able to launch overlapping testing applications. Some of the tests are required to be
run multiple times to ascertain typical performance; depending on user input in any part of
the testing process would inhibit the running of excessively long tests. The test orchestration
suite was successfully used to run overnight tests for twelve hours at a time.

4.4.1 Test Orchestrator

The test orchestrator is a Python [45, versions 3.6.5, 3.6.4+, 3.5.2] tool based on the python
module Fabric [20], a framework for running and automating system administration tasks.
A set of tasks is defined along with remote nodes on which the tasks should be run. Fabric
allows for tasks to be run in parallel, where one task is run on multiple nodes concurrently;
in our tools each phase of testing — e.g. initialization, testing, teardown — is defined as a
parallel task.

The tool is run in a Jupyter Lab [37] environment, allowing for easy visualization and
separation of functionality within Python scripts. Jupyter facilitates rapid iteration during
development which is valuable when writing software for remote testing; an endeavour with
many potential points of failure.

A script designed to run on the nodes, some of which can not run the newest Python
version, is copied to the remote node for every test. This node-script uses Plumbum [18] to
control the local test processes.

45

4.4.2 Software on the Test Nodes

The only custom applications on the test nodes are Libdalbe and the scripts put there by the
test orchestrator for local control. Gathering of data and generation of background traffic is
done by freely available tools.

The BE Cubic flows that will be competing with Libdalbe are generated by Iperf [14],
a tool for “active measurements of the maximum achievable bandwidth on IP networks”.
The only requirement is for the chosen tool to employ the system default TCP for transport,
while preferably also allowing for a duration to be set on startup. Iperf provides the required
functionality and more; it can output detailed statistics on its own throughput, which can aid
in debugging.

With the test bed router employing the tail drop queue management scheme, global
synchronization [46] could become an issue. We add random background noise to combat
global synchronization, using Distributed Internet Traffic Generator (D-ITG) [4] to send UDP
packets of constant size with exponentially distributed inter-packet delay.

We capture all packets generated as part of the running test with Tcpdump [73]. The same
software package additionally provides Libpcap, which we employ for packet analysis, see
section 4.4.3. The hard drives present in the test bed machines were having trouble writing
packet data at the rates required, so Tcpdump data is compressed on the fly using Xz [10] to
remove the hard drive bottleneck.

4.4.3 Analysis Software

Analysis of the captured Pcap data, the output format of Tcpdump, is done with a custom
C program utilizing Libpcap [73]. Along with the logs generated by our custom tools, this
data is collated using Python [45, version 3.6.5] with Jupyter Lab [37] for easy alteration and
quick iteration. The data can easily be plotted in several different forms and formats, such as
a representation of the internal metrics used in the metacontrollers showcased in figures 5.5
and 5.8, or simply throughput graphs, e.g. figure 5.2.

4.5 Summary

In this chapter we described our efforts in the setup, tooling, and analysis of testing Libdalbe.
We set up two environments for testing; one local test bed on which we can control the exact
parameters of the test on a single bottleneck, and a connection with Cork, Ireland on which we
can test for the general behavior of Libdalbe over the longer term. Our local test bed emulates
a dumbbell network topology with two senders and two receivers, using a central router node
that adds delay to all traffic and applies a rate limit on all traffic passing between the emulated
networks. We did tests of rate limiters to attempt to limit the effects of any artifacting that
may occur as a result of rate limiting traffic to 100 Mbit/s on a 1 Gbit/s network link, and
we made configuration changes on the router node to alleviate similar issues resulting from
kernel functionality. The connection to Cork runs over the Internet on a 500 Mbit/s link with
a delay measured to 41 ms, crossing around 17 network hops on the way with unknown
configurations. We developed tools for the automatic initialization and running of our tests,
as well as automatic capturing of test data and debug information generated by Libdalbe and
the metacontrollers. We analyze Libdalbe performance and debug output using a set of tools
using a similar environment to that of our automation software.

46

Chapter 5

Results and Analysis

In this chapter we describe the experiments that we ran and evaluate their outcome and
behavior.

We ran experiments on the local test bed described in section 4.1, a controlled
environment, to compare Libdalbe performance to that of the simulations carried out by
Hayes et al. [24]. Our model-based DA-LBE Cubic controller, see section 2.6.3, is implemented
exactly as described by Hayes et al. in their paper and should show similar behavior to that
seen in their simulations. Analysis on the performance of DA-LBE Cubic on the test bed can
be found in section 5.1.1. The DA-LBE Vegas controller as described in section 2.6.4 does not
work like the implementation by Hayes et al. and thus cannot be directly compared. This
analysis and comparison can be found in section 5.1.2.

We run simple experiments on the Internet setup described in section 4.3 to check whether
Libdalbe performs as expected when facing the large amounts of cross traffic, noise, and
possibly active queue managers, found on the Internet. The Internet test runs are analyzed
by way of Jain’s fairness index as described in section 2.3.1.4 and equation (2.1), for which
Libdalbe, being a Less-than Best Effort transport, should consistently achieve a less than fair
sending rate given that the deadline permits it. These experiments and their analysis are
detailed in section 5.2.

5.1 Test Bed Performance

In [24], Hayes et al. describe a simple experiment to test their DA-LBE model. We will see
the performance of Libdalbe in competition with both one and multiple BE TCP flows, and
additionally how the DA-LBE flow behaves when there is, momentarily, no other traffic.

Table 5.1 defines the test for the local test bed as a set of flows with a given start and
end time, visualized in figure 5.1. This is the exact same experiment run by Hayes et al. to
verify their metacontroller behavior in simulations; their graphs can be found in appendix E
for direct comparison. The BE flows, being greedy, will try to send at maximum capacity
for their entire duration. The DA-LBE sender will send 1625 MB with a deadline of 1300 s,

0 200 400 600 800 1000 1200 1400 1600 1800 2000

DA-LBE

BE Cubic

Time (seconds)

Figure 5.1: GANTT-chart for the experiment defined in table 5.1.

47

Flow type Start End Duration

DA-LBE 400 s

BE Cubic



0 s 600 s 600 s

200 s 1000 s 800 s

800 s 1000 s 200 s

1010 s 1600 s 590 s

1200 s 2000 s 800 s

1400 s 1800 s 400 s

Table 5.1: Test for the local test bed setup, defined as a set of flows with
a start time and end time. The flows with a defined end time will halt all
sending at that time.

requiring an average sending rate of 10 Mbit/s; it should finish by t = 1700 s, though the
soft deadline criterion allows it to finish later. In figure 5.1, the possibility of the DA-LBE
flow arriving after the deadline is shown in a brighter shade of green. We add 10 Mbit/s of
background traffic to combat global synchronization by sending UDP packets of size equal
to the MTU at an average rate of 833 pkts/s with the time between each packet sent decided
by an exponential distribution. Areas of special interest in this test are the boundary points
where a competing flow ends or a new one begins, the heavy traffic and impending deadline
at t ≥ 1400 s, and the 10 s interval starting at t = 1000 s in which there is no competing traffic.

The short period with no traffic should show a clear distinction between the two
algorithms under testing. While there are mechanisms in place in the DA-LBE Cubic
metacontroller to make it greedy in the absence of competition, it will not be able to take
full advantage of short periods like the one at t = 1000 s. Cubic is limited by its loss signal,
as lost packets and ECNs cannot inform about the absence of congestion; the signal itself
is only triggered upon congestion. Adding to this, the DA-LBE Cubic metacontroller is not
scaling existing signals, but rather inserting new ones proportionally to the sending rate, or
more specifically proportionally to the rate of ACKs being received. If we were controlling
Cubic through scaling signals, having the real congestion signals dropping to zero would
also cause no additional adjustment from the metacontroller, but as we are inserting new
congestion signals proportionally to the sending rate, DA-LBE Cubic will not by itself manage
to increase its sending rate since the faster it is sending, the faster it is triggering phantom
ECNs. DA-LBE Vegas, reacting to queuing delay, should be able to increase its sending rate
in these cases because we are scaling an existing signal, not adding new congestion events,
and because delay as a congestion signal can notify of there being no congestion.

Less obvious than the 10 s congestion free period at t = 1000 s is that a similar effect occurs
to some extent every time a competing flow leaves the network. When the first competing
BE flow leaves the network at t = 600 s, there is an opportunity until the second competing
flow catches up where there is extra available bandwidth. We expect that DA-LBE Vegas
should show a slightly increased sending rate here; it will immediately react to the lower
queuing delays. DA-LBE Cubic is self-limiting in that any increase in sending rate results in
an increase in the congestion signal thereby quelling itself through ECNs; it might see a tiny
increase in sending rate during this window, but it will in any case be too small to reliably
measure.

The period at t = 1400 s might cause Libdalbe to miss the deadline, depending on the

48

amount of data left to send at that point. If the target rate — the average sending rate
needed to reach the deadline on time, as explained in section 2.6.2 — is exceedingly low
Libdalbe might not allow its congestion controller to become aggressive enough to compete;
conversely if the target sending rate is sufficiently high Libdalbe might not be able to reach it
while remaining fair, let alone less than fair.

In these tests we are mostly interested in the short-term characteristics exhibited by the
different congestion metacontrollers; the controlled environment in which the tests are run
allows us to observe and inspect the aforementioned points of interest at will. The Internet
tests will let us review the long-term behavior of Libdalbe.

5.1.1 Cubic

TCP Cubic is a purely loss-based TCP which we adapt to DA-LBE behavior by inserting
phantom ECNs. The congestion metacontroller described in section 2.6.3 alters the rate
at which phantom congestion signals are sent in intervals of 10 s; should the sending
rate suddenly increase there will be a matching increase in ECNs, due to metacontroller
adjustment, that cannot be changed until the next interval. By the time the DA-LBE Cubic
metacontroller is able to react to extra available bandwidth, through detecting low counts of
congestion signals in the previous interval, there may already be new competitors, as is the
case at t = 1000 s in the experiment from table 5.1. Likewise, at t = 600 s there is a momentary
lull in congestion events that DA-LBE Cubic will not be able to utilize.

We expect DA-LBE Cubic to complete its sending within the deadline by virtue of
being equal to its competitors: This assumption hinges on the Cubic model used in the
metacontroller to sufficiently model the behavior of the TCP being controlled as well as
the competing congestion controls — congestion controls that might vary slightly between
different Linux kernel versions.

Figure 5.2 shows our test run from table 5.1 featuring a DA-LBE Cubic metacontroller. The
bursty nature of Cubic impedes our ability to distinguish short periods of lower congestion
from the typical behavior of the congestion controller.

The DA-LBE Cubic flow seems to be steadily sending slightly in excess of its target rate,
even when competing with three other BE flows at t >= 1400 s. The slightly exaggerated
aggressiveness is consistent with the behavior seen in the MBC throughput graph in the
simulations by Hayes et al., see figure E.1c. Their graphs do not explicitly show the DA-LBE
target rate, but the continual decrease in sending rate when approaching the deadline reveals
that the DA-LBE flow is ahead of schedule and does not require an aggressive sending rate
to reach its goal. We can conclude from this simple throughput graph that the Libdalbe
implementation of the DA-LBE Cubic congestion metacontroller behaves in a similar manner
to the simulation results presented by Hayes et al. [24].

5.1.1.1 Cubic Metacontroller Analysis

Figure 5.3 contains Libdalbe DA-LBE Cubic debug output from the test run seen in figure 5.2.
Interestingly, though we postulated that DA-LBE Cubic would not be able to claim the free
bandwidth at t = 1000 s or the lower levels of congestion when flows leave the network, it still
does show events that significantly lower the aggression. Figure 5.3a shows significant drops
in weight, and therefore aggressiveness, at t = 520 s, t = 700 s, t = 1000 s, and t = 1360 s. All
of these events seem to be correlated with drops in measured network congestion, as given
by the line labeled Measured in figure 5.3b, which indicates that there was a low number of
loss events for the preceding interval.

49

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

0

20

40

60

80

100
Se

nd
in

g
ra

te
 (M

bi
t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.2: One-second averages of bits sent for the test defined in table 5.1,
with the DA-LBE Cubic metacontroller, run on the local test bed setup.

However, the drops in measured network congestion seem to be more tied to TCP locking
behavior than the points of interest mentioned in section 5.1; the only significant events,
visible to the human eye in figure 5.2, immediately preceding any of these drops is the two
spikes in DA-LBE Cubic sending rate before the drop at t = 700 s. The drop in network
congestion at t = 1000 s could not have been caused by the short period of no congestion, as
by that point the BE Cubic competitors wouldn’t have yet ceased sending.

The period of no congestion at t = 1000 s does show a slight impact on DA-LBE Cubic.
Figure 5.3c reveals an RTT measurement almost equal to the BaseRTT, which would have
resulted in a low estimated cwnd in the Cubic model and thus a higher model price, meaning
more throttling. Figure 5.2 shows no significant increase in sending rate for the interval at
t = 1000 s, which we understand to be a result of this lowered aggression, in addition to the
previously mentioned weakness of DA-LBE Cubic not being able to exploit a momentary lack
of congestion.

5.1.2 Vegas

TCP Vegas reacts to both delay and loss. Our metacontroller mainly alters the delay signal,
and adjusts the loss signal by ignoring a percentage of loss signals if the DA-LBE w parameter
reaches 1.0. If there is no competing traffic on the network, the delay adjustments we make
will be negligible and we can expect the TCP to behave as standard TCP Vegas. DA-LBE
Vegas should be able to react to changing network conditions much quicker than our DA-LBE
Cubic metacontroller. We expect DA-LBE Vegas to react to all flows leaving the network as
well as the period of no traffic. Increases in the sending rate like this will likely be followed
by a corresponding dip in sending rate as the DA-LBE Vegas metacontroller detects that the
congestion on the network has dropped and decreases its w parameter to reflect the network
state. Because there is a limit on the growth in w, to promote LBE behavior, DA-LBE Vegas
will not be able to compete with the traffic following the spike for a while.

Figure 5.4 shows our test run of table 5.1 featuring a DA-LBE Vegas metacontroller. The α
and β parameters are both set to 16 for this test, meaning that Vegas will itself aim to maintain
a standing queue of 16 packets. Having α = β will give the metacontroller a higher degree

50

600 800 1000 1200 1400 1600
0.00

0.25

0.50

0.75

1.00

W
ei

gh
t

Weight
Phantom ECN p

600 800 1000 1200 1400 1600
10 5

10 4

10 3

10 2

Ne
tw

or
k

pr
ice Measured

Model
Proportion

600 800 1000 1200 1400 1600
Time

30

40

50

60

RT
T

m
s

600 800 1000 1200 1400 1600
0

50

100

Pa
ck

et
s

Congestion window
Slow start threshold
Estimated cwnd

600 800 1000 1200 1400 1600
0

10

20

Ph
an

to
m

 E
CN

s /
 in

te
rv

al

0.00

0.01

0.02

0.03

Ph
an

to
m

 E
CN

 p

0.0

0.2

0.4

a)

b)

c)

d)

e)

Figure 5.3: Debug graphs for Libdalbe DA-LBE Cubic on the test bed setup,
containing metacontroller statistics for each interval the flow was active.

51

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

0

20

40

60

80

100
Se

nd
in

g
ra

te
 (M

bi
t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.4: One-second averages of bits sent for the test defined in table 5.1,
with the DA-LBE Vegas metacontroller, run on the local test bed setup. We
set α, β = 16.

of control as there is no middle zone, as described in section 2.4.2, in which Vegas does not
alter its cwnd and thus even small changes in the queuing delay adjustment will have an
immediate effect. Setting the control parameters this high also scales the model used in the
DA-LBE Vegas metacontroller as it reads the Vegas parameters on initialization. Having the
congestion control itself be more aggressive means that the metacontroller does not need to
alter congestion signals as much.

Contrary to the DA-LBE Cubic metacontroller, DA-LBE Vegas manages to achieve higher
sending rates in the short periods of lowered congestion as seen at t = 600 s, t = 1000 s,
and to a lesser extent at t = 1600 s. However, we notice that for every significant spike in
throughput, there is a corresponding dip immediately following. This behavior of throttling
after momentarily having enjoyed lower congestion seems to be detrimental to the benefit of
being able to achieve the higher throughput in the first place, though it succeeds in providing
a thoroughly LBE-like service. Observe how, after the spike at t = 1000 s, the DA-LBE flow
does not reach the target rate before around t = 1090 s, at which point the required target
rate has risen to the same level it was before the spike; indicating that the spike provided
no real advantage in completion time. Though there was no advantage in completion time,
these periods of lower sending rate upon the sudden advent of competing traffic show how
DA-LBE Vegas responds in a LBE-like manner when it backs off from a bandwidth monopoly.

5.1.2.1 Vegas Metacontroller Analysis

Figure 5.5 shows the debug output generated by the DA-LBE Vegas metacontroller as values
reported in each ten-second interval. In 5.5c we can see how the RTT drops drastically
for a short time, apparently corresponding with flows leaving the network at t = 600 s and
t = 1000 s. DA-LBE Vegas, estimating congestion as a function of the queuing delay, is able to
achieve a higher throughput in these intervals, clearly visible in figure 5.4.

Figure 5.5a shows the weight dropping drastically following the events at t = 600 s and
t = 1000 s. This drop in weight indicates that the perceived delay is being heavily inflated
as a result of the sending rate measuring higher than anticipated. Had the network

52

600 800 1000 1200 1400 1600
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

600 800 1000 1200 1400 1600
0

10

20

Qu
eu

in
g

de
la

y

Measured
Model

600 800 1000 1200 1400 1600
Time

40

60

RT
T

m
s

RTT
Vegas Base RTT
Mean RTT

600 800 1000 1200 1400 1600
0

100

200

Pa
ck

et
s

Congestion window
Slow start threshold

600 800 1000 1200 1400 1600
0

50

100

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0.0

2.5

5.0

7.5

2000

4000

6000
No

. c
wn

d
ch

an
ge

s

a)

b)

c)

d)

e)

Figure 5.5: Debug graphs for Libdalbe DA-LBE Vegas on the test bed setup,
containing metacontroller statistics for each interval the flow was active.

53

congestion remained low DA-LBE Vegas would still have managed to send with some speed,
especially once the network price estimation indicated by φ in figure 5.5a caught up, but the
reintroduction of congestion at t = 1010 s causes the sending rate to fall until the weight is
allowed to rise to its previous levels.

5.1.2.2 Accuracy of Measured Queuing Delay

Vegas relies on an accurate estimation of the real propagation delay of the link, the BaseRTT.
Should the estimated BaseRTT be too high, a real possibility if Vegas is started on an already
congested network, Vegas will perceive the queuing delay to be lower than the actual value,
causing the congestion controller to send faster than it should. An estimation that is too low,
which could result from a route change, will cause Vegas to send slower than the congestion
warrants.

Figure 5.5b shows the measured queuing delay, calculated by RTT − BaseRTT. The
line labeled Model is the target queuing delay for the model to impose on the underlying
congestion controller. Note that, as seen in figure 5.5c, DA-LBE Vegas does not have an
accurate BaseRTT estimate until t = 600 s and is not able to infer the actual propagation delay
until t = 1010 s. These jumps in the BaseRTT are reflected in the measured queuing delay
in figure 5.5b, which also affects the weight seen in figure 5.5a. In a perpetually congested
network DA-LBE Vegas might not ever be able to find the real propagation delay and thus
can never tune its sending rate properly.

5.1.2.3 Vegas and the Target Rate

In the DA-LBE Vegas run shown in figure 5.4 it is clear that the Libdalbe flow never
consistently achieves its target sending rate. Even as the weight in figure 5.5a reaches 1.0,
causing 60 % of loss events to be ignored as shown by the line labeled Ignore backoff, and
having its perceived RTT decreased by a factor of 2.5, DA-LBE Vegas still does not manage to
send quickly enough. We suspect that DA-LBE Vegas can never truly compete with Cubic in
a tail-drop managed bottleneck like the one in our local test bed environment.

Each Cubic flow traversing the one bottleneck will fill the queue to > 70% of its capacity,
as given by the Cubic’s β parameter1. Additional Cubic flows on the same bottleneck further
increase pressure on the queue. In the case of the local test bed with its 1 BDP buffer size, a
70 % full queue equals a queuing delay of 21 ms. From approximately t = 1370 s onwards in
figure 5.4, the queue is being decreased by a factor of 4.5 to 2.5, meaning DA-LBE Vegas sees
queuing delays of at least 4.67 ms to 8.4 ms. Even when seeing only 4.67 ms of extra delay,
translating to a queue of 38.89 pkts, DA-LBE Vegas is seeing queuing delays more than twice
as high as its β allows.

The observations on the effects of queuing delay are corroborated by figure 5.5e, in which
the congestion events caused by delay, the line labeled No. cwnd changes shown on the right
Y axis, outnumber the congestion events from loss by a factor of 40. With the amount of
throttling solely from delay-based congestion events, the sending rate is never sufficient to
cause significant loss and thus the number of congestion events from loss does not grow.

For DA-LBE Vegas to efficiently compete with any loss-based BE TCP on such a
constrained bottleneck, it needs provisions to ignore part of its β-decided delay target.
The chance of ignoring backoff on loss, the cwnd no backoff DA-LBE socket parameter,
cannot alleviate Vegas’s own delay-based throttling. Setting β to higher values could

1 Congestion is only signaled when the queue fills completely and a packet is lost, at which point Cubic will
scale its cwnd by 0.7, meaning the queue will still be filled to 70 % capacity.

54

potentially alleviate the queuing delay problems in this specific test scenario, but for Internet
performance it could make DA-LBE Vegas act unreasonably aggressive, contrary to its, and
our, design goal. Another possibility could be altering the φ-calculation in section 2.6.4 to
detect and alleviate these situations where there are large standing queues, or changing the
queuing delay adjustment to scale down more aggressively during great congestion.

5.1.3 Test Bed Performance Summary

The test bed experiments helped showcase Libdalbe behavior in some very particular
situations that we could not have easily achieved on the Internet. We saw DA-LBE Cubic
performing well, if a little aggressive, strictly adhering to its target rate in varying degrees of
competing traffic. DA-LBE Cubic was, as expected, not able to make use of the t = 1000 s
period of no congestion. Where DA-LBE Cubic was constantly a little more aggressive
than needed, DA-LBE Vegas continually sends slightly slower than needed. We believe this
behavior is to blame on the very core of Vegas’s design, in that targeting a fixed number of
standing segments in the queues is simply untenable on a network as congested as our test
bed. DA-LBE Vegas was able to send faster in the short periods of lower or no congestion,
but its strict adherence to LBE behavior means the extra claimed bandwidth weren’t enough
to have the transmission complete in time.

5.2 Performance on the Internet

For the tests between Oslo and Cork we cannot easily reason about short-term changes. The
tests are run on the Internet; there is no knowing what kind of background traffic there is, or
how traffic is being shaped along the route. The neatly generated random background noise
of the test bed experiments, though not realistic, was random enough to limit the effects of
global synchronization, but for the Internet tests the noise eliminates our ability to explain
what is happening in short time frames. We can of course guess at the events behind certain
flow features, especially when we can compare the DA-LBE flow and the BE Cubic flow
running alongside it.

Due to all competitors adhering to the principle of AIMD — a reasonable assumption
given that this behavior is required by RFC 5681 [54] — wherein their increased sending rate
implies a similarly increased back-off on loss events, we expect our DA-LBE flows to be able
to compete decently and possibly reach their deadlines with fair reliability. Whether they can
also remain LBE is difficult to say in advance.

The first Internet tests are identical to the ones run on the local test bed, shown in
section 5.2.1 These are done primarily to inspect how DA-LBE performs in real network
conditions. The extra background flows and the points of interest outlined in section 5.1 will
probably not affect Libdalbe as much as they did in figures 5.2 and 5.4, though it could be
interesting to see what kind of effect we do see.

5.2.1 Test Bed Comparison

To compare the general behavior between the test setups we ran two tests that are similar
to those done on the test bed setup, with the two main differences, apart from running
in wholly different domains, being the absence of an emulated rate limiter and the neat
background noise of our test bed. While the setup differences prohibit a real apples-to-apples
comparison, we can help draw attention to the features and quirks one might see in the Cork
tests that are not problems on the local test bed — and vice versa. We do not expect that the

55

points of interest mentioned in section 5.1 will show significant departure from the typical
DA-LBE behavior exhibited in the rest of the flow.

The behavior of competing BE flows in these comparison experiments can not be used to
infer Libdalbe behavior as in section 5.1 where significant traffic events in the competing flows
could be directly correlated with the behavior of Libdalbe. Under the controlled conditions
of the test bed, the competing flows will be the only real influence on Libdalbe, but on the
Internet our own competing flows are near indistinguishable from others. Our competing
flows can however help us guess at the external network conditions in order to better explain
Libdalbe behavior. Figures 5.6 and 5.7 show the experiment from table 5.1 performed on the
Cork setup. Note that, owing to a much higher available bandwidth, the Y axis for the Cork
experiments is on a logarithmic scale to easier differentiate features in the DA-LBE flow as
otherwise the DA-LBE flow would have spanned only a tiny slice of the vertical axis.

5.2.1.1 Cork Cubic

Figure 5.6 shows DA-LBE Cubic on the Cork setup performing similarly to the test bed
behavior shown in figure 5.2. The Cork test seems to be exhibiting more extreme behavior; it
features sending rate spikes of more than 2.5 times that of the target, e.g. as seen at t = 490 s
and t = 790 s, and frequent dips by a factor of up to 5. The dips in Libdalbe throughput show a
slight correlation with dips in the competing BE traffic, as seen at t = 950 s and t = 1540 s. Dips
in both Libdalbe and BE throughput are probably indicators of sudden bursts of congestion
in the network. As in figure 5.2, there is no obvious reaction to flows leaving the network.

DA-LBE Cubic does on both setups seem to consistently send in slight excess of its target
rate and reach its deadline by a significant margin. More extreme behavior on the Internet
connection with Cork is expected when we don’t control the background noise and competing
traffic. The experiment described in section 5.3 will attempt to ascertain whether this behavior
holds for every run of Libdalbe on the Internet.

5.2.1.2 Cork Vegas

DA-LBE Vegas again offers behavior that invites analysis more so than the DA-LBE Cubic
experiment. The performance of DA-LBE Vegas in figure 5.7 shows a significant departure
from the behavior seen in figure 5.4. Most notably, the DA-LBE Vegas flow in this experiment

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.6: One-second averages of bits sent for the test defined in table 5.1,
with the DA-LBE Cubic metacontroller, run on the Cork setup.

56

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.7: One-second averages of bits sent for the test defined in table 5.1,
with the DA-LBE Vegas metacontroller, run on the Cork setup. We set
α, β = 16.

seems to have no trouble reaching its deadline, though not by as big a margin as DA-LBE
Cubic did. Contrary to the test bed test, where the Vegas β parameter inhibited Libdalbe from
sending aggressively enough, DA-LBE Vegas on the Cork setup seems to behave more like an
ideal DA-LBE flow: It is adhering to its target rate, reaches the deadline seemingly without
major trouble, and does not compete on the level of its BE competitors after establishing a
good BaseRTT.

Figure 5.8 gives more insight into why the DA-LBE Vegas metacontroller running on the
Cork setup behaves differently from the test bed. The main factor in the Internet performance
is probably the measured queuing delay; figures 5.8b and 5.8c show that the BaseRTT is
quickly established and that the RTT, both the average and the momentary rolling average
measurements, never rises far beyond 2.5 ms over the BaseRTT. These low averages of
queuing delay are expected on the Cork setup as having standing queues in a network with
a capacity of 500 Mbit/s would require constant traffic of the same rate, a traffic behavior
that is different to the typically bursty nature of Internet traffic2. Figure 5.8e shows that there
are much fewer congestion events from delay than in the test bed test, though the increase
in sending rate and the noise on the Internet lead to a corresponding increase in loss events.
There seems to be a correlation between dips in Libdalbe throughput and that of the BE
throughput; these bursts of congestion are likely the main contributor to the loss seen by
Libdalbe.

Though 2.5 ms is the average RTT value used in the Vegas model of our DA-LBE
metacontroller, seen in figure 5.8b, the momentary RTT value is probably much closer to
the BaseRTT given the bursty nature of Internet traffic; if there was any significant queuing
delay present, it would be heavily inflated as evidenced by the µ value of almost zero. We
suspect that the massive bandwidth of the link allows for near-BaseRTT delay for most traffic,
with sudden large bursts of loss or higher RTT as can be seen in the dips in the throughput of
both Libdalbe and its BE competitors. These conditions allow for DA-LBE Vegas to operate
in a BE-like manner which means our metacontroller adjustments to the perceived queuing
delay are the main driver of cwnd reduction.

The fairly consistent major dips in throughput spaced about 20 s apart are curious; they
don’t seem to line up with our metacontroller intervals, which points to a recurring external
event being the source of these features. They seem to be correlated, at least in part, to the

2Internet traffic is typically bursty with periods of silence, as explained in section 2.3.2.

57

600 800 1000 1200 1400 1600
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

600 800 1000 1200 1400 1600
0.0

2.5

5.0

7.5

Qu
eu

in
g

de
la

y Measured
Model

600 800 1000 1200 1400 1600
Time

40

45

50

55

RT
T

m
s

RTT
Vegas Base RTT
Mean RTT

600 800 1000 1200 1400 1600
0

50

100

Pa
ck

et
s

Congestion window
Slow start threshold

600 800 1000 1200 1400 1600

500

1000

1500

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0

1

2

3

1000

2000
No

. c
wn

d
ch

an
ge

s

a)

b)

c)

d)

e)

Figure 5.8: Debug graphs for Libdalbe DA-LBE Vegas on the Cork setup,
containing metacontroller statistics for each interval the flow was active.

58

same congestion events that cause the competing BE flows to shrink their cwnds. Our best
guess is that a limiting buffer along the route is overflowing due to some regular burst in
traffic, causing spikes of packet loss. The source of the regular traffic that might cause these
bursts is hard to guess, but it is probable that it is some regular process causing traffic close
to either the sender or close to the receiver. This kind of heavy regular congestion occurring
in core networking equipment is unlikely.

5.2.2 Performance on the Internet Summary

Both of our metacontrollers seem to be operating as we would expect a DA-LBE service
would for the Cork setup. DA-LBE Cubic is still sending faster than necessary, sometimes
excessively so, but is by and large transmitting in an LBE-like manner while reaching its
deadline in good time. The behavior of DA-LBE Vegas is interesting in that, different from
the test bed experiment, it is like DA-LBE Cubic sending in excess of its target rate. The
comparatively aggressive DA-LBE Vegas performance is probably explained by there being
much less queuing delay in the network than on our congested single network link in the test
bed.

5.3 Long-term Behavior

In this section we run an experiment from which we hope to derive meaningful data on the
typical behavior of Libdalbe over multiple test runs. The experiment consists of fifty runs of
a simple ten-minute test in which a DA-LBE flow competes against a single Cubic flow. The
deadline for these tests is set much more aggressively than in previous tests so that Libdalbe
will have fight harder to maintain its target rate; in setting the required aggression higher we
hope to see Libdalbe at points having to compete on the same level as the BE-services and
thereby showing a wider range of behavior from our metacontrollers.

We use a fairness metric to gauge whether Libdalbe upholds LBE-like behavior . The
fairness results can be used to guess at how well Libdalbe can compete in order to reach
its deadline — especially on the test bed where we can calculate the exact expected fairness
outcome — but to provide deeper analysis on the ability of Libdalbe to keep a deadline we
will explicitly look at the completion times of our experiments.

We run the longer-term experiment for both DA-LBE Cubic and DA-LBE Vegas, on
both the Cork and the test bed setup. The test bed tests in this experiment will, due to
the controlled nature of the setup, probably perform similarly throughout all of the fifty
tests. Tests run on the Internet, on the other hand, are subject to a different type of noise,
uncontrolled cross-traffic, which may significantly increase the variability of some tests.

Table 5.2 shows the test definition for the tests used in our long-term experiment. Our

Flow type Start End Duration

DA-LBE 10 s
BE Cubic 0 s 720 s 720 s

Table 5.2: Test for the Cork setup, defined as a set of flows with a start time
and end time. The BE flow will halt all sending at its defined end time.
The DA-LBE flow will keep sending until its payload has been transmitted
in full (though not exceeding the 720 s limit given to the BE flow).

59

DA-LBE sender is still sending 1625 MB but now with a deadline of 600 s, which gives us
a required average sending rate of 21.67 Mbit/s. The exact chosen amount of data is an
arbitrary value reused from the scripted definitions of table 5.1 in our test orchestrator. The
experiment consists of 50 test runs which should be enough to give us a solid indication of
the behavior of Libdalbe. The BE Cubic flow is given ten seconds to warm up so that we
are measuring Libdalbe impact on a steady-state BE competitor, meaning that the Libdalbe
deadline is t = 610 s and that Libdalbe is given 710 s to finish each test.

5.3.1 Fairness

In this section we look at the fairness values from fifty runs of the test defined in table 5.2. The
fairness is given by Jain’s fairness index, explained in section 5.3.1, where we only consider
data from within the timespan that the Libdalbe flow is active.

5.3.1.1 Expectations

We saw in figure 5.2 how DA-LBE Cubic sent slightly faster than it seemed to be targeting. It
is expected that DA-LBE Cubic scores slightly higher in fairness than the other configurations
for this experiment. Similarly, we have during development seen DA-LBE Vegas sending
slightly above its target for the Cork setup; whether it compares to DA-LBE Cubic for this
setup we cannot tell in advance.

It should be noted that, although presented in the same figure, the fairness results from
the Cork and the local test bed experiments are not directly comparable. In the controlled test
bed environment Libdalbe must compete against a greedy flow on a single bottleneck. The
background noise is reasonably uniform and we know the exact available bandwidth. This
environment is not one in which we envision Libdalbe being deployed.

The controlled environment does however allow us to reason about the expected fairness:
Having a Libdalbe flow of 1625 MB completing in 600 s leaves capacity for transmitting
5125 MB of in the same time for the greedy flow, totalling 90 % of the entire bandwidth,
with background noise occupying the last 10 %. The fairness calculation for the local test bed
is thus (1625+5125)2

2×(16252+51252)
≈ 0.788. Values much lower than 0.788 suggest that the Libdalbe flow

did not finish in time. Values in excess of 0.788 could mean that either Libdalbe was too
aggressive and finished early, or that the competing BE flow could not achieve its allocated
bandwidth. Given the slightly eager sending rate of DA-LBE Cubic in figure 5.2 and the slight
tardiness of DA-LBE Vegas in figure 5.4, it is reasonable to assume that similar results will
show for these experiments, even with the increased required sending rate.

For the Cork experiments we have no information about the network apart from the
equipment connecting the senders to the Internet and can therefore not reason in advance
about the expected fairness. What we aim to show for the Cork experiments is that a
Libdalbe flow competing with a BE flow results in strictly less than fair behavior. Exactly
how much less than fair the results should be we cannot reasonably predict, but we expect
the resulting fairness to be significantly lower than that achieved in the test bed experiments,
due to there being considerably more bandwidth available for the competing greedy flow3,
and that the distribution of results will be much wider owing to unpredictable cross traffic
and background noise.

3For example, if Libdalbe with its LBE service achieves 20 Mbit/s on average and its competitor achieves
100 Mbit/s on average, a very conservative estimate for the greedy flow, then the resulting fairness should be

(20+100)2

2×(202+1002)
≈ 0.692.

60

5.3.1.2 Results and Analysis

Figure 5.9 and table 5.3 show the resulting fairness values from the 50 tests defined in table 5.2.
At first glance the fairness measurements seem to correlate well with our expectations from
section 5.3.1.1. Both DA-LBE-adapted TCPs appear to be reasonably less than fair, favoring
their competition, on the Cork setup, with some outliers that can probably be shown to be
a result of sudden changes in network conditions. The test bed results show DA-LBE Cubic
measuring fairness values at close to the theorized maximum for the test bed, while DA-LBE
Vegas appears to be transmitting much too slowly.

DA-LBE Cubic Cork Libdalbe on the Cork setup appears to be behaving less than fairly,
with the median measuring at 0.683 and 0.674 for DA-LBE Cubic and DA-LBE Vegas
respectively. DA-LBE Cubic shows only a few outliers, the most aggressive of which
coincidentally almost matches the aforementioned minimum fairness of 0.788 required for
the test bed setup. Figure 5.10 reveals that this most BE-like outlier test run is likely a result
of the competing TCP hovering between 50 Mbit/s and 75 Mbit/s for roughly half of the test
run while Libdalbe in those same periods managed to stay fairly close to its target rate. The BE
competitor not managing to achieve a very high sending rate points to significant congestion
from external traffic, which also means that our DA-LBE flow is having to compete in an
almost BE-like manner to reach its target sending rate.

DA-LBE Vegas Cork The results for DA-LBE Vegas on the Cork setup show a spread of
about the same size as DA-LBE Cubic, indicated by the whiskers of the box plot and the
roughly similar standard deviation in measurements as seen in table 5.3, but a slightly
less concentrated core of measurements as shown by the larger box. Though reasonably
close to the DA-LBE Cubic results, DA-LBE Vegas shows slightly more variable behavior
both indicated by a larger spread of the centremost half of the data and the two aggressive
outliers. This behavior could show that DA-LBE Vegas is more reactive to the environment
than DA-LBE Cubic is. Figure 5.11 shows the most BE-like outlier test run in which there is a
lot of congestion in the network, as indicated by the BE flow not managing to achieve much
more than 100 Mbit/s for most of the flow. Tests run in a continually congested network like
that in figure 5.11 will naturally show Libdalbe achieving higher fairness scores, as it has to
compete more to maintain its target rate while the greedy flow as result of congestion cannot
claim the remainder of the bandwidth for itself. The same outlier test run also shows DA-LBE
Vegas competing on par with its BE competitor until the real BaseRTT is discovered at around

Fairness

Experiment Mean Median Stddev. Max Min

Cubic Cork 0.683 0.681 0.034 0.772 0.611
Vegas Cork 0.674 0.670 0.040 0.823 0.617

Cubic test bed 0.773 0.773 0.002 0.776 0.766
Vegas test bed 0.686 0.684 0.020 0.733 0.647

Table 5.3: Fairness results from the Libdalbe experiments on the Cork
setup. The line in the middle separates results that are not directly
comparable. Raw results can be found in table D.1.

61

Cubic Cork Vegas Cork Cubic test bed Vegas test bed
0.5

0.6

0.7

0.8

0.9

1.0

Fa
irn

es
s

Figure 5.9: Box plot showing fairness measurements. The boxes cover the
middle 50 % of the data, the middle line inside the boxes is the median,
and the whiskers extend to the furthest measurement from the median
still within 1.5 IQR on either side. The entire range of possible values for
Jain’s fairness index with two flows is shown. The dashed green line is the
ideal resulting fairness if the Libdalbe flow finished exactly on the deadline
and the competing TCP manages to utilize all of the remaining bandwidth.

0 200 400 600
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.10: Throughput graph of the most BE-like DA-LBE Cubic outlier
test run on the Cork setup. Note that the dashed red line, representing the
deadline, is drawn at t = 610 s because the graph is plotted from the start
of the whole test, including the 10 s starting delay of Libdalbe.

62

0 200 400 600
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.11: Throughput graph of the most BE-like DA-LBE Vegas outlier
test run on the Cork setup.

t = 40 s; with the metacontroller, using Vegas’s measured BaseRTT, also wrongly estimating
the queuing delay, there is a real possibility for these DA-LBE metacontrollers to out-compete
BE TCP if configured incorrectly.

DA-LBE Cubic Test Bed DA-LBE Cubic on the test bed, shown in section 5.1.1 to perform
proficiently in that specific scenario, behaves almost exactly as predicted for fairness. Taking
into account that the competing BE flow will probably not be able to claim all of its allocated
bandwidth, a median fairness result of 0.773, as seen in table 5.3, is indicative of exemplary
DA-LBE behavior. The results from the DA-LBE Cubic test bed experiment show a remarkable
regularity, with a standard deviation of just 0.002, an order of magnitude smaller than for
the other experiments, and a total spread of only 0.01 where the other experiments show
a minimum spread of 0.086. This can point to the accuracy with which the metacontroller
described in section 2.6.3 models TCP Cubic, at least in a controlled environment; whether
the higher spread of the DA-LBE Cubic Cork experiment signals inaccuracies in the model or
if it is simply a result of Internet volatility is hard to ascertain.

DA-LBE Vegas Test Bed Where DA-LBE Cubic managed to achieve close to optimal fairness
measurements, DA-LBE Vegas does not. Table 5.3 shows the median fairness score for
DA-LBE Vegas on the test bed to be 0.684, almost as low as DA-LBE Cubic on the Cork setup,
where there was much more bandwidth available. This low score is indicative of the BE
TCP massively out-competing Libdalbe in this specific scenario. We will see in section 5.3.2.2
how the small spread of fairness measurements, the second lowest standard deviation in
measurements, is due to DA-LBE Vegas rarely finishing within the test bounds.

5.3.2 Completion Times

To keep testing time within reasonable bounds, the experiment described in table 5.2 is
configured with an absolute maximum limit of 720 s for each test run, giving the DA-LBE
flow 710 s to reach its deadline. The test orchestrator sends a shutdown signal to the test
application at t = 710 s, after which the application is given another couple of seconds to shut
down before it is forcibly killed at approximately t = 720 s.

63

5.3.2.1 Expectations

For the Internet tests, where the momentary available bandwidth is unknown, we cannot
reasonably predict the resulting completion times based on the fairness data in figure 5.9.
From the fairness measurements we can however guess that DA-LBE Cubic and DA-LBE
Vegas will perform similarly in relation to each other as they did for fairness, regardless
of whether they finish their transfers by the deadline. As DA-LBE Vegas shows slightly
fluctuating fairness results, at least more so than DA-LBE Cubic, we expect it to also exhibit
similarly variable completion times. Comparison with the single test run from figure 5.7 can
show us whether the behavior from that run was a fluke.

The test bed runs are again not indicative of real world performance, though they can
show whether Libdalbe can uphold its deadline target while fighting lock-out when sharing
one bottleneck with BE Cubic. DA-LBE Cubic is expected to finish close to the deadline even
under pressure, as we saw in figure 5.9 that its fairness was close to what we predicted in a
model-perfect scenario, though whether it can consistently reach its deadline for all 50 tests
is uncertain. With its median fairness of 0.684 and its most aggressive measurement of 0.733
— far below all DA-LBE Cubic measurements and further below our calculated expected
fairness for a DA-LBE flow completing on time — we can state with reasonable confidence
that DA-LBE Vegas never reaches the deadline.

5.3.2.2 Results and Analysis

Figure 5.12 and table 5.4 show the resulting completion times from the 50 tests defined
in table 5.2. A cursory overview of the completion time measurements indicate that our
expectations from section 5.3.2.1 regarding the Cork setup experiments were accurate. On the
Cork setup, DA-LBE Cubic reaches its deadline for every test run while showing a reasonably
tight spread of measurements, and DA-LBE Vegas shows a compact middle two quartiles with
a few outliers. For the test bed setup on the other hand, DA-LBE Cubic manages to reach
the deadline with fair consistency while even the most aggressive outlier of DA-LBE Vegas
struggles to reach the deadline.

DA-LBE Cubic Cork DA-LBE Cubic consistently finishes its transmission within the given
deadline, a not so surprising result given the persistent aggressiveness that DA-LBE Cubic
has shown for the Cork setup in section 5.2.1. That more than 75 % of the test runs finish
in the penultimate interval, 580 s to 590 s, and not the final one, is curious: This many
flows not finishing in the final interval could indicate that the overly eager sending rate
of DA-LBE Cubic is not simply sending faster by a factor of the sending rate. Even with
the large spread of fairness measurements most test runs finish more than a whole interval
early which may suggest that the early completion time is not closely tied to sending rate
or network congestion, as long as it is not constricted as is the case for the local test bed
experiments.

DA-LBE Vegas Cork The completion times for DA-LBE Vegas on the Cork setup show a
tight core of results which suggests stable performance from Vegas in DA-LBE mode when
run on the Internet. The extreme outliers may be DA-LBE Vegas, for the aggressive test runs,
wrongly estimating the BaseRTT or, for the late test runs, encountering a heavily congested
network or a sudden increase in congestion when nearing the deadline.

Figures 5.13 and 5.14c show how the DA-LBE Vegas test that finished the earliest, at 37.2 s
before the deadline, was impacted by 125 ms to 150 ms of delay until 150 s into the test. After

64

Cubic Cork Vegas Cork Cubic test bed Vegas test bed
560

580

600

620

640

660

680

700

Co
m

pl
et

io
n

tim
e

(s
ec

on
ds

)

Figure 5.12: Box plot showing completion time for the same test as
in figure 5.9, with the same options used for the box plot features.
Completion time is listed as time relative to the start of the DA-LBE flow.
The dashed red line is the deadline given to Libdalbe. The range spans
from early enough to show all completion times until the absolute end of
the test, 710 s after Libdalbe was started. Only a few outlier runs from the
DA-LBE Vegas test bed experiment finished within the time limit, all of the
other test runs lie outside the upper bounds of the plot.

Completion times (delta from target)

Experiment Mean Median Stddev. Max Min

Cubic Cork −12.9 −12.1 2.965 −5.8 −19.5
Vegas Cork −1.9 −1.7 6.369 20.6 −37.2

Cubic test bed −5.7 −6.0 4.148 6.7 −13.3
Vegas test bed 117.9 119.0 5.019 119.0 85.4

Table 5.4: Completion time results from the Libdalbe experiments on the
Cork setup, shown as seconds relative to the deadline of 600 s. The tests
should be forced to finish at 110 s after the deadline; results higher than
this are the test applications failing to shut down in a timely manner. The
line in the middle separates results that are not directly comparable. Raw
results can be found in table D.2.

65

0 200 400 600
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.13: Throughput graph of the DA-LBE Vegas Cork test run that
finished the earliest.

Figure 5.14: Libdalbe debug graphs showing queuing delay and RTT from
the DA-LBE flow seen in figure 5.15. The range is limited to the time that
our DA-LBE Vegas was active. This figure is a cutout from figure D.1.

66

this plateau of elevated delay the mean RTT, also seen in figure 5.14c, has been influenced
enough so as to be a perpetual overestimation of the real RTT for the remainder of the flow.
The use of a total mean RTT as opposed to a moving average to calculate queuing delay, as
seen in figure 5.14b, is meant to stabilize the behavior of DA-LBE Vegas so as to make it less
volatile. In this case however, the inflated mean RTT made the Vegas model perceive the
queuing delay in the network to be significantly higher than the real values hinted at by the
RTT measurements in figure 5.14c, resulting in DA-LBE Vegas being tuned to compete much
more aggressively than warranted.

The last DA-LBE Vegas test run to finish also seems to be affected by rapidly changing
network behavior. As seen in figure 5.15, after an initial period of an obvious BaseRTT
misestimation, DA-LBE Vegas seems to be on track for reaching its deadline. At roughly
t = 540 s there is an abrupt change in network conditions causing Libdalbe to scale back on
its aggressiveness and ultimately missing the deadline by 20.6 s. Figure 5.16c shows a slight
plateau in RTT at t = 540 s onwards which likely is the cause of Libdalbe ceasing its steady
sending rate. The metacontroller is limited in how much it can scale its aggressiveness per
interval, so there is likely no chance for Libdalbe to catch up to the ever-increasing target
rate in the last 60 s before the deadline. The large spike in RTT at t = 570 s is likely a quick
spike that was read by the metacontroller at just the wrong moment, as indicated by the
corresponding much shorter spike at the same location in the throughput graph.

DA-LBE Cubic Test Bed DA-LBE Cubic manages to complete transmission by the deadline
for most of its test runs. The late finishers seem to include locked TCP behavior, exemplified
in figure 5.17, in which one flow continually increases its sending rate as its competitor
continually similarly decreases their sending rate — in spite of the random noise added
to combat exactly such behaviors. The most prominent case of TCP locking in figure 5.17 at
roughly t = 300 s sees Libdalbe out-compete the BE flow for a short while, though the events
that cause the missed deadline happen at t = 575 s and t = 590 s in which, for a short while,
the BE flow shows a peak in sending rate as the LBE flow dips into a valley right before the
deadline. Shown in appendix D.4, this behavior towards the very end of the test is exhibited
in all of the test runs that finished after the deadline, though for some it happens a couple of
intervals before the deadline and in some cases the effect is small enough not to really warrant
attention if it weren’t for the fact that the deadline was not met. As explained in section 2.6.5,

0 200 400 600
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic

Figure 5.15: Throughput graph of the DA-LBE Vegas Cork test run that
finished last.

67

Figure 5.16: Libdalbe debug graph showing RTT from the DA-LBE flow
seen in figure 5.15. The range is limited to the time that our DA-LBE Vegas
was active. This figure is a cutout from figure D.2.

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure 5.17: Throughput graph of the DA-LBE Cubic test bed run that
finished last.

having our protocols miss the deadline by at most 6.7 s in the case of DA-LBE Cubic is still
within acceptable DA-LBE performance and thus we can state that even the slower outliers
here are successful DA-LBE runs.

DA-LBE Vegas Test Bed The DA-LBE Vegas experiments on the test bed do not seem to
be performing well: Only in two outlier cases did DA-LBE Vegas manage to finish within
this absolute deadline, with no test runs finishing within the Libdalbe deadline. Most of the
recorded runs finish just outside the upper boundary of the plot in figure 5.12.

The test run that finished the earliest is shown in figure 5.18, where it can be seen
that DA-LBE Vegas very rarely manages to reach, and can never maintain, the target rate.
Figure 5.21, showing the Libdalbe debug output from the same test run as in figure 5.18,
gives a few clues as to why the Libdalbe sending rate remains insufficient.

As in previous times we have examined Libdalbe debug output from DA-LBE Vegas in
this chapter, the real BaseRTT takes time to establish. For this test run the real BaseRTT is
never found, with the best estimate measuring 35 ms, 5 ms more than the real propagation
delay. This should work in the favor of DA-LBE Vegas, as a higher BaseRTT estimate leads
to smaller perceived queues. Where this BaseRTT misestimation probably hurts the sending
rate however is every time a lower BaseRTT measurement is made the aggressiveness is tuned
down and has to climb back up. The new BaseRTT estimates each show clear jumps in the
measured queuing delay, seen in figures 5.19b and 5.19c, which will in turn impact the weight
parameter and thus the sending rate.

Figure 5.20 shows throughput for the second earliest finishing test run, with accompanying
Libdalbe debug output in figure 5.21. This is the slowest of the two outlier test runs that

68

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure 5.18: Throughput graph of the DA-LBE Vegas test bed run that
finished the earliest.

200 400 600
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

200 400 600
0

5

10

15

Qu
eu

in
g

de
la

y

Measured
Model

200 400 600
Time

40

50

60

M
illi

se
co

nd
s

RTT
Vegas Base RTT
Mean RTT

200 400 600
0

50

100

150

Pa
ck

et
s

Congestion window
Slow start threshold

200 400 600
0

20

40

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0

2

4

0

1000

2000

3000

No
. c

wn
d

ch
an

ge
s

a)

b)

c)

d)

e)

Figure 5.19: Libdalbe debug graphs from the DA-LBE Vegas test bed test
run that finished the earliest. The range is limited to the time that our
DA-LBE Vegas was active.

69

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure 5.20: Throughput graph of the DA-LBE Vegas test bed run that
finished the second earliest.

200 400 600
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

200 400 600
0

10

20

Qu
eu

in
g

de
la

y

Measured
Model

200 400 600
Time

40

50

60

M
illi

se
co

nd
s

RTT
Vegas Base RTT
Mean RTT

200 400 600
0

50

100

Pa
ck

et
s

Congestion window
Slow start threshold

200 400 600
0

20

40

60

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0

2

4

0

1000

2000

3000

No
. c

wn
d

ch
an

ge
s

a)

b)

c)

d)

e)

Figure 5.21: Libdalbe debug graphs from the DA-LBE Vegas test bed test
run that finished the second earliest. The range is limited to the time that
our DA-LBE Vegas was active.

70

finished within the absolute time limit. The second earliest test run to finish does exhibit an
initial wrongful BaseRTT estimation, seen early on in figure 5.21c, though there are no more
new estimations to keep bringing the aggression down. Figure 5.21a shows that maximum
aggressiveness is reached and the backoff parameter kicks in at approximately t = 330 s, yet
DA-LBE Vegas still cannot compete with BE Cubic. Even in these two most aggressive cases
DA-LBE Vegas struggles.

We had hoped that allowing DA-LBE Vegas to ignore a percentage of loss events when
going for maximum aggression, indicated by the line labeled Ignore backoff (chance to ignore a
loss event) in figure 5.21a, would make it able to compete with a BE TCP, but it seems to have
no noticeable effect. Figure 5.20 shows no significant difference in sending rate after t = 330 s
when the loss event ignore parameter goes into effect in this test run. The lack of impact can
probably be explained by the almost total lack of congestion events for the DA-LBE Vegas
flow, as seen in figure 5.21e where it is revealed that our Libdalbe flow saw no more than 60

loss events during the whole 710 seconds the flow was active. With cwnd changes caused by
delay outnumbering loss signals by the thousands, it is no surprise that ignoring up to 75 %
of loss signals causes no significant impact on sending rate, similarly to what we noted in
section 5.1.2.3. As remarked for the table 5.1 experiments in section 5.1.2.3, with BE Cubic
occupying 70 % of the queue on the single bottleneck our DA-LBE Vegas metacontroller will
never be able to compete.

Test run no.

31 49

Delta completion time +85.35 s +106.31 s
Fairness 0.733 0.725

Table 5.5: Measurements from the only two test bed DA-LBE Vegas test
runs that finished within the absolute time limit.

A consequence of having most of the test runs finishing between t = 710 s and t = 720 s is
that those same test runs will all register similar fairness measurements and thus skew the
total results. Table 5.5 shows the completion time and fairness measurements for the two
outliers. These values are at the very top of the upper whisker of measurements for DA-LBE
Vegas in figure 5.9 and reveal that, as we touched on in section 5.3.1.2, its seemingly tight
core of fairness measurements is due to the test runs being forced to shut down. This is
further validated by table 5.4, which shows that the median and maximum completion times
for DA-LBE Vegas on the test bed are both 119 s after the deadline, meaning over half of the
measurements are exactly 119 s. Table D.2 reveals that only 6 out of 50 test runs completed
at earlier than 199 s after the deadline. The fairness measurements still carry some sense of
validity: Though the test runs were cut short, the fairness results still show that DA-LBE
Vegas acted in a LBE manner in competing with BE Cubic. We can however not guarantee
that DA-LBE Vegas would have continued to act in this manner if the test runs had not been
cut short, and so the only truly representative measurements are those in table 5.5.

5.3.3 Long-term Behavior Summary

In section 5.3 we wanted to see how Libdalbe performed over multiple test runs. We ran 50

tests for each of our DA-LBE congestion metacontrollers on each of our setups and analyzed
their fairness and completion times.

71

For fairness we saw both DA-LBE Cubic and DA-LBE Vegas on the Cork setup measuring
mostly under a fairness of 0.7, which is leaning towards the least fair, or LBE-like, side of the
scale. Some outliers tend to the fairer side, meaning more BE-like, which for the DA-LBE
Cubic test runs seems to be resulting from the BE competitor not managing to attain a
very high sending rate. The most fair DA-LBE Vegas test run exhibits a similar situation
in which our DA-LBE flow keeps to its sending rate while the competing BE-flow struggles
to claim the rest of the bandwidth due to external congestion. The measurements for the
test bed experiments show larger differences between DA-LBE Cubic and DA-LBE Vegas,
with DA-LBE Cubic scoring almost exactly the fairness value we predicted for a DA-LBE
flow reaching its deadline with perfect bandwidth utilization. DA-LBE Vegas seems to score
heavily on the less-than fair side of the scale; we predicted that the low fairness scores meant
that DA-LBE Vegas never reached the deadline which we later showed to be correct.

Completion times for the Cork setup seem to better highlight how changing network
conditions alter Libdalbe performance. Both DA-LBE Cubic and DA-LBE Vegas finish their
transmission in a tight window, with DA-LBE Cubic consistently finishing more than ten
seconds early. We highlighted some runs of DA-LBE Vegas on the Cork setup that showed
quirks of DA-LBE Vegas, namely BaseRTT misestimation, the pitfalls of using total mean
RTT for estimating queuing delay in the metacontroller, and how the metacontroller backs
off significantly on increased congestion even when close to the deadline. DA-LBE Cubic
on the test bed seems to be performing well, for the most part sticking to its target rate
while fairly consistently reaching its deadline. We showed how DA-LBE Cubic, being pitted
against another loss-based TCP, exhibits locking behavior, in which one of the two TCPs sees
a temporary major increase in sending rate while its competitor sees a corresponding dip —
in spite of the random noise added to the test bed setup to combat exactly this situation.
DA-LBE Vegas struggles on the test bed setup; as we noted earlier, in section 5.1.2.3, the
Vegas congestion controller itself is affected too much by the bottleneck congestion for our
metacontroller to make it aggressive enough.

72

Chapter 6

Conclusion

This thesis presented Libdalbe, an interface to DA-LBE control mechanisms in the kernel,
along with working implementations of DA-LBE transport services. In chapter 2 we explained
how applications wanting to transmit data with a lower bandwidth allocation could use Less-
than Best Effort services and that we could make these LBE services adhere to a soft deadline
through adjusting congestion signals for the underlying congestion control, causing it to
perceive more or less congestion on the network as needed. This adjustment of congestion
signals is calculated by modeling congestion on the network based on the congestion signals
received by the TCP being controlled.

We developed a library, Libdalbe, to adjust perceived congestion signals in order to
achieve a DA-LBE service. Application programmers can use Libdalbe sockets in place of
their standard Berkeley sockets to utilize DA-LBE-enabled transports. Libdalbe allows for
custom congestion metacontrollers, of the sort described in chapter 2, which Libdalbe will
utilize for socket control asynchronously from the programmer’s main application. As part
of Libdalbe we implemented two model-based DA-LBE metacontrollers, one for TCP Cubic
and one for TCP Vegas, both of which manage to achieve LBE-like behavior while adhering
to a soft deadline.

We created a local test bed on which we emulated a dumbbell network topology with
added propagation delay and rate limiting to test and verify Libdalbe performance. The
solutions chosen for emulation were thoroughly tested to ensure a setup of reasonable
likeness to a real network. To test Libdalbe and the congestion metacontrollers in a
real Internet environment, with its random noise and cross traffic, we set up an Internet
connection to Cork, Ireland. We developed a robust framework for testing, allowing us to run
predefined tests sequentially, each with custom host-specific procedures for initialization,
testing, analysis, and teardown. This included extensive debugging capabilities for our
metacontrollers, the output of which enables deeper analysis of Libdalbe behavior when set
in context with the performance metrics.

In chapter 5 we ran experiments covering each of our metacontrollers running on each of
our two test setups, with the goal of ascertaining that Libdalbe succeeds in providing DA-LBE
service in both environments.

6.1 Conclusions from our Evaluations

We quantitatively evaluated Libdalbe using two keys metrics: Jain’s fairness index, as
described in section 2.3.1.4, and transmission completion times. The fairness measurements
will show whether our metacontrollers can uphold LBE-like qualities in various degrees

73

of congestion. The deadline-aware part of DA-LBE will be evaluated through transmission
completion times, for which we aim for Libdalbe to finish within the given deadline as far as
network conditions allow.

On the local test bed we saw how our metacontrollers work when set to compete
for bandwidth on a single bottleneck. We calculated a value for the expected fairness
measurement given that the DA-LBE flow finishes exactly on time and that the competitor
utilizes all of the remaining bandwidth. If the DA-LBE flow scores a fairness higher than
this value we can say for certain that it was too aggressive, as it would have to have finished
much too early and possibly out-competing a BE flow to do so. Lower scores than this
expected fairness signifies either that the DA-LBE flow finished late or that, more likely, the
BE competitor did not manage to utilize the remaining available bandwidth.

DA-LBE Cubic in this environment measured a fairness close to the optimal calculated
value, consistently scoring on the LBE-side of fair while seemingly reliably reaching its
deadline. This signifies that the DA-LBE Cubic model is accurate in its modeling of Cubic
both for the sender and for the competitor, and that the DA-LBE control adjustments behave
as expected. DA-LBE Vegas appears to behave much less than fair in this scenario, which in
the very least proves that the metacontroller acts LBE-like.

Completion times for our experiments on the test bed show vast differences between
the two metacontrollers. Only DA-LBE Cubic manages to complete its sending close to the
deadline, with only six of its test runs finishing after the deadline. All of the late DA-LBE
Cubic runs seem to have reacted to network congestion in a way that made them send too
slowly just before reaching the deadline. We show that TCP locking was not quite eliminated
on our test bed. We hypothesized that the low fairness scores of DA-LBE Vegas on the test bed
could mean that none of its test runs finished in time, and we were proven right. Only two test
runs, both of them outliers, finished within the bounds of the experiment and we showed that
even though a misestimation of the BaseRTT should make Vegas more aggressive, DA-LBE
Vegas can not compete with the 70 % standing queue of BE Cubic.

On the Internet setup we tested for Libdalbe performance on a real network, where we
do not control neither the noise nor (all of) the competing traffic. The Internet setup has
a much higher bandwidth than the local test bed setup, and a slightly longer RTT. With
the higher sending rates causing correspondingly bigger reactions to loss events, due to the
AIMD behavior of the competing TCPs, we expected Libdalbe to more easily finish sending
by the deadline. The more interesting gauge of Libdalbe success on the Internet setup was
whether it managed to consistently maintain LBE-like behavior.

DA-LBE Cubic tends to compete a little more aggressively than needed, but never so
much as to approach BE-like sending rates for longer periods, and never so much as to
finish transmission unreasonably early. Its fairness measurements put it as leaning towards
LBE behavior more so than BE, though some outliers show high fairness measurements. We
showed that, for the most aggressive outlier, network conditions did not allow the competing
BE Cubic to claim much bandwidth, while DA-LBE Cubic held to its target rate and finished
almost exactly on time.

We showed DA-LBE Vegas to be mostly LBE-like in behavior, except in situations where
the BaseRTT is wrongly estimated or the mean RTT is affected enough to significantly skew
the perceived queuing delay for the rest of the flow. The most aggressive outlier for DA-LBE
Vegas was also shown to, like the most aggressive DA-LBE Cubic test run, result from higher
than normal external congestion for that run.

We found both of our congestion metacontrollers to finish sending within reasonable
time frames when employed on the Internet. With the deadline set at 600 s, DA-LBE Cubic
finished before the deadline on every test run, while DA-LBE Vegas had seven test runs

74

finishing too late; none of DA-LBE Vegas’s runs finished later than about 20 s after the
deadline, which when further examined showed DA-LBE Vegas favoring LBE behavior when
encountering congestion just before the deadline. Some quirks in DA-LBE Vegas, namely
the BaseRTT misestimation in TCP Vegas itself and the use of a total mean RTT for the
Vegas in the metacontroller, cause DA-LBE Vegas to occasionally send at much higher rates
than warranted by the target rate and the momentary network congestion, in some cases
leading to the transmission completing much too early. While high sending rates in the
absence of congestion is desirable in a DA-LBE transport and expected of DA-LBE Vegas, the
misestimation of BaseRTT in TCP Vegas or a too high mean RTT measurement in the DA-LBE
Vegas metacontroller may cause a more aggressive sending rate even in the face of congestion.

In general, we saw LBE-like behavior to be upheld excepting some cases where DA-LBE
Vegas got a wrong measurement for its BaseRTT. DA-LBE Cubic scores seemingly very fair
(BE-like) on the test bed setup, though we showed that those values were close to the expected
optimal fairness for that environment. Libdalbe reaches its deadline with fair reliability on
the Internet, with the slower test runs exhibiting a clear tendency of LBE behavior when faced
with network congestion, which we deem to be an acceptable reason for tardiness. DA-LBE
Vegas when run on the test bed, an environment with just a single bottleneck with a 70 %
standing queue, absolutely fails to meet its deadline; though DA-LBE Vegas does exhibit
the desirable traits of an LBE service, it fails as a DA-LBE service in such high-congestion
environments.

6.2 Future Work

In this section we present some points in our work that could be improved, and some that
could be expanded upon in future research.

6.2.1 Improvements to the Application

In section 3.7 we discuss some targets for improving the current implementation of Libdalbe.
The specific problems mentioned therein are the locking problems that arise in multithreaded
applications, such as concurrent access to shared resources, and the support for sending
signals to other threads or processes for allowing more customization of DA-LBE options. We
also can not verify the correct performance of Libdalbe when running multiple connections
in parallel, as we in this thesis focused on the ability of Libdalbe to simply achieve DA-LBE.
These kinds of problems could probably be fixed by making use of existing robust libraries
for handling asynchronous tasks and message passing. Further in the category of small
improvements to the application is error handling, discussed in section 3.5.4, specifically
handling out-of-memory errors; Libdalbe attempts to handle errors gracefully and report
failures back to the user, but more consideration could go into properly handling severe error
states such as running out of memory when creating a user-facing application or service like
Libdalbe.

For our testing we created a minimal application that had sufficient functionality for
testing one long-lived flow using just one connection. In preparation of deploying this kind of
service in a production environment, testing should be done using the kinds of applications
that will actually be employed in that environment. In the environment of the Internet, it
would be helpful to test Libdalbe performance in e.g. a fully featured file synchronization
and backup application like Rsync [12], whose source code is openly available and thus open
for alteration for testing purposes.

75

Lastly, in chapter 1 we touched on NEAT and how Libdalbe was supposed to have fit
into their framework as a DA-LBE service available for applications to use. Early inclusion
into NEAT would have helped in testing as we would have been able to test with any NEAT-
enabled application.

6.2.2 Additional Testing

Our experiments for checking DA-LBE behavior, on both the local setup and the Internet,
could be improved with several additions and extra experiments that would help in designing
a robust DA-LBE metacontroller:

• Choosing a higher required sending rate for the long-term tests was probably not ideal;
setting the required target rate equal to the one in the shorter tests would have allowed
for better results comparisons. With more time it would have been interesting to see how
Libdalbe performs in many different aggression scenarios, especially when requiring
very low sending rates, or rates that would require sending with BE-like greediness.

• More and longer periods of low congestion would have allowed for analysis
of metacontrollers that can not immediately exploit small periods, such as our
implementation of DA-LBE Cubic. How long a metacontroller takes to claim the
available bandwidth and subsequently how long it takes to give it up would both be of
great interest.

• Having a steady-state DA-LBE flow interrupted by bursts of BE traffic, would have
helped check for the ability of the metacontroller to effectively back off from having
claimed all available bandwidth, similarly to the previous point, with the difference
being that the metacontroller might behave differently when being allowed full
bandwidth before being challenged.

• Testing Libdalbe in different applications against real traffic traces, checking whether
it significantly affects user-perceived quality of service for the BE flows, could further
highlight use cases for DA-LBE services. Real traces could also show whether end users
benefit at all from background services employing DA-LBE transport.

• Playing back real usage scenarios, traces of a user interacting with an application rather
than the traffic itself, with applications for which Libdalbe support has been added,
could help highlight use cases for DA-LBE in user-facing applications such as backups,
streaming media players, or a utility like Rsync [12].

Our experiments were sufficient to prove that Libdalbe does indeed achieve LBE-ness while
adhering to a soft deadline, but more diverse testing ought to be done if a metaprotocol like
this is to be deployed on the Internet.

6.2.3 Areas of Interest for Future Research

In our work we encountered some topics that could warrant further exploration in future
research.

• The DA-LBE Cubic performance in our experiments seemed to be slightly more
aggressive than needed, behaving consistently enough to warrant us suggesting that
the time by which DA-LBE Cubic beats the deadline may be caused by something else
than simply sending faster than the required rate by a simple factor. Making DA-LBE

76

Cubic send more closely to the target rate might be achieved by a more accurate Cubic
model, both for the sender and for its competitors. An inaccurate model of the network
BE traffic could turn DA-LBE Cubic away from the true target rate, and so too can a
wrongful model for the Cubic on the sender itself.

• The DA-LBE Vegas metacontroller needs tuning to be able to work in highly congested
scenarios such as our local test bed. Our analysis indicates that this is a difficult issue
which in itself warrants more exploration.

• The DA-LBE Vegas metacontroller in general could benefit from a deeper analysis.
We showed one test run in which the metacontroller, employing a mean RTT for the
whole run, was sufficiently affected by an initial plateau of high RTTs to subsequently
overestimate the congestion on the network for the rest of the flow. A good target for
future exploration is the stability of DA-LBE Vegas performance, and perhaps research
into ways to ensure DA-LBE Vegas still sends in a LBE manner even if the BaseRTT is
incorrectly estimated.

• Our metacontrollers could be affected by AQMs on the network. While we don’t
expect simple preemptive packet drop or ECNs to severely affect the performance of
Libdalbe, AQMs which categorize traffic and treat each category differently, such as
the ones described by Abbas et al. [1], might affect the perceived congestion in our
metacontrollers.

• The DA-LBE kernel component includes provisions to ignore ECNs and even loss
signals. While reacting to ECNs is not required of a TCP implementation, allowing
a TCP to ignore loss could lead to sending faster than would be fair to other BE TCPs.
Extreme care must therefore be taken in implementing metacontrollers using these
parameters. Whether such parameters should be made easily accessible to application
programmers without requiring administrative rights on the machine needs to be
examined if Libdalbe is to be made available beyond just computer science researchers.

6.3 Achieving our Thesis Goals

In section 1.2 we outlined three goals for this thesis. This thesis presented the library,
Libdalbe, we developed to provide accessible and robust DA-LBE service to application
programmers. We analyzed Libdalbe and our metacontrollers and found them to be mostly
successful in the goal of achieving LBE-like behavior while adhering to a soft deadline, or
DA-LBE. When deployed on the Internet, both of our implemented solutions, DA-LBE Cubic
and DA-LBE Vegas, transmit all of their data in a timely manner, though the experiments
for the test bed show worse performance for DA-LBE Vegas when facing heavy congestion.
Fairness measurements show that both of our metacontrollers maintain, for the vast majority
of test runs, a consistently less than fair sending rate, which proves that they act LBE-like.

In implementing Libdalbe with two DA-LBE metacontrollers, and testing these in both
emulated and real environments, we have fulfilled our goals for this thesis set out in
section 1.2. To the best of our knowledge we have implemented the first working solution for
a DA-LBE-enabled transport service.

77

78

Bibliography

[1] G. Abbas, Z. Halim, and Z. H. Abbas, “Fairness-driven queue management: A survey
and taxonomy,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 324–367, 2016,
issn: 1553-877X. doi: 10.1109/COMST.2015.2463121.

[2] Apple, Tcp ledbat.c, 2010. [Online]. Available: https://opensource.apple.com/
source/xnu/xnu-1699.32.7/bsd/netinet/tcp%7B%5C_%7Dledbat.c.auto.
html (visited on 06/26/2018).

[3] I. van Beijnum, Understanding bufferbloat and the network buffer arms race, 2011.
[Online]. Available: https : / / arstechnica . com / tech - policy / 2011 / 01 /
understanding - bufferbloat - and - the - network - buffer - arms - race/
(visited on 04/16/2018).

[4] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation of realistic network
workload for emerging networking scenarios,” Computer Networks, vol. 56, pp. 3531–
3547, 2012. doi: 10.1016/j.comnet.2012.02.019. [Online]. Available: http:
//wpage.unina.it/a.botta/pub/COMNET%7B%5C_%7DWORKLOAD.pdf.

[5] Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. R. Evensen, K.-j. Grinnemo,
A. F. Hansen, N. Khademi, S. Mangiante, P. Mcmanus, G. Papastergiou, D. Ros, M.
Tüxen, E. Vyncke, and M. Welzl, “NEAT Deliverable D1.1 NEAT Architecture,” Tech.
Rep., 2016, pp. 1–72. [Online]. Available: https://www.neat-project.org/wp-
content/uploads/2018/04/D1.1-v1.1.pdf.

[6] L. S. Brakmo, L. L. Peterson, and S. W. O. Malley, “TCP Vegas : New Techniques
Detection for Congestion and Avoidance,” Techniques, vol. 24, Issue, no. TR 94 04, pp. 24–
35, 1994, issn: 0146-4833. doi: 10.1145/190314.190317. [Online]. Available: http:
//reference.kfupm.edu.sa/content/t/c/tcp%7B%5C_%7Dvegas%7B%
5C_%7D%7B%5C_%7Dnew%7B%5C_%7Dtechniques%7B%5C_%7Dfor%7B%5C_
%7Dcongestion%7B%5C_%7D53554.pdf.

[7] A. Brunstrom, D. Damjanovic, K. Evensen, G. Fairhurst, A. F. Hansen, F. Haugseth,
D. Hayes, T. Hirsch, T. Jones, N. Khademi, P. Mcmanus, A. Petlund, D. Ros, T.
Rozensztrauch, R. Santos, D. Stenberg, M. Tüxen, E. Vyncke, H. Wallenburg, F.
Weinrank, and M. Welzl, “NEAT Deliverable D4.3 Validation and evaluation results,”
Tech. Rep., 2018, pp. 1–77. [Online]. Available: https://www.neat-project.org/
wp-content/uploads/2018/05/D4.3.pdf.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr: Congestion-
based congestion control,” ACM Queue, vol. 14, September-October, pp. 20–53, 2016.
[Online]. Available: http://queue.acm.org/detail.cfm?id%20=%203022184.

[9] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The quest for ledbat fairness,”
in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, pp. 1–6. doi:
10.1109/GLOCOM.2010.5683559.

79

https://doi.org/10.1109/COMST.2015.2463121
https://opensource.apple.com/source/xnu/xnu-1699.32.7/bsd/netinet/tcp%7B%5C_%7Dledbat.c.auto.html
https://opensource.apple.com/source/xnu/xnu-1699.32.7/bsd/netinet/tcp%7B%5C_%7Dledbat.c.auto.html
https://opensource.apple.com/source/xnu/xnu-1699.32.7/bsd/netinet/tcp%7B%5C_%7Dledbat.c.auto.html
https://arstechnica.com/tech-policy/2011/01/understanding-bufferbloat-and-the-network-buffer-arms-race/
https://arstechnica.com/tech-policy/2011/01/understanding-bufferbloat-and-the-network-buffer-arms-race/
https://doi.org/10.1016/j.comnet.2012.02.019
http://wpage.unina.it/a.botta/pub/COMNET%7B%5C_%7DWORKLOAD.pdf
http://wpage.unina.it/a.botta/pub/COMNET%7B%5C_%7DWORKLOAD.pdf
https://www.neat-project.org/wp-content/uploads/2018/04/D1.1-v1.1.pdf
https://www.neat-project.org/wp-content/uploads/2018/04/D1.1-v1.1.pdf
https://doi.org/10.1145/190314.190317
http://reference.kfupm.edu.sa/content/t/c/tcp%7B%5C_%7Dvegas%7B%5C_%7D%7B%5C_%7Dnew%7B%5C_%7Dtechniques%7B%5C_%7Dfor%7B%5C_%7Dcongestion%7B%5C_%7D53554.pdf
http://reference.kfupm.edu.sa/content/t/c/tcp%7B%5C_%7Dvegas%7B%5C_%7D%7B%5C_%7Dnew%7B%5C_%7Dtechniques%7B%5C_%7Dfor%7B%5C_%7Dcongestion%7B%5C_%7D53554.pdf
http://reference.kfupm.edu.sa/content/t/c/tcp%7B%5C_%7Dvegas%7B%5C_%7D%7B%5C_%7Dnew%7B%5C_%7Dtechniques%7B%5C_%7Dfor%7B%5C_%7Dcongestion%7B%5C_%7D53554.pdf
http://reference.kfupm.edu.sa/content/t/c/tcp%7B%5C_%7Dvegas%7B%5C_%7D%7B%5C_%7Dnew%7B%5C_%7Dtechniques%7B%5C_%7Dfor%7B%5C_%7Dcongestion%7B%5C_%7D53554.pdf
https://www.neat-project.org/wp-content/uploads/2018/05/D4.3.pdf
https://www.neat-project.org/wp-content/uploads/2018/05/D4.3.pdf
http://queue.acm.org/detail.cfm?id%20=%203022184
https://doi.org/10.1109/GLOCOM.2010.5683559

[10] L. Collin, XZ Utils, 2018. [Online]. Available: https://tukaani.org/xz/ (visited on
05/09/2018).

[11] Creating Extension Libraries for Ruby, 2017. [Online]. Available: https://github.com/
ruby/ruby/blob/trunk/doc/extension.rdoc (visited on 05/01/2018).

[12] W. Davison, Rsync, 2018. [Online]. Available: https://rsync.samba.org/ (visited
on 06/25/2018).

[13] M. Devera, HTB Home, 2003. [Online]. Available: http://luxik.cdi.cz/%7B˜%
7Ddevik/qos/htb/ (visited on 05/08/2018).

[14] Esnet and Lawrence Berkeley National Laboratory, iPerf - The TCP, UDP and SCTP
network bandwidth measurement tool, 2016. [Online]. Available: https://iperf.fr/
(visited on 04/25/2018).

[15] Extending Python with C or C++ — Python 3.6.5 documentation, 2018. [Online]. Available:
https : / / docs . python . org / 3 / extending / extending . html (visited on
05/01/2018).

[16] W.-c. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “BLUE: A new class of active queue
management algorithms,” Ann Arbor, pp. 1–27, 1999. [Online]. Available: http://
www.eecs.umich.edu/techreports/cse/99/CSE-TR-387-99.pdf%20http:
//www.cs.ust.hk/faculty/bli/660h/feng99blue.pdf.

[17] Fiber med høy hastighet og mye kapasitet - Telenor. [Online]. Available: https://www.
telenor.no/privat/bredband/fiber/ (visited on 05/09/2018).

[18] T. Filiba, Plumbum: Shell Combinators and More. [Online]. Available: https : / /
plumbum.readthedocs.io/en/latest/#about (visited on 04/25/2018).

[19] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993, issn: 1063-6692.
doi: 10.1109/90.251892.

[20] J. Forcier, Fabric. [Online]. Available: http : / / www . fabfile . org/ (visited on
04/25/2018).

[21] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,” Communications
of the ACM, vol. 55, no. 1, p. 57, 2012, issn: 00010782. doi: 10.1145/2063176.
2063196. [Online]. Available: http://dl.acm.org/citation.cfm?doid%20=
%202063176.2063196.

[22] S. Ha and I. Rhee, “CUBIC : A New TCP-Friendly High-Speed TCP Variant,” ACM
SIGOPS Operating Systems Review - Research and developments in the Linux kernel, vol. 42,
no. 5, pp. 64–74, 2008, issn: 0163-5980. doi: 10.1145/1400097.1400105. [Online].
Available: http://www4.ncsu.edu/%7B˜%7Drhee/export/bitcp/cubic-
paper.pdf.

[23] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of fairness
between tcp reno and vegas for deployment of tcp vegas to the internet,” in Proceedings
2000 International Conference on Network Protocols, 2000, pp. 177–186. doi: 10.1109/
ICNP.2000.896302.

[24] D. A. Hayes, D. Ros, A. Petlund, and I. Ahmed, “A Framework for Less than Best Effort
Congestion Control with Soft Deadlines,” 2017, isbn: 9783901882944.

[25] “Ieee standard for ethernet,” IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-2012), pp. 1–
4017, 2016. doi: 10.1109/IEEESTD.2016.7428776.

80

https://tukaani.org/xz/
https://github.com/ruby/ruby/blob/trunk/doc/extension.rdoc
https://github.com/ruby/ruby/blob/trunk/doc/extension.rdoc
https://rsync.samba.org/
http://luxik.cdi.cz/%7B~%7Ddevik/qos/htb/
http://luxik.cdi.cz/%7B~%7Ddevik/qos/htb/
https://iperf.fr/
https://docs.python.org/3/extending/extending.html
http://www.eecs.umich.edu/techreports/cse/99/CSE-TR-387-99.pdf%20http://www.cs.ust.hk/faculty/bli/660h/feng99blue.pdf
http://www.eecs.umich.edu/techreports/cse/99/CSE-TR-387-99.pdf%20http://www.cs.ust.hk/faculty/bli/660h/feng99blue.pdf
http://www.eecs.umich.edu/techreports/cse/99/CSE-TR-387-99.pdf%20http://www.cs.ust.hk/faculty/bli/660h/feng99blue.pdf
https://www.telenor.no/privat/bredband/fiber/
https://www.telenor.no/privat/bredband/fiber/
https://plumbum.readthedocs.io/en/latest/#about
https://plumbum.readthedocs.io/en/latest/#about
https://doi.org/10.1109/90.251892
http://www.fabfile.org/
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1145/2063176.2063196
http://dl.acm.org/citation.cfm?doid%20=%202063176.2063196
http://dl.acm.org/citation.cfm?doid%20=%202063176.2063196
https://doi.org/10.1145/1400097.1400105
http://www4.ncsu.edu/%7B~%7Drhee/export/bitcp/cubic-paper.pdf
http://www4.ncsu.edu/%7B~%7Drhee/export/bitcp/cubic-paper.pdf
https://doi.org/10.1109/ICNP.2000.896302
https://doi.org/10.1109/ICNP.2000.896302
https://doi.org/10.1109/IEEESTD.2016.7428776

[26] “Ieee standard for information technology–telecommunications and information ex-
change between systems local and metropolitan area networks–specific requirements
- part 11: Wireless lan medium access control (mac) and physical layer (phy) specifi-
cations,” IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016. doi:
10.1109/IEEESTD.2016.7786995.

[27] Ieee std 1003.1-2017 (revision of ieee std 1003.1-2008): Ieee standard for information
technology–portable operating system interface (posix(r)) base specifications, issue 7, eng, 2018.

[28] Internett-målinga - SSB, 2018. [Online]. Available: https : / / www . ssb . no /
teknologi - og - innovasjon / statistikker / inet / kvartal (visited on
05/29/2018).

[29] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM Computer Communi-
cation Review, vol. 18, no. 4, pp. 314–329, 1988, issn: 01464833. doi: 10.1145/52325.
52356. arXiv: arXiv:1011.1669v3. [Online]. Available: http://portal.acm.
org/citation.cfm?doid%20=%2052325.52356.

[30] R. Jain and K. Ramakrishnan, “Congestion avoidance in computer networks with a
connectionless network layer: concepts, goals and methodology,” [1988] Proceedings.
Computer Networking Symposium, pp. 134–143, 1997, issn: 01464833. doi: 10.1109/
CNS.1988.4990. arXiv: 9809095 [cs]. [Online]. Available: http://ieeexplore.
ieee.org/document/4990/.

[31] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and
discrimination for resource allocation in shared computer system,” DEC technical report
TR301, vol. cs.NI/9809, no. DEC-TR-301, pp. 1–38, 1984. [Online]. Available: http:
//www.cs.wustl.edu/%7B˜%7Djain/papers/ftp/fairness.pdf.

[32] Java Native Interface Specification: 1 - Introduction, 2017. [Online]. Available: https :
//docs.oracle.com/javase/9/docs/specs/jni/intro.html (visited on
05/01/2018).

[33] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate Control for Communication
Networks : Shadow Prices , Proportional Fairness and Stability Published by : Palgrave
Macmillan Journals on behalf of the Operational Research Society Stable URL :
http://www.jstor.org/stable/3010473 Rate control for commun,” vol. 49, no. 3, pp. 237–
252, 1998.

[34] F. Kelly, “Charging and rate control for elastic traffic (corrected version),” European
Transaction on Telecommunication, vol. 8, no. 1, pp. 33–37, 1997.

[35] M. Kerrisk, Linux Man Pages, 2011. [Online]. Available: http://www.kernel.org/
doc/man-pages/ (visited on 05/08/2018).

[36] ——, The linux programming interface : A linux and unix system programming handbook, eng,
San Francisco, 2010.

[37] T. Kluyver, B. Ragan-kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C. Willing,
“Jupyter Notebooks—a publishing format for reproducible computational workflows,”
Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90, 2016,
issn: 0015-0193. doi: 10.3233/978-1-61499-649-1-87.

81

https://doi.org/10.1109/IEEESTD.2016.7786995
https://www.ssb.no/teknologi-og-innovasjon/statistikker/inet/kvartal
https://www.ssb.no/teknologi-og-innovasjon/statistikker/inet/kvartal
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
http://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid%20=%2052325.52356
http://portal.acm.org/citation.cfm?doid%20=%2052325.52356
https://doi.org/10.1109/CNS.1988.4990
https://doi.org/10.1109/CNS.1988.4990
http://arxiv.org/abs/9809095
http://ieeexplore.ieee.org/document/4990/
http://ieeexplore.ieee.org/document/4990/
http://www.cs.wustl.edu/%7B~%7Djain/papers/ftp/fairness.pdf
http://www.cs.wustl.edu/%7B~%7Djain/papers/ftp/fairness.pdf
https://docs.oracle.com/javase/9/docs/specs/jni/intro.html
https://docs.oracle.com/javase/9/docs/specs/jni/intro.html
http://www.kernel.org/doc/man-pages/
http://www.kernel.org/doc/man-pages/
https://doi.org/10.3233/978-1-61499-649-1-87

[38] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop from front strategy in TCP
and in TCP over ATM,” in Proceedings of IEEE INFOCOM 96 Conference on Computer
Communications, vol. 3, 1996, pp. 1242–1250, isbn: 0818672935. doi: 10.1109/INFCOM.
1996.493070. [Online]. Available: http://www.cs.tut.fi/%7B˜%7Dkucherya/
book/lakshman96.pdf.

[39] Libuv: Cross-platform asynchronous I/O, 2015. [Online]. Available: http://libuv.org
(visited on 04/25/2018).

[40] Linux kernel source tree. [Online]. Available: https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree.

[41] D. S. Miller, net-next.git - David Miller’s -next networking tree, 2018. [Online]. Available:
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.
git/ (visited on 05/07/2018).

[42] P. Miller, Libexplain, 2008. [Online]. Available: http://libexplain.sourceforge.
net/ (visited on 04/25/2018).

[43] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven
kernel,” ACM Transactions on Computer Systems, vol. 15, no. 3, 1997, issn: 0734-2071.

[44] S. Murdoch, “Hot or not: Revealing hidden services by their clock skew,” Proceedings of
the 13th ACM conference on Computer . . ., pp. 27–36, 2006, issn: 1595935185. doi: 10.1.
1.65.9298. [Online]. Available: http://dl.acm.org/citation.cfm?id%20=
%201180410.

[45] Python Software Foundation, Python, 2018. [Online]. Available: https : / / www .
python.org/ (visited on 05/09/2018).

[46] L. Qiu, Y. Zhang, and S. Keshav, “Understanding the performance of many TCP flows,”
Computer Networks, vol. 37, no. 3-4, pp. 277–306, 2001, issn: 1389-1286. doi: 10.1016/
S1389-1286(01)00203-1. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1389128601002031.

[47] R. Braden (Ed.), Requirements for Internet Hosts - Communication Layers, RFC 1122

(Internet Standard), RFC, Updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633, 6864,
8029, Fremont, CA, USA: RFC Editor, 1989. doi: 10 . 17487 / RFC1122. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1122.txt.

[48] ——, Requirements for Internet Hosts - Application and Support, RFC 1123 (Internet
Standard), RFC, Updated by RFCs 1349, 2181, 5321, 5966, 7766, Fremont, CA, USA:
RFC Editor, 1989. doi: 10.17487/RFC1123. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc1123.txt.

[49] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms, RFC 2001 (Proposed Standard), RFC, Obsoleted by RFC 2581, Fremont,
CA, USA: RFC Editor, 1997. doi: 10.17487/RFC2001. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc2001.txt.

[50] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC 2119 (Best
Current Practice), RFC, Updated by RFC 8174, Fremont, CA, USA: RFC Editor, 1997.
doi: 10.17487/RFC2119. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc2119.txt.

82

https://doi.org/10.1109/INFCOM.1996.493070
https://doi.org/10.1109/INFCOM.1996.493070
http://www.cs.tut.fi/%7B~%7Dkucherya/book/lakshman96.pdf
http://www.cs.tut.fi/%7B~%7Dkucherya/book/lakshman96.pdf
http://libuv.org
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/
http://libexplain.sourceforge.net/
http://libexplain.sourceforge.net/
https://doi.org/10.1.1.65.9298
https://doi.org/10.1.1.65.9298
http://dl.acm.org/citation.cfm?id%20=%201180410
http://dl.acm.org/citation.cfm?id%20=%201180410
https://www.python.org/
https://www.python.org/
https://doi.org/10.1016/S1389-1286(01)00203-1
https://doi.org/10.1016/S1389-1286(01)00203-1
https://www.sciencedirect.com/science/article/pii/S1389128601002031
https://www.sciencedirect.com/science/article/pii/S1389128601002031
https://doi.org/10.17487/RFC1122
https://www.rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.17487/RFC1123
https://www.rfc-editor.org/rfc/rfc1123.txt
https://www.rfc-editor.org/rfc/rfc1123.txt
https://doi.org/10.17487/RFC2001
https://www.rfc-editor.org/rfc/rfc2001.txt
https://www.rfc-editor.org/rfc/rfc2001.txt
https://doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc2119.txt
https://www.rfc-editor.org/rfc/rfc2119.txt

[51] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski,
and L. Zhang, Recommendations on Queue Management and Congestion Avoidance in the
Internet, RFC 2309 (Informational), RFC, Obsoleted by RFC 7567, updated by RFC 7141,
Fremont, CA, USA: RFC Editor, 1998. doi: 10.17487/RFC2309. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2309.txt.

[52] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control, RFC 2581 (Proposed
Standard), RFC, Obsoleted by RFC 5681, updated by RFC 3390, Fremont, CA, USA:
RFC Editor, 1999. doi: 10.17487/RFC2581. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc2581.txt.

[53] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit Congestion Notification
(ECN) to IP, RFC 3168 (Proposed Standard), RFC, Updated by RFCs 4301, 6040, 8311,
Fremont, CA, USA: RFC Editor, 2001. doi: 10.17487/RFC3168. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc3168.txt.

[54] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control, RFC 5681 (Draft
Standard), RFC, Fremont, CA, USA: RFC Editor, 2009. doi: 10.17487/RFC5681.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc5681.txt.

[55] D. Mills, J. Martin (Ed.), J. Burbank, and W. Kasch, Network Time Protocol Version 4:
Protocol and Algorithms Specification, RFC 5905 (Proposed Standard), RFC, Updated by
RFC 7822, Fremont, CA, USA: RFC Editor, 2010. doi: 10.17487/RFC5905. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5905.txt.

[56] B. Haberman (Ed.) and D. Mills, Network Time Protocol Version 4: Autokey Specification,
RFC 5906 (Informational), RFC, Fremont, CA, USA: RFC Editor, 2010. doi: 10.17487/
RFC5906. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5906.
txt.

[57] H. Gerstung, C. Elliott, and B. Haberman (Ed.), Definitions of Managed Objects for Network
Time Protocol Version 4 (NTPv4), RFC 5907 (Proposed Standard), RFC, Fremont, CA,
USA: RFC Editor, 2010. doi: 10.17487/RFC5907. [Online]. Available: https://
www.rfc-editor.org/rfc/rfc5907.txt.

[58] R. Gayraud and B. Lourdelet, Network Time Protocol (NTP) Server Option for DHCPv6,
RFC 5908 (Proposed Standard), RFC, Fremont, CA, USA: RFC Editor, 2010. doi: 10.
17487/RFC5908. [Online]. Available: https://www.rfc- editor.org/rfc/
rfc5908.txt.

[59] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, Low Extra Delay Background
Transport (LEDBAT), RFC 6817 (Experimental), RFC, Fremont, CA, USA: RFC Editor,
2012. doi: 10.17487/RFC6817. [Online]. Available: https://www.rfc-editor.
org/rfc/rfc6817.txt.

[60] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, Increasing TCP’s Initial Window, RFC 6928

(Experimental), RFC, Fremont, CA, USA: RFC Editor, 2013. doi: 10.17487/RFC6928.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc6928.txt.

[61] J. Postel, Internet Protocol, RFC 791 (Internet Standard), RFC, Updated by RFCs 1349,
2474, 6864, Fremont, CA, USA: RFC Editor, 1981. doi: 10.17487/RFC0791. [Online].
Available: https://www.rfc-editor.org/rfc/rfc791.txt.

[62] ——, Transmission Control Protocol, RFC 793 (Internet Standard), RFC, Updated by RFCs
1122, 3168, 6093, 6528, Fremont, CA, USA: RFC Editor, 1981. doi: 10.17487/RFC0793.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc793.txt.

83

https://doi.org/10.17487/RFC2309
https://www.rfc-editor.org/rfc/rfc2309.txt
https://doi.org/10.17487/RFC2581
https://www.rfc-editor.org/rfc/rfc2581.txt
https://www.rfc-editor.org/rfc/rfc2581.txt
https://doi.org/10.17487/RFC3168
https://www.rfc-editor.org/rfc/rfc3168.txt
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.17487/RFC5905
https://www.rfc-editor.org/rfc/rfc5905.txt
https://doi.org/10.17487/RFC5906
https://doi.org/10.17487/RFC5906
https://www.rfc-editor.org/rfc/rfc5906.txt
https://www.rfc-editor.org/rfc/rfc5906.txt
https://doi.org/10.17487/RFC5907
https://www.rfc-editor.org/rfc/rfc5907.txt
https://www.rfc-editor.org/rfc/rfc5907.txt
https://doi.org/10.17487/RFC5908
https://doi.org/10.17487/RFC5908
https://www.rfc-editor.org/rfc/rfc5908.txt
https://www.rfc-editor.org/rfc/rfc5908.txt
https://doi.org/10.17487/RFC6817
https://www.rfc-editor.org/rfc/rfc6817.txt
https://www.rfc-editor.org/rfc/rfc6817.txt
https://doi.org/10.17487/RFC6928
https://www.rfc-editor.org/rfc/rfc6928.txt
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/rfc/rfc791.txt
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/rfc/rfc793.txt

[63] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, The Flow
Queue CoDel Packet Scheduler and Active Queue Management Algorithm, RFC 8290

(Experimental), RFC, Fremont, CA, USA: RFC Editor, 2018. doi: 10.17487/RFC8290.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8290.txt.

[64] J. Nagle, On Packet Switches With Infinite Storage, RFC 970, RFC, Fremont, CA, USA:
RFC Editor, 1985. doi: 10.17487/RFC0970. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc970.txt.

[65] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger, CUBIC for
Fast Long-Distance Networks, RFC 8312, RFC, 2018. doi: 10.17487/RFC8312. [Online].
Available: https://rfc-editor.org/rfc/rfc8312.txt.

[66] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The new BitTorrent conges-
tion control protocol,” Proceedings - International Conference on Computer Communications
and Networks, ICCCN, 2010, issn: 10952055. doi: 10.1109/ICCCN.2010.5560080.

[67] G. Stein, This Is How Your BitTorrent Downloads Move So Fast, 2013. [Online]. Available:
https : / / www . fastcompany . com / 3014951 / why - your - bittorrent -
downloads-move-so-fast (visited on 06/14/2018).

[68] D. E. L. Steven H. Low, “Optimization Flow Control-I-Basic Algorithm and Conver-
gence,” Ieee/Acm Transactions on Networking, vol. vol 7, NO. No. 6, pp. 861–874, 1999,
issn: 1063-6692. doi: http://dx.doi.org/10.1109/90.811451.

[69] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve algorithm for link-
sharing, real-time, and priority services,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, pp. 185–199, 2000, issn: 1063-6692. doi: 10.1109/90.842141.

[70] L. E. Storbukås, “Implementing less than best effort with deadlines,” Master’s thesis,
2018, p. 82. [Online]. Available: http://urn.nb.no/URN:NBN:no-64318.

[71] J. Sun, S. Chan, and M. Zukerman, “IAPI: An intelligent adaptive PI active queue
management scheme,” Computer Communications, vol. 35, no. 18, pp. 2281–2293, 2012,
issn: 01403664. doi: 10.1016/j.comcom.2012.07.013. [Online]. Available: http:
//dx.doi.org/10.1016/j.comcom.2012.07.013.

[72] A. Tang, X. Wei, S. H. Low, and M. Chiang, “Equilibrium of heterogeneous congestion
control: Optimality and stability,” IEEE/ACM Transactions on Networking, vol. 18, no. 3,
pp. 844–857, 2010, issn: 1063-6692. doi: 10.1109/TNET.2009.2034963.

[73] Tcpdump, “Tcpdump/Libpcap,” [Online]. Available: http://www.tcpdump.org/.

[74] The Linux Foundation, Linux Foundation Wiki, 2018. [Online]. Available: https://
wiki.linuxfoundation.org/ (visited on 05/10/2018).

[75] ——, Linux Kernel Documentation. [Online]. Available: https://www.kernel.org/
doc/Documentation/ (visited on 05/08/2018).

[76] N. Trichakis, A. Zymnis, and S. P. Boyd, Dynamic network utility maximization with
delivery contracts, 1 PART 1. IFAC, 2008, vol. 17, pp. 2907–2912, isbn: 9783902661005.
doi: 10.3182/20080706-5-KR-1001.0323. [Online]. Available: http://dx.doi.
org/10.3182/20080706-5-KR-1001.00489.

[77] H. Wallenburg, mpg papers / thesis-2018-hugowallenburg – Bitbucket, 2018. [Online].
Available: https://bitbucket.org/mpg%7B%5C_%7Dpapers/thesis-2018-
hugowallenburg/src/master/ (visited on 07/02/2018).

84

https://doi.org/10.17487/RFC8290
https://www.rfc-editor.org/rfc/rfc8290.txt
https://doi.org/10.17487/RFC0970
https://www.rfc-editor.org/rfc/rfc970.txt
https://www.rfc-editor.org/rfc/rfc970.txt
https://doi.org/10.17487/RFC8312
https://rfc-editor.org/rfc/rfc8312.txt
https://doi.org/10.1109/ICCCN.2010.5560080
https://www.fastcompany.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://www.fastcompany.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://doi.org/http://dx.doi.org/10.1109/90.811451
https://doi.org/10.1109/90.842141
http://urn.nb.no/URN:NBN:no-64318
https://doi.org/10.1016/j.comcom.2012.07.013
http://dx.doi.org/10.1016/j.comcom.2012.07.013
http://dx.doi.org/10.1016/j.comcom.2012.07.013
https://doi.org/10.1109/TNET.2009.2034963
http://www.tcpdump.org/
https://wiki.linuxfoundation.org/
https://wiki.linuxfoundation.org/
https://www.kernel.org/doc/Documentation/
https://www.kernel.org/doc/Documentation/
https://doi.org/10.3182/20080706-5-KR-1001.0323
http://dx.doi.org/10.3182/20080706-5-KR-1001.00489
http://dx.doi.org/10.3182/20080706-5-KR-1001.00489
https://bitbucket.org/mpg%7B%5C_%7Dpapers/thesis-2018-hugowallenburg/src/master/
https://bitbucket.org/mpg%7B%5C_%7Dpapers/thesis-2018-hugowallenburg/src/master/

[78] J. Wang, J. Yang, G. Xie, Z. Li, and M. Zhou, “On-line estimating skew in one-way
delay measurement,” in Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2003, pp. 430–436. doi: 10.1109/
PDCAT.2003.1236339.

[79] Writing R Extensions - System and foreign language interfaces, 2018. [Online]. Available:
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#
System-and-foreign-language-interfaces (visited on 05/01/2018).

[80] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (BIC) for fast long-
distance networks,” Proceedings - IEEE INFOCOM, vol. 4, pp. 2514–2524, 2004, issn:
0743166X. doi: 10.1109/INFCOM.2004.1354672.

85

https://doi.org/10.1109/PDCAT.2003.1236339
https://doi.org/10.1109/PDCAT.2003.1236339
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#System-and-foreign-language-interfaces
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#System-and-foreign-language-interfaces
https://doi.org/10.1109/INFCOM.2004.1354672

86

Appendices

87

Appendix A

Interface details

A.1 Initializing the Library

DA-LBE Init

Signature

int dalbe_init(char *err)

Parameters

char *err
Destination for human-readable error messages generated by the library.

Return value
Zero if the function succeeded.

A negative value if initialization fails. This will only happen if the creation of the
daemon thread fails, in which case the result of the thread creation system call will
be returned to aid in debugging.

Operation in detail
Initializes the library: Memory is allocated on the heap for the (linked) list of
sockets, locks required for the shared memory constructs are initialized, and the
daemon thread is created. The only reasonable source of errors, short of a memory
error during allocation, is if the creation of the daemon thread fails; a situation
which should not occur during typical working conditions1.

A.2 Disposing of the Library Resources

DA-LBE Dispose

Signature

1 This would imply a programming error in the library or unsafe memory writes resulting in a deadlock or
other undefined error states.

89

int dalbe_dispose(char *err)

Parameters

char *err
Destination for human-readable error messages generated by the library.

Return value
Zero if the function succeeded.

Operation in detail
All sockets that are still open are closed and disposed of, after which the daemon is
shut down and all allocated memory is freed. The user need not call this function
if they have already closed all open sockets and the application is about to shut
down gracefully. Libdalbe does not create resources that would persist between
runs should the dispose function not be called.

The dispose function will only fail under extraordinary circumstances where the
tearing down of synchronization primitives would fail; a situation which should
occur only if the memory allocated for these resources is tampered with. For this
case there is no clean course of action.

A.3 Opening a DA-LBE Socket

DA-LBE Open

Signature

int dalbe_open(int domain,
const char *proto,
size_t size,
time_t deadline,
void (*handle_cc_func)(struct socket *),
void (*init_cc_func)(struct socket *),
size_t user_data_size,
char *err);

Parameters

int domain
The communication domain.
Passed directly to the underlying system call to create a socket, the domain
decides which protocol family to use for communication. Because the DA-LBE
control functionality is only implemented for TCP, the domain must be one
that supports TCP. This is however not checked as valid domains may differ
between environments.

const char *proto

90

The protocol which to control.
proto Decides which of the supported protocols to control. With Cubic
and Vegas being the only protocols supported, the only valid arguments are
"cubic" and "vegas"2.

size t size
The estimated size of the data transfer.
The size parameter is used by functions that rely on it being a positive value;
as size t is defined to be unsigned, 0 is the only invalid value.

time t deadline
The deadline of the data transfer, as a delta from the current time.
The deadline must be strictly longer than one update interval; a deadline
shorter than this would render DA-LBE functionality irrelevant, as by the
time the control function is called for the first time the deadline has already
passed.

void (*handle cc func)(struct socket *)
The congestion controller function for the daemon to call on each update
interval. May be NULL.
The function handle cc func is called by the daemon on each update
interval, after having updated the DA-LBE statistics required to perform
metacontrol. If the argument is NULL, an appropriate default controller for
the given protocol proto is used.
The specifics of this function and its signature is elaborated on in section 3.5.

void (*init cc func)(struct socket *)
A function with which to initialize the data structure used by the supplied
function handle cc func. May be NULL.
The function init cc func is called after the necessary control structures for
the socket in Libdalbe have been created. The supplied function will initialize
the DA-LBE control structures to a reasonable initial state for the controller
function handle cc func.
If the argument is NULL the data structure is not initialized.

size t user data size
Size of the data area to be used by the supplied control function
handle cc func. May be zero.
A storage area meant for use by the supplied control function is allocated and
kept track of by Libdalbe, as described in section 3.5. This will typically be
the size of the struct used for control information in the control function.

char *err
Destination for human-readable error messages generated by the library.

Return value
Zero if the function succeeded.

Returns negative if any of the parameters failed validation, in which case −1 is
returned, or if the socket system call fails, in which case an error message is
copied to err and the return value of socket is returned for further debugging.

91

Operation in detail
The new socket is put into the list of sockets shared with the daemon thread
so that it will perform the regularly scheduled metacontrol operations. All
settable DA-LBE parameters for the socket are set to sane default values: off
for boolean parameters (typically turning a mode on or off), zero for parameters
whose operation relies on a positive value, and one for scaling factors. Internal
mechanisms are thus explicitly initialized, but not given values which would alter
the underlying TCP in any way. The socket is set to operate in DA-LBE mode, that
is DA LBE MODE is set to DA LBE ENABLED as per section 2.6.6. This results in the
gathering of DA-LBE statistics and sets the congestion control up for metacontrol.

A.4 Closing a DA-LBE socket

DA-LBE Close

Signature

int dalbe_close(int socket, char *err)

Parameters

int socket
The socket to close. Must be a value previously returned by a call to
dalbe open.

char *err
Destination for human-readable error messages generated by the library.

Return value
Zero if the function succeeded.

Negative value if the socket is not one opened by Libdalbe, or if the closing of the
underlying socket fails.

Operation in detail
The underlying socket file descriptor is closed, the socket is removed from the list
of sockets, and associated resources are freed.

If the daemon was currently waiting on the deleted socket, it will skip to the next
entry in the list.

2As given by the name field in the tcp congestion ops struct in the corresponding congestion control
kernel module.

92

Appendix B

DA-LBE Framework Interface Details

The options listed here are values meant for the optname parameter of the setsockopt
[35, setsockopt(2)] system call. With level set to IPPROTO TCP, the option given by
optname is set on an open TCP socket. The possible options are listed here for reference and
for elaboration on points that are of importance to Libdalbe. See [70] for details.

B.1 Mid-Flow Control

The following are the options that control an arbitrary congestion control mid-flow:

93

DA-LBE Runtime Metacontrol Parameters

DA LBE INFO ECN
Chance of triggering a phantom ECN for a received ACK.

DA LBE ECN BACKOFF
Chance of ignoring a real ECN.

Can be used to tune a loss-based CC to compete more aggressively in competition
with other ECN-enabled transports.

DA LBE CWND BACKOFF
Chance for a delay-based CC to ignore cwnd backoff as a result of loss.

This flag is intended for delay-based congestion controls, specifically Vegas, to
be able to compete better against aggressive loss-based CCs. Vegas is at a
disadvantage against Cubic because they react differently to loss; Cubic backs
off by a factor off β, typically 0.71[65], while Vegas is modeled after Reno which
reduces the cwnd by a factor of 0.5 [52]. Setting this probability of ignoring backoff
to a sensible value will let Vegas compete on par with Cubic.

DA LBE CONGESTION PRICE
The factor by which the queuing delay is scaled.

Used to modify the measured queuing delay in order to control delay-based
congestion controls. If DA LBE BASE RTT BASED is set, this scaling will only be
performed on the extra queuing delay over the base RTT baseline.

DA LBE ECN CONGESTION DELAY
An integer scaling factor for the CC to determine whether it is not in competition
with other traffic.

94

ECNs are not triggered if a long time has passed since the last real congestion
indication, in an attempt to utilize free bandwidth if there is no competition. This
scaling factor is the v in the calculation from section 2.6.3: tcong > v× τcong.

DA LBE ECN EWMA WEIGHT
Weight factor for the exponentially weighted moving average being used to
calculate the average time between congestion events.

The weight determines whether the moving average will react quickly to changing
network conditions, or act more as a total average.

Though in real implementations the exact number will be one suited for integer arithmetic, 717
1024 in the

current Linux kernel [40, Version 4.16, net/ipv4/tcp cubic.c, Line 47].

B.2 Flow Options

Some options are intended to be set once for every flow, to signal to the DA-LBE framework
which type of congestion control is being run:

DA-LBE Mode Parameters

DA LBE MODE
Enable DA-LBE.

None of the control mechanisms are enabled if the mode of the flow is not set
to DA LBE ENABLED. Some of the statistics are not gathered if this mode is off,
making it nontrivial to use this as a toggle for DA-LBE behavior.

DA LBE BASE RTT BASED
Signal to the framework that the CC being controlled uses a base RTT measurement
for determining congestion, i.e. it acts on extra queuing delay incurred on top of
the base RTT.

Some congestion control schemes might want to adjust the entire measured RTT.

DA LBE DELAY BASED MODE
Signal to the framework that the CC being controlled is delay-based.

This enables the delay-tracking and adjustment mechanisms, as opposed to the
default of only adjusting congestion signals by introducing phantom ECNs.
Phantom ECNs can still be enabled on top of the delay control.

B.3 Available Statistics

Core statistics are tracked that facilitate DA-LBE control. These are structured such that the
kernel does little or no extra calculations inside of the TCP implementation itself. The values
meant to be averaged are reported as an aggregate value with a counter; the only statistic
for which this is not the case is the moving average which is used frequently inside of the
phantom ECN mechanism.

The available statistics are as follows:
DA-LBE Available Statistics

ECNs and phantom ECNs counts

95

RFC 3168 [53] states that TCP should not react to ECNs more than once per RTT.
The receiving of real ECNs might compromise the effectiveness of phantom ECNs,
as some congestion notifications might be ignored if arriving too close together.

Retransmissions
Extending upon the statistic offered by standard TCP, the framework provides
counts of transmissions resulting from both fast and slow retransmission
events, where fast retransmissions are normal packet retransmissions and slow
retransmissions include a reset to slow start. Having access to different
retransmission statistics can help more accurately gauge the state of network
congestion.

Proportional difference in cwnd after reduction
A sum, as well as a count, of all of the differences in the congestion window after
having been reduced due to excessive delay.

The model-based controller used for Vegas DA-LBE needs knowledge of the
reduction in the cwnd per delay-based congestion event to be able to calculate
the network congestion caused by delay. The controller, in the implementation
provided with Libdalbe, lives in userspace and can utilize floating point arithmetic;
the framework leaves this kind of heavy calculation up to the controller to save
cycles in the TCP kernel code.

Average time between (real) congestion signals
This average is used to suppress phantom ECNs if there is little congestion.

Primarily used in the phantom ECN mechanism in the kernel, but may be used to
infer the general state of network congestion long-term.

96

Appendix C

Test Setup

C.1 Cork Traceroute

$sender-a > traceroute -T cork

traceroute to cork (84.39.235.53), 30 hops max, 60 byte packets

Probes

Hostname IP #1 #2 #3

1 testbed 172.26.0.1 0.199 ms 0.175 ms 0.277 ms
2 10.174.0.1 10.174.0.1 0.578 ms 0.552 ms 0.522 ms
3 77.88.125.170 77.88.125.170 0.946 ms 1.523 ms 1.748 ms
4 81.175.33.17 81.175.33.17 0.976 ms 0.963 ms 1.083 ms
5 81.175.32.241 81.175.32.241 1.113 ms 1.099 ms 1.153 ms
6 ten-2-1-vl1504.ooe121-070.as41572.net 81.175.32.226 1.786 ms 4.156 ms 4.097 ms
7 77.88.111.121 77.88.111.121 1.663 ms 3.508 ms 3.496 ms
8 ix-ge-1-0-1.hcore3.OS1-Oslo.as6453.net 80.231.89.29 11.744 ms 11.740 ms 11.728 ms
9 if-xe-8-3-1-0.tcore2.AV2-Amsterdam.as6453.net 80.231.152.41 23.318 ms 23.321 ms 23.378 ms

10 if-ae-2-2.tcore1.AV2-Amsterdam.as6453.net 195.219.194.5 23.605 ms 23.348 ms 22.918 ms
11 195.219.194.90 195.219.194.90 22.401 ms 22.396 ms 22.531 ms
12 xe-7-0-3.cr0-lon8.ip4.gtt.net 141.136.105.113 30.174 ms 28.045 ms 30.109 ms
13 ip4.gtt.net 77.67.81.118 36.671 ms 37.127 ms 36.805 ms
14 91.103.0.202 91.103.0.202 38.481 ms 38.385 ms 38.347 ms
15 91.103.0.101 91.103.0.101 40.538 ms 40.392 ms 40.332 ms
16 84.39.235.50 84.39.235.50 38.109 ms 37.962 ms 38.092 ms
17 cork 84.39.235.53 41.415 ms 41.137 ms 41.203 ms

Table C.1: Traceroute from Fornebu, Norway to Cork, Ireland. Note the
use of TCP for measurement – ICMP pings did not get replies from the
entire route.

97

98

99

Appendix D

Analysis

D.1 Fairness Measurements

Cubic Cork Vegas Cork Cubic test bed Vegas test bed

0.708 0.724 0.771 0.684
0.692 0.787 0.775 0.669
0.643 0.823 0.769 0.711
0.611 0.644 0.772 0.687
0.658 0.651 0.773 0.687
0.658 0.635 0.773 0.663
0.685 0.678 0.772 0.693
0.633 0.666 0.776 0.670
0.635 0.717 0.773 0.687
0.654 0.662 0.772 0.660
0.753 0.671 0.774 0.665
0.772 0.697 0.774 0.707
0.683 0.691 0.772 0.674
0.685 0.750 0.769 0.692
0.667 0.623 0.774 0.697
0.675 0.670 0.774 0.654
0.660 0.640 0.774 0.670
0.694 0.723 0.774 0.685
0.671 0.696 0.774 0.680
0.675 0.627 0.773 0.691
0.671 0.627 0.771 0.674
0.643 0.649 0.774 0.681
0.622 0.692 0.774 0.647
0.696 0.617 0.773 0.672
0.681 0.651 0.775 0.722
0.667 0.651 0.772 0.723
0.693 0.649 0.772 0.703
0.703 0.654 0.771 0.665
0.681 0.622 0.766 0.669
0.649 0.674 0.775 0.678
0.691 0.670 0.775 0.688
0.690 0.645 0.772 0.733
0.711 0.652 0.770 0.709
0.682 0.682 0.773 0.684
0.681 0.637 0.773 0.689
0.743 0.681 0.769 0.722
0.682 0.672 0.771 0.680
0.733 0.700 0.773 0.672
0.654 0.695 0.770 0.671
0.679 0.669 0.771 0.665
0.703 0.698 0.774 0.723
0.759 0.662 0.775 0.671
0.726 0.698 0.775 0.652
0.675 0.672 0.774 0.669
0.674 0.698 0.772 0.690
0.735 0.699 0.774 0.686
0.675 0.656 0.771 0.686
0.707 0.680 0.768 0.699
0.689 0.655 0.769 0.704
0.618 0.628 0.775 0.725

Table D.1: All fairness measurements

100

D.2 Completion Times Measurements

Cubic Cork Vegas Cork Cubic test bed Vegas test bed

−12.8 −0.7 −2.9 119.0
−11.8 −1.7 −9.7 119.0
−9.3 −2.2 1.5 119.0
−10.4 −4.2 −5.3 119.0
−11.9 −2.8 −6.3 119.0
−16.1 −3.3 −7.4 119.0
−12.2 20.6 −3.6 119.0
−11.5 −2.0 −13.3 119.0
−12.1 −2.4 −5.8 119.0
−13.5 −2.0 −4.3 119.0
−12.2 −1.1 −9.1 119.0
−11.2 −2.7 −8.2 119.0
−6.3 2.4 −5.5 119.0
−12.1 −37.2 0.7 119.0
−10.9 −1.7 −9.5 119.0
−8.7 −10.0 −9.5 119.0
−11.3 −2.4 −9.1 119.0
−8.5 −1.3 −8.2 119.0
−19.5 2.1 −8.6 119.0
−17.2 −1.0 −5.9 119.0
−11.3 −1.7 −3.3 119.0
−12.3 −2.8 −9.1 119.0
−14.6 −1.0 −7.7 119.0
−11.9 −1.0 −7.4 119.0
−11.9 1.4 −10.5 118.5
−15.5 −0.9 −5.4 115.4
−14.3 −2.8 −4.2 119.0
−11.7 −0.4 −2.4 119.0
−16.3 4.2 6.7 119.0
−16.6 −1.6 −9.7 119.0
−13.2 −0.1 −11.2 119.0
−16.3 −2.8 −5.1 85.4
−11.5 −1.7 −1.2 119.0
−12.7 −1.7 −5.7 119.0
−17.1 −1.1 −7.2 119.0
−13.3 −2.3 2.4 117.6
−11.8 −9.7 −1.9 119.0
−12.7 3.0 −6.1 119.0
−17.7 −2.0 −1.3 119.0
−10.8 −0.4 −3.5 119.0
−10.7 0.1 −9.4 115.2
−10.1 −2.1 −9.6 119.0
−13.2 −0.7 −11.1 119.0
−17.1 −2.3 −7.7 119.0
−5.8 1.5 −5.2 119.0
−14.8 −2.6 −8.7 119.0
−11.5 −1.4 −3.5 119.0
−17.5 −1.3 2.9 119.0
−19.2 −4.0 1.1 119.0
−11.2 −1.5 −9.6 106.3

Table D.2: All completion time measurements

101

D.3 Vegas Cork Completion Times Libdalbe Debug

200 400
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

200 400
0

25

50

75

Qu
eu

in
g

de
la

y

Measured
Model

200 400
Time

50

100

150

M
illi

se
co

nd
s RTT

Vegas Base RTT
Mean RTT

200 400
0

200

400

Pa
ck

et
s

Congestion window
Slow start threshold

200 400
0

500

1000

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0

2

4

500

1000

No
. c

wn
d

ch
an

ge
s

a)

b)

c)

d)

e)

Figure D.1: Libdalbe debug graphs from the Vegas Cork test run that
finished the earliest. A cutout from this graph is used in figure 5.14.

102

200 400 600
0.0

0.5

1.0

W
ei

gh
t

Ig
no

re
 b

ac
ko

ff
p Weight

Ignore backoff

200 400 600
0.0

2.5

5.0

7.5
Qu

eu
in

g
de

la
y

Measured
Model

200 400 600
Time

50

100

150

200

M
illi

se
co

nd
s RTT

Vegas Base RTT
Mean RTT

200 400 600
0

50

100

150

Pa
ck

et
s

Congestion window
Slow start threshold

200 400 600

500

1000

Co
ng

es
tio

n
ev

en
ts

(fa
st

+s
lo

w
re

tra
ns

)

Congestion Events (loss)
No. cwnd changes

0

1

2

3

500

750

1000

No
. c

wn
d

ch
an

ge
s

a)

b)

c)

d)

e)

Figure D.2: Libdalbe debug graphs from the Vegas Cork test run that
finished last. A cutout from this graph is used in figure 5.16.

D.4 Cubic Test Bed Completion Times Extra

The following graphs are all runs of the fairness experiment using Cubic on the test bed that
finished after the deadline, excluding figure 5.17.

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure D.3: Throughput graph of Cubic test bed fairness test no. 02.

103

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure D.4: Throughput graph of Cubic test bed fairness test no. 13.

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure D.5: Throughput graph of Cubic test bed fairness test no. 35.

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure D.6: Throughput graph of Cubic test bed fairness test no. 47.

104

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Se
nd

in
g

ra
te

 (M
bi

t)

DA-LBE
DA-LBE Target rate
DA-LBE Deadline
BE Cubic
total

Figure D.7: Throughput graph of Cubic test bed fairness test no. 48.

105

106

Appendix E

Graphs from Hayes et al.

This appendix chapter contains figures copied from Hayes et al. [24] with permission.

107

w update procedure every Tw

Calculate x̄(tn�1, tn)
Calculate target rate ⇣(tn, tD)
switch control do

case PID do
w uPID (x̄(tn�1, tn), ⇣(tn, tD))

case MBC do
w uMBC (x̄(tn�1, tn), ⇣(tn, tD), ⇣(tn�1, tD))

Modifications to congestion control
switch method do

case Phantom ECN do
Augment ACK processing as follows:
tcong time since last real congestion signal
⌧cong time between the last two real congestion signals
if tcong > v⌧̄cong then

if rand() < P[loss](1/w � 1) then
/* Initially rand() < 0.25 */
Generate phantom ECN signal

case Adjusting � do
/* �orig: original decrease factor */
� = �origw for congestion reaction

Function uPID (x̄(tn�1, tn), ⇣(tn, tD)):
Calculate wn from (7) to (10)
return wn

Function uMBC (x̄(tn�1, tn), ⇣(tn, tD), ⇣(tn�1, tD)):
/* Cubic based model */
[cwnd ⇣(tn, tD)⇥ RTT
q̂n RTTmin

[cwnd
4
3

4(1��)

(0.4(4�(1��)))

! 1
3

Calculate ŵn from (13), (14) and (19)
return ŵn

Fig. 3. Loss-based TCP DA-LBE algorithm. MBC based on Cubic.

a little smoother. In this scenario it is impossible for the
DA-LBE flow to maintain a low send rate as probability of
experiencing packet loss is too low. This is apparent in the
Cubic model used in the algorithm from [11]. The �-factor
mechanism is able to take advantage of that short 10 s period
where there are no other TCP flows at t = 1000 s.

4) PID versus MBC: Key to the PID controller’s per-
formance is tuning its gains. Key to the MBC controller’s
performance is a good model of the congestion controller.
Normalizing the PID error input and controlling w = (0, 1]
enables the PID gains to be applicable across a wide range of
conditions. Gains can be tuned to provide desirable character-
istics for the DA-LBE source, however, wrongly configured
gains could result in a wildly oscillating transmission rate;
something not desirable for a DA-LBE traffic source. Given
the availability of good models for commonly used congestion
controllers, MBC control provides an alternative with similar
performance but a minimum of configuration.

IV. DEADLINE-AWARE LBE CONGESTION CONTROL FOR
HETEROGENEOUS TRAFFIC SOURCES

There are advantages in basing DA-LBE on a CC that
reacts to more timely congestion indications than packet
loss. However, mixing different CCs which react to different
“prices” can make it difficult to ensure DA-LBE remains

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e

n
d

 r
a

te
 M

b
p

s
(1

s
a

ve
ra

g
e

s)

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) PID

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e

n
d

 r
a

te
 M

b
p

s
(1

s
a

ve
ra

g
e

s)

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) MBC

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e

n
d

 r
a

te
 M

b
p

s
(1

s
a

ve
ra

g
e

s)

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(c) MBC with w increase rate limiting
Fig. 4. NS2 simulation. Cubic TCP flows with a Cubic based DA-LBE
phantom ECN flow. DA-LBE data size is based on 10% Capacity LBE rate.

LBE and does not exceed our BE limit. We draw upon the
heterogeneous congestion control work by Tang et al. [7], [13],
[14], especially the price mapping and weighting, enhancing
and extending the relative price adjustment to encompass DA-
LBE.

Tang et al. [7], [13], [14] show that the effective price a
particular CC algorithm reacts to can be mapped to a common
network price signal, such as queuing delay, loss or ECN
marks. This mapping function depends on each type of CC as
well as characteristics of each network element. Even though,
the ratio of this effective price to a chosen common price can
be used by the source to scale its effective price for fairer
competition:

xs =

✓⇣
U (j)
s

⌘0
◆�1

0

@ 1

µ(j)
s

X

s2S(l)

m(j)
l (pl)

1

A (20)

where

µ(j)
s =

1

w(Tang)
s

P
s2S(l) m

(j)
l (pl)P

s2S(l) pl
(21)

where j 2 {1, . . . , J} is the jth congestion controller of J
operating in the network, m(j)

l (pl) is the mapping function on

Figure E.1: Figure 4 [24].

108

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) 10% cl DA-LBE target load

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) 30% cl DA-LBE target load
Fig. 6. MBC control. ↵ = 1.2 for DA-LBE and ↵ = 2 for the other flows

the queue (M/M/1/K=100 model) is larger than a target Q size
as the price (Q

T
= 10 in this experiment).

The DA-LBE flow working on a different price signal
performs similarly to that in Sec. III-C. Importantly, even when
there is a high target load for the DA-LBE flow, it competes
effectively with the TCP modeled flows without taking more
than its fair share. In general fair competition will depend
on how different the utility functions are, or for real TCP
congestion controllers it will depend predominantly on how
different the cwnd increase functions are.

B. Applying the framework to TCP Vegas

As noted in Sec. III-D3, loss based DA-LBE has trouble
either achieving LBE rates with � factor back-off control or
making use of short periods of available capacity with phantom
ECN control. Delay based CC can achieve LBE rates and make
use of available capacity, with low latency [15]. In this section
we illustrate the applicability of our heterogeneous DA-LBE
NUM based work to TCP Vegas [16].

Vegas in congestion avoidance mode calculates the differ-
ence between the actual transmission rate and the expected
rate (for RTTmin) to increase or decrease cwnd—a measure
of queueing delay in packets. The objective is to have a target
(↵ � �)/2 packets queued along the end-to-end path. If the
difference is less than ↵, cwnd is increased; if more than �,
cwnd is decreased. Since for a target cwnd ↵ / 1

P(s) , we adjust
↵ as follows:

↵(s) = µ(s)↵base (28)

where ↵(s) 2 [1,↵max], ↵base = 15, and ↵max is set to half a
BDP of packets in these experiments.

Figure 7 shows how Vegas can be modified to be DA-LBE.
Vegas reacts to packet loss by halving cwnd but packet loss

� update procedure every T�
if loss too low then wait another T�

Calculate W (z) for z = {delay, loss} // (23)

Calculate P(z)
W for z = {delay, loss}, // (22)

Calculate P(delay-loss)
W // (24)

Calculation � // (25)
Limit � increase similar to (19)

w update procedure every Tw

Calculate x̄(tn�1, tn)
Calculate target rate ⇣(tn, tD)
switch control do

case PID do
w uPID (x̄(tn�1, tn), ⇣(tn, tD))

case MBC do
w uMBC (x̄(tn�1, tn), ⇣(tn, tD), ⇣(tn�1, tD))

µ w� // (26)
↵ µ↵base // (28)

Adjust packet loss processing
if w == 1 then // maximum aggressiveness

if rand() < (1� 1
µ) then

/* Competing with loss based CC */
Skip cwnd reduction

Function uPID (x̄(tn�1, tn), ⇣(tn, tD)):
Calculate w from (7) to (9)
return min(w, 1)

Function uMBC (x̄(tn�1, tn), ⇣(tn, tD), ⇣(tn�1, tD)):
/* Vegas model */
⌧ RTT� RTTmin

wbase = ⌧⇣(tn,td)

�↵
base

✏ ⇣(tn�1,td)�x̄(tn�1,tn)
x̄(tn�1,tn)

w wbase + ✏wbase
Limit w increase (19)
return min(ŵ, 1)

Fig. 7. Vegas DA-LBE algorithm

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s

(1
s

a
ve

ra
g
e
s)

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

Fig. 8. Vegas MBC 10% Capacity LBE rate (lw = 0.05, l� = 0.1)

is not part of the Vegas congestion avoidance model. DA-
LBE Vegas supplements the congestion avoidance model with
a mechanism that probabilistically skips cwnd reduction on
packet loss in proportion to �(s) when w(s) = 1.

Figure 8 shows the Vegas based DA-LBE simulation results
for the same scenerio. The Vegas based version has no
problems taking advantage of the 10 s period from t = 1000 s
where there is only background traffic. The lack of congestion
in the 10 s period from t = 1000 s results in a queueing delay
below Vegas’ target during this period allowing Vegas to take
advantage of available capacity. Unfortunately, reliance on

Figure E.2: Figure 8 [24].

109

110

Appendix F

Source Code for Libdalbe,
Metacontrollers, and Test Orchestrator

Source code for Libdalbe, the metacontrollers, an example application, and the test
orchestration suite can be found in a Bitbucket repository [77]. Access provided on request.

111

	Introduction
	Problem Statement
	Goals of this Thesis
	Methodology
	Structure

	Background
	Transmission of Data on the Internet
	Separation of Concerns
	IP
	Shared Resources

	Transmission Control Protocol
	Congestion Control
	Congestion Control Algorithms
	Bufferbloat
	Active Queue Management

	Delay-Based congestion control
	Underlying Mechanisms
	TCP Vegas

	Less-than Best Effort (LBE) Transport Protocols
	Deadline Aware Less-than Best Effort (DA-LBE)
	Modeling the Price of Network Congestion
	DA-LBE metacontrollers
	Model-Based Controller for TCP Cubic
	Model-Based Controller for TCP Vegas
	Soft Deadline
	Previous work by Lars Erik Storbukås

	Summary

	Libdalbe
	Structure
	Basic Operation and Design Decisions
	Library
	Daemon Worker Thread
	Allowing for Custom Metacontrollers

	Interface Overview
	Sample Usage
	Custom Metacontrollers
	Basic Usage by Example
	Sample Implementations
	Debugging Libdalbe
	Error Handling

	Changes in the Kernel
	Generation of Phantom ECN Signals
	Calculation of EWMA
	Inflation of Queuing Delay

	Shortcomings
	Locks and Blocking
	Signals and Custom Intervals

	Summary

	Testing Setup
	Test Bed Setup
	Setup specifics
	Kernel Modifications
	Testing with a Known Environment

	Emulation
	The Virtual Setup
	Router Node Emulation Specifics
	Rate Limiters
	Determining the Best Rate Limiter
	Netem as a Rate Limiter

	Cork Setup
	Test Execution
	Test Orchestrator
	Software on the Test Nodes
	Analysis Software

	Summary

	Results and Analysis
	Test Bed Performance
	Cubic
	Vegas
	Test Bed Performance Summary

	Performance on the Internet
	Test Bed Comparison
	Performance on the Internet Summary

	Long-term Behavior
	Fairness
	Completion Times
	Long-term Behavior Summary

	Conclusion
	Conclusions from our Evaluations
	Future Work
	Improvements to the Application
	Additional Testing
	Areas of Interest for Future Research

	Achieving our Thesis Goals

	Appendices
	Interface details
	Initializing the Library
	Disposing of the Library Resources
	Opening a DA-LBE Socket
	Closing a DA-LBE socket

	DA-LBE Framework Interface Details
	Mid-Flow Control
	Flow Options
	Available Statistics

	Test Setup
	Cork Traceroute

	Analysis
	Fairness Measurements
	Completion Times Measurements
	Vegas Cork Completion Times Libdalbe Debug
	Cubic Test Bed Completion Times Extra

	Graphs from Hayes
	Source Code for Libdalbe, Metacontrollers, and Test Orchestrator

