Computer-Aided Reproducibility

Marcel Marek | Peyman Teymoori | Michael Welzl | Stein Gjessing
Department of Informatics
University of Oslo
Email: {marcelma|peymant|michawe|steing} @ifi.uio.no

Abstract—Computer networks research has been notoriously
bad at reproducibility — a key aspect of making research results
credible and convincing. This has been attributed to a lack of
incentive for researchers to share the data underlying scientific
results. We conjecture that this can be helped by reducing the
amount of work that is required to make results reproducible.
This paper introduces CAR - a system for ‘“Computer-Aided
Reproducibility”. Similar to other forms of ‘“Computer-Aided-
*#° our CAR tool facilitates the process of sharing the necessary
data by partially automating it.

I. INTRODUCTION

Writing a research paper is an arduous process. Once
it is done, there is often not much incentive to make the
artifacts produced in the process (code, input data, output data)
available to others. While a paper is under submission, it may
not always be adequate to openly share information related to
it (e.g., when a venue has a double-blind review policy, such
sharing may be deemed inappropriate and may be perceived as
an effort to cheat). Once a paper is accepted, the major goal of
its authors is reached and there is usually no immediate need
for them to put extra effort into sharing the necessary data
such that others can reproduce the work. Yet, making results
openly available to ensure reproducibility is more than just
good scientific practice—it is indeed a cornerstone of science.
Reproducibility ensures that research results are credible and
convincing.

The unwillingness to share data for the sake of reproducibil-
ity affects multiple fields of science, leading to what has been
called a “reproducibility crisis” [1]. In the field of computer
networks, it has recently been addressed by some publication
venues that try to create an incentive—e.g. the ACM Internet
Measurement Conference (IMC) has established an award for
papers that contribute a novel dataset to the community. The
problem has moved into the spotlight: a blog related to a
Stanford course in which students try to reproduce results from
research papers' has become quite well known, and the ACM
SIGCOMM conference hosts a workshop on reproducibility
in 2017.2

It seems that there are two major angles to attack the
reproducibility problem. The first one is to create the right
incentive structures—e.g. via awards, as in the case of the
IMC conference, or via regulations put forward by publication

Uhttps://reproducingnetworkresearch.wordpress.com
Zhttp://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.
html

venues, funding bodies or the research institutions and Uni-
versities themselves. The second one has, to the best of our
knowledge, not been addressed much so far: facilitating the
effort of putting the necessary data online and openly sharing
it.

Filling this hole, in this paper, we introduce Computer-
Aided Reproducibility (CAR): a method to partially automate
the process and involve the human as a guide in the process of
auto-producing a website that contains the necessary data. We
apply CAR to TEACUP, a system for network experimentation
described in [2], [3], [4]. In section, II, we describe TEACUP
and how we build the accompanied testbed. We also discuss
how to design, run, and analyze new experiments. In Section
III, we introduce CAR and describe how it facilitates publish-
ing results. In section IV, we provide a step-by-step example
of how a research result can be obtained and published;
we perform experiments on the new “BBR” TCP congestion
control mechanism [5] and publish its results. First, we extend
TEACUP to support BBR, and then, compare it with some
other congestion controllers using different Active Queue
Management (AQM) methods. Then, we demonstrate how
CAR auto-produces a website summarizing all the experiment
results/artifacts. We conclude after an overview of related work
in section V.

II. TESTBED SETUP

In this section, we describe how we build our testbed using
TEACUP, and how to perform experiments on it. TEACUP -
TCP Experiment Automation Controlled Using Python - is a
tool to automate testing of various network parameters, mainly
focused on TCP [2], [4]. An underlying testbed needs to be
deployed to fully utilize TEACUP capabilities. The cookbook
on how to build such an environment is described in [2]. We
used it as a guide to build our testbed. The testbed slightly
differs from the one described in [2]. The network topology
of the testbed is depicted in Fig. 1.

Our aim was to use the latest version of necessary tools
and libraries. One particular reason was that we wanted to
test the new TCP congestion control BBR which is currently
available only under Linux since kernel version 4.9. We had to
extend TEACUP to add the support for BBR. TEACUP in its
source code explicitly states which TCP congestion control
variants can be used under each operating system. It also
states the command to be used to load the appropriate kernel
module. This was actually unnecessary for our testbed since

N
Oy i
Control node

st

— 10.10.10.0/24

Testhost1 TesthostN

LAN1
— 172.16.10.0/24

LAN2
— 172.16.11.0/24

R

Router
Fig. 1. TEACUP testbed network topology

we compiled our kernel with all available TCP congestion
control variants.

A. Topology

The testbed environment consists of 7 PCs. Five machines
serve as testbed hosts, one as a router and one as a control host.
The control host is used to deploy OS images to testbed hosts
and run the actual TEACUP code. It also serves as a network
gateway to the Internet performing NAT with port overload
(for software updates). The control node provides DHCP and
TFTP server to support iPXE (network boot) and NTP as all
nodes need to be synchronized.

Since the control host is reachable from the Internet the
connection is possible via SSH with publickey — only
authentication method.

B. Networks

Three networks are configured within the testbed. Manage-
ment network is used to deploy OS images. TEACUP uses the
management network to boot any chosen OS, configure router
queues, initiate traffic generators and collect data (tcpdump,
routing tables, interface names, etc.) from all active nodes in
a particular experiment.

The other two networks are LAN1 and LAN2 subnets,
which are connected through the router. Moving a testbed
host from LAN1 to LAN2 or vice versa is just a matter of
assigning its respective port in the switch to an appropriate
VLAN. LANI is represented as VLAN 10 and LAN 2 as
VLAN 20.

As the switch, Cisco 3650 series is used to interconnect all
nodes. We had to disable STP; otherwise, the iPXE process
would time out before the given switch port would transition
to active state.

C. Testbed Hosts

We chose FreeBSD 11 and Ubuntu Linux 16.04.02 LTS dual
boot for the testbed hosts. The version of the Linux kernel is
4.10 from the web10g project’. It is a patched vanilla kernel

3https://github.com/rapierl/web10g

with enabled support for Extended TCP statistics (RFC4898
[6]) MIB. The webl0g project also includes kernel module*
and userland library®. The reason why we chose 4.10 instead
of 4.9 is that the web10g patch for 4.9 is not available.

Unlike the control node, testbed hosts have the SSH
PermitRootLogin option enabled. The root account is
used by TEACUP to control the experiment.

Each testbed host is equipped with inbuilt I00BASE-T NIC
for the control network and one PCI-e 1Gb card for the data
network. Each node can, therefore, be connected to only one
of the subnetworks.

1) TCP loggers: We had to create a small patch for the 4.10
web10g kernel since it would not compile due to changes in
ktime.h. The fix is provided in the form of a commit® in
our forked repository and also submitted as a pull request to
the web10g official repository.

The second TCP logger is called ttprobe, and since
TEACUP version 1.0, it has been provided in the tools of
the official repository. It needs to be compiled and distributed
to the testbed hosts.

2) Traffic generators: The patched version of iperf from
the authors of TEACUP is used. This patched version enables
the configuration of TCP’s sender and receiver window buffer
size. It also includes a modified version of httperf. We omit
the description of FreeBSD as it is not used in our experiment
of BBR.

D. Router

The router also runs FreeBSD 11 and Ubuntu Linux
16.04.02 LTS, but without the TCP loggers, traffic generators,
etc. It performs routing between LAN1 and LAN2. The router
is used to create artificial bottleneck throughput, which adds
delay and loss to the crossing traffic.

E. Designing Experiments

When configuring the first experiment, a copy of fab.py
and run.py from the TEACUP installation directory should
be made. Then, custom configuration file(s) can be created.
It is recommended to create separate configuration files for
certain sections of the configuration so it can be easily used
in future experiments. For example, you can use the following
structure:

« Basic configuration user access credentials, TEACUP in-
stall dir location, maximum time allowed time difference
between two testbed hosts (config-fabric.py).

o Testbed configuration includes tesbed hosts IP addresses,
names, and the OS to be booted. A kernel name has
to be provided in case the node uses Linux as OS.
(config-testbednodes.py).

« Router configuration queue type (packet, byte-based)
delay, etc (cofig-router.py).

“https://github.com/rapier1/web10g-dlkm

Shttps://github.com/rapier]/web10g-userland

Shttps://github.com/screw/web10g-dlkm/commit/
87¢5357218f5fb3b889c35738a6ff1797ce15af6

o Traffic generator configuration greedy (iperf), bursty
(web traffic, DASH) (config-router.py).

« Parameter combination configures over which parameters
the experiment iterates. The number of configurations
is the result of multiplication of all choices for each
parameter and the number of runs. All the previous files
are included in the main configuration file (config.py)
by using execfile ("<config-file.py>").

After the experiment is designed, we can either run it by ex-
ecuting ./run.sh from the experiment directory or by exe-
cuting fab run_experiment_[single, multiple].
When the experiment is finished, plots can be generated by
running one of the analyse_ commands to get a plot for a
specific metric. Alternatively, analyse_all can be run to
get plots for all metrics. The full set of parameters for each
command can be found in [3].

1) Notes on Using TEACUP: During the process of build-
ing and using the testbed we encountered several problems.
One particular was that we did not notice that TEACUP
disables the net.ipv4.tcp_moderate_rcvbuf. Only
later we realized that we had to specify the receiver buffer
in the traffic generator section. It might have been the price
of a novice user, but disabling the default functionality as this
one should be strongly announced in the documentation.

ITII. CAR

We developed and integrated CAR into TEACUP in the
form of added fabric @task - publish - by extending
the analyse.py. The complete source code of TEACUP
extended with the CAR functionality is found at our public
repository https://github.com/screw/teacup.

Our tool assumes the user has already produced the set
of graphs related to his experiment by running one of the
analyse_+ commands which produce a set of PDFs.

By running fab publish, our extension to the TEACUP
library

« collects all PDF names according to the TEACUP default
naming scheme,

o extracts the command that was used to produce this plot
based on the file name,

o converts all PDFs to PNGs for the website, and

o generates the HTML page based on the provided tem-
plate.

If more sophisticated ways were used to generate certain
plots, the user can provide the full description in a file
named <file>.txt where <file> represents the full
name of the PDF. The fab publish task has a parameter
(overwrite) that disables the guess-the-command feature
and uses the matching file containing the command(s) instead.
The full set of parameters for the publish task is presented
in Table I. Currently, only one template is provided, but users
can provide their own as long as they stick to the predefined
names. The full set of template variables are found in Table II.

TABLE I
PUBLISH TASK PARAMETERS

Variable name | Description Default value
find_dir Directory to look for PDFs. ./
out_dir Output directory where the final | publish/
webpage with all necessary files
will be placed.
overwrite This flag specifies whether to re- | True
place an existing file with the de-
scription of how to reproduce this
PDF if such file exists.
title Title of the paper NULL
paper Path to the article PDF. paper.pdf
desc_file File containing the abstract. desc.txt
density Density for the convert command | 450
to get PNG from the PDF.
source_link | Link to source code (eg. Github | NULL
repository).
config_name | File containing the experiment con- | NULL
figuration.
source_link | Link to source code (eg. Github | NULL
repository).
author Authors’ name and email. NULL
conclusion Text that concludes the paper or | NULL
webpage.

TABLE I
WEBSITE TEMPLATE VARIABLES

Variable name Description

author Authors’ name and email.

title Title of the paper.

abstract Abstract or opening text for the webpage.
submenu Submenu to jump to reproducibility sub-sections.

repro_content
source_link
conclusion

Block with figures and their description.
Link to source code (eg. Github repository).
Text that concludes the paper or webpage.

IV. EXAMPLE

Using our extended TEACUP which is empowered with
CAR, we conducted an experiment, and then, we published its
results. In this experiment, the goal is to compare various TCP
congestion control variants (NewReno, Vegas, Cubic) with
BBR. We also evaluated the BBR performance with different
Active Queue Management (AQM) methods, queue sizes, and
delay. Queue size is varied to test the BBR behavior with
queue sizes smaller or bigger than Bandwidth-Delay Product
(BDP).

In the experiment, the bottleneck at the router is configured
with 10 Mbps rate limit and 20 ms delay in each direction. The
AQM is Fair Queue with a queue size of 50 packets.

Two connections are initiated. The first one, from
testhost2 to testhostl, starts at time Os, and uses
BBR. The second one which uses Cubic starts at time 10s,
from testhost3 to testhost2 which shares the bottle-
neck. Both connections use iperf as the traffic generator.
The data packet size is 1448 B.

Fig. 2 illustrates the throughput of the two TCP connections
(4 unidirectional flows in total). The two flows are represented
by blue circles and blue triangles in all throughput and
congestion window figures. The acknowledgments going in
opposite direction are shown using other colors. We left them
in the plots to demonstrate the default behavior, but they can

12000 e 172.16.10.1_5000_172.16.11.1 34012 x 172.16.11.1_34012_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50130 172.16.11.2_50130_172.16.10.1_5001
X X

8000 —

Throughput (kbps)
2
o
o
l

; ———
4000 — * x %* * x x x x
x
2000 | ,
X
O | A— _ = = _ _ x
I I I I
0 20 40 60
Time (s)
Fig. 2. Throughput of BBR and Cubic flows.
exp_20170805-173243_down_10mbit_up_10mbit_agm_fq_del_20_bs_50_tcp_host2
® 172.16.10.1_5000_172.16.11.1 34012 X 172.16.11.1_34012_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50130 + 172.16.11.2_50130_172.16.10.1_5001
150 — 1
)
3 100 —| [ee-E——
Z
5 i
50 == - iii:tzigéi:l EoF S S oF S S
Fi gxi i’gixixi*i
0 % x x x x x
I I I I
0 20 40 60
Time (s)

Fig. 3. CWND of BBR and Cubic flows.

be removed by specifying a filter to one of the analyse
tasks.

First, the BBR flow is started and then after 10 s, the second
one using Cubic, the current Linux default TCP congestion
control, is initiated. BBR quickly reaches the bottleneck
throughput of 10 Mbps. When both connections are started,
they fairly share the available bandwidth. Every 10s, there
is a slight oscillation caused by the BBR’s draining queue
mechanism. In general, both algorithms achieve almost the
same throughput.

A different situation is when we take a look at the conges-
tion window (CWND) in Fig. 3. After overshooting at the start,
BBR gets stabilized at 100 KB. After Cubic starts, BBR drops
to 50 KB, and again it is fairly stable for the whole period of
the connection. We can see subtle oscillation every 10s when
BBR is trying to adjust to the current situation by draining the
queue mechanism. Cubic, on the other hand, oscillates with
the typical sawtooth pattern.

The throughput of BBR versus New Reno in Fig. 4 is very

12000] e 172.16.10.1_5000_172.16.11.1_34014 x 172.16.11.1_34014_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50132 172.16.11.2_50132_172.16.10.1_5001
i X x
o
8 _
S 8000
N—r'
5 X)
o 6000 —
< * . !
[<) 3 5 5% 2 s
> ¥ X %
© 4000 — * = * % % X X
2
'-E x
2000 — *
0] A— - — = = = X
I I I I
0 20 40 60
Time (s)

Fig. 4. Throughput of BBR and New Reno flows.

o 17216.10.1_5000_172.16.11.1_34014 X 172.16.11.1_34014_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50132 -+ 172.16.11.2_50132_172.16.10.1_5001

150—I

3
a 100 — ﬂ
z
=
o e el
50
O _ x x x x x x x
T T T T
0 20 40 60
Time (s)

Fig. 5. CWND of BBR and New Reno flows.

similar to that of BBR versus Cubic in Fig. 2. Both algorithms
share the available throughput fairly. Again, small oscillations
caused by BBR appear every 10s.

If we take a look at the corresponding CWND situation in
Fig. 5, we can see that New Reno achieved almost the same
throughput.

A completely different situation is depicted in Fig. 6, where
the start of the Vegas flow is correlated with BBR’s draining
queue mechanism; it causes the BBR flow to heavily reduce
the rate. During the period before reaching the subsequent
iteration of draining queue, the BBR flow gets almost to a
halt. Only after the next occurrence of draining queue, both
flows get the same share of the bottleneck bandwidth. We
cannot claim if this is caused purely by the Vegas algorithm
or by timing. We would need to perform more runs, prove one
or the other.

As for the congestion window with BBR and Vegas flows,
both flows are fairly stable from 30s.

In the second set of figures, we present the throughput and

12000] ® 172.16.10.1_5000_172.16.11.1_34016 x 172.16.11.1_34016_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50134 172.16.11.2_50134_172.16.10.1_5001
n x o x
o
2 i
£ 8000
N—r
5 x 7
3 6000 |
<
[@)) x % s :(x a’ 4 = x:,..}‘-' < ’i
3 4000 - * x = T
E x X
[= * x
2000 - % : x
x
X
X
0 o = - _ ool .
I I I I
0 20 40 60
Time (s)

Fig. 6. Throughput of BBR and Vegas flows.

e 172.16.10.1_5000_172.16.11.1_34016 X 172.16.11.1_34016_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2 50134 172.16.11.2_50134_172.16.10.1_5001
150 — 1
=
<
100 — [
[a)
=
O R Lf _im i F ,g
50 — i i
I
O] s x x x x
T T T T
0 20 40 60
Time (s)

Fig. 7. CWND of BBR and Vegas flows.

congestion window plots with the same delay (20ms) and
queue size (50 packets) but with different AQM - p£ifo. Only
with Cubic (see Fig. 8 we can see a fair share of the bottleneck
throughput. The other ones get either heavily outperform by
BBR (New Reno), or Vegas outperforms BBR.

In Fig. 9, we can actually see that Cubic achieves a fair share
throughput with much smaller congestion window compared
to BBR. There is again the typical sawtooth-like pattern for
Cubic flow. BBR congestion window is much more unstable
than in the previous cases with Fair Queue.

In Fig. 10, BBR does not let the New Reno flow to get
above 2 Mbps for the whole period of the connection.

And finally, Fig.12 shows BBR versus Vegas. Vegas outper-
forms BBR throughout during the whole connection but gets
closer each time the draining queue occurs. It could be worth
investigating if both flows get the same share if we run for a
long enough period.

Fig.13 only illustrates the congestion window situation from
the respective throughput figure. Once the Vegas flow is started

12000

10000

8000

N
o
o
o

Throughput (kbps)
3
o
o

2000

e 17216.10.1_5000_172.16.11.1 34012 X 172.16.11.1_34012_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50130 + 172.16.11.2_50130_172.16.10.1_5001
— —
x x
x x
1 i 5y 3 3 -
< X X xx
— x X * * = x x x
x
= .
| A — - - - - = x
I I I I
Time (s)

Fig. 8. Throughput of BBR and Cubic flows with PFIFO as AQM.

150

100

CWND (K)

50

Fig.

12000

10000

®
o
o
o

6000

I
o
o
o

Throughput (kbps

2000

Fig. 10.

e 172.16.10.1 5000_172.16.11.1_34140 x 172.16.11.1_34140_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50258 172.16.11.2_50258_172.16.10.1_5001

i ol TIPS g

| x x x x x x
T T T T
0 20 40 60
Time (s)

9. CWND of BBR and Cubic flows with PFIFO as AQM.

|« 172.16.10.1_5000_172.16.11.1_34142 x 172.16.11.1_34142_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50260 172.16.11.2_50260_172.16.10.1_5001
— M
x x)go—- WM m w”
— X * x x
X * *
X
X X
y < % % % % %
— x
x
— x
x
— o~
I I I I
0 20 40 60
Time (s)

Throughput of BBR and New Reno flows with PFIFO as AQM.

e 172.16.10.1_5000_172.16.11.1 34142 x 172.16.11.1 34142 _172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50260 172.16.11.2_50260_172.16.10.1_5001

150 —

<
o 100
Z
=
(@)
50
i
O | x 3 .; <
T T T T
0 20 40 60
Time (s)

Fig. 11. CWND of BBR and New Reno flows with PFIFO as AQM.

12000 1 * 172.16.10.1_5000_172.16.11.1_34144 x 172.16.11.1_34144_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50262 172.16.11.2_50262_172.16.10.1_5001
10000 —| s
’(7,\ x x
o
2 8000
N—r'
5 * *
2 6000 —
<
=) x
© 4000 — * t
z ”
[’,}? X
2000 — , vﬂ" * .
0o~ 3
T T T T
0 20 40 60
Time (s)

Fig. 12. Throughput of BBR and Vegas flows with PFIFO as AQM.

it uses a larger congestion window.

Because of the page limit, we included only Fair Queue
and PFIFO AQMs. However, our tools support generating all
of them.

We can conclude that BBR is very unstable with the use
of PFIFO as AQM in comparison with Fair Queue although,
for example, it performs fairly with the current default TCP
congestion control variant - Cubic under Linux.

A. Generating the page

All the figures in the previous section were produced by
fab analyse_all. After the analyses are finished, they
are used in the paper, the unused plots can be removed, and
the desired ones can be copied to a separate directory. To
generate the webpage, the file containing the description of
the paper (description.txt) should be prepared, or just
a copy of the abstract could be written in the file. Then, a copy
of the paper (e.g. icncn2018.pdf) should be prepared. To
generate the complete webpage, simply the publish task is
run as follows:

e 172.16.10.1_5000_172.16.11.1_34144 x 172.16.11.1_34144_172.16.10.1_5000
172.16.10.1_5001_172.16.11.2_50262 172.16.11.2_50262_172.16.10.1_5001
150 — 1 ¥
on)
4
N
A 100 - | &= =8
Z
; x
(@)
50
0 %
T T T T
0 20 40 60
Time (s)

Fig. 13. CWND of BBR andd Vegas flows with PFIFO as AQM.

fab publish:find_dir=exp_20170804
—173945/,out_dir="publish”,paper="
icnc2018.pdf”, title ="Computer—aided
Reproducibility ”,desc_file="
description.txt”,source_link="https ://
github .com/screw/teacup”,author="
Marcel Marek marcelma@ifi.uio.no”

It contains a navigation menu at the left side and is separated
into four main sections:

« Home navigates to the top of the page,

o Abstract contains the general description of the page or
abstract from the paper,

« Reproduce this section contains all the figures with their
description and the command to reproduce them,

o Conclusion provides space to summarize the results.

Moreover, the Reproduce section is further separated into
up to four more subsections 1) TCP RTT 2) SPP RTT
3) Throughput 4) CWND. The number of subsections depends
on the type of the figures found by the publish task.

The generated HTML page still requires manual input from
the user. Each figure block in the HTML code contains a
placeholder for its description. After editing these sections,
the whole directory can be copied to user’s www directory.
Such an example can be found at the following address:
http://heim.ifi.uio.no/marcelma/publish/page.html.

V. RELATED WORK

Reproducible research ensures that scientific claims are
published with their data and software code such that other
researchers are able to verify the findings and build upon them
[7]. However, there have been many challenges with repro-
ducibility such as the lack of incentive for authors, double-
blind review obfuscation, and anonymity [8]. As argued by [9],
some additional challenges might rise such as author/artifact
unavailability and lack of details during reproducing publica-
tions if reproducibility is not addressed well.

To address these challenges, some research work has been
done; they mostly target other aspects of reproducibility
rather than automation of generating reproducing artifacts. For
example, what [8], [9] propose include motivating/obliging
authors and venues to submit manuscripts with reproducible
results; they try to unify the whole publication process with
reproducibility requirements. Other types of motivating repro-
ducibility, as claimed by [10], is to organize some regular
international contest aiming at improving reproducibility skills
of researchers and especially, students.

There is another type of work on reproducing research
results in the literature: providing a (shared/public/customized)
testbed. For example, the authors in [11] argue that shared,
public testbeds are meant to produce reproducible results, but
they might face challenges such as intolerance to outages and
maintenances in the testbed, and they describe a methodology
to overcome these challenges. WalT [12] is another customized
testbed aiming at providing a repeatable, low-cost platform
for real-life experiments. The goal of [13] is to illustrate how
reproducible research can be supported on distributed com-
puting through resources selection, reservation, reconfiguring,
monitoring and analyzing data.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we introduced CAR - a facilitating tool
to publish experiments results/artifacts. CAR is built upon
TEACUP. We also described the necessary changes to the
TEACUP testbed installation process to support BBR by both
the TEACUP source code and TEACUP testbed. We also
designed and extended the analysis part of TEACUP source
code with publish task that makes it easier to publish results
and enables easier reproducibility of them.

To show how CAR works, we conducted an experiment on
BBR, and compared it with some other congestion controllers.
CAR was shown a simple-to-use tool to collect results/artifacts
and generate a website out of them. We believe that it could
be used in more complex scenarios.

Apart from TEACUP, there is a web-based visualization tool
called TEAPLOT (from version 1.0 integrated with TEACUP).
It can produce 3D animated graphs via a user-friendly graph-
ical interface. Unfortunately, it cannot save the result to a
permanent file eg. pdf, png, etc. Next step for CAR would
be to extend TEAPLOT functionality to be able to generate
plots that could be used on a static HTML page. Another
incremental step to extend the support of TEACUP capabilities
could be to integrate it with all analyze tasks. Currently,

generating time series graphs is only available. These all show
us directions of our future work.

ACKNOWLEDGMENT

The authors were part-funded by the Research Coun-
cil of Norway under its “Toppforsk” programme through
the “OCARINA” project (http://www.mn.uio.no/ifi/english/
research/projects/ocarina/). The views expressed are solely

those of the authors. Last but not least, we would like to thank
our college Kristian Hiorth for his invaluable help with the
debugging of throughput anomaly.

REFERENCES

[1] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol.
533, no. 7604, pp. 452454, 2016.

[2] S. Zander and G. Armitage, “CAIA Testbed for TEACUP Experiments
Version 2,” Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep. 150210C,
10 February 2015. [Online]. Available: http://caia.swin.edu.au/reports/
150210C/CAIA-TR-150210C.pdf

[3] S.Zander, “TEACUP v1.0 - Command Reference,” Centre for Advanced
Internet Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150529C, 29 May 2015. [Online]. Available:
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf

[4] S. Zander and G. Armitage, “TEACUP v1.0 - Data Analysis
Functions,” Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep. 150529B,
29 May 2015. [Online]. Available: http://caia.swin.edu.au/reports/
150529B/CAIA-TR-150529B.pdf

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “Bbr: Congestion-based congestion control,” Queue,
vol. 14, no. 5, pp. 50:20-50:53, Oct 2016. [Online]. Available:
http://doi.acm.org/10.1145/3012426.3022184

[6] J. Heffner, M. Mathis, and R. Raghunarayan, “TCP Extended
Statistics MIB,” RFC 4898, May 2007. [Online]. Available: https:
/Irfc-editor.org/rfc/rfc4898.txt

[71 V. Stodden, F. Leisch, and R. D. Peng, Implementing reproducible
research. CRC Press, 2014.

[8] V. Bajpai, M. Kiihlewind, J. Ott, J. Schonwilder, A. Sperotto, and
B. Trammell, “Challenges with reproducibility,” in Proceedings of ACM
SIGCOMM Reproducibility Workshop. ACM, 2017.

[9] Q. Scheitle, M. Wihlisch, O. Gasser, T. C. Schmidt, and G. Carle, “To-
wards an ecosystem for reproducible research in computer networking,”
in Proceedings of ACM SIGCOMM Reproducibility Workshop, 2017.

[10] M. Canini and J. Crowcroft, “Learning reproducibility with a yearly
networking contest,” in Proceedings of ACM SIGCOMM Reproducibility
Workshop. ACM, 2017.

[11] S. Edwards, X. Liu, and N. Riga, “Creating repeatable computer science
and networking experiments on shared, public testbeds,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 1, pp. 90-99, 2015.

[12] P. Brunisholz, E. Dublé, F. Rousseau, and A. Duda, “Walt: A repro-
ducible testbed for reproducible network experiments,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2016 IEEE Con-
ference on. IEEE, 2016, pp. 146-151.

[13] L. Nussbaum, “Testbeds for reproducible research,” in REPPAR-2nd
International Workshop on Reproducibility in Parallel Computing, held
together with Euro-Par 2015, 2015, p. 30.

