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This paper proposes a fractional biharmonic operator equation model in the time-space domain to

describe scattering attenuation of acoustic waves in heterogeneous media. Compared with the exist-

ing models, the proposed fractional model is able to describe arbitrary frequency-dependent scatter-

ing attenuation, which typically obeys an empirical power law with an exponent ranging from 0 to

4. In stark contrast to an extensive and rapidly increasing application of the fractional derivative

models for wave absorption attenuation in the literature, little has been reported on frequency-

dependent scattering attenuation. This is largely because the order of the fractional Laplacian is

from 0 to 2 and is infeasible for scattering attenuation. In this study, the definition of the fractional

biharmonic operator in space with an order varying from 0 to 4 is proposed, as well as a fractional

biharmonic operator equation model of scattering attenuation which is consistent with arbitrary fre-

quency power-law dependency and obeys the causal relation under the smallness approximation.

Finally, the correlation between the fractional order and the ratio of wavelength to the diameter of

the scattering heterogeneity is investigated and an expression on exponential form is also provided.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4973865]
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I. INTRODUCTION

Acoustic wave attenuation refers to energy loss during

propagation in media. Since it reflects the inherent media

characteristics in which the wave propagates, the acoustic

wave attenuation has been a main concern in a wide variety

of scientific and engineering fields, such as diagnostic ultra-

sound imaging,1,2 exploration seismology,3 and ultrasonic

non-destructive inspection,4,5 just to mention a few.

There are many factors that cause acoustic wave attenu-

ation, including geometry attenuation (like spherical spread-

ing), absorption attenuation (intrinsic attenuation), and

scattering attenuation.3,6 The geometry attenuation is caused

by energy dispersing during propagation and is independent

of frequency. The absorptive attenuation is due to media vis-

cosity, while the scattering attenuation is caused by media

heterogeneity. Experimental results and field observations

indicate that scattering attenuation plays a key role in acous-

tic wave propagation in some heterogeneous porous media

such as rock and concrete7 and has great utility in engineer-

ing and scientific research. However, modeling such scatter-

ing behavior in complex media is not a simple task, due to

its frequency-dependent behavior.

Based on observations and experiments, some empirical

regularities of scattering attenuation are found. When many

anomalies are present in the medium, wave propagation

resembles a random walk and scattering attenuation takes

place. It actually is a kind of material interior geometric

effect by which the energy is redistributed in time and

space.8 In order to describe the energy loss caused by scatter-

ing attenuation, the scattering coefficient a is usually used to

represent the partial loss of energy from primary waves by

scattering per unit travel distance. It is widely observed that

the scattering attenuation in the medium obeys an empirical

formula,9,10

E ¼ E0e�ax; (1)

where E denotes the amplitude of an acoustic field variable

such as velocity or pressure and x is the wave’s propagation

distance. If the size of the scattering heterogeneity d is much

greater than the wavelength k(k� d), the attenuation coeffi-

cient a is proportional to a / d�1, i.e., diffusion scattering.

If the wavelength is much larger than the size of anomalies

(k� d), the wave propagates through an equivalent contin-

uum which combines the properties of the host medium and

the inclusions. In this case, the attenuation coefficient varies

proportionally to a / d3x4, i.e., Rayleigh scattering. When

the wavelength approaches the size of the inclusions

(k � d), phase scattering takes place and the attenuation
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coefficient varies proportionally to a / dx2, i.e., Stochastic/

Mie scattering.11 Generally speaking, the attenuation coeffi-

cient a that results from elastic scattering depends on the

ratio of acoustic wavelength k to the diameter d of the scat-

tering heterogeneity and can be described as12

a ¼
DSd�1 ðDiffusion scatteringÞ k� d
DSdx2 ðStochastic=Mie scatteringÞ k � d
DSd3x4 ðRayleigh scatteringÞ k� d;

8<
:

(2)

where DS is media-specific attenuation parameter obtained

through a fitting of measured data. The wavelength can be

written as k ¼ c0=x where c0 is the wave velocity. Thus, the

attenuation coefficient aðxÞ can be described with an empiri-

cal power law,

aðxÞ ¼ DSds�1xs ¼ a0x
s; 0 � s � 4; (3)

where a0 ¼ DSds�1 is the attenuation parameter related to

scattering heterogeneity d: In special cases s ¼ 0; 2; 4, the

classical model Eq. (2) is obtained. It is noted that the index s
can also be some non-integer values between 0 to 4 in certain

case, for example, in seismic wave scattering attenuation.13,14

Thus, it is reasonable to assume that s can be any real number

between 0 and 4. An expression that describes how the index

s changes with other variables will be discussed later in Sec.

III. Above all, it remains a challenging open problem in time-

space partial differential equation modeling to describe arbi-

trarily frequency-dependent scattering attenuation typically

obeying an empirical power law as Eq. (3).

In recent years, the fractional derivative models have

been developed to describe absorption attenuation in com-

plex materials, such as anomalous diffusion,15,16 viscoelastic

damping,17 and frequency-dependent dissipative wave prop-

agation.18,19 With fractional derivative terms underlying the

memory and long-range interaction, these models success-

fully describe the frequency-dependent behavior.20 Szabo

derived a causal convolution operator for the lossy wave

equation that accounted for power law absorption with a

non-integer frequency dependence.21 This wave equation

was later rewritten as a positive time-fractional derivative

wave equation by Chen and Holm,18 and then developed by

Kelly et al.22 However, the time-only operation in the above

models is not feasible in the general case where the interac-

tion between two oppositely traveling sound waves cannot

be neglected,23 and they were derived mostly due to their

ease of analysis. Therefore, Chen and Holm introduced the

fractional Laplacian wave equation including a spatial frac-

tional derivative operator19 based on Stokes’ wave equation.

Later, Treeby and Cox proposed an enhanced, causal frac-

tional Laplacian wave equation which can describe power

law absorption and dispersion for acoustic propagation.24

In contrast to these phenomenological models, another kind

of fractional wave equations proposed by Holm et al.
are derived differently from the viscoelastic constitutive

equation, which is causal for any frequency and fulfills

the Kramers–Kronig relation.25,26 However, little of past

work concerns scattering attenuation in acoustic wave

propagation. Besides the different physical mechanisms of

absorption attenuation and scattering attenuation as dis-

cussed above, this is largely because the conventional spatial

fractional Laplacian19 with an order from 0 to 2 cannot

describe the scattering attenuation where the empirical scat-

tering power law has an exponent ranging from 0 to 4.

Based on the above-mentioned studies, this paper pro-

poses new fractional derivative models to describe the

acoustic wave scattering attenuation in heterogeneous media.

To solve the problem, we introduce a new definition of the

space-fractional derivative with an order from 0 to 4, called

the fractional biharmonic operator. And then the new frac-

tional operator is applied to the scattering attenuation wave

equation modeling.

Under the common smallness approximation, where

attenuation is assumed to be much smaller than the wave

number, the proposed fractional biharmonic operator equa-

tion model of acoustic scattering is found consistent with

arbitrary frequency power-law dependency and obeys the

causal relation. Furthermore, the correlation between the

fractional order and the ratio of wavelength to diameter of

the scattering heterogeneity is investigated and a possible

form of expression is given. In order to verify this relation-

ship, an existing scattering theory which has been demon-

strated by experimental data is mentioned and then

compared with our corresponding conclusions.

The rest of this paper is organized as follows. In Sec. II,

the different types of fractional equation models for wave

scattering attenuation are discussed so as to propose a new

fractional biharmonic operator equation model. Then a physi-

cal interpretation and expression on the order of the fractional

biharmonic operator is presented in Sec. III. The conclusions

are presented in Sec. IV. In the Appendix, the existing defini-

tions of the fractional Laplacian and our new definition of the

fractional biharmonic operator are introduced.

II. FRACTIONAL BIHARMONIC OPERATOR EQUATION
MODEL OF WAVE SCATTERING ATTENUATION

An attenuation wave equation can generally be

described as24

Dp� 1

c2
0

@2p

@t2
þ v pð Þ ¼ 0; (4)

where p is the pressure of the acoustic wave, c0 represents

the phase velocity at a reference frequency, and v denotes

the attenuation term in form of time or space derivative oper-

ator. According to the existing equations of fractional order

acoustic absorption attenuation models, it is reasonable to

assume that the attenuation term of wave scattering is also a

fractional mixed partial derivative in space and time which

is suitable for description of the frequency-dependent power

law attenuation.

A. Scattering wave equation with a monomial
attenuation term of time-space fractional derivative

A monomial attenuation term in form of time and space

fractional derivative operator can be described as
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v pð Þ ¼ C
@a

@ta
�Dð Þb=2

p; (5)

where C is the coefficient, ð�DÞb=2
means the fractional

biharmonic operator defined by Eq. (A13), and @a=@ta is the

time-fractional derivative operator defined by Eq. (A1).

In order to determine the coefficients and parameters

and to verify that our scattering attenuation acoustic wave

equation reflects the frequency-dependent power law attenu-

ation of Eq. (3), the frequency-domain Fourier analysis is

given below.

Applying the time and space Fourier transforms to Eqs.

(4) and (5), in consideration of Eqs. (A2) and (A14), the fre-

quency domain version of Eq. (4) combined with Eq. (5)

is19,27

�k2 þ x2

c2
0

þ C ixð Þakb ¼ 0; (6)

where k and x are wave number and frequency variables,

respectively. Splitting the wave number into real and imagi-

nary parts where k ¼ bþ ia, it is straightforward to have

�b2 þ a2 � i2abþ x2

c2
0

þ C cos
ap
2

� �
xakb

þ iC sin
ap
2

� �
xakb ¼ 0: (7)

Here b ¼ x=cp encapsulates the propagating part of the

waves and a encapsulates the scattering attenuation. Though

the complex wave number is usually used to describe wave

absorption attenuation through lossy materials, it is reason-

able to describe the wave scattering in the same way because

it also results in both attenuation and dispersion.28,29

Separating the above equation, the real and imaginary

parts are given by

Re : a2 � b2 þ x2

c2
0

þ C cos ap=2ð Þxakb ¼ 0

Im : 2baþ C sin ap=2ð Þxakb ¼ 0:

8><
>: (8)

With the conservative value under the smallness approxima-

tion, where attenuation is assumed to be much smaller than

the wave number,30,31 a relationship is given by

k � b ¼ x=cp ¼ x=c0: (9)

Simplifying the imaginary component of Eq. (8) then yields

a¼�C sin ap=2ð Þbb

2b
xa ¼�C sin ap=2ð Þ

2cb�1
0

xaþb�1: (10)

It is noted that Eq. (10) is consistent with the empirical

power law Eq. (3), namely,

aþ b ¼ sþ 1

C ¼ � 2a0ds�1cs�a
0

sin ap=2ð Þ ¼ �
2a0cs�a

0

sin ap=2ð Þ :

8><
>: (11)

In terms of the relationship formulas (11), if the time

and space fractional orders and the coefficient C in Eq. (5)

agree with Eq. (11), then the fractional wave scattering atten-

uation equation for the power-law frequency-dependent

attenuation in heterogeneous media is given.

In the simplest case, let a ¼ 1, b ¼ s, the scattering

attenuation equation is stated as

Dp� 1

c2
0

@2p

@t2
� 2a0cs�1

0

@

@t
�Dð Þs=2

p ¼ 0; 0 � s � 4;

(12)

which appears similar to the fractional Laplacian equation of

dissipative acoustic wave proposed by Chen and Holm.19

The difference is that the order of the fractional Laplacian is

from 0 to 2 to describe wave absorption attenuation while

the order of the fractional biharmonic operator here is from 0

to 4. However, Treeby and Cox found that this form of the

wave equation exhibit the desired power law attenuation but

is non-causal.24

In wave equation models, causality must be considered.

The propagation of a sound wave through a heterogeneous

medium is intrinsically linked with dispersion, a dependence

of the phase speed on frequency.24

In order to solve this problem, simplifying the real com-

ponent of Eq. (8) under the smallness assumption a� b,

Eqs. (9) and (11) then yield

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

c2
0

þ C cos
ap
2

� �
xakb

s

� x
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C cos

ap
2

� �
caþ1�s

0 xs�1

s
: (13)

Applying Taylor expansion and reserving the first two terms

[C cos ðap=2Þcaþ1�s
0 xs�1 � 1] then gives

b ¼ x
c0

þ C

2cs�a
0

cos
ap
2

� �
xs

¼ x
c0

þ a0 tan
a� 1ð Þp

2

� �
xs; (14)

where the coefficient C is given by Eq. (11).

Based on the causal relation, Horton32,33 published a set

of dispersion relations of power-law attenuation stated as

follows

b ¼ x
c0

þ a0 tan
sp
2

� �
xs: (15)

Here 0 < s < 1. Some reports suggest that this causal rela-

tion is also valid for 1 < s < 3:34,35 Analogously, it can be

reasonably inferred from the literature that Eq. (15) is valid

for 0 � s � 4 and s 6¼ 1; 3 (an alternate expression is also

available for s¼ 1 or 3).34

Comparing Eq. (14) with Eq. (15) then yields

a ¼ sþ 1� 2n: (16)
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Here n is an integer. If the space fractional order b ¼ 2n
assuming n ¼ 0; 1; 2, the scattering attenuation equation can

obey the causal relation and satisfy the empirical power law

in the following expression

Dp� 1

c2
0

@2p

@t2
� 2a0c2n�1

0

sin sþ1�2nð Þp=2
� � @sþ1�2n

@tsþ1�2n
�Dð Þnp¼ 0;

0� s� 4; s 6¼ 1;3; n¼ 0;1;2: (17)

In the simplest expression, n ¼ 0, a ¼ sþ 1, b ¼ 0, the

equation can be reduced to

Dp� 1

c2
0

@2p

@t2
� 2a0

c0 cos sp=2ð Þ
@sþ1

@tsþ1
p ¼ 0;

0 � s � 4; s 6¼ 1; 3; (18)

which has a similar expression as the integro-differential

operator equation proposed by Szabo21 for viscosity dissipa-

tion but the parameter has different physical significance and

range. While n ¼ 1, a ¼ s� 1, b ¼ 2, the equation can be

described as

Dp� 1

c2
0

@2p

@t2
þ 2a0c0

cos sp=2ð Þ
@s�1

@ts�1
Dp ¼ 0;

0 � s � 4; s 6¼ 1; 3; (19)

which appears similar to the fractional derivative equation

proposed by Caputo and Wismer36,37 but is physically differ-

ent. It is worth mentioning that since the Caputo/Wismer

equation is based on a causal constitutive equation, it is

causal without the smallness approximation (valid for all

frequencies).38

In general, a monomial attenuation term which obeys the

causal relation and satisfies the empirical power law of scat-

tering cannot be expressed only by the space fractional deriva-

tive operator. However, considering that scattering attenuation

is caused by media heterogeneity, a space-fractional deriva-

tive is appropriate to characterize the scattering attenuation

for the spatial non-locality and power law behavior. It is also

noted that the scattering representation Eq. (19) involves the

temporal derivative of 3 order when s¼ 4. This could cause

some problems in the solution of real-world problems. In Sec.

II B, two terms for the fractional space derivative are therefore

employed to represent scattering attenuation to avoid the

high-order temporal derivative issue.

B. Scattering wave equation with two terms
of fractional space derivative

The attenuation term in the scattering wave equation

model should exhibit the correct power law and satisfy a

causal dispersion relationship, under appropriate conditions.

In this section, the two terms of scattering attenuation

expression in Eq. (4) are given by

v pð Þ ¼ C1

@a

@ta
�Dð Þ b=2ð Þ

pþ C2

@p

@tp
�Dð Þ q=2ð Þ

p; (20)

where C1 and C2 are the undetermined coefficients. This

form of attenuation (with a¼ 1 and p¼ 0, specially) was first

proposed by Treeby and Cox to describe causal absorption

attenuation.24

Applying the time and space Fourier transforms to Eq.

(20) and separating the frequency domain equation, the real

and imaginary parts are given by

Re : a2 � b2 þ x2

c2
0

þ C1 cos ap=2ð Þxakb þ C2 cos pp=2ð Þxpkq ¼ 0

Im : 2baþ C1 sin ap=2ð Þxakb þ C2 sin pp=2ð Þxpkq ¼ 0:

8><
>: (21)

From the preceding analysis, it is evident that the real part of

Eq. (21) corresponds to the encapsulated dispersion, while

the imaginary part represents the scattering attenuation.

Without loss of generality, one may assume that the first part

of the attenuation term exhibits only the power law attenua-

tion while the second part represents only the dispersion.

Thus the coefficient C1 of the first attenuation term will not

appear in the real part of Eq. (21) otherwise it will affect the

dispersion. Equally, the coefficient C2 of the first attenuation

term will not appear in the imaginary part of Eq. (21) other-

wise it will affect the scattering attenuation. This assumption

then gives

cos ðap=2Þ ¼ 0; a ¼ 2mþ 1

sin ðpp=2Þ ¼ 0; p ¼ 2n:

(
(22)

Here m, n are integers. Under the smallness approximation

Eq. (9), simplifying the imaginary component of Eq. (21)

then yields

a¼ �1ð Þmþ1 C1b
b

2b
x2mþ1 ¼ �1ð Þmþ1 C1

2cb�1
0

x2mþb: (23)

Comparing with the empirical power law Eq. (3) then gives

b ¼ s� 2m

C1 ¼ ð�1Þmþ1
2a0ds�1cb�1

0 ¼ ð�1Þmþ1
2a0cs�1�2m

0 :

(

(24)

The real component of Eq. (21) can be simplified in the

same way as in Sec. II A and becomes
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b ¼ x
c0

þ �1ð Þn C2

2cq�1
0

x2n�1þq: (25)

Taking in consideration the causal relation of Eq. (15) then

yields

q ¼ sþ 1� 2n
C2 ¼ ð�1Þn2a0cs�2n

0 tan ðsp=2Þ:

�
(26)

In order to avoid making the time and space fractional opera-

tors with too large orders beyond the scope of our defini-

tions, assume m ¼ 0; 1 and n ¼ 0; 1, then the fractional

biharmonic operator equation model for acoustic wave scat-

tering attenuation can generally be written as

Dp� 1

c2
0

@2p

@t2
þ �1ð Þmþ1

2a0cs�1�2m
0

@2mþ1

@t2mþ1
�Dð Þ s�2mð Þ=2½ �

p

þ �1ð Þn2a0cs�2n
0 tan

sp
2

� �
@2n

@t2n
�Dð Þ sþ1�2nð Þ=2½ �

p¼ 0;

0� s� 4; s 6¼ 1;3; m¼ 0;1; n¼ 0;1: (27)

When m ¼ 0, n ¼ 0, the equation can be reduced to

Dp� 1

c2
0

@2p

@t2
� 2a0cs�1

0

@

@t
�Dð Þ s=2ð Þ

pþ 2a0cs
0

� tan
sp
2

� �
�Dð Þ sþ1ð Þ=2½ �

p ¼ 0;

0 � s � 4; s 6¼ 1; 3; (28)

which looks like the fractional derivative equation proposed

by Treeby and Cox24 for frequency-dependent dissipative

attenuation, but the index s ranges from 0 to 2 in the latter. It

is worth mentioning that this type of attenuation term might

be infeasible for scattering attenuation when the fractional

order s approaches 4 and the second part of the attenuation

term is over fourth-order spatial derivative operator. This is

unphysical.

In the case of m ¼ 0, n ¼ 1, Eq. (27) can also be

rewritten as

Dp� 1

c2
0

@2p

@t2
� 2a0cs�1

0

@

@t
�Dð Þ s=2ð Þ

p� 2a0cs�2
0

� tan
sp
2

� �
@2

@t2
�Dð Þ s�1ð Þ=2½ �

p ¼ 0;

0 � s � 4; s 6¼ 1; 3; (29)

which appears similar to the fractional derivative equa-

tion proposed by Pang29 for frequency-dependent dissi-

pative attenuation. The highest fractional order of the

attenuation term in Eq. (29) is s� 1 and less than 4

instead of sþ 1 in Eq. (28). However, when the frac-

tional order s < 1, the last operator of the attenuation

term is the inverse operator of the fractional Laplacian

which is defined by Eq. (A4). In this scenario, the equa-

tion can be rewritten as

Dp� 1

c2
0

@2p

@t2
� 2a0cs�1

0

@

@t
�Dð Þ s=2ð Þ

p� 2a0cs�2
0

� tan
sp
2

� �
@2

@t2
I1�sp ¼ 0;

0 � s � 4; s 6¼ 1; 3: (30)

In addition, if m ¼ 1, n ¼ 1, Eq. (27) becomes

Dp� 1

c2
0

@2p

@t2
þ 2a0cs�3

0

@3

@t3
�Dð Þ s�2ð Þ=2½ �

p� 2a0cs�2
0

� tan
sp
2

� �
@2

@t2
�Dð Þ s�1ð Þ=2½ �

p ¼ 0;

0 � s � 4; s 6¼ 1; 3; (31)

when the order of the fractional biharmonic operator is less

than 0, it will be converted to the Riesz potential operator.

The above analysis shows that the wave equation of Eq.

(27) is feasible to characterize power-law frequency-depen-

dent attenuation in heterogeneous media which obeys the

causal relation. In Sec. III, the fractional order is physically

interpreted in terms of the wavelength and the diameter of

the scattering heterogeneity.

III. RELATIONSHIP FORMULA BETWEEN
SCATTERING POWER LAW INDEX AND THE RATIO
OF THE HETEROGENEITY DIAMETER TO ACOUSTIC
WAVELENGTH

As discussed above in Eq. (2), the order s of the frac-

tional derivative and scattering power law attenuation

depends on the ratio of acoustic wavelength k to the diame-

ter d of the scattering heterogeneity. The correlation between

the fractional order (scattering power law attenuation index)

and the ratio can be described as

s ¼
0; l! þ1
2; l ¼ b0

4; l ¼ 0;

8<
: (32)

where l ¼ d=k is the ratio of the diameter d to acoustic

wavelength k. b0 is the value of l when the Stochastic/Mie

scattering occurs. In some cases,9 it is approximately equal

to 1=2p, while we take it as an undetermined parameter here

in general. Taking into account that the value of l is actually

a continuous variable quantity, then the value of s should

also be a continuous variable instead of a “jump” variable. A

possible relation consistent with Eq. (32) is an exponential

expression given by

s ¼ 4e�l ln 2=b0 ; (33)

when k� d, l! þ1, formula (33) is reduced to s ¼ 0;

when k ¼ d=b0, l ¼ b0, formula (33) is reduced to s ¼ 2;

when k� d, l ¼ 0, formula (33) is reduced to s ¼ 4. The

expression (33) is shown in Fig. 1.

However, it should be mentioned that expression (33) is

only a possible relationship based on the existing scattering

248 J. Acoust. Soc. Am. 141 (1), January 2017 Chen et al.



theory such as Eq. (2), whether the expression is valid or not

requires other theoretical or experimental verification.

In order to verify our conclusion, the scattering coeffi-

cient a must be studied. Substituting formula (33) into

Eq. (3) and considering k ¼ c0=x, the expression for the

attenuation coefficient a as a function of d and x is as

follows

a ¼ DSxðxdÞ4 exp ð�xd ln 2=b0c0Þ�1: (34)

As a comparison, Blair14 has also shown that an accept-

able frequency-dependent scattering attenuation coefficient a
for elastic scattering can be cast in the general form

a ¼ CS

d

x
xd

� �4

1þ x
xd

� �4
" #�1

; xd ¼
ksc0

d
; (35)

where CS and kS are constants, c0 the wave velocity, d the

mean diameter of the scatterers, and xd the characteristic

(constant) frequency, dependent only upon the scattering

medium. Expression (35) is based on experimental data for

seismic attenuation in rock and has also been observed in

ultrasonic scattering in metals. It means that although the

grain size in typical metals are significantly smaller than in

most rock, scattering is a scale-independent phenomenon

whose magnitude is determined by the ratio of wavelength

to grain size.9 This conclusion is consistent with our scatter-

ing model.

To compare the two expressions for scattering coefficient

and discuss the effect of the diameter d and frequency x on

the attenuation coefficient a, a graphical representation has

been made to describe the relation between a and d by formu-

las (34) and (35), respectively, under varying values of x (5,

10, 15, and 20 Hz). In order to simplify the calculation, we

assume DS ¼ CS ¼ 1, c0 ¼ 1, and take kS ¼ 0:23 as proposed

by Blair. When the parameter is b0 � 1=4p, formula (34) is

in good agreement with formula (35), as shown in Fig. 2.

From Fig. 2, it can also be observed that the crest region

of a tends to be less acute when x increases. It can also be

seen that when the diameter d of the scattering heterogeneity

has a size approximately equal to the wavelength k(d � pk),

the attenuation coefficient a at a certain frequency x reaches

the maximum value. It means that similar size of the hetero-

geneity in the medium and wavelength causes stronger scat-

tering attenuation. In other words, it means that the

“Stochastic/Mie scattering” is the most significant type of

scattering attenuation in the heterogeneous media. This con-

clusion is also consistent with the field and experiment

observations.

IV. CONCLUSIONS

This paper proposes a fractional biharmonic operator

derivative equation model to describe the acoustic wave

scattering attenuation in heterogeneous media. In

FIG. 1. The relation between the fractional order s (power law scatter atten-

uation index) and the ratio l of acoustic wavelength k to the diameter d of

the scattering heterogeneity described by formula (33). This figure shows an

exponential curve which is possible to describe this relationship. The hori-

zontal axis is normalized variables l=b0.

FIG. 2. (Color online) The relation

between the scattering coefficient a
and the diameter d by formula (34)

(black dotted line) and formula (35)

(colorized curves) with varying fre-

quency x. The curves of formula (34)

are depicted by black dotted line ver-

sus the colorized curves of formula

(35) proposed by Blair. The frequency

x varies from 5, 10, 15 to 20 Hz with

the parameters DS ¼ CS ¼ 1, c0 ¼ 1,

kS ¼ 0:23; and b0 � 1=4p. The figure

shows that formula (34) is in good

agreement with formula (35) in differ-

ent cases.
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consideration of the empirical power law with an exponent

ranging from 0 to 4, the definition of the space-fractional

derivative, called fractional biharmonic operator, is intro-

duced in the Appendix.

After the systematic analysis of the expression of scat-

tering attenuation term, it is demonstrated that the wave Eqs.

(17) and (27) are consistent with the empirical power law

Eq. (3) and is capable of describing arbitrary scattering

attenuation. While obeying the causal relation under the

smallness approximation, it means that they can all describe

both scattering attenuation and dispersion. This would be an

important result since the assumption is usually made that

there is no phase change. Specially, if the order of the frac-

tional operators in expression (5) obeys a ¼ 1 and b ¼ s, the

scattering attenuation Eq. (12) is obtained without consider-

ing dispersion.

Moreover, the relationship between the fractional order

(scattering attenuation power law index) and the ratio of

wavelength to the diameter of the scattering heterogeneity is

established. To verify this relationship, an existing scattering

theory proposed by Blair which has been verified by experi-

mental data is compared with our conclusions. The result

shows that when the parameter of formula (34) d0 � 1=4p
and the parameter of formula (35) kS ¼ 0:23, the two curves

are in good agreement. In another case, with d0 ¼ 1=2p and

kS ¼ 0:4, formula (34) is in good agreement with formula

(35), too. In fact, we can come to the conclusion that the two

expressions for scattering attenuation coefficient a are

approximately equivalent while choosing the appropriate

values of d0 and kS. Through the comparison, expression

(33) which describes the relationship between the order of

the fractional operator and the ratio of wavelength to the

diameter of the scatters is then indirectly verified and

appears valid for calculating the scattering attenuation.
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APPENDIX: DEFINITIONS OF THE FRACTIONAL
DERIVATIVE

1. Existing definitions of the fractional derivative

In order to prepare the introduction of the fractional

biharmonic operator in space, this study begins with the

existing definitions of time and space fractional deriva-

tives. The Caputo’s fractional derivative is a conventional

time integro-differential operator and is written as

follows.

a. Definition A

Caputo’s time-fractional derivative with combination of

the derivative and the convolution is given by39

@s

@ts
u tð Þ ¼ 1

C n� sð Þ

ðt

�1
t� sð Þn�s�1u nð Þ sð Þds;

n� 1 < s < n; (A1)

where Cð	Þ denotes Euler’s gamma function, uðtÞ must be n
order differentiable. In addition, the integer derivative of

uðtÞ must be given at the initial instance, for example, when

n ¼ 1 and the initial time equals 0, uð0Þ and u0ð0Þ must

been given as the initial conditions. The Riemann–Liouville

definition of the fractional derivative can also be written in a

similar form but the derivative is taken after the convolution.

The Caputo type definition is the regularized form of the

Riemann–Liouville type. The Fourier transform of the time-

fractional derivative has been given by Bagley and Torvik40

F
@s

@ts
u tð Þ;x

� �
¼ ixð ÞsU xð Þ: (A2)

The fractional Laplacian ð�DÞs=2

 ð0 < s � 2Þ is a spatial

integro-differential operator and can describe the spatial

non-locality and power law behavior of scientific and engi-

neering problems. A variety of definitions of fractional

Laplacian have been proposed in recent years. One of them

is introduced by Chen and Holm.19 They used the Riesz

potential41 and the fractional integral in space via the Green

second identity to propose an explicit integral expression of

fractional Laplacian, which naturally includes the boundary

conditions.

b. Definition B

Fractional operator as a composition of Riesz potentials

and Laplacian19,42 is given by

ð�DÞs=2

 uðxÞ¼

�D½I2�s
d uðxÞ�ðRiemann-Liouville-typeÞ

I2�s
d ½�DuðxÞ�ðCaputo-typeÞ;

(

0<s�2;

(A3)

where the Riesz potential operator of order s of d dimensions

is defined by43,44

Is
du xð Þ ¼

C d � sð Þ=2
� �

ps=22sC s=2ð Þ

ð
X

u nð Þ
kx� nkd�s

dX nð Þ;

0 < s < 2; (A4)

and where X is the integral domain. The definition is used in

modeling acoustic dissipation in human tissue.19

2. New definition of factional biharmonic operator

However, the fractional Laplacian Eq. (A3) with an

order from 0 to 2 is not able to describe the empirical power

law as Eq. (3) with an exponent ranging from 0 to 4. This

section introduces a new spatial integro-differential operator

ð�DÞs=2


 ð2 < s � 4Þ, called fractional biharmonic operator.

The definition is follows.
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a. Definition C

The fractional biharmonic operator as a composition of

the Riesz potential and the biharmonic operator is given by

ð�DÞs=2


 uðxÞ¼

DD½I4�s
d uðxÞ�ðRiemann-Liouville-typeÞ

I4�s
d ½DDuðxÞ�ðCaputo-typeÞ;

(

2< s�4; (A5)

the order ðð4� sÞ 2 ð0; 2�Þ of Riesz potential operator

is consistent with that in Eq. (A4). Although the current

definitions of the fractional derivative with an order exceed-

ing 2 are rare, Buckingham suggested that there is no upper

or lower limit on the value that s may take.45

It is known that the Laplacian operator has the radial

basis function expression

Du xð Þ ¼ d2u
dr2
þ d � 1

r

du
dr
; (A6)

where r ¼ kx� nk denotes Euclidean distance. Equation

(A5) can then be reduced to

DD I4�s
d u xð Þ
� �

¼ C d � 4þ sð Þ=2
� �

p4�s=224�sC 4� sð Þ=2
� �DD

ð
X

u nð Þ
kx� nkdþs�4

dX nð Þ

¼ sþ d � 4ð Þ s� 2ð Þ sþ d � 2ð ÞsC d � 4þ sð Þ=2
� �

p 4�sð Þ=224�sC 4� sð Þ=2
� � ð

X

u nð Þ
kx� nkdþs

dX nð Þ; (A7)

I4�s
d DDu xð Þ½ � ¼

C d � 4þ sð Þ=2
� �

p 4�sð Þ=224�sC 4� sð Þ=2
� � ð

X

DDu nð Þ
kx� nkdþs�4

dX nð Þ: (A8)

It is noted that Eq. (A7) encounters the detrimental hypersingularity, which means the singularity order dþ s is larger than the

topological dimension d, while the definition Eq. (A8) has a weak singularity of order dþ s�4 compared with the hypersingu-

larity of order dþ s in Eq. (A7). The Green’s second identity is useful to connect Eqs. (A7) and (A8),19

I4�s
d DDu xð Þ½ � ¼

sþ d � 4ð Þ s� 2ð ÞC d � 4þ sð Þ=2
� �

p 4�sð Þ=224�sC 4� sð Þ=2
� � ð

X

Du nð Þ
kx� nkdþs�2

dX nð Þ

þ h

ð
S

Du nð Þ @
@n

1

kx� nkdþs�4

 !
� 1

kx� nkdþs�4

@

@n
Du nð Þ

" #
dS nð Þ

¼ sþ d � 4ð Þ s� 2ð Þ sþ d � 2ð ÞsC d � 4þ sð Þ=2
� �

p 4�sð Þ=224�sC 4� sð Þ=2
� � ð

X

u nð Þ
kx� nkdþs

dX nð Þ

þ g

ð
S

u nð Þ @
@n

1

kx� nkdþs�2

 !
� 1

kx� nkdþs�2

@u nð Þ
@n

" #
dS nð Þ

þ h

ð
S

C nð Þ @
@n

1

kx� nkdþs�4

 !
� D nð Þ
kx� nkdþs�4

" #
dS nð Þ

¼ DD I4�s
d u xð Þ
� �

þ g

ð
S

E nð Þ @
@n

1

kx� nkdþs�2

 !
� F nð Þ
kx� nkdþs�2

" #
dS nð Þ

þ h

ð
S

C nð Þ @
@n

1

kx� nkdþs�4

 !
� D nð Þ
kx� nkdþs�4

" #
dS nð Þ; (A9)

where S represents the surface of the domain, and n is the unit outward normal. Let

DuðxÞjx2S ¼ CðxÞ; uðxÞjx2S ¼ EðxÞ; (A10)

@

@n
Du xð Þ

				
x2S

¼ D xð Þ; @u xð Þ
@n

				
x2S

¼ F xð Þ; (A11)

and h ¼ C d � 4þ sð Þ=2
� �

p 4�sð Þ=224�sC 4� sð Þ=2
� � ; g ¼ sþ d � 4ð Þ s� 2ð ÞC d � 4þ sð Þ=2

� �
p 4�sð Þ=224�sC 4� sð Þ=2

� � : (A12)
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It is seen from Eq. (A9) that the fractional biharmonic opera-

tor I4�s
d ½DDuðxÞ� is equal to the fractional biharmonic opera-

tor DD½I4�s
d uðxÞ� augmented with the boundary integral,

which is a parallel to the fractional time derivatives in the

Caputo sense relative to that in the Riemann–Liouville

sense. It is worth mentioning that the Caputo sense requires

uðxÞ to be 4th-order differentiable. Considering the charac-

teristics of the two different types of definitions, both the

fractional Laplacian and the fractional biharmonic operators

in the Caputo sense are used in this paper.

Combining definition A and definition B, a new defini-

tion of the space-fractional derivative ð�DÞs=2ð0 < s � 4Þ
by a piecewise function is proposed.

b. Definition D

Fractional Laplacian and fractional biharmonic operators:

ð�DÞs=2uðxÞ ¼ ð�DÞs=2

 uðxÞ; 0 < s � 2

ð�DÞs=2


 uðxÞ; 2 < s � 4

(
(A13)

where the operator ð�DÞs=2

 and ð�DÞs=2



 are defined by Eqs.

(A3) and (A5). Under sufficiently good conditions, the defi-

nition satisfies the following Fourier transform38

Ffð�DÞs=2uðxÞ; kg ¼ ksUðkÞ; 0 < s � 4; (A14)

�Dð Þs=2
u xð Þ ¼ F�1 ksU kð Þ


 �
¼ 1

2p

ð
U kð Þkseikxdk;

(A15)

where k is the spatial wave number.

1T. L. Szabo, “Diagnostic ultrasound imaging: Inside out,” Biomedical
Engineering (Academic Press), pp. 297–336.

2F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound

attenuation and backscatter in breast tissue,” Ultrasound Med. Biol. 12,

795–808 (1986).
3J. Liu and X. C. Wei, “An analysis of seismic scattering attenuation in a

random elastic medium,” Appl. Geophys. 8, 344�354 (2011).
4V. N. Kozlov, A. A. Samokrutov, and V. G. Shevaldykin, “Thickness

measurements and flaw detection in concrete using ultrasonic echo meth-

od,” Nondestr. Test. Eval. 13, 73�84 (1997).
5F. Schubert and B. K€oehler, “Three-dimensional time domain modeling of

ultrasonic wave propagation in concrete in explicit consideration of aggre-

gates and porosity,” J. Comp. Acoust. 9, 1543�1560 (2001).
6H. L. Zhang, Theoretical Acoustics (Higher Education Press, China,

2007), pp. 21�27 (in Chinese).
7E. N. Landis and S. P. Shah, “Frequency-dependent stress wave attenua-

tion in cement-based materials,” Eng. Mech. 121, 737�743 (1995).
8R. S. Wu and K. Aki, “The fractal nature of the inhomogeneities in the

lithosphere evidenced from seismic wave scattering,” Appl. Geophys. 123,

805�818 (1985).
9D. P. Blair, “Estimates of seismic attenuation using vibrational resonance

and pulse transmission in four large blocks of rock,” Geophys. J. Int. 126,

135�146 (1996).
10M. N. Toksoz, D. H. Johnston, and A. Timur, “Attenuation of seismic

waves in dry and saturated rocks: I. Laboratory measurements,”

Geophysics 44, 681�690 (1979).
11A. Vary, “Material property characterization,” Nondestructive Testing

Handbook, 2nd ed., Ultrasonic Testing (American Society for

Nondestructive Testing, Columbus, OH, 1991), Vol. 7, pp. 383–431.
12G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook,

Second Edition: Tools for Seismic Analysis of Porous Media (Cambridge

University Press, New York, 2009), pp, 150�154.

13K. Aki, “Scattering and attenuation of shear waves in the lithosphere,”

J. Geophys. Res. 85, 6496�6504, doi:10.1029/JB085iB11p06496 (1980).
14D. P. Blair, “A direct comparison between vibrational resonance and pulse

transmission data for assessment of seismic attenuation in rock,”

Geophysics 55, 51�60 (1990a).
15M. M. Meerschaert, D. A. Benson, H. P. Scheffler, and B. Baeumer,

“Stochastic solution of space-time fractional diffusion equations,” Phys.

Rev. E 65, 041103 (2002).
16R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffu-

sion: A fractional dynamics approach,” Phys. Rep. 339, 1�77 (2000).
17R. L. Bagley, “Power law and fractional calculus model of

viscoelasticity,” AIAA J. 27, 1412�1417 (1987).
18W. Chen and S. Holm, “Modified Szabos wave equation models for lossy

media obeying frequency power law,” J. Acoust. Soc. Am. 114,

2570�2574 (2003).
19W. Chen and S. Holm, “Fractional Laplacian time-space models for linear

and nonlinear lossy media exhibiting arbitrary frequency power-law

dependency,” J. Acoust. Soc. Am. 115, 1424�1230 (2004).
20J. T. Machadoa, V. Kiryakovab, and F. Mainardi, “Recent history of frac-

tional calculus,” Commun. Nonlinear Sci. Numer. Simul. 16, 1140�1153

(2011).
21T. L. Szabo, “Time domain wave equations for lossy media obeying a fre-

quency power law,” J. Acoust. Soc. Am. 96, 491�500 (1994).
22J. F. Kelly, R. J. McGough, and M. M. Meerschaert, “Analytical time

domain Green’s functions for power-law media,” J. Acoust. Soc. Am. 124,

2861�2872 (2008).
23M. Ochmann and S. Makarov, “Representation of the absorption of non-

linear waves by fractional derivative,” J. Acoust. Soc. Am. 94,

3392�3399 (1993).
24B. E. Treeby and B. Cox, “Modeling power law absorption and dispersion

for acoustic propagation using the fractional Laplacian,” J. Acoust. Soc.

Am. 127, 2741�2748 (2010).
25S. Holm and R. Sinkus, “A unifying fractional wave equation for

compressional and shear waves,” J. Acoust. Soc. Am 127, 542�548

(2010).
26S. Holm and S. P. N€asholm, “A causal and fractional all-frequency

wave equation for lossy media,” J. Acoust. Soc. Am. 130, 2195�2202

(2011).
27A. D. Pierce, “Acoustics: An introduction to its physical principles and

applications,” Phys. Today 34(12), 56�57 (1981).
28J. C. Bamber, Attenuation and Absorption (Wiley, Chichester, UK, 2005),

Chap. 4, pp. 93�166.
29S. A. Lambert, S. P. N€asholm, D. Nordsletten, C. Michler, L. Juge, J.

M. Serfaty, L. Bilston, B. Guzina, S. Holm, and R. Sinkus, “Bridging

three orders of magnitude: Multiple scattered waves sense fractal

microscopic structures via dispersion,” Phys. Rev. Lett. 115, 094301

(2015).
30P. He, “Simulation of ultrasound pulse propagation in lossy media obeying

a frequency power law,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control

45, 114�125 (1998).
31G. F. Pang, “Space-fractional calculus viscoelastic constitutive models for

describing non-local acoustic wave dissipation and vibration damping,” in

Doctoral Dissertation of Hohai University, Nanjing, pp. 68�71, 2015 (in

Chinese).
32W. C. Horton, Sr., “Dispersion relationships in sediments and sea water,”

J. Acoust. Soc. Am. 55(3), 547�549 (1974).
33W. C. Horton, Sr., Comment on “Kramers–Kronig relationship between

ultrasonic attenuation and phase velocity,” J. Acoust. Soc. Am. 70, 1182

(1981).
34K. R. Waters, M. S. Hughes, J. Mobley, G. H. Brandenburger, and J. G.

Miller, “On the applicability of Kramers–Kronig relations for ultrasonic

attenuation obeying a frequency power law,” J. Acoust. Soc. Am. 108(2),

556�563 (2000).
35H. M. Nussenzveig, Causality and Dispersion Relations, 1st ed.

(Academic, New York, 1972), pp. 3�53.
36M. G. Wismer, “Finite element analysis of broadband acoustic pulses

through inhomogenous media with power law attenuation,” J. Acoust.

Soc. Am. 120, 3493�3502 (2006).
37M. Caputo, “Linear models of dissipation whose Q is almost frequency

independent-II,” Geophys. J. Int. 13, 529�539 (1967).
38S. Holm, S. P. N€asholm, F. Prieur, and R. Sinkus, “Deriving fractional

acoustic wave equations from mechanical and thermal constitutive equa-

tions,” Comput. Math. Appl. 66(5), 621�629 (2013).

252 J. Acoust. Soc. Am. 141 (1), January 2017 Chen et al.

http://dx.doi.org/10.1016/B978-012680145-3/50011-6
http://dx.doi.org/10.1016/B978-012680145-3/50011-6
http://dx.doi.org/10.1016/0301-5629(86)90077-3
http://dx.doi.org/10.1007/s11770-011-0296-y
http://dx.doi.org/10.1080/02780899708953020
http://dx.doi.org/10.1142/S0218396X01000978
http://dx.doi.org/10.1061/(ASCE)0733-9399(1995)121:6(737)
http://dx.doi.org/10.1007/BF00876971
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05273.x
http://dx.doi.org/10.1190/1.1440969
http://dx.doi.org/10.1029/JB085iB11p06496
http://dx.doi.org/10.1190/1.1442771
http://dx.doi.org/10.1103/PhysRevE.65.041103
http://dx.doi.org/10.1103/PhysRevE.65.041103
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.2514/3.10279
http://dx.doi.org/10.1121/1.1621392
http://dx.doi.org/10.1121/1.1646399
http://dx.doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/10.1121/1.410434
http://dx.doi.org/10.1121/1.2977669
http://dx.doi.org/10.1121/1.407192
http://dx.doi.org/10.1121/1.3377056
http://dx.doi.org/10.1121/1.3377056
http://dx.doi.org/10.1121/1.3268508
http://dx.doi.org/10.1121/1.3631626
http://dx.doi.org/10.1063/1.2914388
http://dx.doi.org/10.1103/PhysRevLett.115.094301
http://dx.doi.org/10.1109/58.646916
http://dx.doi.org/10.1121/1.1914534
http://dx.doi.org/10.1121/1.386552
http://dx.doi.org/10.1121/1.429586
http://dx.doi.org/10.1121/1.2354032
http://dx.doi.org/10.1121/1.2354032
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1016/j.camwa.2013.02.024


39I. Podlubny, Fractional Differential Equations (Academic, London,

1999), pp. 134�142.
40R. L. Bagley and P. J. Torvik, “Fractional calculus-a different approach to the

analysis of viscoelastically damped structures,” AIAA J. 21, 741�748 (1983).
41R. Gorenflo and F. Mainardi, “Random walk models for space-fractional

diffusion processes,” Fract. Calc. Appl. Anal. 1, 167�191 (1998).
42A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications

of fractional differential equations,” North-Holland Math. Stud. 204,

69�133 (2006).

43S. G. Samko, A. A. Kilbas, and O. I. Marichev, “Fractional integrals and

derivatives: Theory and applications,” in Gordon and Breach Science
(Gordon and Breach Science Publishers, New York, 1987), pp.

125�130.
44M. Z€ahle, “Fractional differentiation in the self-affine case. V—The local

degree of differentiability,” Math. Nachr. 185, 279�306 (1997).
45M. J. Buckingham, “Wave-speed dispersion associated with an attenuation

obeying a frequency power law,” J. Acoust. Soc. Am. 138(5), 2871�2884

(2015).

J. Acoust. Soc. Am. 141 (1), January 2017 Chen et al. 253

http://dx.doi.org/10.2514/3.8142
http://dx.doi.org/10.1007/978-3-0348-8276-7_10
http://dx.doi.org/10.1016/S0304-0208(06)80003-4
http://dx.doi.org/10.1002/mana.3211850117
http://dx.doi.org/10.1121/1.4932030

	s1
	d1
	l
	n1
	n2
	d2
	d3
	s2
	d4
	s2A
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	s2B
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	d29
	d30
	d31
	s3
	d32
	d33
	d34
	d35
	s4
	f1
	f2
	s5A
	s5A1
	dA1
	dA2
	s5A2
	dA3
	dA4
	s5
	s5A3
	dA5
	dA6
	dA7
	dA8
	dA9
	dA10
	dA11
	dA12
	s5A4
	dA13
	dA14
	dA15
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45

