
Virtually Timed Ambients
A Calculus for Resource Management in Cloud Computing

Doctoral Dissertation by

Johanna Beate Stumpf

Submitted to the
Faculty of Mathematics and Natural Sciences at the University of Oslo

for the degree Philosophiae Doctor in Computer Science

Date of submission: 15. 06. 2018
Date of public defense: 11. 10. 2018

Analytical Solutions and Reasoning
Department of Informatics

University of Oslo
Norway

Oslo, June 2018

http://www.ifi.uio.no
http://www.uio.no

© Johanna Beate Stumpf, 2018

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2022

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

Cloud computing is a paradigm of distributed computing in which users share resources
by storing data and executing processes in common data centers. A key factor for the
success of this paradigm is virtualization technology, which represents the resources
of an execution environment as a software layer, a so-called virtual machine. Virtu-
alization allows to share existing hardware and software resources, improves security
by providing isolation of different users, which share the same resource, and enables
dynamic assignment of resources according to the demand of the user. The sharing
of resources creates business drivers which make cloud computing an economically
attractive model for deploying software.

This thesis introduces the calculus of virtually timed ambients, a formal model of
hierarchical locations for execution with explicit resource provisioning. This calculus
is based on the well-known calculus of mobile ambients and motivated by the use
of nested virtualization in cloud computing applications. The investigation of cloud
computing from the point of view of process calculi provides a formal specification of
the subject, which is necessary in order to develop executable models for analysis and
optimization.

The main contributions of this thesis are the definition of the calculus of virtually
timed ambients, and the reasoning about its essential characteristics. In order to enable
static analysis we enhance the calculus with a type system. Furthermore, we define
a modal logic and a corresponding model checker, which we deploy in the definition
of resource-awareness of virtually timed ambients, enabling dynamic self management
of processes. Lastly, we present virtually timed ambients as a framework to analyse
virtualization in cloud computing utilizing a prototype implementation. All concepts
are illustrated by examples.

Acknowledgments

First and foremost, I would like to thank my supervisors Einar Broch Johnsen and
Martin Steffen for their continuous support and encouragement over the past years.
They provided the right balance between guidance and independence for my research,
while always taking time for my questions. I am deeply grateful to them for our many
joint discussions, where they shared their deep insights, constructive suggestions and
helpful advice.

I would like to extend my gratitude to all colleagues in the Analytical Solutions and
Reasoning group for their support of my growth as a researcher and for always creat-
ing a welcoming, friendly and cooperative working environment. In particular, I am
grateful to Lars Tveito for the collaboration on the implementation of the calculus.

Furthermore, I would like to thank the initiators and participants of the Sirius project
for establishing fantastic opportunities to meet people and broaden my horizon, espe-
cially through the mentoring program.

My sincere thanks go to Sigurd Kittelsen, Yvonne Späck-Leigsnering, Lars Tveito and
Felix Wolf for reading and commenting on the first draft of this thesis.

Lastly, I would like to thank my friends and family, for their encouragement and
support during my studies. Danke.

The work presented in this thesis was funded by the Research Council of Norway
through the Cumulus project on semantics-based analyses for cloud-aware computing.

Contents

Abstract iii

Acknowledgments v

I Overview 1

1 Motivation 3
1.1 Introduction to Cloud Computing . 4
1.2 Research Goal and Methodology . 8
1.3 Structure of this Thesis . 11

2 Preliminaries on Process Calculi 13
2.1 Essential Features of Process Calculi 13
2.2 Reasoning about Process Calculi . 16

3 The Calculus of Mobile Ambients 21
3.1 Syntax and Semantics of Mobile Ambients 22
3.2 Weak Bisimulation for Mobile Ambients 25
3.3 Mobile Ambients in a Larger Context 31

4 List of Research Papers 35
4.1 Paper 1: Virtually Timed Ambients: A calculus of nested virtualization 36
4.2 Paper 2: Assumption Commitment Types for Virtually Timed Ambients 37
4.3 Paper 3: Checking Modal Contracts for Virtually Timed Ambients . . . 38
4.4 Paper 4: Resource-Aware Virtually Timed Ambients 39
4.5 Paper 5: An Analysis Framework for Virtualization 40
4.6 Additional Publications . 41

5 Discussion and Conclusion 43
5.1 Summary of Contributions . 43
5.2 Discussion of the Research Questions 44
5.3 Outlook on Future Work . 45

viii CONTENTS

II Research Papers 47

6 Virtually Timed Ambients: A Calculus of Nested Virtualization 49
6.1 Introduction . 49
6.2 Preliminaries on Mobile Ambients . 51

6.2.1 Syntax . 52
6.2.2 Semantics . 53

6.3 Virtually Timed Ambients . 53
6.3.1 Syntax and Semantics . 53
6.3.2 Virtual Time and Local Clocks 55
6.3.3 Timed Capabilities . 58
6.3.4 Resource Consumption . 59
6.3.5 Accumulated Speed . 60

6.4 Bisimulation and Barbs . 61
6.4.1 Weak Bisimulation for Virtually Timed Ambients 62
6.4.2 Reduction Barbed Congruence 65

6.5 Relaxation over Time . 69
6.5.1 Bounded Bisimulation . 70
6.5.2 Comparing Different Schedulers 72

6.6 Related Work . 75
6.7 Concluding Remarks . 77

7 Assumption Commitment Types for Resource Management in
Virtually Timed Ambients 79
7.1 Introduction . 79
7.2 Virtually Timed Ambients . 81
7.3 An Assumption Commitment Type System 87
7.4 Soundness of Resource Management . 94
7.5 Related Work . 95
7.6 Concluding Remarks . 97

8 Checking Modal Contracts for Virtually Timed Ambients 109
8.1 Introduction . 109
8.2 Virtually Timed Ambients . 111
8.3 Modal Logic for Virtually Timed Ambients 117
8.4 A Model Checker for Virtually Timed Ambients 121
8.5 Implementation in Maude . 123
8.6 Related Work . 126
8.7 Concluding Remarks . 127

9 Resource-Aware Virtually Timed Ambients 129
9.1 Introduction . 129
9.2 Virtually Timed Ambients . 131
9.3 Resource-Aware Virtually Timed Ambients 137
9.4 Implementation and Case Study . 143

CONTENTS ix

9.5 Related Work . 146
9.6 Concluding Remarks . 147

10 An Analysis Framework for Virtualization 149
10.1 Introduction . 149
10.2 Virtually Timed Ambients . 151
10.3 A Library for Cloud Models in Virtually Timed Ambients 156
10.4 Analysis of Cloud Models in Virtually Timed Ambients 158
10.5 Related Work . 160
10.6 Concluding Remarks . 160

Bibliography 163

List of Figures 177

List of Tables 179

Part I

Overview

CHAPTER 1

Motivation

Cloud computing is a paradigm of information technology that describes the shared use
of resources, applications, and services over the Internet. A key factor for the success of
cloud computing is virtualization. Virtualization technology represents the resources
of an execution environment as a virtual machine. This allows to share resources,
improves security by providing isolation of different users and enables dynamic pay-
on-demand assignment of resources. The sharing of resources creates business drivers
which make cloud computing an economically attractive model for deployment of soft-
ware and data storage. In 2015 the EU estimated that cloud based data processing
will create 2.5 million new jobs and an annual value of 160 billion euro in Europe by
2020 [57].

The reduction of costs due to resource allocation on demand is only one of the
benefits claimed by cloud providers. Cloud computing further improves the agility
and productivity of organizations, as multiple users can work on the same data simul-
taneously. Maintenance gets easier as device-independent online applications allow
users to access data and systems via their web browser, regardless of their location or
equipment. Reliability can be improved with the use of redundancy and security can
be improved through the centralization of data.

However, the necessity to hand the control of data and resources over to service
providers, in order to reduce the complexity of data management and the costs for
the operation of servers, creates conflicts with the need to keep control over sensitive
data and the need to ensure optimal computing performance. To overcome these
conflicts and to regain control of the virtualized resources on the cloud, a full formal
specification of the subject is necessary.

In this thesis, we aim to develop a formal foundation for virtual environments in
order to enable the formal analysis of virtualization in cloud computing through the
means of formal methods. The result of our research is the calculus of virtually timed
ambients presented in this thesis.

4 Chapter 1

1.1 Introduction to Cloud Computing

In the following we present a short history of cloud computing before introducing the
fundamental properties which characterize the paradigm, as well as the most com-
monly applied service and deployment models. Furthermore, we discuss the role of
virtualization in cloud computing.

Historical Context

The principle of cloud computing has become widespread only in the last decade but
the idea of sharing resources goes back almost as far as the digital computer itself. In
the 1950s, when industry and governments started to make use of computers, a single
mainframe was highly expensive and big enough to fill a room. Thus, users shared the
resource of the single computer by sharing time and data access. An automated form
of time-sharing was introduced in the 1960s [17,124] by connecting computer terminals
to an institutional mainframe. This gave users the illusion of working on a stand-alone
computer, while actually sharing resources by means of multiprogramming and multi-
tasking. However, as processors became smaller and cheaper, users were able to afford
their own computer and this form of resource sharing fell into oblivion.

The use of personal computers became more popular during the 1980s, and while
at that time it was no longer necessary to share physical machines, the idea of time-
sharing evolved further into the concept of virtual machines [38,72], allowing multiple
separate virtual environments to exist at the same time on the same physical ma-
chine. In the 1990s the Internet opened up a whole new digital world to the general
public. This development accelerated in the next years and the production and pro-
cessing of larger and larger masses of data, and applications brought the concept of
resource sharing back to the forefront of information technology [130,138]. This time,
resources and services were made available through the Internet and the name ‘cloud
computing’ was coined.

During the last two decades, different providers have offered a variety of on-demand
online services utilizing the sharing of virtual resources. Cloud services by Amazon
and Microsoft are well-known in an industry context, whereas the examples of cloud
computing probably best known to the general public are Dropbox and Google Docs.
Lately, the launch of cloud services by several large technology companies in combi-

Digital computers

Time-sharing of
computational resources

Personal computers

Internet

Web Services

Cloud Computing

1940 1960 1980 2000 2020

Figure 1.1: Timeline of digital computing.

1.1 Introduction to Cloud Computing 5

nation with the availability of high-capacity networks and low-cost computers, led to
cloud computing becoming the default information infrastructure in industry [37,105].

While the idea of sharing resources has been around since the 1950s and cloud
services have been successfully monetized in the last years, the topic of cloud computing
remains a subject of active research. In the following we give a characterisation of
the main properties of cloud computing and relate them to the research presented
throughout this thesis.

Characteristics

The National Institute of Standards and Technology of the U.S. Department of Com-
merce identifies five essential characteristics of cloud computing [107]:

“1. On-demand self-service. A consumer can unilaterally provision com-
puting capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service
provider.

2. Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by hetero-
geneous thin or thick client platforms (e.g., mobile phones, tablets,
laptops, and workstations).

3. Resource pooling. The provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned
according to consumer demand. There is a sense of location inde-
pendence in that the customer generally has no control or knowledge
over the exact location of the provided resources but may be able to
specify location at a higher level of abstraction (e.g., country, state,
or datacenter). Examples of resources include storage, processing,
memory, and network bandwidth.

4. Rapid elasticity. Capabilities can be elastically provisioned and re-
leased, in some cases automatically, to scale rapidly outward and in-
ward commensurate with demand. To the consumer, the capabilities
available for provisioning often appear to be unlimited and can be
appropriated in any quantity at any time.

5. Measured service. Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of ab-
straction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be moni-
tored, controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.”

In our work we will presuppose the existence of network access. All other gen-
eral characteristics of cloud computing can be modeled by the calculus of virtually

6 Chapter 1

timed ambients. Even though these characteristics lead to a very broad description of
cloud computing, there exist established standards allowing more precise definitions.
To specify a certain cloud computing scenario one usually differentiates between the
following common models of service and deployment scenarios.

Service Models. Cloud computing providers offer different models of services to
their customers. The main service models are Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS) [105, 107], which are
visualized in Figure 1.2. The services delivered by a provider to a costumer are regu-
lated in contracts called service-level agreements [158], specifying different properties
that need to be fulfilled by the service provider, for example with respect to quality
of service, privacy, response time or availability. The work in this thesis focuses on
agreements regarding quality of service.

Figure 1.2: Infrastructure, platform and software as a service.

Infrastructure as a Service. The provider offers infrastructure including servers,
virtual machines, storage, network and operating systems. Customers can access
the virtual machines to deploy and run arbitrary software as desired, as it is for
example possible with Amazon Cloud Services or Microsoft Azure.

Platform as a Service. Providers host software development tools on their infras-
tructure, which can be used by customers to develop new software on-demand.
The newly created applications are managed and deployed on the same cloud
infrastructure, as for example in Google’s Firebase, or in IBM Bluemix.

Software as a Service. Ready-made software is offered by the provider over the
Internet. Costumers can access these web services on-demand from anywhere
using any device with suitable Internet access. In this case the online service
Dropbox or software offered by SAP are well-known examples.

In principle, our work on the calculus of virtually timed ambients supports the
modelling of all given service models. A library of basic building blocks for cloud
computing, which is discussed towards the end of this thesis, can be considered an
abstraction of a platform, as it allows the user to build new software for the cloud.

Deployment Models. Deployment models are used to define location and access
rights of cloud servers. While this topic of security is not directly addressed in this
thesis, it can be considered for future work on the calculus. The main deployment
models for cloud computing are public cloud, private cloud and hybrid cloud [105,107],
and can be seen in Figure 1.3.

1.1 Introduction to Cloud Computing 7

Figure 1.3: Public, private and hybrid cloud.

Public cloud. A third-party cloud service provider delivers cloud services and
resources over the Internet. The costumers pay on-demand for storage or band-
width. This model offers low costs and high flexibility.

Private cloud. A private cloud is hosted on a company’s own servers and services
are only delivered to internal users. This model provides the benefits of the cloud,
while strongly emphasizing control over data and security.

Hybrid cloud. A hybrid cloud is a combined use of private and public cloud
services in the sense that sensitive information is stored privately, while high
workload may be processed on public cloud servers. This model requires appro-
priate regulations to allow data and applications to move between private and
public cloud while protecting critical information.

Virtualization

Virtualization describes the creation of a virtual version of technological resources like
servers or operating systems. It is the main enabling technology for cloud computing as
the representation of resources through virtual machines allows sharing of existing re-
sources, improvement of security by isolating different users sharing the same resource
and enabling dynamic assignment of resources according to consumer demand [60,83].
This way virtualization creates an easily scalable system of independent virtual ma-
chines. Furthermore, virtualization increases the agility of a system as it allows to
reallocate virtual resources quickly without the handling of actual physical resources,
for example servers. Figure 1.4 visualizes the restriction of resources on the hardware

Figure 1.4: Representation of resources on hardware, software and virtualization level.

8 Chapter 1

level, which are fixed, and on the software level, which are not dynamic, as opposed to
virtualized resources, which can change dynamically according to demand. As idle vir-
tual machines can be allocated and deployed where they are needed, virtual resources
can be used more efficiently than physical ones. The effective sharing of virtual re-
sources with pay-on-demand resource provisioning rather than the upfront investment
in servers creates the business drivers which make cloud computing an economically
attractive model for deploying software [37].

Software processes are agnostic to whether they run on a virtual machine or di-
rectly on physical hardware. A virtual machine is itself such a process, which can be
executed on another virtual machine. This form of nested virtualization [73] is a cru-
cial technology to support the heterogeneous cloud [58], as it enables virtual machines
to migrate between different cloud providers [159]. It is also necessary to host virtual
machines with operating systems which themselves support virtualization [19], such as
Microsoft Windows 7 and Linux KVM. The importance of nested virtualization is one
of the basic ideas behind our work on virtually timed ambients. Furthermore, as virtu-
alization enables the more effective use of existing resources, it can help to reduce the
total power usage of data processing, This way, it provides a favorable environmental
impact through reduced energy consumption.

1.2 Research Goal and Methodology

Virtual applications on the cloud can in principle modify resources of their own deploy-
ment scenario during execution, for example, to dynamically create virtual machines
or reallocate resources to an existing virtual machine. This so-called elasticity of
cloud computing turns effective deployment of virtual machines into a multi-objective
problem. It is important to maximize performance by enhancing response time, si-
multaneously, the accumulated price for the leased virtual machines has to be taken
into account, in order to minimize cost. To capture this concern, a model of cloud
computing needs to account for pay-on-demand resource usage and to evaluate and
compare different deployment scenarios with respect to these objectives. However,
today there exist no general, systematic means beyond simulation to model and verify
software in the context of virtualized resources, nor to analyze resource management
for programmable infrastructure.

General-purpose modeling languages strive for abstraction in order to reduce com-
plexity [97]. Descriptions primarily focus on the functional behavior and logical com-
position of software and ignore how the software’s deployment influences its behavior.
For embedded and cyber-physical systems, it is nowadays accepted that modeling
and programming languages need timed semantics [99]. The inherent resource con-
straints of these systems have led to a large body of work extending formal models
with time, including process algebra, Petri nets, automata, and games. In the last
years, similar extensions have been developed for restricted resources beyond time,
such as priced timed automata [26]. Related approaches have been applied to web ser-
vices and business processes with resource constraints (e.g., [65]). These approaches

1.2 Research Goal and Methodology 9

typically abstract from data flow and rely on domain experts to declare the time or
other resource cost associated with transitions. However, the price of execution on
the cloud depends not only on the cost of transitions but also on the capacity of the
deployment context, which is not easily captured in these approaches.

A formal modeling language which supports resource management on the cloud
has recently been developed [7], but analysis is currently restricted to simulation.
Simulation has the drawback of only analyzing some possible behaviors of a system,
while model checking in this scenario suffers from well-known combinatorial explosion
problems for systems of reasonable size. Thus, none of the cited works directly address
the challenges raised by the verification of virtualized cloud applications. In particular,
they do not model quantitative resources as data inside the system itself, which is a
particular property of virtualized resources.

Research Goal. In order to develop executable models of virtualized systems, which
can be used for analysis and optimization, a complete formal specification of the
subject is necessary. As currently there exist no foundational model of the basic
features of cloud computing such as scalability and resource management, we define
the main goal of this thesis as follows:

We aim to develop a formalization of virtual environments to
enable the formal analysis of virtualization in cloud computing.

We will address this goal via the following four research questions:

1. How can we formalize resource management between distributed locations and
allow comparison of different systems?

2. How can we statically predict the behavior of a system to avoid runtime errors?

3. How can we define specifications for resource management as given, e.g., in
service-level agreements, which allow automatic verification?

4. How can we enable systems in the defined formalism to react dynamically to
changes during runtime and, consequently, to perform dynamic self-management?

Methodology. To accomplish the formalization goal of this thesis we make use of
formal methods to achieve a complete formal specification and analysis of the subject.
Formal methods are mathematical techniques for this kind of specification, as well as
for development and verification of software. The use of formal methods for software
design contributes particularly to the reliability and robustness of a design. The formal
methods chosen to investigate and analyze the four research questions are described
below and visualized in Figure 1.5.

The first of those formal methods is the use of a formal system. A formal system
is a mathematical model entailed from a logical foundation. Each formal system has

10 Chapter 1

Figure 1.5: Visualization of the four research questions regarding formalization, stat-
ical analysis, service-level agreements and dynamic changes. The formal methods
chosen to investigate and analyze those topics, namely process calculi, type systems,
modal logic and resource-awareness, are illustrated underneath.

a formal language, which comprises the syntax of the language, consisting of primitive
symbols, and the semantics, which are rules regulating the behavior of the symbols
and their interactions with each other. The formal system then consists of any number
of combinations of the symbols which are formed according to the semantics.

One such formal system is a process calculus. Process calculi constitute a tool
for the high-level description of interactions, communications, and synchronizations
between independent processes. They are minimal systems well-suited to study fun-
damental aspects of interacting processes. Process calculi further provide laws that
allow process descriptions to be manipulated and analyzed, and permit formal reason-
ing about equivalences between processes. To formalize nested virtualization in cloud
computing, notions of location mobility and nesting are essential. Thus, we aim to de-
velop a calculus of virtualization, which does not only incorporate suitable notions of
nested locations and mobility, but also local time and resources. The well-established
calculus of mobile ambients focuses on processes executing at distributed locations
and captures hierarchical nesting as well as mobility of explicit locations. This makes
it an appropriate choice as a starting point for the modeling of cloud computing. We
add a new notion of time to the mobile ambient calculus, to make it suitable for mod-
eling cloud applications and enable resource distributing, thus defining the calculus of
virtually timed ambients.

In order to enable analysis of the calculus, we define an equivalence relation in form
of a bisimulation. In combination with the definition of the calculus this provides a
suitable response to the first research question. Bisimulation relations over this kind
of calculus allow comparisons of different systems via their behavior. Two systems are
bisimilar if they can simulate each other’s behavior. This way a bisimulation relation
allows to define a system to be better than another one, for example in the sense of
being similar but cheaper. Static analyses, as implied by the second research question,
are compile time techniques used to avoid runtime errors. To treat this topic, we
further enhance the calculus with a type system to enable static analysis. Type systems
are a common technique to describe features of a calculus and provide a way to have

1.3 Structure of this Thesis 11

the implementation of those features statically checked. Moreover, in response to the
third research question, we define a specification formalism for resource management,
via modal logic, to allow the formal description of quality of service statements and
service-level agreements. Additionally, we implement a model checker to have those
properties automatically checked. Based on this modal logic we can approach the topic
of the fourth research question by equipping the calculus with resource-awareness in
order to enable dynamic self-management of processes during runtime.

1.3 Structure of this Thesis

This work is written in the form of a cumulative thesis, compiling a number of research
papers. The thesis consists of two parts. Part I provides the necessary background
and context for the research papers which are presented in full in Part II.

In the following, we introduce process calculi in general in Chapter 2 and point
out different methods of reasoning about the behavior of processes. Chapter 3 focuses
on the calculus of mobile ambients in particular as well as a bisimulation relation to
compare different ambient systems. Summaries of all research papers and a list of
additional publications are presented in Chapter 4. Chapter 5 contains a description
of the contributions, re-visits the research questions and concludes with an outlook on
future possibilities.

12 Chapter 1

CHAPTER 2

Preliminaries on Process Calculi

The primary goal of this thesis is the development of a formal foundation for virtualized
environments. To accomplish this goal and to enable the use of this foundation for the
analysis of executable models of cloud systems, we utilize the formal method of process
calculi. Process calculi (or process algebras) are formal languages with well defined
semantics that permit describing and verifying properties of concurrent systems. The
first person to use the phrase “algebra of processes” was Hans Bekič [18]. This was
quickly followed by the invention of the calculus of communicating systems, CCS [113],
and communicating sequential processes, CSP [79]. For a thorough introduction to
the topic we direct the reader to [5, 16,22].

2.1 Essential Features of Process Calculi

Process calculi get their name from the mathematical approach that is used to define
processes. They were first introduced in the early seventies of the twentieth century
to describe the semantics of programs containing concurrency [13].

Concurrent programs contain parts that can be executed in arbitrary order, with-
out affecting the result of the computation. This allows for parallel execution of the
concurrent parts. Parallel execution of processes makes programs highly complex, as
several actions can happen at the same time. As minimal models of such complex
systems, process calculi consist of a set of basic processes with interactions between
them, including a parallel operator to represent concurrency. In general process cal-
culi are also equipped with a transition system, describing the structural operational
semantics, and a notion of equivalence.

Complex systems can be built from these basic building blocks by taking a compo-
sitional approach and defining the meaning of a more complicated system through the
meaning of its smaller parts. This allows for an easy analysis of processes and enables
formal reasoning about equivalences between processes, for example via bisimulation.
Verification of concurrent systems can also be carried out through the addition of types
for static analysis or via the checking of properties described by logical formulas.

14 Chapter 2

To illustrate process calculi and different methods of reasoning, we introduce an
artificial example calculus.

Example 1 (In-calculus). In order to explain the features of process calculi we define
a small example calculus with movement and nesting, which we call the in-calculus.
We define the syntax of processes in this calculus as follows:

P,Q ::= 0 termination
| P | Q parallel composition
| in.P movement
| [P] target.

Here the process 0 does nothing, defining the termination of a process. Parallel compo-
sition P | Q describes concurrently running processes. Our calculus allows movement
with the in.P activity, and the brackets [P] describe the target of a movement activity.
The semantics is given by reduction rules and equations defining structural congruence.
Here the equations are defined as P | Q ≡ Q | P and P | 0 ≡ P , and the reduction
rules of the in-calculus are given as:

in.P | [Q] _ [P | Q], P _ P ′ ⇒ P | Q _ P ′ | Q.

This reduction rules allow processes to move non-deterministically into a target, which
has to be located in parallel to the process. Thus, the movements of processes can create
a nesting structure. This can be observed in the following example:

in.in.[0] | [[0]] _ [in.[0] | [0]] _ [[[0]]].

The definition of our calculus for resource management in cloud computing, which
is introduced in this thesis, is based on the well-known calculus of mobile ambients [43].
The ambient calculus is defined similarly to the small example calculus given in this
chapter, but contains further movement capabilities and named locations. Our calculus
enhances the ambient calculus with notions of time and resources. In the following
we discuss features of process calculi relevant to those properties before introducing
different methods of reasoning.

Timed Process Algebras. Algebraic concurrency theories such as CCS, CSP and
ACP [16,79,113] have been extended to deal with time-dependent behavior in various
ways. Timing can either be absolute or relative and the time scale on which time
is measured can be continuous, usually called real time, or discrete. Execution of
actions and passage of time can either be separated or combined. One approach is to
consider time to be real valued and semantically associate time directly with actions for
instance via the use of timers. The other idea, which our approach shares with many
others, is to introduce special actions to represent the passage of time. Separating
actions from the passage of time corresponds to the two-phase scheme of modeling
time-dependent behavior and combining action with the passage of time corresponds

2.1 Essential Features of Process Calculi 15

to the time-stamping scheme. Timed process algebras which originated from ACP and
CSP can be found in, e.g., [14,15,122]. As our work is based on the calculus of mobile
ambients, we focus on closely related calculi like the π-calculus [146]. This calculus is
connected to mobile ambients as they are both process calculi which emphasize names
and mobility. The π-calculus originated from CCS. An early timed extension of CCS
introduced a special action for time, without committing to a discrete or continuous
time domain [118]. A related idling action σ is proposed in [77] such that processes
in a standard process algebra would need exactly one time unit to process a σ, where
time is discrete and processes synchronized via a global clock. A notion of local time
for CCS is proposed in [147]; this notion resembles our model of local schedulers, but
was realized in terms of a timeout oriented model. The authors extend their work by
defining a real-time calculus for expressing delay in asynchronous communication [148].
The high-level idea in these works differs from the notion of time we introduce with
the calculus of virtually timed ambients. All these approaches focus on speed as
the duration of processes, while in our approach with local schedulers describes the
processing power of a virtually timed ambient.

Timers have been studied for both the distributed π-calculus [20,137] and for mobile
ambients [8,9,53]. Real-time extensions of CSP [140], ACP [16] and the π-calculus [101]
follow a similar approach. In this line of work, timers which are controlled by a global
clock are introduced to achieve the option of time-out. A similar path is followed in
membrane computing [131], where the execution of each rule takes exactly one time
unit, which is defined by a global clock. As membrane computing aims to model actual
chemical reactions this is not sufficient, thus in timed P systems [48] each rule has an
associated integer representing the time needed to complete execution of the rule. This
resembles the timer approach on mobile ambients. In contrast, the schedulers in our
work recursively trigger local schedulers in subambients which define the execution
power of the nested virtually timed ambients. Modeling timeouts is a straightforward
extension of our work.

Process Calculi and Mobility. An introduction to mobile process calculi can be
found in [121]. We mention only the versions most relevant to our work. The basis
for many mobility calculi is the π-calculus [146]. This calculus is closely related to the
ambient calculus and therefore to our calculus of virtually timed ambients, as they
both focus on names and mobility. However the notion of locations is very different.
In the π-calculus the location of a process is defined by its network connections, while
in the ambient calculus the locations are explicit. The Seal calculus [47] is based on
the mobile ambient calculus and the two calculi are closely related [85]. However, in
the Seal calculus interactions require explicit agreement between two agents, while in
mobile ambients one ambient is active during an action, while the other ambient is
passive. The Join calculus [66] can be seen as an asynchronous π-calculus with strong
restrictions regarding scopes and reception. Based on this is the M-calculus [149],
which can be interpreted as a version of the distributed Join calculus, and uses higher
order communication. The Kell calculus [23] retains the advantages of the Seal calculus
and the M-calculus, while preserving the simplicity of the ambient calculus. Calculi,

16 Chapter 2

which are simpler to implement than the ambient calculus are sought-after in [23] and
[52]. The δ-calculus in [52] uses synchronous movements in order to model distributed
mobile real-time business applications. However, these calculi fail to preserve the
simplicity of the ambient calculus.

Process Algebras with Resources. A calculus of Mobile Resources [71], which is
loosely based on Boxed Mobile Ambients, considers processes inside slots, which re-
semble ambients, as resources. SCRP [139], which is based on CCS, models resources
explicitly as primitives, similar to our approach. However, none of these calculi con-
tain notions of time. ACSR [30] and its probabilistic extension PACSR [100] are
algebras for the specification of distributed systems with resources and real-time con-
straints, and similar to our approach they distinguish between actions that take time
and instantaneous processes. However, the timed aspects of the calculus focus on the
implementation of time-outs and resources are elements of a finite set of reusable ob-
jects, analogous to locks. A similar approach is studied in [119], where the problem
of possible deadlocks is solved by adding an explicit scheduling concept. In contrast,
in our approach resources are distributed over time and scheduling is fixed in the
implementation of the resource distribution. Resource-awareness for virtually timed
ambients, enabling the dynamic reaction to changes during the reduction, is based on
the Calculus of Context Aware Ambients [150] which introduces context-guarded pro-
cesses to enable context-awareness of mobile ambients. We enhance the given context
expressions to cover the timing and resource aspects of virtually timed ambients.

2.2 Reasoning about Process Calculi

The compositional semantics of process calculi allow to define the meaning of large sys-
tems in terms of the definition of their components. This permits complex processes to
be analyzed via basic operators and rules. In the following we describe common meth-
ods to reason about the behavior of a system in terms of equivalence, type analysis,
and dynamic satisfaction of properties.

Behavioral Equivalence

The behavior of a system consists of its data and processes. Two systems behave in
the same way if they cannot be distinguished from each other. The criteria for this
distinction can be defined in various ways, according to the desired differentiation.

Bisimulation equivalence [114, 129] defines two systems as equivalent if they can
not only perform the same sequence of actions, but also, after each action has been
executed, they again exhibit the same possible behavior. Thus, bisimulation defines
an equivalence relation, which is reflexive, symmetric and transitive. In order to define
bisimulation, one must first define the behavior of a system as labelled transitions,
built on structural operational semantics, which are composed of the processes and
the operators in the process calculus. Then a bisimulation can be defined as a binary

2.2 Reasoning about Process Calculi 17

relation between two state transition systems, associating systems that behave in the
same way in the sense that each of the systems can simulate the other. However, not
all systems that can simulate each other are necessary bisimilar, as it additionally has
to hold that the simulations back and forth are able to relate the same sets of states.

Weak bisimulation is defined by specifying actions, which are not observed by the
relation. By using up-to proof techniques the definition of a bisimulation is relaxed
in order to relate processes which are bisimilar up to a certain requirement. The
definition of bisimulation can also be made stronger by making use of barbs, which are
observables of terms. If the bisimulation relation defines an equivalence relation that
is compatible with the structure of the underlying algebra, it is called a congruence.

In a game theoretical setting, bisimulation can be considered as a game between an
attacker and a defender. Here, two systems are bisimilar if the two players can always
match each other’s moves. The attacker starts by choosing any valid transition in the
system. Afterwards the defender attempts to match that transition. The systems are
bisimilar if and only if there exists a winning strategy for the defender, which means
that the game does not terminate.

Example 2 (In-calculus: Bisimulation). We define bisimulation for the In-calculus,
by describing two processes as bismilar if they can simulate each others movements.

In order to do this we define the labeled transition
in−→ as in.P | [Q]

in−→ [P | Q].
Now, we can define a symmetric relation R over processes in the In-calculus as a

bisimulation if P R Q implies that if P
in−→ P ′ then there exists Q′ such that Q

in−→ Q′

and P ′ R Q′. Two processes P and Q are bisimilar, written P ≈in Q, if P R Q for
some bisimulation R.

As there exists only one label due to the simplicity of the In-calculus, the bisimula-
tion relation in this case is not able to provide insights in different branching structures
of the reduction.

We reconsider the example process P = in.in.[0] | [[0]] from Example 1 and define a
second process Q = in.[0] | [in.[0]]. This process reduces as follows:

in.[0] | [in.[0]] _ [[0] | in.[0]] _ [[[0]]].

The reduction of P can be seen in Example 1. Following the definition above it holds
that the processes P and Q are bisimilar P ≈in Q, as P can match every in step of Q
and vice versa.

Type Systems

A type system [46, 136] associates the values and processes in a system with a type.
The type is a special property that can formalize the flow of information in a system as
well as special features of processes. It enables the statical and safe approximation of
the set of behaviors that can arise when a system is running. Thus, the use of a static
type system enables the finding of possible runtime errors already during compile time.

The properties expressed by types are captured by context sensitive judgments,
which are associated with the processes via a set of interference rules, which in turn

18 Chapter 2

depend on the process calculi’s syntax and semantics. The reduction relation of the
calculus and the type system have to cohere in such a way that a well typed system is
unable to produce an error during reduction, which includes that the reduction must
be able to progress.

Example 3 (In-calculus: Type system). We define a simple type system for the in-
calculus, which counts the number of nested locations. Process types in this case are
natural numbers n ∈ N0. We define the typing rules as follows:

T-Zero
` 0 : 0

` P : n
T-Loc

` [P] : n+ 1

` P : n
T-In

` in.P : n

` P : n ` Q : m
T-Par

` P | Q : n+m

We reconsider the example process P = in.in.[0] | [[0]] from Example 1. It holds that
` P : 3. After the reduction of P to P ′ = [[[0]]] the process still has the same type
` P ′ : 3. The property that types are preserved under reduction is called a subject
reduction result and is a desirable feature of type systems.

Model Checking

The procedure of checking that a certain system satisfies a specific property is called
model checking [55, 106]. The property that needs to be checked can often be for-
mulated as a logical proposition. By using different logics it is possible to formulate
different kinds of propositions. Temporal logics allow statements about timing aspects,
while modal logics allow general statements about the development of processes. A
modal logic [24,59] extends classical propositional logic to include operators expressing
modality. A modal operator qualifies a statement, enabling modal logic to not only
express truth of statements, but also the possibility that a statement is maybe true
or may become true in the future. In this way, modal logics can be used to charac-
terize various kinds of properties of systems. It allows, for example, to not only make
statements about the current state of a system, but also about its development during
runtime. For process calculi and logical formulas, the strict mathematical formulations
allow for resolving model checking algorithmically. A finite state space ensures that
the model checking algorithm always terminates.

Example 4 (In-calculus: Modal logic). We define a modal logic for the in-calculus.
The formulas of the logic are defined as follows:

A,B ::= 0,¬A,A ∧ B,A | B, [A], �A.

2.2 Reasoning about Process Calculi 19

We define the satisfaction relation via the reduction semantics of the calculus, where
_∗ describes an arbitrary number of reduction steps:

P � 0 ⇔ P ≡ 0

P � ¬A ⇔ P 6� A
P � A ∧ B ⇔ P � A and P � B
P � A | B ⇔ ∃P ′, P ′′ s.t. P ≡ P ′ | P ′′ and P ′ � A, P ′′ � B
P � [A] ⇔ P ≡ [P ′] and P ′ � A
P � �A ⇔ ∃P ′ s.t. P _∗ P ′ and P ′ � A.

We reconsider the example process P = in.in.[0] | [[0]] from Example 1 and check if it
satisfies the formula A = �[[[0]]]. As P reduces to P ′ = [[[0]]] and P ′ � [[[0]]] it holds
that P � A.

20 Chapter 2

CHAPTER 3

The Calculus of Mobile Ambients

To formalize nested virtualization in cloud computing, notions of location mobility and
nesting are essential. The calculus of mobile ambients focuses on processes executing
at distributed locations and captures hierarchical nesting as well as mobility of explicit
locations. This makes the ambient calculus a suitable choice as a starting point for
the modeling of nested virtualization.

The calculus of mobile ambients was developed by Cardelli and Gordon [43] to
model administrative domains for processes in distributed systems. Cardelli and Gor-
don found the inspiration for their calculus in the potential comprised by mobile com-
putation via the Internet. Mobile computation, on the one hand, can stand for code
that moves between devices, like apps, on the other hand, it can stand for computation
that is carried out on mobile devices, like smart phones. Cardelli and Gordon aimed
to describe both aspects of mobile computing in one single framework that included
mobile processes, locations where mobile processes are executed, and the mobility of
the locations themselves.

Even though the original paper was mostly concerned with formalizing the au-
thorization needed to enter and exit an administrative domain, the creation of the
ambient calculus went much further than this and defined a new paradigm of mobility
where ambients are nested, processes are located inside ambients and ambients move
under the control of the processes inside them. The calculus of mobile ambients inno-
vated the area of mobile computing insofar as it allowed moving agents to be locations
themselves and to contain data and running processes.

In the following we introduce the syntax and semantics of the basic mobile ambient
calculus as well as a notion of weak bisimulation for mobile ambients on which we build
in our research papers. We conclude this chapter with a discussion of work related to
the calculus of mobile ambients.

22 Chapter 3

n name Systems:
x variable M,N ::= 0 inactive system

Capabilities: M | N parallel composition
C ::= in n can enter n (νn)M restriction

out n can exit n n[P] ambient
open n can open n Processes:

Expressions: P,Q ::= 0 inactive process
E,F ::= x variable P | Q parallel composition

C capability (νn)P restriction
E.F path n[P] ambient
ε null !G.P replication

Guards: G.P prefixing
G ::= E expression 〈E〉 async. output action

(x) input

Table 3.1: Syntax of the ambient calculus.

3.1 Syntax and Semantics of Mobile Ambients

Ambients have been introduced to represent “administrative domains” for processes.
In the calculus such domains consist of a process together with a name representing the
location or domain where that process is running. Not only can ambients be nested, but
the nesting structure can change dynamically. This is specified by prefixing a process
with a capability C. The syntax in Table 3.1 is based on the formalization of Merro and
Zappa Nardelli [110] and represents the basic calculus for mobile ambients, extended
for asynchronous communication with the input action (x).P and the asynchronous
output action 〈E〉. The main difference compared to the original definition [43] lies in
a separation of processes into two levels, as processes and systems. This distinction
is used to simplify proofs of bisimulation.

Definition 1 (Syntax). The syntax of the calculus of mobile ambients, extended for
asynchronous communication, is given by the grammar in Table 3.1.

Figure 3.1: Graphical representation of the ambient n[P].

In the following the processes of the calculus are described. The inactive process 0
does nothing. Parallel composition allows computation in P and Q to proceed si-
multaneously and is denoted by a binary operator P | Q that is commutative and
associative. The restriction operator (νn)P creates a new and unique name in the

3.1 Syntax and Semantics of Mobile Ambients 23

Figure 3.2: Graphical representation of the three basic capabilities.

scope of P . Finally, n[P] denotes a process inside an ambient. For a better visualiza-
tion of nesting structure mobile ambients can be represented as boxes, as can be seen
in Fig. 3.1.

Processes can be prefixed G.P with either an input action or a capability. There
are three basic capabilities. The input capability in n indicates the willingness of a
process (respectively its containing ambient) to enter an ambient named n, running in
parallel outside, e.g.,

m[in n.P] | n[Q] _ n[m[P] | Q].

The output capability out n enables an ambient to leave its surrounding ambient n,
e.g.,

n[m[out n.P] | Q] _ m[P] | n[Q].

The third basic capability open n allows to dissolve an ambient named n which is on
the same level as the capability, thus, exposing its contents to the environment, e.g.,

m[open n.P | n[Q]] _ m[P | Q].

A visual representation of the changes in the nesting structure caused by the three
basic capabilities can be seen in Fig. 3.2. Capabilities can be concatenated, thus
forming a path. We omit trailing inactive processes, writing E instead of E.0 and n[]
instead of n[0].

This syntax, as well as the semantics we consider, is based on [110] and largely un-
changed compared to [43]. Note that Table 3.1, following [110], only allows replicated
prefixing !G.P . Since replicated input in the π-calculus has the same expressive power
as full replication [80] and recursion [115, 146], the replication of an ambient in the
ambient calculus can be implemented with replicated prefixing and stuttering; i.e.

m[] | k[!in m.out m.n[]]

_m[] | k[in m.out m.n[] |!in m.out m.n[]]

_m[k[out m.n[] |!in m.out m.n[]]

_m[] | k[n[] |!in m.out m.n[]]

24 Chapter 3

P ≡ P (S-Refl) P | 0 ≡ P (S-ZeroPar)
P ≡ Q⇒ Q ≡ P (S-Symm) (νn)0 ≡ 0 (S-ZeroRes)
P ≡ Q,Q ≡ R⇒ P ≡ R (S-Trans) !0 ≡ 0 (S-ZeroRepl)

P | Q ≡ Q | P (S-ParComm) P ≡ Q⇒ (νn)P ≡ (νn)Q (S-Res)
(P | Q) | R ≡ Q | (P | R) (S-Par-Assoc) P ≡ Q⇒ P | R ≡ Q | R (S-Par)
!P ≡ P |!P (S-Repl Par) P ≡ Q⇒!P ≡!Q (S-Rep)
(νn)(νm)P ≡ (νm)(νn)P (S-ResRes) P ≡ Q⇒ n[P] ≡ n[Q] (S-Amb)
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (S-Res-Par) P ≡ Q⇒ C.P ≡ C.Q (S-Cap)
(νn)(m[P]) ≡ m[(νn)P] if n 6= m (S-Res-Amb)

Table 3.2: Structural congruence.

which results in the same outcome as a direct replication of the ambient n. We shall use
!n[] as an abbreviation for the stuttering bypass denoted above. Additionally, we use
the following notational conventions. Parallel composition has the lowest precedence
among the operators; e.g., for communication (x).P | Q is read as ((x).P) | Q. The
process E.F.P is read as E.(F.P). For names, the ν-operator acts as a binder and the
sets of free names fn and free variables of a process are defined as expected.

Definition 2 (Free names). The set of free names of a process, respectively of a
capability, is inductively defined as:

fn(0) , ∅ fn(x) , ∅
fn(P | Q) , fn(P) ∪ fn(Q) fn(n) , {n}

fn((νn)P) , fn(P) \ {n} fn(in n) , {n}
fn(!P) , fn(P) fn(out n) , {n}

fn(n[P]) , {n} ∪ fn(P) fn(open n) , {n}
fn(C.P) , fn(C) ∪ fn(P) fn(ε) , ∅

fn((x).P) , fn(P) fn(C.C ′) , fn(C) ∪ fn(C ′)

fn(〈C〉) , fn(C) .

The set of free variables x can be defined analogously, where the input prefix (x)
is a binding occurrence for x.

The semantics is given as a reduction semantics which combines structural con-
gruence with reduction rules. Structural congruence P ≡ Q relates different syntactic
representations of the same process and can be seen in Table 3.2. The reduction
relation P _ Q, which describes the evolution of a process, is captured by the re-
duction rules in Table 3.3. In the case of communication we write P{x ← E} for
the substitution of the expression E for each free occurrence of the variable x in the
process P .

3.2 Weak Bisimulation for Mobile Ambients 25

P _ Q⇒ (νn)P _ (νn)Q (R-Res)
P _ Q⇒ P | R _ Q | R (R-Par)
P _ Q⇒ n[P] _ n[Q] (R-Amb)
P ′ ≡ P, P _ Q,Q ≡ Q′ ⇒ P ′ _ Q′ (R-Red ≡)
n[in m.P | Q] | m[R] _ m[n[P | Q] | R] (R-In)
m[n[out m.P | Q] | R] _ n[P | Q] | m[R] (R-Out)
open n.P | n[Q] _ P | Q (R-Open)
(x).P | 〈E〉_ P{x← E} (R-Comm)

Table 3.3: Reduction rules.

3.2 Weak Bisimulation for Mobile Ambients

In order to compare different systems of ambients we make use of bisimulation. In this
section we introduce a notion of weak bisimulation for mobile ambients. The following
definitions establish the basis for our work on weak timed bisimulation for virtually
timed ambients, which is presented in the research papers. This section is largely an
exposition of the work of Merro and Zappa Nardelli [110].

A notion of weak bisimulation can be defined for the syntax given in Table 3.1.
To define an appropriate notion of bisimulation, we need to revisit the operational
semantics given above. The reduction semantics from Section 3.1 captures the behavior
of a system considered closed or global, i.e., without interaction with its environment
or with a surrounding context. Before defining a notion of bisimulation, we need to
formalize an open version of the operational semantics, using a labelled transition
relation instead of the reduction relation _ used previously. To capture interaction
with a surrounding context in the open setting, the transitions have to be labelled
appropriately to capture the interaction with the environment. In our treatment of
bisimulation, we omit communication; it can easily be added [110].

As arbitrary contexts can contain any kind of processes we add a placeholder ◦
to the syntax of mobile ambients which can be instantiated later in the bisimulation.
The definition of the transition relation proceeds in two stages. Ultimately, we are
interested in labelled transitions, where one distinguishes unobservable transitions,
traditionally labelled by τ , and observable ones. This will be explained in detail later.
In a preliminary step we define pre-actions or pre-transition in Table 3.4, as a technical
stepping stone towards the transition relation afterwards.

The ambient syntax from Table 3.1 supports three basic prefixing operations as part
of the capability syntax, omitting communication: entering, exiting, and opening. All
three are reflected in the labels, but besides that, three additional labels for prefixing
and pre-labelling are used, namely enter n, amb n, and exit n. Thus, the actions la-
belled with π in Table 3.4 are elements of the set {in n, out n, open n, enter n, amb n,
exit n}. Rule Pre-Pref of Table 3.4 deals with arbitrary capability prefixing in a
standard manner. The rules for replicating a process, respectively a prefixed process
works as expected. The next rule Pre-Enter deals ultimately via capability prefixes
with in n. The capability prefix is translated into an enter-labelled transition. These

26 Chapter 3

Pre-Pref
π.P

π−→ P

P
π−→ Q

Pre-Repl
!P

π−→ Q | !P

P
in n−−−→ P1

Pre-Enter
m[P]

enter n−−−−−→ 〈m[P1]〉0

P
out n−−−→ P1

Pre-exit
m[P]

exit n−−−−→ 〈m[P1]〉0

Pre-Amb
n[P]

amb n−−−→ 〈P 〉0

P
π−→ O n /∈ fn(π)

Pre-Res
(νn)P

π−→ (νn)O

P
π−→ O

Pre-Par1

P | Q π−→ O | Q

Table 3.4: Pre-actions

pre-transitions are not directly dealing with transitions of a system; they are rather
introduced to formulate the real transitions later. The post-state of the pre-transitions
are likewise not necessarily other processes or ambients; instead a new intermediate
form (νm̃)〈P 〉Q is introduced, know as concretion. It consists of two processes together
with an indication of ν-bound names. In that concretion, P is the “relevant part” of
the process, i.e., the process involved in entering or exiting an ambient, whereas Q
represents the rest of the process. Processes together with concretions are also re-
ferred to as outcomes and are represented by O, as opposed to P , Q, . . . representing
processes. In Pre-Enter, no bindings are involved and the ambient m, signalling its
willingness of entering ambient n, is “temporarily stored” in the concretion 〈m[P1]〉0.
Rule Pre-Exit works dual to the one for entering. Ambients n advertise their ex-
istence doing an amb n-step (see Pre-Amb), using again a concretion as outcome.
The remaining two rules are structural in that they treat labelling in connection with
ν-binders and parallel composition. We omit rule Pre-Par2 which is symmetric to
Pre-Par1.

Unlike the preliminary transitions just discussed, the next two tables formalize
labelled transitions of “real” processes or systems. In particular, the transitions in the
conclusion of the rules will not involve any concretions as opposed to the premises,
which use the rules for pre-transitions from Table 3.4. As mentioned, the tables
split the transition relation into internal τ -steps, and observable steps. Note that the
actions a process or ambient can do — entering, exiting, and opening — are covered by
respective rules in both Tables 3.5 and 3.6, depending on whether the action is dealt
with internally or via environment interaction. Especially the τ -transitions dealing
with the basic actions of processes resemble the corresponding steps for the reduction
relation by rules R-Open, R-In, and R-Out from Table 3.3.

The rules for τ -transitions are mostly straightforward. A process indicating its

3.2 Weak Bisimulation for Mobile Ambients 27

(fn(k[P1]) ∪ fn(P2)) ∩ {q̃} = ∅ = ((fn(Q1) ∪ fn(Q2)) ∩ {p̃}
P

enter n−−−−−→ (νp̃)〈k[P1]〉P2 Q
amb n−−−→ (νq̃)〈Q1〉Q2

R-TauEnter1

P | Q τ−→ (νp̃)(νq̃)(n[k[P1] | Q1] | P2 | Q2)

P
exit n−−−−→ (νm̃)〈k[P1]〉P2

R-TauExit
n[P]

τ−→ (νm̃)(k[P1] | n[P2])

P
open n−−−−→ P1 Q

amb n−−−→ (νm̃)〈Q1〉Q2
R-Tau-Open1

P | Q τ−→ (νm̃) (Q1 | Q2) | P1

P
τ−→ Q

R-TauAmb
n[P]

τ−→ n[Q]

P
τ−→ Q

R-TauRes
(νn)P

τ−→ (νn)Q

P
τ−→ P ′

R-TauPar1

P | Q τ−→ P ′ | Q

Table 3.5: Silent actions

intention to enter an ambient n paired with such an ambient, which in turn adver-
tises its presence by an amb n-transition, synchronizes into a τ -transition and the
resulting post-configuration contains the post-state of P having entered the target
ambient named n (see R-TauEnter1, a symmetric rule R-TauEnter2 is omitted).
The premise concerning the use of names is needed to avoid capture of names in the
scope of (νp̃) and (νq̃) in the process after the step. Doing an exit-transition from
a given ambient n results in a τ -step, as it again involves no outside interaction (see
R-TauExit): the exiting ambient named k leaves its immediately surrounding am-
bient named n. As for opening an ambient: If P is able to perform the capability
open n and the partner process Q contains an ambient n at the top level, then the
rule R-Tau-Open1 leads to a τ -step reducing P and opening and dissolving ambient
n in Q. The next two rules R-TauAmb and R-TauRes specify that τ -steps can
occur unhindered inside an ambient respectively underneath a ν-binder. Rule rule
R-TauPar1 is standard, as well, and expresses the interleaving semantics for silent
steps. The symmetric rule R-TauPar2 is omitted.

As the ones for τ -steps, the rules for environment actions or transitions mentions
pre-actions or pre-transitions in their premises. The transition relation serves to for-
mulate an appropriate notion of bisimulation, which we later will generalize to our
timed setting. The observable labels are, basically, of three different kinds, k.enter n,
k.exit n, and k.open n, corresponding to the three basic ambient capabilities. How-
ever, the label of entering has additionally a dual counterpart k.enter n. Compared to
the labels used in the pre-transitions, both the “source” and the “target” ambient are
part of the label. The entering and exiting labels also exist in an “anonymous” vari-
ant, where the source ambient executing the corresponding capability, remains hidden.
This is represented by ∗. With these labels, the transitions of the open system contain

28 Chapter 3

P
enter n−−−−−→ (νm̃)〈k[P1]〉P2 k /∈ m̃

T-Enter
P

k.enter n−−−−−−→ ν(m̃)(n[k[P1] | ◦] | P2)

P
amb n−−−→ (νm̃)〈P1〉P2 k /∈ m̃

T-CoEnter
P

n.enter k−−−−−−→ ν(m̃)(n[P1 | k[◦]] | P2)

P
enter n−−−−−→ (νm̃)〈k[P1]〉P2 k ∈ m̃

T-EnterShh
P
∗.enter n−−−−−−→ ν(m̃)(n[k[P1] | ◦] | P2)

P
exit n−−−−→ (νm̃)〈k[P1]〉P2 k /∈ m̃

T-Exit
P

k.exit n−−−−−→ (νm̃)(k[P1] | n[◦ | P2])

P
exit n−−−−→ (νm̃)〈P1〉P2 k ∈ m̃

T-ExitShh
P
∗.exit n−−−−−→ (νm̃)(n[k[P1] | ◦] | P2)

P
amb n−−−→ (νm̃)〈P1〉P2

T-Open

P
k.open n−−−−−→ k[◦ | (νm̃)(P1 | P2)]

Table 3.6: Environment actions

relevant information of the system-environment interaction as far as ambient-behavior
is concerned, like the names of the involved ambients and the nature of the interac-
tion. Not all information, however, is recorded in the labels. For instance, when an
external process or ambient k requests to enter ambient n, captured by a transition
labelled n.enter k, then conceptually after the step, the requesting ambient k will
have entered the local ambient n. However, the ambient itself is not mentioned on
the labels, as only an ambient’s or process’s interaction is considered visible, not the
ambient or process itself. To represent in this and similar situations in the post-state
an arbitrary process, we extend the syntax slightly introducing ◦ as placeholder or
“special variable” for arbitrary processes. This placeholder will also be crucial later
when formulating the used notion of bisimulation, again capturing the openness of the
system and the arbitrariness of part of the considered processes, after performing the
different environment transitions.

Definition 3 (Extended syntax). We extend the syntax of mobile ambients by adding
the production P ::= ◦ and call the grammar of Table 3.1 extended in this way with ◦
the extended syntax.

With this extension, the environment interaction is captured by the rules of Ta-
ble 3.6.

3.2 Weak Bisimulation for Mobile Ambients 29

(νm̃)(m[in n.P | Q] |M),m ∈ m̃ ∗.enter n−−−−−→ (νm̃)(n[m[P | Q] | ◦] |M) (Enter Shh)

(νm̃)(k[in n.P | Q] |M), k /∈ m̃ k.enter n−−−−−→ (νm̃)(n[k[P | Q] | ◦] |M) (Enter)

(νm̃)(m[out n.P | Q] |M),m ∈ m̃ ∗.exit n−−−−→ (νm̃)(m[P | Q] | n[M | ◦]) (Exit Shh)

(νm̃)(k[out n.P | Q] |M), k /∈ m̃ k.exit n−−−−−→ (νm̃)(k[P | Q] | n[M | ◦]) (Exit)

(νm̃)(k[P] |M), k /∈ m̃ k.enter n−−−−−→ (νm̃)(k[n[◦] | P] |M) (Co-Enter)

(νm̃)(k[P] |M)
n.open k−−−−−→ n[◦ | (νm̃)(P |M)] (Open)

Table 3.7: Env-actions.

Unlike the τ -rule dealing with component internal transitions, the labelled tran-
sitions of environment interaction from Table 3.6 consider interactions with ambients
from the outside. As its previous silent counterparts R-TauEnteri, T-Enter deals
with a process indicating its intention to enter an ambient named n. The previous
one dealt with that wish locally, using a τ -transition. As in the local case, the process
P indicates its wish to enter n via the corresponding pre-transition. In absence of a
specified partner ambient to enter into, the post-configuration in T-Enter makes use
of the placeholder ◦. Rule T-CoEnter is the dual one to T-Enter . Both parts can
be seen as one half each of R-TauEnter covering the internal case of entering. In
T-CoEnter. an ambient n is willing to being entered by an ambient k from the out-
side, and ◦ in the configuration afterwards again represents the fact that any arbitrary
process, whose exact value is not recorded in the label, may be contained in the am-
bient k. Rule T-EnterShh is the “anonymous” version of entering as in T-Enter.
The difference to the previous interaction is that the name k of the internal ambient
indicating its entering-wish is hidden by the ν-binder. Therefore, its name k is sup-
pressed in the transition label in the conclusion. Note that rule T-CoEnter has no
anonymous counterpart. Rule T-Exit, corresponding to the reduction rule R-Exit,
formalizes if an ambient leaves its immediately surrounding ambient, named n in that
rule. Thus, it ultimately models the execution of an out n-capability. Note the close
similarity to the internal rule R-TauExit which shares the same premise. The pre-
vious τ -rule was formulated for the ambient n which is the one process P intends to
exit. In that situation, both the ambient which wants to exit n as well as the sur-
rounding ambient being exited were part of the configuration for which the rule was
formulated. That made the step internal, i.e., a step labelled by τ . The situation for
the open system in T-Exit here is different. The surrounding ambient n, the one
being exited, is not part of the configuration prior to the step, which makes it an open
system. Thus, the wish of k to leave n is indicated on the label. Secondly, in absence
of ambient n before the transition, ◦ is used to represent the unknown part of that
ambient in the post-state. T-ExitShh is again the variant of the version without
“Shh”, where the name of the ambient executing the command is suppressed as it oc-
curs hidden behind a ν-binder. The labelled transition for opening an ambient in rule
T-Open is the open-system version of the previous rule R-TauOpen. Unlike in the
rule R-TauOpen, here the partner ambient k, the one which is responsible to open
ambient n, is absent, but its intention is indicated in the label of the transition. Again,

30 Chapter 3

in the post-configuration, its unknown internals are represented by the placeholder ◦.

Definition 4 (Untimed labelled transitions). The env-actions of the labelled transition
system are defined in Table 3.7. Unobservable τ -actions, which model the internal
evolution of a process and can not be seen from the outside, are defined as in [110].

In the rules (Enter) and (Exit) an ambient k enters, respectively exits, from an
ambient n provided by the environment. The rules (Enter Shh) and (Exit Shh) model
the same behavior for ambients with private names. In the rule (Co-Enter) an am-
bient n provided by the environment enters an ambient k of the process. In the rule
(Open), the environment provides an ambient n in which the ambient k of the process
is opened. The reduction semantics of a process can be encoded in the labelled tran-
sition system, because a reduction step can be seen as an interaction with an empty
context.

Note that the transition semantics contains ◦ as placeholder for an arbitrary pro-
cess. It can be seen as a special variable representing arbitrary processes. The process
P := ◦ must be instantiated in the bisimulation. The replacement of that variable by
a process is written as P•Q and defined as expected.

Definition 5 (Substitution). Let P and Q be processes over the extended syntax. Let
R be a process. The capture-avoiding substitution of R for the occurrences of ◦ in a
process is defined as follows:

0•R = 0 n[P]•R = n[P•R]

◦•R = R !C.P•R =!C.(P•R)

(P | Q)•R = (P•R) | (Q•R) (νn)P•R = (νn)(P•R) if n /∈ fn(R)

C.P•R = C.(P•R) .

We are interested in bisimulations that abstract from τ -actions and introduce the
notion of weak actions : let =⇒ denote the reflexive and transitive closure of

τ−→, let
α
=⇒

denote =⇒ α−→=⇒, and let
α̂
=⇒ denote =⇒ if α = τ and

α
=⇒ otherwise.

Definition 6 (Weak bisimulation). A symmetric relation R over systems is a weak
bisimulation if M R N implies:

- if M
α−→ M ′, α ∈ {τ, k.enter n, k.exit n, k.enter n, n.open k}, then there is a

system N ′ such that N
α̂
=⇒ N ′ and for all processes P it holds that M ′•P R

N ′•P ;

- if M
∗.enter n−−−−−→M ′ then there is a system N ′ such that N | n[◦] =⇒ N ′ and for all

processes P it holds that M ′•P R N ′•P ;

- if M
∗.exit n−−−−→M ′ then there is a system N ′ such that n[◦ | N] =⇒ N ′ and for all

processes P it holds that M ′•P R N ′•P .

Systems M and N are weakly bisimilar, written M ≈ N , if M R N for some weak
bisimulation R.

3.3 Mobile Ambients in a Larger Context 31

3.3 Mobile Ambients in a Larger Context

Since its inception [43] the calculus of mobile ambients has spread far and wide. It has
inspired papers on mobile computation and has been applied in various directions of
computer science, from better design approaches for mobile agent applications [160] to
providing information about security issues related to mobility [123], formal analysis
of sensor networks [61] and the description of network protocols [10]. Furthermore,
it has not only found acceptance in computer science but was utilized amongst other
disciplines also in engineering [92] and biochemistry [141]. The following discussion
of literature is by no means complete, but is meant to give a broad overview over
the different research areas that have surrounded the ambient calculus in the last
two decades, in order to place our research on virtually timed ambients in this larger
context.

Virtualization. Gordon proposed a simple formalism for virtualization loosely based
on mobile ambients [74] and the calculus of mobile ambients itself has been used as a
framework for the specification of the migration of virtual machines [84]. This approach
focuses on security, uses mobile ambients as firewalls, and does not consider time and
resources. In comparison the calculus of virtually timed ambients [88, 89] stays closer
to the syntax of the original mobile ambient calculus than Gordon’s formalism, while
at the same time including notions of time and explicit resource provisioning which
allow interesting aspects of virtualization to be expressed.

Bisimulations. Cardelli and Gordon defined a labeled transition system for their
mobile ambients [45], but no bisimulation. A bisimulation relation for a restricted
version of mobile ambients, called Mobile Safe Ambients [102], is defined in [109] and
provides the basis for later work. Barbed congruence for the same fragment of mobile
ambients is defined in [157]. It is shown in [67] that name matching reduction barbed
congruence and bisimulation coincide in the π-calculus. A bisimulation relation with
contextual labels for the ambient calculus is defined in [120], but this approach is not
suitable for providing a simple proof method. A simulation-based faster-than preorder
is introduced in [103]; this preorder is related to our notion of time relaxation but the
faster-than preorder allows a process to delay by at most one time unit. A labelled
bisimulation for mobile ambients is defined by Merro and Nardelli [110], who prove that
this bisimulation is equivalent to reduction barbed congruence and develop up-to proof
techniques. The weak timed bisimulation defined in our paper [89] is a conservative
extension of this approach, which is extended further in our later work regarding
resource-awareness, using notions of context bisimulation developed in [143,146].

Fragments. In order to address concerns raised by the original ambient calculus,
a variety of fragments and variants of the ambient calculus have been defined and
studied. One of the first concerns that was raised regarding the basic ambient calculus
is the security risk that the open n capability poses to a system. When an ambient is

32 Chapter 3

opened all its contents are released regardless what they are. Without further rules or
restrictions this can constitute a threat to security. This issue has been addressed in
various ways. In Mobile Safe Ambients [102] the movement capabilities are modified to
control interference and Secure Safe Ambients [33] are a typed variant of this calculus.
Boxed Mobile Ambients [34, 35] solve the issue by just dropping the open capability
completely and defining new primitives for process communication. Monitoring and
coordination are emphasized in Guarded Boxed Ambients [63], an enhancement of
boxed ambients with guardians. The expressiveness of the ambient calculus without
the open capability is studied in [25]. The Push and Pull Ambient Calculus changes
the perspective on the capabilities and considers ambients to be passively pushed away
and pulled in by other ambients instead of actively entering and exiting [134]. Other
modifications are the addition of fairness principles to safeguard the interactions of the
ambients in Fair Ambients [68] and the addition of context-expressions in the Calculus
of Context-aware Ambients to model context-aware systems [150].

Type Systems. A type system for the originally untyped ambient calculus was de-
fined in [41] and refined later [39,40]; this type system is mainly concerned with the use
of groups to control communication and mobility. For communication, a basic type of
an ambient captures the kind of messages that can be exchanged within. For mobility,
the type system controls which ambients can enter. In a more traditional setting of
sequential languages, types are often enriched with effects to capture the aspects of
computation which are not purely functional. In process algebra, session types have
been used to capture communication in the π-calculus. Orchard and Yoshida have
shown that effects and session types are similar concepts as they can be expressed in
terms of each other [126]. Session types have been defined for boxed ambients in [69]
and behavioral effects for the ambient calculus in [12], where the original commu-
nication types by Cardelli and Gordon are enhanced by movement behavior. This
is captured with traces, the flow-sensitivity hereby results from the copying of the
capabilities in the type.

To capture how a computation depends on an environment instead of how the com-
putation affects it, Petricek, Orchard and Mycroft suggest the term coeffect as a notion
of context-dependent computation [132, 133]. Dual to effects, which can be modeled
monadically, the semantics of coeffects is provided by indexed comonads [93,156]. We
use coeffects in our type system for virtually timed ambients to control time and re-
sources. An approach to control timing via types can be found in [21], which develops
types and typed timers for the timed π-calculus. Another approach to resource control
without coeffects can be found in [78], which proposes a type system to restrict re-
source access for the distributed π-calculus. In [154] a type system for resource control
for a fragment of the mobile ambients is defined by adding capacity and weight to com-
munication types for controlled ambients. Simplified non-modifiable mobile ambients
with resources, and types to control migration and resource distribution are proposed
in [71]. Another fragment of the ambient calculus, finite control ambients with only
finite parallel composition, are covered in [50]. This fragement was used to develop a
model checking algorithm to admit automatic verification via state-space exploration.

3.3 Mobile Ambients in a Larger Context 33

Here the types are a bound to the number of allowed active outputs in an ambient.

Modal Logic and Model Checking. Modal logic for mobile ambients was intro-
duced to describe properties of spatial configuration and mobile computation [42] for
a fragment of mobile ambients without replication and restriction on names. The
extensionality and intensionality of this logic is studied in [144]. The complexity of
model checking for mobile ambients is investigated in [49], and shown to be PSPACE-
complete. After Cardelli and Gordon’s work on logical properties for name restric-
tion [44], the model checker algorithm was extended for private names [51] while pre-
serving decidability and the complexity of the original fragment. Furthermore, it was
shown that it is not possible to extend the algorithm for replication in the calculus or
the local adjunct in the logic, as either of these extensions would lead to undecidabil-
ity. For simplicity, our logic and model checker for virtually timed ambients is based
on the original fragment from [42]. The modal operators with restrictions on timing
in our implementation of modal logic for virtually timed ambients borrows ideas from
metric temporal logic [96,127,128].

The Process Analysis Toolkit (PAT) [152] has been used to specify processes in
the ambient calculus as well as properties in modal logic [153], to provide a basis
for a possible model checker implementation. A model checker for ambient logic has
been implemented by separating the analysis of temporal and spatial properties [6].
Here mobile ambients are translated into Kripke structures and spatial modalities
are replaced with atomic propositions in order to reduce ambient logic formulas to
temporal logic formulas. Meanwhile, the analysis of temporal modalities are handled
using the NuSMV model checker. A similar approach is used in [155] to specify security
policies of mobile networks. In contrast to our work, none of the above model checkers
consider notions of time or resources.

Implementations and Analyses. Mobile ambients have been investigated from
different angles. The semantics of the calculus has been investigated in different
ways [62, 75, 76] and the expressiveness has been studied for pure mobile ambients
without communication [36] as well as for different fragments [104, 135]. The re-
lation between the ambient calculus and the π-calculus has been investigated thor-
oughly [31, 32, 54]. And not only have algorithms been introduced to analyse nest-
ing [28] but there has also been built a Java based graphical tool for the analysis of
nesting and information leakage in mobile agent specifications [27]. The operational
reduction rules for mobile ambients as well as a type system have been implemented in
Maude [142]. In contrast, the implementation we present for virtually timed ambients
focuses on capturing the timed reduction rules of the calculus as well as the modal for-
mulas to define a model checker. Our implementation exploits the low representational
distance which distinguishes the Maude system [111,125].

34 Chapter 3

CHAPTER 4

List of Research Papers

The research contributions of this thesis are presented in five papers which are briefly
summarized in this chapter. The full papers can be found in Part II of this thesis, with
mostly the same content as in their original publications. Note that all papers have
been reformatted to fit the structure of this thesis and that spelling mistakes as well as
small errors have been fixed. For reasons of completeness the second, third and fourth
paper have been extended with additional explanations and proofs that were not part
of the original publication. Following an established convention in theoretical computer
science, the authors on each paper are listed in alphabetical order. We shortly present
additional publications including extended abstracts and technical reports in the last
section of this chapter.

The calculus that forms the basis for the work in this thesis is the calculus of
mobile ambients by Cardelli and Gordon. It is described in Chapter 3. In the first
paper we extend this calculus with time and resources, define a notion of bisimulation
and perform a thorough theoretical investigation of the subject. After the publication
of the first and before the publication of the second paper we adjusted the notations
and changed the naming of the local clocks to schedulers in order to better describe
their role in the calculus. Moreover, we changed the distribution strategy for time
slices from a lazy round-robin like strategy, which emits all possible time slices for a
round only after the number of input time slices is complete, to an eager round-based
distribution strategy, which emits a time slice as soon as possible. The second paper
provides the calculus with a type system for statical analysis, while the third paper
enhances it with modal logic and provides a prototype implementation in the Maude
system for rewriting logic. The fourth paper makes use of these foundations to built
a calculus which includes resource-awareness, allowing systems to react dynamically
to changes during runtime. The fifth paper presents the calculus of virtually timed
ambients together with its prototype implementation from an applied point of view as
an analysis framework for virtualization in cloud computing.

36 Chapter 4

4.1 Paper 1:

Virtually Timed Ambients:

A calculus of nested virtualization

Authors Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf

Publication Journal of Logical and Algebraic Methods in Programming, volume 94,
pp 109-127, 2018

Summary To study the effects of nested virtualization, we first define the calculus
of virtually timed ambients, to the best of our knowledge the first process algebra
capturing notions of virtual time and resource provisioning for nested virtualization.
Furthermore, we define weak timed bisimulation for virtually timed ambients, and
show that weak timed bisimulation is equivalent to reduction barbed congruence with
time. Lastly, we define time relaxation for virtually timed ambients as a simulation
relation allowing deviation by a bounded amount of time.

Abstract nested virtualization enables a virtual machine, which is a software layer
representing an execution environment, to be placed inside another virtual machine.
Nested virtual machines form a location hierarchy where virtual machines at every
level in the hierarchy compete with other processes at that level for processing time.
With nested virtualization, the computing power of a virtual machine depends on its
position in this hierarchy and may change if the virtual machine moves. We introduce
the calculus of virtually timed ambients, a formal model of hierarchical locations for
execution with explicit resource provisioning, motivated by these effects of nested
virtualization. The calculus of virtually timed ambients is based on the calculus of
mobile ambients. Mobile ambients are located processes, arranged in a hierarchy which
may change dynamically. Interpreting the location as a place of deployment, virtually
timed ambients extend mobile ambients with notions of virtual time and resource
consumption. The timed behavior depends, on the one hand, on the local timed
behavior, but, on the other hand, on the placement or deployment of the component
in the hierarchical ambient structure. Resource provisioning in this model is based on
virtual time slices as a local resource. To reason about timed behavior in this setting
we make use of bisimulation. We define a notion of weak bisimulation for virtually
timed ambients as an extension of the formalization for mobile ambients by including
the timed behavior and show that weak timed bisimulation is a congruence.

The timed behavior of a system depends on the kind of requests that are made, the
speeds of the virtually timed ambients and the way requests are distributed to virtual
machines. Thus, it is possible that two virtually timed systems behave the same for
a certain type of requests but not for others, or that a system behaves equivalently
to another except for needing some extra time slices per executed request. For this
reason we define simulation with time relaxation to express that a system is slower
than another system up to a given time bound.

4.2 Paper 2: Assumption Commitment Types for Virtually Timed Ambients 37

4.2 Paper 2:

Assumption Commitment Types

for Virtually Timed Ambients

Authors Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf

Publication Submitted to Logical Methods In Computer Science (under review).

Summary This paper introduces a type system for resource management in the
context of nested virtualization. With nested virtualization, virtual machines compete
with other processes for the resources of their host environment in order to provision
their own processes, which could again be virtual machines. The calculus of virtually
timed ambients formalizes such resource provisioning, extending the capabilities of
mobile ambients to model the dynamic creation, migration, and destruction of virtual
machines. Compared to earlier papers we work here with an eager distribution strategy
for time slices and local clocks are renamed to local schedulers to better describe their
role in the calculus. The change of the scheduling strategy turned out beneficial in the
analysis in that it allowed a cleaner formulation of the assumption-commitment rules
and the subsumption properties concerning the resource effects.

The proposed type system for virtually timed ambients analyzes the timed be-
havior in terms of movement and resource consumption of a given system. Statically
estimating the timed behavior is complicated because the placement of an ambient in
the system hierarchy influences its resource consumption, and moving inside the hier-
archy changes its virtual speed. The concept of this type system is loosely based on
Cardelli, Ghelli, and Gordon’s movement control types for mobile ambients. However,
its purpose is quite different, and therefore the technical formulation is different, too.
Our type system uses assumptions about the outside of a virtually timed ambient to
guarantee resource provisioning on the inside, enabling static checking of timing and
resource constraints for ambients. We prove subject reduction and progress for well-
typed virtually timed ambients, expressing that the upper bounds on resource needs
are preserved by reduction and that processes will not run out of resources. The results
are given for a non-standard assumption-commitment setting in an operational frame-
work. The type system further provides reusable properties as it supports abstrac-
tion and the results would also hold for other operational accounts of fair scheduling
strategies. It holds that the type system supports subsumption, which allows relating
different types, for example weaker types, to each other.

38 Chapter 4

4.3 Paper 3:

Checking Modal Contracts

for Virtually Timed Ambients

Authors Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf, Lars Tveito

Publication Proceedings of the 15th International Colloquium on Theoretical As-
pects of Computing (ICTAC 2018)

Summary The calculus of virtually timed ambients models timing aspects of re-
source management for virtual machines. With nested virtualization, virtual machines
compete with other processes for the resources of their host environment. This paper
introduces a modal logic for virtually timed ambients with notions from metric tempo-
ral logic, enabling us to define timed behavior and resource consumption of a system
as modal logic properties of processes.

The main contribution of this paper is the introduction of modal logic for virtually
timed ambients by means of combining modal logic for mobile ambients with notions
of metric temporal logic in order to capture the special features of virtual time and
resource provisioning in virtually timed ambients. We further show that the resulting
logic is a conservative extension of the modal logic for the ambient calculus, preserving
satisfiability and define a model checking algorithm for this modal logic, and develop
a prototype implementation in Maude.

Modal logic for virtually timed ambients enables us to define modal contracts re-
garding resource management for virtually timed ambients. Service-level agreements
are contracts between a service provider and a client, specifying properties that the
service should fulfill with respect to quality of service. Thus, the proposed modal logic
supports quality of service statements about the resource consumption and nesting
structure of a system during the timed reduction of its processes. Besides a formal
definition of the logic, the paper provides a corresponding model checking algorithm,
to prove that a process satisfies a formula, and its prototype implementation in the
Maude system for rewriting logic. Rewriting logic is a flexible, executable formal no-
tation which can be used to represent a wide range of systems and logics with low
representational distance. This leads to a close correlation between the formal defini-
tion of the satisfaction relations in the modal logic and the Maude specification. As
satisfiability conditions of the modal logic can be compactly represented, we obtain a
compact and flexible model checker which stays close to its mathematical formulation.

4.4 Paper 4: Resource-Aware Virtually Timed Ambients 39

4.4 Paper 4:

Resource-Aware Virtually Timed Ambients

Authors Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf, Lars Tveito

Publication Proceedings of the 14th International Conference on integrated Formal
Methods (iFM 2018)

Summary This paper introduces resource-awareness for virtually timed ambients,
which not only allows to model dynamically changing systems of nested virtualization,
but enables the modeled processes to actively query the system about the resources
necessary for a task and to reconfigure depending on these queries. Based on the local
load situation, a virtually timed system can for example decide to trigger the creation
of a new virtual machine, thus enabling horizontal scaling for virtually timed ambients.

We define and discuss the calculus of resource-aware virtually timed ambients as
well as weak timed context bisimulation for resource-aware virtually timed ambients.
Furthermore, a case study of dynamic auto scaling on Amazon EC2 modeled in a
prototype implementation of our calculus in the Maude system shows the feasibility
of virtually timed ambients as a modeling language for cloud computing. To the best
of our knowledge, this is the first implementation of resource-awareness for mobile
ambients in rewriting logic.

Virtually timed ambients is a calculus which models timing aspects and resource
consumption for virtual machines, as well as the hierarchical structure of systems
with nested virtualization. This structure may change dynamically to support load-
balancing, to move processes, or to re-provision virtual machine resources. To sup-
port resource-awareness, the paper technically extends virtually timed ambients with
properties of context aware ambients, namely context-guarded actions, thus defining
resource-awareness. Resource-aware processes have to fulfill a context requirement κ
before they can continue to execute. Here κ ranges over context expressions, which are
essentially modal formulas. We give a formal semantics for the extension and provide
an appropriate formalization of bisimulation for comparing equivalent resource-aware
virtually timed systems. The given notion of bisimulation makes use of contexts, which
enables us to establish that this bisimulation relation is a congruence and coincides
with reduction barbed congruence over the given systems.

The calculus is implemented in Maude, and illustrated by a case study based on
the Auto Scaling User Guide by Amazon Web Services. The case study presents a
cloud implementation in the calculus of resource-aware virtually timed ambients that
allows a user to dynamically scale the number of Amazon EC2 instances available to
handle the load for a given application.

40 Chapter 4

4.5 Paper 5:

An Analysis Framework for Virtualization

Authors Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf, Lars Tveito

Publication Proceedings of the Norsk Informatikkonferanse (NIK 2018)

Summary We explore the calculus of virtually timed ambients as a tool for the
analysis of virtualization in cloud computing. The main contributions of this paper
are the presentation of the virtually timed ambient calculus and the corresponding
modal logic as framework for the modeling of virtualization in cloud computing, a
cloud library for model implementations in the rewriting logic system Maude and
examples and analysis of cloud models developed in Maude.

Virtually timed ambients is a calculus of explicit resource provisioning, based on the
well-known calculus of mobile ambients. It can be used to model nested virtualization
in cloud systems, as virtually timed ambients formalize explicit resource management
for virtual machines. The time model used to realize the resource provisioning for
virtually timed ambients is called virtual time. Virtual time is provided to a virtually
timed ambient by its parental ambient, similar to the time slices that an operating
system provisions to its processes. To analyze models of virtualization we introduce
the calculus and its corresponding modal logic and utilize a prototype implementation
of the calculus in rewriting logic.

In order to use the implementation of virtually timed ambients as a modeling lan-
guage for cloud computing we develop a cloud library, containing important elements
of cloud architecture which can be put together according to a modular principle. A
cloud model in this implementation consists of a system containing a cloud ambient
and several applications or data packages. The cloud includes a load balancing or
scaling process, depending on the chosen load balancing strategy, as well as virtual
machines. The applications and data packages enter the cloud in order to be executed
or stored. We present three different exemplary models of cloud computing deploying
three different ways of load balancing or scaling. In each case we simulate load on the
machines and consider one special data package to survey the satisfaction of certain
quality of service statements by the model. The quality of service statements are given
as modal formulas and are verified using the model checker implementation in Maude.

4.6 Additional Publications 41

4.6 Additional Publications

This section lists additional publications, which are not directly included in the thesis.
The publications are related to the stated research goal and mostly correspond to
preliminary versions of work presented in this thesis.

4.6.1. A Calculus of Virtually Timed Ambients

Authors: Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf
Publication: UiO Technical Report TR-456, October 2016, ISBN 978-82-

7368-421-9
Notes: Preparatory work for Paper 1.

4.6.2. A Calculus of Virtually Timed Ambients

Authors: Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf
Publication: Postproceedings of selected contributions to the 23rd Inter-

national Workshop on Algebraic Development Techniques
(WADT 2016), 2017, editors: Phillip James and Markus
Roggenbach

Notes: Can be considered a short version of Paper 1.

4.6.3. A Calculus of Virtually Timed Ambients

Authors: Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf
Publication: Proceedings of the 28th Nordic Workshop on Programming

Theory (NWPT’16), editors: Kim G. Larsen and Jǐŕı Srba
Notes: Extended abstract of Paper 1.

4.6.4. Virtually Timed Ambients for Cloud Computing

Authors: Johanna Beate Stumpf
Publication: Sirius General Assembly, Poster, 23.05.2017, Oslo
Notes: Poster presentation regarding the research project.

4.6.5. Virtually Timed Ambients: Formalisation and Analysis

Authors: Johanna Beate Stumpf, Einar Broch Johnsen, Martin Steffen
Publication: Proceedings of the PhD Symposium at iFM’17 on For-

mal Methods: Algorithms, Tools and Applications (PhD-
iFM’17), editors: Erika Abraham and Silvia Lizeth Tapia
Tarifa, UiO Technical Report TR-470, September 2017,
ISBN 978-82-7368-435-6

Notes: Extended abstract presenting the research project.

4.6.6. Assumption Commitment Types for Resource Management in
Virtually Timed Ambients

Authors: Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf
Publication: UiO Technical Report TR-472, October 2017, ISBN 978-82-

7368-437-0
Notes: Preparatory work for Paper 2.

42 Chapter 4

CHAPTER 5

Discussion and Conclusion

In the following we discuss the contributions of this thesis and relate them to the
research questions stated in Chapter 1.2. We conclude with an outlook on prospective
research that can be initiated by the results presented in this thesis.

5.1 Summary of Contributions

This thesis introduces the calculus of virtually timed ambients in Chapter 6, a formal
model of hierarchical locations of execution with explicit resource provisioning and to
the best of our knowledge the first process algebra capturing notions of virtual time
and resource provisioning for nested virtualization. In the proposed model resource
provisioning is based on virtual time, a local notion of time reminiscent of time slices
for virtual machines in the context of nested virtualization. This way, the computing
power of a virtually timed ambient depends on its location in the deployment hierarchy.

To reason about timed behavior in this setting, we define weak timed bisimulation
for virtually timed ambients as a conservative extension of bisimulation for mobile am-
bients, and show that the equivalence of bisimulation and reduction barbed congruence
is preserved by this extension.

To perform static analysis of systems of virtually timed ambients, we introduce an
assumption commitment type system in Chapter 7 for resource management in the con-
text of nested virtualization, which uses assumptions about the outside of a virtually
timed ambient to guarantee resource provisioning on the inside. This assumption and
commitment type system enables static checking of timing and resource constraints
for ambients and gives an upper bound on the resources used by a process. We further
prove the soundness of resource consumption for the type system for virtually timed
ambients in terms of a subject reduction result, expressing that the upper bounds on
resources and on the number of subambients are preserved under reduction, and a
progress result, expressing that a well-typed process will not run out of resources.

Furthermore, we combine modal logic for mobile ambients with notions of metric
temporal logic in order to define a modal logic for virtually timed ambients in Chap-

44 Chapter 5

ter 8, enabling us to describe timed behavior and resource consumption of a system as
modal logic properties of processes. We show that the resulting logic is a conservative
extension of the modal logic for the ambient calculus, preserving satisfiability. To
prove that a process satisfies a formula we provide a model checking algorithm and
implement it in the Maude rewriting logic system. Considering modal propositions
as modal contracts, we can now prove whether a system satisfies a certain quality of
service agreement.

We introduce resource-awareness for virtually timed ambients in Chapter 9, which
enables dynamic horizontal scaling. We further define weak timed context bisimulation
for resource-aware virtually timed ambients as an extension of bisimulation for mobile
ambients. We show the feasibility of virtually timed ambients as a modeling language
for cloud computing with a case study of dynamic auto scaling on Amazon EC2 mod-
eled in a prototype implementation of our calculus. Lastly, we provide a cloud library
for model implementations in the rewriting logic system Maude in Chapter 10.

5.2 Discussion of the Research Questions

The stated purpose of this thesis is to formalize virtual environments to enable analysis
of cloud computing. We approach this goal by developing a calculus for virtualization,
which does not only contain notions of nested locations, mobility and local time but
also allows for reasoning about required resources. In order to define the purpose of
this thesis more precisely, we stated four research questions, which each, in turn, have
been addressed in at least one of the presented research papers.

1. How can we formalize resource management between distributed locations and
allow comparison of different systems?

We introduce the calculus of virtually timed ambients in Paper 1 by adding a new
notion of time and resources to the ambient calculus, which is well-known as a calculus
of mobility and nested locations. To compare different systems we use bisimulation,
a typical equivalence relation over this kind of calculus. A notion of bisimulation is
introduced and thoroughly discussed. Essential properties such as speed and resource
consumption are established and investigated.

2. How can we statically predict the behavior of a system to avoid runtime errors?

Type systems are a common technique in the field of static analysis, which are used to
describe the important features of a calculus and provide a way to have the implemen-
tation of those features statically checked. We introduce an assumption commitment
type system for resource requirements and provisioning in Paper 2 and prove a subject
reduction and a progress result, which are core properties for type systems.

3. How can we define specifications for resource management as given e.g., in
service-level agreements, and allow automatic verification?

5.3 Outlook on Future Work 45

We define modal logic for the calculus of virtually timed ambients in Paper 3.
This logic supports the definition of quality of service statements, for example about
resource consumption or the nesting structure of a system during the timed reduction
of its processes, in the form of logical properties. We further provide a correspond-
ing model checking algorithm and its prototype implementation in Maude, to verify
algorithmically that a process satisfies a formula.

4. How can we enable systems in the defined formalism to react dynamically to
changes during runtime and, consequently, to perform dynamic self-management?

Based on the results of the previous paper we study resource-awareness in Paper 4,
allowing the calculus to dynamically react to changes during runtime. We implemented
the resulting calculus in the Maude system for rewriting logic, enabling us to define a
case study. Furthermore, we provide a cloud library in Maude for easy implementation
of different cloud models in Paper 5.

5.3 Outlook on Future Work

Virtualization opens for new and interesting foundational models of computation by
explicitly emphasizing deployment and resource management. The research presented
in this thesis allows for further investigations in different directions of the topic. The
calculus of virtually timed ambients which is developed in this thesis extends the basic
ambient calculus with the standard movement capabilities, but an addition of channel
communication is not considered in this work. Introducing channels would lead to
additional synchronization, which may be used to derive more precise estimations
about resource consumption. Such an extension would be non-trivial, as it would
involve an analysis of the communication structure and would complicate scheduling.

A natural continuation of the presented work would be the generalization of the
scheduling strategy to model different scheduling scenarios. This modification of the
calculus would entail a need for the generalization of the type system. Another remain-
ing challenge is the extension of the calculus to model active resource management.
This would enable the creation of optimization strategies for resource-aware scaling
and entail the development of deployment strategies for asynchronous cloud services.
The prototype implementation of the calculus in the Maude system for rewriting logic
can be enhanced further with the use of advanced metaprogramming.

Another important aspect of cloud computing that has not been addressed explic-
itly in this work is the issue of privacy and security. Not only can cloud providers
often simply access the data stored on their machines, but also the storage of data
from different costumers on the same machine imposes a security risk. As the calculus
of mobile ambients was developed with the property to model firewalls in mind, it can
be used to formalize authorization and authentication. This makes the addition of
security policies to detect and prevent unauthorized intrusion a suitable extension of
the calculus of virtually timed ambients.

46 Chapter 5

Part II

Research Papers

CHAPTER 6

Virtually Timed Ambients:
A Calculus of Nested Virtualization

Abstract. Nested virtualization enables a virtual machine, which is a software layer
representing an execution environment, to be placed inside another virtual machine.
Nested virtual machines form a location hierarchy where virtual machines at every
level in the hierarchy compete with other processes at that level for processing time.
With nested virtualization, the computing power of a virtual machine depends on its
position in this hierarchy and may change if the virtual machine moves. This paper
introduces the calculus of virtually timed ambients, a formal model of hierarchical
locations for execution with explicit resource provisioning, motivated by these effects
of nested virtualization. Resource provisioning in this model is based on virtual time
slices as a local resource. To reason about timed behavior in this setting, weak timed
bisimulation for virtually timed ambients is defined as an extension of bisimulation
for mobile ambients. We show that the equivalence of contextual bisimulation and
reduction barbed congruence is preserved by weak timed bisimulation. Simulation
with time relaxation is defined to express that a system is slower than another system
up to a given time bound. The calculus of virtually timed ambients is illustrated by
examples.

6.1 Introduction

Virtualization technology enables the resources of an execution environment to be
represented as a software layer, a so-called virtual machine. Application-level processes
are agnostic to whether they run on such a virtual machine or directly on physical
hardware. Since a virtual machine is a process, it can be executed on another virtual
machine. Technologies such as VirtualBox, VMWare ESXi, Ravello HVX, Microsoft
Hyper-V, and the open-source Xen hypervisor increasingly support running virtual
machines inside each other in this way. This nested virtualization, originally introduced
by Goldberg [73], is necessary to host virtual machines with operating systems which

50 Chapter 6

themselves support virtualization [19], such as Microsoft Windows 7 and Linux KVM.
Nested virtualization has many uses, for example for end-user virtualization for guests,
in development, and in deployment testing. Nested virtualization is also a crucial
technology to support the hybrid cloud, as it enables virtual machines to migrate
between different cloud providers [159].

To study the logical behavior of virtual machines in the context of nested virtualiza-
tion, this paper develops a calculus of virtually timed ambients with explicit resource
provisioning. Previous work on process algebra with resources typically focusses on
binary resources such as locks (e.g., [100, 119]) and previous work on process algebra
with time mainly considers timeouts (e.g., [15,20,77,118,122]). In contrast, time and
resources in virtually timed ambients are quantitative notions: a process which gets
more resources typically executes faster. Virtually timed ambients can be understood
as locations for the deployment of processes; the resource requirements of processes
executing at a location are matched by resources made available by the virtually timed
ambient. The amount of resources made available by a virtually timed ambient consti-
tutes its computing power. This amount is determined by the time slices the virtually
timed ambient receives from its parent ambient. A virtually timed ambient that shares
the time slices of its parent ambient with another process has less available time slices
to execute its own processes.

The time model used to realize this kind of resource provisioning for virtually timed
ambients is here called virtual time. Virtual time is provided to a virtually timed ambi-
ent by its parent ambient, similar to the time slices that an operating system provisions
to its processes. When we consider many levels of nested virtualization, virtual time
becomes a local notion of time which depends on a virtually timed ambient’s position
in the location hierarchy. Virtually timed ambients are mobile, reflecting that virtual
machines may migrate between host virtual machines. Observe that such migration
affects the execution speed of processes executed in the virtually timed ambient which
moves, in the virtually timed ambients it leaves, and in the virtually timed ambient it
enters. The model of resource provisioning in virtually timed ambients is inspired by
Real-Time ABS [87], but extended to address nested virtualization in our calculus.

To formalize nested virtualization, notions of location mobility and nesting are
essential. The calculus of mobile ambients, originally developed by Cardelli and Gor-
don [43], captures processes executing at distributed locations in networks such as the
Internet. Mobile ambients model both location mobility and nested locations, which
makes this calculus well-suited as a starting point for our work. Combining these
notions from the ambient calculus with the concepts of virtual time and resource pro-
visioning, the calculus of virtually timed ambients can be seen as a model of nested
virtualization. To capture migration, virtually timed ambients will have capabilities
reminiscent of those for mobile ambients, but the capabilities of virtually timed am-
bients need to deal with virtual time and the corresponding changes to the resource
provisioning. Thus different locations, barriers between locations, barrier crossing, and
their relation to virtual time and resource provisioning are important for the virtually
timed ambients; the number and position of virtually timed ambients available for
processing tasks influences the overall processing time of a program. This allows the

6.2 Preliminaries on Mobile Ambients 51

effects of, e.g., load balancing and scaling to be observed using weak timed bisimula-
tion.

Contributions To study the effects of nested virtualization, the main contributions
of this paper can be summarized as follows:

• we define a calculus of virtually timed ambients, to the best of our knowledge the
first process algebra capturing notions of virtual time and resource provisioning
for nested virtualization;

• we define weak timed bisimulation for virtually timed ambients, and show that
weak timed bisimulation is equivalent to reduction barbed congruence [110] with
time;

• we define time relaxation for virtually timed ambients as a simulation relation
allowing deviation by a bounded amount of time.

A short version of this paper appeared in the proceedings of WADT 2016 [88].

6.2 Preliminaries on Mobile Ambients

Mobile ambients [43] have originally been introduced to represent “administrative
domains” for processes. The syntax, as well as the semantics we consider, is based
on [110] and largely unchanged compared to [43]. The main difference compared to [43]
lies in the separation of processes into two levels, as processes and systems. This
distinction is used to simplify proofs in the bisimulation section. Systems characterize
the outermost layer of an ambient structure.

The syntax in Table 6.1 represents the basic calculus for mobile ambients. The
inactive process 0 does nothing. The parallel composition P | Q allows both processes
P and Q to proceed concurrently, where the binary operator | is commutative and
associative. The restriction operator (νn)P creates a new and unique name with
process P as its scope. In the calculus, administrative domains for processes, called
ambients, are represented by names. A process P located in an ambient named m is
written m[P].

Ambients can be nested, and the nesting structure can change dynamically. A
change of the nesting structure is specified by prefixing a process with a capability.
There are three basic capabilities. The input capability in n indicates the willingness
of a process (respectively its containing ambient) to enter an ambient named n, running
in parallel with its own ambient; e.g., k[in n.P] | n[Q] _ n[k[P] | Q]. The output
capability out n enables an ambient to leave its surrounding (or parental) ambient n;
e.g., n[k[out n.P] | Q] _ k[P] | n[Q]. The open capability open n allows an ambient
named n at the same level as the capability to be opened; e.g., k[open n.P | n[Q]] _
k[P | Q].

52 Chapter 6

n name
Systems:
M,N ::= 0 inactive system

M | N parallel composition
(νn)M restriction
n[P] ambient

Processes:
P,Q ::= 0 inactive process

P | Q parallel composition
(νn)P restriction
!C.P replication
C.P prefixing
n[P] ambient

Capabilities:
C ::= in n can enter n

out n can exit n
open n can open n

Table 6.1: Syntax of the mobile ambient calculus.

6.2.1 Syntax

We use the following notational conventions. Parallel composition has the lowest
precedence among the operators and the process E.F.P is read as E.(F.P). For names,
the ν-operator acts as a binder and the sets of free names fn of a process is defined
as expected. We use m̃ to denote a tuple of names m1,m2, . . . ,mk. Note that Table
6.1, following [110], only allows replicated prefixing !C.P . Since replicated input in
the π-calculus has the same expressive power as full replication [80] and recursion
[115, 146], the replication of an ambient in the ambient calculus can be implemented
with replicated prefixing and stuttering. We shall use the notion !n[] in the examples
as an abbreviation for this stuttering bypass.

P _ Q⇒ (νn)P _ (νn)Q (R-Res)
P _ Q⇒ P | R _ Q | R (R-Par)
P _ Q⇒ n[P] _ n[Q] (R-Amb)
P ′ ≡ P, P _ Q,Q ≡ Q′ ⇒ P ′ _ Q′ (R-Red ≡)
n[in m.P | Q] | m[R] _ m[n[P | Q] | R] (R-In)
m[n[out m.P | Q] | R] _ n[P | Q] | m[R] (R-Out)
open n.P | n[Q] _ P | Q (R-Open)

Table 6.2: Reduction rules.

6.3 Virtually Timed Ambients 53

P ≡ P (S-Refl)
P | 0 ≡ P (S-ZeroPar)
P ≡ Q⇒ Q ≡ P (S-Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (S-Trans)
P | Q ≡ Q | P (S-ParComm)
(P | Q) | R ≡ Q | (P | R) (S-Par-Assoc)
!C.P ≡ C.P |!C.P (S-Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (S-ResRes)
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (S-Res-Par)
(νn)(m[P]) ≡ m[(νn)P] if n 6= m (S-Res-Amb)

Table 6.3: Structural congruence.

6.2.2 Semantics

The semantics is given as a reduction semantics which combines structural congruence
with reduction rules. The reduction relation P _ Q, which describes the evolution
of a process, is captured by the reduction rules in Table 6.2. Structural congruence
P ≡ Q relates different syntactic representations of the same process and can be seen
in Table 6.3.

6.3 Virtually Timed Ambients

Mobile ambients [43] are located processes, arranged in a hierarchy which may change
dynamically. Interpreting the location as a place of deployment, virtually timed am-
bients extend mobile ambients with notions of virtual time and resource consumption.
The timed behavior depends on the one hand on the local timed behavior, but on
the other hand on the placement or deployment of the component in the hierarchi-
cal ambient structure. Virtually timed ambients combine timed processes and timed
capabilities with the features of the calculus for mobile ambients summarized above.

6.3.1 Syntax and Semantics

Timed systems and processes are defined analogously to Table 6.1, with the difference
that each virtually timed ambient contains a local clock and other virtually timed
ambients or processes.

Definition 1 (Virtually timed ambients). Virtually timed ambients are given by the
syntax in Table 6.4.

In Table 6.4 we can see that in the calculus of virtually timed ambients every closed
system of ambients must be contained in a root ambient with a source clock triggering
the clocks of the local subambients recursively. The timed capabilities of virtually
timed ambients extend the capabilities of mobile ambients with an additional effect on

54 Chapter 6

n name
tick virtual time slice

Global systems:
G ::= 0 inactive system

G | G parallel composition
n[Clock† |M] virtually timed root ambient

Timed systems:
M,N ::= 0 inactive system

M | N parallel composition
(νn)M restriction
n[Clock | P] virtually timed ambient

Timed processes:
P,Q ::= 0 inactive process

P | Q parallel composition
(νn)P restriction
!C.P replication
C.P prefixing
n[Clock | P] virtually timed ambient

Timed capabilities:
C ::= in n can enter n and adjust

the local clock there
out n can exit n and adjust

the local clock on the outside
open n can open n and adjust

own local clock
c consumes one resource

Table 6.4: Syntax of the virtually timed ambient calculus.

time management, explained below. In order to define computing power a capacity c
for resource consumption of processes is added.

The semantics is given as a reduction semantics similar to the semantics of mobile
ambients. The rules for structural congruence P ≡ Q are equivalent to the ones for
mobile ambients in Table 6.3. The reduction relation P _ Q is captured by the rules
in Table 6.5 and Table 6.6. In Table 6.5 we make use of the notion of observables aka
barbs. This well-known concept, originally introduced for the π-calculus [116], captures
a notion of immediate observability. In the ambient calculus, what is immediately
observable is the presence of a top-level ambient whose name is not restricted. The
obervability predicate ↓n or “barb” is defined as follows.

Definition 2 (Barbs). Process P strongly barbs on n, written P↓n, if P ≡ (νm̃)(n[P1] |
P2), where n /∈ {m̃}.

6.3 Virtually Timed Ambients 55

By moving the ν-binders to the outside and only taking the inside of their scope
into consideration we can observe the bound ambients inside the scope of the ν-binders.

Definition 3. For a process P we define P↓ as the set of all top level ambients P↓ :=
{n | P ≡ (νm̃)P ′ ∧ P ′ is ν-binder free ∧ P ′↓n}.

6.3.2 Virtual Time and Local Clocks

To represent the outlined time model the local clock contained in each virtually timed
ambient is responsible for triggering timed behavior and local resource consumption.
Each time slice emitted by a local clock triggers the clock of one of its subambients
in a round-robin way or is consumed by a process as a resource. This corresponds
to a simple form of fair, preemptive scheduling, which makes the system’s behavior
sensitive to the number of co-located virtually timed ambients and resource consuming
processes.

Clocks have a speed, interpreted relative to the speed of the surrounding virtually
timed ambient. The speed of a clock is given by the pair (p, q), where p is the number
of local time slices emitted for a number q of time slices received from the surrounding
ambient, p, q ∈ N. Thus, time in a nested ambient is relative to the global time, and
depends on the speed of the clocks of the ambients in which it is contained and on its
number of siblings.

The speed of the source clocks is defined as a pair (n, 0), where n ∈ N, as the
sources do not need any input, while for the speed of a local clock it holds that an
input of q = 0 is only valid if p = 0, too. As virtually timed ambients with speed
(0, 0) do not require any times slices from their parental ambient and do not exhibit
any timed behavior, they are not considered time consuming. However, processes
which are prefixed with the resource consumption capability c .P are considered time
consuming. Note that mobile ambients can be represented as virtually timed ambients
with a clock with speed (0, 0).

Definition 4 (Local clocks). A local clock contains a counter to record the number of
received time slices, its own speed, and two sets:

Clock{counter, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}} .

The first set contains the names of time consuming processes running in the ambient as
well as time consuming virtually timed subambients in the surrounding ambient which
have not yet received a time slice in the current cycle and the second set those which
have.

When a clock receives a time slice, denoted tick, from its surrounding ambient, one
of the following actions occurs: If counter+1 < q, then the clock records this time slice
and continues waiting (i.e., Clock{counter := counter + 1, (p, q), {a1, a2, . . . , ak},
{ak+1, . . . an}}); if counter+1 = q the input number is reached, the counter is set to 0,
the clock emits time slices to p subambients of the first set and puts them in the second

56 Chapter 6

Clockk = Clock{ck, (pk, qk), {m, n }, ∅}
Clockm = Clock{cm, (pm, qm), {a1, . . . , ak}, {ak+1, . . . an}}
Clockn = Clock{cn, (pn, qn), {b1, . . . , bi}, {bi+1, . . . bj}}
Clock∗k = Clock{ck, (pk, qk), {m}, ∅}
Clock∗m = Clock{cm, (pm, qm), {a1, . . . , ak, n }, {ak+1, . . . an}}
Clock∗n = Clock{cn, (pn, qn), {b1, . . . , bi} ∪ P↓ , {bi+1, . . . bj}}

(TR-In)

k[Clockk | n[Clockn | in m.P | Q] | m[Clockm | R]]

_ k[Clock∗k | m[Clock∗m | R | n[Clockn | P | Q]]]

Clockk = Clock{ck, (pk, qk), ∅, {m}}
Clockm = Clock{cm, (pm, qm), {a1, a2, . . . , ak, n }, {ak+1, . . . an}}
Clockn = Clock{cn, (pn, qn), {b1, . . . , bi}, {bi+1, . . . bj}}
Clock∗k = Clock{ck, (pk, qk), { n }, {m}}
Clock∗m = Clock{cm, (pm, qm), {a1, a2, . . . , ak}, {ak+1, . . . an}}
Clock∗n = Clock{cn, (pn, qn), {b1, . . . , bi} ∪ P↓ , {bi+1, . . . bj}}

(TR-Out)

k[Clockk | m[Clockm | n[Clockn | out m.P | Q] | R]]

_ k[Clock∗k | n[Clockn | P | Q] | m[Clock∗m | R]]

Clockm = Clock{cm, (pm, qm), { n }, ∅}
Clock∗m = Clock{cm, (pm, qm), { a1, a2, . . . , an } ∪ P↓ , ∅}

(TR-Open)
m[Clockm | open n.P | n[Clockn | R] | Q] _ m[Clock∗m | P | R | Q]

Clockm = Clock{cm, (pm, qm), {a1, a2, . . . , an}, ∅}
Clock∗m = Clock{cm, (pm, qm), {a1, a2, . . . , an, c .P }, ∅}
pm > 0

(TR-Resource)
m[Clockm | c .P | R] _ m[Clock∗m | R]

Table 6.5: Timed reduction rules for timed capabilities, where a1, a2, . . . , an are time
consuming virtually timed ambients and processes in R and b1, b2, . . . , bj in Q, respec-
tively. Here a blue backdrop marks the trigger of the reduction, red the changes in
the clocks and green eventual constraints.

6.3 Virtually Timed Ambients 57

Clock = Clock{ c , (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}}
Clock∗ = Clock{ c+ 1 , (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}}
c+ 1 < q

(TR-Tick1)
m[tick | Clock | R] _ m[Clock∗ | R]

Clock = Clock{c, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . an}}
c+ 1 = q

(TR-Tick2)
m[tick | Clock | R] _ m[RR(Clock | R)]

Clock† = Clock†{0, (n, 0), {a1, a2, . . . , ak}, {ak+1, . . . an}}
(TR-Source)

Clock† | R _ RR(Clock† | R)

Table 6.6: Timed reduction rules, where a1, a2, . . . , an are time consuming virtually
timed ambients and processes in R, and for (TR-Source) on the top level. Here a blue
backdrop marks the trigger of the reduction, red the changes in the clocks and green
eventual constraints.

set (i.e., Clock{counter := 0, (p, q), {ap+1 . . . , ak}, {ak+1, . . . an, a1, a2, . . . , ap}}). As
soon as the first of the two sets is empty, the first and second set are switched. Thus,
no ambient receives a second time slice before every other subambient has received
the first one. In the following, we omit the representation of the counter and the sets
of subambients. For a better overview in the examples we denote the speed of the
clocks as superscript Clockp,q. If an ambient is not time consuming, i.e, it has a
clock with speed (0, 0), we do not mention the clock. For actions which do not require
time we assume maximal progress. In terms of structural congruence a clock is treated
analogously to a process. The following example shows the encoding of a system with
a load balancer in virtually timed ambients.

Example 1 (System with load balancer). A system with a load balancer can be defined
as follows:

load balancer system: (ν lb, a, b) lbs[Clock2,1 | lb[. . .] | a[. . .] | b[. . .]]
incoming request: request [P.done signal | in lbs.enter signal . open move]

load balancer: lb[! open start.wait for enter . open locka.

wait for enter . open lockb.start[] |!locka[x[]] |
!lockb[y[]] |!(open x.move[out lb. in request . in a] |

open y.move[out lb. in request . in b])]

ambient a: a[Clock1,1 |! open request .wait for done.

done[out a. out lbs]]

ambient b: b[Clock1,1 |! open request .wait for done.

58 Chapter 6

done[out b. out lbs]].

Here, the untimed load balancer creates a move ambient which moves incoming
requests alternately into the virtually timed ambients a and b. For each time slice
it receives from the source clock of the surrounding root ambient, the local clock of
lbs distributes two time slices. Therefore, both subambients a and b receive one time
slice. When a request has been executed, it releases an ambient done which emerges
to the outside of the system and becomes observable. The enter- and done-signals are
shorthand notions, but can easily be implemented in the calculus of virtually timed
ambients.

RR: Round-based scheduling function

input: Clock{counter, (p, q), {a1, a2, . . . , ak}, {ak+1, . . . , an}} | R
S := {a1, a2, . . . , ak}
T := {ak+1, . . . , an}
if S = ∅ then
return Clock{0, (p, q), ∅, ∅}
else

while p ≥ |S| do
for all ai ∈ S do

if ai =c .P then S := S \ ai; R := R | P
S := S ∪ P↓

else R := a1 | · · · | ai[tick | · · ·] | · · · | an
end if

end for
p := p− |S|; S := S ∪ T ; T := ∅

end while
Choose a subset S ′ ⊂ S such that |S ′| = p.
for all ai ∈ S ′ do

if ai =c .P then S ′ := S \ ai, R := R | P
S := S ∪ P↓

else R := a1 | · · · | ai[tick | · · ·] | · · · | an
end if

end for
S := S \ S ′; T := T ∪ S ′

end if
return Clock{0, (p, q), S, T} | R

6.3.3 Timed Capabilities

The timed capabilities in n,out n, and open n enable virtually timed ambients to
move in a timed system. When moving virtually timed ambients, we must consider

6.3 Virtually Timed Ambients 59

that the clocks need to know about their current subambients, therefore their list of
subambients need to be adjusted.

We now explain the reduction rules for virtually timed ambients, which are given
in Table 6.5 and Table 6.6. Observe that if we would not adjust the clocks then
the moving subambient would not receive time slices from its new parental clock. In
(TR-In) and (TR-Out), the clocks of the old and new parental ambient of the moving
ambient have to be updated. In (TR-Open) the clock of the opening ambient itself is
updated. Note also that here the clock of the opened ambient is deleted. For virtually
timed ambients with a clock with speed (0, 0), the timed capabilities are equivalent
to the capabilities for mobile ambients, as ambients, which are not time consuming,
are not considered in the time management of the clocks. In (TR-Resource) the
time consuming process is moved into the clock, where it awaits the distribution of
a time slice as resource before it can continue. This reduction can only happen in
virtually timed ambients with p > 0, meaning ambients which actually emit resources.
Ambients which do not emit resources can therefore be used to safely transfer request
between ambients which are used as computation environments without interfering
with the contents of the requests. In (TR-Tick1) the required number q of input
time slices to trigger the local clock is not reached, thus the incoming time slice,
denoted as tick, is only registered in the counter. In (TR-Tick2) the local clock
releases p time slices to its subambients and potentially to time consuming processes.
This is denoted with the function RR for round-based scheduling of time slices. The
function takes as input the Clock and distributes time slices tick to the subambients
and processes in the given sets, thereby adjusting the sets of remaining and of served
ambients. The source clocks Clock† can reduce without parental time slices as given
in (TR-Source).

6.3.4 Resource Consumption

Processes expend the processing power of the ambient they are contained in by con-
suming the local time slices as resources. Thus, time consuming processes and time
consuming subambients in a virtually timed ambient compete for the same resource.
The consumption of a computing resource is defined as the capability c. A process P
without any appearance of c is called not time consuming. An ambient with a higher
local clock speed produces more time slices and therefore also more resources for each
parental time slice, which in turn allows more work to be done for each parental time
slice.

We illustrate resource consumption by considering a request which was sent to the
system of Example 1.

Example 2 (Resource consumption). Consider the virtually timed system with a load
balancer from Example 1, with an incoming request.

lbs[· · ·] | request[c . c .done signal |
in lbs.enter signal . open move]

60 Chapter 6

The request enters the system and is transferred by the load balancer into a, where
it is opened during the reduction and awaits resource consumption. After one time
signal of the source clock, the virtually timed ambient a emits one resource, which is
consumed by the request:

a[Clock1,1 |!open request .wait for done.done[out a. out lbs]

| wait for done.done[out a. out lbs] |c .done signal].

After another time signal from the source clock the ambient with name done can emerge
to the top level:

a[Clock1,1 |!open request .wait for done.done[out a.out lbs]] |
done[out lbs].

6.3.5 Accumulated Speed

The accumulated speed (am, bm) in an ambient m is the relative speed of the ambient
with respect to the source clock and the siblings. As the clocks distribute time slices
in a form of preemptive scheduling, such that each child gets one time slice in a round
robin way, it holds that the accumulated speed of an ambient is influenced by the
parental speed and the number of children n in the parental ambient. Thus, this
approach is not only path sensitive, but also sibling sensitive.

Definition 5. Let (aparent, bparent) be the accumulated speed in the direct parental am-
bient of an ambient m, nchildren the number of children of the parent, and C the chain
of all parental ambients of m up to the global level, then the accumulated speed for
preemptive scheduling in a subambient m is given as follows:

(am, bm) =

(
pm,

⌈
qm · nchildren ·

max{1, bparent}
aparent

⌉)
=

(
pm,

⌈
qm ·

∏
k∈C

nchildren of k ·
∏
k∈C

max{1, bk}
ak

⌉)

Example 3 (Change of accumulated speed). Consider the virtually timed system lbs
defined in Example 1, we define now a new system lbsc which equals lbs, except that
it contains a third subambient c.

system: (ν lb, a, b, c) lbsc[Clock2,1 | lb | a | b | c]
ambient c: c[Clock1,2 |! open request.wait for done.done[out c.out lbsc]]

As the approach is sibling sensitive, the accumulated speeds of the subambients of the
system are reduced compared to the setup in Example 1 with only two subambients.
Before, the accumulated speed of both a and b was (1, 1), now the speed of a and b is
(1, 2) and the accumulated speed of c is (1, 3).

6.4 Bisimulation and Barbs 61

6.4 Bisimulation and Barbs for Virtually Timed

Ambients

When comparing the behavior of virtually timed ambients, we want to consider time
as a factor. We first introduce a timed version of bisimulation and later of reduction
barbed congruence.

The concept of (bi)simulation is an important, well-established, and extensively
studied technique to define equivalences of concurrent or reactive systems [145]. It
comes in many flavors and may or may not be a congruence, as well, depending on the
constructs of the language and minutiae of the definition and the semantics. Being a
congruence, of course, is generally intended, as that allows compositional arguments
about equivalence of systems and replacing a subsystem by “equivalent” ones, without
changing the overall behavior. A very important sub-class of bisimulations are so-
called weak bisimulations; they are based on a distinction between observable and
non-observable or internal actions, ignoring the latter. Ignoring internal behavior as
unobservable is essential for being a useful basis of comparison, but unfortunately the
issue of being a congruence or not becomes more tricky.

This section will define a notion of weak bisimulation for virtually timed ambients,
generalizing the formalization for mobile ambients from [110], taking care of the timed
behavior. To relate systems concerning their timed behavior or speed, in particular
the “ticks” of the global clocks will be treated as observable. The standard notion
bisimulation (weak or strong) relates two systems via the transitions each system
makes, requiring that each (observable or every) step one system takes is mimicked
accordingly by the other system, and vice versa.

In that setting, the steps of a system represent its atomic interactions with its en-
vironment, modeled as labelled transitions. The reduction semantics from Section 6.3,
however, captures the behavior of closed or global systems. The semantics is formal-
ized as (unlabelled) reduction steps _ (additionally assisted by structural congruence
rules), i.e., without interaction with the environment or with a surrounding context.
To define bisimulation, we first formalize an open version of the operational seman-
tics, using a labelled transition relation. To express interaction with a surrounding
context in the open setting, transitions will have labels which capture interaction with
an environment.

For this purpose, we define a semantics of virtually timed ambients based on la-
beled transition systems, which can perform global time steps as observable actions.
The semantics is intended, of course, not as a semantically different alternative to the
reduction semantics, but as capturing the same behavior, described from the perspec-
tive of open systems. For that transition semantics, we define a notion of weak timed
bisimulation (cf. Section 6.4.1). Section 6.4.2 establishes that the introduced timed
notion of bisimulation is a congruence. Following a standard line of development, this
is done indirectly. First, one need to define a notion of bisimulation for the original
semantics. It’s defined contextually and based on so-called barbs, thereby fitting the
closed-system reduction semantics. The resulting definition is a congruence, and the

62 Chapter 6

second part of the argument establishes that both definitions of bisimulation coincide.

6.4.1 Weak Bisimulation for Virtually Timed Ambients

Let us start by defining the available labels for the transition system semantics.

Definition 6 (Labels). Let the set of labels Lab, with typical element α, be given as
follows:

α ∈ Lab ::= τ
| k.enter n | k.exit n | k.enter n | n.open k
| ∗.exit n | ∗.enter n
| k.tick

where k and n represent names of ambients. τ is the internal label, the rest are
called observable labels. We refer to labels of the forms ∗.exit n and ∗.enter n as
anonymous and other labels as non-anonymous, and let the untimed labels exclude the
tick labels.

The behavior of a timed system interacting with its environment is given as a
transmission system with transition labels from Lab. Note that the c capability does
not represent an interaction with an environment but an internal action and is therefore
not captured by a separate observable label apart from τ .

Definition 7 (Timed labeled transitions). The observable steps M
α−→M ′ of the timed

labeled transition semantics for timed systems is given by the rules of Table 6.7. For
internal behavior, τ -steps are the result of reduction steps, i.e., M _ M ′ implies
M

τ−→M ′.

The untimed labels, recording the system-environment interactions, i.e., ambient
movements induced by the capabilities, coincide with the ones from the untimed case
of mobile ambients [110].

In rules (Enter) and (Exit), an ambient k enters, respectively exits, from an
ambient n provided by the environment. The rules (Enter Shh) and (Exit Shh)
model the same behavior for ambients with private names. In rule (Co-Enter), an
ambient n, provided by the environment, enters an ambient k of the process. In rule
(Open), the environment provides an ambient n in which the ambient k of the process

is opened. In rule (Tick), the transition M
k.tick−−−→ M ′ expresses that the top-level

ambient k of the system M receives one time slice tick from the source clock on
the global level. Note that the post-configurations after the transitions contain the
symbol ◦, which is used as placeholder variable. The labels, capturing interaction
with the environment, carry partial information about the “data” exchanged with the
environment. For example, label k.enter n carries information about the identity k
of the ambient being entered, which is contained in the system, as well as about the
identity of the one entering named n, which, before the step, is still part of the envi-
ronment. If thus the enter-label conceptually indicates that some arbitrary ambient
n[R | Clock] enters the system as effect of executing the in n-capability, then the

6.4 Bisimulation and Barbs 63

(νm̃)(m[Clock |in n.P | Q] |M),m ∈ m̃
∗.enter n−−−−−→ (νm̃)(n[m[(Clock | P) | Q] | ◦] |M) (Enter Shh)

(νm̃)(k[Clock |in n.P | Q] |M), k /∈ m̃
k.enter n−−−−−→ (νm̃)(n[k[(Clock | P) | Q] | ◦] |M) (Enter)

(νm̃)(m[Clock |out n.P | Q] |M),m ∈ m̃
∗.exit n−−−−→ (νm̃)(m[(Clock | P) | Q] | n[M | ◦]) (Exit Shh)

(νm̃)(k[Clock |out n.P | Q] |M), k /∈ m̃
k.exit n−−−−−→ (νm̃)(k[(Clock | P) | Q] | n[M | ◦]) (Exit)

(νm̃)(k[(Clock | P)] |M), k /∈ m̃
k.enter n−−−−−→ (νm̃)(k[Clock∗ | n[◦] | P] |M) (Co-Enter)

(νm̃)(k[(Clock | P)] |M)
n.open k−−−−−→ n[◦ | (νm̃)(P |M)] (Open)

(νm̃)(k[Clock | Q] |M), k /∈ m̃
k.tick−−−→ (νm̃)(k[Clock | tick | Q] |M) (Tick)

Table 6.7: Rules for timed labeled transition systems, where in (Co-Enter) given
Clockk = Clock{ck, (pk, qk), {a1, . . . , ak}, {ak+1, . . . an}} the updated clock is de-
noted by Clock∗k = Clock{ck, (pk, qk), {a1, . . . , ak, n}, {ak+1, . . . an}} as seen in Ta-
ble 6.5.

name n is mentioned as part of the label but its “body” R | Clock is not. Later,
when relating the respective actions of two systems via a notion of bisimulation, intu-
itively, if one system does a transition where n[R | Clock] enters, the second system
must be able to exhibit the same transition, i.e., have the “same” ambient entering
without breaking their (bi)simulation relationship. In principle, though, the second
system can simulate the first doing a step where an ambient n[R] enters, with the body
S ≡ R | Clock. To achieve that (without overburdening the labels by interpreting
them up-to structural congruence ≡), the definition will make use of the placeholder ◦
and requiring preservation of the relationship for all instantiations of the placeholders
for both systems by the same body (cf. Definition 8 below). The substitution of the
placeholder by a pair of process and it local clock is written as P • (Clock | Q) and
defined as expected.

The reduction semantics of a process can be encoded in the labelled transition
system, because a reduction step can be seen as an interaction with an empty context.
We are interested in bisimulations that abstract from τ -actions and use the notion of
weak actions ; let =⇒ denote the reflexive and transitive closure of

τ−→, let
α
=⇒ denote

=⇒ α−→=⇒, and let
α̂
=⇒ denote =⇒ if α = τ and

α
=⇒ otherwise.

An example of a system consuming one parental tick and performing the subse-

64 Chapter 6

quent τ -actions is given below:

Example 4 (Timed transition). Let us reconsider Example 2. After one time signal of
the source clock, the virtually timed ambient a emits one resource, which is consumed
by the request:

a[P ′] := a[Clock1,1 |! open request .wait for done.done[out a. out lbs]

| wait for done.done[out a. out lbs] |c .done signal].

After another time signal from the source clock and some internal τ steps the ambient
named done can emerge, thus here it holds that:

lbs [Clock2,1 | lb | a[P ′] | b] lbs.tick−−−−→ lbs [Clock2,1 | tick | lb | a[P ′] | b]
=⇒ lbs [Clock2,1 | lb | a | b] | done[].

For virtually timed ambients from Table 6.4 and their labelled transition system,
we now define the notion of weak timed bisimulation, where tick steps are counted
among the observable transitions.

Definition 8 (Weak timed bisimulation). A symmetric relation R over timed systems
is a weak timed bisimulation if M R N and M

α−→M ′ implies:

1. If α is a non-anonymous label, then N
α̂
=⇒ N ′ for some N ′, such that

M ′•(Clock | P) R N ′•(Clock | P)

(for all clocks Clock and processes P).

2. For anonymous labels:

(a) If α = ∗.enter n, then N | n[◦] =⇒ N ′ for some N ′, such that

M ′•(Clock | P) R N ′•(Clock | P)

(for all clocks Clock and processes P).

(b) If α = ∗.exit n, then n[◦ | N] =⇒ N ′ for some N ′, such that

M ′•(Clock | P) R N ′•(Clock | P)

(for all clocks Clock and processes P).

Systems M and N are weakly timed bisimilar, written M ≈t N , if M R N for
some weak timed bisimulation R. If two systems are weakly timed bisimilar in a
timed setting where we observe the ticking of the source clock, then it follows from
the definition of weak timed bisimulation that they are weakly bisimilar in a setting
where we do not observe the ticking of the clocks but interpret all tick-actions as
τ -actions, instead. Since strong versions of bisimulation tend to be less useful [146],
we mainly consider weak bisimulation and let unqualified terms such as bisimulation
and bisimilarity refer to these weak versions.

6.4 Bisimulation and Barbs 65

Lemma 1 (Consistency). M ≈t N implies that M and N are weakly bisimilar, M ≈
N .

Note that for virtually timed ambients which are not time consuming, i.e. with a
speed of (0, 0), weak timed bisimulation and weak bisimulation coincide.

The following example illustrates that systems can be weakly bisimilar in a setting
where time is not observed without being weakly timed bisimilar in a timed setting.

Example 5 (Comparing systems with load balancers). We compare the behavior of
the system lbs from Example 1, which we will now call N , with a second system called
M , which is defined as follows:

load balancer system M : (ν lb, a) s[Clock1,1 | lb | a]

incoming request: request[P.done signal |in s.enter signal. open move]

load balancer: lb[!wait for enter.move[out lb. in request. in a]]

ambient a: a[Clock2,1 |! open request.wait for done.done[out a. out s]]

In contrast to N , system M only contains one virtually timed ambient, which receives
all requests. If we do not observe time, the systems behave the same, as they both
answer requests by emitting an observable done-signal. However, the systems are not
weakly timed bisimilar:

N ≈M and N 6≈t M .

We will revisit the example in the next section, after having defined the notion of
contexts (cf. Example 6 below).

6.4.2 Reduction Barbed Congruence

The purpose of this section is to establish that weak timed bisimulation ≈t is a con-
gruence. The result is established indirectly via a second equivalence, reduction barb
congruence (cf. Definition 14 below). This relation is defined as the largest relation
which is preserved by all constructs of the language (and thereby a congruence by
definition), preserved by the internal steps of the reduction semantics, and finally pre-
served by so called barbs, which are simple observables of terms. Honda and Yoshida’s
method [81] can be used to define weak reduction barbed congruence for mobile am-
bients [110]. This approach can be extended to virtually timed ambients.

Definition 9 (Contexts). A context is a process with a hole. A system context is a
context that transforms systems into systems. System contexts are generated by the
following grammar:

C[−] ::= − | C[−] |M | M | C[−]
| (νn)C[−] | n[C[−] | P] | n[P | C[−]] ,

where M is an arbitrary system and P is an arbitrary process.

66 Chapter 6

Example 6 (Comparing systems with load balancers (2)). Revisiting Example 5, we
use the notion of contexts to show that N ≈ M and N 6≈t M . The argument follows
a so-called up-to proof technique (e.g., [146]). There are two parts to establish.

1. For the untimed equality N ≈M , we define a relation R as follows:

R = {(M1,M2) | M1 = ((ν lb, a, b) s[lb | a | b | R] ,
M2 = (ν lb, a) s[lb | a | R]), for arbitrary s, R
s.t. lb, a, and b /∈ fn(R) } .

We need to confirm then, that R is a bisimulation up to context and up to
structural congruence. So, assume N

α−→ N ′ and proceed by case analysis on the
structure of α.

Case: α = τ (internal action).
Depending on the nature of N ′, there are three subcases to consider.

Subcase: N ′ ≡ (ν lb, a, b) s[lb | a | b | R′],
with R

τ−→ R′. It follows that (ν lb, a) s[lb | a | R]
τ−→ M ′, where M ′ ≡

s(ν lb, a) [lb | a | R′] and N ′ ≡ R ≡M ′

Subcase: N ′ ≡ (νn)(ν lb, a, b) (m[R′] | s[lb | a | b | R′′]) ,
with R ≡ (νn)(m[out s | R′] | R′′). It follows that (ν lb, a) s[lb | a | R]

τ−→ M ′,
where M ′ ≡ (νn)(m[R′] | (ν lb, a) s[lb | a | R′′]). Now we can factor out the
system context C[−] = (νn)(m[R′] | −), thus we are still in R up to context and
up to structural congruence.

Subcase: N ′ ≡ (ν lb, a, b) s[lb | a | b | R] | done[] .
This must have been derived from (ν lb, a, b) s[lb | a | b | R | request[P]], for an
adequate P . This in turn is an instantiation of s.enter request. It holds that
(ν lb, a) s[lb | a | R | request[P]] reduces to (ν lb, a) s[lb | a | R] | done[]. Now
we can factor out the system context C[−] = done[] | −, thus we are still in R
up to context and up to structural congruence.

Case: α = s.enter n.
Then N ′ ≡ n[(ν lb, a, b) s[lb | a | b | R′] | ◦] and R must have execited the

capability in n, reducing to R′. Thus, (ν lb, a) s[lb | a | R]
s.enter n−−−−−→ M ′, where

M ′ ≡ n[(νlb, a) s[lb | a | R′] | ◦]. Now we can factor out the system context
C[−] = n[◦ | −], thus we are still in R up to context and up to structural
congruence.

Case: α = s.exit n.
Then N ′ ≡ (ν lb, a, b) s[lb | a | b | R] | n[◦] and R must have unleashed the

capability out n, reducing to R′. Thus, (ν lb, a) s[lb | a | R]
s.exit n−−−−→ M ′, where

M ′ ≡ (ν lb, a) s[lb | a | R′] | n[◦]. Now we can factor out the system context
C[−] = n[◦] | −, thus we are still in R up to context and up to structural
congruence.

6.4 Bisimulation and Barbs 67

Case: α = n.open s.

Then N ′ ≡ (ν lb, a, b) n[lb | a | b | R | ◦] and (ν lb, a) s[lb | a | R]
n.open s−−−−→ M ′,

where M ′ ≡ (ν lb, a) n[lb | a | R | ◦]. By the definition of R it holds that
N ′ • (Clock | P) ≡ R ≡M ′ • (Clock | P) for all clocks Clock and processes
P .

Case: α = s.enter k.
Then N ′ ≡ (ν lb, a, b) s[lb | a | b | R | n[◦]] and (ν lb, a) s[lb | a | R]

s.enter k−−−−−→M ′,
where M ′ ≡ (ν lb, a) s[lb | a | R | n[◦]]. By the definition of R it holds that
N ′ • (Clock | P) ≡ R ≡M ′ • (Clock | P) for all clocks Clock and processes
P .

It follows that N ≈M .

2. For the timed setting we need to show N 6≈t M . Assume for a contradiction that
N ≈t M . Consider the case α = τ with the subcase M ′ ≡ M ′′ | done[]. This
must have been derived from (ν lb, a) s[lb | a | R | P], for an adequate P . This
in turn is an instantiation of s.enter n. Let P = request[c . c .done signal |
enter signal. open move]. Then it holds that (ν lb, a) s[lb | a | R | P]

s.tick
===⇒

(ν lb, a) s[lb | a | R] | done[]. As ≈t is a weak timed bisimulation it has to hold

that (ν lb, a, b) s[lb | a | b | R | P]
s.tick
===⇒ (ν lb, a, b) s[lb | a | b | R] | done[] for

this process P as well. However, in the case of system N the reduction result
(ν lb, a, b) s[lb | a | b | R] | done[] can not be derived with only one execution
of tick. As clocks and resources are restricted to their parental ambients no

additional tick can be added via contexts, and it holds that N
s.tick
===⇒ N ′, where

N ≡ (ν lb, a, b) s[lb | a[P ′] | b | R]. Thus, M ′ ≈t N ′ does not hold.

Definition 10 (Preservation under contexts). A relation R is preserved by system
contexts if M R N implies C[M] R C[N] for all system contexts C[−].

Theorem 1. Weak timed bisimilarity is preserved by system contexts.

Proof. The proof is similar to the related proof for mobile ambients by Merro and
Zappa Nardelli [110], and extended for the k.tick action. As k.tick be seen as a
special case of the k.enter n action, the same proof method can be used here.

We extend the notion of barbs from Definition 2 by a weak version.

Definition 11 (Weak barbs). Process P weakly barbs on n, P⇓n if P =⇒ P ′ and
P ′↓n, for some P ′ .

Besides being preserved by contexts, the congruence definition stipulates preserva-
tion under basic observations.

Definition 12 (Preservation of barb). A relation R over processes is barb preserving
if P R Q and P↓n implies Q⇓n.

Definition 13 (Preservation under reduction). A relation is reduction closed (or
preserved under reduction) if P R Q and P _ P ′, implies Q _ Q′ for some Q′

68 Chapter 6

Definition 14 (Reduction barbed congruence over timed systems). Reduction barbed
congruence over timed systems 's is the largest symmetrical relation over timed sys-
tems which is preserved by all system contexts, is reduction closed and barb preserving.

To show that reduction barbed congruence for timed systems and weak timed
bisimilarity coincide, the more challenging direction to establish is the inclusion 's ⊆
≈t. Contrapositively formulated it means any two open systems distinguishable by ≈t,
are also distinguishable via 's, i.e., via a context which makes this distinction. To do
this we need to define a system context that (in particular) observes the action k.tick;
contexts to observe the other non-anonymous actions of the labeled transition system
are defined as for mobile ambients [110]. Again, we can consider k.tick as a special
case of the k.enter n action and can therefore define the tick-observing context as
follows:

Cn.tick[−] = (νa, b)a[in n.tick[out a.b[out tick. out n.done[out b]]]] | − .

It remains to show that these contexts can indeed be used to observe ticks (respectively
other actions for correspondingly defined contexts). This proof obligation has two
sides, the first captured in Lemma 2. It stipulates that the tick-observing context put
together with a tick-emitting system does observe the tick in that both reduce to a
configuration containing the ambient done at top-level; the latter is used as marker to
witness this successful interaction. The reverse property in Lemma 3 makes sure that,
with the help of barbs, a context Cn.tick (or Cα in the general cases) assures that the
system under observation does make a tick-step (resp. α-step).

Note that all top level ambients of the system which is entered in the context will
receive time via τ -actions. With this context, we can extend Lemma 4.8 of Merro and
Zappa Nardelli [110] to virtually timed ambients as follows:

Lemma 2. Let α be an observable, non-anonymous label and M a system. Then for
all clocks Clock and processes P , if M

α−→ M ′ then Cα[M] • (Clock | P) =⇒ 's
(M ′ • (Clock | P)) | done[].

Proof. We will only consider α = n.tick. All other cases are similar to the ones for

untimed mobile ambients. Let P be a process. We know that M
n.tick−−−→ M ′. Then

M ′ ≡ n[tick | Q] |M ′′. Now,

Cn.tick[M] • (Clock | P)

≡((νa, b)a[in n.tick[out a.b[out tick. out n.done[out b]])]] |M)

• (Clock | P)

_ ((νa, b)n[a[tick[out a.b[out tick. out n.done[out b]]]] | Q] |M ′′)

• (Clock | P)

_ ((νa, b)n[a[] | tick[b[out tick. out n.done[out b]]] | Q] |M ′′)

• (Clock | P)

_ ((νa, b)n[a[] | tick | Q] | b[done[out b]] |M ′′) • (Clock | P)

6.5 Relaxation over Time 69

_ ((νa, b)n[a[] | tick | Q] | b[] | done[] |M ′′) • (Clock | P)

≡(M ′ • (Clock | P)) | done[].

To prove the correspondence between actions α and their contexts Cα[−], we have to
prove the converse of the above lemma as well. The proof of this result uses particular
contexts spyα〈i, j,−〉 as a technical tool to guarantee that the process P provided by
the environment does not perform any action. Define the context spyn.tick〈i, j,−〉 :=
(i[] | −) ⊕ (j[] | −), where ⊕ represents (an encoding of) the internal choice between
the left and right process. We can now extend Lemma 4.12 of [110] as follows:

Lemma 3. Let α be an observable, non-anonymous action and M a system. Let i and
j be fresh names for M . For all processes P with {i, j}∩fn(P) = ∅, if Cα[M]•(Clock |
spyα〈i, j, P 〉) =⇒≡ N | done[] and N⇓i and N⇓j, then there exists a system M ′ such

that M
α−→M ′ and M ′ • (Clock | spyα〈i, j, P 〉) 's N .

Proof. We only show the case of α = n.tick. All other cases are similar to the cases
for mobile ambients.

Cα[M] • (Clock | spyα〈i, j, P 〉)
≡ (νa, b)a[in n.tick[out a.b[out tick. out n.done[out b]]]] |
M • (Clock | spyα〈i, j, P 〉)

_ (νa, b)n[a[] | tick | Q] | b[] |M ′′

• (Clock | spyα〈i, j, P 〉) | done[] • (Clock | spyα〈i, j, P 〉)
≡M ′ • (Clock | spyα〈i, j, P 〉) | done[] • (Clock | spyα〈i, j, P 〉)
≡ N | done[] .

We conclude that M
n.tick−−−→M ′. Thus, M ′ • (Clock | spyα〈i, j, P 〉) 's N holds.

Theorem 2. Weak timed bisimilarity and reduction barbed congruence over timed
systems coincide.

Proof. By Theorem 1, ≈t is preserved by contexts. The relation is additionally pre-
served under barbs and under reductions, two properties which carry over from (un-
timed) mobile ambients. With 's defined as the largest congruence enjoying those
preservation properties, immediately ≈t ⊆ 's. For the reverse inclusion, we can now
extend Theorem 4.14 in [110] by means of Lemmas 2 and 3 above. The cases for the
anonymous actions are the same as for the mobile ambients. Hence, reduction barbed
congruence and weak timed bisimilarity coincide, i.e. M ≈t N iff M 's N.

6.5 Relaxation over Time

It is possible that two virtually timed systems behave the same for a certain type of
requests but not for others, or that a system behaves equivalently to another except
for needing some extra time slices per executed request. Example 5 shows that the

70 Chapter 6

timed behavior of a system depends on the kind of requests that are made, the number
of virtually timed ambients which are used as computing environments, their speeds
and the way the requests are distributed to the computing environments.

6.5.1 Bounded Bisimulation

To compare systems only for certain types of requests and to consider if one system
is faster or slower in executing these requests, we define a bisimulation which does
not consider all processes P but only specific ones and also relaxes the time condition.
First we introduce an asymmetric order relation, a simulation which allows to compare
systems of different “speed”, but otherwise equivalent behavior.

Definition 15 (Weak k-timed P-simulation). Let P be a class of processes and k ∈ N.
A relation R over systems is a weak k-timed P-simulation if M R N and M

α−→ M ′

implies

1. If α is a non-anonymous label, then N
m.ticki−−−−→ α̂−−→ m.tickj−−−−→ N ′ for some N ′ and

where i+ j ≤ k, such that M ′•(Clock | P) R N ′•(Clock | P) (for all P ∈ P
and all Clock).

2. For anonymous labels:

(a) If α = ∗.enter n, then N | n[◦] m.tickj−−−−→ N ′ for some N ′ and were j ≤ k.
such that M ′•(Clock | P) R N ′•(Clock | P), (for all P ∈ P and all
Clock).

(b) If α = ∗.exit n, then n[◦ | N]
m.tickj−−−−→ N ′ for some N ′ and were j ≤ k.

such that M ′•(Clock | P) R N ′•(Clock | P), (for all P ∈ P and all
Clock).

Here m.tickj denotes the j-fold execution of the m.tick action. A system M is
weakly k-timed P-simulated by N , written M �tk,P N , if M R N for some k-timed
P-simulation and some class of processes P . Let kmin be the minimum k such that
M �tk,P N holds. This means that N needs at least kmin more tick steps than M to
execute single requests of type P . We will consider all further k to be the minimal
kmin and call k the slack of the simulation.

Definition 16 (Weak k-timed P-bisimulation). Let P be a class of processes and
k ∈ N. A symmetric weak k-timed P-simulation R over systems is a weak k-timed
P-bisimulation.

Systems M and N are weakly k-timed P-bisimilar, written M ≈tk,P N , if M R N
for some k-timed P-bisimulation R and some class of processes P . This means that
the systems need at least k additional tick steps to simulate each other’s behavior. If
M ≈t0,P N for a class of processes P then the systems are not distinguishable for these
processes. Observe that if M ≈t0,P N for P the class of all processes then M ≈t N .
This follows from the definitions. We can make a similar observation about weak
bisimulation without time.

6.5 Relaxation over Time 71

Figure 6.1: Indistinguishable behavior with round-robin load balancers and requests
which need one computing resource to execute.

Lemma 4. Let P be the class of all processes. Then M ≈t∞,P N if and only if M ≈ N .

Proof. Assume M ≈ N . This means, we consider a setting where we do not observe
the ticking of the clocks but interpret all tick-actions as τ -actions, instead. Treating
all tick-actions as τ -actions is equivalent to setting k =∞ in the definition of k-timed
P-bisimilarity. Thus, M ≈t∞,P N for P the class of all processes.

Assume now M ≈t∞,P N for P the class of all processes. This is equivalent to
treating tick-actions as unobservable τ -actions, thus M ≈ N in a setting where we
do not observe the ticking of the clocks but interpret all tick-actions as τ -actions.

We illustrate the concepts of weakly k-timed P-bisimulation and slack in the fol-
lowing example.

Example 7 (Slack between two systems). Consider the two systems M and N from
Example 5. System M has a clock with speed (1, 1), a load balancer and the com-
puting environment a[Clock2,1 | · · ·], and further system N has a clock with speed
(2, 1), another load balancer and the computing environments a[Clock1,1 | · · ·] and
b[Clock1,1 | · · ·]. As M has only one virtually timed subambient, which is used as
a computing environment, with a speed that equals the combined speeds in N , it holds
that M can always simulate N ; thus, N �t0,P M for all P. On the other hand the
number of additional tick steps needed by N to simulate M depends on the load bal-
ancer in the system. If we assume that the load balancing is round-robin then the two
systems are not distinguishable for processes which only need one computing resource
to execute. An example can be seen in Figure 6.1. Thus, M ≈t0,P N for the class P of
processes which need only one computing resource to execute. Since tasks which need
more than one resource can not be served by N in one time slice it is easy to see that
M will always be faster. This effect can be seen in Figure 6.2.

72 Chapter 6

Figure 6.2: Worst case function for kN as well as the actual k needed when using
round-robin, where R is the maximal number of resources required by a single request.

6.5.2 Comparing Different Schedulers

In Example 7, round-robin is the best way to schedule the processes for distribution
into the virtually timed subambients. But in general round-robin does not guarantee
the fastest execution.

Definition 17. We call the scheduling of processes perfect if the processes are always
distributed in such a way that the execution takes the least possible amount of time.

Note that building such a load balancer is a non-trivial optimisation problem. We
use this definition to generalize the upper bound for the slack kN in Example 7. Let
P∅ denote the class of all processes which do not require resources and therefore
are not time consuming. If M ≈t0,P∅

N , then the systems do not have any internal
processes which require a different amount of tick steps. Additionally we use the
notion of a statically deployed system. In a statically deployed system, as for instance
in Example 1, the time consuming virtually timed ambients do not move.

Definition 18. A statically deployed system is a timed system where only virtually
timed ambients with a speed of (0, 0) are permitted to make use of the enter- and
exit-capabilities.

Lemma 5. Let M and N be statically deployed systems. Assume M ≈ N and M ≈t0,P∅
N . Let (am, bm) be the accumulated speed in a virtually timed ambient m, which is used
as computing environment. Let P ∈ P be a parallel composition of independent requests
p1, . . . , pn, n ∈ N, which require a number of computing resources rpi, i ∈ {1, . . . n},
and result in observable changes to the system. Let R = max{

∑n
i=1 rpi | P ∈ P} be

the maximum of all required computing resources by any request. Then it holds that

6.5 Relaxation over Time 73

M �tk,P N for some P and it holds that

k ≤


R−

⌈
R∑

m∈M
am
bm

⌉
·min{am

bm
| m ∈ N}

min{am
bm
| m ∈ N}

 .
Proof. As M ≈ N , it holds that M �t∞,P N for all P . As M ≈t0,P∅

N , there are no
internal processes which influence the timing in M and N in different ways. As the
scheduling functions of the systems are not known, the worst case scenario in terms of
speed occurs if all requests end up in the slowest virtually timed subambient, which is
used as a computing environment, in N , while all virtually timed ambients in M can
be used perfectly. In this case the number of time steps needed by M to execute all

requests is
⌈

R∑
m∈M

am
bm

⌉
. By the definition of k-timed P-simulation, N can execute k

time steps after a process P ∈ P has entered the system. To execute all requests in the

slowest virtually timed ambient, it has to hold that R ≤
(⌈

R∑
m∈M

am
bm

⌉
+ k
)
·min{am

bm
|

m ∈ N}. Thus, the minimal k in the worst case scenario is

k =


R−

⌈
R∑

m∈M
am
bm

⌉
·min{am

bm
| m ∈ N}

min{am
bm
| m ∈ N}

 .
As k can be less for other scheduling functions, the inequation follows.

Note that if M and N are not statically deployed, a similar estimation can be made
by considering the minimum of all possible accumulated speeds during the computa-
tion. However, such an estimation is much less accurate.

In the following example, we consider a load balancing strategy which is different
from round-robin.

Example 8 (System with elastic scaling). We modify Example 5 of systems with load
balancers by considering an elastically scaling system O which is able to react to the
size of the requests.

system O: (ν scale, default, a, b) ess[Clock1,1 | scale | default]

request: request[P.done signal |in ess.size signal. open move]

scale: scale[!(size signal a. open locka.a[· · ·] |
size signal b. open lockb.b[· · ·])
!locka[x[]] |!lockb[y[]] |
!(open x.move[out scale. in request. in a] |

open y.move[out scale. in request. in b])]

ambient default: default[! open a |! open b]

ambient a: a[Clock1,1 |out scale. open request.wait for done.

in default | done[out default. out ess]]

74 Chapter 6

Figure 6.3: Example of a scaling system

ambient b: b[Clock2,1 |out scale. open request.wait for done.

in default | done[out default. out ess]]

In this example the ambient scale receives a signal from the request indicating its size.
According to that scale releases ambients a or b with different speeds. The request is
executed in this ambient and afterwards the ambient is deleted.

Figure 6.3 exemplifies the behavior of the system when given the requests

r1: request[c . c .done signal |
in ess.size signal b. open move] and

r2: request[c .done signal |in ess.size signal a. open move].

The given system shows the same behavior as the systems with load balancer in
Example 5. At first glance the timed behavior seems similar to system M , but as this
system can react to the size of the input while M uses a round-robin approach, it holds
that M �t0,P O for all P, while O �tk,P M for some k ≥ 0.

If two systems release the same combined amount of resources in their virtually
timed subambients for the same combined input value of time slices, we say they have
the same combined speed. We can show that systems with the same combined speed
are not distinguishable for small execution requests and perfect scheduling functions.

Lemma 6. Assume M ≈ N where M and N do not have any internal processes
which require a different amount of time steps. Assume the scheduling functions in
M and N are perfect and M and N have the same combined speed in the virtually
timed subambients which are used as computing environments. Let P ∈ P be a parallel
composition of independent requests p1, . . . , pn, n ∈ N, which require a number of
computing resources rpi, i ∈ {1, . . . n}, and result in observable changes to the system.
Then M ≈t0,P N if P is such that for all P ∈ P it holds that

max{rpi | i ∈ {1, . . . n}} ≤ 1 ,

6.6 Related Work 75

Figure 6.4: Worst case function and actual k needed by M and N in the case of
round-robin and perfect scheduling, respectively.

i.e. the maximal requirement of resources in one request is less or equal one.

Proof. As the requests are at most of size one, are scheduled perfectly and both systems
have the same combined speed, they will need the same number of time steps.

In the following example we examine the worst case estimation of Lemma 5 with
two different scheduling functions.

Example 9 (Worst case estimations). Consider two systems M and N , which are
build similar to the system in Example 1. System M has a clock with speed (2, 1),
some load balancer and the ambients a[Clock4,1 | · · ·] and b[Clock2,1 | · · ·] for exe-
cution. System N has a clock with speed (2, 1), some load balancer and the computing
environments a[Clock3,1 | · · ·] and a[Clock3,1 | · · ·]. As M and N have the same
combined speed by Lemma 6, the systems are not distinguishable for perfect scheduling
and requests of maximal size one. With round-robin scheduling , M needs k = 1 to
simulate N for requests of size one. Figure 6.4 shows the worst case function as well
as the actual slack k needed by the systems to simulate each other for different given
scheduling functions and request sizes. The bigger the requests get, the worse the be-
havior of M with round-robin scheduling becomes. This is due to M containing the
virtually timed subambient with the slowest local clock. Additionally we see that the
slack k for perfect scheduling stays far behind the worst case estimation.

6.6 Related Work

The extension of algebraic concurrency theories such as ACP, CCS and CSP to deal
with time-dependent behavior can be done according to different design choices. Time
can be absolute or relative. The time domain can be continuous, dense (so-called

76 Chapter 6

real time), or discrete. Time can be semantically associated with regular actions,
for instance via the use of timers, or it can be represented by special actions. Timed
process algebras which originated from ACP and CSP can be found in, e.g., [14,15,122].
The model of virtually timed ambients developed in this paper builds on the mobile
ambients. Therefore, we focus the discussion of related work on the π-calculus [146],
which originated from CCS and which is closely related to the ambient calculus.

An early timed extension of CCS introduced a special action for time, without
committing to a discrete or continuous time domain [118]. A related idling action σ is
proposed in [77] such that processes in a standard process algebra would need exactly
one time unit to process a σ, where time is discrete and processes synchronized via a
global clock. A notion of local time for CCS is proposed in [147]; this notion resembles
our model of local clocks, but was realized in terms of a timeout oriented model. A
simulation-based faster-than preorder is introduced in [103]; this preorder is related to
our notion of time relaxation but the faster-than preorder allows a process to delay by
at most one time unit. In addition, the high-level idea in these works is very different:
All these approaches focus on speed as the duration of processes, while in our approach
with local clocks speed describes the processing power of a virtually timed ambient.

Timers have been studied for both the distributed π-calculus [20,137] and for mo-
bile ambients [8, 9, 53]. In this line of work, timers, which are introduced to express
the possibility of a timeout, are controlled by a global clock. In membrane comput-
ing, the execution of each rule similarly takes exactly one time unit, as given by a
global clock [131]. To overcome this restriction of membrane computing for mod-
eling actual chemical reactions, each rule in timed P systems [48] has an associated
integer representing the time needed to complete the execution of the rule. This resem-
bles the timer approach on mobile ambients [8, 9, 53]. In contrast, the source clocks
at the global system level in our work recursively control local clocks which define
the execution power of the nested virtually timed ambients. Modeling timeouts is a
straightforward extension of our work.

The enhancement of a process algebra with resources as primitives is studied
in [100], where priorities are added to make processes sensitive to scheduling. A similar
approach with an explicit scheduling concept is studied in [119]. In contrast, the only
primitive in our approach is the ambient and the scheduling is fixed in the implemen-
tation of the resource distribution. Calculi, which are simpler to implement than the
ambient calculus are studied in [23] and [52]. The Kell calculus described in [23] is
based on the M-calculus and uses higher order communication. The δ-calculus in [52]
uses synchronous movements in order to model distributed mobile real-time business
applications. However, both calculi fail to preserve the simplicity of the ambient cal-
culus. CPL [29] is a core language for defining cloud services and their deployment
on cloud platforms which aims to enable statically safe service composition and cus-
tom implementations of cloud services. In contrast to our work on virtually timed
ambients, time and performance are not been considered for CPL.

Cardelli and Gordon defined a labeled transition system for their mobile ambients
[45], but no bisimulation. A bisimulation relation for a restricted version of mobile
ambients, called mobile safe ambients, is defined in [109] and provides the basis for later

6.7 Concluding Remarks 77

work. Barbed congruence for the same fragment of mobile ambients is defined in [157].
It is shown in [67] that name matching reduction barbed congruence and bisimulation
coincide in the π-calculus. A bisimulation relation with contextual labels for the
ambient calculus is defined in [120], but this approach is not suitable for providing a
simple proof method. A labelled bisimulation for mobile ambients is defined by Merro
and Nardelli [110], who prove that this bisimulation is equivalent to reduction barbed
congruence and develop up-to-proof techniques. The weak timed bisimulation defined
in this paper is a conservative extension of this approach.

6.7 Concluding Remarks

Virtualization opens for new and interesting foundational models of computation by
explicitly emphasizing deployment and resource management. This paper introduces
virtually timed ambients, a formal model of hierarchical locations of execution with
explicit resource provisioning. Resource provisioning for virtually timed ambients is
based on virtual time, a local notion of time reminiscent of time slices for virtual
machines in the context of nested virtualization. This way, the computing power of
a virtually timed ambient depends on its location in the deployment hierarchy. To
reason about timed behavior in this setting, we define weak timed bisimulation for
virtually timed ambients as a conservative extension of bisimulation for mobile ambi-
ents, and show that the equivalence of bisimulation and reduction barbed congruence is
preserved by this extension. We define timed relaxation as an “equivalent but slower”
simulation relation, allowing speed deviation up to a bounded amount of time.

The calculus of virtually timed ambients opens for further, interesting research
questions. One line of research is in statically controlling resource management, for
example by means of behavioral types. Another line of research is in dynamically
controlling resource management by means of resource awareness. This line of work
is suggested by examples in this paper such as load balancers but could be enhanced
by reflective resource capabilities allowing a process to influence its own deployment
similar to virtualization APIs found in the context of cloud computing.

CHAPTER 10

An Analysis Framework for
Virtualization

Abstract. This paper gives an example-driven introduction to modelling and ana-
lyzing virtualized systems in, e.g., cloud computing, using virtually timed ambients, a
process algebra developed to study timing aspects of resource management for (nested)
virtual machines. The calculus supports nested virtualization and virtual machines
compete with other processes for the resources of their host environment. Resource
provisioning in virtually timed ambients extends the capabilities of mobile ambients
to model the dynamic creation, migration, and destruction of virtual machines. Qual-
ity of service properties for virtually timed ambients can be formally expressed using
modal contracts describing aspects of resource provisioning and verified using a model
checker for virtually timed ambients, implemented in the rewriting system Maude.

10.1 Introduction

Cloud computing is a paradigm of distributed computing which allows users to store
data and execute processes in a shared pool of data centers. A key factor in the
success of cloud computing is virtualization [60, 83]. Virtualization technology repre-
sents the resources of an execution environment as a software layer, a so-called virtual
machine. It allows to share existing resources, improves security by providing isola-
tion of different users sharing the same resource, and enables dynamic assignment of
resources according to consumer demand. The sharing of resources creates business
drivers which make cloud computing an economically attractive model for deploying
software [37]. Nested virtualization [73] is crucial to support cloud systems, as it en-
ables virtual machines to migrate between different cloud providers [159]. It is also
necessary to host virtual machines with operating systems which themselves support
virtualization [19], such as Microsoft Windows 7 and Linux KVM.

Virtually timed ambients [89] is a calculus of explicit resource provisioning, based
on the well-known calculus of mobile ambients [43]. It can be used to model nested

150 Chapter 10

virtualization in cloud systems, as virtually timed ambients formalize explicit resource
management for virtual machines. The time model used to realize the resource pro-
visioning for virtually timed ambients is called virtual time. Virtual time is provided
to a virtually timed ambient by its parental ambient, similar to the time slices that
an operating system provisions to its processes. When considering levels of nested
virtualization, virtual time becomes a local notion of time which depends on a virtu-
ally timed ambient’s position in the nesting structure. Virtually timed ambients are
mobile, reflecting that virtual machines may migrate between host virtual machines.
Observe that such migration affects the execution speed of processes in the migrating
virtually timed ambient, as well as in the virtually timed ambient which is left, and in
the virtually timed ambient which is entered.

In cloud computing, a service-level agreement is a contract between a cloud provider
and a client, specifying properties the system has to satisfy with respect to quality of
service, such as mean time between failures, responsibility for various data rates or
resource consumption. As virtually timed ambients can model nested virtualization in
cloud systems and modal logic can be used to define properties of such systems, modal
contracts for virtually timed ambients [90] formalize quality of service statements about
cloud systems modeled in virtually timed ambients. A simulator and a model checker
for virtually timed ambient have been implemented in the Maude system, as a tool to
prove that a system satisfies a given proposition [90]. Maude was chosen as execution
platform as it provides an intuitive way to model distributed systems at a high level
of abstraction [125].

This paper shows by examples how models of virtualized systems can be con-
structed in virtually timed ambients and analyzed with the model checker. Several
concrete examples are analyzed to verify quality of service statements. Together, the
basic building blocks of these examples constitute a library for developing models of
virtualized systems.

Contributions. The main contributions of this paper are the following:

• exploration of the virtually timed ambient calculus and the corresponding modal
logic as a model for virtualization in cloud computing;

• a library of basic building blocks for modeling cloud systems in virtually timed
ambients;

• examples and analysis of cloud models, using the model checker tool for virtually
timed ambients.

Paper overview. We introduce virtually timed ambients, their implementation in
Maude and the corresponding modal logic in Section 10.2. Section 10.3 describes a
library of building blocks for cloud models in virtually timed ambients. Section 10.4
presents different examples of cloud architecture and analyses them using modal logic.
We discuss related work and conclude in Sections 10.5 and 10.6.

10.2 Virtually Timed Ambients 151

10.2 Virtually Timed Ambients

Virtually timed ambients extend mobile ambients with notions of virtual time and
resource consumption, in order to model aspects of virtualization in cloud comput-
ing. We first recapitulate the main points of the calculus of mobile ambients before
discussing the enhancements made by the calculus of virtually timed ambients.

Preliminaries on mobile ambients. The ambient calculus is a process algebra of
locations and domains, originally developed by Cardelli and Gordon [43] for distributed
systems such as the Internet. Mobile ambients are processes with a concept of location,
arranged in a dynamically evolving hierarchy. An ambient represents the location or
domain where a process is running, as illustrated by Fig. 10.1.

Figure 10.1: Graphical representation of a mobile ambient containing a process.

Ambients can be nested, such that a surrounding parental ambient contains sub-
ambients, and the nesting structure can change dynamically. This is specified by three
basic capabilities. The input capability in n indicates the willingness of a process
to move its parental ambient into an ambient named n, running in parallel with the
parental ambient (illustrated by Fig. 10.2); the output capability out n enables an
ambient to leave its surrounding ambient n; and lastly the capability open n allows
to open an ambient named n which is on the same level as the capability. This syntax
and the corresponding semantics are explained in detail in [43].

Figure 10.2: Graphical representation of the in n capability of mobile ambients.

Virtually timed ambients and their implementation. Mobile ambients are
located processes, arranged in a hierarchy which may change dynamically. Interpreting
these locations as a places of deployment, virtually timed ambients [88, 89] extend
mobile ambients with notions of virtual time and resource consumption.

Timed processes differ from mobile ambients in that each virtually timed ambient
contains, besides possibly further virtually timed subambients, a local scheduler (see
Fig. 10.3). In a virtually timed ambient, the local scheduler is responsible for triggering
timed behavior and local resource consumption. Each time slice emitted by a local
scheduler triggers the scheduler of a subambient or is consumed by a process as a
resource in a round-robin way. This corresponds to a simple form of fair, preemptive
scheduling, which makes the system’s behavior sensitive to co-located virtually timed

152 Chapter 10

ambients and resource consuming processes. Technically, a local scheduler has a speed,
relating externally received to internally emitted time slices; it contains counters to
register the numbers of received and emitted time slices; and it contains sets of names
of local ambients and processes which have been served a time slice by the scheduler
in the current cycle, and those who have not, respectively.

Figure 10.3: Graphical representation of a virtually timed ambient with a scheduler.

Timed capabilities extend the capabilities of mobile ambients by including a re-
source consumption capability, denoted c, and by giving the opening, exiting, and
entering capabilities of mobile ambients a timed interpretation. These capabilities
restructure the hierarchy of an ambient system, and the local schedulers need to be
adjusted for every movement.

Figure 10.4: Graphical representation of the in m capability. The updated schedulers
of the old and new parental ambient after the movement are marked with *.

Without adjusting the schedulers, the moving subambient would not receive time
slices, which are represented with the notation tick, from the scheduler in its new
surrounding ambient. For the in n and out n capabilities, the schedulers of the old
and new surrounding ambient of the moving ambient are modified (as illustrated by
Fig. 10.4). For the open n capability, the scheduler of the parent ambient itself is
modified and the scheduler of the opened ambient is deleted. For the new consumption
capability c, the time consuming process moves into the scheduler, where it waits to
receive a time slice as resource before it can continue (see Fig. 10.5).

Figure 10.5: Graphical representation of the consume capability moving into the sched-
uler and consuming a resource after the ambient receives a tick from the parental
ambient.

The calculus of virtually timed ambients has been implemented [90] in the Maude
system for rewriting logic. Rewriting logic embeds membership equational logic, such

10.2 Virtually Timed Ambients 153

that a specification or program can contain both equations and rewrite rules. When
executing a Maude specification, rewrite steps are applied to normal forms in the
equational logic. Both equations and rewrite rules may be conditional, meaning that
specified conditions must hold for the rule or equation to apply. The Maude specifica-
tion correlates directly to the formal definition of the calculus [89], hence we make use
of the implementation to explain the calculus. The syntax of virtually timed ambients
is represented by Maude terms, constructed from operators:1

op zero : -> VTA [ctor] .

op _|_ : VTA VTA -> VTA [id: zero assoc comm] .

op _._ : Capability VTA -> VTA .

op _[_|_] : Name Scheduler VTA -> VTA .

Here all processes are defined with the data type VTA. The operator zero repre-
sents the inactive process, and parallel composition has the algebraic properties of
being associative, commutative and having zero as identity element. Concatenation
is represented with a dot, and virtually timed ambients are represented with a name
followed by brackets, containing a scheduler and a process. Schedulers have a speed
and contain the counters and sets used to control the distribution of time slices as
outlined previously:

op sched_{_,_,_,_,_} : Rat Nat Nat Nat Servables Servables -> Scheduler.

The execution of timed capabilities is represented as rewrite rules, which are inter-
preted such that any term or subterm which matches the left hand side of the rewrite
symbol => may be rewritten into the corresponding right hand side. Preconditions can
be expressed using conditional rewrite rules, where a condition is stated after if. The
in m capability, for instance, may be expressed in Maude as follows:

crl [in] :

K[sched SpdK {InK, OutK, RestK, UnSrvK, SrvK}

| N[sched SpdN {InN, OutN, RestN, SrvN, UnSrvN} | in(M) . P | Q]

| M[sched SpdM {InM, OutM, RestM, SrvM, UnSrvM} | R] | U]

=>

K[sched SpdK {InK, OutK, RestK, Unserved, Served}

| M[sched SpdM {InM, OutM, RestM, SrvM, NewParent} | R

| N[sched SpdN {InN, OutN, RestN, SrvN, merge(UnSrvN, barb(P))}

| P | Q]] | U]

if Unserved := makeUnserved(N, UnSrvK, SrvK) /\

Served := makeServed(N, UnSrvK, SrvK) /\

NewParent := makeParent(N, UnSrvK, SrvK, UnSrvM) .

1The full source code for the calculus and the examples described in this paper are available at:
https://github.com/larstvei/Check-VTA/tree/cloud-library

https://github.com/larstvei/Check-VTA/tree/cloud-library

154 Chapter 10

Here the operations makeUnserved, makeServed and makeParent update the sched-
ulers of the new and old parental ambients according to how the ambient was registered
in the scheduler of the old parental ambient.

The execution of rewrite rules is represented in the syntax of the Maude tool
by providing the rewriting command rew with a virtually timed ambient. The rew

command applies the defined rewrite rules to the given ambient until termination, at
which point the tool returns a result.

Example 1 (Virtually timed subambients and resource consumption). A cloud server
inside a system can be modelled by a virtually timed ambient ’cloud, which here
contains two tick and emits one time slice for every time slice it receives. It is
entered by a virtually timed subambient ’vm which needs to receive two time slices in
order to enable resource consumption. This is simulated in the Maude tool as follows:

rew ’system[sched 0 {0, 0, 0, none, ’vm}

| ’cloud[sched 1 {0, 0, 0, none, none}

| tick | tick]

| ’vm[sched 1/2 {0, 0, 0, none, none}

| in(’cloud) . c . zero]] .

result VTA: ’system[sched 0{0,0,0,none,none}

| ’cloud[sched 1{2,0,0,’vm,none}

| ’vm[sched 1/2{2,0,0,none,none} | zero]]]

We can observe the movement of the virtual machine into the cloud, the consumption
of the time slices as resources and the changing of the schedulers, which count the
incoming time slices and gain (or loose, respectively) a subambient.

Modal logic for virtually timed ambients. Modal logic can be used to describe
the behavior of systems. To capture resource provisioning in virtually timed ambients,
we combine modal logic for mobile ambients [42] with notions based on metric temporal
logic [96, 127, 128] to define a modal logic for virtually timed ambients [90]. The
validity of formulas is defined with regards to the calculus of virtually timed ambients
by a satisfaction relation. In the Maude implementation, terms representing logical
formulas are built from operator declarations, and the satisfaction relation becomes

op _|=_ : VTA Formula -> Bool .

The semantics of the satisfaction relations is expressed as a set of equations and rewrite
rules. For example, a process P satisfies the negation of a formula F if and only if P
does not satisfy F. This case is implemented by the following equation:

eq [Negation] : P |= ~ F = not (P |= F) .

10.2 Virtually Timed Ambients 155

The consumption formula Consume is satisfied by any process P which contains a
consumption capability. In the implementation, an operation consumptions, which is
reduced by equations, determines if a process contains consume capabilities:

eq [Consumption] : P |= Consume = consumptions(P) .

The sometime modality <> A @ N F is satisfied by a process P if and only if P can
reduce to a process satisfying the formula F, and uses less than A resources in the
ambient named N during this reduction. The following conditional rewrite rule captures
the semantics of a sometime formula:

crl [Sometime] : P |= <> A @ N F => true

if contains(P, N) /\

P => Q /\

distance(P, Q, N) ≤ A /\

contains(Q, N) /\

Q |= F => true .

In this rule, the terms distance and contains define the number of used resources
and the existence of the name in the given process, and are reduced by equations.
The condition P => Q expresses that the pattern Q is reachable from a pattern P (after
substitution in the matching) by the rewrite relation => in one or more steps. Maude
will search for a Q such that the condition holds using a breadth-first strategy. This
useful feature of Maude enables a straightforward implementation of the sometime
modality.

The remaining formulas of the modal logic for virtually timed ambients are imple-
mented similarly to the instances given above. The resulting Maude program can easily
be used to check modal properties for virtually timed ambients and is demonstrated
in the following example.

Example 2 (Implementation of modal contracts for virtually timed processes). We
consider a cloud server containing a virtual machine ’vm, which is entered by an
application ’app, similar to Example 1. We check if the system satisfies a quality of
service contract stating that the application can be executed after the use of two time
slices.

rew ’cloud[sched 1 {0, 0, 0, none, ’vm}

| tick | tick

| ’app[sched 0 {0, 0, 0, none, none}

| in(’vm) . c . zero]

| ’vm[sched 1/2 {0, 0, 0, none, none}

| open(’app) . zero]]

|= <> 2 @ ’cloud ~ Consume .

result Bool: true

The model checker confirms that there exists a reduction path where after the use of two
time slices in the cloud ambient, there is no consume capability left. This means that
at most two time slices are needed to execute the application in the virtual machine.

156 Chapter 10

10.3 A Library for Cloud Models in Virtually Timed

Ambients

In order to use virtually timed ambients as a modelling language for cloud computing,
we develop a library containing important elements of cloud architecture, which can
be composed according to a modular principle.

Figure 10.6: Example configuration of a cloud model.

A cloud model consists of a system containing a cloud and several tasks or data
packages. The cloud typically includes a load balancing or scaling process, depending
on the chosen load balancing strategy, as well as virtual machines. Tasks and data
packages enter the cloud in order to be executed or stored. Here, let sdl represent
an empty scheduler with no speed and let (s K) denote the sucessor of a natural
number K.

System. The system is the outermost global level in which all computation takes
place. Every process or resource used during the computation must be installed in
this system.

’system[sdl | ...]

Cloud. The cloud ambient models the cloud level, and contains the scaling or load-
balancing process,the virtual machines and a number K of resources in the form of time
slices. It is entered by tasks and data.

’cloud[sched 1 {0, 0, 0, none, none} | time-slices(K) | ...]

Resources and consumption. Resources are given in the form of time slices tick
and are exhausted by the consume capability.

eq time-slices(0) = zero .

eq time-slices(s K) = tick | time-slices(K) .

eq consumes(0) = ’done[sdl | zero] .

eq consumes(s K) = c . consumes(K) .

10.3 A Library for Cloud Models in Virtually Timed Ambients 157

Tasks and data. Tasks enter the cloud and request processing resources in order to
execute, while data expends memory capacity while it is stored and can be retrieved
again.

eq task(K) =

’task[sdl | in(’cloud) . open(’move) . zero | consumes(K)] .

Round-robin load balancing. In round-robin load balancing, a defined set of vir-
tual machines receives incoming tasks and data in a round-robin way with the help of
a load-balancer. The virtual machines can be defined with a name and a speed.

eq virtualMachineRR(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| ! (open(’task) . open(’done) . zero)] .

The cloud ambient needs to contain the following contents for round-robin load balanc-
ing, where round-robin-lb(Ns) describes the load balancing process and createRRVMs(Ns, Rs)

creates the virtual machines:

eq round-robin(Ns, Rs) = round-robin-lb(Ns) | ’round_lock[sdl | zero]

| createRRVMs(Ns, Rs) | ’load_balancer_lock[sdl | zero] .

Competing virtual machines. In this scenario the virtual machines report to the
load-balancing process when they are empty and the load-balancer nondeterministi-
cally choses one of the idle machines to process the next task or data package.

eq virtualMachineI(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| idle(X)

| ! (open(’task) . open(’done) . idle(X))] .

To deploy competing virtual machines the cloud ambient needs to contain a process
createIVMs(Ns, Rs) to create the virtual machines and a suitable load balancer:

eq idling(Ns, Rs) = createIVMs(Ns, Rs) | load-balancer .

Auto-scaling. Here a scaling process creates a new virtually timed ambient with
a restricted name and predefined speed for each task, similar to lightweight container
systems [108]. After the task has been executed, the virtually timed ambient moves
into the garbage.

eq virtualMachineAS(X, Speed) =

X[sched Speed {0, 0, 0, none, none}

| ’move[sdl | out(X) . in(’task) . in(X) .

’scaling_lock[sdl | out(X) . zero]]

| open(’task) . zero

| open(’done) . in(’garbage) . zero] .

158 Chapter 10

For auto-scaling the cloud ambient needs to contain an ambient for garbage collection,
the scaling process that creates the virtual machines scaling(Speed) and a lock:

eq auto-scaling(Speed) =

garbage | scaling(Speed) | ’scaling_lock[sdl | zero] .

10.4 Analysis of Cloud Models in Virtually Timed

Ambients

We present and analyze three examples inspired by cloud computing, which deploy load
balancing and scaling, as introduced in Section 10.3, in different ways. In each case we
simulate load on the machines and use a particular data package called observable

to examine the satisfaction of certain quality of service statements by the model.

eq observable(K) =

’task[sdl | open(’move) . zero

| ’observable[sched 1 {0, 0, 0, none, none}

| consumes(K) | open(’done) . zero]] .

The following modal logic formulas represent some essential quality of service state-
ments in cloud computing scenarios. The first formula expresses that after the com-
putation has been completed there are K idle virtual machines in the cloud:

eq F1(K) =

<> 0 @ ’system ’system[~ Consume /\ (<> 0 K (’isCloud[True] | True))] .

As a higher number of virtual machines leads to higher energy consumption, this is
necessary information for the calculation of energy costs. This formula does not only
make use of the sometime modality <> A @ N F but also the somewhere modality
<> Speed K F, describing relative change in speed and the number of subambients in
the nested ambient satisfying the formula F. The next formula states that after using
K resources, the execution of all tasks on the cloud will have completed.

eq F2(K) = <> K @ ’cloud (~ Consume) .

This is significant information regarding the required CPU and memory performance
as well as resource allocation. The third formula is about the availability and response
time of the system, and states that K resources are needed to execute the consume
capabilities in the observable data package.

eq F3(K) =

<> K @ ’cloud ’system[’cloud[(+) (’observable[~ Consume] | True)]] .

10.4 Analysis of Cloud Models in Virtually Timed Ambients 159

By checking the satisfaction of these formulas, we can easily make quantitative state-
ments about different cloud computing scenarios.

The following three examples model typical behavior in cloud systems, including
migration, load balancing, scaling, locking and garbage collection. In order to provide
minimal examples of load balancing we initialise the models with two virtual machines
and add one task and the observable data package to simulate load on the machines.
To focus on the core behavior of the example, we omit the movement of the tasks and
data packages into the cloud and start directly with a configuration where they are
already inside. The examples are given as follows:

eq example(P, Ns) =

’system[sdl | ’cloud[sched 1 {0, 0, 0, none, Ns}

| P | ’isCloud[sdl | zero]

| time-slices(5)

| createTasks(1, 1) | observable(1)]] .

An instance of round-robin load balancing. We initialize the system with a
fixed set of virtual machines, which receive the incoming tasks from the load balancer
in order.

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F1(2) .

result Bool: true

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F2(2) .

result Bool: true

rew example(round-robin((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F3(1) .

result Bool: true

By modifying the formulas we can check if the model can terminate with fewer running
virtual machines or if it can run with fewer resources:

rew example(round-robin((’vm0:’vm1),(1 1)),(’vm0:’vm1)) |= F1(1) \/ F2(1).

result Bool: false

Virtual machines compete for tasks. In this model we initialize the system with
a fixed set of virtual machines competing for incoming tasks by communicating with
the load-balancer, which assigns tasks nondeterministically.

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F1(2) .

result Bool: true

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F2(2) .

result Bool: true

rew example(idling((’vm0 : ’vm1), (1 1)), (’vm0 : ’vm1)) |= F3(1) .

result Bool: true

160 Chapter 10

Auto-scaling on the cloud. This model is initialized without pre-defined virtual
machines. Instead, the auto-scaling process creates a new virtual machine for each
incoming task or data package.

rew example(auto-scaling(1), none) |= F1(1) . result Bool: true

rew example(auto-scaling(1), none) |= F2(2) . result Bool: true

rew example(auto-scaling(1), none) |= F3(1) . result Bool: true

In all three cases it holds that two resources are needed to execute the tasks on
the machines, while one resource is needed to respond to the observable data package.
This result is unsurprising as all virtual machines in the given models are initialized
with the same speed. However, in the first two models there are two running virtual
machines at the end of the computation, as the number of virtual machines is fixed
in these scenarios, while in the third model the number of virtual machines has been
reduced to one. This makes the auto-scaling model the most energy efficient of the
given models.

10.5 Related Work

Virtually timed ambients were first defined to study bisimulation for virtual resource
management [88]. They are based on mobile ambients [43], which model location mo-
bility for processes executing in distributed, hierarchical networks. Gordon proposed
a simple formalism for virtualization loosely based on mobile ambients [74]. Virtually
timed ambients [88,89] are closer to the syntax of the original mobile ambient calculus,
while at the same time including notions of time and explicit resource provisioning.

Previous research on time in the ambient calculus [8] and in process calculi in
general [14,77,118] focuses mostly on time-out behavior, i.e., the stalling of a process
after a certain amount of time, by adding timers and a global clock to the calculus. We
take a complementary viewpoint by considering local schedulers, which allows different
locations to have different speeds and focus on processing power and the question of
how many tasks can be solved in a given amount of time by a system.

Modal logic for mobile ambients was introduced to describe properties of spatial
configuration and mobile computation for a fragment of mobile ambients without repli-
cation and restriction on names [42]. We combine this logic with ideas from metric
temporal logic [96,127,128] to specify notions of time and resources [90].

The operational reduction rules for mobile ambients as well as a type system have
been implemented in Maude before [142]. In contrast, our implementation focuses
on capturing the timed reduction rules of virtually timed ambients as well as modal
formulas to enable model checking.

10.6 Concluding Remarks

Virtualization opens for new and interesting formal computational models. This paper
presents virtually timed ambients in terms of a tool and a library of building blocks

10.6 Concluding Remarks 161

for modelling cloud systems. The tool is implemented in the Maude system for rewrit-
ing logic and can be used to develop and analyse models of virtualization in cloud
computing.

The calculus of virtually timed ambients is a formal model of hierarchical locations
of execution. Resource provisioning for virtually timed ambients is based on virtual
time, a local notion of time reminiscent of time slices for virtual machines in the context
of nested virtualization. We provide a modal logic for the calculus and implement a
model checker in the Maude rewriting logic system. By considering modal propositions
as quality of service statements, we can model cloud systems and prove whether they
satisfy certain service-level agreements expressed in modal logic.

To model active resource management, future work will extend the model with
constructs to support resource-aware scaling, as well as optimization strategies for
scaling. We are also working on extending the implementation in this direction, and
intend to apply it to study corresponding examples involving resource management
and load balancing.

162 Chapter 10

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, 1995.

[2] Abdelzahir Abdelmaboud, Dayang N.A. Jawawi, Imran Ghani, Abubakar Elsafi,
and Barbara Kitchenham. Quality of service approaches in cloud computing: A
systematic mapping study. Journal of Systems and Software, 101:159 – 179,
2015.

[3] Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Steffen. Behavioral
interface description of an object-oriented language with futures and promises.
Journal of Logic and Algebraic Programming, 78(7):491–518 (28 pages), 2009.
Special issue with selected contributions of NWPT’07. The paper is a reworked
version of an earlier UiO Technical Report TR-364, Oct. 2007.

[4] Erika Ábrahám, Andreas Grüner, and Martin Steffen. Dynamic heap-abstraction
for open, object-oriented systems with thread classes (extended abstract). In
Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors,
Logical Approaches to Computational Barriers: CiE 2006, volume 3988 of Lec-
ture Notes in Computer Science, pages 1–10 (10 pages). Springer, July 2006. A
preliminary version has been included in the informal workshop proceedings of
Cosmicah’05, as Queen Mary Technical Report RR-05-04, a longer version has
been published as Technical Report 0601 of the Institute of Computer Science
of the University Kiel, January 2006.

[5] Luca Aceto and Andrew D. Gordon. Algebraic process calculi: The first twenty
five years and beyond. Citeseer, 2008.

[6] Ozan Akar. Model Checking Of Ambient Calculus Specifications Against Am-
bient Logic Formulas. Bachelor’s thesis, Istanbul Technical University, 2009.

[7] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar B. Johnsen, Rudolf
Schlatte, S. Lizeth Tapia Tarifa, and Peter Y. H. Wong. Formal modeling and
analysis of resource management for cloud architectures: An industrial case
study using Real-Time ABS. Journal of Service-Oriented Computing and Ap-
plications, 8(4):323–339, 2014.

164 BIBLIOGRAPHY

[8] Bogdan Aman and Gabriel Ciobanu. Mobile ambients with timers and types. In
Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, Proceedings 4th Inter-
national Colloquium on Theoretical Aspects of Computing (ICTAC’07), volume
4711 of Lecture Notes in Computer Science, pages 50–63. Springer, 2007.

[9] Bogdan Aman and Gabriel Ciobanu. Timers and proximities for mobile ambi-
ents. In Volker Diekert, Mikhail V. Volkov, and Andrei Voronkov, editors, Pro-
ceedings 2nd International Symposium on Computer Science in Russia (CSR’07),
volume 4649 of Lecture Notes in Computer Science, pages 33–43. Springer, 2007.

[10] Bogdan Aman and Gabriel Ciobanu. Timed mobile ambients for network pro-
tocols. In International Conference on Formal Techniques for Networked and
Distributed Systems, pages 234–250. Springer, 2008.

[11] Amazon Web Services. Auto scaling user guide. http://docs.aws.amazon.

com/autoscaling/latest/userguide/as-dg.pdf. Accessed: 2017-06-21.

[12] Torben Amtoft. Flow-sensitive type systems and the ambient calculus. Higher-
Order and Symbolic Computation, 21(4):411–442, 2008.

[13] Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131–146, 2005.

[14] Jos C. M. Baeten and Jan A. Bergstra. Real Time Process Algebra. Technical
Report CS-R 9053, Centrum voor Wiskunde en Informatica (CWI), 1990.

[15] Jos C. M. Baeten and Cornelis A. Middelburg. Process Algebra with Timing.
Monographs in Computer Science. An EATSC series. Springer, 2002.

[16] Jos C. M. Baeten and W. Peter Weijland. Process algebra. Cambridge Tracts
in Theoretical Computer Science, 18, 1990.

[17] W. F. Bauer. Computer design from the programmer’s viewpoint. In Papers and
Discussions Presented at the December 3-5, 1958, Eastern Joint Computer Con-
ference: Modern Computers: Objectives, Designs, Applications, AIEE-ACM-
IRE ’58 (Eastern), pages 46–51, New York, NY, USA, 1958. ACM.

[18] Hans Bekić. Towards a mathematical theory of processes. In Programming
Languages and Their Definition, pages 168–206. Springer, 1984.

[19] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The
Turtles project: Design and implementation of nested virtualization. In Proceed-
ings 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2010), pages 423–436. USENIX Association, 2010.

[20] Martin Berger. Towards Abstractions for Distributed Systems. PhD thesis, Uni-
versity of London, Imperial College, 2004.

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-dg.pdf
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-dg.pdf

BIBLIOGRAPHY 165

[21] Martin Berger and Nobuko Yoshida. Timed, distributed, probabilistic, typed
processes. In Asian Symposium on Programming Languages and Systems, pages
158–174. Springer, 2007.

[22] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka. Handbook of process algebra.
Elsevier, 2001.

[23] Philippe Bidinger and Jean-Bernard Stefani. The Kell calculus: Operational
semantics and type system. In Elie Najm, Uwe Nestmann, and Perdita Stevens,
editors, Proceedings 6th International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2003), volume 2884 of Lecture
Notes in Computer Science, pages 109–123. Springer, 2003.

[24] Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook of modal
logic, volume 3. Elsevier, 2006.

[25] Iovka Boneva and Jean-Marc Talbot. When ambients cannot be opened. In
International Conference on Foundations of Software Science and Computation
Structures, pages 169–184. Springer, 2003.

[26] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Quantita-
tive analysis of real-time systems using priced timed automata. Communications
of the ACM, 54(9):78–87, 2011.

[27] Chiara Braghin, Agostino Cortesi, Stefano Filippone, Riccardo Focardi,
Flaminia L. Luccio, and Carla Piazza. Banana-a tool for boundary ambients
nesting analysis. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 437–441. Springer, 2003.

[28] Chiara Braghin, Agostino Cortesi, Riccardo Focardi, Flaminia L. Luccio, and
Carla Piazza. Complexity of nesting analysis in mobile ambients. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages
86–101. Springer, 2003.

[29] Oliver Bračevac, Sebastian Erdweg, Guido Salvaneschi, and Mira Mezini. CPL: A
core language for cloud computing. In Proceedings 15th International Conference
on Modularity (MODULARITY 2016), pages 94–105. ACM, 2016.

[30] Patrice Brémond-Grégoire and Insup Lee. A process algebra of communicating
shared resources with dense time and priorities. Theoretical Computer Science,
189(1-2):179–219, 1997.

[31] Linda Brodo. On the expressiveness of π-calculus for encoding mobile ambients.
Mathematical Structures in Computer Science, pages 1–39, 2016.

[32] Linda Brodo, Pierpaolo Degano, and Corrado Priami. Reflecting mobile ambi-
ents into the π-calculus. In International Workshop on Global Computing, pages
25–56. Springer, 2003.

166 BIBLIOGRAPHY

[33] Michele Bugliesi and Giuseppe Castagna. Secure safe ambients. In ACM SIG-
PLAN Notices, volume 36, pages 222–235. ACM, 2001.

[34] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambients. In
International Symposium on Theoretical Aspects of Computer Software, pages
38–63. Springer, 2001.

[35] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Access control for mobile
agents: The calculus of boxed ambients. ACM Transactions on Programming
Languages and Systems (TOPLAS), 26(1):57–124, 2004.

[36] Nadia Busi and Gianluigi Zavattaro. On the expressiveness of movement in pure
mobile ambients. Electronic Notes in Theoretical Computer Science, 66(3):22–36,
2002.

[37] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599–616, 2009.

[38] Jeffrey P. Buzen and U. O. Gagliardi. The evolution of virtual machine archi-
tecture. In Proceedings of the June 4-8, 1973, National Computer Conference
and Exposition, AFIPS ’73, pages 291–299, New York, NY, USA, 1973. ACM.

[39] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. In Lecture Notes in Computer Science, volume 1644, page 230239.
Springer, July 1999.

[40] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and mo-
bility types. In IFIP International Conference on Theoretical Computer Science,
pages 333–347. Springer, 2000.

[41] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the ambient
calculus. Information and Computation, 177(2):160–194, 2002.

[42] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for
mobile ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’00, pages 365–377, New
York, NY, USA, 2000. ACM.

[43] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[44] Luca Cardelli and Andrew D. Gordon. Logical properties of name restriction. In
Proceedings 5th International Conference on Typed Lambda Calculi and Applica-
tions (TLCA 2001), volume 2044 of Lecture Notes in Computer Science, pages
46–60. Springer, 2001.

BIBLIOGRAPHY 167

[45] Luca Cardelli and Andrew D. Gordon. Equational properties of mobile ambients.
Mathematical Structures in Computer Science, 13(3):371–408, 2003.

[46] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv., 17(4):471–523, December 1985.

[47] Giuseppe Castagna, Jan Vitek, and Francesco Zappa Nardelli. The seal calculus.
Information and Computation, 201(1):1–54, 2005.

[48] Matteo Cavaliere and Dragos Sburlan. Time-independent P systems. In Gi-
ancarlo Mauri, Gheorghe Paun, Mario J. Pérez-Jiménez, Grzegorz Rozenberg,
and Arto Salomaa, editors, Proceedings 5th International Workshop on Mem-
brane Computing (WMC’04), volume 3365 of Lecture Notes in Computer Sci-
ence, pages 239–258. Springer, 2004.

[49] Witold Charatonik, Silvano Dal-Zilio, Andrew D. Gordon, Supratik Mukhopad-
hyay, and Jean-Marc Talbot. The complexity of model checking mobile ambi-
ents. In Furio Honsell and Marino Miculan, editors, Proceedings of Foundations
of Software Science and Computation Structures, 4th International Conference
(FOSSACS 2001), volume 2030 of Lecture Notes in Computer Science, pages
152–167. Springer, 2001.

[50] Witold Charatonik, Andrew D. Gordon, and Jean-Marc Talbot. Finite-control
mobile ambients. In European Symposium on Programming, pages 295–313.
Springer, 2002.

[51] Witold Charatonik and Jean-Marc Talbot. The decidability of model checking
mobile ambients. In Laurent Fribourg, editor, Proceedings of 15th International
Workshop on Computer Science Logic (CSL 2001), volume 2142 of Lecture Notes
in Computer Science, pages 339–354. Springer, 2001.

[52] Yeongbok Choe and Moonkun Lee. δ-calculus: Process algebra to model secure
movements of distributed mobile processes in real-time business applications.
In 23rd European Conference on Information Systems, ECIS 2015, Münster,
Germany, May 26-29, 2015, 2015.

[53] Gabriel Ciobanu. Interaction in time and space. Electronic Notes in Theoretical
Computer Science, 203(3):5–18, 2008.

[54] Gabriel Ciobanu and Vladimir A Zakharov. Encoding mobile ambients into the
π-calculus. In International Andrei Ershov Memorial Conference on Perspectives
of System Informatics, pages 148–165. Springer, 2006.

[55] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
press, 1999.

168 BIBLIOGRAPHY

[56] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude —
A High-Performance Logical Framework, How to Specify, Program and Verify
Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[57] European Commission. European cloud computing strategy. https://

ec.europa.eu/digital-agenda/en/european-cloud-initiative, 2015. Ac-
cessed: 2018-05-21.

[58] S. Crago, K. Dunn, P. Eads, L. Hochstein, D. I. Kang, M. Kang, D. Mod-
ium, K. Singh, J. Suh, and J. P. Walters. Heterogeneous cloud computing. In
2011 IEEE International Conference on Cluster Computing, pages 378–385, Sept
2011.

[59] Maxwell John Cresswell and George Edward Hughes. A new introduction to
modal logic. Routledge, 2012.

[60] Tharam S. Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: Issues
and challenges. In 24th IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA 2010), pages 27–33. IEEE Computer
Society, 2010.

[61] Jin Song Dong, Jing Sun, Jun Sun, Kenji Taguchi, and Xian Zhang. Specifying
and verifying sensor networks: An experiment of formal methods. In Inter-
national Conference on Formal Engineering Methods, pages 318–337. Springer,
2008.

[62] Jérôme Feret. Abstract interpretation-based static analysis of mobile ambients.
In International Static Analysis Symposium, pages 412–430. Springer, 2001.

[63] Gianluigi Ferrari, Eugenio Moggi, and Rosario Pugliese. Guardians for ambient-
based monitoring. Electronic Notes in Theoretical Computer Science, 66(3):52–
75, 2002.

[64] Fibonacci. Greedy algorithm for Egyptian fractions. Available at https://

en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions, Ac-
cessed: 2017-12-08.

[65] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee, David Rosenblum,
and Sebastian Uchitel. Model checking service compositions under resource con-
straints. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 225–234. ACM, 2007.

[66] Cédric Fournet and Georges Gonthier. The Join Calculus: A Language for
Distributed Mobile Programming. Springer, 2002.

https://ec.europa.eu/digital-agenda/en/european-cloud-initiative
https://ec.europa.eu/digital-agenda/en/european-cloud-initiative
https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions

BIBLIOGRAPHY 169

[67] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asyn-
chronous calculi. Journal of Logic and Algebraic Programming, 63(1):131 – 173,
2005.

[68] Yuxi Fu. Fair ambients. Acta Informatica, 43(8):535–594, 2007.

[69] Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-Ciancaglini.
BASS: Boxed Ambients with Safe Sessions. In Michael Maher, editor, PPDP’06,
pages 61–72. ACM Press, 2006.

[70] Elio Giovannetti. Ambient calculi with types: a tutorial. In Global Computing
- Programming Environments, Languages, Security and Analysis of Systems,
volume 2874 of Lecture Notes in Computer Science, pages 151–191. Springer,
2003.

[71] Jens C. Godskesen, Thomas Hildebrandt, and Vladimiro Sassone. A calculus
of mobile resources. In Luboš Brim, Mojmı́r Křet́ınský, Antońın Kučera, and
Petr Jančar, editors, Proceedings 13th International Conference on Concurrency
Theory (CONCUR 2002), volume 2421 of Lecture Notes in Computer Science,
pages 272–287. Springer, 2002.

[72] Robert P. Goldberg. Architecture of virtual machines. In Proceedings of the June
4-8, 1973, National Computer Conference and Exposition, AFIPS ’73, pages
309–318, New York, NY, USA, 1973. ACM.

[73] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer,
7(6):34–45, 1974.

[74] Andrew D. Gordon. V for virtual. Electronic Notes in Theoretical Computer
Science, 162:177–181, 2006.

[75] René R. Hansen, Jacob G. Jensen, Flemming Nielson, and Hanne R. Nielson.
Abstract interpretation of mobile ambients. In International Static Analysis
Symposium, pages 134–148. Springer, 1999.

[76] Daniel Hausmann, Till Mossakowski, and Lutz Schröder. A coalgebraic approach
to the semantics of the ambient calculus. Theoretical computer science, 366(1-
2):121–143, 2006.

[77] Matthew Hennessy and Tim Regan. A process algebra for timed systems. In-
formation and Computation, 117(2):221–239, 1995.

[78] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173(1):82 – 120, 2002.

[79] Charles A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978.

170 BIBLIOGRAPHY

[80] Kohei Honda and Nobuko Yoshida. Replication in concurrent combinators. In
Masami Hagiya and John C. Mitchell, editors, TACS, volume 789 of Lecture
Notes in Computer Science, pages 786–805. Springer, 1994.

[81] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. The-
oretical Computer Science, 151(2):437–486, 1995.

[82] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Trans.
Program. Lang. Syst., 27(2):264–313, 2005.

[83] Raj Jain and Subharthi Paul. Network virtualization and software defined
networking for cloud computing: a survey. IEEE Communications Magazine,
51(11):24–31, 2013.

[84] Yosr Jarraya, Arash Eghtesadi, Mourad Debbabi, Ying Zhang, and Makan
Pourzandi. Cloud calculus: Security verification in elastic cloud computing plat-
form. In Collaboration Technologies and Systems (CTS), 2012 International
Conference on, pages 447–454. IEEE, 2012.

[85] Zhang Jing, Zhang Li-Cui, and Guo De-Gui. Transformation from seal calculus
to mobile ambient calculus. International Journal of Computer Science and
Network Security, 6(5A):179, 2006.

[86] Einar B. Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. ABS: A core language for abstract behavioral specification. In Bern-
hard Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Proc.
9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010), volume 6957 of Lecture Notes in Computer Science, pages 142–
164. Springer, 2011.

[87] Einar B. Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Integrating
deployment architectures and resource consumption in timed object-oriented
models. Journal of Logic and Algebraic Methods in Programming, 84(1):67–91,
2015.

[88] Einar B. Johnsen, Martin Steffen, and Johanna B. Stumpf. A calculus of virtually
timed ambients. In Phillip James and Markus Roggenbach, editors, Postproceed-
ings of the 23rd International Workshop on Algebraic Development Techniques
(WADT 2016), volume 10644 of Lecture Notes in Computer Science, pages 88–
103. Springer, 2017.

[89] Einar B. Johnsen, Martin Steffen, and Johanna B. Stumpf. Virtually timed
ambients: A calculus of nested virtualization. Journal of Logical and Algebraic
Methods in Programming, 94:109 – 127, 2018.

[90] Einar B. Johnsen, Martin Steffen, Johanna B. Stumpf, and Lars Tveito. Check-
ing modal contracts for virtually timed ambients, 2018. Submitted for publica-
tion. Available at www.ifi.uio.no/~johanbst/MLCheckingVTAS.pdf.

www.ifi.uio.no/~johanbst/MLCheckingVTAS.pdf

BIBLIOGRAPHY 171

[91] Cliff B. Jones. Tentative steps towards a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596–
619, 1983.

[92] Toru Kato, Atom Miyai, and Masahiro Higuchi. Experiment of a freight manage-
ment system with the multiple ambient calculus. In Mathematics and Computers
in Sciences and in Industry (MCSI), 2015 Second International Conference on,
pages 191–198. IEEE, 2015.

[93] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems.
In Proceedings of POPL ’14, pages 633–645. ACM, 2014.

[94] Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom
of mobile processes. ACM Trans. Program. Lang. Syst., 32(5):16:1–16:49, 2010.

[95] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage analysis
for the π-calculus. Logical Methods in Computer Science, 2(3), 2006.

[96] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[97] Jeff Kramer. Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42, 2007.

[98] Leslie Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190–222, 1983.

[99] Edward A. Lee. Computing needs time. Communications of the ACM, 52(5):70–
79, 2009.

[100] Insup Lee, Anna Philippou, and Oleg Sokolsky. Resources in process algebra.
Journal of Logic and Algebraic Programming, 72(1):98 –122, 2007.

[101] Jeremy Y. Lee and John Zic. On modeling real-time mobile processes. In
Australian Computer Science Communications, volume 24, pages 139–147. Aus-
tralian Computer Society, Inc., 2002.

[102] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(1):1–69, 2003.

[103] Gerald Lüttgen and Walter Vogler. Bisimulation on speed: Worst-case efficiency.
Information and Computation, 191(2):105–144, 2004.

[104] Sergio Maffeis and Iain Phillips. On the computational strength of pure ambient
calculi. Electronic Notes in Theoretical Computer Science, 96:29–49, 2004.

[105] Dan C. Marinescu. Cloud Computing. Morgan Kaufmann, Boston, 2013.

[106] Kenneth L. McMillan. Symbolic Model Checking. Springer, 1993.

172 BIBLIOGRAPHY

[107] Peter Mell, Tim Grance, et al. The NIST definition of cloud
computing. Computer Security Division, Information Technology Lab-
oratory, National Institute of Standards and Technology Gaithersburg,
2011. Available at https://nvlpubs.nist.gov/nistpubs/legacy/sp/

nistspecialpublication800-145.pdf.

[108] Dirk Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), March 2014.

[109] Massimo Merro and Matthew Hennessy. A bisimulation-based semantic theory
of safe ambients. ACM Transactions on Programming Languages and Systems,
28(2):290–330, 2006.

[110] Massimo Merro and Francesco Zappa Nardelli. Behavioral theory for mobile
ambients. Journal of the ACM, 52(6):961–1023, 2005.

[111] José Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic
Programming, 81(7-8):721–781, 2012.

[112] José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theo-
retical Computer Science, 373(3):213–237, 2007.

[113] Robin Milner. A Calculus of Communicating Systems. Springer, Secaucus, NJ,
USA, 1982.

[114] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[115] Robin Milner. The polyadic pi-calculus: a tutorial. Technical report, Logic and
Algebra of Specification, 1991.

[116] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP ’92, volume 623 of Lecture Notes in Computer Science,
pages 685–695. Springer, 1992.

[117] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7:417–426, 1981.

[118] Faron Moller and Chris Tofts. A temporal calculus of communicating systems.
In J. C. M. Baeten and J. W. Klop, editors, Proceedings 1st International Con-
ference on Concurrency Theory (CONCUR’90), volume 458 of Lecture Notes in
Computer Science, pages 401–415. Springer, 1990.

[119] Mohammad Reza Mousavi, Michel A. Reniers, Twan Basten, and Michel R. V.
Chaudron. PARS: A process algebraic approach to resources and schedulers.
In M. Alexander and W. Gardner, editors, Process Algebra for Parallel and
Distributed Processing. Chapman and Hall/CRC, 2008.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf

BIBLIOGRAPHY 173

[120] Masaki Murakami. Congruent bisimulation equivalence of ambient calculus
based on contextual transition system. In Proceedings 7th International Sympo-
sium on Theoretical Aspects of Software Engineering (TASE 2013), pages 149–
152. IEEE, 2013.

[121] Uwe Nestmann. Welcome to the jungle: A subjective guide to mobile process
calculi. In CONCUR 2006–Concurrency Theory, pages 52–63. Springer, 2006.

[122] Xaviet Nicollin and Joseph Sifakis. The algebra of timed processes, ATP: Theory
and application. Information and Computation, 114(1):131–178, 1994.

[123] Hanne Riis Nielson, Flemming Nielson, and Mikael Buchholtz. Security for mo-
bility. In International School on Foundations of Security Analysis and Design,
pages 207–265. Springer, 2001.

[124] Massachusetts Institute of Technology and P. A. Crisman. The compatible time-
sharing system : a programmer’s guide. M. I. T. Press Cambridge, 2. edition,
1965.

[125] Peter Csaba Ölveczky. Designing Reliable Distributed Systems – A Formal Meth-
ods Approach Based on Executable Modeling in Maude. Undergraduate Topics
in Computer Science. Springer, 2018.

[126] Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects.
In POPL 2016. ACM Press, 2016.

[127] Joël Ouaknine and James Worrell. On the decidability and complexity of metric
temporal logic over finite words. Logical Methods in Computer Science, 3, 2007.

[128] Joël Ouaknine and James Worrell. Some recent results in metric temporal logic.
In Franck Cassez and Claude Jard, editors, Proc. 6th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2008), volume
5215 of Lecture Notes in Computer Science, pages 1–13. Springer, 2008.

[129] David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Theoretical Computer Science, pages 167–183, Berlin, Heidelberg, 1981.
Springer.

[130] Douglas F. Parkhill. The Challenge of the Computer Utility. The Challenge of
the Computer Utility. Addison-Wesley Publishing Company, 1966.

[131] Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook
of Membrane Computing. Oxford University Press, 2010.

[132] Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: unified static
analysis of context-dependence. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, Proceedings of the International Con-
ference on Automata, Languages, and Programming (ICALP’13), volume 7966
of Lecture Notes in Computer Science, pages 385–397. Springer, 2013.

174 BIBLIOGRAPHY

[133] Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calcu-
lus of context-dependent computation. In Johan Jeuring and Manuel M. T.
Chakravarty, editors, Proceedings of the International Conference on Functional
Programming (ICFP’14). ACM, 2014.

[134] Iain Phillips and Maria Grazia Vigliotti. On reduction semantics for the push
and pull ambient calculus. In Foundations of Information Technology in the Era
of Network and Mobile Computing, pages 550–562. Springer, 2002.

[135] Iain Phillips and Maria Grazia Vigliotti. Electoral systems in ambient calculi. In
International Conference on Foundations of Software Science and Computation
Structures, pages 408–422. Springer, 2004.

[136] Benjamin C. Pierce. Types and programming languages. MIT press, 1st edition,
2002.

[137] Cristian Prisacariu. Timed distributed pi-calculus. In Modelling and Verifying
of Parallel Processes (MOVEP06), pages 348–354, 2006.

[138] John Patrick Pullen. Where did cloud computing come from, anyway? http:

//time.com/collection-post/3750915/cloud-computing-origin-story/.
Accessed: 2018-06-04.

[139] David Pym and Chris Tofts. A calculus and logic of resources and processes.
Formal Aspects of Computing, 18(4):495–517, 2006.

[140] George M. Reed and A. William Roscoe. A timed model for communicating
sequential processes. Theoretical Computer Science, 58(1-3):249–261, 1988.

[141] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud
Shapiro. Bioambients: an abstraction for biological compartments. Theoretical
Computer Science, 325(1):141–167, 2004.

[142] Fernando Rosa-Velardo, Clara Segura, and Alberto Verdejo. Typed mobile am-
bients in Maude. Electronic Notes in Theoretical Computer Science, 147(1):135
– 161, 2006. Proceedings of the 6th International Workshop on Rule-Based
Programming.

[143] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information and
Computation, 131(2):141–178, 1996.

[144] Davide Sangiorgi. Extensionality and intensionality of the ambient logics. SIG-
PLAN Not., 36(3):4–13, 2001.

[145] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012.

[146] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

http://time.com/collection-post/3750915/cloud-computing-origin-story/
http://time.com/collection-post/3750915/cloud-computing-origin-story/

BIBLIOGRAPHY 175

[147] Ichiro Satoh and Mario Tokoro. A timed calculus for distributed objects with
clocks. In Oscar M. Nierstrasz, editor, Proceedings 7th European Conference on
Object-Oriented Programming (ECOOP’93), pages 326–345. Springer, 1993.

[148] Ichiro Satoh and Mario Tokoro. Time and asynchrony in interactions among
distributed real-time objects. In European Conference on Object-Oriented Pro-
gramming, pages 331–350. Springer, 1995.

[149] Alan Schmitt and Jean-Bernard Stefani. The m-calculus: A higher-order dis-
tributed process calculus. In ACM SIGPLAN Notices, volume 38, pages 50–61.
ACM, 2003.

[150] François Siewe, Hussein Zedan, and Antonio Cau. The calculus of context-aware
ambients. Journal of Computer and System Sciences, 77(4):597 – 620, 2011.

[151] Eugene W. Stark. A proof technique for rely/guarantee properties. In S. N.
Maheshwari, editor, Foundations of Software Technology and Theoretical Com-
puter Science, volume 206 of Lecture Notes in Computer Science, pages 369–391.
Springer, 1985.

[152] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexible
verification under fairness. In Proc. 21th International Conference on Computer
Aided Verification (CAV’09), volume 5643 of Lecture Notes in Computer Science,
pages 709–714. Springer, 2009.

[153] Yujie Sun. Toward a Model Checker for Ambient Logic Using the Process Anal-
ysis Toolkit. Master’s thesis, Bishop’s University, Sherbrooke, Quebec, Canada,
2015.

[154] David Teller, Pascal Zimmer, and Daniel Hirschkoff. Using ambients to control
resources. In Proceedings of the 13th International Conference on Concurrency
Theory, CONCUR ’02, pages 288–303, London, UK, 2002. Springer.

[155] Devrim Unal, Ozan Akar, and M. Ufuk Caglayan. Model checking of location
and mobility related security policy specifications in ambient calculus. In In-
ternational Conference on Mathematical Methods, Models, and Architectures for
Computer Network Security, pages 155–168. Springer, 2010.

[156] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electronic
Notes in Theoretical Computer Science, 203:263–284, 2008. Proceedings 9th Intl.
Workshop on Coalgebraic Methods in Computer Science (CMCS 2008).

[157] Maria Grazia Vigliotti and Iain C.C. Phillips. Barbs and congruences for safe
mobile ambients. Electronic Notes in Theoretical Computer Science, 66(3):37 –
51, 2007.

176 BIBLIOGRAPHY

[158] Philipp Wieder, Joe M. Butler, Wolfgang Theilmann, and Ramin Yahyapour.
Service level agreements for cloud computing. Springer Science & Business Media,
2011.

[159] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. The Xen-Blanket:
Virtualize once, run everywhere. In Proceedings 7th European Conference on
Computer Systems (EuroSys’12), pages 113–126. ACM, 2012.

[160] Franco Zambonelli, Giacomo Cabri, and Letizia Leonardi. Developing mobile
agent organizations: A case study in digital tourism. In Distributed Objects
and Applications, 2001. DOA’01. Proceedings. 3rd International Symposium on,
pages 270–279. IEEE, 2001.

List of Figures

1.1 Timeline of digital computing. 4
1.2 Infrastructure, platform and software as a service. 6
1.3 Public, private and hybrid cloud. 7
1.4 Graphical representation of resources 7
1.5 Visualization of the research questions. 10

3.1 Graphical representation of an ambient. 22
3.2 Graphical representation of the three basic capabilities. 23

6.1 Round-robin load balancers . 71
6.2 Worst case function and actual requirements 72
6.3 Example of a scaling system . 74
6.4 Worst case function for round-robin and perfect scheduling 75

9.1 Example of an auto scaling group. 145

10.1 Graphical representation of a mobile ambient containing a process. . . . 151
10.2 Graphical representation of the in n capability of mobile ambients. . . 151
10.3 Graphical representation of a virtually timed ambient with a scheduler. 152
10.4 Graphical representation of the in m capability. 152
10.5 Graphical representation of the consume capability. 152
10.6 Example configuration of a cloud model. 156

List of Tables

3.1 Syntax of the ambient calculus. 22
3.2 Structural congruence . 24
3.3 Reduction rules. 25
3.4 Pre-actions . 26
3.5 Silent actions . 27
3.6 Environment actions . 28
3.7 Env-actions. 29

6.1 Syntax of the mobile ambient calculus. 52
6.2 Reduction rules. 52
6.3 Structural congruence. 53
6.4 Syntax of the virtually timed ambient calculus. 54
6.5 Timed reduction rules for timed capabilities 56
6.6 Timed reduction rules for reduction inside the clocks 57
6.7 Rules for timed labeled transition systems 63

7.1 Syntax of virtually timed ambients. 82
7.2 Timed reduction rules for timed capabilities. 83
7.3 Transition system for for fair distribution of virtual time slices. 84
7.4 Type rules for inactive processes, restriction, parallel composition, sub-

typing, replication and ambients. 89
7.5 Type rules for the capabilities open m and c. 91
7.6 Type rules for the capability in m. 92
7.7 Type rules for the capability out m. 93

8.1 Syntax of virtually timed ambients. 111
8.2 Reduction rules for timed capabilities. 114
8.3 Transition system for fair, preemptive distribution of virtual time slices. 115
8.4 Logical formulas. 118
8.5 Satisfaction of logical formulas. 119

9.1 Syntax of virtually timed ambients. 131
9.2 Timed reduction rules for timed capabilities. 133

180 LIST OF TABLES

9.3 Reduction rules for fair distribution of virtual time and resources. . . . 134
9.4 Syntax of contexts and context expressions 138
9.5 Satisfaction relation for context expressions 139
9.6 Rules for timed labeled transition systems. 141

