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ABSTRACT 

Coastally trapped rotational interfacial waves are studied theoretically by using a Lagrangian 

formulation of fluid motion in a rotating ocean. The waves propagate along the interface between 

two immiscible inviscid incompressible fluid layers of finite depths and different densities, and 

are trapped at a straight wall due to the Coriolis force. For layers of finite depth, solutions are 

sought as series expansions after a small parameter. Comparison is made with the irrotational 

interfacial Kelvin wave. Both types of waves are identical to first order, having zero vorticity. 

The second order solution yields a relation between the vorticity and the velocity shear in the 

wave motion. Requiring that the mean motion in both layers is irrotational, then follows the well-

known Stokes drift for interfacial Kelvin waves. On the other hand, if the mean forward drift is 

identically zero, we obtain the second order vorticity in the Gerstner-type wave. The solutions in 

both layers for the Gerstner-type interfacial wave are given analytically to second order. It is 

shown that small density differences and thin upper layers both act to yield a shape of the 

material interfacial with broader crests and sharper troughs. These effects also tend to make the 

particle trajectories at the interface in both layers become distorted ellipses which are flatter on 

the upper side. It is concluded that the effect of air excludes the possibility of observing the exact 

Gerstner wave in deep water. 
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1. Introduction 

       The Stokes edge wave [1] along a sloping beach can be described as a Gerstner wave [2]; see 

[3]. This is so even when the effect of the Earth’s rotation is taken into account [4]. As shown in 

[4], in the limiting case when the sloping bottom becomes a vertical wall, the solution is a 

trapped barotropic Gerstner wave, which resembles the coastally trapped barotropic Kelvin wave. 

The trapped Gerstner solution, which is linear in wave amplitude, is an exact solution in 

Lagrangian coordinates for an infinitely deep ocean with a free material surface of constant 

pressure. This is not a common situation in geophysics, where gravity waves usually propagate 

along interfaces between immiscible fluids, like air and water for ocean waves. The presence of 

non-zero mass above the material oscillating boundary has the important consequence that the 

solutions in the air and in the water are restricted in amplitude. This is due to the fact that the 

material interface must be common for both layers, which requires that the wave steepness   

must be small, and not just less than 1 as for the exact solution for one infinitely deep layer with a 

free surface (it should be noted that the Gerstner solution is three-dimensionally unstable [5] for 

3/1 ). In addition, the exact Gerstner wave cannot exist in a fluid layer of finite depth [6]; see 

the discussion in [7]. A recent review of progressive irrotational surface waves in a layer of finite 

depth is given in [8]. It is pointed out that perturbation theory is not adequate for steep nonlinear 

waves. However, in the two-layer case with different densities and finite layer thicknesses, exact 

analytical solutions for Gerstner waves are not known. Accordingly, in this case approximate 

solutions may be attempted as series expansions after   as a small parameter.  

       Due to the Earth’s rotation, a considerable amount of wave energy is trapped in coastal and 

equatorial regions within the Rossby radius of deformation. Recent papers on various aspects of 

equatorially trapped waves are numerous ([9]-[18]). Here we focus on coastal trapping. Since 

interfacial gravity waves play an important role in transferring energy in the ocean [19], it would 
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be of interest to study Gerstner-type trapped coastal waves in a rotating fluid with a two-layer 

structure. In this connection the depth of both layers, as well as the density difference between 

the layers, will be of importance. This has motivated the present investigation. 

         The mathematical approach is based on the Lagrangian description of fluid motion. In this 

way we may compare our interfacial Gerstner-type trapped wave, which has zero mean particle 

drift, but possesses vorticity, to the more common irrotational interfacial Kelvin wave. The latter 

induces a mean forward Stokes drift [20]. We find that the solutions in Lagrangian coordinates 

are identical to first order, having zero vorticity; see also [7] for the non-rotating one-layer case. 

The second order solution yields a relation between the vorticity and the velocity shear in the 

interfacial wave motion. Requiring that the mean motion is irrotational, then follows the well-

known Stokes drift for interfacial Kelvin waves. On the other hand, if the mean forward drift is 

identically zero, we obtain the second order vorticity in the Gerstner-type wave. The solution for 

non-linear interfacial Gerstner-type trapped waves is given analytically, and the shape of the 

interface and the individual particle trajectories in each layer are discussed for various values of 

layer depths and densities.  

      The rest of this paper is organized as follows: In Section 2 we consider the mathematical 

formulation in Lagrangian coordinates, and in Section 3 we develop the solutions as series 

expansions after a small parameter. Section 4 contains analytical solutions of the trapped 

Gerstner-type interfacial wave, while in Section 5 we discuss the solutions for various values of 

layer depths and densities. Finally, Section 6 contains some concluding remarks. 

 

2. Mathematical formulation 

       We study wave motion along the boundary between two horizontal inviscid, immiscible and 

incompressible fluid layers, denoting upper and lower layer variables by subscripts 1 and 2, 
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respectively. When undisturbed, the layers have constant depths 1H  and 2H . The corresponding 

constant densities are 1  and 2 , respectively, where 12   . The fluid layers are limited 

laterally by a straight vertical wall. We study the motion in a Cartesian coordinate system with 

the x-axis along the undisturbed interface and directed along the coastal wall, the y-axis points 

towards the sea, and the z-axis is vertically upwards. The system rotates with angular velocity 

2/f  about the vertical axis, where f  is the constant Coriolis parameter. When disturbed, the 

material interface is given by ),,( tyxz  . 

       The fluid motion is described by using a Lagrangian formulation. A fluid particle is 

identified by its Lagrangian coordinates ),,( cba . The initial position of the particle is ),,( 000 zyx , 

and the position at later times t  is )),,,(),,,,(),,,,(( tcbaztcbaytcbax . The velocity components 

are ),,( ttt zyx , where subscripts denote partial differentiation. The position of the material 

interface is given by 0c  for all times. Furthermore, we simplify, and assume that the upper and 

lower horizontal boundaries are impermeable, i.e. the vertical velocities vanish here. 

       Mass conservation (here volume conservation) requires that in each layer [21] 

                                       
),,(

),,(

),,(

),,( 000

cba

zyx

cba

zyx
D









 .                                                     (1)                                                     

In the present analysis we consider trapped waves with particles moving in the zx, -plane, i.e. 

0ty . For such waves we can generally assume that by  . The expression (1) then reduces to 

                                                            },{},{ 00 zxJzxJ  ,                                                             (2) 

where J is the Jacobian operator defined by acca GFGFGFJ },{ .   

       In this case the equations of momentum in each layer can be written [21]: 
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                           (3)         

where p is the pressure, f the constant Coriolis parameter, and g is the acceleration due to gravity.  

 

3. A series expansion solution 

       Lagrangian perturbation solutions for surface waves with weak vorticity in a one-layer ocean 

of infinite depth have been discussed in [22] and [23]. For Gerstner type waves in a fluid layer of 

finite depth, an exact solution does not exist [6,7]. The same is of course true for the two-layer 

case. It should be noted that a two-layer non-rotating problem with a hydrostatic upper layer of 

constant speed, and an infinitely deep lower layer has been considered in [24]. But this problem 

differs very much from the case studied here. A standard procedure for the present problem is to 

consider the solutions in each layer as series expansions after a small parameter  . For coastally 

trapped waves we can write 
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
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                                                 (4) 

see e.g. [25] for this approach in the Lagrangian formulation. Here we take that  kA  (the 

wave steepness), where A  is the interfacial wave amplitude and k  is the positive wave number.  

       For a one-layer model in a non-rotating fluid of finite depth such expansions for Gerstner-

type waves have been carried out to third order in [26] for the restricted case that 1D  in (1), and 

generally to third order in [7]. For a rotating two-layer model, many of the basic features of the 

solution are obtained to second order (except the possible amplitude-dependence of the phase 

speed). Also, further analysis to higher orders involves a considerable amount of algebra. This 
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labor could perhaps be better spent by applying numerical PDE solvers to this problem. 

Therefore, in this analytical study, we truncate the series (4) after )( 2O . 

       For impermeable boundaries at 1Hc   and 2Hc  , trapped solutions to )(O can be 

written 

                                           

,sin
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)exp(
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                                          (5) 

where the minus sign in   corresponds to the upper layer labelled 1, where  1,0 Hc . In (5), 

tka    is the phase function, where  is the angular frequency. Furthermore, q  is the 

inverse Rossby radius of deformation. For details on water waves, the reader is referred to 

LeBlond and Mysak [27].        

       First we state some elementary facts for the linear problem. From (3) one finds that the 

continuity of pressure at the interface 0c  requires that 

                                                   
2211

122

cothcoth

)(

kHkH

gk









 .                                                 (6) 

From the linear vorticity equation in the seaward direction, it follows by inserting for )1(

2,1

)1(

2,1 , zx  

that 

                                                                   


fk
q  .                                                                        (7) 

It is noted from (7) that to have coastally trapped solutions, i.e. 0q  when 0b , then   in (6) 

must be positive, which means that the trapped interfacial wave must travel with the coast to the 

right in the northern Hemisphere.  

       From (3) we obtain for the momentum balance to second order: 
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By differentiating with respect to time, (2) becomes  
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Inserting from (5), we obtain that 
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Similarly, the volume conservation (9) reduces to: 
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)2exp(

2,1

2

)2(

2,1

)2(

2,1 

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       One interesting problem here is the fate of the vorticity, which is present in the exact  

Gerstner solution for infinite depth. In Eulerian notation the seaward vorticity  is defined as 

xz wu  , where u and w are the horizontal and vertical velocity components. By applying the 

transformations 

                             },{/},{},,{/},{ zxJRxJRzxJzRJR zx  ,                                    (12)                                                         

we find that  

                                           },{/},{},{ zxJzzJxxJ tt  .                                             (13)                                                                                

By inserting from (5), we have for the vorticity to )(O : 

                                                            0)1(

2,1

)1(

2,1

)1(

2,1  tatc zx .                                                      (14) 
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This means that the Gerstner-type wave to lowest order is identical to the irrotational interfacial 

Kelvin wave, as pointed out in [7] for the non-rotating one-layer case. 

       To second order (13) reduces to 
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                          (15) 

From the x- and z-directions of (10) we obtain that 

                                                              0)2(

2,1

)2(

2,1  ttattc zx .                                                             (16) 

In Gerstner-type waves the motion is purely oscillatory (no mean drift), so for such waves it 

follows from (16) that 0)2(

2,1

)2(

2,1  tatc zx . From (15) we then obtain for the vorticity to )( 2O   

for the Gerstner-type wave: 
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On the other hand, the interfacial Kelvin wave (the interfacial Stokes wave in a non-rotating 

ocean) is irrotational, and has a mean forward drift. By taking  0)2(

2,1   in (15), averaging over 

the wave period, and assuming that the mean quantities does not vary in the horizontal direction, 

we find by integration in the vertical that 

                                           )(2cosh
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Here Su 2,1  is the well-known Stokes drift in each layer for interfacial coastal Kelvin waves. We 

have put the integration constants equal to zero, since (18) also must be valid for infinitely deep 

upper and lower layers.  

 

4. Interfacial Gerstner-type waves to second order 
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      By definition the Gerstner-type wave has no forward mean drift, and is purely periodic in 

time. For such waves we may define a velocity potential 2,1  from (16), where ax 2,1

)2(

2,1   and 

cz 2,1

)2(

2,1  . The governing equation becomes from (11)   

                                                2cos
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 .                                           (19) 

Since we must have that 01
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1  cz   when 1Hc  , and 02

)2(

2  cz   when 2Hc   we can 

write the solution 
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where 2,1B  are dimensionless constants. Inserting for ax 2,1

)2(

2,1   and cz 2,1

)2(

2,1   from (19) into 

the x- component of (10), we now find for the a-dependent part of the pressure:      
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                                                                                                                                                     (21) 

We must require that )2(

2

)2(

1 pp   along the material interface 0c . For this to be true, it is 

necessary that in (21)  
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       The final relation between 1B  and 2B  is obtained from the non-linear kinematic boundary 

condition at the material interface. From elementary Eulerian fluid mechanics we must have at 

the interface: 
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Inserting from (5), we find that 
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where  , 1Q and 2Q  are given by (23). The explicit expression for 2B  follows readily from (27). 

       We can now write the particle displacements in each layer to )( 2O  for our interfacial 

Gerstner-type trapped wave from (5) and (20): 
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and 
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       As pointed out in [7] for the non-rotating one-layer case, Stokes-type expansions of the form 

(4) are not very efficient in shallow water ( 12,1 kH ). For infinitely deep layers, i.e. 2,1kH , 

we have 2/1)}1/()1{(   gk from (6). In that case our solutions reduce to 
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When 1/ 21   , (31) and (32) represent the solutions in air and water for trapped short 

waves. To have a common interface at 0c , we must require that 1  in these solutions.  

 

5. Effect of layer depths and density differences  

       To compare with earlier investigations of Gerstner-type waves in a single layer of finite 

depth with a free surface, we take in our calculations that 001.0/ 21    (air above water), 

m7001 H , m102 H , m100 , and 06.0 kA . With these parameters the upper air 

layer is in practice infinitely thick. The result for the interface 0c  is displayed in Fig. 1. 

Fig. 1  
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We note from Fig. 1 that nonlinearity strengthens the tendency of the linear solution towards 

more peaked interfacial crests and flatter troughs. This is qualitatively the same shape as for the 

exact Gerstner solution for a single infinitely deep layer with a free surface. 

       In Fig. 2 we have displayed the trajectories for particles at the interface for this case. The 

displacements are scaled by the wave amplitude.           

Fig. 2 

We note from Fig. 2 that the linear trajectory in the upper, “infinitely” thick layer is a circle, and 

in the lower finite depth layer it is an ellipsis, as expected. The nonlinearity yields that the 

particle trajectory in the lower layer (blue solid curve) is a deformed ellipsis which is more flat 

near the bottom. This is similar to what one finds for Gerstner-type waves in a one-layer model 

with finite depth; see [7, Fig. 6]. 

       Another immiscible two-layer set-up that is relevant in nature, is oil above water. In this case 

the upper layer is usually much thinner than the lower layer. Typically, for oil above water we 

have 9.0/ 21   . For a laboratory-scale experiment, we now choose m2.01 H , m12 H  

and m1 . In Fig. 3 we have depicted the shape of the interface for this case when 03.0 . 

Fig. 3 

We note from Fig. 3 that the interface is broader and somewhat depressed at the crests, and 

sharper and deeper at the troughs, which is contrary to what we observe in Fig. 1. Obviously, flat 

crests and sharp troughs are due to the presence of the thinner upper layer. This also affects the 

particle trajectories at the interface in the upper and lower layer; see Fig. 4 below. Again, the 

displacements are scaled by the wave amplitude. 

Fig. 4   

We note from Fig. 4 that the trajectories in each layer from linear theory are ellipses with 
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different major axes (dotted curves). The nonlinear effect is to distort the ellipses by displacing 

them downwards and flatten them at the top. This is picture is consistent with the surface shape 

displayed in Fig. 3.  

       However, it is an interesting fact that not only the thickness, but also the density of the upper 

fluid also contributes to the shape of the interface. This is evident from Fig. 5, where we have 

plotted the situation in Fig. 1 with an infinitely thick upper layer, but now with a much denser 

fluid than air on top. This setting could model the effect of water above a thin mud layer at the 

bottom. 

Fig. 5 

We note from Fig. 5 the resemblance with the surface shape in Fig. 3, and we realize that 

increasing upper layer density contributes to the flattening of the crests and the sharpening of the 

troughs. 

 

6. Concluding remarks 

       The boundary conditions for inviscid rotational gravity waves along a free surface, and for 

waves along an interface between immiscible fluids of different densities are quite different. In 

the first case the only requirement is that the pressure is constant along the surface, which yields 

the exact Gerstner solution in Lagrangian coordinates (linear in wave amplitude, phase speed 

independent of amplitude) in an infinitely deep layer. In this connection it should be mentioned 

that the Gerstner solution in an infinitely deep layer is also valid when the Coriolis force is 

included; see e.g. [28, 29]. If we add an infinitely deep upper layer of smaller density, the 

situation changes drastically, as seen from the approximate solutions (31) and (32). Now it must 

be required that the pressure at the interface as well as the velocities normal to the interface must 

be the same in both fluids. To satisfy both these conditions, restrictions must be put on the wave 
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steepness  , which must be small. 

       The effect of finite depth on rotational waves along a free surface yields similar problems. In 

particular, it is impossible to obtain a constant pressure along the free surface for all permissible 

  when the depth is finite [6]. Hence, solutions must be sought as series expansions; see e.g. [7, 

26]. The addition of an upper layer of finite depth and different density complicates this problem 

even further, as shown in this paper. 

       In practice, even if the density of air is about 1/1000 of that of water, the effect of air above  

water cannot be neglected. Hence, it will not be possible to generate the exact Gerstner wave 

solution in the laboratory with air on top. Accordingly, small-amplitude rotational Gerstner-type 

waves and irrotational Stokes waves will be difficult to distinguish in laboratory experiments. 

One way to separate them is to measure the mean drift in the Stokes wave. However, this may not 

be an easy task, as shown by Monismith et al. [30]; see also the discussion in [31] which includes 

the effect of viscosity. 
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Figures 

                     

Fig. 1. The interface at the vertical wall ( 0b ) when 001.0/ 21  , 441 kH , 63.02 kH , and 

06.0 . Red curve: linear theory. Blue curve: nonlinear theory from lower layer solution. Blue 

dots: nonlinear theory from upper layer solution. 
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Fig. 2.  Particle trajectories at the interface for the same parameters as in Fig. 1. Red solid curve: 

upper layer. Blue solid curve: lower layer. The dotted red and blue curves correspond to the 

linear solution in each layer. 
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Fig. 3. The interface at the vertical wall ( 0b ) when 9.0/ 21  , 26.11 kH , 28.62 kH , and 

03.0 . Red curve: linear theory. Blue curve: nonlinear theory from lower layer solution. Blue 

dots: nonlinear theory from upper layer solution. 

 



 20 

                           

Fig. 4. Particle trajectories at the interface for the same parameters as in Fig. 3. Red solid curve: 

upper layer. Blue solid curve: lower layer. The dotted red and blue curves correspond to the 

linear solution in each layer. 
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Fig. 5. The interface at the vertical wall ( 0b ) when 9.0/ 21  , 441 kH , 63.02 kH , and 

022.0 . Red curve: linear theory. Blue curve: nonlinear theory from lower layer solution. Blue 

dots: nonlinear theory from upper layer solution. 
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Figure legends 

Fig. 1. The interface at the vertical wall ( 0b ) when 001.0/ 21  , 441 kH , 63.02 kH , and 

06.0 . Red curve: linear theory. Blue curve: nonlinear theory from lower layer solution. Blue 

dots: nonlinear theory from upper layer solution. 
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