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An extension of the formulation of time dependent density functional response theory (TDDFT) that includes
approximate Fock/Kohn-Sham matrices is presented. The new framework allows for flexible use of approx-
imate methods to calculate the Coulomb and exchange integrals such as the resolution of the identity (RI)
and the auxiliary-density matrix method (ADMM) in an efficient manner. Other alternative approximate
approaches for the Coulomb and exchange integrals can easily be accessed allowing for systematic perfor-
mance tests of different methods. The new approximate Kohn-Sham response theory framework has been
implemented in the program LSDalton. It has been tested for both linear and quadratic response properties:
vertical excitation energies, polarizabilities and hyperpolarizabilities. The results indicate that density fitting
of the Coulomb contribution can be used without hesitation for all properties studied here. The impact of the
additional approximations in the ADMM treatment of exchange have been carefully assessed and it is shown
that the method yields high accuracy for ground-state and excitation energies, whereas for polarizabilities
and hyperpolarizabilities the accuracy to performance ratio is less satisfactory.

I. INTRODUCTION

In molecular electronic-structure theory, an essential
step is the evaluation of two-electron integrals over one-
electron basis functions. The explicit evaluation of these
integrals comes at a high computational cost, and from
the dawn of quantum chemistry, approximations have
been introduced both to speed up molecular calculations
and to reduce memory requirements. Such approximate
methods have been widely developed for the calculation
of energies and gradients, but less attention is given to
developing these methods for the calculation of molecular
properties.

The most widely used approach to approximate the
Coulomb and exchange integrals is density fitting1–21,
also known as the resolution-of-the-identity (RI) approx-
imation. In this approximation products of two one-
electron basis functions are expanded in one-center auxil-
iary orbitals, and thus, the evaluation of four-center two-
electron integrals is replaced by the evaluation of two-
and three-center two-electron integrals and the solution
of a set of linear equations. RI significantly improves
performance with a limited impact on the accuracy and
has therefore been applied to Hartree-Fock(HF)/Kohn-
Sham(KS) theory, as well as correlated methods21–26.
An important alternative approach is the Cholesky-
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decomposition (CD) technique27–31 which to a large ex-
tent can be thought of as a special kind of density fitting
where the basis of auxiliary functions are obtained from
the set of products between two one-electron basis func-
tions through Cholesky-decomposition.

Combined with J-engine techniques32–34 RI gives
tremendous speed-ups7,8 for Coulomb-like contributions.
Although still applicable to exchange9–12,15,16,19,20, the
RI methodology does not exhibit the same favourable
performance gains as for the Coulomb integrals. Al-
ternative schemes such as the auxiliary-density-matrix
method (ADMM)35,36 and the chain-of-spheres algorithm
(COSX)37 have therefore been developed specifically for
the exchange contribution. In ADMM, the exchange en-
ergy is split into two parts. One part consists of the
exact HF exchange evaluated in a small auxiliary atomic
basis set (from an auxiliary density matrix); the second
part is a first-order correction term, evaluated as the dif-
ference between the generalized gradient approximation
(GGA) exchange in the full and auxiliary basis sets. The
auxiliary density matrix can be obtained by means of
projection from the full density matrix fulfilling various
constraints, as discussed by Guidon et al.35 and Mer-
lot et al.36. The COSX approximation builds on the use
of semi-numerical integration techniques, first introduced
by Friesner in the pseudo-spectral method38–40 and later
refined in the COSX approach by Neese et al.37. In this
approach the Coulomb potentials of products of two one-
electron basis functions are evaluated analytically on a
grid, followed by a numerical integration over the second
electron. Reported speed-ups are of up to two orders
of magnitude relative to calculations involving explicit
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exchange-matrix formation37. In this work we explore
how these techniques may be exploited further in the cal-
culation of molecular properties using response theory.

In response function theory41–49 we determine the time
development of an observable when the molecular system
is subjected to an external electric or magnetic field. The
frequency dependent perturbation causes the wave func-
tion to become frequency dependent. The response of
the observable may be expanded in powers of the field
strength: the linear response of the system is determined
by the linear response function, the quadratic response
by the quadratic response function, and so on50.

The linear response function therefore represents the
first-order correction to the expectation value of choice.
The quadratic-response function represents the second
order correction to the expectation value of choice and
so on. For example, the frequency-dependent polariz-
ability and hyper-polarizability may be evaluated from
the linear and quadratic response functions, respectively.
In the present work we investigate static (frequency inde-
pendent) polarizabilities and hyperpolarizabilities. From
the poles and residues of the response functions, ad-
ditional molecular properties can be obtained, includ-
ing vertical excitation energies to electronically excited
states, strength parameters for (multi-photon) transi-
tions to these states, and excited-state properties41.

Recently, Ringholm et al.51 presented an approach in-
volving recursion for the open-ended calculation of re-
sponse properties based on the density matrix-based
quasi-energy formulation of the Kohn–Sham density
functional response theory using perturbation- and time-
dependent basis sets of Thorvaldsen et al.44. This ap-
proach was extended by Friese et al. to enable the calcu-
lation of single residues of response functions52,53. Very
recently, this approach has furthermore been extended to
include molecular environment effects by the polarizable
embedding model54.

The RI approximation has been extensively used in
connection with CC2 molecular properties55–64, but has
also been used in connection with the coupled per-
turbed Kohn–Sham equations65. It has also been used in
TD-DFT in connection with excitation energies, excited
state gradients and frequency-dependent optical rotation
calculations66–70. Recently, Kumar et. al. showed that
density fitting can also be applied for the efficient calcu-
lation of nuclear magnetic resonance shielding tensors71.
Ref. 66 and 69 concluded that the auxiliary basis sets
developed for ground state calculations are sufficient for
most TDDFT applications, although in some cases addi-
tional diffuse basis functions must be included. Ref. 69
reported that the total computational effort for excited
state optimizations is reduced by at least a factor of 4-6
by the RI-J approximation, with corresponding RI-J er-
rors of 0.01-0.02 eV. The RI-J errors in optimized bond
lengths and angles amounted to less then 0.5 pm and 1
degree, respectively. These deviations are usually much
smaller than errors due to the incompleteness of the one-
particle basis set.

In the present paper we present a method for the com-
putation of response functions within the self-consistent-
field (SCF) theories HF and KS density functional the-
ory (DFT) and the extension to include ADMM, density
fitting and other approximations in the construction of
the Fock/Kohn-Sham matrix. The new formulation of
approximate response theory presented in this work is
very general and works in principle for all approxima-
tions where the approximate Kohn-Sham matrix can be
defined as the density matrix derivative of the approx-
imate energy. It allows to easily accommodate future
approximate methods that may differ from ADMM or
RI in HF/KS response theory. The formulation makes
it clear that density fitting/RI can be straight forwardly
applied in the context of response theory, and the limited
number of benchmark studies is therefore surprising.

The approximate response theory formulation intro-
duced in this work is asymptotic linear scaling assuming
that sparse matrix algebra is used. However, the focus of
the present study is not on the scaling of the approach
with system size. Instead we use the new methodology
to investigate the impact of several different approxima-
tions such as RI and ADMM on the accuracy of linear,
quadratic and cubic response properties. As examples
we consider vertical excitation energies, static polariz-
abilities and static hyperpolarizabilities. We commence
in Section II by introducing the theoretical framework
for the response calculations. In Section III A we show
how this framework can easily accommodate a range of
techniques for approximating the most costly contribu-
tion arising from the Coulomb and exchange integrals. In
Section V we present results for a range of molecular re-
sponse properties to gauge the relative accuracy of these
techniques in practical application. Finally in Section VI
we make some concluding remarks and discuss directions
for future work.

II. THEORY

In order to provide a framework to easily introduce
ADMM and other approximate methods in HF/KS re-
sponse theory we first derive response theory in a formu-
lation where the Fock/Kohn-Sham matrix takes a center
stage. The derivation follows the response theory method
of Larsen et al.47 with a few modifications emphasizing
the role of the Fock/Kohn-Sham matrix, followed by an
adaptation to ADMM and RI theories. The derivation
assumes that all basis sets employed do not depend on
the perturbation. Hence no London72(gauge including)
atomic orbitals nor geometric perturbations are consid-
ered in the present work.

A. Time evolution of the Kohn–Sham system

In Kohn-Sham (KS) density-functional theory (DFT),
the time evolution of the spin orbitals, in presence of a
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time dependent perturbation V (r1, t), is governed by the
time-dependent Schrödinger equation73–76,

[fKS(r1, t) + V (r1, t)]φj(r1, t) = i
dφj(r1, t)

dt
, (1)

where we have introduced the Kohn-Sham operator
fKS(r1, t) = h(r1) + j(r1, t) + vxc(r1, t), which we choose
to define without the perturbation V (r1, t). The con-
stituents of the Kohn-Sham operator are given through
their matrix definitions in detail later in Eq. (6). The
Kohn-Sham potential fKS is defined as the functional
derivative of the unperturbed energy functional

fKS(r1, t) =
δE[ρ]

δρ(r1)

∣∣∣∣
ρ(r1)=ρ(r1,t)

(2)

which depends on the perturbation V (r1, t) through the
density

ρ(r, t) =
∑
µν

χ∗µ(r)χν(r)Dνµ, (3)

where D is the time dependent density matrix in the
atomic-orbital (AO) basis and χ(r) denotes the AO basis
functions. In the case of hybrid functionals fKS may be
supplemented by an orbital dependent term of the form,
w ·k(r1, r2, t), where w is the weight of orbital dependent
exchange and k(r1, r2, t) is the derivative of the exchange
energy with respect to the orbitals, as is used in Hartree–
Fock theory.

Eq. (1) may be rewritten as a matrix equation using
the expansion in AOs χµ

φi(r1, t) =
∑
µ

Cµiχµ(r1), (4)

to obtain47

(
F(D) + V− iS ∂

∂t

)
C = SCλ (5)

with

Fµν(D) =
δE

δDµν
= hµν + Jµν + wKµν +Kxc

µν

hµν =

∫
χµ(r)

(
−1

2
∇2
I +

∑
I

ZI
|r−RI |

)
χν(r)dr

Jµν(D) =
∑
ρσ

(µν|ρσ)Dρσ

Kµν(D) =
∑
ρσ

(µσ|ρν)Dρσ

F xc
µν(ρ) =

∫
χµ(r)vxc(r, t)χν(r)dr

Vµν =

∫
χµ(r)V (r, t)χν(r)dr

Sµν =

∫
χµ(r)χν(r)dr

(µν|ρσ) =

∫∫
χµ(r1)χν(r1, t)

1

r12
χρ(r2)χσ(r2)dr1dr2.

(6)

Eq. (5) reduces to the SCF equation in the perturba-
tion free limit (V = 0) and therefore time-independent
limit

F(D)C = SCλ. (7)

Multiplying Eq. (5) with CTS from the right, sub-
tracting the complex conjugate equation and introducing
the density matrix in the AO basis D = CCT we may
write this equation as47

(F(D) + V)DS− SD (F(D) + V) = iSḊS (8)

We use the short hand notation Ḋ = ∂D
∂t for the time

derivative of the density matrix. Eq. (8) reduces to the
standard stationary SCF condition FD0S−SD0F = 0 in
the perturbation free limit, with D0 being the optimized
AO density matrix for the unperturbed system.

B. Kohn Sham matrix expansion

We use an exponential parametrization of the density
matrix

D(X(t)) = exp(−X(t)S)D exp(SX(t)) (9)

where X(t) is an anti-hermitian matrix. Furthermore
it is assumed that the symmetry, trace and idempo-
tency conditions are imposed77,78, which implies that
the reference density matrix D also fulfills these condi-
tions. The transformed density matrix D(X), may then
be evaluated using the the asymmetric Baker-Campbell-
Hausdorff (BCH) expansion

D(X) = D0 + [D,X]S +
1

2
[[D,X],X] + · · · (10)
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where we have defined the S-commutator:

[D,X]S = DSX−XSD. (11)

When performing a Taylor expansion of the Kohn-
Sham matrix F around the optimized AO density ma-
trix for the unperturbed state one obtains the following
expression

F(D(X)) = F(D0) +
∂F

∂D(X)

∣∣∣∣
D(X)=D0

(D(X)−D0)

+
1

2

∂2F

∂D(X)2

∣∣∣∣
D(X)=D0

(D(X)−D0)2 + · · ·

(12)

Since we are typically interested in derivatives contracted
with a matrix M, thus

∂J(D(X))

∂D(X)

∣∣∣∣
D(X)=D0

M = J(M)

∂K(D(X))

∂D(X)

∣∣∣∣
D(X)=D0

M = K(M)

∂Fxc(D(X))

∂D(X)

∣∣∣∣
D(X)=D0

M = Kxc(M)

(13)

where

Kxc(M) =

∫∫
χµ(r)

∑
ρσ

δvxc
δρ(r, t)

χρ(r)χσ(r)Mρσχν(r)drdr′

(14)

Denoting the first derivative of the KS matrix contracted
with a general matrix M as G(M), we then have

G(M) =
∂F

∂D(X)

∣∣∣∣
D(X)=D0

M

= J(M) + w ·K(M) + Kxc(M). (15)

For the second and higher order Kohn-Sham matrix
derivatives only exchange-correlation contributions re-
main, and we define

T (N,M) =
∂2F(D(X))

∂D(X)2

∣∣∣∣
D(X)=D0

(N,M) = T xc(N,M)

T xc
φξ (N,M) =

∑
ρσηε

MρσNηε

∫∫∫
χ∗φ(r)χξ(r)χ∗ρ(r

′)

χσ(r′)χ∗η(r′′)χε(r
′′)
δ2vxc(r)

δρ(r)2
drdr′dr′′

(16)

to obtain:

F(D(X)) = F(D0) + G(D(X)−D0)

+
1

2
T(D(X)−D0,D(X)−D0) + · · · (17)

The parameters X must then be determined in the pres-
ence of the perturbation.

C. Response Equation

The set of parameters X(t) can be expanded in orders
of the perturbation

X(t) = X(1)(t) + X(2)(t) + · · · (18)

where the zero-order coefficients vanish since the refer-
ence state is optimized. Using Eq. (10) and Eq. (17) we
may expand Eq. (8) in orders of the perturbation. The

parameters X(n)(t) can now be determined by requiring
Eq. (8) to be valid to each order of the perturbation. The
resulting equation containing the first order contributions

X(1)(t) is called the linear response equation, similarly

the second order X(2)(t) parameters are obtained from
the quadratic response equation and so forth.

1. Linear Response Equation

The terms that contribute to the evaluation of the
X(1)(t) are

G([D,X(1)]S)DS− SDG([D,X(1)]S)

+ F(D)[D,X(1)]SS− S[D,X(1)]SF(D)

+ VDS− SDV = iS[D, Ẋ]SS

(19)

To solve this first-order equation we use the Fourier ex-
pansion of X(1)(t)

X(1)(t) =

∫ ∞
−∞

exp(−iωt)X(1)(ω)dω (20)

and obtain:

G([D,X(1)(ω)]S)DS− SDG([D,X(1)(ω)]S)

+ F(D)[D,X(1)(ω)]SS− S[D,X(1)(ω)]SF(D)

+ VDS− SDV = −ωS[D,X(ω)]SS.

(21)

It can also be written as48,79(
E[2] − ωS[2]

)
X(ω) = VDS− SDV (22)

with the generalized Hessian E[2] defined through the
transformation

E[2]X(ω) = −G([D,X(1)(ω)]S)DS + SDG([D,X(1)(ω)]S)

− F[D,X(1)(ω)]SS + S[D,X(1)(ω)]SF,

(23)

and the generalized metric matrix S[2] through

S[2]X(ω) = S[D,X(ω)]SS. (24)

The excitation energies are identified as the poles of the
linear response equation and are therefore solutions to
the generalized eigenvalue problem defined below.

E[2]Xf = S[2]Xfωf (25)
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2. Quadratic Response Equation

The terms that contribute to the evaluation of the
X(2)(t) are

−
(
G([D,X(2)(ω1, ω2)]S)

+ P12G(
1

2
[[D,X(1)(ω1)],X(2)(ω2)])

+
1

2
P12T([D,X(1)(ω1)]S, [D,X

(1)(ω2)]S)

)
DS

+ SD

(
G([D,X(2)(ω1, ω2)]S)

+ P12G(
1

2
[[D,X(1)(ω1)],X(2)(ω2)])

+
1

2
P12T([D,X(1)(ω1)]S, [D,X

(1)(ω2)]S)

)
− P12G([D,X(1)(ω1)]S)[D,X(1)(ω2)]SS

− 1

2
P12F(D0)[[D,X(1)(ω1)],X(1)(ω2)]S

+ P12S[D,X(1)(ω1)]SG([D,X(1)(ω2)]S)

+
1

2
P12S[[D,X(1)(ω1)],X(1)(ω2)]F(D0)

− F[D,X(2)(ω1, ω2)]SS + S[D,X(2)(ω1, ω2)]SF

− (ω1 + ω2)S[D,X(2)(ω1, ω2)]SS

− 1

2
(ω1 + ω2)P12S[[D,X(1)(ω1)],X(2)(ω2)]S

= V[D,X(2)(ω1, ω2)]SS− S[D,X(2)(ω1, ω2)]SV

(26)

To obtain the expressions above we have used the Fourier
expansion of X(1)(t) (see Eq. (20)) and X(2)(t)

X(2)(t) =

∫∫ ∞
−∞

exp(−i(ω1 + ω1)t)X(2)(ω1, ω2)dω (27)

Furthermore, we require the second order correction to be
symmetric in the frequencies. The integration variables
ω1 and ω2 have been symmetrized using the operator P12,
which creates the different permutations of the frequen-
cies ω1 and ω2. Finally, using the definitions in Eq. (23)

and (24) along with

E[3]X(1)(ω1)X(1)(ω2) =

−
(
G(

1

2
[[D,X(1)(ω1)],X(2)(ω2)])

+
1

2
T([D,X(1)(ω1)]S, [D,X

(1)(ω2)]S)

)
DS

+ SD

(
G(

1

2
[[D,X(1)(ω1)],X(2)(ω2)])

+
1

2
T([D,X(1)(ω1)]S, [D,X

(1)(ω2)]S)

)
−G([D,X(1)(ω1)]S)[D,X(1)(ω2)]SS

− 1

2
F(D0)[[D,X(1)(ω1)],X(1)(ω2)]S

+ S[D,X(1)(ω1)]SG([D,X(1)(ω2)]S)

+
1

2
S[[D,X(1)(ω1)],X(1)(ω2)]F(D0)S[3]X(1)(ω1)X(1)(ω2)

(28)

and,

S[3]X(1)(ω1)X(1)(ω2) =
1

2
S[[D,X(1)(ω1)],X(2)(ω2)]S

(29)

we obtain the well known form of the quadratic response
equation

(E[2] − (ω1 + ω2)S[2])X(2)(ω1, ω2) =

V[D,X(2)(ω1, ω2)]SS− S[D,X(2)(ω1, ω2)]SV

− P12

(
E[3] − (ω1 + ω2)S[3]

)
X(1)(ω1)X(1)(ω2)

(30)

D. Response Functions

Response functions describe the corrections to the ex-
pectation value of a Hermitian operator Â, representing
an observable, due to the perturbation.

〈0̃|Â|0̃〉 = 〈0|Â|0〉

+

∫ ∞
−∞
〈〈A;V (ω)〉〉ω exp[(−iω + ε)t]dω

+
1

2

∫∫ ∞
−∞
〈〈A;V (ω1), V (ω2)〉〉ω1,ω2

exp[(−i(ω1 + ω2) + 2ε)t]dω1dω2 + ...

(31)

Using Eq. (10) to parametrize the expectation value

Tr(AD(X)) = Tr(AD0) + Tr(A[D,X]S)

+
1

2
Tr(A[[D,X],X]) + · · · (32)
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and the Fourier expansion of X, collecting orders of the
perturbation we obtain the linear response function

〈〈A;V (ω)〉〉ω = Tr(A[D,X(1)]S) (33)

and the quadratic response function

〈〈A;V (ω1), V (ω2)〉〉ω1,ω2
= Tr(A[D,X(2)]S)

+
1

2
Tr(A[[D,X(1)(ω1)],X(1)(ω2)])

+
1

2
Tr(A[[D,X(1)(ω2)],X(1)(ω1)])

(34)

III. RESPONSE THEORY WITH APPROXIMATE
INTEGRALS

When using an approximation like density-fitting the
energy and Kohn-Sham matrix changes. This means that
the Taylor expansion of the Kohn-Sham matrix must also
change and a modified G and/or T of Eq. (15) and
(16) is obtained. However, everything else remains the
same. The response functions can still be evaluated from
Eq. (33) and (34) with response parameters obtained by
solving the response equations in Eq. (22) and Eq. (30).
Excitation energies and excitation eigenvectors can still
be determined from Eq. (25).

In this section we derive expressions for G and T for
a number of popular approximations like density-fitting
and the auxiliary density matrix method (ADMM). This
framework is general and works for all approximations
where the approximate Kohn-Sham matrix can be de-
fined as the density matrix derivative of the approximate
energy. This provides a clear roadmap for the implemen-
tation of response theory using both present and future
approximations that accelerate the evaluation of contri-
butions arising from the Coulomb and exchange integrals.

A. Kohn Sham matrix expansion using ADMM

The expression for the ADMM energy is based on the
following trivial rearrangement of the total exchange en-
ergy (EK);

EK(D) = Ek(d) + EK(D)− Ek(d), (35)

where D is the density matrix in the primary atomic-
orbital (AO) basis and d is a density matrix obtained
by projection of D to some (smaller) auxiliary AO basis,
which represents an auxiliary electron density,

ρadmm(r) =
∑
αβ

χα(r)χβ(r)dαβ . (36)

In the following we use upper-case letters to denote quan-
tities evaluated in the primary basis, whereas lower-case
letters refer to quantities in the auxiliary basis. The

ADMM exchange energy (EKadmm) is obtained by replac-
ing the exact-exchange terms EK(D)−Ek(d) in Eq. (35)
with exchange functionals Eadmm

xc [ρ] − Eadmm
xc [ρadmm].

Note, that the exchange functional used in the ADMM
approximation (denoted with xc, admm) may be different
from the exchange-correlation functional used (denoted
with xc). The ADMM exchange energy is then,

EKadmm(D) = Ek(d) + Eadmm
xc [ρ]− Eadmm

xc [ρadmm]

=
1

2

∑
µρνσ

dµν(µρ|νσ)dρσ +

∫
R3

εx[ρ] dr

−
∫
R3

εx[ρadmm] dr.

(37)

We use indices µ, ν, ρ, σ, . . . for the primary AOs and
indices i, j, . . . for occupied MOs expanded in the pri-
mary AOs. For auxiliary AOs greek letters are used
α, β, γ, δ, . . . respectively.

Here we focus on the ADMM2 approximation where
the projected density matrix d can be written in terms
of the regular AO density matrix D as

d = WDWT , W = s−1Q (38)

Here s is the AO overlap matrix in the auxiliary ba-
sis with elements sαβ =

∫
χα(r1)χβ(r1)dr1; and Q is

the mixed auxiliary-primary AO overlap matrix with el-
ements Qαµ =

∫
χα(r1)χµ(r1)dr1

The ADMM2 exchange matrix is defined as

Kadmm
µν (D) =

∂EKadmm

∂Dµν

= Fxc,admm
µν (D) + WT (k(d)− fxc,admm(d))W

(39)

Its resulting derivatives can be expressed as

∂Kadmm(D)

∂D
M = Kxc,admm(M)

+ WT (k(m)−Kxc,admm(m))W

∂2Kadmm(D)

∂D∂D
MN = Txc,admm(M,N)

−WT (Txc,admm(m,n))W

(40)

with

m = WMWT n = WNWT (41)

Due to the exchange-correlation contribution the ex-
change matrix will have contributions to all orders but
here we limit ourself to quadratic response. Finally, the



7

ADMM2 approximation leads to the following expression

Gadmm(M) = J(M) + wKxc,admm(M)

+ wWT (k(m)−Kxc,admm(m))W

+ Kxc(M)

Tadmm(M,N) = wTxc,admm(M,N)

− wWT (Txc,admm(m,n))W + Txc(M,N)

(42)

replacing Eq. (15) and (16).

B. Kohn Sham matrix expansion using density-fitting

In density fitting the products of two one-electron func-
tions are expanded in auxiliary atom-centered functions
α(r), according to

|µν〉 ≈ |µ̃ν〉 =
∑
α

cµνα |α〉. (43)

The integrals (µν|ρσ) can be approximated in different
ways, for example according to the three term expan-
sion14

(µν|ρσ) ≈ ˜(µν|ρσ) = (µ̃ν|ρσ) + (µν|ρ̃σ)− (µ̃ν|ρ̃σ), (44)

where the two first terms involve three-center integrals
and the last term involves two-center integrals. The dif-
ferent flavours of density fitting arise from the choice of
1) the set of auxiliary functions {α} included in the ex-
pansion of Eq. (43), 2) how the fitting coefficients cµνα are
obtained and 3) the ansatz for the integral approximation
Eq. (44). The set of functions {α} can range from includ-
ing only auxiliary functions centered on the two parent
atoms3 of µ and ν to the full set of auxiliary functions
on all atoms in the molecule4,5. The fitting coefficients
are obtained by minimizing the error ∆w

µν of the residual
density |δµν〉 = |µν〉 − |µ̃ν〉 in metric w

∆w
µν = 〈δµν |w|δµν〉 (45)

where w can range11,13 from the Coulomb operator r−112

to the Dirac delta function (overlap metric fitting), and
where the minimization can be subjected to charge,
dipole or higher-order constraints. The three term ansatz
of Eq. (44) is denoted robust14 in the sense that it en-
sures that the errors in the fitted integrals are bilinear
with respect to the errors in the two-center fits,

(µν|ρσ)− ˜(µν|ρσ) = (δµν |δρσ), (46)

whereas including for instance only the first term has
a linear error. We note that when doing the standard
(unconstrained) Coulomb-metric fitting over the full set
of auxiliary functions, giving the fitting equation set∑

β

(α|β)cµνβ = (α|µν), (47)

and similarly for |ρσ), the error is bilinear using only
the first (or second) term of Eq. (44), as it follows from
Eq. (47) that (µ̃ν|ρσ) = (µν|ρ̃σ) = (µ̃ν|ρ̃σ), and thus the
second and third (or the first and third) terms of Eq. (44)
cancel.

When considering external perturbations, one needs
to include Lagrangian terms in the integral approxima-
tion to ensure that the equations for the fitting coeffi-
cients are satisfied with respect to the perturbation. In
this paper we only consider perturbations that do not
affect the fitted integrals, and the Lagrangian formalism
therefore does not need to be considered here. Hence,
the application of response theory is straightforwardly
achieved by a simple replacement of the exact integrals

(µν|ρσ) with the fitted integrals ˜(µν|ρσ). For the stan-
dard density-fitting approximation we simply replace the
exact expressions of J(M) and K(M) in Eq. (15), with

the approximate expressions J̃(M) and K̃(M), given by

J̃(M) =
∑
ρσ

˜(µν|ρσ)Mρσ =
∑
α

(µν|α)cα,

K̃(M) =
∑
ρσ

˜(µσ|ρν)Mρσ =
∑
α

∑
ρσ

(µσ|α)cρνα Mρσ,

cα ≡
∑
ρσ

cρσα Mρσ = (α|β)−1
∑
ρσ

(β|ρσ)Mρσ,

(48)

to obtain

G̃(M) = J̃(M) + w · K̃(M) + Kxc(M). (49)

We note that approximate Fock/KS matrix construc-
tion that requires a decomposition of the density ma-
trix (such as using (local) molecular orbitals29,80) cannot
straightforwardly be applied as the density matrix depen-
dence changes with the external perturbation. Similarly,
certain linear scaling density-fitting approximations have
an explicit dependence on the density.

C. Kohn Sham matrix expansion using COSX

Although we do not use COSX in this paper, we in-
clude it here as an additional example of an alternative
approach that may be accommodated in this framework.
Similar to the pseudo-spectral method38–40 the COSX al-
gorithm evaluates ERIs using a semi-numerical approx-
imation37,81, where one of the two electronic coordinate
integrations are performed on a grid and where the other
integration is performed analytically. The exchange en-
ergy is given by

EK,COSX = DµνXµgAνσ(rg)DρσXλg (50)

with Xλg =
√
wgχλ(rg), wg the grid weight, and Aνσ =∫

χν(r)χσ(r)|r−rg|−1dr. The COSX exchange matrix is
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defined as the density matrix derivative of the exchange
energy.

KCOSX
µν =

δEK,COSX

δDµν
= XµgAνσ(rg)DρσXλg (51)

The COSX exchange matrix has the same density matrix
dependence as the regular exchange matrix

∂KCOSX
µν

∂D(X)

∣∣∣∣∣
D(X)=D0

M = KCOSX
µν (M) (52)

while all higher order contributions vanish. Finally, we
obtain

GCOSX(M) = J(M) + w ·KCOSX(M) + Kxc(M) (53)

to replace the Eq. (15).

IV. COMPUTATIONAL DETAILS

The accuracy of the density fitting and ADMM ap-
proximations has been tested on a set of 11 molecules for
electronic ground state energies, vertical excitation ener-
gies, static polarizabilities and first hyperpolarizabilities.
For the vertical excitation energies, the five lowest excita-
tions were considered. Oscillator strengths are reported
in the supplementary information.

The test set of small to medium sized molecules has
been chosen from Ref. 82. The molecules investigated
are acetamide (C2H5ON), acetone (C3H6O), butadiene
(C4H6), cyclopropene (C3H4), ethene (C2H4), formalde-
hyde (CH2O), formamide (CH3ON), furan (C4H4O), im-
idazole (C3H4N2), propanamide (C3H7ON) and pyrrole
(C4H5N). This set of molecules will in the following be
denoted as M11.

The methods under investigation have been run with
a local development version of LSDalton83,84 on single
nodes of a 2.6 GHz Intel E5-2670 cluster, employing
OpenMP to utilize the 16 cores on each node. The DFT
functional CAM-B3LYP85 has been employed using the
specifications α=0.21, β=0.79 and µ=0.45. This choice
has been taken in order to have full long-range exchange
treatment, as needed in particular for polarizabilities and
first hyperpolarizabilities, and also for some of the inves-
tigated excitation energies.

For each property, the basis set performance of three
different types of calculations labelled as full, df-J and
admm have been investigated. Here “full” are regular cal-
culations employing standard J-engine techniques32–34

for the Coulomb contribution and LinK86 for the ex-
change contribution, i.e. without any approximation (ex-
cept standard acceleration techniques and integral pre-
screening), “df-J” refers to the combination of density-
fitting for Coulomb and LinK for exchange, and “admm”
to the combination of density-fitting for Coulomb and
ADMM (ADMM2) for exchange.

For the basis set performance, we have chosen the
Jensen DFT optimized optimized pcseg-n and aug-pcseg-
n basis sets87 as orbital basis, and have investigated the
accuracy for cardinal numbers n = 1, 2, 3 against ref-
erence aug-pcseg-4 calculations. The prefix “aug” in-
dicates the use of augmented functions. For density-
fitting the Karlsruhe def2-QZVPP auxiliary basis set of
Weigend has been employed88, for pcseg-n ADMM calcu-
lations the admm-n basis sets89 have been employed, and
for aug-pcseg-n ADMM calculations aug-admm-n bases
have been employed. These admm-n basis sets have been
specifically optimized for the ADMM approximation to
be used along with the pcseg-n and family of basis sets,
and the aug-admm-n basis sets have been adapted by
augmenting the admm-n basis sets using the augmented
function from the aug-pcseg-n basis sets with cardinal
number n− 1. For details on the admm-n basis sets see
Ref. 89.

V. RESULTS AND DISCUSSION

Rather than investigating the errors of each method in
a given basis set, we have here chosen to make a com-
parison against the basis set limit. This choice has been
taken in order to assess how the methods perform in typ-
ical practical calculations. In the following a graphical
summary is presented, visualizing normal distributions

f(x) = Nexp(− (x− µ)
2

2σ2
) (54)

using the mean error µ and the standard deviation σ for
each employed approximation, property and basis set.
The normalization N has been chosen to make the dif-
ferences among methods and basis sets visually more
accessible; for electronic ground-state energies we have
used the normalization N = log( 1√

2σ2π
), and for excita-

tion energies, isotropic polarizabilties, anisotropic polar-
izabilties and dipolehyperpolarizabilty N = 1

4√
2σ2π

. For

the figures we have chosen to represent only the “df-J”
and “admm” results, since the “full” and “df-J” results
are virtually identical. We refer the reader instead to
the supporting information for detailed results including
all three types of calculations. In the figures, the la-
bels “df-J n” and “admm n” denote a df-J and admm
type calculation, respectively, employing the pcseg-n ba-
sis sets, and similarly “df-J aug-n” and “admm aug-n”
where the aug-pcseg-n basis sets are employed. Please
note that throughout we used capital letter ADMM for
the ADMM approximation and lower case letters admm
for the calculations using both df-J and ADMM.

A. Electronic ground-state energy

In Figure 1 the normal distributions of the errors in
electronic ground-state energy per electron for pcseg-n,
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FIG. 1. The normal distribution of errors in the molecu-
lar ground state energy (in atomic units) with CAM-B3LYP
(α=0.21,β=0.79,µ=0.45)/pcseg-n (n=1, 2, 3) for a set of
molecules M11 (see text). Here aug-pcseg-4 results are taken
as the reference.

n = 1, 2, 3, in reference to aug-pcseg-4, are plotted for
df-J and admm calculations. We emphasise again that
the full and the df-J results are very similar and we have
therefore chosen to present only one of the two in the
plots. The results for all three methods are given in the
supplementary information Table ??. Some representa-
tive example numbers are presented and discussed in the
text below.

While the variance (width) is rather large for both
methods when a pcseg-1 basis set is employed a clear im-
provement is seen upon increasing the basis set to pcseg-2
and pcseg-3; the errors are reduced by about one order
of magnitude with each cardinal number n, for all meth-
ods. On average all methods investigated overestimate
the ground state energy compared to the aug-pcseg-4
reference, which is to be expected from any variational
approach. For example, the mean errors (standard devia-
tions) in a pcseg-2 basis are 458(58), 456(58) and 232(69)
µEH for full, df-J and admm type calculations, respec-
tively, while for pcseg-3 basis these values decrease to
17(2), 14(2) and 21(6) µEH ; all of which are well below
1 kcal/mol (or 1594 µEH). Although the mean error for
admm at the pcseg-2 level is smaller than for the df-J
calculation by almost a factor two, it is about 50% larger
in the other two cases, and the standard deviation for
admm is larger in each case.

In Figure 2 the corresponding errors in the electronic
ground-state energies are depicted for aug-pcseg-n, n =
1, 2, 3. As expected, augmentation leads to some im-
provement (reducing the errors by 10 − 30%), but does
not change the observed trends.

B. Vertical excitation energies

Figures 3 and 4 show the normal distributions of the
absolute errors in the five lowest vertical excitation ener-
gies of the M11 benchmark set for df-J and admm type

-0.001  0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

df-J aug-3
admm aug-3

df-J aug-2
admm aug-2

df-J aug-1
admm aug-1

FIG. 2. The normal distribution of errors in the molecu-
lar ground state energy (in atomic units) with CAM-B3LYP
(α=0.21,β=0.79,µ=0.45)/aug-pcseg-n (n=1, 2, 3) for a set of
molecules M11 (see text). Here aug-pcseg-4 results are taken
as the reference.

 0  0.5  1  1.5  2

df-J 3

admm 3

df-J 2

admm 2

df-J 1

admm 1

FIG. 3. The normal distribution of errors in the first
five excitation energies (in electron volt) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/pcseg-n (n=1, 2, 3) for a set
of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.

calculations using pcseg-n and aug-pcseg-n basis sets,
with n = 1, 2, 3, respectively. The 55 excitation energies
considered here are in the range 3.93 eV to 8.96 eV at
the reference aug-pcseg-4 full level of theory. The calcu-
lations have been run without any point group symmetry,
and no attempt has been made to identify the different
states. Thus, the order of the excitation energies may
vary, in particular for nearly degenerate states, at differ-
ent basis set and theory levels.

Similar to the trend for the electronic ground-state en-
ergies, the excitation energies are overestimated as com-
pared to the aug-pcseg-4 reference. All methods show a
systematic improvement with increasing cardinal number
n, and at each level n, the full and df-J type calculations
perform better than admm. Upon augmentation the er-
rors get reduced by one to two orders of magnitude, and
already at the aug-pcseg-1 basis set level the errors are
smaller that the corresponding pcseg-3 results; with er-
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FIG. 4. The normal distribution of errors in the first
five excitation energies (in electron volt) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/aug-pcseg-n (n=1, 2, 3) for
a set of molecules M11 (see text). Here aug-pcseg-4 results
are taken as the reference.

rors 49(91) meV, 49(91) meV and 34(124) meV, for full,
df-J and admm type calculations, respectively. Stan-
dard deviations are given in parenthesis. This is already
within the range of typical TD-DFT excitation errors, of
about 0.1 eV or larger (see for instance Ref. 90). For aug-
pcseg-2 the standard deviations are reduced by another
32− 47%, and by roughly an order of magnitude further
by going to aug-pcseg-3. See supplementary information
Table ?? for details.

C. Static polarizabilities

The normal distribution of the errors in static isotropic
polarizabilties at the CAM-B3LYP (α=0.21, β=0.79 and
µ=0.45) level for the M11 benchmark is depicted in Fig-
ures 5 and 6, for pcseg-n and aug-pcseg-n with n = 1, 2, 3,
respectively. The isotropic polarizabilities are underesti-
mated in all basis sets and at all levels of theory, with
a clear improvement for increasing cardinal number n
and upon augmentation. The full numbers are given in
Table ?? in the supplementary information. At the ref-
erence aug-pcseg-4 full level of theory, the isotropic po-
larizabilities of the M11 benchmark range from 27.5 to

55.7 a.u. (1 a.u. equals (0.529Å)3 = 0.148Å
3
). At the

pcseg-1 level the mean errors (standard deviations) are
−6.96(2.70), −6.96(2.70) and −7.32(2.88) a.u. for full,
df-J and admm type calculations, respectively, and the
errors are reduced by roughly an order of magnitude,
to −0.50(0.20), −0.50(0.20) and −0.84(0.33) a.u., at the
pcseg-3 level. Upon augmentation the errors are reduced
by one to three orders of magnitude. Already at the
aug-pcseg-1 basis the errors are −0.31(0.12), −0.31(0.12)
and −1.03(0.45), whereas at aug-pcseg-3 they as low as
−3(1), −1(3) and −12(5) ma.u. With typical DFT er-
rors ranging from 0.2 to 1.0 a.u., see for instance Ref. 91,
basis sets errors are at an acceptable level from the aug-
pcseg-2 level of theory, for all three levels of theory, and

-10 -8 -6 -4 -2  0
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admm 3

df-J 2

admm 2

df-J 1

admm 1

FIG. 5. The normal distribution of error in the
isotropic polarizability (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/pcseg-n (n=1, 2,3) for a set
of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.
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FIG. 6. The normal distribution of error in the
isotropic polarizability (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/aug-pcseg-n (n=1, 2,3) for a
set of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.

remaining basis set errors are essentially removed upon
using the aug-pcseg-3 basis set. The admm type calcu-
lations have larger errors in all cases, by up to a factor
4 at the aug-pcseg-1 level, and for the aug-pcseg-n basis
the admm errors more or less bisect the values of the full
(and df-J) calculations of cardinal numbers n−1 and n.

The error distributions for the static anisotropic po-
larizabilities are shown in Figures 7 and 8. For the M11
benchmark the anisotropic polarizabilities range from 8.0
to 47.0 a.u. at the reference aug-pcseg-4 full level of
theory. Although the mean errors are typically slightly
smaller than for the isotropic polarizabilities, the stan-
dard deviations are larger; as an example the errors are
−0.23(0.35), −0.24(0.36) and −0.38(0.67) a.u. for aug-
pcseg-1 and −2(3), −8(9) and −21(25) ma.u. for aug-
pcseg-3; see Table ?? in the supplementary information
for the full list of mean errors and standard deviations.
Similar to the isotropic polarizability, the anisotropic po-
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FIG. 7. The normal distribution of error in the
anisotropic polarizability (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/pcseg-n (n=1, 2,3) for a set
of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.
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FIG. 8. The normal distribution of error in the
anisotropic polarizability (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/aug-pcseg-n (n=1, 2,3) for a
set of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.

larizabilities are underestimated using aug-pcseg-n basis,
with the exception of aug-pcseg-1 admm type calcula-
tions. For the pcseg-n basis, the values are instead over-
estimated. As for the isotropic polarizabilities the admm
aug-pcseg-n errors fall in between the aug-pcseg-(n−1)
and aug-pcseg-n full errors, although shifted towards the
aug-pcseg-(n−1) values, indicating that admm provides
a somewhat poorer description of the directional compo-
nents.

D. Static hyperpolarizabilities

To assess how the methods perform for the first hyper-
polarizability we have here chosen to study the compo-
nent of the dipole first hyperpolarizability tensor β̄ along
the direction of the permanent molecular dipole moment
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FIG. 9. The normal distribution of error in the BetaParal-
lel (firsthyperpolarizability) (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/pcseg-n (n=1, 2,3) for a set
of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.
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FIG. 10. The normal distribution of error in the BetaParal-
lel (firsthyperpolarizability) (in atomic units) with CAM-
B3LYP(α=0.21,β=0.79,µ=0.45)/aug-pcseg-n (n=1, 2,3) for a
set of molecules M11 (see text). Here aug-pcseg-4 results are
taken as the reference.

µ = (µx, µy, µz), given by92,93

β̄ =
3

5|µ|
(βxµx + βyµy + βzµz) , (55)

with

βξ =
∑

ζ=x,y,z

βξζζ , ξ = x, y, z, (56)

where βξζγ are components of the static first hyperpo-
larizability tensor. Figures 9 and 10 show the normal
distribution of CAM-B3LYP(α=0.21,β=0.79,µ=0.45) er-
rors in the static dipole hyperpolarizability β̄ for the M11
benchmark, for pcseg-n and aug-pcseg-n, n = 1, 2, 3, cal-
culations, respectively, and full results are provided in
Tables ?? of the supplementary information.

At the reference aug-pcseg-4 full calculation the par-
allel values vary from −41.6 to 15.3 a.u. The standard
deviations in the pcseg-n basis are rather large, and vary
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TABLE I. Average wall timings in seconds per SCF iteration
for the acetone molecule, for ‘full’, ‘df-J ’ and ‘admm’ type
calculations (see text for further details).

Method type aug-pcseg-1 aug-pcseg-2 aug-pcseg-3
full 4.1 49 590
df-J 3.9 43 491
admm 3.2 13 73

from 19.3 a.u. for n = 1 to 4.1 a.u. for n = 3, for both
df-J and full type calculations, and 19.4 to 5.7 a.u. for
admm type calculations. Upon augmentation the stan-
dard deviations are reduced to the ranges 2.2 to 0.05
a.u. for full, 2.2 to 0.07 a.u. for df-J and 3.9 to 0.15 for
admm type calculations. In all cases the admm-n results
falls in between the df-J-n and df-J-(n−1) results; for
pcseg-n the admm results are shifted toward n, and for
aug-pcseg-n the results are less conclusive with the aug-
pcseg-2 admm result close to the aug-pcseg-1 full value
and the aug-pcseg-3 admm result slightly shifted towards
the aug-pcseg-3 full result.

E. Performance

In the previous subsections we have presented results
for electronic ground-state energies, the first five excita-
tion energies, polarizabilities and first hyperpolarizabili-
ties for the M11 benchmark set. The results show that
density-fitting for the Coulomb contribution has negligi-
ble effects on the results, and that employing ADMM for
the exchange can be done in a systematic fashion, albeit
at the cost of slightly reduced accuracy. In this section
we give our assessment of performance versus accuracy
for an example molecule, to provide an indicative guide
to choosing which method to use in an practical calcula-
tions.

Averaged timings per SCF iteration for the three differ-
ent types of calculation (full, df-J and admm) are given
in Table I, for aug-pcseg-n calculations on the acetone
molecule, which is on the median of the 11 molecules
with regards to computational time. The timings for the
response part of the calculation are similar, and we re-
fer the interested reader to the supporting information
Table ?? which includes timings for the individual com-
ponents for both SCF and the response parts of the cal-
culation. In Table I full-type calculations are the sum of
reg-J , LinK, XC and solver timings of Supporting Infor-
mation Table ??, df-J type calculations the sum of df-J ,
LinK, XC and solver timings, and admm type calcula-
tions the sum of df-J , ADMM, XC and solver.

The performance gains using density-fitting are
tremendous when looking at the effect on the Coulomb
contribution alone, with speed up factor 7, 27 and 112
for aug-pcseg-n, with cardinal number n = 1, 2, 3 respec-
tively. As shown, this performance boost can be attained
at little to no loss in accuracy, and density fitting can be

applied without hesitation. However, for the hybrid DFT
calculations presented here, these speed ups have limited
effect on the total timings, with only 5%, 12% and 17%
reduction in computational time for the aug-pcseg-n se-
quence, with n = 1, 2, 3 respectively. This is because
LinK exchange is the main bottleneck for these calcula-
tions, amounting for df-J type calculations to 67%, 85%
and 95% of the total wall time, for n = 1, 2, 3.

The motivation to enhance the performance of the ex-
change contribution should be clear from these results,
and the ADMM approximation gives significant speed
ups. For the aug-pcseg-n sequence the speed up for
the exchange contribution is factor 1.5, 5.8 and 9.7, for
n = 1, 2, 3, respectively. Whilst these speedups are sig-
nificantly less than those obtained for the Coulomb term
using density-fitting, the combined performance gain us-
ing both density fitting for Coulomb and ADMM for ex-
change is worthwhile with overall speedup factors of 1.2,
3.7 and 8.1. However, these speedups come at a cost of
accuracy, mainly due to the ADMM approximation. For
electronic ground-state energies, the effect on accuracy
due to ADMM is minimal, and the performance gains of
ADMM and density fitting outweigh the small loss in ac-
curacy. For excitation energies the same arguments hold,
although the speed ups when calculating five excitation
energies (as done in this paper) are somewhat smaller
than for the ground-state energies.

For polarizabilities and hyperpolarizabilities the re-
sults are less clear-cut. For the calculation of isotropic
polarizabilities ADMM gives a fairly good description
still, whereas for the anisotropic polarizabilities this is
no longer the case. For hyperpolarizabilities the admm
aug-pcseg-3 results reduce the standard deviation of the
full aug-pcseg-2 results by a factor 2.9 and the additional
computational time is only factor 1.5. Going to the full
aug-pcseg-3 the standard deviation is reduced by an ad-
ditional factor 3.0, now for a factor 8.1 in computational
time. Clearly the admm aug-pcseg-3 type calculation is a
valid and efficient option. This does not hold for admm
aug-pcseg-2 however. Going from full aug-pcseg-1 re-
duces the standard deviation by factor 1.2 for an increase
in computational time by factor 3.2. Using instead the
full aug-pcseg-2 reduces the error by factor 4.5 for a cost
of factor 3.7 in calculation time.

In summary, the presented results indicate that density
fitting of the Coulomb contribution can be used with-
out hesitation for all properties studied here, although
the overall performance gains for hybrid functionals are
limited by the efficiency of the exchange contribution.
The ADMM exchange approximation can readily be ap-
plied for ground-state and excitation energies, whereas
for polarizabilities and hyperpolarizabilities the accuracy
to performance ratio is more questionable.
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VI. SUMMARY AND CONCLUSIONS

We have presented an extension to the standard formu-
lation of response theory, which accounts for approximate
Fock/Kohn-Sham matrices such as the matrices used in
density-fitting or the ADMM2 approximation. The de-
velopment represents a framework to easily introduce
the approximate methodologies used in ground-state
electronic structure calculations to Hartree-Fock/Kohn-
Sham response theory, provided that the Coulomb and
exchange matrices can be formulated as derivatives of the
approximated Coulomb and Exchange energies.

The option for the combined use of density-fitting and
ADMM has been implemented and tested in the LSDal-
ton program84. An error analysis with respect to dif-
ferent basis sets and the new combined approximations
has been performed for DFT ground state energies, ver-
tical excitation energies, static polarizabilities and hy-
perpolarizabilities for a set of 11 small to medium sized
molecules.

The presented results indicate that density fitting of
the Coulomb contribution can be used without hesita-
tion for all properties studied here, although the overall
performance gains for hybrid functionals are limited by
the treatment of the exchange contribution. The ADMM
exchange approximation can be applied to accelerate
the evaluation of the exchange contribution, although
this entails introducing additional approximations. The
ADMM approach was found to work well for ground-state
and excitation energies, whereas for polarizabilities and
hyperpolarizabilities the accuracy to performance ratio
is less favourable, indicating the need for care when ap-
plying it to new molecular response properties.
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