
In the Quest of Trade-off
between Job Parallelism and
Throughput
Adaptive Parameter Tuning of Hadoop

Ramesh Pokhrel
Master’s Thesis Spring 2018

In the Quest of Trade-off between Job Parallelism
and Throughput

Ramesh Pokhrel

22nd June 2018

ii

Acknowledgement

First and foremost, I would like to express my gratitude to my thesis supervisors
Ashish Rauniyar and Anis Yazidi for their expertise, guidance, feedback, and in-
spiration which were the key to successful completion of this thesis. Their encour-
agement helps me to drive the project down to the right path.

I would also like to thank Hårek Haugerud for his all the administrative support
and suggestions.

Finally, I would like to extend my gratitude to my family for their all the sup-
port and understanding throughout the master program.

-Ramesh Pokhrel

iii

iv

Abstract

Big data is an emerging concept involving complex data sets which can give
new insight and distill new knowledge. In the other hand, Hadoop MapReduce
paradigm, a distributed computing software, has been adopted widely in the big
data community for large-scale processing. It is known that the implementation of
MapReduce with the default configuration results in less number of parallel run-
ning job and thus waste of resources in the cluster during MapReduce operation.
In fact, poor resource utilization and overall low performance is usually induced
by the default configuration during the run-time.

This thesis investigated how the cluster resources can be optimally and
appropriately utilized during MapReduce operation in order to result in a better
job parallelism and throughput. To achieve this, an optimal design is developed
which can dynamically change the resources allocation by changing the system
level parameters at run-time. The project results showed that the resources are
optimally and appropriately utilized during job execution which resulted in better
job parallelism and throughput.

v

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2

2 Background 3
2.1 Big data . 3

2.1.1 Big Data Processing and Challenges 4
2.1.2 Big Data Analytics Framework 4
2.1.3 Big Data and Clouds . 4

2.2 Clustering . 5
2.3 Hadoop . 5

2.3.1 Hadoop Distributed File System (HDFS) 6
2.3.1.1 HDFS NameNode and DataNode 7
2.3.1.2 HDFS Data Replication 7
2.3.1.3 HDFS Commands 8

2.3.2 Yet Another Resource Negotiator (YARN) 8
2.3.2.1 ApplicationMaster (AM) 10
2.3.2.2 Containers . 10
2.3.2.3 Maximum Percent of Resources in the Cluster

(MARP) . 10
2.3.2.4 Yarn Commands 11

2.3.3 MapReduce Paradigm 11
2.4 Adaptive Variable Learning (AVLR) Algorithm 14
2.5 Google Cloud Platform (GCP) 14

2.5.1 Google Compute Engine (GCE) 14
2.5.2 Hadoop Performance Tuning 16
2.5.3 Related Works . 16

I The project 19

3 Approach 21
3.1 Objective . 21

3.1.1 Loss of Input Job (LOIJ) and Loss of Task Throughput
(LOTT) . 21

3.1.2 Hadoop Cluster Design Phase 25
3.1.3 The Algorithm Design Phase 26
3.1.4 Implementation Stage 26

vii

3.1.4.1 Cluster . 26
3.1.4.2 Software Development Kit (SDK) 27
3.1.4.3 Java Development Kit (JDK) 27
3.1.4.4 MapReduce Framework 27
3.1.4.5 REST API’s 27
3.1.4.6 Script Development and Automation 27
3.1.4.7 R-Programming 27
3.1.4.8 Benchmarking Tools 28

3.1.5 Measurement, Analysis and Comparison 28
3.1.5.1 Benchmarking Methodology 28

4 Design 31
4.1 ∆Progress Aware Algorithm Overview 31

4.1.1 Calculating Current Accumulated Progress of Running
MapReduce Jobs . 33
4.1.1.1 Details Work-flow of Algorithm to Calculated

Current Accumulated Progress 36
4.1.2 Calculation of ∆Progress 38
4.1.3 Algorithm . 41
4.1.4 Flow Chart . 41

4.2 Expected Results of APTH Approach with the Progress Aware
Algorithm . 43

5 Implementation 47
5.1 System Setup . 47

5.1.1 Hadoop Cluster Creation 47
5.1.1.1 Cluster Configuration 47
5.1.1.2 Hadoop Cluster Initialized 49

5.1.2 HiBench Benchmark Suite Installation and Configuration . 51
5.1.3 Testing of the Hadoop Cluster at Different Level of Static

Configuration . 51
5.1.4 Deployment of Automation Tool 51
5.1.5 Pre-experiment Evaluation 60

6 Measurement, Analysis and Comparison 63
6.1 The Experiment . 65

6.1.1 Experiment1: Processing 15 Jobs 65
6.1.2 Experiment-2: Processing 30 Jobs 69
6.1.3 Experiment-3: Processing 45 Jobs 72

6.2 Data Analysis . 76
6.2.1 Interpreting Job Parallelism 76
6.2.2 Interpreting Throughput 76
6.2.3 Interpreting Resources Utilization 79
6.2.4 Performance Comparison 79

viii

7 Discussion 81
7.1 Implementation of APTH Approach Design 81

7.1.1 Project Outcome . 82
7.2 Implementation Challenges . 82

7.2.1 Setting Sleep Time for the Algorithm Deployed 82
7.2.2 Defining % of Resources Allocation for the Action 83
7.2.3 Progress v/s ∆progress 84
7.2.4 Programming Complexity 85
7.2.5 Creating Multiple Concurrent Input Jobs 85

7.3 Improvements To APTH Design 85
7.3.1 APTH Adoption with Dynamic Change in the Cluster

Resources . 86

8 Conclusion 87
8.1 Future Work . 87

9 Appendix 93

ix

x

List of Figures

2.1 High level architectural design of HDFS. 7
2.2 Yarn Architecture (Blue color represents system components and

in yellow, pink and green three applications running.) 9
2.3 Resources consumption by ApplicationMaster. 12
2.4 MapReduce framework Architecture. 13
2.5 The state transation graph. 15

3.1 Loss of input job with small MARP value and increase in ideal
resources. 22

3.2 Loss of Task Throughput with high MARP value and inappropriate
way of full resource utilization. 24

4.1 Conditions and actions of the algorithm. 32
4.2 Architecture for current progress calculation each time the al-

gorithm executed. 34
4.3 Technical overview of accumulated current progress calculation

over time. 35
4.4 Two arrays storing unique job ids and corresponding progress

value extract by algorithm. 37
4.5 Figure exploring how data stored on arrays and get calculated in

order to find current accumulated progress. 39
4.6 Architecture calculating progress at different time and MARP

parameter during MapReduce job execution and calculates the
change in progress. 40

4.7 Flow chart for the designed algorithm. 42
4.8 Dynamic number of jos running with APTH approach and Static

number of jobs running with default configuration. 44
4.9 Dynamic throughput with APTH approach respect to MARP

parameter value and time. 45
4.10 Execution time difference and drop in resources reduced with

APTH approach. 46

5.1 Total time consumption by 50 jobs at different MARP configuration. 52
5.2 Average throughput per second at different MARP configuration. 52
5.3 Overall implementation of algorithm 61

6.1 Three experiments, each with three configurations. 64
6.2 Parallel running number of jobs during 15 job execution. 66

xi

6.3 Memory consumption by ApplicationMaster(AM) during 15 job
execution. 67

6.4 Overall Memory consumption during 15 job execution. 68
6.5 Parallel running number of jobs during 30 job execution. 69
6.6 Memory consumption by ApplicationMaster(AM) during 30 job

execution. 70
6.7 Overall Memory consumption during 30 job execution. 71
6.8 Parallel running number of jobs during 45 job execution. 73
6.9 Memory consumption by ApplicationMaster(AM) during 45 job

execution. 74
6.10 Overall Memory consumption during 45 job execution. 75
6.11 Increase in Job parallelism with increase in memory for Applica-

tionMaster. 77
6.12 Throughput trend line with increase in job parallelism. 78
6.13 ApplicationMaster memory used Trendline. 80

7.1 Effects on job parallelism with same % of resources increment and
decrement. 83

7.2 Effects on job parallelism with different % of resources for actions. 84

xii

List of Tables

2.1 HDFS Commands . 8
2.2 Yarn Command . 11

3.1 Compute Engine Flavor . 26

6.1 Experiment-1 Summary Table 65
6.2 Experiment-2 Summary Table 72
6.3 Experiment-3 Summary Table 72

7.1 Action with Different Resources Allocation 85

xiii

xiv

Chapter 1

Introduction

The term Big Data stresses the enormous amount of complex and fast expanding
data sets from several sources. Because of the tremendous increase in the number
of datasets within the last few years, big data and its investigation have received
a lot of research attention. Therefore, big data is being saved, processed and ex-
amined in order to get effective potential new insight. Additionally, big data imple-
ments advanced instruments and methods so as to capture, store, distribute, process
and examine bigger datasets.

Over the last few years, Hadoop technology has undergone an unprecedented
growth in terms of adoption to satisfy the challenges of accessing and processing
these bigger datasets [22]. Hadoop is an open source application project under
Apache, which modulates distributed computing environment for large datasets
throughout the bunch of merchandise servers. Similarly, Hadoop represents a pro-
gramming framework that breaks down a program into distinct equivalent pieces
of sub-tasks [21]. Mappers in the worker nodes convert data to the collection of
key-value pairs from the bunch. Further, in reduction stage the master nodes from
the cluster quicken the output produced by the worker nodes in order to aggregate,
mix, filter, and change functions to form a final output.

A general characteristic of Hadoop MapReduce framework is a resource man-
agement approach which relies on predefined resource units that have to be di-
vided among many jobs. Usually, the size of the container and the total amount
of resources unit available in the cluster are static in nature. Additionally, these
amount of resources in the cluster can be determined before the cluster creation
and is usually unchanged during the MapReduce job execution. This kind of static
resources management in Hadoop cluster has limited ability to cope up with in-
creasingly diverse applications and dynamic computing environments, resulting in
poor resource utilization and low-performance [24].

Several challenges have been confronted by Hadoop application developers
despite its prevalence. Especially, the researchers have discovered that Hadoop
cluster configuration can influence the performance which can be delivered into
the applications. Researchers have shown that a very small change in a configur-
able parameter can create the huge difference in the operation when running the

1

same MapReduce job with the exact same size of input data. Therefore, Hadoop
performance is mainly influenced by two types of parameters settings, i.e., system
and job level parameters. Additionally, Hadoop has distributed system using its
black-box like feature. So, it is remarkably hard to find appropriate mathemat-
ical model which can configure Hadoop cluster for the specific job. After all, it is
injudicious to use the exactly same configuration to all sort of MapReduce tasks.
Hadoop supplies over 200 tunable parameters, therefore manual proper tuning of
the parameters is time-consuming and hard as most parameters in Hadoop data
analytics framework have complicated inter-dependencies between them. Thus,
setting the optimum value properly for all those tunable parameters in the cluster
needs a substantial understanding and sufficient degree of expertise [37].

Especially, YARN (Yet Another Resource Negotiator) in Hadoop (version 2.0)
comprises the amount of program level parameters that are responsible for con-
trolling how MapReduce jobs are scheduled in the cluster which can put direct in-
fluence on the job performance. Maximum Application Master Resource in Percent
(MARP) is one of the property that consists its value at floating point number (per-
cent) which directly impacts the number of concurrently running MapReduce jobs
versus corresponding throughputs [36]. Moreover, configuring improper MARP
results in a decrease the number of jobs running in parallel which in turn results in
increase in ideal resources unit in the cluster or reduce in the number of map-reduce
tasks. Thus, this leads to an increase in overall job completion time. Furthermore,
in order to achieve cluster performance, configuring appropriate MARP is far from
trivial. On the other hand, one MARP value might work fine for one job while
working worst for another MapReduce job due to diversity of jobs and workloads
that results in overall performance degradation.

To address these limitations this thesis introduces an approach Adaptive
Parameter Tuning Of Hadoop (APTH) which can dynamically change MARP value
online in order to balance the job parallelism and associated throughput in the
Hadoop cluster.

1.1 Problem Statement

This thesis reveals the way that leverage cluster resources during the runtime in
order to maximize the number of parallel running MapReduce jobs and corres-
ponding throughput. The main aim of this thesis is to find a way of reducing the
number of ideal resources in the cluster during the runtime of MapReduce jobs.
Therefore, this thesis addresses the following challenge:

How the number of parallel running MapReduce job and associated through-
put can be increased online by utilizing the appropriate optimum resources unit in
the Hadoop cluster?

2

Chapter 2

Background

2.1 Big data

Big data is a term designing massive data sets having large, more varied and com-
plex structure with the difficulties of storing, analyzing and visualizing for further
processes or results [28]. Use of the ever-increasing number of electronic devices
in a broad range of applications areas are regularly being generated, collected and
flowing data at unprecedented scale. In another word, the world is afloat in digital
data ocean. These data may be from sensors in the context of Internet of Things
(IoT) used to collect climate information, post to the social media site, digital pho-
tos and videos posted online, mobile GPS signal [1] and many other resources that
generates data. Indeed gathering and storing these large amounts of data for even-
tual use is a Big Data.

The main characteristics of big data are volume, variety and velocity, or the
three V’s. Data volume refers the size of data in terms of standard information
metrics such as terabytes (TBs) and petabytes (Pbs). Petabytes data sets are com-
mon these days. 72 hours of video are uploaded to You Tube every single minute
1 is one of the example, how data volume is increasing at data warehouse. Data
volume play important role in storage and processing of data. However, due to less
price per gigabyte and huge storage capacity in the cloud, storage capacity issue
has become less pressing [11].

Velocity refers to the rate of data change, or how frequent data are created and
delivered. The leading edge of big data is streaming data, which is collected into
the server in real time [10]. In addition, 140 million tweets per day on average can
be a good example of data velocity 2.

Variety, as other characteristics, refers to the diversity of data. Various kind
of data generator source generates data in various form. Single mobile device
is enough to generate multiple types of data, such as voice, images, videos and
etc. This diversity in data is responsible to make big data really big. Text, hu-
man language, audio, video, logs, clickstreams, XML further can be categorized

1https://www.datasciencecentral.com/forum/topics/the-3vs-that-define-big-data
2https://blog.twitter.com/official/enus/a/2011/numbers.html

3

as structured, semi-structured and unstructured data. Moreover, multi-dimensional
data can be stored and drawn from the data warehouse in a systematic way is an
exciting area of research.

The use of big data is a key basis that can unlock significant values by making
the information transparent and usable at the much higher frequency. As individual
firms generate and store data in digital form, they can extract much accurate
inventories and customer behavior. Therefore, it is easy to make decisions and
boost business. Indeed big data can act as a power of competition and growth for
every single organization. Finally, big data can be the most significant commodity
which helps to improve and develop the next generation product and services [26].

2.1.1 Big Data Processing and Challenges

Data only stored as a raw fact doesn’t have any point until they get processed and
analyzed. Processing such a big dataset in an efficient way is a clear need for
any user. Big data sets requires sophisticated application and software in order to
process and analyze those voluminous data. Therefore, traditional applications and
software used for data processing are almost outstripped as data volume increase.
Big data processing itself is a challenging job. Moreover, high-performance
network, disk, memory and CPU’s are the most important hardware factor which
accounts for overall data processing time and cost. First data will be loaded for
processing but at the same time if the network traffic and disk interferes with
another job then the time for data loading goes high. It is very necessary to
minimize the time consumption by data loading job. Every user needs their data
processing results in short time, if possible in real-time. Real-time response is
another critical factor as many jobs and queries might be response-time critical in
order to satisfy heavy workloads.

2.1.2 Big Data Analytics Framework

Data are processed to find hidden insight in the data. Big data concerns the huge
amount of heterogeneous datasets from autonomous sources. To store and analyze
such massive complex datasets, many specialized analytical platforms come in
various form, from software to analytical services that run in third-party hosted
environment [5]. Currently, the number of analytical platforms are available in the
market in order to analyze complex unstructured, semi-structured and structured
datasets. Hadoop, for instance, is one of the top framework used today. Not only
Hadoop as a big data analytics framework but also Spark, Flink, Storm, Samza and
many more are trying to get adopted in the same industry [32].

2.1.3 Big Data and Clouds

In general, the process of extracting valuable information using analytics frame-
work over complex datasets is not easy due to data characteristics as volume, ve-
locity, and variety. In addition, big data analytics require compute-intensive data
mining algorithms which need high-performance memory and processor to pro-
duce results [29]. Moreover, infrastructure provided by cloud computing platform

4

can serve effective and efficient addressing for both data storage and analytic pro-
cessing. The rise of big data cloud computing and cloud data stores has significant
advantages over the traditional physical deployments. On the other hand, pay-as-
you-go model as a facilitator of the cloud platforms makes the user enjoy more
with high-performance infrastructure with low cost [3]. Thus, unnecessary burden
of the cost and hardware performance to user eliminates.

Many cloud service providers are offering various kind of services with
their platform. Among them, Amazon as Amazon Web Services provides EMR
(Elastic MapReduce), Google as Google Cloud Platform provides DataPro and
Microsoft as Microsoft Azure provides Cloud Native as a big data analytics
framework. Likewise, others cloud vendors are also providing different services on
the infrastructure level, software level, and platform level. Similarly, Cloudera and
Hortonworks are two popular software companies which provide Apache Hadoop
and Apache Spark software supports and services.

2.2 Clustering

A computer cluster is a group of computers connected together as a distributed or
parallel computing system to form a single virtual and powerful hardware platform
[30]. In other words, the cluster refers to a single logical unit consisting of multiple
computing hardware that is linked through Local Area Network (LAN). Clustering
mechanism leverages much faster processing speed, large storage capacity, better
data integrity, superior reliability and wider availability of resources [7]. Another
key thing to remember with computer cluster technology is that it enables
high availability, load balancing, and parallel processing. The way of current
cluster computing is changing with the advent of commodity high-performance
processor, low latency/ high-bandwidth networks and software infrastructure and
development tools in order to facilitate the use of cluster [2]. Not only high
availability, parallel processing and load balancing with cluster computing but also
flexibility with scale-up and scale-down of nodes in the cluster is another important
feature of cluster computing. Moreover, adding the node in the cluster in order
to supply sufficient storage and boost up data processing speed for appropriate
corresponding throughput is to scale-up its flexibility. However, reducing the
number of node in the cluster limits unused resources unit in the cluster. Hadoop
cluster is specifically designed for storing and processing the massive amount of
data paralleled in a distributed computing environment. All the machines in the
cluster run Hadoop’s open source distributed processing software on a low-cost
commodity computers [17]. Components of Hadoop cluster are further described
in this thesis from section 2.3 to its subsection 2.3.3.

2.3 Hadoop

Fundamentally, Hadoop is an open source infrastructure level software for storing
and processing large datasets in the cluster. Basically, the massive amount of
data cannot be stored and processed by single node hardware. Whats more is,
these large datasets required the systematic and scientific way for both storing and

5

processing. Hadoop as a software under Apache license comes up with master-
slave architecture to omit storing and processing of big dataset problems. There
are two points in support of this view. First, Hadoop provides data storage service
in an organized distributed way with its Hadoop Distributed File System (HDFS)
which separately stores actual data and its corresponding metadata in its different
components. Not only that, Hadoop also replicates the actual data across multiple
machines in the cluster. Second, Hadoop provides MapReduce framework to
process data. Unlike, processing data in a central node, MapReduce framework
processes data in every single machine where data stored. Finally the result after
processing are sent to the master node. Another key point to remember with such
framework mechanism is high throughput access to the datasets that guarantees the
reliability of database [36]. The components of Hadoop basis is further described
in next section. The two main subsystem of Hadoop basis is HDFS and YARN
(Yet Another Resource Negotiator).

2.3.1 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File system is the design to store and process very large
files across machines in the cluster. HDFS has many similarities with other existing
distributed file system like GFS (Google File System) and S3 (Amazon Simple
Storage System). However, the differences are significant form other Distributed
File System (DFS). Basic features of HDFS are:

• Highly fault tolerant

• High throughput

• Suitable for application with large datasets

• Streaming access to file system data

• Can built out of commodity hardware

HDFS fault tolerance mechanism by which system works properly even if
some component in the system is non-functional. Thousands of server machines
storing some part of file’s system data has the non-trivial probability of failure. For
this reason, detecting the failure and take an action for quick automatic recovery
is the main goal of HDFS. In the same way, HDFS is a user-space file system,
so there is single central node called NameNode which contains all in-memory
directory of where all the blocks and their replicas are stored across the cluster.
In order to read those files application code ask to NameNode for a list of block
and then starts reading sequentially. Meanwhile, data is streamed off the hard-
drive by maintaining the maximum I/O rate that drives can sustain [33]. Of course,
streaming access to the file system data is another spectacular feature of HDFS
which implies constant bit-rate above the certain threshold when transferring data.
HDFS concerns for high throughput as well. Applications write once and ready
many access is the design model of HDFS to leverage throughput. HDFS divide
a big job into different blocks and processing is done in parallel and independent
to each other. Due to this, amount of work done in unit time is high. Thus, high
throughput is achieved. Correspondingly, HDFS is suitable for application with

6

Figure 2.1: High level architectural design of HDFS.

large datasets. A typical file in HDFS is gigabyte to terabytes in size, so millions
of files can be supported by the single instance in the cluster.

2.3.1.1 HDFS NameNode and DataNode

The NameNode and DataNode are pieces of software designed to run on
commodity machine [4]. HDFS is built using java language; any machine can
run NameNode or DataNode if they support Java. As mentioned earlier, HDFS
has a master/slave architecture NameNode as master and DataNode as slaves.
Furthermore, HDFS cluster consists of single NameNode and multiple DataNode,
usually one per every machine in the cluster. NameNode manages the file system
namespace operation like opening, closing, renaming files and directories and also
regulates access to the files by file system clients. On the other hand, DataNodes
are responsible for managing HDFS data storage in which they execute read and
write operation as soon as the request from the file system client perceived.

2.3.1.2 HDFS Data Replication

HDFS is designed in a way that can reliably store large data files as a sequence of
blocks by breaking the large file into many data blocks. In general, all the blocks
size are equal by default except the last one. As a result, HDFS replicates these
data blocks in the cluster as it is loaded. Replicating data is an integral part of what
makes the overall system effective at all. Replication of data block does not only
provide fault tolerance but also helps running the map tasks close to the data which

7

avoid putting extra load on the network. Moreover, block size and replication factor
are configurable. NameNode makes all the decisions, where it periodically receive
message and block reports from DataNodes in the cluster [4].

2.3.1.3 HDFS Commands

All the HDFS commands are invoked by the bin/hdfs script 3. Running the HDFS
script without any arguments prints the description for all commands. Table 2.1
presents some of the important HDFS commands used in this thesis.

Table 2.1: HDFS Commands
Commands Actions
hadoop fs -cat To list existing directory in hdfs
hadoop fs -mkdir To create directory
hadoop fs -chmod Change the permissions of files
hadoop fs -copyFromLocal To copy file form local machine
hadoop fs -copyToLocal To copy file from hdfs to local machine
hadoop dfs -df Displays free space of hdfs
hadoop fs -dus Displays summary of file length
hadoop fs -mv Move file form source to destination
hadoop fs -rm To delete files
hadoop fs -rmdir Recursive version of delete

2.3.2 Yet Another Resource Negotiator (YARN)

Hadoop has introduced new component YARN (Yet Another Resource Negotiator)
in 2012. Thus, the inability of previous version of Hadoop for resource sharing
among multiple computational frameworks is no longer in existence, since Hadoop
with YARN component released. YARN is a cluster level computing resource
manager responsible for resource allocations and overall job orchestration [36].
It provides a central platform to deliver consistent operations, security and
many others useful tools across Hadoop cluster. YARN consist of two main
components: ResourceManager (RM) and NodeManager (NM). RM is the
global component one per cluster where NMs presents per node in the cluster.
First component act as a global computing resource arbiter, likewise the second
component is responsible for managing node-level resources and reporting their
usage to RM. RM in the Hadoop cluster further consist two component: Scheduler
and ApplicationManager\ApplicationMaster (AM). The scheduler allocates the
resources among running applications. In the same way, AM is responsible for
accepting job-submission, negotiating container which executes applications and
provides the service for restarting the AM container in the case of failure [23]. AM
in another word, is designed specifically for applications process which negotiates
resources from RM and collaborates with NMs in order to execute and monitor its
individual task. Similarly, scheduling of resources for application is based on the
requirement which is realized using an abstract notion of containers.

3https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html

8

Figure 2.2: Yarn Architecture (Blue color represents system components and in
yellow, pink and green three applications running.)

9

2.3.2.1 ApplicationMaster (AM)

Application in Hadoop can be the static set of the processes of a logical description
of work. In order to execute Hadoop job in the cluster AM as a process co-
ordinates with applications. AM itself run in a cluster container ApplicationMaster
which is same as other jobs executed in a YarnChild container. The Figure, 2.3
on page 12 presents more clear view regarding the concept of containers
allocation. Each application to be executed in a Hadoop cluster has its own
dedicated ApplicationMaster container. The AM running as application frequently
sends message to ResourceManager notifying its status and the state of the
application’s additional resources need [35]. In the same fashion, AM can update
its plan to execution job. Based on the resources available ResourceManager
assigns resources to AM in a specific cluster node. On the contrary, container
status will not be interpreted by ResourceManager because AM itself running
as ApplicationMaster container in a unreliable hardware. Therefore, container
running might be the failure. To put it in another way, NodeManager does all
kind of reporting task to the ResourceManager in the cluster.

2.3.2.2 Containers

Container simply is the mixed form of resources like memory and CPU where
the unit of work occurs. To say, a set of resources are defined for containers in
Hadoop Yarn. In Hadoop cluster there are two types of containers: MRAppMaster
container and YarnChild containers. Each node in the Hadoop cluster can have
multiple containers. For instance, while the MapReduce job is submitted then
ResourceManager first deploy MRAppMaster container in order to execute its
specific ApplicationMaster process. Now, MRAppMaster will ask for more
resources with ResourceManager in order to run MapReduce task. Moreover,
ResourceManager allocates an address to run the container on the basis of available
resources in the cluster. Finally, MRAppMaster contact to the NodeManager based
on the address it gets form the ResourceManager to run its container. This container
which runs actual MapReduce task is YarnChild container.

2.3.2.3 Maximum Percent of Resources in the Cluster (MARP)

MARP is the value in percent of resources in the cluster to run ApplicationMas-
ter container. Additionally, MARP value is directly proportional to the number
of application (job) execution. More value for MARP provides more resources
to ApplicationMaster in order to run ApplicationMaster container for application
daemon. The more ApplicationMaster container in the cluster means many ap-
plication get chance to run MapReduce operation in parallel. So, in another word,
MARP parameter value is a kind of limits which define the maximum amount
of resources in the cluster to run ApplicationMaster. MARP also seems to be
responsible for controlling the number of concurrently active applications in the
cluster. This value is configurable and can be configured with the property named
yarn.scheduler.capacity.maximum-am-resource-percent. By default, MARP value
is set for 10%.

10

Table 2.2: Yarn Command
commands Actions
yarn application -list Lists applications from the RM
yarn application -status applicationid Prints the status of the application.
yarn node -list Lists all running nodes
yarn application -status Nodeid Prints the status report of the node
yarn resourcemanager Start the ResourceManager
yarn nodemanager Start the NodeManager
yarn proxyserver Start the web proxy server
yarn rmadmin -refreshQueues ResourceManager reloads the mapred-

queues configuration file

The figure, 2.3 on the following page shows two cases of MARP parameter
value set in the cluster. Due to the reason, small MARP parameter value set in the
cluster, comparatively small number of resources get utilized by ApplicationMas-
taer with Nodemanager 1. Therefore, rest of the resources can be utilized by actual
job execution container Yarn Child. In the same figure by Nodemanager 2, one
can notice that ApplicationMaster utilized majority number of the resources unit
because of big MARP parameter value set in the cluster. Thus, small number of
resources is available for actual job execution container Yarn Child.

Configuring the appropriate optimum value of MARP during Hadoop job
execution is a challenging task. However, providing greater value to MARP
leverage by small job as job execution time gets reduced but at the same time
unused resources unit in the cluster increases. Thus, significantly degrades the
performance of the cluster. Alternatively, the small value of MARP directly affects
big jobs with more time consumption. Again, resources unit in the cluster seems
to be wasted as only few resources get consumed which leads to increase in overall
time. For these reason, configuring an appropriate optimum value of MARP plays
the vital role in order to achieve maximum advantages of resource unit in the
cluster.

2.3.2.4 Yarn Commands

Yarn provides a rich set of command-line commands in order to help with various
aspects of yarn packages including installation, administration, publishing etc.
Yarn commands are invoked by the bin/yarn script 4. Running the yarn script with
any arguments prints the description for all commands. Table 2.2 presents the Yarn
commands used in this thesis.

2.3.3 MapReduce Paradigm

Hadoop employs a MapReduce execution mechanism in order to implement its
fault-tolerant distributed data processing system over the large datasets in the

4https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YarnCommands.html

11

OSNodeManager

Container Reserved Spaces

Containers

AppMaster

YarnChild YarnChild

YarnChild

YarnChild

OSNodeManager

Container Reserved Spaces

Containers

AppMaster

YarnChild

YarnChild

YarnChild

1

2

Figure 2.3: Resources consumption by ApplicationMaster.

12

Figure 2.4: MapReduce framework Architecture.

cluster [31]. MapReduce engine is an effective solution for parallel program
development and massive data processing in a distributed environment [8, 9].
The main point with such MapReduce framework lies on its two functions: Map
function and Reduce function. Both the functions with MapReduce framework
works parallel, operating on sets of a key-value pair (k, v) [31]. Initially, Map
function gets executed over input datasets in the cluster which gives zero or more
key-value pair (k, v). Then, the framework calls and implement Reduce function
on those key-value pairs grouped form Map function. Based on the key, all the
collected records are now ready to get transferred to the node which runs Reduce
function. In this point, data transfer between nodes in the cluster takes place.
Finally, as a final output key-value pair (k’ v’) get produced. Furthermore, despite
user-defined Map and Reduce function MapReduce framework itself monitor
parallelization and fail-over in the system while running Map and Reduce function
[31]. Figure 2.4 shows different working phases during job execution by the
MapReduce framework.

13

2.4 Adaptive Variable Learning (AVLR) Algorithm

Adaptive variable learning is a kind of algorithm which dynamically tunes the
learning rate in accordance with the change in the specific variable value [27].
The figure, 2.5 on the next page provides more clear view regarding the algorithm
working mechanism. Furthermore, the same state continues as a reward until and
unless the favorable condition detected. However, state transition takes place as the
penalty if unfavorable condition is detected. The author of this thesis also aims to
use the same logic of the state change between defined actions in order to allocate
cluster resources unit to the MapReduce jobs.

2.5 Google Cloud Platform (GCP)

Google Cloud Platform is a suite of cloud computing services runs in the same
infrastructure that Google uses internally for its end-user products, such as Google
Search and YouTube 5. Moreover, GCP consist of the set of management tools
and physical hardware, such as computer hard disk drives, CPUs, RAMs. Not only
that, GCP also provide series of modular cloud services including compute, data
storage, data analytics and Machine learning in order to make GCP more handy to
their end users [15]. This thesis has used Google Cloud Platform (GCP) as one of
the vital components for creating the cluster and running the Hadoop benchmarks
in order to render appropriate results.

2.5.1 Google Compute Engine (GCE)

Google Compute Engine in a Google Cloud Platform (GCP) is pay-per-usage
service with a single second minimum [16]. GCE platform with features such
as scale, performance, and value in order to create and run the large cluster of
virtual machines (VMs) on Google infrastructure. To put it in another way, GCE
does not contain any upfront investment and can run thousands of virtual CPUs
on a system that has to be designed to be fast and to offer strong consistency of
performance [14]. VMs are available in a number of CPU and RAM configuration
and with Linux distribution, including Debian, CentOS, and Ubuntu. Furthermore,
customers may use their own system images as well. Mainly three points of the
GCP attracts the attention of author of this thesis.

• High-Performance, Scalable Virtual Machines (VM)

Google Compute Engine delivers large scale of virtual machines running in its
innovative data centers and with high performances because of its own worldwide
fiber network. Thus, Compute Engine VMs boot quickly and deliver consistency
performance.

• Low Cost, Automatic Discount

5https://en.wikipedia.org/wiki/GoogleCloudPlat f orm

14

State State
1 2

Favorable Response

State State
1 2

Unfavorable Response

Figure 2.5: The state transation graph.

15

Google bills in second-level increments, so user can only pay for compute time of
VMs user used for. Surprisingly, Google automatically provides discounted prices
for long running workloads with no up-front commitment required [12].

• Environmentally Friendly Global Network

The most spectacular side of Google Cloud Platform is that their infrastructure are
entirely carbon-neutral. According to Google, their global network of data centers
consumes 50% less energy than typical data centers and they purchase enough
renewable energy to match 100% of the energy consumed by their global operation
[13].

2.5.2 Hadoop Performance Tuning

Hadoop is Java-based distributed computing framework which is designed to
support applications via the MapReduce programming model. In general
workload, dependent Hadoop performance optimization efforts have to focus
on three major categories: the system hardware, the system software, and the
configuration and optimization of the Hadoop components [18]. This thesis aims
to have a deep dive into fine-tuning of the Hadoop components which can make
the optimum utilization of the physical resources of the cluster.

2.5.3 Related Works

Authors in paper [25] proposed an online MRONLINE model that tunes the para-
meter in order to improve the performance of MapReduce job. MRONLINE mon-
itors job execution and tunes parameter based on collected statistics and provides
fine-grained control over parameter configuration. The main goal of MRONLINE
is to provide the different configuration for every single task instead of using the
same configuration for all jobs. Furthermore, the authors designed a gray-box
based smart hill climbing algorithm that can effectively converge to a near-optimal
configuration with high probability. Thus, authors claim 30% improvement on per-
formance compared to default configuration with MRONLINE model.

JellyFish in research work [8] is an online performance tuning system that
improved the performance of MapReduce job by increasing resource utilization in
Hadoop YARN. JellyFish collects real-time statistics to optimize configuration and
does resource allocation dynamically during the job execution. During the time
of performance tuning, first JellyFish tunes configuration parameter by reducing
the dimensionality of search space with a divide-and-conquer approach. In fact,
model-based hill climbing algorithm is designed and developed to improve tun-
ing efficiently. Secondly, JellyFish reschedules resources in nodes using an elastic
container with expand and shrink dynamically based on resources usages. Authors
of this research work claim that developed model can improve the performance by
24% compared to default YARN configuration.

In the paper [34] also addresses self-tuning system based on application pro-
filing and performance. Especially, two distinct phases were designed as Analyzer
and Recognizer. Analyzer phase trains the developed model with machine learning

16

techniques in order to form a set of equivalence classes of MapReduce applica-
tions for which the most suitable Hadoop configuration parameter that maximally
improves performance for that class are identified. Moreover, this paper includes
modifications to K - mean ++ algorithm in Analyzer phase as a key research con-
tribution. On the other hand, Recognizer phase classifies unknown incoming job
to one of the equivalence classes. Thus, Hadoop configuration parameter can be
self-tuned.

17

18

Part I

The project

19

Chapter 3

Approach

This chapter is all about the methodologies, processes and steps taken in order to
address the defined problem statement of this thesis -How the number of parallel
running MapReduce job and associated throughput can increased by utilizing ap-
propriate optimum resources unit in the Hadoop cluster ?

3.1 Objective

The main objective of this project is to run the possible maximum number of
concurrent jobs with their associated throughput by having appropriate resources
utilization accessible from the Hadoop cluster. Another goal of this project
is to overcome the limitations of static configuration over Hadoop MapReduce
framework. Thus, this paper proposed an approach named Adaptive Parameter
Tuning Of Hadoop (APTH) which tune one of the system level parameters at the
run-time of MapReduce operation. The proposed approach APTH will consists of
tuning algorithm. The initial part of the algorithm is responsible for calculating
the current progress of the running MapReduce jobs and the second part of the
algorithm takes an action for allocating resources unit by tuning the parameter
based on the current progress value. In this way, APTH approach keeps the
balance between the concurrent running number of jobs and their corresponding
throughput. This leads to reduction on ideal resources in the Hadoop cluster which
significantly reduces the overall job completion time compared to default Hadoop
configuration.

3.1.1 Loss of Input Job (LOIJ) and Loss of Task Throughput (LOTT)

To increase in MapReduce job parallelism or in order to increase the MapReduce
task throughput of jobs MARP(see Section 2.3.2.3) parameter plays a signific-
ant role. MARP parameter value is to increase or decrease the resources unit
for ApplicatonMaster(see Section 2.3.2.1). Let’s say total configured resources
(TR) of the cluster get utilized by two components, ApplicationMaster (AMR) and
YarnChild (YCR) i.e., TR = AMR + YCR, (assumpton is that configured resources
in the cluster gets 100% utilized). But, the most of the time resources configured
for Hadoop MapReduce job may not be 100% utilized, so there might be some

21

AppMaster
AppMaster
AppMaster

YarnChild
YarnChild
YarnChild

Resource
Manager

Submitted Job = N

Total Cluster Resources =
x

Pending Job = N-3 > 0

Parallel job Running = 3

Total unused Resources = x - y

Total used Resources = y

MARP = 0.2

Figure 3.1: Loss of input job with small MARP value and increase in ideal
resources.

ideal resources (IR) in the cluster. At this moment, TR = AMR + YCR + IR .

There are some situations like how ideal resources can make space in the cluster
during runtime? The first reason is simple because of the small size of MapReduce
job or because of less number of input MapReduce job. The second reason is
that, because of a small MARP value which allocates fewer resources for Applic-
ationMaster. The figure, 3.1 provides more clear views for how small amount of
resources allocation with small MARP value helps on increasing ideal resources in
the cluster during MapReduce runtime. In the figure, 3.1 MARP parameter is set
to be 0.20, means 20% of configured cluster resources can be used by Application-
Master.

Among submitted N numbers of MapReduce jobs, only 3 jobs get a chance to
get executed at a time. Still, N-3 > 0, MapReduce jobs are pending, which means

22

that jobs are not yet scheduled for execution as there is lack of allocated resources
for ApplicationMaster. However, total unused resources = x - y in the cluster is full
of wastage during the MapReduce job runtime. The main key point to remember
here is a pending number of jobs waiting for resources and the wastage of signific-
ant resources in the cluster. Moreover, this types of static or default configuration
consume more time in order to process big data and of course, user achieves less
in parallel execution of jobs due to poor resource utilization. Discussed problem
with ideal resources can be called as Loss of Input Job (LOIJ) because the addition-
ally greater number of MapReduce jobs has the possibility for execution if correct
MARP parameter is to be configured. Significantly, increase in MARP parameter
that allocates more additional resources for ApplicationMaster is the solution for
LOIJ.

Another key point is that MARP is a job level controller that allocates resources
to run ApplicationMaster as a job daemon in a container and has no involvement
in actual job execution. Therefore, only YarnChild(see Section 2.3.2.2) container
is responsible executing the actual job. As many as YarnChild container executes,
gives better throughput gained. As mentioned earlier, with increment in MARP
parameter provides more additional resources for ApplicationMaster, so every time
increment in MARP parameter means decrement in the number of resources for ac-
tual job execution. Therefore, with high MARP parameter configuration, there is
less space for actual job execution. This situation leads to reduction in through-
put problem. In addition, this problem can be called as Loss of Task Throughput
(LOTT).

Figure, 3.2 on the following page shows the situation, how throughput gets
lost during MapReduce job execution. In the figure, 3.2 on the next page MARP
value is set to be 0.80, which means 80% resources form the configured total re-
sources can be used by ApplicationMaster. Having said that in another way, 20%
resources are allocated for actual job execution. If N is the total number of jobs
submitted and 11 are running in parallel, still N-11 > 0 are in pending. However,
those 11 jobs running in parallel are competing for resources released by YarnChild
because only a few containers run the actual job. As more resources allocated for
ApplicationMaster, actual job execution takes place in few YarnChild containers
which leads less throughput and more time consumption. Even though here with
LOTT, 100% resources are utilized but not in an appropriate way that balances the
number of parallel running job and their corresponding throughput. Therefore, this
kind of poor resource utilization can degrade the performance of Hadoop cluster.

In order to overcome the discussed LOTT and to achieved eventual better
throughput MARP parameter again plays a vital role here. Decrement on MARP
parameter limits additional job to be scheduled for execution. For instance, in the
figure 3.2 on the following page, by the time while job is running, if it is supposed
to be MARP parameter value 0.50, then with the next interval of time, less number
of ApplicationMaster as compared to parameter value of MARP 0.80. This pro-
cess limits the number of jobs that are pending and supposed to get executed very
soon with previous MARP configuration. Hence, now the resources for Applica-
tionMaster and YarnChild is supposed to be equal that is 50% each.

23

AppMaster
AppMaster
AppMaster

YarnChild
YarnChild
YarnChild

Resource
Manager

Submitted Job = N

Total Cluster Resources = x

Pending Job = N-11 > 0

Parallel job Running = 11

Total used Resources = x

MARP = 0.8

AppMaster
AppMaster
AppMaster
AppMaster

AppMaster
AppMaster
AppMaster

AppMaster

Figure 3.2: Loss of Task Throughput with high MARP value and inappropriate
way of full resource utilization.

24

Let’s assume AMmax and AMmin to be the maximum and minimum number
of ApplicationMaster respectively running jobs while YCmax and YCmin as a re-
spective maximum and a minimum number of running YarnChild. If configured
total resources used is 100% then

Job parallelism is increased but less throughput is achieved with following equation

• AMmax + YCmin = TR

Task throughput is increased but less job parallelism is achieved with following
equation

• AMmin + YCmax = TR

This thesis aims to solve both of these problems occurred by inappropriate
MARP parameter setting. Hence, one of the better ways is to get a solution that
is to tune the parameter and reconfigure it to the whole cluster at the job run-
time. Static tuning of parameter sounds difficult, time-consuming and inefficient.
However, in this thesis, the author aims to design a dynamic approach that tunes
MARP parameter based on feedback from the cluster. Moreover, this self-adaptive
approach for balancing job parallelism and their corresponding task throughput
during job run-time will be implemented by designing an optimum algorithm and
developing it in the script as an automation tool. Detail technical description of
this algorithm can be found in Section 4. The project work has been structured
into five major phase, these are:

• Hadoop Cluster Design Phase

• The Algorithm Design Phase

• Implementation Stage

• Measurement, Analysis and Comparison Stage

3.1.2 Hadoop Cluster Design Phase

All the experiments carried out in this project by creating Hadoop cluster in Google
cloud. Since appropriate optimum cluster resources utilization is one of the main
goals of this project, attention is on the constitution of node servers in terms of
their CPU, memory, disk, and operating system. Moreover, comparatively big size
of CPU and memory has been chosen in order to eliminate the possible problem
of CPU and memory overhead for master nodes in the cluster. On the other hand,
all nodes except master node in the cluster has the same size of CPU and memory.
Finally, 3 nodes with the same operating system where 1 of it is master node and
rest are worker nodes has been designed and developed for this project.

As mentioned earlier, hardware for the cluster has been sourced using compute
engine form Google cloud as the flavor shown by the table 3.1 on the next page.

25

Table 3.1: Compute Engine Flavor
SN NODE NAME ZONE TYPE CPU MEMORY
1 project-master-01 europe-west-4-b n1-standard-4 4vCPUs 15GB
2 Project-worker-01 europe-west-4-b n1-standard-2 2vCPUs 7.5GB
3 project-worker-02 europe-west-4-b n1-standard-2 2vCPUs 7.5GB

3.1.3 The Algorithm Design Phase

One of the main part of this project is to design and develop an optimum algorithm.
The algorithm should be designed in a way that can address the problem as stated
in the Section 1.1 and simplified version of two problems described in earlier
Section 3.1.1. Step by step operation that can leverage maximum resources form
the designed and developed Hadoop cluster is the main goal of this algorithm.
Moreover, the algorithm designed is focused on progress value of each running job
over time where progress value of each running MapReduce job can be fetched
by using Hadoop Yarn command. Finally, based on those progress rates algorithm
is able to change the number of resources allocated to the MapReduce jobs in the
cluster at run-time so the new job could be added or stopped being added to the
cluster.

3.1.4 Implementation Stage

Implementation stage is where all the design gets actual shape in order to achieve
the goal of the project. In this thesis, the implementation stage is one of the im-
portant stage where the designed Hadoop cluster is developed. Not only cluster but
also the algorithm design is developed into the bash script as an automation tool.
Moreover, specific functions for the particular action are developed in the script.

The project itself is a combination of various complex sub-task with many
challenging responsibilities to be taken into account. Fortunately, various available
tools and components help to assist in accomplishing tasks and executing respons-
ibilities. Similarly, in order to achieve optimum solution for the problem explained
in problem statement (see Section 1.1), many tools and their related components
has to be recognized, designed and developed as the part of a system. Following
are the tools required to develop this project for the proposed approach.

3.1.4.1 Cluster

Clusters are usually deployed in order to improve performance and availability over
that of the single computer. Moreover, this project is all about big data processing
with the help of computing nodes in the cluster. Therefore, to implement project
design and to evaluate the results 5 node Hadoop cluster will be created in Google
Cloud Platform using Google Compute Engine.

26

3.1.4.2 Software Development Kit (SDK)

The cloud SDK is the set of tools such as gcloud, gsutil etc., for accessing Google
Compute Engine (GCE), Google Cloud Storage, Google Big Query and other
products and services from the command line. Furthermore, these tools can be
run interactively or can be included as a part of automated script [6]. For the
purpose of this thesis, gcloud tools has been frequently used in order to manage
authentication, local configuration, developer workflow, and interactions with the
Cloud Platform APIs.

3.1.4.3 Java Development Kit (JDK)

The Java Development Kit (JDK) is a software development environment used
for developing Java applications and applets. JDK includes the Java Runtime
Environment (JRE), and Interpreter/Loader (java), a compiler (javac), an archiver
(jar), a documentation generator (Javadoc) and other tools needed in Java
development [20]. For this thesis, it is also required JDK to install over the Hadoop
cluster as Hadoop is written in Java. Moreover, the author of this thesis has used
OpenJDK 7.

3.1.4.4 MapReduce Framework

Hadoop MapReduce is a software framework for easily writing applications which
process the huge amount of data in parallel on the large cluster in a reliable fault-
tolerant manner. In this project MapReduce framework is one of the important
tools which splits the input data-set into independent chunks and are processed in
parallel. Thus, author of this thesis has chosen Hadoop-2.8.1 version MapReduce
framework to work with.

3.1.4.5 REST API’s

The Hadoop YARN web service Rest API’s are a set of URI resources that provide
access to the cluster, nodes, applications and application’s historical information.
In order to extract real-time system data related to resource unit and applications,
this project has used REST API’s.

3.1.4.6 Script Development and Automation

Bash script has been developed as an automation tool in order to check the real-
time data access form REST API’s. Moreover, feedback control loop has been
implemented in the cluster through the script. Thus, the script is responsible for
the decision whether to increment or decrement MARP value.

3.1.4.7 R-Programming

Results obtained has been visualized using R-Programming for analysis and easy
understanding. LibreOffice Calc has been used for data storing during project
experiment phase.

27

3.1.4.8 Benchmarking Tools

Benchmarks are important tools to evaluates the system, as long as their results are
transparent, reproducible and they are conducted due diligence [19]. Therefore,
it is essential to quantitatively evaluate and characterize the Hadoop framework
through the extensive benchmark. This thesis has used one benchmarking tools to
evaluate the performance and to understand the tradeoff between job parallelism
and corresponding throughput. HiBench is the benchmarking tool that has been
used in this project.

3.1.5 Measurement, Analysis and Comparison

Experiments has been performed in an environment where Hadoop cluster is cre-
ated with the Ubuntu Linux virtual machine. At least one machine with normal
cluster configuration acted as the master machine of the cluster and rest of the ma-
chines as workers nodes. Experimentation has involved the processing of a set
of workloads. Moreover, HiBench benchmark tool has been used to supply the
workloads to the Hadoop cluster. HiBench is a benchmark suite which consists of
a set of a set of Hadoop programs that helps to evaluate the Hadoop framework
in terms of speed, throughput, HDFS bandwidth, system resources utilization and
data access patterns 1. HiBench benchmark suite was originally developed by Intel
to stress and test Hadoop system.

HiBench contains 10 different workloads dividing into 4 categories.

• Micro Benchmarks (Sort, WordCount, TeraSort, Enhanced DFSIO)

• Web Search (Nutch Indexing, PageRank)

• Machine Learning (Bayesian Classification, K-means Clustering)

• Analytical Queries (Hive Join, Hive Aggregation)

HiBench benchmark suite has been downloaded and configured in order to run
workloads in this project. Moreover, slight modification has been carried out with
its configuration files and shell scripts provided in the benchmark suite so as to
make the HiBench benchmark adjustable in the developed Hadoop cluster. The
key point to remember regarding the workloads is that each workload in HiBench
has its own specific parameters. Furthermore, after each workload finished MapRe-
duce execution HiBench benchmark suite generate the report with time in seconds
and throughputs in bytes per second.

3.1.5.1 Benchmarking Methodology

This section is all about benchmarking methodology which is defined and used
throughout the experiments. In addition, to achieve job parallelism as the main
goal of the project, it is supposed that HiBench benchmark suite can supply enough

1www.ibm.com

28

numbers of jobs to be run in the Hadoop cluster. However, as described earlier Hi-
Bench benchmark suite only can run a maximum of 10 number of different jobs at
a time which is not good enough number of jobs to test and investigate along with
this project.

As HiBench benchmark has its own limitation with input number of different
jobs at a time, enough input workload for this project is designed in a way that
can repeatedly take as an input for the defined workload. Especially, the separate
shell script has been developed that selects defined workload and size that has to be
pushed multiple times into MapReduce framework. Only three types of workloads
Wordcount, Sort, and Terasort are selected for this project.

• WordCount

This workload counts the occurrence of each word in the input data, which are
generated using RandomTextWriter.

• Sort

This workload sorts its text input data, which is generated using RandomTex-
tWriter.

• TeraSort

TeraSort is a standard benchmark created by Jim Gray. Its input data is generated
by Hadoop TeraGen example program.

During the experiment time, 3 separate experiments with input job numbers
15, 30 and 45 has been taken into account. Figure, 6.1 on page 64 gives more clear
view about the experiments. Each experiment runs with three different configur-
ation as default configuration, random MARP value, and with APTH approach.
Moreover, the algorithm developed as a shell script is responsible to fetch and
write all the cluster metrics during MapReduce job runs in one CSV file. Sim-
ilarly, each experiment gets implemented with designed APTH approach. Here,
developed shell script for the designed algorithm as an automation tool parallelly
gets executed that takes action based on the progress value. Furthermore, this al-
gorithm also fetches the metrics form the cluster and write into one CSV file.

In order to ensure the accurate performance measurement, each experiment
with APTH approach has been run 15 number of times. Thus, the average value has
been calculated and considered as a representative result. This average value for
time in second is to complete jobs for particular experiment and average through-
put in bytes per second get compared with average values of experiment taken with
the default MARP.

Finally, this phase is also all about data analysis and performance comparison
in order to see if and to what extent this project objectives have been met. CSV
files created by the scripts which contain several columns of data with Hadoop
cluster metrics in the experiments has been imported to RStudio (a tool used for

29

data visualization). The key variables within those file like total memory used, a
maximum number of parallel running jobs, average throughput, the total time to
complete experiment, average total resources used during experiments, total CPU
used during experiments has been analyzed.

30

Chapter 4

Design

This chapter discusses the algorithm designed in order to achieve the objectives.
The algorithm was formulated to address the goal of design section from chapter
3 and also to develop the tools for the project that will make appropriate resources
allocation to the Hadoop cluster.

4.1 ∆Progress Aware Algorithm Overview

The designed algorithm is mainly aware of the progress values of the running
MapReduce jobs. Each time the algorithm is executed will fetch the running ap-
plication id with their corresponding progress values and sums up those values in
order to form single accumulated progress value. Moreover, the algorithm also cal-
culates different accumulated progress values with different MARP parameter in
a different time. Based on those different accumulated progress values ∆progress
value will be calculated. Hence, ∆progress is the difference between the current
progress value with previous progress value. Furthermore, the algorithm decides
the action to be taken in order to add more jobs or pull out the allocated resources
so that the additional job cannot be added in the Hadoop cluster.

For the first time when the algorithm runs will calculate accumulated progress
value by simply summing up the associated progress values of respective running
applications in the Hadoop cluster. Meanwhile, the situation might change in run-
ning number of applications and their corresponding status. Due to the possibility
of change in the status of running application, designed algorithm calculates cur-
rent accumulated progress value each time it is executed except for the first time.

Starting from default MARP parameter value, our proposed algorithm calcu-
lates accumulated progress value Progress1. As soon as progress1 is calculated,
algorithm makes an increment on MARP parameter by the small change and cal-
culates current accumulated progress Progress2. Similarly, again after having small
increment on MARP parameter, the algorithm calculates the current accumulated
progress i.e., Progress3. As soon as the algorithm calculates three Progress values
i.e., Progress1, Progress2, and Progress3, the algorithm calculate ∆Progress1 and
∆Progress2 (see Section 4.1.2).

31

Increment

Δ
Change

Δ
Change

Δprogress_current
<

Δprogress_previous

Decrement

Δprogress_current
<

Δprogress_previous

Δprogress_current
>

Δprogress_previous

Δprogress_current
>

Δprogress_previous

Switch
ActionContinue

Action
Continue
Action

Figure 4.1: Conditions and actions of the algorithm.

• ∆progress1 = (Progress2) - (Progress1)

• ∆progress2 = (Progress3) - (Progress2)

Along with the calculation of ∆Progress1 and ∆Progress2, the first part of the
algorithm is finished and the second part of the algorithm is initiated. This part
is action-oriented either to make an increment on MARP parameter in order to
check if the additional number of jobs can be executed (to make increment on
job parallelism) or decrement on MARP parameter in order to stop numbers of
additional jobs to be added in the cluster (to make sure less number of jobs share
resource unit in the cluster).

The figure, 4.1 presents the second part of the algorithm to be executed and
check if ∆Progress2 (current progress) is greater than ∆Progress1 (previous pro-
gress), which means the throughput is in increasing order. Therefore, the algorithm
first checks the throughput if it will still continue the increasing order by adding
the numbers of the additional jobs to the cluster. If yes then, it makes an incre-
ment on MARP parameter. Alternatively, the algorithm also makes a decrement on
MARP parameter in order to stop scheduling more number of jobs if ∆Progress2

32

is smaller than ∆Progress1 which means that the current throughput is not in an in-
creasing order as more number of jobs are sharing the same resource unit. On the
other hand, the algorithm also has one more action i.e., to be in ideal state, neither
increment nor decrement on MARP parameter. Therefore, this action is defined as
’Ideal Action’. For instance, the condition when ∆Progress1 and ∆Progress2 are
equal, then the algorithm does nothing but it only calculate the current accumulated
progress and update the Progress3 value.

After each action taken by the algorithm i.e., increment, decrement or ideal,
the algorithm is defined to sleep for certain time interval. Figure, 4.2 on the
following page aims to give a clear view regarding how new ∆Progress1 and
∆Progress2 gets calculated. In fact, this newly calculated progress value now
becomes Progress3 and previous Progress3 value now becomes new progress value
for Progress2. Similarly, the algorithm sets the previous progress2 value as a new
value for Progress1. In this way, each time when the second part of the algorithm
executes, it calculates new progress values for Progress1, Progress2, and Progress3.
As a result, the algorithm always have the chance to calculate new ∆Progress1 and
∆Progress2. As long as the algorithm finds new values Progress3, it keeps on
continuing execution of the algorithm.

Finally, the designed algorithm keeps the balance between job parallelism and
associated throughput by simply increasing the resources to the ApplicationMaster
which schedule the number of additional jobs to the cluster. Thus, result in
job parallelism. On the other hand, when the algorithm decides that the current
accumulated progress value is less than the previous, the algorithm stops adding
more number of additional jobs to the cluster by simply decreasing the resources
to the ApplicationMaster. The key point to remember at this moment is that by
increasing the number of the parallel running job with an eventual increase in their
associated throughput within constant resources is hard to achieve in reality.

4.1.1 Calculating Current Accumulated Progress of Running MapRe-
duce Jobs

For the easy understanding figure 4.3 on page 35 shows how the actual accumu-
lated current progress value is calculated over time. Here in figure 4.3 on page 35,
two jobs with their current progress values are running at time t-1 with MARP para-
meter x. Thus, the algorithm calculates the current accumulated progress value by
adding those two values. Eventually, when the algorithm tries to calculate another
current accumulated progress value over time then the same method that was used
before doesn’t work at this time. The reason is that there might be the changes in
the situation of running MapReduce job. There might be three situations as:

• Same job running at time t-1 and at time t with different progress values

• Job running at time t-1 finished at time t

• The new job might be added at time t

33

Progress 1
MARP=x
time= t-2

Progress 2
MARP=y
time= t-1

Progress 3
MARP=z
time= t

ΔProgress1 ΔProgress2

Condition/Decision IncrementDecrement

Ideal

Current
Accumulated

Progress
Calculation

time=t+x
MARP

Current
Accumulated
Progress set
as Progress3

Figure 4.2: Architecture for current progress calculation each time the algorithm
executed.

34

Time t-1
MARP=x

Running Number of jobs with their corresponding progress values

JOB A
85%

JOB B
15%

Total Progress value =
85 + 15

= 100

Time t-1

Running Number of jobs with their corresponding progress values

JOB A
85%

JOB B
15%

Time t
MARP=y

JOB B
95%

JOB D
20%

JOB C
35%

Total Actual progress at
time t

Progress Remaining for job A
100% - 85% = 15%

+
Progress Difference for JOB B

95% - 15% = 80%

Current progress for JOB C
and JOB D

35% + 20% = 55%

+

Current Actual Progress at
time t

15 + 80 + 55 = 150

In
cr

em
en

t
De

cr
em

en
t

Figure 4.3: Technical overview of accumulated current progress calculation over
time.

35

Figure 4.3 on the previous page aims to show the calculation of current ac-
cumulated progress value in all three situations. Each time the algorithm runs to
catch the progress value, first, it will identify the changes in the situation of run-
ning MapReduce job and based on those changed situations, the algorithm applies
different specific logic to gain actual current progress. For instance, the algorithm
takes the difference in progress value between current progress value and previous
progress value of the particular running MapReduce jobs and finally take the sum
of those difference. The figure, 4.3 on the preceding page helps to understand
the same situation with JOB B. Running MapReduce job JOB B at time t-1 with
progress value 15% continue at time t with progress value of 95%. Thus, the actual
progress of JOB B at time t is 95-15=80.

Likewise, the algorithm subtracts the values of particular jobs form 100 and
sum up those difference if the jobs running at time t-1 disappears at time t. The
same situation in figure 4.3 on the previous page is related to running MapReduce
job-JOB A. JOB A at time t-1 with progress value of 85% is finished at time t, so
the progress of job JOB A at time t can be calculated as 100-85=15.

Similarly, the corresponding progress values are added for the newly added
running MapReduce jobs at time t. The same situation is illustrated by jobs JOB
C and JOB D at time t with their corresponding progress values 35% and 20%
respectively. So the current accumulated progress of the newly added jobs is
35+20=55.
Finally, the algorithm also sums up those current accumulated progress values
which omes from different situations (80+15+55) and make the current accumu-
lated progress value (150) of the running MapReduce jobs at time t. All of the
above steps will be carried out by the algorithm each time it is supposed to calcu-
late the accumulated current progress value.

4.1.1.1 Details Work-flow of Algorithm to Calculated Current Accumulated
Progress

Initially, designed and developed algorithm is responsible for extracting running
job id of the jobs and their corresponding progress value by using yarn command
in two different arrays. The key point to notice here is that every running job has its
own specific id which is unique. Another key thing to remember is, both the arrays
have the same numbers of items stored each time the algorithm runs. Not only the
same numbers of items but also the index value which is assigned to store job id
that is equal to the index value assigned to store the corresponding progress values
of a particular job id’s. Figure, 4.4 on the facing page gives more clear view on
how two arrays get formed in order to store unique job ids and their associated
progress value at different time t-1 and t with different MARP x and y respectively.

When the algorithm runs to get the current accumulated progress value at time t
then the algorithm compares the currently stored ids with previous stored ids which
were stored at time t-1 and identify the difference and similarities on the job ids.
The figure, 4.5 on page 39 presents a clear view about all the technical steps in

36

Script /Yarn
command

job id Corresponding
Value

06 20%
08 15%
09 30%

Bash
Command

Array to store only
job id

ValueIndex Index Value

0
1
2 09

06
08

0
1
2 30

20
15

Time t-1 MARP=x

Script /Yarn
command

job id Corresponding
Value

08 80%
11 72%
12 40%

Bash
Command

Array to store only
job id

ValueIndex Index Value

0
1
2 12

08
11

0
1
2 40

80
72

Time t MARP=z

Resource Manager/
Input jobs

Array to store only
corresponding
progress value

Array to store only
corresponding
progress value

Figure 4.4: Two arrays storing unique job ids and corresponding progress value
extract by algorithm.

37

order to calculate the current accumulated progress value. In the figure 4.5 on the
facing page, all the box containing number are a symbolic form of the different
array. Boxes with color light blue shows the job ids and their corresponding values
stored in arrays at time t-1 with MARP x. Likewise, the boxes with color light
green means the current job ids and their corresponding progress values in arrays.

The array with different jobs now gets compared with arrays that store only
job ids at time t-1 and at time t. Moreover, the algorithm will also form two new
arrays that store the intersection part of job ids those were stored at time t-1 and at
t. Meanwhile, the algorithm will find the corresponding index number of those in-
tersected job ids form those particular arrays (light blue and light green) and search
the same corresponding index number in the arrays that stored only values.

The algorithm is aware of the scenarios described in section (see Section 4.1.1)
and which is being developed as an automation tool to calculate the different
progress values on different scenarios. Indeed, the algorithms calculates the current
accumulated progress value by adding the values obtained from different scenarios
as shown by the dark green color box in the figure, 4.5 on the next page.

4.1.2 Calculation of ∆Progress

In this thesis, by reading the progress values of running jobs, the algorithm
identifies the amount of task finished for the particular MapReduce job over time.
Moreover, progress values are different over time that depends upon the different
scenarios i.e., resources allocated for ApplicationMaster, size of the scheduled
jobs, number of scheduled jobs, resources allocation for actual job execution
container and etc. For instance, fewer numbers of small size jobs in the Hadoop
cluster has faster progress rate over time. On the other hand, more numbers of big
size jobs with the same resources have slow progress rate over time.

∆progress shows the improvement or decrement of the progress rate over time
of currently executing job as compared to previous ones. Therefore, in order to
achieve ∆progress1 and ∆progress2, the algorithm make the difference between
progress value at time t-2 from t-1 and t-1 from t respectively.

The figure 4.6 on page 40 gives a more clear view of initial first part of the
algorithm. In order to get the difference in progress rate over time, the algorithm
checks and store value of progress at time t-2 with default configuration. As soon
as the first progress from default configuration is achieved, the algorithm dynam-
ically makes small change by increment on MARP parameter which means that
the additional resources get added to the ApplicationMaster in the Hadoop cluster.
Thus, resource manager might schedule an additional job to the cluster if added
resources are good enough to execute the new job. The algorithm calculates the
current accumulated progress value at time t-1. In the same way, the algorithm
calculates Progress3 at time t by having a small increment on MARP parameter.

38

Array to store only
job id

ValueIndex Index Value

0
1
2 09

06
08

0
1
2 30

20
15

Array to store only
job id

ValueIndex Index Value

0
1
2 12

08
11

0
1
2 40

80
72

Array to store
corresponding
progress value

Array to store
corresponding
progress value

MARP=x
time= t-1

MARP=z
time= t

Identifying Difference
/ Similarities on job

ids

Difference

06, 09, 11, 12

Similar

08

Find the intersection
part of job ids with

previous arrays

06, 09

11, 12

Identifying the
corresponding index from

the previous array
0, 2

20, 30

Access exactly same
index value form array
that stores only values

1, 2

Identifying the
corresponding index from

the current array
72, 40

Access exactly same
index value form array
that stores only values

Progress
in time

gap

100 - 20 = 80
100 - 30 = 70

72 + 40 = 112

Identifying corresponding
index of the similar jobs from
previous and current array of

job id

Current

01

previous

Access exactly same
index value form array
that stores only values

80

Access exactly same
index value form array
that stores only values

Progress in
current time

for newly
added jobs

15
Current progress
value with similar

jobs
80 - 15 = 55

Current Accumulated
Progress

55 + 80 + 70 + 112 = 317

Access exactly
same index value

form array that
stores only values

Figure 4.5: Figure exploring how data stored on arrays and get calculated in order
to find current accumulated progress.

39

t-2

t-1

t

MARP=0.1

MARP=0.15

MARP=0.20

JOB1

JOB4

JOB3

JOB2

JOB1

JOB1

JOB4

JOB5

JOB6

JOBn

R
es

ou
rc

eM
an

ge
r

Total Progress = x

Total progress =
z

Total progress = y

First_progress_change = y-x

Second_progress_change = z-y

Job
Parallelism ThroughputTime

Figure 4.6: Architecture calculating progress at different time and MARP
parameter during MapReduce job execution and calculates the change in progress.

40

From the figure 4.6 on the preceding page, it can seen that the two MapReduce
jobs are running at default configuration. Therefore, corresponding total progress
x is the sum of the progress of all the running MapReduce job at time t-2. Sim-
ilarly, as the MARP parameter increment to 0.15, 3 jobs are running. Among 3
jobs, 2 jobs are the newly scheduled jobs by the scheduler as soon as additional
resources allocation for ApplicationMaster is realized. The remaining one is the
job that starts executing with default configuration and is still running. Therefore,
at time t-1 algorithm calculates the total progress y form three running job. Finally,
the algorithm increments the MARP parameter to 0.20 as soon as it calculates and
stores the progress y. At time t with MARP 0.20, 4 MapReduce jobs are running.
Algorithm again calculates and stores the progress z at time t for those 4 MapRe-
duce running jobs.

As soon as the algorithm has progress values x, y and z, then it calculates
∆progress over time.

• ∆progress1 = (Total Progress at t-2) - (Total Progress at t-1)

• ∆progress2 = (Total Progress at t) - (Total Progress at t-2)

4.1.3 Algorithm

The algorithm 1 is all about the overall design and the algorithm 2 is another
algorithm that gets implements within the algorithm 1.

Algorithm 1 Progress Aware Algorithm
1: Start
2: Input number of jobs
3: Set MARP at default configuration
4: Calculate progress P1 at default configuration
5: Calculate Current Accumulated Progress (Algorithm 2) for P2 , P3 at

different MARP values at different time
6: Calculate ∆P2 as P3 −P2 and ∆P1 as P2 −P1
7: Check: if ∆P2 > ∆P1 then
8: ∆Change on MARP
9: Check: else if ∆P2 < ∆P1 then

10: ∆Change on MARP
11: Calculate Current Accumulated Progress (Algorithm 2)
12: Update P1, P2 , P3
13: Repeat step 6
14: else
15: Calculate Current Accumulated Progress (Algorithm 2)
16: Update P1, P2 , P3
17: Repeat step 6
18: End of Algorithm 1

4.1.4 Flow Chart

The flow chart is shown in the figure 4.7 on the following page.

41

Start

Calculate
ΔProgress1 = P2 - P1

and
ΔProgress2 = P3 - P2

Input Number Of
Jobs

Calculate Progress1 (P1), Progress2
(P2) and Progress3 (P3) at different

MARP values at different time
and calculate Job parallelism

Set MARP values to
default

No YesCheck If
ΔProgress2

> ΔProgress1
Decrement Increment

Else

Ideal

Sleep
Defined

Time Iterval

Calculate
Current

Accumulated
Progress

Figure 4.7: Flow chart for the designed algorithm.

42

Algorithm 2 Algorithm for Current Accumulated Progress
1: Start
2: Store running application id and corresponding progress value at time t-1
3: Store running application id and corresponding progress value at time t
4: Find differences and similarities on ids at time t and t-1
5: Each corresponding progress values of the ids only at time t-1 gets subtracted

from 100 and make the sum1 by adding
6: Each corresponding progress values of the ids only at time t gets added and

make sum2
7: Each corresponding progress value at time t gets subtracted form the

corresponding progress value at time t-1. If the job ids are similar and make
sum3 by adding those substracted progress values

8: Make Actual Accumulated Progress value by summing up sum1, sum2 and
sum3

9: End of Algorithm 2

4.2 Expected Results of APTH Approach with the Pro-
gress Aware Algorithm

The illustration for expected results of the algorithm are depicted in figures 4.8 on
the next page, 4.9 on page 45 and 4.10 on page 46.The key point to note is that
there will always be quantitatively average throughput calculated by the end of the
MapReduce execution time.

The result shown in the figure, 4.8 on the following page is all about, how
job parallelism can be increased with the dynamic increment of MARP parameter.
As the parameter value of MARP is increased, eventually the number in parallel
running jobs seems increased. However, static number of jobs are running with
default configuration.

Similarly, figure 4.9 on page 45, shows the dynamic change in increment in
average throughput with APTH approach.

Figure, 4.9 on page 45 shows that there are 3 axis X, Y, and Z. X denotes the
dynamic MARP during job execution. Similarly, the axis Y denotes the specific
point of time. On the other hand, Z axis shows the corresponding throughput. Not-
ably, the meeting point of the time at MARP value is denoted by triangles. The
point nearby the triangle to Z-axis corresponds to related associated throughput at
that time with particular MARP parameter sets with the proposed APTH approach.
Figure aims to demonstrate, what is the effect on the throughput if proper util-
ization of resources cannot be held during job execution. The point is that, it is
impossible always to set exactly perfect MARP value for high throughput require-
ments.

When configured MARP parameter is very small or very big, it consumes more
time in order to finish executing all the submitted job(see Section 3.1.1). There-
fore, the average throughput achieved will be less, as shown by the Z axis. The
better throughput will only be achieved if MARP parameter could keep a good bal-
ance between the parallel running number of jobs and resources unit of the cluster.

43

X0

Y

MARP values In Increasing Order

P
ar

al
le

l r
u

n
n

in
g

 jo
b

s
In

 In
cr

ea
si

n
g

 O
rd

er

Default MARP
value = 0.1

Job Parallelism Baseline with
Default configuration

Job Parallelism With Proposed
APTH Approach

Tim
e

Figure 4.8: Dynamic number of jos running with APTH approach and Static
number of jobs running with default configuration.

44

Y

X

Max MARP
configuration = 1.0

Default MARP
Configuration =

0.1

Ti
m

e
In

 D
ec

re
as

in
g

O
rd

er

Resources for MARP In Increasing Order

Throughput with
Default

Configuration

Jo
b

P
ar

al
le

lis
m

 In
 In

cr
ea

si
ng

 O
rd

er
 a

lo
ng

 w
ith

M
A

R
P

 In
cr

ea
si

ng

Throughput With APTH Approach
when perfert MARP parameter value

set

0
MARP Increasing

Z

Less Throughput

0

High Throughput

Medium level Throughput

Throughput In D
ecreasing

O
rder

Low level
Throughput

Time
MARP

Throughput

Figure 4.9: Dynamic throughput with APTH approach respect to MARP parameter
value and time.

45

Default
Configuration

Start-Time

Resources Consumed By ApplicationMaster at Default Configuration

0

Time Consumption In Increasing
Order

End-Time
With Default
Configuration

R
es

ou
rc

es
 C

on
su

m
pt

io
n

In
 In

cr
ea

si
ng

O
rd

er

Total-Resources In The Cluster

Total Resources Connsumed By Application
With APTH Approach

End-Time With APTH
Approach

Increase In
Performance

R
ed

u
ce

 O
n

 D
ro

p
 In

R
es

o
u

rc
es

Maximum Resources Consumed By
ApplicationMaster with APTH

Approach

Total-Time Consumed to Finished
Submitted Job By Default Configuration

To
ta

l D
ro

p
 In

 R
es

o
u

rc
es

 W
it

h
 D

ef
au

lt
C

o
n

fi
g

u
ra

ti
o

n

t

Figure 4.10: Execution time difference and drop in resources reduced with APTH
approach.

Finally, the figure 4.10 shows the total resources consumed by the Applica-
tionMaster with the proposed APTH approach and the resources consumed with
default configuration. There must be overall execution time difference between the
same number of jobs while executing in two different environments. As it can be
seen in the figure 4.10, not only reduction in time but also APTH approach have
better resources utilization so, the drop in the amount of resources gets reduced.
Therefore, better performance will be achieved with the proposed approach.

46

Chapter 5

Implementation

This chapter is all about the description of work done following the technical
design for hadoop cluster creation and for the algorithm that is developed. This
chapter consists of the important code snippets and system details. The staging
environment is Google Cloud.

5.1 System Setup

An overall system setup for this project is the combination of Hadoop cluster
configuration, Benchmarking tool installation and configuration, developed scripts
for the designed progress aware algorithm.

5.1.1 Hadoop Cluster Creation

Initially, Hadoop cluster was created using Google Compute engines on the Google
Cloud. Following steps were taken to create and configure Hadoop Cluster.

• Create virtual machines

• Install java on all the machines

• Download stable version of Hadoop (Hadoop-2.8.1) on all the machines

• Unpack the downloaded software on all the machines

• Distribute Authentication Key-pairs for the Hadoop worker nodes

5.1.1.1 Cluster Configuration

• Create Host File on Each Node

10.164.0.3 project-master-01
10.164.0.4 project-worker-01
10.164.0.2 project-worker-02

• Set JAVA_HOME And Environment Variables

47

export JAVA_HOME=/usr/lib/jvm/jdk
export PATH=$JAVA_HOME/bin:$PATH
export HADOOP_COMMON_HOME=/home/ramesh/hadoop-2.8.1
export HADOOP_MAPRED_HOME=$HADOOP_COMMON_HOME
export HADOOP_HDFS_HOME=$HADOOP_COMMON_HOME
export YARN_HOME=$HADOOP_COMMON_HOME
export PATH=$PATH:$HADOOP_COMMON_HOME/bin
export PATH=$PATH:$HADOOP_COMMON_HOME/sbin

• XML Files Configuration
Along with downloaded Hadoop-2.8.1 software package, there are many
XML files available in all the machine. Those files contain the property
with name and associated value. In order to customize the configuration,
those properties need to be edited by changing their corresponding values.
Similarly, in order to configure the master node in the cluster, one of the
XML files named core-site.xml should be set as below for this project.

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://project-master-01</value>
</property>
</configuration>

Likewise, yarn-site.xml XML file gets edited in order to configure the
resource manager of the cluster.

<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>project-master-01</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

Similarly, hdfs-site.xml is another configuration file that stores the distributed
file system related configuration. For instance, this project makes sure fault
tolerance redundancy.

<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>

48

mapred-site.xml should be configured as YARN is a default framework for
MapReduce operation.

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

5.1.1.2 Hadoop Cluster Initialized

• As soon as the Hadoop cluster is created and configured it should be
initialized before input jobs given to the cluster. So in order to initialize it,
first name node should be formatted with command hdfs namenode -format:

18/05/31 10:36:26 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: user = ramesh
STARTUP_MSG: host = project-master-01/10.164.0.3
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.8.1
STARTUP_MSG: classpath = /home/ramesh/hadoop-2.8.1/etc/hadoop

• Hadoop distributed file system (hdfs) should be initialized by running script
with command start-dfs.sh:

Starting namenodes on [project-master-01]
project-master-01: starting namenode, logging to /home/ramesh/
hadoop-2.8.1/logs/hadoop-ramesh-namenode-project-master-01.out
project-master-01: starting datanode, logging to /home/ramesh/
hadoop-2.8.1/logs/hadoop-ramesh-datanode-project-master-01.out
project-worker-01: starting datanode, logging to /home/ramesh/
hadoop-2.8.1/logs/hadoop-ramesh-datanode-project-worker-01.out
project-worker-02: starting datanode, logging to /home/ramesh/
hadoop-2.8.1/logs/hadoop-ramesh-datanode-project-worker-02.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /home/ramesh/hadoop-2.8.1/
logs/hadoop-ramesh-secondarynamenode-project-master-01.out

• Moreover, with command jps one can see java process running in the cluster.
Still resource manager is not running as yarn is not yet initialized. However,
Namenode and DataNode are ready to go as:

2311 NameNode
2753 SecondaryNameNode
2516 DataNode
2909 Jps

49

• In order to make resource manager running in the cluster one should initialize
yarn with command start-yarn.sh:

starting yarn daemons
starting resourcemanager, logging to /home/ramesh/hadoop-2.8.1/logs/
yarn-ramesh-resourcemanager-project-master-01.out
project-master-01: starting nodemanager, logging to /home/ramesh/
hadoop-2.8.1/logs/yarn-ramesh-nodemanager-project-master-01.out
project-worker-01: starting nodemanager, logging to /home/ramesh/
hadoop-2.8.1/logs/yarn-ramesh-nodemanager-project-worker-01.out
project-worker-02: starting nodemanager, logging to /home/ramesh/
hadoop-2.8.1/logs/yarn-ramesh-nodemanager-project-worker-02.out

• Lets check with jps command again, if resource manager is running.

3033 ResourceManager
2311 NameNode
3207 NodeManager
2753 SecondaryNameNode
4029 Jps
2516 DataNode

• In order to check the nodes running in the cluster with command yarn node
-list:

18/05/31 11:07:32 INFO client.RMProxy:
Connecting to ResourceManager at project-master-01/10.164.0.3:8032
Total Nodes:3

Node-Id Node-State Node-Http-Address
Number-of-Running-Containers
project-worker-02:44737 RUNNING project-worker-02:8042
0
project-worker-01:32785 RUNNING project-worker-01:8042
0
project-master-01:35231 RUNNING project-master-01:8042
0

• All the configured nodes are running as they supposed to do. In order to
check the distributed file system report with command hdfs dfsadmin -report:

Configured Capacity: 1585237499904 (1.44 TB)
Present Capacity: 1501372780544 (1.37 TB)
DFS Remaining: 1501372694528 (1.37 TB)
DFS Used: 86016 (84 KB)
DFS Used%: 0.00%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
Pending deletion blocks: 0

50

Live datanodes (3):

• To check the application and its status then one can use command yarn
application -list.

5.1.2 HiBench Benchmark Suite Installation and Configuration

HiBench benchmark suite is used in order to submit the numbers of jobs to the
Hadoop cluster. First, HiBench benchmark suite needs to be downloaded to the
master node and configured to make it running. To make HiBench adjustable with
the Hadoop cluster being deployed, the hadoop.conf file should be created and
configured as:

Hadoop home
hibench.hadoop.home /home/ramesh/hadoop-2.8.1

The path of hadoop executable
hibench.hadoop.executable ${hibench.hadoop.home}/bin/hadoop

Hadoop configraution directory
hibench.hadoop.configure.dir ${hibench.hadoop.home}/etc/hadoop

The root HDFS path to store HiBench data
hibench.hdfs.master hdfs://project-master-01:8020

Hadoop release provider. Supported value: apache, cdh5, hdp
hibench.hadoop.release apache

5.1.3 Testing of the Hadoop Cluster at Different Level of Static
Configuration

In order to confirm if the cluster and benchmarking suite configuration works well,
50 jobs were executed for several times at different MARP values. The figure, 5.1
on the next page shows the total time taken by the cluster in order to complete
50 jobs execution at different MARP configurations. Similarly, figure, 5.2 on
the following page shows the average throughput of those 50 executing jobs at
different MARP configurations. After analyzing the data, it is confirmed that
Hadoop cluster is ready for further experiment as it can be able to reconfigure
the resources for the MapReduce jobs by changing the MARP parameter value.

5.1.4 Deployment of Automation Tool

The designed algorithm was deployed into the bash script to make the proper
functioning prototype. This script consists of many functions and every single
function has particular task to be done. The key functions of the script deployed
are highlighted below with their functioning mechanism:

51

Figure 5.1: Total time consumption by 50 jobs at different MARP configuration.

Figure 5.2: Average throughput per second at different MARP configuration.

52

• Fetch and Set MARP Value
XML file capacity-scheduler.xml is the main file in which MARP parameter
value dynamically get changed. During the experiment, the deployed script
will fetch value of yarn.scheduler.capacity.maximum-am-resource-percent
property and modify the value. Moreover, modified value again gets set
to the same field in the file.

<configuration>
<property>

<name>yarn.scheduler.capacity.maximum-applications</name>
<value>1000</value>
<description>

Maximum number of applications that can be pending and running.
</description>

</property>
<property>

<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value> 0.10 </value>
<description>

Maximum percent of resources in the cluster which can be used to run
application masters i.e. controls number of concurrent running
applications.

</description>
</property>

One can notice the value 0.10, which means 10% of the total resources can be
used by ApplicationMaster. If this value needs to be changed then, floating
point number needs to be added or subtracted from it.

FUNCTION TO FETCH MARP VALUE FORM FILE
file=/home/ramesh/hadoop-2.8.1/etc/hadoop/capacity-scheduler.xml
marp=$(sudo cat $file | awk -F" " 'NR==26 {print $2}')

FUNCTION TO INCREMENT MARP VALUE
increment () {
newmarp=$(echo $marp $toadd | awk '{printf "%0.2f", $1 + $2}')
echo "marp to submit is" $newmarp
awk 'NR==26{$2=a}1' a=$newmarp $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
echo "MARP Increment by 0.10 and the new MARP is " $newmarp

}

FUNCTION TO DECREMENT MARP VALUE
decrement () {
newmarp=$(echo $marp $tosub | awk '{printf "%0.2f", $1 - $2}')
echo "marp to submit is" $newmarp
awk 'NR==26{$2=a}1' a=$newmarp $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
echo "MARP Decrement by 0.05 and the new MARP is" $newmarp

}

53

Functions increment and decrement are responsible for actions incrementing
or decrementing MARP parameter value to the file capacity-scheduler.xml
based on the decision made by the algorithm. In the code above yarn rmad-
min -refreshQueues is responsible for reconfiguring the changed MARP
parameter in order to re-allocate the resources to the ApplicationMaster in
the cluster. The defined global variable toadd and tosub contains the floating
point number to take action with current MARP parameter value.

• Fetch Cluster Metrics during MapReduce Operation
REST API (see Section 3.1.4.5) are used to fetch real-time data from the
Hadoop cluster.

curl http://project-master-01:8088/ws/v1/cluster/metrics

For instance, when MapReduce operation is not running in the cluster then
the output of the REST API looks like following. For this project, REST
API is used to fetch real-time cluster metrics like, total memory in the cluster,
total memory used, unused memory, marp limit, memory used by marp, total
number of vcores in the cluster, total used, total number of running container,
total number of parallel running job in the cluster etc.

{"clusterMetrics":{"appsSubmitted":51,"appsCompleted":32,"appsPending":
15,"appsRunning":4,"appsFailed":0,"appsKilled":0,"reservedMB":
0,"availableMB":0,"allocatedMB":24576,"reservedVirtualCores":
0,"availableVirtualCores":0,"allocatedVirtualCores":
20,"containersAllocated":20,"containersReserved":0,"containersPending":
21,"totalMB":24576,"totalVirtualCores":
20,"totalNodes":3,"lostNodes":0,"unhealthyNodes":
0,"decommissioningNodes":0,"decommissionedNodes":
0,"rebootedNodes":0,"activeNodes":3,"shutdownNodes":0}}

FUNCTION WHICH FETCH METRICES FROM RESOURCE MANAGER
fetch_metrics () {
TOTAL MEMORY IN A CLUSTER
tot_mem=$(curl http://project-master-01:8088/ws/v1/cluster
/metrics | awk -F':' '{print $18}' | awk -F',' '{print $1}')
MEMORY USED IN THE CLUSTER DURING JOB EXECUTION
mem_used=$(curl http://project-master-01:8088/ws/v1/cluster
/scheduler | awk -F':' '{print $22}' | cut -d',' -f1)
UNUSED MEMORY IN THE CLUSTER
mem_unused=$(curl http://project-master-01:8088/ws/v1/cluster
/metrics | awk -F':' '{print $10}' | awk -F',' '{print $1}')
#TOTAL MEMORY ALLOCATED BY MARP VALUE
marp_limit=$(curl http://project-master-01:8088/ws/v1/cluster
/scheduler | awk -F':' '{print $55}' | cut -d',' -f1)
TOTAL MEMORY USED BY APPLICATION MASTER
am_mem_used=$(curl http://project-master-01:8088/ws/v1/cluster
/scheduler | awk -F':' '{print $52}' | cut -d',' -f1)

}

54

• To Calculatle Current Accumulated Progress
This part of the script is responsible for calculating current accumulated pro-
gress. Actually, this section here is almost programming code for the one
part of the algorithm see Section 4.1.1. Especially this part of the code rep-
resents overall programming modal for figure 4.4 on page 37 and figure 4.5
on page 39. Initially at time t, running job application ids with their as-
sociated progress rate with command yarn application -list will be fetched.
The output of this command will be application ids and associated progress
values. In addition, these outputs will be stored on two different arrays. Fur-
thermore, the array with job ids will be compared with another array with
job ids at time t-1 and then get the difference on job ids. The difference and
similarities with job ids will be detected and identified such as which job ids
were running only at time t-1 and which job ids were at time t-1 and also
continues running at time t, and which job ids were only running at time
t. Based on this identification the algorithm finds the corresponding index
value for those job ids and search progress values with those index on an-
other array that only stores progress value. After fetching those values, the
algorithm calculates current accumulated progress as shown in figure 4.3 on
page 35.

FUNCTION TO CALCULATE THE TOTAL CURRENT ACCUMULATED PROGRESS
progress_current () {
value_current=$(yarn application -list |
grep 'root' | grep 'RUNNING'|
awk '{print $8}' | cut -d'%' -f1 |
awk '{total = total + $1}END{print total}')
#echo "$value_current" > progress.txt
app_id_current=$(yarn application -list | grep "root" |
grep "RUNNING" | awk '{print $1}')
value_current=$(yarn application -list | grep "root" |
grep "RUNNING" | awk '{print $8 $9}'|
cut -d '%' -f1 | awk -F'.' '{print $1}'|
awk -F'[^0-9]*' '{print $1 $2}')
while [["${#app_id_current[@]}" != "${#value_current[@]}"]]; do

app_id_current=()
value_current=()
app_id=$(yarn application -list | grep "root" |
grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list | grep "root" |
grep "RUNNING" |
awk '{print $8 $9}'| cut -d '%' -f1 | awk -F'.' '{print $1}'|
awk -F'[^0-9]*' '{print $1 $2}')

done

app_id=$(sudo cat /home/ramesh/progress_third_only_app_id.txt)
value_initially=$(sudo cat /home/ramesh/progress_third_only_value.txt)

55

echo "$app_id_current" > progress_third_only_app_id.txt
echo "$value_current" > progress_third_only_value.txt

curr_id_only=($(paste <(echo "$app_id_current")))
echo "CURRENT APP ONLY ID"
echo "${curr_id_only[@]}"

curr_value_only=($(paste <(echo "$value_current")))
echo "CURRENT APP ONLY VALUE"
echo "${curr_value_only[@]}"

curr_id_value=$(paste <(echo "$app_id_current") <(echo "$value_current"))
echo "CURRENT APP ID AND CORRESPONDING VALUES"
echo "$curr_id_value"

#####
pre_id_only=($(paste <(echo "$app_id")))
echo "PREVIOUS APP ONLY ID"
echo "${pre_id_only[@]}"

pre_value_only=($(paste <(echo "$value_initially")))
echo "PREVIOUS APP ONLY VALUE"
echo "${pre_value_only[@]}"

The algorithm is comparing currently running job ids at time t with job ids
at time t-1. This helps algorithm to identify three scenarios as explained
in (section 4.1.1). It can be noticed that the two array app_id with job
ids running at time t-1 and app_id_current as currently running job ids are
comparing with each other in order to find the difference in job ids.

different=$(diff -ia --suppress-common-lines
<(printf "%s\n" "${app_id[@]}") <(printf "%s\n" "${app_id_current[@]}"))

Now, the algorithm starts identifying the intersection part with the job ids.
Moreover, the algorithm finds the ids as a newly added job, previously
finished job, and parallel continuing job. Furthermore, the algorithm also
searches the values for the corresponding job ids and do the calculation in
order to find the current accumulated progress.

#intersection_with_current
####
for item1 in ${app_id_current[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_current+=("$item1")

56

fi
done

done
echo "FOLLOWING APPS ARE NEWELY ADDED"
echo ${intersection_with_current[@]}
###
#TO FIND THE ID OF THE NEWELY ADDED JOB
###
for ((i=0; i < ${#curr_id_only[@]}; ++i))

do
for j in "${intersection_with_current[@]}"

do
if [["${curr_id_only[$i]}" == "$j"]]
then

index_arr_curr+=("$i")
fi

done
done

echo "The list of the index for newely added jobs are"
echo ${index_arr_curr[@]}

###
for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_arr_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_newly_added+=("${curr_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding are"
echo ${sum_newly_added[@]}

###
sum1=0
for i in ${sum_newly_added[@]}
do

sum1=`echo $sum1 + $i | bc`
done

echo "The total sum of the currently added job progress is" $sum1

###
#intersection_with_previous
###

57

for item1 in ${app_id[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_previous+=("$item1")
fi

done
done
echo "FOLLOWING APPS WERE IN PREVIOUS BUT NOT IN CURRENT"
echo ${intersection_with_previous[@]}
###
ADD THE VALUES SUBTRACTIONG FROM 100
###

for ((i=0; i < ${#pre_id_only[@]}; ++i))
do

for j in "${intersection_with_previous[@]}"
do

if [["${pre_id_only[$i]}" == "$j"]]
then

index_arr_pre+=("$i")
fi

done
done

echo "The list of the index for previous jobs
#which are not in current job list are"
echo ${index_arr_pre[@]}

###
for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_arr_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_pre_added+=("${pre_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding previous jobs are"
echo ${sum_pre_added[@]}

• Reset Arrays
When the algorithm runs frequently at every defined time interval then the

58

array starts appending values on it. However, this logic is not efficient in this
project as index value on both the array will not be same, results will cause
mismatch. In order to eliminate mismatch on index values, the author of this
thesis resets all the defined array every time it executes.

####FUNCTION THAT RESET THE ARRAY EVERY TIME LOOP EXECUTE
reset_array () {

pre_id_only=()
pre_value_only=()
curr_id_only=()
curr_value_only=()
different=()
fetch_file_data=()
app_id_current=()
intersection_with_current=()
index_arr_curr=()
sum_newly_added=()
app_id=()
intersection_with_previous=()
index_arr_pre=()
sum_pre_added=()
similar_curr=()
index_similar_curr=()
index_similar_pre=()
sum_similar_curr=()
sum_similar_pre=()
}

• To Calculate the ∆Progress
In order to calculate the difference in progress value calculated at time t-
2 will be subtracted from the value at time t-1 which gives ∆Progress1.
Similarly, to get ∆Progress2 progress value at time t-2 get subtracted from
progress value at time t. Each time the algorithm runs, the algorithm will
calculate Progress3 and previous values from Progress3 and Progress2 are
swapped. For more details about the calculation of ∆Progress and swapped
values see Section 4.1.2.

FUNCTION TO CALCULATE THE DIFFERENCE
#BETWEEN SECOND AND FIRST PROGRESS

diff_first_speed () {
fetch_second_value=$(sudo cat /home/ramesh/
progress1.txt | awk '{print $1}')
fetch_first_value=$(sudo cat /home/ramesh/
progress2.txt | awk '{print $1}')
echo "Second progress value and first
progress value are" $fetch_first_value $fetch_second_value
speed_first=`echo $fetch_first_value - $fetch_second_value | bc`
}

59

FUNCTION TO CALCULATE THE DIFFERENCE
#BETWEEN THIRD AND SECOND

diff_second_speed () {
fetch_third_value=$(sudo cat /home/ramesh/
progress3.txt | awk '{print $1}')
fetch_second_value=$(sudo cat /home/ramesh/
progress2.txt | awk '{print $1}')
echo "Third progress value and second
progress value are" $fetch_third_value $fetch_second_value
speed_second=`echo $fetch_third_value - $fetch_second_value | bc`
}

• To Write the Data into File
In order to write the data into the file which are collected from the
overall algorithm during MapReduce operation one function is created and
implemanted. Each time algorithm executes will append data into the file.
In addition, these data is written into CSV file which is finally imported into
RStudio for analysis.

FUNCTION TO WRITE THOSE METRICS INTO FILE
write_file () {

TO WRITE THE METRICS FORM THE CLUSTER INTO FILE
var=$(paste -d, <(echo "$tot_mem") <(echo "$mem_used")
<(echo "$mem_unused") <(echo "$marp") <(echo "$marp_limit")
<(echo "$am_mem_used") <(echo "$am_vcore_used") <(echo "$tot_core")
<(echo "$core_used") <(echo "$core_unused") <(echo "$app_running")
<(echo "$app_pending") <(echo "$cont_running")
<(echo "$cont_pending") <(echo "$capacity_used")
<(echo "$speed_first") <(echo "$speed_second"))
echo "$var" >> output_dynamic."csv"
}

5.1.5 Pre-experiment Evaluation

To ensure that the designed prototype works as expected, they were tested multiple
times by running the MapReduce job. Hadoop cluster with HiBench benchmark
suite was extensively used for MapReduce operation. Figure, 5.3 on the facing
page provides the more clear views. In the figure, 5.3 on the next page HiBench
benchmark suite consists the script design by the author of this thesis. There are
two scripts, one for data preparation and another for MapReduce execution. Data
preparation script runs only for one time in order to prepare data to be used for
MapReduce operation. Moreover, HDFS stored those prepared data. As soon as
another script is launched, it starts MapReduce operation for the defined number
of jobs. For instance, the script is written in a way that executes MapReduce
operation for multiple time with the same input data that is being fetched from
HDFS. In order to have the dynamic allocation of resources, concurrently the script
developed for the designed algorithm gets to run which calculates, fetches and
write the data to the file. In order to run jobs through HiBench, initially, there must

60

HADOOP
CLUSTER

HiBench

Jobs

Script
Algorithm

Input Data
Preparation

HDFS

MapReduce
Operation

Script

Output

Cluster
Resource
Manager

Cluster
Resources

Figure 5.3: Overall implementation of algorithm

be one directory created in hdfs with named HiBench and give it permission with
chmod command.

hadoop fs -mkdir /HiBench
hadoop fs -chmod 777 /HiBench
hadoop fs -mkdir /tmp
hadoop fs -chmod 777 /tmp

• Prepare Input Data
To run job there must be data. HiBench itself has script in it to produce data
before MapReduce operation takes place.

bin/workloads/micro/wordcount/prepare/prepare.sh

The prepare.sh launches a Hadoop job to generate the input data on HDFS1.
The directory Input/Wordcount get created inside the HiBench directory in
hdfs just before created.

1https://github.com/intel-hadoop/HiBench/blob/master/docs/run-hadoopbench.md

61

• Run MapReduce Job
To run MapReduce operation into those generated data

bin/workloads/micro/wordcount/hadoop/run.sh

The run.sh submits a Hadoop job to the cluster. The directory Out-
put/Wordcount get created inside the HiBench directory in hdfs.

• Report
Inside the root directory of HiBench there is another subdirectory report
which contains file hibench.report which is a summarized workload report,
including workload name, execution duration, data size, throughput per
cluster, throughput per node.

Type Date Time Input_data_size Duration(s)
Throughput(bytes/s) Throughput/node

HadoopWordcount 2018-04-23 12:10:04 37474 71.314
525 175

• Output of the Deployed Script
On the other hand, developed script runs on the master machine while
MapReduce job is running in the cluster. Along with many actions taken
by the script, it also writes the file with cluster metrics data each time it
executes. The file consists of various columns and each time algorithm runs
will append the data to the file. Finally the file with data will be download
into local machine and are analyzed.

62

Chapter 6

Measurement, Analysis and
Comparison

This chapter is all about the experiments that is conducted in order to capture
empirical data, as well the analysis that will be ensured. Figure, 6.1 on the
following page provides a more clear view about the experiment. The experiment
initially conducted with default configuration and the data is being captured during
MapReduce operation. Likewise, the same experiments is conducted with the
random MARP vlue and with APTH approach (see Section 3.1). The reason
for the experiment conducting for random MARP value is to prove that even an
expert system administrator if they do static configuration, it might not give the
best performance. Another intention of conducting an experiment for random
MARP value is to show two problems that were described in (Section 3.1.1). The
experiments were performed to get a measure of job parallelism and throughput
with default configuration (see Section 2.3.2.3) and with the APTH approach.
Furthermore, measurement of the average time taken by the experiments were
analyzed in order to compare the performance. On the other hand, analysis of
the data with consumed resources unit during MapReduce operation is another
important factor in order to show the proof-how performance improves or
degrades.The data obtained were analyzed in the analysis section to make clear
difference in job parallelism and throughput between default configuration and
APTH approach.

The total memory available in the cluster was 24576 MB and the total number
of the virtual core in the cluster were 24. One of the particular interest of
the experiments is to see how the resources used by ApplicationMaster (see
Section 2.3.2.1) is increased or decreased with the change in MARP parameter
value. The experiment aims to see not only resources increased or decreased, but
also the change in the concurrent running number of jobs along with resources
changes for ApplicationMaster. The difference in the average time taken by overall
experiment execution and an average throughput of the experiment helps into
further analysis about the optimal and appropriate resources utilization.

63

Ex
pe

rim
en

t1

15
 jo

bs

APTH

Wordcount
Sort

Terasort
* 5

Default

MARP
0.20

Default

Default

APTH

APTH

Wordcount
Sort

Terasort
* 10

Wordcount
Sort

Terasort
* 15

Ex
pe

rim
en

t2

30
 jo

bs

Ex
pe

rim
en

t3

45
 jo

bs

MARP
0.80

MARP
0.50

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

Max job
parallelism
Throughput
Total time

to
complete
Resources

used by
AM
Total

Average
Resources

used

Max job
parallelism
Throughput
Total time

to
complete
Resources

used by
AM
Total

Average
Resources

used

Max job
parallelism
Throughput
Total time

to
complete
Resources

used by
AM
Total

Average
Resources

used

Data
Analysis

Performance
Comparison

Data
Analysis

Performance
Comparison

Data
Analysis

Performance
Comparison

Figure 6.1: Three experiments, each with three configurations.

64

6.1 The Experiment

Three categories of the experiment has been performed with a distinct input job
numbers: 15, 30 and 45. The script that submits jobs and the scripts for the
algorithm executed simultaneously. Initially just after job submission, Hadoop
cluster take some time to prepared itself. Thus, this cluster preparation time was
not the part of the measurement. Furthermore, the executed script of the algorithm
only captured data if it fetches the data for running number of jobs in the cluster is
greater than zero. Finally, job execution time for every single job will be measured
from the time it was accepted by the cluster resource manager. Furthermore,
line graph with the different color has been drawn that helps to understand more.
Brown, Blue, and Green are the color chosen for the line graph representing the
configurations Default, Random and APTH respectively.

Data collection was slightly different on the static default and with random
configuration rather than APTH approach. Only Hadoop REST API was used to
collect data with static configuration. However, overall algorithm designed and
developed collects all data including progress value over time.

6.1.1 Experiment1: Processing 15 Jobs

In the first experiment with 15 jobs, MapReduce operation was run over the De-
fault configuration, Random MARP value, and APTH approach for three separate
times and the data were captured separately. Numbers of the parallel running jobs,
memory used by the ApplicationMaster, and overall memory used by the experi-
ment were the things to be a studied. The figure, 6.2 on the next page shows job
parallelism on different configurations. Similarly, in the figure 6.3 on page 67, the
red line shows the threshold in the memory for the ApplicationMaster as defined
by MARP value and different color shows the used memory resources by Applic-
ationMaster in different configuration. The figure, 6.4 on page 68 is all about the
total memory resources used by the experiment with different configurations. Fi-
nally, the summary table 6.1 which shows time, overall resources used, throughput,
and job parallelism with the different configuration.

Table 6.1: Experiment-1 Summary Table
Configurations Max job parallelism Average throughput Total time Capacity Used
Default 1 439 bytes/sec 5559 sec 34.75%
MARP 0.20 2 669 bytes/sec 4171 sec 56.73%
APTH Approach 4 726 bytes/sec 3282 sec 86.57%

It can be noticed that the result of APTH approach by studying statistical data
from the summary table 6.1, as job parallelism is improved by 300% and 100%
compared to Default and MARP 0.20 configurations respectively. Likewise, the
average throughput has an improvement of 40% and 8%. In the same fashion, there
is also 41% and 22% reduction in total time consumption with the APTH approach
compared to Default and MARP 0.20 configuration. Finally, this all the results are
positive and possible because of APTH approach which does appropriate optimum

65

0 10 20 30 40

0
5

1
0

1
5

Job Parallelism With Default

Frequency

J
o

b
s

Parallel Running Jobs

0 5 10 15 20 25

0
5

1
0

1
5

Job Parallelism With MARP 0.20

Frequency

J
o

b
s

Parallel Running Jobs

2 4 6 8

0
5

1
0

1
5

Job Parallelism APTH Approach

Frequency

J
o

b
s

Parallel Running Jobs

Figure 6.2: Parallel running number of jobs during 15 job execution.

66

0 10 20 30 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory at Default

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

0 5 10 15 20 25

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
AM Memory at MARP 0.20

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

2 4 6 8

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory With APTH Approach

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

Figure 6.3: Memory consumption by ApplicationMaster(AM) during 15 job
execution.

67

0 10 20 30 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With Default

Frequency

M
e

m
o

ry

Total Memory Used

0 5 10 15 20 25

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With MARP 0.20

Frequency

M
e

m
o

ry
Total Memory Used

2 4 6 8

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With APTH Approach

Frequency

M
e

m
o

ry

Total Memory Used

Figure 6.4: Overall Memory consumption during 15 job execution.

68

0 20 40 60 80

0
5

1
0

1
5

2
0

2
5

3
0

Job Parallelism With Default

Frequency

J
o

b
s

Parallel Running Jobs

0 10 20 30 40

0
5

1
0

1
5

2
0

2
5

3
0

Job Parallelism With MARP 0.80

Frequency

J
o

b
s

Parallel Running Jobs

5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

Job Parallelism With APTH Approach

Frequency

J
o

b
s

Parallel Running Jobs

Figure 6.5: Parallel running number of jobs during 30 job execution.

resource utilization. It can also be noticed that the ideal resources in the cluster are
gradually decreased with MARP 0.20 configuration and with APTH approach.

6.1.2 Experiment-2: Processing 30 Jobs

Figures, 6.5 is showing job parallelism, 6.6 on the next page is representing
memory resource limit and memory resource used by ApplicationMaster, and 6.7
on page 71 which gives an overview of total memory used during the experiment.
In addition, Table 6.2 on page 72 summarized the results. In this experiment, 0.80
value is set to be the random value for MARP.

As it can be seen in Experiment-2, numbers in the parallel running job
with APTH approach compared to the Default configuration was increased up to
400%. However, there was 50% reduction in the parallel running job compared to
MARP 0.80. The reason is that 80% resources is allocated for ApplicationMaster
for more running jobs with MARP 0.80. Thus, remaining 20% resources are

69

0 20 40 60 80

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory at Default

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

0 10 20 30 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory at MARP 0.80

Frequency

M
e

m
o

ry
AM Memory Limit
AM Memory Used

5 10 15

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory With APTH Approach

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

Figure 6.6: Memory consumption by ApplicationMaster(AM) during 30 job
execution.

70

0 10 20 30 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With Default

Frequency

M
e

m
o

ry

Total Memory Used

0 10 20 30 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
Memory Utilization With MARP 0.80

Frequency

M
e

m
o

ry

Total Memory Used

5 10 15

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With APTH Approach

Frequency

M
e

m
o

ry

Total Memory Used

Figure 6.7: Overall Memory consumption during 30 job execution.

71

Table 6.2: Experiment-2 Summary Table
Cofigurations Max job parallelism Average throughput Total time Capacity Used
Default 1 151 bytes/sec 22728 sec 36.75%
MARP 0.80 10 180 bytes/sec 16639 sec 98.29%
APTH Approach 5 299 bytes/sec 13908 sec 89.58%

allocated for actual job execution container which results in less throughput. It
can also be noticed the inverse proportional relation between throughput and time.
Further, while time consumption is more then the throughput is less and vice
versa. Not only time, overall memory resources also used was 10% more than
APTH approach, even though total time of execution is comparatively more and
throughput is comparatively less than APTH approach. At this point, here comes
the meaning of appropriate optimum resource utilization which is stated in our
problem statement. Finally, APTH approach gives the positive result and prove
itself that it is the best among two other configurations in terms of performance
tuning.

6.1.3 Experiment-3: Processing 45 Jobs

In the third experiment, 45 number of jobs were executed in a 3 different config-
urations like in experiment 1 and in experiment 2. The figure, 6.8 on the facing
page shows the job parallelism on different configurations. Similarly figure 6.9 on
page 74 present memory resource threshold and resource used by ApplicationMas-
ter. Correspondingly figure 6.10 on page 75 provides an overview of total memory
resource used during experiment time. Moreover, table 6.3 provides the summar-
ized form of result.

Table 6.3: Experiment-3 Summary Table
Configurations Max job parallelism Average throughput Total time Capacity Used

Default 1 75 bytes/sec 62916 sec 33.89%
MARP 0.50 6 141 bytes/sec 31492 sec 96.75%
APTH Approach 6 135 bytes/sec 33142 sec 91.58%

Here in the third experiment, the random configuration for MARP value was
set to be 0.50 which means 50% resources allocated for ApplicationMaster. APTH
approach has a far better result with 83% improvement comparing job parallelism
with Default configuration. Similarly, APTH approach has better average through-
put compared to the Default configuration. Not only throughput but also total re-
sources during the experiment was appropriate optimum utilized. However, results
of APTH approach comparing with MARP 0.50 configuration looks pretty close.
The maximum number of the parallel running job was equal with configuration
0.50 and with APTH approach. Similarly, average throughput was increased with
configuration MARP 0.50 because of the increase in total resources of the cluster
get increased by 5%.

72

0 20 40 60 80 100 140

0
1

0
2

0
3

0
4

0
5

0

Job Parallelism With Default

Frequency

J
o

b

Parallel Running Jobs

0 10 20 30 40 50 60

0
1

0
2

0
3

0
4

0
5

0
Job Parallelism With MARP 0.50

Frequency

J
o

b

Parallel Running Jobs

0 5 10 15 20 25

0
1

0
2

0
3

0
4

0
5

0

Job Parallelism With APTH Approach

Frequency

J
o

b

Parallel Running Jobs

Figure 6.8: Parallel running number of jobs during 45 job execution.

73

0 20 40 60 80 100 140

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory at Default

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

0 10 20 30 40 50 60

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory at MARP 0.50

Frequency

M
e

m
o

ry
AM Memory Limit
AM Memory Used

0 5 10 15 20 25

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

AM Memory With APTH Approach

Frequency

M
e

m
o

ry

AM Memory Limit
AM Memory Used

Figure 6.9: Memory consumption by ApplicationMaster(AM) during 45 job
execution.

74

0 20 40 60 80 100 140

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With Default

Frequency

M
e

m
o

ry

Total Memory Used

0 10 20 30 40 50 60

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
Memory Utilization With MARP 0.50

Frequency

M
e

m
o

ry

Total Memory Used

0 5 10 15 20 25

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Memory Utilization With APTH Approach

Frequency

M
e

m
o

ry

Total Memory Used

Figure 6.10: Overall Memory consumption during 45 job execution.

75

Finally, it doesn’t unnecessarily means that APTH approach always should
have better results even if static MARP value set by the system administrator
in the correct form. On the other hand, there is also the possibility that APTH
approachcan provide better results with respect to the Default configuration and
static inappropriate configuration.

6.2 Data Analysis

This section is all about the analysis of data described in the experiments section.
The result obtained with APTH approach was as expected (see Section 4.2) in
terms of job parallelism and corresponding average throughput. Not only job
parallelism and throughput but also appropriate optimum resources were utilized
with APTH approach which helps reducing total execution time. Thus, increasing
the performance. These are highlighted in the following subsections. The outcome
of this analysis will help to determine to what extent the objective of this thesis have
been met i.e., how the designed APTH approach which dynamically changes the
MARP parameter at runtime that optimally and efficiently utilizes system resources
in order to have a reliable process on big data workloads in the Hadoop cluster.

6.2.1 Interpreting Job Parallelism

From the results, it can be seen that as MARP parameter value get changed
with designed APTH approach during the experiment, resources unit allocated for
ApplicationMaster also gets changed. Thus, there is fluctuation in the number
of parallel running jobs with APTH approach. However, experiments with rest
of the static configurations show that because of unchanged in MARP parameter
in the cluster there is always the same amount of resources unit allocated for
ApplicationMaster. Thus, results in the same number of the job parallelism for
the whole experiment.

The figure, 6.11 on the facing page shows increased in the number of parallel
running jobs as long as the resources allocation for ApplicationMaster is incremen-
ted. The x-axis of the figure represents memory in MB allocated for Application-
Master and the y-axis shows the corresponding number of parallel running jobs.
Similarly figure, 6.13 on page 80 represent the change in memory allocation for
application master with the change in MARP parameter. Notably, it can be con-
cluded that MARP parameter has the linear correlation with job parallelism.

There is a linear correlation between MARP parameter and job parallelism.
As parameter value gets increased the corresponding number of the job to be run
in parallel also gets increased. Regarding job parallelism in every experiment, it
shows that the trend is increasing in the number of jobs running in parallel with
increment in MARP parameter value.

6.2.2 Interpreting Throughput

In some extent, it is true that gradually increased in the number of parallel run-
ning job provides better throughput. However, maximum throughput only can be

76

Figure 6.11: Increase in Job parallelism with increase in memory for Application-
Master.

77

Figure 6.12: Throughput trend line with increase in job parallelism.

achieved when there is well balance in resources used by ApplicationMaster and
YarnChild. Thus, till some point, continuous increase in the parallel running job
can increase the throughput that balance appropriate resources for Application-
Master and YarnChild. Moreover, if the situation is that the running jobs should
compete for the releasing resources from YarnChild then the throughput decreases.
Results from the experiments show that APTH approach is able to keep the balance

between numbers of parallel running jobs and their corresponding average through-
put. In the first experiment, APTH approach was able to increase the throughput
by 40% compared to the default configuration. Moreover, there was 50% and 45%
of improvement with average throughput by APTH approach compared with the
default configuration in experiment2 and experiment3 respectively.

In the experiment2 with random configuration, MARP 0.80 shows that the
throughput is low compared to APTH approach. The reason for this was 80%
of the resources was used by ApplicationMaster which results in running 10 num-
ber of job in parallel. Thus, actual job execution container YarnChild can only be
used 20% of the resources which was not enough for the executing actual job that
results in less throughput. Alternatively, APTH approach in experiment2 balances

78

resources for jobs and throughput. Maximum 5 number of jobs are running in par-
allel and their average throughput was better.

The figure, 6.12 on the facing page shows the dynamic nature of the
throughput. Throughput is less for the small number of parallel running jobs
because there might be the possibility of the increased in an ideal resource in the
cluster. Similarly, throughput is less for the big number of parallel running jobs
because many jobs are obligated to share same resources in the cluster. APTH
approach in this project works in a way which always balances the number of
parallel running jobs and the resources unit in the cluster that can provide better
throughput.

6.2.3 Interpreting Resources Utilization

Appropriate optimum resource utilization was one of the main goal of this project.
Results of the experiment show that APTH approach was able to leverage cluster
resources efficiently. In the experiment1, APTH approach was able to use the
cluster resources by 86% in average which was 52% increment compared to the
default configuration. Similarly, compared with configuration MARP 0.20, APTH
approach was still able to improve average resources utilized by 30%. Likewise,
in the experiment2 and expriment3, there was an increment of 53% and 56%
compared with the default configuration.

It is worth mentioning the resources used by ApplicationMaster at this point.
For instance figure 6.3 on page 67, 6.6 on page 70, and 6.9 on page 74 from
experiment1 and experiment2 and experiment3 respectively shows the amount of
resources allocated for ApplicationMaster on different configurations by the red
line and different line with colors brown, blue and green showing used resources
by ApplicationMaster. Notably, within the static configuration ApplicationMaster
cannot use all the resources allocated for it. This might be one reason why more
jobs cannot be scheduled for MapReduce operation which results in overall less
resource utilization. However, APTH approach significantly utilized almost all
the allocated resource over time by changing MARP parameter. This results in
more jobs to be scheduled for MapReduce operation. Thus, appropriate optimum
resource utilization is achieved.

6.2.4 Performance Comparison

APTH approach reacted differently when applied to the different number of input
jobs. In the first experiment, APTH approach spends 40% less time compared
to the default configuration. Similarly, APTH approach spends 38% and 45%
less time compared to the default configuration in experiment2 and experiment3
respectively. Hence, regarding the performance, APTH approach is able to tune
the performance of the Hadoop cluster by 41%.

79

Figure 6.13: ApplicationMaster memory used Trendline.

80

Chapter 7

Discussion

This chapter gives a reflection on the results obtained in the course of this project
work. Implementation steps, facts, and challenges along with suggestions for
improvement of the deployed APTH approach are discussed in this chapter.

7.1 Implementation of APTH Approach Design

The goal of this thesis was to explore a new and efficient architecture which can
increase the number of parallel running jobs and increase their corresponding
throughput by dynamic allocation of resources at runtime in the Hadoop cluster.
This was achieved through optimal architectural design that frequently calcu-
lates the progress rate of all the running MapReduce jobs in the Hadoop cluster.
This design can be served as one of the adaptive performance tuning approaches.
Moreover, based on the design an optimal APTH approach was developed, experi-
mented upon to test and analyze job parallelism and throughput.

The results of the experiments were as expected, and the outcome of the
analysis showed that design and developed APTH approach was better than the
inappropriate static configuration and far better than the default configuration.
Moreover, mainly two problem Loss of Input Job (LOIJ) and Loss of Task
Throughput (LOTT) (see Section 3.1.1) were able to address by APTH approach,
results in appropriate optimum resources utilization. From the results of the exper-
iments, also it was clear that static configuration is not able to utilize full resources
that were allocated to the ApplicationMaster. As a result, it affects the total re-
sources utilization in the cluster during runtime. Therefore, performance degrades
with the static configuration. However, our designed and developed APTH ap-
proach showed better performance regarding resources utilization allocated for Ap-
plicationMaster. In addition, most of the time, APTH approach was able to utilize
100% resources that were allocated for ApplicationMaster that resulted in increase
in job parallelism. Not only allocated 100% resources utilized by ApplicationMas-
ter but also most of the time 100% resources of the whole cluster were utilized
during MapReduce operation. Thus, actual job execution container YarnChild get
more resources to execute the job which resulted in the increase in throughput.

It was observed that as the MARP parameter value gets changed, the number of

81

parallel running jobs also get changed. Thus, the observations can be generalized
in order to support the anticipated linear correlation of MARP parameter value and
job parallelism. Furthermore, the observations also made that resources used by
ApplicationMaster exibit a linear correlation with the total amount of resources
used in the whole cluster.

7.1.1 Project Outcome

In the problem statement, three key requirements were established for progress
aware dynamic APTH approach design:

• Increase in job parallelism

Job parallelism is achieved with the designed APTH approach.

• Increase in throughput

Increased in average throughput is achieved with the APTH approach.

• Appropriate optimum resource utilization

Resources unit of the cluster were utilized in an efficient manner which leads
reduction on ideal resources in the cluster, results increased in job parallelism
and increased in corresponding throughput. It can be concluded that the key
requirements of the problem statement are addressed with the design because of
the vital role played by MARP parameter value which was dynamically changed
and reconfigured during the MapReduce operation in the cluster.

7.2 Implementation Challenges

Many challenges were faced during the development process of the project work.
These challenges are outlined in the following subsections.

7.2.1 Setting Sleep Time for the Algorithm Deployed

Defining and setting the sleep time for the algorithm was one of the challenging
tasks during the development phase. In fact, higher sleep time increases the risk
that small jobs may not be accountable for progress value to be calculated over
time. Small size jobs may be started and finished between the defined time interval
which will not be counted by the algorithm in order to calculate accumulated
progress value. Moreover, this is the situation where the algorithm can take wrong
decisions about the action to be taken. However, very small sleep time interval to
be set for the algorithm also affects for big size jobs which take some time in order
to get prepared itself. When the algorithm is supposed to calculate progress value
it might not cover for the big size jobs. In order to get progress values of all the
submitted jobs by the algorithm, 15 seconds was chosen as a suitable sleep time.

82

Running
Jobs

Algorithm

A
90%

B
80%

C
15%

MARP
x+i

Time
t-1

Running
Jobs

Algorithm

C
80%

MARP
x-i

Time
t

Figure 7.1: Effects on job parallelism with same % of resources increment and
decrement.

7.2.2 Defining % of Resources Allocation for the Action

One of the most challenging tasks was to define the percentage of resources to
be incremented or decremented based on ∆progress. Moreover, allocation of the
same percentage for both of the actions doesn’t provide better results in order to
achieve the goal of the project. Figure, 7.1 provides better understanding regarding
the same % of resources allocation for increment and decrement actions. Multiple
experiments with different resources % for the allocation by the algorithm was car-
ried out by running 20 jobs. Table 7.1 on page 85 presents the summary of the
experiment carried out. Small % of resource increment limits in job parallelism.
Alternatively, big % of resource decrement also limits in job parallelism. Similarly,
big % of the resource increment can give job parallelism as the major portion of the
resources of the cluster can be utilized by ApplicationMaster, meanwhile, due to
fewer resources available for the actual job execution container, it can be realized
less throughput which gradually degrades the performance. In the same way, big %
of the resource decrement can make more spaces for actual job execution container
which leads for better throughput. On the other hand, job parallelism cannot be
achieved due to fewer resources allocation for ApplicationMaster.

In this work, we decided not to take action increment or decrement with equal
% of resources allocation. Moreover, incrementing % of the resources will be al-
ways greater than the decrement % of the resources which still keeps fewer % of

83

Running
Jobs

Algorithm

A
90%

B
80%

C
15%

MARP
x+i

Time
t-1

Running
Jobs

Algorithm

C
80%

MARP
x-(i/2)
Time

t

D
15%

Figure 7.2: Effects on job parallelism with different % of resources for actions.

resources available for job parallelism. Figure, 7.2 presents resources % for incre-
ment action is greater than decrement action which still provides some resources
for ApplicationMaster.

For instance, 10% of the resources to be added to the cluster by incrementing
MARP parameter can give positive results for job parallelism. However, if the
resources allocation in the cluster is decreased by same % and if MapReduce op-
eration for the running jobs gets finished at the same time then the parallel running
number of jobs get cut off by two aspects, first one by spontaneous finishing of run-
ning MapReduce operation and second one by decrementing resources allocation.
Therefore, it results in ideal resources and less throughput which leads to degrad-
ation on overall performance. In order to maintain above explained situation, the
author of this thesis, set resources to be incremented by 10% and decremented by
5% which keeps balance on job parallelism and throughput.

7.2.3 Progress v/s ∆progress

Calculating only progress value and taking action based on that progress value is
not efficient. While comparing current progress value with previous than current
progress always is greater than previous progress. The point is that action to be

84

Table 7.1: Action with Different Resources Allocation
Inc Decr Job Parallelism Average Throughput Time Used Capacity
5% 2.5% 3 505 bytes/sec 5476 Sec 72%
5% 5% 3 457 bytes/sec 6081 Sec 52%
10% 5% 5 487 bytes/sec 5723 Sec 86%
10% 10% 4 502 bytes/sec 5852 Sec 79%
20% 10% 5 420 bytes/sec 5255 Sec 94%
20% 20% 6 390 bytes/sec 5690 Sec 89%

taken will be always same. However, the concept of ∆progress provides the speed
of work done over time. Based on comparison, the speed decision can be made.
Moreover, there is no chance that the current speed will be always high or always
low. For instance, when the current speed is high (current ∆progress) increment
action taken by APTH approach, results in increase in job parallelism. When many
jobs used resources for ApplicationMaster then the static resources in the cluster
will not have enough spaces for YarnChild (actual job execution container) which
results in comparatively less throughput (progress value). In addition, when APTH
approach find current progress is less then the action will be switch accordingly.

7.2.4 Programming Complexity

Writing code for the functionality of the APTH approach was equally challenging.
The project was created from the scratch and was facilitated over 500 lines of the
bash code. The code in order to make dynamic changes on the same value over
time and again and reconfigured along the whole cluster, calculating accumulated
progress, calculating ∆progress took lots of trial-and-error leading to lots of
debugging during deployment period. Many functions were developed to reduce
the same code to be reused. Furthermore, many technical problems were addressed
using efficient logic inside the code.

7.2.5 Creating Multiple Concurrent Input Jobs

Bash script was developed in order to submit multiple jobs at the same time.
Generally, HiBench benchmark suite used to execute jobs in sequence, new job
get chance to be scheduled only when previous job release resources. Multiple
numbers of jobs were created using the script repeating the same job for same input
data which was then implemented on MapReduce operation. Therefore, many
numbers of jobs can be submitted concurrently and can be achieved job parallelism
and corresponding throughput.

7.3 Improvements To APTH Design

In this section potential improvements which could be made to the APTH approach
is presented.

85

7.3.1 APTH Adoption with Dynamic Change in the Cluster Resources

The designed and developed approach is adopted in order to address the problem
statement question. However, APTH approach could be better by adding new fea-
tures and modifying existing one. The designed approach is developed in a way
which can work only with predefined resources in the Hadoop cluster. Therefore,
APTH approach is compelled to play with the static number of resources in the Ha-
doop cluster. Alternatively, APTH approach can be modified in a way which can
adopt the dynamic change in the resource unit of the Hadoop cluster. Moreover,
the addition of cloud bursting feature in developed approach can provide the best
results in case of job parallelism.

APTH approach also can have the improvement with action to be taken as
increment or decrement based on feedback with job parallelism. Moreover,
progress value is a kind of indirect form of throughput. Currently, every action that
APTH approach takes is based on the progress value. But it can be more logical if
both increment and decrement factor can be taken as feedback from the cluster and
maintain the action as reward and penalty. For instance, initially, APTH approach
can check the progress rate over time and take action accordingly. Afterwhile,
APTH approach can check job parallelism and identify if the result is positive or
negative.

86

Chapter 8

Conclusion

The aim of this project was to investigate an optimal way that can reduce the num-
bers of ideal resources in the Hadoop cluster. This is achieved by scheduling the
numbers of pending jobs to be run in parallel that makes an appropriate and op-
timum resources utilization during MapReduce operation.

Job parallelism, throughput, and appropriate resources utilization as the key
elements of the problem statements were addressed through the development of
Adaptive Parameter Tuning Of Hadoop (APTH) approach. In addition, APTH ap-
proach consists of ∆progress aware algorithm that can dynamically change the
resources allocation to the ApplicationMaster in the cluster during the run-time.
The developed algorithm was thoroughly experimented in order to obtain job par-
allelism, throughput, and resource utilization measurements as compared to static
configuration.

Results from the experiments show that the APTH approach facilitated appro-
priate and optimum resources utilization which in turn increased in job parallelism
and corresponding throughput compared to the default configuration. Likewise, the
total time taken by the APTH approach was found out to be 30% less than the total
time taken by the default configuration. Hence, it is evident from our experimental
analysis that APTH approach is able to tune the MapReduce operation perform-
ance by 30%.

Keeping in mind that the high demand for the real-time streaming platform
these days, this project contributes to the landscape of real-time data processing in
Hadoop via on-run time parameter tuning.

8.1 Future Work

There are many more aspects within this project which can be extended. The de-
signed and developed algorithm explore a novel way of driving a balance between
the job parallelism and their associated throughput by having an appropriate and
optimal resources utilization in the Hadoop cluster. One of the important thing that
can be done with this project is achieving highly available Hadoop cluster design.

87

In such high availability cluster, two separate machines can be configured as Na-
menodes. At any point in time, exactly one of the Namenode can be configured
as in a active state and other by in a standby state. The active Namenode will be
responsible for all client operations in the cluster, while the standby will be simply
acting as a slave, maintaining enough state to provide a fast failover if necessary 1.

It can be interesting to use machine learning approach in order to increment
or decrement action with MARP parameter on the fly. Machine learning can be
used to classify based on pattern of the job whether it is memory bound or CPU
bound. In addition, if the majority portion of the parallel running job is memory
bound then the approach can calculate tentative necessary additional resources for
ApplicationMaster in the cluster and increased the MARP parameter value auto-
matically.

1https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html

88

Bibliography

[1] Nrusimham Ammu and Mohd Irfanuddin. ‘Big data challenges’. In:
International Journal of Advanced Trends in Computer Science and
Engineering 2.1 (2013), pp. 613–615.

[2] bader-papers. https ://www.cc .gatech .edu/~bader/papers. Accessed:
2018-03-12.

[3] Big-Data-Cloud-Database-and-Computing. https : / /www . qubole . com/
resources/big-data-cloud-database-and-computing/. Accessed: 2018-02-
03.

[4] Dhruba Borthakur. ‘The hadoop distributed file system: Architecture and
design’. In: Hadoop Project Website 11.2007 (2007), p. 21.

[5] Parth Chandarana and M Vijayalakshmi. ‘Big data analytics frameworks’.
In: Circuits, Systems, Communication and Information Technology Applic-
ations (CSCITA), 2014 international conference on. IEEE. 2014, pp. 430–
434.

[6] Cloud SDK. https://cloud.google.com/sdk/. Accessed: 2018-03-21.

[7] computer-cluster. https : / / www . techopedia . com / definition / 6581 /
computer-cluster. Accessed: 2018-03-12.

[8] Xiaoan Ding, Yi Liu and Depei Qian. ‘Jellyfish: Online performance tuning
with adaptive configuration and elastic container in hadoop yarn’. In:
Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International
Conference on. IEEE. 2015, pp. 831–836.

[9] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. ‘Efficient big data processing
in Hadoop MapReduce’. In: Proceedings of the VLDB Endowment 5.12
(2012), pp. 2014–2015.

[10] Nada Elgendy and Ahmed Elragal. ‘Big data analytics: a literature review
paper’. In: Industrial Conference on Data Mining. Springer. 2014, pp. 214–
227.

[11] Peter Géczy. ‘Big data characteristics’. In: The Macrotheme Review 3.6
(2014), pp. 94–104.

[12] Google Cloud Compute Engine. https : //cloud . google . com/compute/.
Accessed: 2018-03-16.

[13] Google Cloud Compute Engine. https : //cloud . google . com/compute/.
Accessed: 2018-03-16.

89

https://www.cc.gatech.edu/~bader/papers
https://www.qubole.com/resources/big-data-cloud-database-and-computing/
https://www.qubole.com/resources/big-data-cloud-database-and-computing/
https://cloud.google.com/sdk/
https://www.techopedia.com/definition/6581/computer-cluster
https://www.techopedia.com/definition/6581/computer-cluster
https://cloud.google.com/compute/
https://cloud.google.com/compute/

[14] Google Cloud Compute Engine Documents. https://cloud.google.com/
compute/docs/. Accessed: 2018-03-16.

[15] Google Cloud Overview. https : / / cloud . google . com/docs / overview/.
Accessed: 2018-03-15.

[16] Google Compute Engine. http://searchaws.techtarget .com/definition/
Google-Compute-Engine. Accessed: 2018-03-16.

[17] hadoop-cluster. https://www.techtarget.com. Accessed: 2018-03-12.

[18] Dominique Heger. ‘Hadoop performance tuning-a pragmatic & iterative
approach’. In: CMG Journal 4 (2013), pp. 97–113.

[19] Shengsheng Huang et al. ‘Hibench: A representative and comprehensive
hadoop benchmark suite’. In: Proc. ICDE Workshops. 2010.

[20] Java Developmemt Kit JDK. https ://www.techopedia .com/definition/
5594/java-development-kit-jdk. Accessed: 2018-03-21.

[21] Zahid Javed et al. ‘Big Data and Hadoop’. In: ().

[22] Shrinivas B Joshi. ‘Apache hadoop performance-tuning methodologies and
best practices’. In: Proceedings of the 3rd acm/spec international conference
on performance engineering. ACM. 2012, pp. 241–242.

[23] Amogh Pramod Kulkarni and Mahesh Khandewal. ‘Survey on Hadoop and
Introduction to YARN’. In: International Journal of Emerging Technology
and Advanced Engineering 4.5 (2014), pp. 82–87.

[24] Gil Jae Lee and José AB Fortes. ‘Hierarchical Self-Tuning of Concurrency
and Resource Units in Data-Analytics Frameworks’. In: Autonomic Comput-
ing (ICAC), 2017 IEEE International Conference on. IEEE. 2017, pp. 49–
58.

[25] Min Li et al. ‘Mronline: Mapreduce online performance tuning’. In:
Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing. ACM. 2014, pp. 165–176.

[26] James Manyika et al. ‘Big data: The next frontier for innovation, competi-
tion, and productivity’. In: (2011).

[27] Behbood Mashoufi et al. ‘Introducing an adaptive VLR algorithm using
learning automata for multilayer perceptron’. In: IEICE TRANSACTIONS
on Information and Systems 86.3 (2003), pp. 594–609.

[28] Seref Sagiroglu and Duygu Sinanc. ‘Big data: A review’. In: Collaboration
Technologies and Systems (CTS), 2013 International Conference on. IEEE.
2013, pp. 42–47.

[29] Domenico Talia. ‘Clouds for scalable big data analytics’. In: Computer 46.5
(2013), pp. 98–101.

[30] Kabin Tamrakar, Anis Yazidi and Hårek Haugerud. ‘Cost Efficient Batch
Processing in Amazon Cloud with Deadline Awareness’. In: Advanced In-
formation Networking and Applications (AINA), 2017 IEEE 31st Interna-
tional Conference on. IEEE. 2017, pp. 963–971.

90

https://cloud.google.com/compute/docs/
https://cloud.google.com/compute/docs/
https://cloud.google.com/docs/overview/
http://searchaws.techtarget.com/definition/Google-Compute-Engine
http://searchaws.techtarget.com/definition/Google-Compute-Engine
https://www.techtarget.com
https://www.techopedia.com/definition/5594/java-development-kit-jdk
https://www.techopedia.com/definition/5594/java-development-kit-jdk

[31] Ronald C Taylor. ‘An overview of the Hadoop/MapReduce/HBase frame-
work and its current applications in bioinformatics’. In: BMC bioinformat-
ics. Vol. 11. 12. BioMed Central. 2010, S1.

[32] Top Big Data Processing Framework. https://www.kdnuggets.com/2016/
03/top-big-data-processing-frameworks.html. Accessed: 2018-03-03.

[33] what-is-meant-by-streaming-data-access-in-hdfs. https://serverfault.com/
questions/40370/what - is - meant - by - streaming - data - access - in - hdfs.
Accessed: 2018-03-03.

[34] Dili Wu and Aniruddha Gokhale. ‘A self-tuning system based on application
Profiling and Performance Analysis for optimizing Hadoop MapReduce
cluster configuration’. In: High Performance Computing (HiPC), 2013 20th
International Conference on. IEEE. 2013, pp. 89–98.

[35] Yarn-application-master-in-hadoop. http : / / www . dummies . com /
programming/big-data/hadoop/yarns- application-master- in- hadoop/.
Accessed: 2018-03-03.

[36] Bo Zhang. ‘Self-optimization of Infrastructure and Platform Resources in
Cloud Computing’. PhD thesis. Lille1, 2016.

[37] Bo Zhang et al. ‘Hadoop-benchmark: rapid prototyping and evaluation of
self-adaptive behaviors in Hadoop clusters’. In: Proceedings of the 12th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE Press. 2017, pp. 175–181.

91

https://www.kdnuggets.com/2016/03/top-big-data-processing-frameworks.html
https://www.kdnuggets.com/2016/03/top-big-data-processing-frameworks.html
https://serverfault.com/questions/40370/what-is-meant-by-streaming-data-access-in-hdfs
https://serverfault.com/questions/40370/what-is-meant-by-streaming-data-access-in-hdfs
http://www.dummies.com/programming/big-data/hadoop/yarns-application-master-in-hadoop/
http://www.dummies.com/programming/big-data/hadoop/yarns-application-master-in-hadoop/

92

Chapter 9

Appendix

#!/bin/bash
GLOBAL VARIABLES

toadd=0.10
tosub=0.05
maxmarp=0.90
minmarp=0.10
marpthirty=0.30
default_value=0

while true; do
FUNCTION TO INCREMENT MARP VALUE
increment () {

newmarp=$(echo $marp $toadd | awk '{printf "%0.2f", $1 + $2}')
echo "marp to submit is" $newmarp

awk 'NR==26{$2=a}1' a=$newmarp $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
echo "MARP Increment by 0.10 and the new MARP is " $newmarp
}

#increment

FUNCTION TO DECREMENT MARP VALUE
decrement () {

newmarp=$(echo $marp $tosub | awk '{printf "%0.2f", $1 - $2}')
echo "marp to submit is" $newmarp

awk 'NR==26{$2=a}1' a=$newmarp $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
echo "MARP Decrement by 0.05 and the new MARP is" $newmarp
}

#decrement

FUNCTION TO ALLOCATE 40% RESOURCES TO APPLICATION MASTER
marp_thirty () {

93

awk 'NR==26{$2=a}1' a=$marpthirty $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
echo "MARP set to" $marpthirty
}

FUNCTION WHICH FETCH METRICES FROM RESOURCE MANAGER
fetch_metrics () {

TOTAL MEMORY IN A CLUSTER
tot_mem=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $18}' | awk -F',' '{print $1}')

MEMORY USED IN THE CLUSTER DURING JOB EXECUTION
mem_used=$(curl http://project-master-01:8088/ws/v1/

cluster/scheduler | awk -F':' '{print $22}' | cut -d',' -f1)

UNUSED MEMORY IN THE CLUSTER
mem_unused=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $10}' | awk -F',' '{print $1}')

####TOTAL MEMORY ALLOCATED BY MARP VALUE
marp_limit=$(curl http://project-master-01:8088/ws/v1/

cluster/scheduler | awk -F':' '{print $55}' | cut -d',' -f1)

TOTAL MEMORY USED BY APPLICATION MASTER
am_mem_used=$(curl http://project-master-01:8088/ws/v1/

cluster/scheduler | awk -F':' '{print $52}' | cut -d',' -f1)

TOTAL VCORES USED BY APPLICATION MASTER
am_vcore_used=$(curl http://project-master-01:8088/ws/v1/

cluster/scheduler | awk -F':' '{print $53}' |
cut -d',' -f1 | awk -F'}' '{print $1}')

####TOTAL NUMBER OF VIRTUAL CORE IN THE CLUSTER
tot_core=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $19}' | awk -F',' '{print $1}')

####USED NUMBER OF CORE DURING JOB EXECUTION
core_used=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $14}' | awk -F',' '{print $1}')

####UNUSED VIRTUAL CORE
core_unused=$(curl http://project-master-01:8088/ws/v1/

94

cluster/metrics | awk -F':' '{print $13}' | awk -F',' '{print $1}')

####NUMBER OF APPLICATION RUNNING IN THE CLUSTER
app_running=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $6}' | awk -F',' '{print $1}')

####NUMBER OF APPLICATION PENDING IN THE CLUSTER
app_pending=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $5}' | awk -F',' '{print $1}')
echo "$app_pending" > pending_app.txt
####CONTAINER RUNNING
cont_running=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $15}' | awk -F',' '{print $1}')

####CONTAINER PENDING
cont_pending=$(curl http://project-master-01:8088/ws/v1/

cluster/metrics | awk -F':' '{print $17}' | awk -F',' '{print $1}')

####TOTAL CAPACITY USED IN THE CLUSTER
capacity_used=$(curl http://project-master-01:8088/ws/v1/

cluster/scheduler | awk -F':' '{print $6}' | cut -d',' -f1)
}

FUNCTION TO CALCULATE PROGRESS FOR 10% RESOURCE ALLOCATION
progress_first () {

app_id=$(yarn application -list | grep "root" | grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list | grep "root" |
grep "RUNNING" | awk '{print $8 $9}'| cut -d '%' -f1 |
awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')

while [["${#app_id[@]}" != "${#value_initially[@]}"]]; do
app_id=()
value_initially=()
app_id=$(yarn application -list | grep "root" |

grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $8 $9}'| cut -d '%' -f1 |
awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')
done

echo "$app_id" > progress_first_only_app_id.txt
echo "$value_initially" > progress_first_only_value.txt

pre_id_only=($(paste <(echo "$app_id")))

95

echo "PREVIOUS APP ONLY ID"
echo "${pre_id_only[@]}"

pre_value_only=($(paste <(echo "$value_initially")))
echo "PREVIOUS APP ONLY VALUE"
echo "${pre_value_only[@]}"

pre_id_value=$(paste <(echo "$app_id") <(echo "$value_initially"))
echo "PREVIOUS APP ID AND CORRESPONDING VALUES"
echo "$pre_id_value"

progress_initial=0
for i in ${pre_value_only[@]}

do
progress_initial=`echo $progress_initial + $i | bc`

done

echo $progress_initial > progress1.txt
echo "The initial progress is" $progress_initial
}

FUNCTION TO CALCULATE PROGRESS FOR 20% RESOURCE ALLOCATION
progress_second () {
app_id_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $1}')

value_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $8 $9}'|

cut -d '%' -f1 | awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')
while [["${#app_id_current[@]}" != "${#value_current[@]}"]]; do

app_id_current=()
value_current=()
app_id=$(yarn application -list | grep "root" |

grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $8 $9}'|
cut -d '%' -f1 | awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')
done
echo "$app_id_current" > progress_second_only_app_id.txt
echo "$value_current" > progress_second_only_value.txt

app_id=$(sudo cat /home/ramesh/progress_first_only_app_id.txt)
value_initially=$(sudo cat /home/ramesh/progress_first_only_value.txt)

96

curr_id_only=($(paste <(echo "$app_id_current")))
echo "CURRENT APP ONLY ID"
echo "${curr_id_only[@]}"

curr_value_only=($(paste <(echo "$value_current")))
echo "CURRENT APP ONLY VALUE"
echo "${curr_value_only[@]}"

curr_id_value=$(paste <(echo "$app_id_current") <(echo "$value_current"))
echo "CURRENT APP ID AND CORRESPONDING VALUES"
echo "$curr_id_value"

##
pre_id_only=($(paste <(echo "$app_id")))
echo "PREVIOUS APP ONLY ID"
echo "${pre_id_only[@]}"

pre_value_only=($(paste <(echo "$value_initially")))
echo "PREVIOUS APP ONLY VALUE"
echo "${pre_value_only[@]}"

##

#different=$(diff <(echo "$app_id") <(echo "$app_id_current"))
different=$(diff -ia --suppress-common-lines
<(printf "%s\n" "${app_id[@]}") <(printf "%s\n" "${app_id_current[@]}"))
echo "DIFFERENCE BETWEEN THE APPLICATION
IDS IN THE CURRENT STATE, WHETHER LOST OR ADDED ARE"
#echo ${different[@]}

for i in ${different[@]}
do
echo $i | grep "application_" | awk '{print $1}' >> app_id_changed.txt
done
fetch_file_data=$(sudo cat /home/ramesh/app_id_changed.txt)
echo ${fetch_file_data[@]}

sudo truncate -s 0 app_id_changed.txt

#####################################
#intersection_with_current
####################################
for item1 in ${app_id_current[@]}
do

for item2 in ${fetch_file_data[@]}

97

do
if [["$item1" == "$item2"]]
then

intersection_with_current+=("$item1")
fi

done
done
echo "FOLLOWING APPS ARE NEWELY ADDED"
echo ${intersection_with_current[@]}
###
#TO ADD THE VALUES OF THE NEWELY ADDED JOB
###

for ((i=0; i < ${#curr_id_only[@]}; ++i))
do

for j in "${intersection_with_current[@]}"
do

if [["${curr_id_only[$i]}" == "$j"]]
then

index_arr_curr+=("$i")
fi

done
done

echo "The list of the index for newely added jobs are"
echo ${index_arr_curr[@]}

########################

for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_arr_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_newly_added+=("${curr_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding are"
echo ${sum_newly_added[@]}

##########################
sum1=0
for i in ${sum_newly_added[@]}
do

98

sum1=`echo $sum1 + $i | bc`
done

echo "The total sum of the currently added job progress is" $sum1

##########################
#intersection_with_previous
##########################
for item1 in ${app_id[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_previous+=("$item1")
fi

done
done

echo "FOLLOWING APPS WERE IN PREVIOUS BUT NOT IN CURRENT"
echo ${intersection_with_previous[@]}

###########################
ADD THE VALUES SUBTRACTIONG FROM 100
###########################

for ((i=0; i < ${#pre_id_only[@]}; ++i))
do

for j in "${intersection_with_previous[@]}"
do

if [["${pre_id_only[$i]}" == "$j"]]
then

index_arr_pre+=("$i")
fi

done
done

echo "The list of the index for
previous jobs which are not in current job list are"
echo ${index_arr_pre[@]}

########################

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

99

for j in "${index_arr_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_pre_added+=("${pre_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding previous jobs are"
echo ${sum_pre_added[@]}

##########################
sum2=0
for i in ${sum_pre_added[@]}
do

sum2=`echo $sum2 + $i | bc`
done

echo "The total sum of the previous job progress is" $sum2

########################
#tot_line=$(echo ${#sum_pre_added[@]} | bc)
#echo $tot_line

a=$((echo "${#sum_pre_added[@]}*100")|bc)
#a=$((echo "$tot_line*100")|bc)
#echo $a

total_progress=`echo $a - $sum2 | bc`
echo "The total done progress between the gap time was" $total_progress

#######################
#TO FIND OUT THE TOTAL PROGRESS
#OF THE JOB WHICH ARE IN BOTH STATE (PREVIOUS AND CURRENT)
##FOR THIS, CURRENT TOTAL PROGRESS AND
#PREVIOUS TOTAL PROGRESS WILL BE CALCULATED

#####FIRST TO FIND THE SIMILAR JOB IDS
for ((i=0; i < ${#curr_id_only[@]}; ++i))
do

for ((j=0; j < ${#pre_id_only[@]}; ++j))
do

if [["${curr_id_only[$i]}" == "${pre_id_only[$j]}"]]
then

similar_curr+=("${curr_id_only[$i]}")
index_similar_curr+=("$i")

100

index_similar_pre+=("$j")
fi

done
done

echo "THE SIMILAR IDS IN PREVIOUS AND CURRENT STATE ARE"
echo ${similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN CURRENT STATE ARE"
echo ${index_similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN PREVIOUS STATE ARE"
echo ${index_similar_pre[@]}

#################
#TO FIND THE CORRESPONDING VALUES
for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_similar_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_similar_curr+=("${curr_value_only[$i]}")
fi

done
done
echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN CURRENT STATE ARE"
echo ${sum_similar_curr[@]}
#################
##TO CALCULATE THE SUM
sumsimilarcurr=0
for i in ${sum_similar_curr[@]}
do

sumsimilarcurr=`echo $sumsimilarcurr + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarcurr
#################
##TO FIND THE CORRESPONDING VALUES OF THE PREVIOUS

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_similar_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_similar_pre+=("${pre_value_only[$i]}")
fi

done
done

101

echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN PREVIOUS STATE ARE"
echo ${sum_similar_pre[@]}
###############
###TO CALCULATE THE SUM
sumsimilarpre=0
for i in ${sum_similar_pre[@]}
do

sumsimilarpre=`echo $sumsimilarpre + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarpre

###############
##TO FIND THE EXACT PROGRESS VALUE BY
#SUBTRACTION total_progress3 form total_progress2

sum3=`echo $sumsimilarcurr - $sumsimilarpre | bc`
echo "THE PORGRESS IN GAP IS " $sum3

####TOTAL CURRENT PROGRESS IS ######

total_current_progress=`echo $sum1 + $total_progress + $sum3 | bc`
echo "TOTAL CURRENT PROGRESS IS" $total_current_progress
echo $total_current_progress > progress2.txt
}

################################
FUNCTION TO CALCULATE PROGRESS FOR 30% RESOURCE ALLOCATION
progress_third () {
app_id_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $1}')

value_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $8 $9}'| cut -d '%' -f1 |
awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')

while [["${#app_id_current[@]}" != "${#value_current[@]}"]]; do
app_id_current=()
value_current=()
app_id=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $8 $9}'|
cut -d '%' -f1 | awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')

done

102

echo "$app_id_current" > progress_third_only_app_id.txt
echo "$value_current" > progress_third_only_value.txt

app_id=$(sudo cat /home/ramesh/progress_second_only_app_id.txt)
value_initially=$(sudo cat /home/ramesh/progress_second_only_value.txt)

curr_id_only=($(paste <(echo "$app_id_current")))
echo "CURRENT APP ONLY ID"
echo "${curr_id_only[@]}"

curr_value_only=($(paste <(echo "$value_current")))
echo "CURRENT APP ONLY VALUE"
echo "${curr_value_only[@]}"

curr_id_value=$(paste <(echo "$app_id_current") <(echo "$value_current"))
echo "CURRENT APP ID AND CORRESPONDING VALUES"
echo "$curr_id_value"

##############
pre_id_only=($(paste <(echo "$app_id")))
echo "PREVIOUS APP ONLY ID"
echo "${pre_id_only[@]}"

pre_value_only=($(paste <(echo "$value_initially")))
echo "PREVIOUS APP ONLY VALUE"
echo "${pre_value_only[@]}"

###############

#different=$(diff <(echo "$app_id") <(echo "$app_id_current"))
different=$(diff -ia --suppress-common-lines
<(printf "%s\n" "${app_id[@]}") <(printf "%s\n" "${app_id_current[@]}"))
echo "DIFFERENCE BETWEEN THE APPLICATION
IDS IN THE CURRENT STATE, WHETHER LOST OR ADDED ARE"
#echo ${different[@]}

for i in ${different[@]}
do
echo $i | grep "application_" | awk '{print $1}' >> app_id_changed.txt
done

fetch_file_data=$(sudo cat /home/ramesh/app_id_changed.txt)
echo ${fetch_file_data[@]}

103

sudo truncate -s 0 app_id_changed.txt

#####################################
#intersection_with_current
####################################
for item1 in ${app_id_current[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_current+=("$item1")
fi

done
done
echo "FOLLOWING APPS ARE NEWELY ADDED"
echo ${intersection_with_current[@]}
###
#TO ADD THE VALUES OF THE NEWELY ADDED JOB
###

for ((i=0; i < ${#curr_id_only[@]}; ++i))
do

for j in "${intersection_with_current[@]}"
do

if [["${curr_id_only[$i]}" == "$j"]]
then

index_arr_curr+=("$i")
fi

done
done

echo "The list of the index for newely added jobs are"
echo ${index_arr_curr[@]}

########################

for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_arr_curr[@]}"
do

104

if [["$i" == "$j"]]
then

sum_newly_added+=("${curr_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding are"
echo ${sum_newly_added[@]}

##########################
sum1=0
for i in ${sum_newly_added[@]}
do

sum1=`echo $sum1 + $i | bc`
done

echo "The total sum of the currently added job progress is" $sum1

#############################
#intersection_with_previous
###########################
for item1 in ${app_id[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_previous+=("$item1")
fi

done
done

echo "FOLLOWING APPS WERE IN PREVIOUS BUT NOT IN CURRENT"
echo ${intersection_with_previous[@]}

###################################
ADD THE VALUES SUBTRACTIONG FROM 100
#################################

for ((i=0; i < ${#pre_id_only[@]}; ++i))
do

for j in "${intersection_with_previous[@]}"
do

if [["${pre_id_only[$i]}" == "$j"]]
then

105

index_arr_pre+=("$i")
fi

done
done

echo "The list of the index for
previous jobs which are not in current job list are"

echo ${index_arr_pre[@]}

########################

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_arr_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_pre_added+=("${pre_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding previous jobs are"
echo ${sum_pre_added[@]}

##########################
sum2=0
for i in ${sum_pre_added[@]}
do

sum2=`echo $sum2 + $i | bc`
done

echo "The total sum of the previous job progress is" $sum2

###
#tot_line=$(echo ${#sum_pre_added[@]} | bc)
#echo $tot_line

a=$((echo "${#sum_pre_added[@]}*100")|bc)
#a=$((echo "$tot_line*100")|bc)
#echo $a

total_progress=`echo $a - $sum2 | bc`
echo "The total done progress between the gap time was" $total_progress

######################################
#####FIRST TO FIND THE SIMILAR JOB IDS
for ((i=0; i < ${#curr_id_only[@]}; ++i))
do

106

for ((j=0; j < ${#pre_id_only[@]}; ++j))
do

if [["${curr_id_only[$i]}" == "${pre_id_only[$j]}"]]
then

similar_curr+=("${curr_id_only[$i]}")
index_similar_curr+=("$i")
index_similar_pre+=("$j")

fi
done

done

echo "THE SIMILAR IDS IN PREVIOUS AND CURRENT STATE ARE"
echo ${similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN CURRENT STATE ARE"
echo ${index_similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN PREVIOUS STATE ARE"
echo ${index_similar_pre[@]}

##################################
#TO FIND THE CORRESPONDING VALUES
for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_similar_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_similar_curr+=("${curr_value_only[$i]}")
fi

done
done
echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN CURRENT STATE ARE"
echo ${sum_similar_curr[@]}
#################################
##TO CALCULATE THE SUM
sumsimilarcurr=0
for i in ${sum_similar_curr[@]}
do

sumsimilarcurr=`echo $sumsimilarcurr + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarcurr

##################################
##TO FIND THE CORRESPONDING VALUES OF THE PREVIOUS

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_similar_pre[@]}"

107

do
if [["$i" == "$j"]]
then

sum_similar_pre+=("${pre_value_only[$i]}")
fi

done
done
echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN PREVIOUS STATE ARE"
echo ${sum_similar_pre[@]}
############################
###TO CALCULATE THE SUM
sumsimilarpre=0
for i in ${sum_similar_pre[@]}
do

sumsimilarpre=`echo $sumsimilarpre + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarpre

###########################
##TO FIND THE EXACT PROGRESS
#VALUE BY SUBTRACTION total_progress3 form total_progress2

sum3=`echo $sumsimilarcurr - $sumsimilarpre | bc`
echo "THE PORGRESS IN GAP IS " $sum3
##TOTAL CURRENT PROGRESS IS

total_current_progress=`echo $sum1 + $total_progress + $sum3 | bc`
echo "TOTAL CURRENT PROGRESS IS" $total_current_progress
echo $total_current_progress > progress3.txt
}
FUNCTION TO CALCULATE THE
#DIFFERENCE BETWEEN SECOND AND FIRST PROGRESS

diff_first_speed () {
fetch_second_value=$(sudo cat /home/

ramesh/progress1.txt | awk '{print $1}')
fetch_first_value=$(sudo cat /home/

ramesh/progress2.txt | awk '{print $1}')
echo "Second progress value and first

progress value are" $fetch_first_value $fetch_second_value
speed_first=`echo $fetch_first_value - $fetch_second_value | bc`
}

FUNCTION TO CALCULATE THE DIFFERENCE BETWEEN THIRD AND SECOND
diff_second_speed () {

fetch_third_value=$(sudo cat /home/

108

ramesh/progress3.txt | awk '{print $1}')
fetch_second_value=$(sudo cat /home/

ramesh/progress2.txt | awk '{print $1}')
echo "Third progress value and second

progress value are" $fetch_third_value $fetch_second_value
speed_second=`echo $fetch_third_value - $fetch_second_value | bc`
}

FUNCTION TO CALCULATE THE TOTAL CURRENT PROGRESS
progress_current () {

app_id_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $1}')

value_current=$(yarn application -list |
grep "root" | grep "RUNNING" | awk '{print $8 $9}'|
cut -d '%' -f1 | awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')

while [["${#app_id_current[@]}" != "${#value_current[@]}"]]; do
app_id_current=()
value_current=()
app_id=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $1}')
value_initially=$(yarn application -list |

grep "root" | grep "RUNNING" | awk '{print $8 $9}'|
cut -d '%' -f1 | awk -F'.' '{print $1}'| awk -F'[^0-9]*' '{print $1 $2}')

done

app_id=$(sudo cat /home/ramesh/progress_third_only_app_id.txt)
value_initially=$(sudo cat /home/ramesh/progress_third_only_value.txt)

echo "$app_id_current" > progress_third_only_app_id.txt
echo "$value_current" > progress_third_only_value.txt

curr_id_only=($(paste <(echo "$app_id_current")))
echo "CURRENT APP ONLY ID"
echo "${curr_id_only[@]}"

curr_value_only=($(paste <(echo "$value_current")))
echo "CURRENT APP ONLY VALUE"
echo "${curr_value_only[@]}"

curr_id_value=$(paste <(echo "$app_id_current") <(echo "$value_current"))
echo "CURRENT APP ID AND CORRESPONDING VALUES"
echo "$curr_id_value"

###

109

pre_id_only=($(paste <(echo "$app_id")))
echo "PREVIOUS APP ONLY ID"
echo "${pre_id_only[@]}"

pre_value_only=($(paste <(echo "$value_initially")))
echo "PREVIOUS APP ONLY VALUE"
echo "${pre_value_only[@]}"

###
#different=$(diff <(echo "$app_id") <(echo "$app_id_current"))
different=$(diff -ia --suppress-common-lines
<(printf "%s\n" "${app_id[@]}") <(printf "%s\n" "${app_id_current[@]}"))
echo "DIFFERENCE BETWEEN THE APPLICATION IDS
IN THE CURRENT STATE, WHETHER LOST OR ADDED ARE"
#echo ${different[@]}

for i in ${different[@]}
do
echo $i | grep "application_" | awk '{print $1}' >> app_id_changed.txt
done

fetch_file_data=$(sudo cat /home/ramesh/app_id_changed.txt)
echo ${fetch_file_data[@]}

sudo truncate -s 0 app_id_changed.txt

#####################################
#intersection_with_current
####################################
for item1 in ${app_id_current[@]}
do

for item2 in ${fetch_file_data[@]}
do

if [["$item1" == "$item2"]]
then

intersection_with_current+=("$item1")
fi

done
done
echo "FOLLOWING APPS ARE NEWELY ADDED"
echo ${intersection_with_current[@]}
###
#TO ADD THE VALUES OF THE NEWELY ADDED JOB

110

###
for ((i=0; i < ${#curr_id_only[@]}; ++i))

do
for j in "${intersection_with_current[@]}"

do
if [["${curr_id_only[$i]}" == "$j"]]
then

index_arr_curr+=("$i")
fi

done
done

echo "The list of the index for newely added jobs are"
echo ${index_arr_curr[@]}

########################

for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_arr_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_newly_added+=("${curr_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding are"
echo ${sum_newly_added[@]}

##########################
sum1=0
for i in ${sum_newly_added[@]}
do

sum1=`echo $sum1 + $i | bc`
done

echo "The total sum of the currently added job progress is" $sum1

##
#intersection_with_previous
###
for item1 in ${app_id[@]}
do

for item2 in ${fetch_file_data[@]}
do

111

if [["$item1" == "$item2"]]
then

intersection_with_previous+=("$item1")
fi

done
done

echo "FOLLOWING APPS WERE IN PREVIOUS BUT NOT IN CURRENT"
echo ${intersection_with_previous[@]}

###
ADD THE VALUES SUBTRACTIONG FROM 100
##

for ((i=0; i < ${#pre_id_only[@]}; ++i))
do

for j in "${intersection_with_previous[@]}"
do

if [["${pre_id_only[$i]}" == "$j"]]
then

index_arr_pre+=("$i")
fi

done
done

echo "The list of the index for previous
jobs which are not in current job list are"
echo ${index_arr_pre[@]}

########################

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_arr_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_pre_added+=("${pre_value_only[$i]}")
fi

done
done
echo "The array of the value corresponding previous jobs are"
echo ${sum_pre_added[@]}

################

112

sum2=0
for i in ${sum_pre_added[@]}
do

sum2=`echo $sum2 + $i | bc`
done

echo "The total sum of the previous job progress is" $sum2

###############
#tot_line=$(echo ${#sum_pre_added[@]} | bc)
#echo $tot_line

a=$((echo "${#sum_pre_added[@]}*100")|bc)
#a=$((echo "$tot_line*100")|bc)
#echo $a

total_progress=`echo $a - $sum2 | bc`
echo "The total done progress between the gap time was" $total_progress

############################
#TO FIND OUT THE TOTAL PROGRESS OF
#THE JOB WHICH ARE IN BOTH STATE (PREVIOUS AND CURRENT)
##FOR THIS, CURRENT TOTAL PROGRESS
#AND PREVIOUS TOTAL PROGRESS WILL BE CALCULATED

#####FIRST TO FIND THE SIMILAR JOB IDS
for ((i=0; i < ${#curr_id_only[@]}; ++i))
do

for ((j=0; j < ${#pre_id_only[@]}; ++j))
do

if [["${curr_id_only[$i]}" == "${pre_id_only[$j]}"]]
then

similar_curr+=("${curr_id_only[$i]}")
index_similar_curr+=("$i")
index_similar_pre+=("$j")

fi
done

done

echo "THE SIMILAR IDS IN PREVIOUS AND CURRENT STATE ARE"
echo ${similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN CURRENT STATE ARE"
echo ${index_similar_curr[@]}
echo "THE INDEX OF THE SIMILAR VALUES IN PREVIOUS STATE ARE"
echo ${index_similar_pre[@]}

113

##
#TO FIND THE CORRESPONDING VALUES
for ((i=0; i < ${#curr_value_only[@]}; ++i))
do

for j in "${index_similar_curr[@]}"
do

if [["$i" == "$j"]]
then

sum_similar_curr+=("${curr_value_only[$i]}")
fi

done
done
echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN CURRENT STATE ARE"
echo ${sum_similar_curr[@]}
#################################
##TO CALCULATE THE SUM
sumsimilarcurr=0
for i in ${sum_similar_curr[@]}
do

sumsimilarcurr=`echo $sumsimilarcurr + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarcurr

######## TO FIND THE EXACT VALUE OF PROGRESS TO BE DONE AT THAT TIME
#a=$((echo "${#index_similar_curr[@]}*100")|bc)
#total_progress2=`echo $a - $sumsimilarcurr | bc`
#echo "THE EXACT PROGESS AT THAT TIME WAS" $total_progress2

############################
##TO FIND THE CORRESPONDING VALUES OF THE PREVIOUS

for ((i=0; i < ${#pre_value_only[@]}; ++i))
do

for j in "${index_similar_pre[@]}"
do

if [["$i" == "$j"]]
then

sum_similar_pre+=("${pre_value_only[$i]}")
fi

done
done
echo "THE CORRESPONDING VALUES OF THE SIMILAR JOBS IN PREVIOUS STATE ARE"
echo ${sum_similar_pre[@]}
##
###TO CALCULATE THE SUM
sumsimilarpre=0

114

for i in ${sum_similar_pre[@]}
do

sumsimilarpre=`echo $sumsimilarpre + $i | bc`
done
echo "The current value of sum of similar job progress is " $sumsimilarpre
########TO FIND THE EXACT VALUE OF THE PROGRESS AT PREVIOUS STATE

sum3=`echo $sumsimilarcurr - $sumsimilarpre | bc`
echo "THE PORGRESS IN GAP IS " $sum3

###
#################TOTAL CURRENT PROGRESS IS ######################

total_current_progress=`echo $sum1 + $total_progress + $sum3 | bc`
echo "TOTAL CURRENT PROGRESS IS" $total_current_progress
echo $total_current_progress > progress3.txt
}

####FUNCTION THAT RESET THE ARRAY EVERY TIME LOOP EXECUTE
reset_array () {

pre_id_only=()
pre_value_only=()
curr_id_only=()
curr_value_only=()
different=()
fetch_file_data=()
app_id_current=()
intersection_with_current=()
index_arr_curr=()
sum_newly_added=()
app_id=()
intersection_with_previous=()
index_arr_pre=()
sum_pre_added=()
similar_curr=()
index_similar_curr=()
index_similar_pre=()
sum_similar_curr=()
sum_similar_pre=()
}

FUNCTION TO WRITE THOSE METRICS INTO FILE
write_file () {

TO WRITE THE METRICS FORM THE CLUSTER INTO FILE

115

var=$(paste -d, <(echo "$tot_mem") <(echo "$mem_used")
<(echo "$mem_unused") <(echo "$marp") <(echo "$marp_limit")
<(echo "$am_mem_used") <(echo "$am_vcore_used") <(echo "$tot_core")
<(echo "$core_used") <(echo "$core_unused") <(echo "$app_running")
<(echo "$app_pending") <(echo "$cont_running") <(echo "$cont_pending")
<(echo "$capacity_used") <(echo "$speed_first") <(echo "$speed_second"))

echo "$var" >> output_dynamic."csv"
}

while true; do

file=/home/ramesh/hadoop-2.8.1/etc/hadoop/capacity-scheduler.xml
for marp in $(sudo cat $file | awk -F" " 'NR==26 {print $2}'); do

CONDITIONS

fetch_metrics
write_file
if [["$(bc -l <<< "$marp == $minmarp")" == "1" && $app_running > 0]]
then

sleep 15
progress_first
reset_array

increment
sleep 15
progress_second
reset_array

break
elif ["$(bc -l <<< "$marp == 0.20")" == "1"]
then

marp_thirty
sleep 15
progress_third
reset_array
fetch_metrics
write_file

diff_first_speed
echo "Speed First" $speed_first

116

diff_second_speed
echo "Speed Second" $speed_second

fetch_metrics
write_file
break

elif [["$(bc -l <<< "$marp > 0.20")"
== "1" && "$(bc -l <<< "$speed_second > $speed_first")" == "1"]]
then

increment
sleep 15
value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')
echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')
echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array
diff_first_speed
echo "Speed First" $speed_first
diff_second_speed
echo "Speed Second" $speed_second

elif [["$(bc -l <<< "$marp > 0.15")"
== "1" && "$(bc -l <<< "$speed_second < $speed_first")" == "1"]]
then

decrement
sleep 15
value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')
echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')
echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array
diff_first_speed
echo "Speed First" $speed_first
diff_second_speed
echo "Speed Second" $speed_second

fetch_metrics

117

write_file
break

elif ["$(bc -l <<< "$speed_second == $speed_first")" == "1"]
then

sleep 15
value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')
echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')
echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array
diff_first_speed
echo "Speed First" $speed_first
diff_second_speed
echo "Speed Second" $speed_second

break

elif [["$(bc -l <<< "$app_running > 0")"
== "1" && "$(bc -l <<< "$app_pending == 0")" == "1"]]
then

sleep 15
value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')

echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')

echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array

diff_first_speed
echo "Speed First" $speed_first
diff_second_speed

echo "Speed Second" $speed_second

break

elif ["$(bc -l <<< "$marp == 0.80")" == "1"]
then

decrement
sleep 15

118

value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')
echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')
echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array
diff_first_speed
echo "Speed First" $speed_first
diff_second_speed
echo "Speed Second" $speed_second

break
elif [["$(bc -l <<< "$app_running == 0")"
== "1" && "$(bc -l <<< "$app_pending == 0")" == "1"]]
then

echo "Set to Default"
awk 'NR==26{$2=a}1' a=$minmarp $file > tmp && sudo mv -f tmp $file
yarn rmadmin -refreshQueues
break

else
sleep 15
value_from_two_to_one=$(sudo cat /home/
ramesh/progress2.txt | awk '{print $1}')
echo "$value_from_two_to_one" > progress1.txt
value_from_three_to_two=$(sudo cat /home/
ramesh/progress3.txt | awk '{print $1}')
echo "$value_from_three_to_two" > progress2.txt
progress_current
reset_array
diff_first_speed
echo "Speed First" $speed_first
diff_second_speed
echo "Speed Second" $speed_second

break

fi

done
sleep 15
done
done

119

A paper titled ‘In the Quest of Trade-off between Job Parallelism and
Throughput’ is currently in writing phase which will be submitted soon for some
international conferences along with my supervisors.

120

	Introduction
	Problem Statement

	Background
	Big data
	Big Data Processing and Challenges
	Big Data Analytics Framework
	Big Data and Clouds

	Clustering
	Hadoop
	Hadoop Distributed File System (HDFS)
	HDFS NameNode and DataNode
	HDFS Data Replication
	HDFS Commands

	Yet Another Resource Negotiator (YARN)
	ApplicationMaster (AM)
	Containers
	Maximum Percent of Resources in the Cluster (MARP)
	Yarn Commands

	MapReduce Paradigm

	Adaptive Variable Learning (AVLR) Algorithm
	Google Cloud Platform (GCP)
	Google Compute Engine (GCE)
	Hadoop Performance Tuning
	Related Works

	I The project
	Approach
	Objective
	Loss of Input Job (LOIJ) and Loss of Task Throughput (LOTT)
	Hadoop Cluster Design Phase
	The Algorithm Design Phase
	Implementation Stage
	Cluster
	Software Development Kit (SDK)
	Java Development Kit (JDK)
	MapReduce Framework
	REST API's
	Script Development and Automation
	R-Programming
	Benchmarking Tools

	Measurement, Analysis and Comparison
	Benchmarking Methodology

	Design
	Progress Aware Algorithm Overview
	Calculating Current Accumulated Progress of Running MapReduce Jobs
	Details Work-flow of Algorithm to Calculated Current Accumulated Progress

	Calculation of Progress
	Algorithm
	Flow Chart

	Expected Results of APTH Approach with the Progress Aware Algorithm

	Implementation
	System Setup
	Hadoop Cluster Creation
	Cluster Configuration
	Hadoop Cluster Initialized

	HiBench Benchmark Suite Installation and Configuration
	Testing of the Hadoop Cluster at Different Level of Static Configuration
	Deployment of Automation Tool
	Pre-experiment Evaluation

	Measurement, Analysis and Comparison
	The Experiment
	Experiment1: Processing 15 Jobs
	Experiment-2: Processing 30 Jobs
	Experiment-3: Processing 45 Jobs

	Data Analysis
	Interpreting Job Parallelism
	Interpreting Throughput
	Interpreting Resources Utilization
	Performance Comparison

	Discussion
	Implementation of APTH Approach Design
	Project Outcome

	Implementation Challenges
	Setting Sleep Time for the Algorithm Deployed
	Defining % of Resources Allocation for the Action
	Progress v/s progress
	Programming Complexity
	Creating Multiple Concurrent Input Jobs

	Improvements To APTH Design
	APTH Adoption with Dynamic Change in the Cluster Resources

	Conclusion
	Future Work

	Appendix

