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1. Introduction

It is well-known that the Black and Scholes (1973) model exhibits several biases. Most

prominent among these are its failure to reproduce the option-implied volatility smirk and

the absence of a leverage effect. One-factor stochastic volatility (SV) models such as Hes-

ton (1993) or Hull and White (1987) address some of the biases, but fall short in captur-

ing these effects simultaneously. In particular, Christoffersen et al. (2008, 2009) point out

that one-factor volatility models are not able to simultaneously capture the level and the

slope of option-implied volatility smirks demanded by the data for a given parametrization.

To address this shortcoming, they introduce two-factor volatility models consisting of the

short-run and long-run volatility components under the historical measure P, and obtain the

corresponding dynamic under the risk-neutral measure Q using a standard measure change.

In their studies, the volatility processes remain structurally the same under P and Q, albeit

with certain parameter changes.

It is important to note that such a standard model, as implemented in Christoffersen et al.

(2008), does not improve the (P-) fit on return data compared to a GARCH(1,1). However,

it performs substantially better when fitted using additional information on option prices (Q-

fit). This indicates that the persistent two-factor volatility dynamic is more relevant under

the measure Q.

We illustrated this effect in Figure 1. Using the Unscented Kalman filter (UKF) we jointly

estimate the statistical (P) and risk-neutral (Q) asset price dynamics from the S&P500 index

and corresponding call options for the period 2006 to 2009 (see §3.1 and §3.2 for details).

In the left panel we show the changes in the S&P500 index together with the movement of

the long-term variance process of the Heston model (for the formal definition see equation

(4.1.3)). While the P long-term variance level φ is relatively stable, the Q long-term variance

level φ? increases rapidly at the outset of the financial crisis.

The same effect occurs for a typical 2-factor SV model (see §4.1.5 for a specification). As

illustrated in the right-hand panel of Figure 1 the long-term variance level also remains fairly

stable under P (illustrated in terms of the parameter φ) and increases significantly under the
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Figure 1: Comparison of the P and Q long-term variance dynamic for the Heston model (left

panel) and for the alternative 2-factor SV (right panel) during the period 2006 to 2009. The red

line exhibits the P-dynamic (φ) and the blue line the Q-dynamic (φ?). The estimations are based

on a time series of the S&P500 index and option prices and are done using the Unscented Kalman

filter, see §3.1 and §3.2 for details.

pricing measure Q (see parameter φ?).

Motivated by these facts we propose a model that extends the stochastic volatility model

of Heston (1993) by an additional “long-run target variance process”, which allows to specify

the difference of the historical P and the pricing Q dynamics of the underlying price process

explicitly. As this process significantly determines the sign and magnitude of the model’s

variance risk premium, which is closely related to the risk preferences of market participants

(see Bakshi and Kapadia (2003), Bollerslev et al. (2011) and Heston (1993)), we are able to

capture changes of risk aversion. These changes are then a source for price variations without

any changes in the underlying historical probability distribution.

In the spirit of Christoffersen et al. (2013), we introduce independent adjustments for

different risk sources. In particular, we not only separate equity and variance risk, but

split the variance risk into a short-run and an additional long-run target variance process.

However, the innovative aspect of our model is that the additional long-run target variance

process only acts under Q and is not observable under P. This is in contrast to the typical

2-factor volatility models which specify short- and long-run volatility components under P

and Q. Our approach also allows one to use a more parsimonious set of parameters.
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Our new option-pricing model also incorporates the stylized facts of pricing kernels. Em-

pirical studies suggest that pricing kernels are typically S-shaped, or rather exhibit a mono-

tonically increasing area (see Aı̈t-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg

and Engle (2002)). This phenomenon is also called the “pricing kernel puzzle” (see Brown

and Jackwerth (2012) and Hens and Reichlin (2013)), since neither standard option-pricing

models nor consumption-based models are typically able to capture this property. In ad-

dition, the shape of pricing kernels is usually not constant, but changes over time, which

indicates that risk preferences are time-varying (see Rosenberg and Engle (2002) and Grith

et al. (2013)). As we obtain a variance-dependent pricing kernel, which, dependent on the

level of the long-run target variance process, exhibits the familiar S- or U-shapes, we are able

to capture both of these properties.

We apply our framework for two purposes. First, our model and its variance risk premium

will be used in order to analyze the risk preferences of market participants through time. As

pointed out above the long-run target variance process is a suitable measure for this. The

volatility implied by option prices is often used as an alternative measure for analyzing market

sentiment.1 The advantage of the long-run target variance process as an indicator for market

sentiment is its lower variability compared to the implied volatility. This makes it easier to

identify changing market conditions.

Second, we use our model to extract the forward-looking information content of option

prices. As Andersen and Bondarenko (2007) put it this information “(...) include[s] but

vastly exceed[s] the information contained in historical returns”. Recently, this option-implied

information was used in the context of density forecasting (see Christoffersen et al. (2012)

for an overview). For this, pricing kernels are used to “translate” risk-neutral densities into

real-world densities. The crucial point of this approach is that the supposed pricing kernel

must adequately describe the current risk preferences. Otherwise, the resulting real-world

1The most prominent example in this context is the VIX index of the Chicago Board Options Exchange

(CBOE), which quantifies the volatility of S&P500 index options and is also called the “investor fear gauge”

(see Whaley (2000, 2009)).
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density is a biased estimator of future asset prices. However, our model is well-suited to

circumvent this issue.

We use S&P500 index options with an underlying data period 2001 to 2009 for our

applications, which includes several market shocks like the burst of the dot-com bubble,

the terror attacks 9/11 and the subprime mortgage crisis. As in the previous literature

(Chernov and Ghysels (2000), Pan (2002) and Jones (2003)), we find a negative variance

risk premium. However, during the calm market period from mid-2004 to mid-2007 the

variance risk premium of our model is slightly positive, which indicates risk-seeking market

behaviour during that time. From mid-2007 the variance risk premium turns negative and

the long-run target variance process continuously increases, which reflects the growing fear

of market participants during the subprime mortgage crisis. Also the evolution of the pricing

kernel reflects the different market conditions of the period. The typical S-shaped pricing

kernel before the crisis becomes more and more pronounced until the bankruptcy of Lehman

Brothers and then turns into a U-shape. Again, this evolution first indicates increasing

willingness to carry risk, which turns into risk aversion after the outbreak of the financial

crisis.

In the second part of our empirical study, we analyze the quality of the forward-looking

information embedded in option prices extracted by our model. We perform out-of-sample

Value-at-Risk (VaR) forecasts for the S&P500 index during the period of the subprime mort-

gage crisis. In order to better classify the corresponding forecasting results, we also perform

VaR forecasts based on five alternative VaR models, namely an alternative 2-factor SV2, the

Heston, the Heston-Nandi, and the Black-Scholes model, which also rely on option-implied

information, and the GARCH model, which relies on historical information only. We find that

the 2-factor SV models have the best forecasting performance, followed by the Black-Scholes,

the Heston, the Heston-Nandi and the GARCH model. In particular, the two 2-factor SV

models are the only ones able to perform highly accurate VaR forecasts for all confidence

levels (95%, 99% and 99.9%) and forecasting horizons (1, 2, 3 and 4 weeks), despite the

2We are thankful to a referee who suggested this additional comparison.
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challenging forecasting period.

The remainder of this paper is structured as follows. The next section formalizes our

model specification. Then Section 3 outlines the applied estimation method, the data and

the estimation results. Section 4 discusses the forecasting performance of the analyzed VaR

models, and is followed by Section 5, which concludes the paper.

2. The 2-factor stochastic volatility model

This section introduces the 2-factor stochastic volatility (SV) model. We extend the Hes-

ton (1993) model by a long-term variance target process, which is unrelated to the statistical

asset-price dynamics but part of the risk-neutral asset-price dynamics.

2.1. Statistical dynamics

We fix a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions and

let St denote the asset price at time t, which could represent a single stock or an index. The

asset-price dynamics under the statistical measure3 P are specified as follows:

dSt = µStdt+
√
σtStdW1,t ,

dσt = κ1(φ1 − σt)dt+ λ1
√
σtdW2,t ,

dθt = κ2(φ2 − θt)dt+ λ2

√
θtdW3,t ,

where Wi = (Wi,t)t≥0, i = 1, 2, 3 denote (Ft)t≥0-adapted Brownian motions. The dynamics

of the assets’ variance (σt)t≥0 is modeled by a Cox-Ingersoll-Ross (CIR) process4, where κ1

controls for how fast the current variance returns to its long-term average φ1. Furthermore,

the volatility of σt (the so-called vol of vol) is specified by the parameter λ1. In order

to accommodate the leverage effect, the Brownian motions W1 and W2 are correlated via

dW1,t dW2,t = ρdt. The third process (θt)t≥0, the long-run target variance process, will

capture changes in asset prices that are only due to changes in risk preferences and not

3The statistical measure is sometimes called “objective” or “real-word” measure.
4We assume that the standard restrictions on the coefficients of the process are satisfied.
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to changes in the statistical asset-price dynamics. Therefore, the long-run target variance

process is uncorrelated with the asset price St and its variance σt. The latter can simply be

achieved by supposing that the Brownian motion W3 is uncorrelated with W1 and W2 and that

the defining stochastic differential equations are not coupled. Just like the variance process,

the long-run target variance process also is a mean-reverting CIR process4, with long-term

average φ2, mean-speed of reversion κ2 and volatility λ2. Since the long-run target variance

θt is independent of St and σt, the 2-factor SV model has the same statistical asset-price

properties as the Heston model.

2.2. Risk-neutral dynamics

We use independent Brownian motions W i = (W i,t)t≥0, i = 1, 2, 3 to construct the

correlated Brownian motions W1 and W2 via Cholesky’s transform from W 1 and W 2 and

choose W 3 = W3. We then derive the risk-neutral asset-price dynamics of the 2-factor SV

model by virtue of Girsanov’s theorem. For this we define the following Brownian motions

with drift:

dŴ1,t = dW 1,t + γ1,tdt ,

dŴ2,t = dW 2,t + γ2,tdt ,

dŴ3,t = dW 3,t + γ3,tdt .

The processes γi = (γi,t)t≥0, i = 1, 2, 3 are assumed to be adapted to the filtration (Ft)t≥0

and specify the market price of risk of St, σt and θt, respectively. In the following, we will

assume that the long-run target process θt carries no market price of risk, so γ3 = 0. Hence,

the change from the statistical measure P to an equivalent martingale measure Q can be

performed via the Radon-Nikodým derivative

Zt = exp

{
−
∫ t

0

2∑
i=1

γi,udW i,u −
1

2

∫ t

0

2∑
i=1

γ2
i,udu

}
.

By further imposing the condition

µ− r
√
σt
−
√

1− ρ2γ1,t − ργ2,t = 0 , (1)
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the risk-neutral asset-price dynamics are given by

dSt = rStdt+
√
σtStW̃1,t ,

dσt =
[
κ1(φ1 − σt)− λ1

√
σtγ2,t

]
dt+ λ1

√
σtdW̃2,t ,

dθt = κ2(φ2 − θt)dt+ λ2

√
θtdW̃3,t ,

where W̃1,t =
√

1− ρ2 Ŵ1,t + ρŴ2,t, W̃2,t = Ŵ2,t and W̃3,t = Ŵ3,t. From (1) we see that the

equity risk premium is, as in the Heston model, driven by the market price of risk process µ−r√
σt

(i.e. risk aversion to market risk) and a variance risk premium (risk aversion to variance).

We define the market price of variance risk as

γ2,t =
κ1(φ1 − σt)− κ?1(θt − σt)

λ1
√
σt

, (2)

which includes the long-run target variance process. This makes the effects of the long-run

target variance process on the variance risk premium explicit.

The risk-neutral variance dynamics are given by

dσt = κ?1(θt − σt)dt+ λ1

√
σtdW̃2,t .

Altogether, the risk-neutral asset-price dynamics of the 2-factor SV model are given by

dSt = rStdt+
√
σtStdW̃1,t ,

dσt = κ?1(θt − σt)dt+ λ1

√
σtdW̃2,t , (3)

dθt = κ2(φ2 − θt)dt+ λ2

√
θtdW̃3,t .

The long-run target process θt is now part of the variance process, and replaces the long-

term average φ1 by the central tendency θt. Duffie et al. (2000) propose a similar specification

to model asset prices. Furthermore, Bates (2012) supposes a 2-factor SV model with jumps,

but assumes that θt stays constant over intra-daily intervals in order to keep the model

computationally tractable. However, none of these authors uses the second volatility factor

θt only under the risk-neutral measure. Further note that 2-factor models of this form are
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also applied in the interest-rate literature, where one factor reflects the central tendency of

the short rate (see e.g. Balduzzi et al. (1998), Dai and Singleton (2000), and for a textbook

account Brigo and Mercurio (2006)).

2.3. Characteristic function

In the context of option pricing, we are typically interested in the characteristic function

of the log-asset price, as we are able to compute option prices by Fourier inversion methods

(see Schmelzle (2010) for an overview). The log-asset price of the 2-factor model follows an

affine process, so the corresponding characteristic function can be stated up to the solution

of a Riccati equation, which is summarized in the next proposition (see Appendix A for a

proof).

Proposition 2.1. Let St, σt and θt be the risk-neutral log-asset-price dynamics of the 2-factor

SV model specified by (3). Then the characteristic function of ln(ST ) is given by

E[eiu ln(ST ) | Ft] = eφ(T−t,u)+ψ1(T−t,u) ln(St)+ψ2(T−t,u)σt+ψ3(T−t,u) θt , (4)

where

φ(t, u) = iurt+ κ2φ2

∫ t
0
ψ3(s, u)ds ,

ψ1(t, u) = iu ,

ψ2(t, u) =
1

λ2
(c−

√
d)

1− e−
√
dt

1− ge−
√
dt
,

and ψ3(t, u) is the solution of

∂tψ3(t, u) = κ?1ψ2(t, u)− κ2ψ3(t, u) + 1/2λ2
2ψ3(t, u)2 , ψ3(0, u) = 0, (5)

with c = κ?1 − iuλ1ρ, d = c2 − λ2
1 (iu+ u2) and g = (c−

√
d)/(c+

√
d).

The characteristic exponents ψ1(t, u) and ψ2(t, u) are the same as in the Heston model.

For applications, the ordinary differential equation (ODE) (5) has to be solved numerically,

commonly done by the Runge-Kutta method (see Duffie and Kan (1996) and Piazzesi (2009)),

which we also apply.
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2.4. Pricing kernel

The term “pricing kernel” is originally used in the context of consumption-based models,

which offer a very general framework to price any kind of asset.5 Within this approach the

price of an asset corresponds to the expectation of the “preference-weighted” payoff profile.

More precisely, the payoff profile of an asset is weighted by a pricing kernel based on the utility

function of the representative investor, and thus reflects his risk preferences over different

states of the world. Common utility functions imply pricing kernels which are monotonically

decreasing with the consumption level. Accordingly, a representative investor is willing to

pay more for payoffs in bad states of the world (low consumption level) than in good states

of the world (high consumption level). Approaches to estimate the pricing kernel directly

are discussed in Jackwerth (2000), Grith et al. (2013), and Grith et al. (2016). Hens and

Reichlin (2013) present a theoretical explanation for the fact that pricing kernels may have

increasing parts.

In the context of option-pricing models the pricing kernel is defined as the ratio of risk-

neutral to statistical asset-price dynamics. Following Grith et al. (2013), p. 371, we formally

define the pricing kernel as

PK(x) =
fQ
ret(x)

fP
ret(x)

, (6)

where fQ
ret denotes the risk-neutral and fP

ret the statistical return density. For the 2-factor

SV model these densities can be computed by means of Fourier inversion of the characteristic

function of the log-asset price (see Appendix D for more details).

The pricing kernel of the 2-factor SV model is illustrated in Figure 2 for different levels

of the long-run target variance process θt while keeping the remaining parameters fixed. The

parameter constellations used are as follows:

• Case 1: θt < φ1 < φ2 (low risk aversion)

• Case 2: φ1 < θt < φ2 (medium risk aversion)

5See Cochrane (2005) for an introduction to consumption-based models.
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• Case 3: φ1 < φ2 < θt (high risk aversion)

• Case 4: φ1 < φ2 << θt (extremely high risk aversion)

The parameterization of the 2-factor SV model reflects a calm market period, where the

current level of the variance σt is lower than its long-term average φ1. Moreover, φ1 is

supposed to be lower than the long-term average φ2 of the long-run target variance process,

in line with the empirical observation that risk-neutral volatilities on average tend to be

larger than realized volatilities (see Jackwerth and Rubinstein (1996) and Bollerslev et al.

(2011)). Except for the last case, where the level of risk aversion is extremely high, the shape

of the pricing kernel has the typical S-form found in the literature (see Jackwerth (2000) and

Rosenberg and Engle (2002)). In particular, the lower the current level of risk aversion, the

more pronounced the S-shape of the pricing kernel. By contrast, for high levels of current

risk aversion, the pricing kernel becomes U-shaped. Further note that the pricing kernel with

θt = 0.202 (Case 1) looks similar to pricing kernel estimates given previously by Jackwerth

(2004), p. 57, Fig. 11; Aı̈t-Sahalia and Lo (2000), p. 36, Fig. 3; and Rosenberg and Engle

(2002), p. 361, Fig. 5.

2.5. Variance risk premium and relative risk aversion

The variance risk premium is defined as the difference between the statistical and risk-

neutral variance drift term6, which is

V RP (σt, θt) = [κ1 (φ1 − σt)− κ?1 (θt − σt)] ,

= [κ1 (φ1 − θt) + ∆κ (σt − θt)] , (7)

where ∆κ = κ?1 − κ1. Hence, the variance risk premium depends on the parameters κ1 and

∆κ as well as on the current level of the long-run target variance process θt compared to the

6Carr and Wu (2009) define the (return) variance risk premium as the difference between implied and

realised variance. In their context it relates to the correlation of realised quadratic variation and the pricing

kernel.
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Figure 2: Pricing kernel of the 2-factor SV model. This figure illustrates the pricing kernel

of the 2-factor SV model for different values of the long-term target variance θt. The pricing

kernels are computed as the ratio of risk-neutral to statistical return density based on the following

parameterisation: σt = 0.152, φ1 = 0.252, φ2 = 0.352, κ1 = 10, κ?1 = 5, κ2 = 1, λ1 = 0.5, λ2 = 0.5,

ρ = −0.8 and time to maturity τ = 1.
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long-term average of the variance φ1 and the current level of the variance σt, respectively.

The sign of the variance risk premium can be determined via the boundary

b(σt) = φ1 +
∆κ

κ?1
(σt − φ1) ,

obtained by setting (7) equal to zero and then solving for θt. Since (7) is decreasing in θt, the

variance risk premium is positive if θt < b(σt) and negative if θt > b(σt). Furthermore, the

boundary b(σt) is decreasing in σt if ∆κ < 0. Empirical studies suggest that the mean speed

of reversion of the variance is usually smaller under the risk-neutral measure than under the

statistical measure (see e.g. Bakshi and Wu (2010), Bates (2012) and Pan (2002)), so that

it is reasonable to assume that ∆κ < 0. Consequently, during normal market conditions

(low levels of σt) a negative variance risk premium is less likely since the boundary for θt to

cross is high. Conversely, during turbulent market conditions (high levels of σt) a negative

variance risk premium is more likely since the boundary for θt to cross is low.

Following Bollerslev et al. (2011), we can link the variance risk premium and the coefficient

of risk aversion for the representative investor within the standard intertemporal asset pricing

framework. From the specification of the market price of variance risk, we find7〈
dmt

mt

, dσt

〉
= −λ1σtγ2,tdt, (8)

where mt denotes the pricing kernel, or marginal utility of wealth for the representative

investor. Assuming the representative investor has a power utility function with risk-aversion

parameter γ,

Ut = e−δt
W 1−γ
t

1− γ
,

where δ denotes a constant subjective time discount rate, and in equilibrium the investor

holds the market portfolio, then marginal utility equals

mt = e−δtW γ
t .

Using Itô’s lemma implies 〈
dmt

mt

, dσt

〉
= −γλ1σtρdt. (9)

7< ., . > denotes the quadratic covariation, see Bingham and Kiesel (2004), §5.3.2.
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Putting equations (8) and (9) together, yields

γρ = γ2,t =
κ1(φ1 − σt)− κ?1(θt − σt)

λ1
√
σt

. (10)

So we see

γ =
V RP (σt, θt)

ρλ1
√
σt

. (11)

As ρ is negative, a positive/negative variance risk premium indicates risk-seeking/risk-

averse market participants. Hence, the 2-factor SV model implies that market sentiment is

rather relaxed during normal market conditions and rather stressed during turbulent market

conditions. Bollerslev et al. (2011) and Carr and Wu (2009) provide evidence that the

variance risk premium is time-varying.

3. Estimation

In the following section, we jointly estimate the statistical and risk-neutral asset-price

dynamics of the 2-factor SV model based on a time series of option prices. From the cor-

responding estimation results we derive conclusions about the risk aversion inherent in the

market, during both normal and turbulent market conditions. Moreover, we analyze the

parameter stability of the 2-factor SV model.

3.1. Estimation method

To jointly estimate the risk-neutral and statistical asset-price dynamics of an option-

pricing model we use the Unscented Kalman filter (UKF). The UKF is an algorithm for

estimating the state of a time-varying system indirectly observed through noisy measurements

(Julier and Uhlmann (1997), Särkkä (2011), and Wan and van der Merwe (2001)). The heart

of the UKF is the unscented transformation, an approximation method for determining the

mean and variance of a transformed random variable. In contrast to the classical Kalman

filter, the UKF allows for nonlinearities in the filtering equations, which makes it very suitable

for financial applications (see Bakshi and Wu (2010), Bakshi et al. (2008), and Christoffersen

et al. (2014)).
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The basis for each filtering technique is a state-space representation describing the dynam-

ics of the underlying system. In the context of option pricing, the state-space representation

describes the statistical dynamics of the underlying asset-price process. This asset-price pro-

cess is linked to observed option prices by a theoretical option-pricing model. In the following,

we assume that the asset-price process is more generally given by a m-dimensional stochastic

process Xt = [X1,t . . . Xm,t]
> with statistical dynamics

dXt = µ(Xt)dt+ σ(Xt)dWt , (12)

where µ : Rm → Rm specifies the drift and σ : Rm → Rm×m the volatility of the process. We

summarize the parameters of µ(x) and σ(x) in the parameter vector θ1.

For the purpose of estimation, we use an equidistant time grid t1 < . . . < tN with

ti − ti−1 = ∆t. Then the state equation can be obtained by an Euler discretization of the

statistical asset-price dynamics (12), which is

Xi = Xi−1 + µ(Xi−1)∆t+ σ(Xi−1)
√

∆t ηi . (13)

Here, ηi denotes a normally distributed random variable with zero mean and variance specified

by a m-dimensional identity matrix Im, i.e. ηi ∼ N (0, Im), and the time index ti corresponds

to i.

Next, the measurement equation relates the state vector Xi to observable variables.

As measurements we use a time series of observed option prices O1, . . . ,ON , where Oi =

[O1,i . . .On,i]> is a n × 1 vector of option prices with strike prices Ki = [K1,i . . . Kn,i]
> and

maturities τi = [τ1,i . . . τn,i]
>. However, for estimation purposes it is better to first divide the

option prices Oi by their corresponding Black-Scholes vegas υBS(Oi), which is

yi = υ−1
BS(Oi)�Oi . (14)

Here, � denotes the Hadamard product, defined as the entrywise product of two matrices,

i.e. (A � B)i,j = (A)i,j · (B)i,j. The background of this procedure is that the variance of

time series of vega-scaled option prices is better comparable across different strike prices and

maturities, allowing for a simpler specification of the measurement error (see Bakshi and
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Wu (2010) and Bakshi et al. (2008)). Based on this data transformation, the measurement

equation now becomes

yi = υ−1
BS(Oi)�OModel(Xi, Ki, τi | θ2) + εi . (15)

Here, OModel(Xi, Ki, τi | θ2) denotes an option-pricing model with parameters θ2, whose risk-

neutral dynamics are derived from the statistical dynamics (12). In order to account for het-

eroscedasticity, we model the conditional variance of the measurement error εi = [ε1,i, . . . , εn,i]
>

by the following ARCH-type model:

εi = σ̃izi , σ̃2
i = ω + α

1

n

n∑
j=1

ε2j,i−1 . (16)

Here, ω > 0, α ≥ 0 and zi ∼ N (0, In). So, the state-space representation can fully be

parameterized by the parameter vector θ = [θ1 θ2 ω α], which can be estimated by the

Quasi-Maximum Likelihood method described in Appendix E.

3.2. Data

Our empirical study is based on Wednesday’s weekly closing prices of the S&P500 index

and corresponding call options.8 We analyze the time period from November 3, 1999 to

October 28, 2009, which includes several market shocks such as the bursting of the dot-com

bubble in 2000, the terror attacks 9/11 in 2001 and the subprime mortgage crisis starting in

2007.

First, Figure 3(a) gives an overview of the evolution of the S&P500 index for the under-

lying time period, where the several market shocks are reflected by sudden falls in the index

prices. Figure 3(b) illustrates the corresponding index returns, which exhibit low levels of

volatility during the calm period 2004 – 2007 and high levels of volatility before and after

this calm period. Moreover, Figures 3(c) and 3(d) show a kernel density estimation and a

Quantile-Quantile plot of the index returns, which both indicate that the distribution of the

8The data are drawn from OptionMetrics Ivy DB US and were provided by the Collaborative Research

Center 649 – Economic Risk at the Humboldt-Universität zu Berlin.
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Figure 3: Statistical properties of the S&P500 index. These figures illustrate the evolution of the

S&P500 index (a) and the corresponding index returns (b). Moreover, figure (c) shows a kernel

density estimation of the index returns (solid line), which is contrasted to the normal distribution

(dotted line). The latter is specified by the sample mean and variance of the index returns. In

addition, figure (d) shows the Quantile-Quantile plot of the index returns.
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index returns is fat-tailed and slightly negatively skewed. These observations are in line with

the sample skewness and kurtosis of the S&P500 index returns, summarized in Table 1.

Table 1: Descriptive statistics for the S&P500 index returns.

N min max mean SD skewness kurtosis

521 -16.4508 10.1824 -0.0503 2.6125 -0.4910 7.6359

Notes: This table reports the summary statistics of the weekly S&P500 index

returns. All figures are calculated based on percentage returns.

From the wide spectrum of available S&P500 index options, we choose call options ac-

cording to the following strike choice function:

Kj,i = bSi/25c · 25 + j · 25 for j = 1, 2 ,

where b · c denotes the floor function and Si the S&P500 index at time ti. Hence, the resulting

strike prices K1,i and K2,i correspond to (near) at-the-money (j = 1) and out-of-the-money

(j = 2) call options. In addition, for each strike level we choose four call options with average

maturities of 22, 45, 89 and 148 days. Altogether, this particular choice results in a call option

price time series Ci = [C1,i . . . C8,i]
> with maturities τi = [τ1,i . . . τ4,i τ1,i . . . τ4,i]

> and strike

prices Ki = [K1,i . . . K1,i K2,i . . . K2,i]
>.9

As we have a small number of outliers in the option data we apply the standard win-

sorization technique to adjust for outliers.10

3.3. State-space representation of the 2-factor SV model

The state-space representation of the 2-factor SV model is derived as in Section 3.1,

with two exceptions. First, we do not include the dynamics of the underlying St in the

state equation. This facilitates the estimation, since the drift term µ is typically difficult

9In some special cases option prices with the required strike price are not traded, so that the corresponding

closest available strike price is chosen instead.
10For more details on this technique see e.g. Barnett and Lewis (1994).
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to estimate and, in addition, not relevant for our purposes. Second, we use a semi-analytic

solution for the dynamics of the variance and the long-run target variance, which both follow

CIR processes (see Appendix F for a derivation). Taking these two adjustments into account,

the state-space representation of the 2-factor SV model can be specified viaσi
θi

 =

e−κ1∆t

e−κ2∆t

�
σi−1

θi−1

+

φ1

(
1− e−κ1∆t

)
φ2

(
1− e−κ2∆t

)
+

e−κ1∆tλ1

e−κ2∆tλ2

�
√√√√√
σi−1

θi−1

� ηi ,(17)

yi = v−1
BS(Ci)� C2FSV(Xi, Ki, τi | θ2) + εi ,

where ηi ∼ N (0,∆t I2) and Xi = [Si σi θi]
>. Furthermore, C2FSV denotes the call-option

price formula for the 2-factor SV model, which is parameterized by θ2 = [κ?1 κ2 φ2 λ1 λ2 ρ].

The corresponding option prices are calculated based on the characteristic function (4) and

the Fourier inversion approach of Carr and Madan (1999). To account for heteroscedas-

ticity in the measurement error, we model εi by the univariate ARCH model (16). Hence,

the state-space representation of the 2-factor SV model can be fully parameterized by θ =

[κ1 κ
?
1 κ2 φ1 φ2 λ1 λ2 ρ ω α].

3.4. Estimation results

We compare the estimation results of the 2-factor SV (2FSV) model with an alternative

2-factor SV (A2FSV) model (specified below in §4.1.5) and the Heston model (specified below

in §4.1.3). The parameters of all models are estimated as described in §3.1. Figure 4 shows

that the 2-factor SV model dominates the alternative 2-factor SV model and the Heston

model in terms of log-likelihood values L. The corresponding parameter estimation results

are summarized in Table 2.

First note that all parameters are significantly different from zero at a significance level

of 0.1%. While both two-factor models have a low error-term variability (captured in the

parameter α), the error-term variability is substantially higher for the Heston model. This

fact again emphasises the need for a second volatility component.

All three models show negative values for the correlation parameter ρ which is in line

with the negatively skewed return distribution observed in the data.
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Comparing the 2-factor models we see that under the historical measure the 2-factor SV

has relatively high estimates for the mean speed of reversion as well as for the volatility of the

variance process σt, with values of κ1 = 22.38 and λ1 = 0.945. However, while high values

of κ1 reduce the variability of the variance process, high values of λ1 increase it. So, these

estimation results have contrary effects. For the alternative 2-factor SV these two parameters

are lower, but as stated above the path behaviour of the first volatility component will be

similar due to the contrary effects of the parameters. Strikingly, in the risk-neutral setting

the speed of mean reversion κ?1 of the alternative 2-factor SV increases to a level higher than

the corresponding parameter in the 2-factor SV model. As the volatility of the volatility

process λ1 remains unchanged this implies less variability in the volatility process for the

alternative 2-factor SV model.

The estimation for the parameters of the long-term volatility components show that the

volatility of the long-term variance λ2 is almost the same for both models. However, the

speed of mean-reversion of this component changes for the alternative 2-factor SV model

between the historical and the risk-neutral probability measures from a higher level to a level

comparable to the 2-factor SV model. As this parameter is only relevant for the 2-factor SV

model under the risk-neutral measure this supports our modelling approach to only consider

the long-term component under the risk-neutral measure.

Focusing on the 2-factor SV model we see that the estimation results for the mean speed

of reversion as well as for the volatility of the long-run target process θt are relatively low,

with values of κ2 = 1.33 and λ2 = 0.234, respectively. Hence, in comparison to the variance

process, the long-run target process is less volatile and more persistent. The long-term

average of the long-run target process specified by φ2 = 0.036 is higher than the long-term

average of the variance process specified by φ1 = 0.025, both under the statistical measure P.

In addition, the parameter φ2 also determines the long-term average of the variance under

the risk-neutral measure Q. So, the long-term average of the variance under Q is higher than

under P, giving a negative average variance risk premium in the amount of -1.46%.11

11Recall that the variance risk premium of the 2-factor SV model is defined as κ1(φ1 − σt)− κ?1(θt − σt).
Hence, the average variance risk premium can be calculated if we replace σt and θt by their long-term averages
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Figure 4: Comparison of Log-likelihood values L for the Heston model, 2-factor SV model and

alternative 2-factor SV model

Figures 5(a) – 5(c) illustrate the evolution of the volatility, long-run target variance and

variance risk premium, which are contrasted to the evolution of the S&P500 index during that

time. In addition, Figure 5(d) compares the evolution of the variance and long-run target

variance. The evolution of the volatility clearly reflects the different market conditions of

the analyzed time period with low volatility during calm periods and high volatility during

turbulent periods. Similarly, the long-run target variance is also low during calm periods and

high during turbulent periods. The advantage of the long-run target process as an indicator

φ1 and φ2, which results in −κ?1(φ2 − φ1).
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for the market sentiment is its lower variability compared to the variance process. This

makes it easier to identify changing market conditions, which can also be seen in Figure

5(d). Interestingly, the variance risk premium estimates are positive from mid-2004 to the

beginning of 2007, with a maximum variance risk premium of 32.11% on January 24, 2007.

This indicates that the market participants are risk-seeking during that time.

In order to account for parameter instability in the context of the forecasting application,

we repeatedly re-estimate the 2-factor SV model based on an increasing data set. To do

so we increase the sample size after each estimation by four additional observation days,

which approximately cover one month. While the underlying sample period always starts on

November 3, 1999, the end of the sample period ranges from December 28, 2005 to September

30, 2009. The corresponding estimation results are illustrated in Figure 6, which also shows

the evolution of the S&P500 index during that time.

Although all parameters show some variation over the whole period, some parameters

are stable, such as the long-term averages of the variance and long-run target process φ1

and φ2, which only exhibit a small variation. Interestingly, the long-run target variance level

of market participants φ2 continuously decreases until the bankruptcy of Lehman Brothers

in September 2008 and then suddenly increases. Also, the volatility of the long-run target

process λ2 is stable and only slightly increases during the time period considered. By contrast,

the volatility of the variance λ1 is only stable until the bankruptcy of Lehman Brothers and

then increases considerably, which reflects the increased variability of the variance during

that time. Similarly, the risk-neutral mean-speed of reversion of the variance κ?1 and the

correlation ρ are stable until mid-2008 and then increase and decrease, respectively. The

decreasing correlation results in a higher negative skewness of the return distribution, so

that negative returns are more likely during these turbulent market conditions. By contrast,

the increase of κ?1 at the peak of the subprime mortgage crisis is not intuitive, since this

increase reduces the variability of the variance process under the risk-neutral measure. A

possible explanation for this behavior could be that the increase in κ?1 partly offsets the strong

increase in λ1. Finally, the mean-speed of reversion of the variance κ1 and the risk aversion κ2

are unstable. This is due to the general difficulty in estimating the mean-speed of reversion
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Figure 5: Volatility, long-run target variance and variance risk premium estimates for the S&P500

index based on the 2-factor SV model. These figures illustrate the evolution of the volatility (a)

and the variance risk premium (b), which are estimated via the UKF based on the 2-factor SV

model. In addition, figure (c) illustrates the evolution of the long-run target variance, which is also

contrasted to the evolution of the variance in figure (d).
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Figure 6: Evolution of the 2-factor SV model parameters before and during the subprime mortgage

crisis. These figures illustrate the evolution of the parameters of the 2-factor SV model (blue line)

before and during the subprime mortgage crisis. Additionally, we contrast these estimation results

to the evolution of the S&P500 index (green line).
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under the statistical measure. Nevertheless, both parameters decrease at the peak of the

subprime mortgage crisis, which reflects the higher variability of the variance and long-run

target variance during turbulent market conditions.
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Figure 7: Empirical Pricing Kernel of the 2-factor SV Model

We conclude this section with a discussion of the evolution of the pricing kernel as illus-

trated in Figure 7. Again, the different market conditions are clearly reflected in the shape

of the pricing kernel. More precisely, before the crisis the pricing kernel was S-shaped, as

typically found in the literature, with the strongest characteristic on February 21, 2007. Due

to the connection between the level of risk aversion and the shape of the pricing kernel (see

Section 2.4) this indicates that market participants became more and more risk seeking until

the beginning of 2007. Thereafter, the S-shape got less pronounced, reflecting the increasing

fear of the market participants, ultimately turning into a U-shape from October 1, 2008 – i.e.

shortly after the bankruptcy of Lehman Brothers. The pricing kernel returned to an S-shape

from July 15, 2009 on, which can be interpreted that market sentiment started to relax from

there on.
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4. Value-at-Risk forecasting

In the following section, we assess the forecasting performance of the 2-factor SV model12.

We perform out-of-sample Value-at-Risk (VaR) forecasts for the S&P500 index with forecast-

ing horizons of 1, 2, 3 and 4 weeks at confidence levels of 95%, 99% and 99.9%. Our forecasting

period starts on January 4, 2006 and ends on October 28, 2009, encompassing 200 weekly

observations of the S&P500 index and the corresponding call options. The total forecasting

period is further subdivided into a precrash period, from January 4, 2006 to December 5,

2007, and a crash period, from December 12, 2007 to October 28, 2009. The crash period

includes all major events of the subprime mortgage crisis, which begins with the bailout of

Bear Stearns by the Federal Reserve System (Fed) together with JPMorgan Chase on March

14, 2008 followed by the bailout of Fannie Mae and Freddie Mac by the Fed on July 3, 2008

and then reaching its climax with the bankruptcy of Lehman Brothers on September 15,

2008. Both the precrash and crash period each encompass 100 weekly observations. This

subdivision of the forecasting period has the objective of checking whether the forecasting

performance deteriorated during the subprime mortgage crisis, and if so, to what extent. In

order to better classify the forecasting performance of the 2-factor SV model, we also perform

VaR forecasts based on five alternative models, namely the Heston, the Heston-Nandi, and

the Black-Scholes model, which also rely on option-implied information and the GARCH

model, which relies on historical return information. In addition, we investigate an alterna-

tive version of the 2-factor SV model, where the short- and long-run volatility components

are present in the volatility dynamics under the statistical measure. In order to account

for parameter instability, we re-estimate the GARCH, Heston, Heston-Nandi and 2-factor

SV models every four weeks anew based on an enlarged data set, which also includes the

four additional observation days while keeping the beginning of the data set always fixed on

November 3, 1999. By contrast, the Black-Scholes model only requires the average Black-

Scholes implied volatilities at the respective forecasting date, so that no re-estimation based

12For a comparison of option pricing performance between the Heston and the two stochastic volatility

models see AppendixC
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on an enlarged data set is necessary.

4.1. Forecasting models

Before we describe the forecasting models in more detail, we first make the simplify-

ing assumption that the expected return over the forecasting period is zero. According to

Dańıelsson and Zigrand (2006), this assumption can be justified by two arguments. On the

one hand, the forecasting horizon of risk models is usually very short, so that the drift term

is negligible compared to the volatility during that time. On the other hand, there exists so

far no obvious way to obtain an accurate estimate of the drift term. In particular, Merton

(1980), p. 333, argues that a negative estimate of the drift term is a biased-low estimate,

which would be very likely for our specific data period. Based on this simplifying assumption,

we introduce the different VaR models, whose key features are summarized in Table 3.

4.1.1. Black-Scholes model

Our first forecasting model is the Black-Scholes model, which assumes that the asset price

evolves as a geometric Brownian motion with constant volatility σ. Hence, the log return

over the period [i, i+τ ], written ri,i+τ , is distributed as

ri,i+τ ∼ N (0, τσ2) , (18)

which already accounts for the zero drift assumption. In contrast to the constant volatility

assumption of the Black-Scholes model, we repeatedly estimate the volatility parameter σ

based on all currently observable call-option prices. So, we simply build the average of the

corresponding Black-Scholes implied volatilities, and σ in (18) becomes

σBS,i =
1

8

8∑
j=1

σBS(Cj,i) .

4.1.2. GARCH model

In the GARCH model the return is specified as

ri = σizi , (19)
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Model
Return

distribution
Data basis Forecasting type

GARCH
Normal

distribution

historical + current

returns
P-Backward-looking

Black-

Scholes

Normal

distribution

current option

prices
Q-Forward-looking

Heston
Heston

dynamics

historical + current

index and option prices

Q-Forward-looking +

pricing kernel

(constant risk preferences)

Heston-

Nandi

Heston-

Nandi

dynamics

historical + current

index and option prices

Q-Forward-looking +

pricing kernel

(constant risk preferences)

2-factor SV
Heston

dynamics

historical + current

index and option prices

Q-Forward-looking +

pricing kernel

(time-varying risk

preferences)

Alternative

2-factor SV

2-factor SV

dynamics

historical + current

index and option prices

Q-Forward-looking +

pricing kernel

(time-varying risk

preferences)

Table 3: Overview of the Value-at-Risk forecasting models.
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with zi a standard normal random variable. For the evolution of the conditional return

variance, we use a GARCH(1,1) model,

σ2
i = ω + αr2

i−1 + βσ2
i−1 . (20)

We chose GARCH(1,1) not only for its simplicity but also its proven superior forecasting

performance compared to more complex specifications (see e.g. Lunde and Hansen (2005)).

Further note that GARCH(1,1) with the particular choice of α = 0.04 and β = 0.96 for one-

day-ahead forecasts and α = 0.03 and β = 0.97 for one-month-ahead forecasts is essentially

the volatility forecasting model of Riskmetrics, commonly used in the banking industry. By

iterating (20) one time step forward, we obtain the variance forecast for the period [i, i+1].

Since our VaR forecasting horizon will not always correspond to the time spacing of the data

sample, we also apply the square-root-of-time rule in order to get a variance forecast for the

period [i, i+τ ].13 Consequently, the return for the period [t, t+τ ] is approximately normally

distributed conditional on the variance:

ri,i+τ ≈ N (0,
τ

∆t
σ2
i+1) .

Here, we assumed that the time spacing of the data sample is equidistant with interval length

∆t.

4.1.3. Heston and 2-factor SV model

Our next two VaR models are the Heston and the 2-factor SV model, which both assume

that the asset price under the statistical measure evolves as

dSt = µStdt+
√
σtStdW1,t , (21)

dσt = κ1(φ− σt)dt+ λ1

√
σtdW2,t ,

13Alternatively, the variance forecast for time-horizons larger than one time step can be obtained by

further iterations of (20) (see McNeil et al. (2005), p. 159, for an explicit formula). However, similar to the

findings in Brummelhuis and Kaufmann (2007), §4 and §6, in our empirical study the square-root-of-time

rule worked much better.
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with dW1,t dW2,t = ρdt. However, due to the additional long-run target process of the 2-factor

SV model, the estimation results for the parameters in (21) are generally different for the

two models. In contrast to the Black-Scholes model, the stochastic differential equation (21)

has no closed-form solution, so that the return distribution cannot be stated in closed form.

However, the characteristic function of the log-asset price is known in semi-closed form, so

that the return distribution can be obtained via Fourier inversion.14 Unfortunately, since the

stochastic differential equation (21) has no closed-form solution, we can only approximately

impose the zero drift condition by setting µ = 1/2σt.

4.1.4. Heston-Nandi model

The Heston-Nandi model is a one-factor stochastic volatility model where the variance is

modeled by a GARCH-type process. In the following we consider the GARCH(1,1) version of

this model which contains the classical Heston model as a continuous-time limit. The asset

price under the statistical measure for this single lag version is given by

ln(St) = ln(St−1) + r + λσt +
√
σtεt ,

σt = ω + β1σt−1 + α1(εt−1 − γ1
√
σt−1)2 .

The parameter λ determines the return premium being proportional to the variance σt. The

parameters ω, α1, β1 and γ1 specify the GARCH(1,1) process which is stationary with finite

mean and variance if β1 + α1γ
2
1 < 1. The kurtosis of the return distribution is controlled

by α1 and the skewness by γ1. In particular, positive values for α1 and γ1 imply a negative

correlation between return and variance and thus reflect the leverage effect. The characteristic

function of the log-asset price is known in closed form so that the return distribution can be

obtained via Fourier inversion. For the purpose of the Value-at-Risk forecasting we impose

the zero drift condition r = −λσt.

14See Appendix D for more details.
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4.1.5. Alternative 2-factor SV model

Our last VaR model is an alternative version of the 2-factor SV model, where we also

introduce a long-run component of the volatility process under the statistical measure. So

the analysis of this model allows one to quantify the additional value of time-varying long-run

volatility under the statistical measure. We assume that the asset price under the statistical

measure evolves as

dSt = µStdt+
√
σtStdW1,t ,

dσt = κ1(θt − σt)dt+ λ1

√
σtdW2,t ,

dθt = κ2(φ− θt)dt+ λ2

√
θtdW3,t ,

where dW1,t dW2,t = ρdt. Furthermore, W3,t is uncorrelated to W1,t and W2,t. The charac-

teristic function of the log-asset price under P is already specified in Proposition 2.1, where

r needs to be replaced by µ and κ?1 by κ1. Again, the characteristic function can be used to

calculate the return distribution via Fourier inversion. In doing so, we approximately impose

the zero-drift condition by setting µ = 1/2σt.

The risk-neutral dynamics of this alternative 2-factor SV model are assumed to have the

same structure as the 2-factor SV model. However the supposed risk premia – and hence

also the pricing kernel – are different. The derivation of the risk-neutral dynamics of the

alternative 2-factor SV model is described in Appendix B.

4.2. Forecasting results

We now assess the out-of-sample forecasting performance of the VaR models by applying

the test of Kupiec (1995), which checks whether the proportion of VaR exceptions is consistent

with the chosen confidence level α%. Instead of calculating the VaR based on a profit or

loss distribution, we can alternatively calculate the VaR based on the corresponding return

distribution. Then the α%-VaR can be interpreted as the maximum percentage loss, which

is not exceeded with a probability of (at least) α% within a specific forecasting period τ . If

the realized return within this period is smaller than its VaR forecast, we call this a VaR

exception. For a correctly specified VaR model, the total number of VaR exceptions should
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VaR-exceptions: 1 2 3 4 5 6 7 8 > 9

Basel II “traffic-light”:

Chosen categorization:

Table 4: Two categorizations for the accuracy of VaR models

amount to (100 − α)% of all VaR forecasts, which is also the null hypothesis of the Kupiec

(1995) test statistic. We categorize the forecasting performance of the analyzed VaR models

by means of the corresponding p-value of Kupiec’s test statistic. In doing so, we call a

VaR model “slightly accurate”, indicated by one asterisk, if 0.01 ≤ p < 0.05, “accurate”,

indicated by two asterisks, if 0.05 ≤ p < 0.1 and “highly accurate”, indicated by three

asterisks, if p ≥ 0.1. Furthermore, VaR models with p-values smaller than 0.01 are referred

to as “inaccurate”. This categorization can also be motivated by the traffic-light approach

of Basel II, which specifies as to when banks VaR models are inaccurate and if so which

penalty surcharge is associated. Table 4 compares the traffic-light approach of Basel II with

the chosen catagorization of this empirical study, where a confidence level of 99% together

with 250 VaR forecasts is supposed.

The number of VaR exceptions for all confidence levels and forecasting horizons and the

corresponding p-values are summarized in Tables 5 – 7 for the total, precrash and crash

period, respectively.

4.2.1. GARCH model

The GARCH model is able to forecast the 95% VaR with high accuracy during the pre-

crash period, irrespective of the forecasting horizon. Accordingly, the square-root-of-time

rule, which in our context scales one-week volatility forecasts to up to four-week volatility

forecasts, works well. However, the forecasting performance deteriorates with increasing

confidence level. For example, VaR forecast with a confidence level of 99% and forecasting

horizons of 1, 2 or 3 weeks are only slightly accurate. This bad forecasting performance

for large confidence levels is not surprising, since we assumed that returns are normally
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distributed. However, as seen in §3.2, the distribution of the S&P500 index returns is slightly

negatively skewed and fat-tailed. So, the normality assumption results in an underestimation

of extreme events, which in turn results in too many VaR exceptions for large confidence

levels. Also, the VaR forecasting performance of the GARCH model deteriorates in the

crash period, where only one-week-ahead VaR forecasts with confidences levels of 95% and

99% as well as two-week-ahead VaR forecasts with a confidences level of 95% are highly

accurate. Especially, for forecasting horizon larger than two weeks, all VaR forecasts are

inaccurate. The bad forecasting performance of the GARCH model during the crash period

can be explained by its parameter instability, which is illustrated in Figure 8. While the

GARCH parameters α and β are stable during the pre-crash period, they become strongly

instable during the crash period. In particular, at the beginning of the crash period the

parameters α and β increase and decrease significantly, respectively. Recall that the one-

week variance forecast of the GARCH model can be obtained by iterating (20) one time step

forward. Hence, the one-week variance forecast is a weighted average of current and past

information. So, the increase of α and the decrease of β can be interpreted as saying that

during turbulent market conditions current information becomes more important and past

information less important.

4.2.2. Black-Scholes model

The VaR forecasting performance of the Black-Scholes model is remarkably good during

the pre-crash period as all VaR forecasts are highly accurate, irrespective of the confidence

level and forecasting horizon. As for the GARCH model, the forecasting performance of the

Black-Scholes model deteriorates during the crash period. However, despite this challeng-

ing forecasting period, the Black-Scholes model is still able to deliver highly accurate VaR

forecasts for confidence levels of 95% and 99% together with forecasting horizons of 1, 2

and 3 weeks. Interestingly, the Black-Scholes model performs well also for large confidence

levels, in particular, during the pre-crash period. This is quite surprising since just like the

GARCH model the Black-Scholes model also relies on the normality assumption for the re-

turn distribution, which should be inadequate for large confidence levels. This phenomenon
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Figure 8: Evolution of the GARCH parameters. These figures illustrate the evolution of the

parameters α (a) and β (b) of the GARCH model specified in (19) - (20). The x-axis indicates the

respective end date of the S&P500 index return time series, which always starts on November 03,

1999, based on which the GARCH parameters are estimated. Furthermore, the y-axis denotes the

corresponding estimation results for the parameters α and β.

can be explained by a negative variance risk premium, which results in higher volatility

estimates under the risk-neutral measure than under the statistical measure. As a result,

the Black-Scholes model is generally more conservative than the GARCH model. Further-

more, the deviation between risk-neutral and statistical volatility estimates gets larger during

times of high volatility. So, the VaR forecasts of the Black-Scholes model become even more

conservative during turbulent market conditions.

4.2.3. Heston model

The VaR forecasting performance of the Heston model is very similar to that of the Black-

Scholes model, with slight disadvantages during the pre-crash period and slight advantages

during the crash period. But the overall forecasting performance of the Black-Scholes model

is better than of the Heston model, even though the Black-Scholes model only relies on

risk-neutral information and, in addition, assumes a simpler return distribution. A possible

explanation for the inferior forecasting performance of the Heston model might be that the

corresponding pricing kernel is too restrictive to account for time-varying risk preferences.
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The need for a more flexible modeling of risk preferences can be seen in Figure 9 from the

strong time variation of the variance risk premium parameter ∆κ, which reflects the risk

preferences in the Heston model. So, a given estimate of ∆κ represents an average value for

the risk preferences in the underlying sample period, which might deviate from the current

risk preferences. Accordingly, the attempt to risk-adjust the risk-neutral density of the Heston

model by virtue of a historical average variance risk premium parameter might result in a

biased real-world density.
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Figure 9: Evolution of the variance risk premium parameter ∆κ of the Heston model.

4.2.4. Heston-Nandi model

As expected, the Heston-Nandi model performs overall better than the basic GARCH

model. For the pre-crash period its performance is similar to the Heston model. During the

crash period it performs worse than the Heston model for the higher confidence levels (99%

and 99,9%). This may be due to our parameter setting, which implies a symmetric return

distribution. In summary, we find that the Heston-Nandi model performs slightly worse than

the Heston model.

4.2.5. 2-factor SV model

The 2-factor SV model performs remarkably well during the pre-crash period with highly

accurate VaR forecasts for almost all confidence levels and forecasting horizons. The only

exception is the 95% four-week-ahead VaR, which is only slightly accurate. Moreover, during
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the crash period, the 2-factor SV model is able to perform highly accurate VaR forecasts for

forecasting horizons up to thee weeks, irrespective of the confidence level. Most notably, if we

consider the total forecasting period, the 2-factor SV model is able to perform highly accurate

VaR forecasts for all confidence levels and forecasting horizons. The superior forecasting

performance of the 2-factor SV model compared to the models above is due to its ability to

account for time-varying preferences, which in turn allows for a more accurate estimation of

the real-world density.

4.2.6. Alternative 2-factor SV model

The VaR forecasting performance of the alternative 2-factor SV model during the pre-

crash period is almost identical to the one of the 2-factor SV model. Only for the 95%

two-week-ahead VaR the alternative 2-factor SV model results in one additional VaR ex-

ception compared to the 2-factor SV model. Also during the crash period, the alternative

2-factor SV model is able to perform highly accurate VaR forecasts for all forecasting horizons

and confidence levels. Hence, for long forecasting horizons (four-weeks) the forecasting per-

formance of the alternative 2-factor SV model is slightly better than the one of the 2-factor

SV model. Like the 2-factor SV model, the alternative 2-factor SV model is able to perform

highly accurate VaR forecasts for all forecasting horizons and confidence levels. The fore-

casting performance of the alternative 2-factor SV suggests that for long forecasting horizons

under stressed market conditions the additional “time-varying long-run variance” under the

statistical measure becomes relevant. During calm market conditions and for shorter forecast

horizons the more parsimonious 2-factor model seems to be preferable.

5. Conclusion

We presented a new option-pricing model, called the 2-factor SV model, which allows

one to capture the empirical properties of pricing kernels. In particular, our model can pro-

duce S-shaped and time-varying pricing kernels. The basis of the 2-factor SV model is an

additional “long-run target process”, which acts only under the risk-neutral measure and

describes the central tendency of the risk-neutral variance. Moreover, the long-run target
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process also significantly determines the sign and magnitude of the model’s variance risk

premium and thus also the supposed risk preferences.

We applied our framework in order to analyze the risk preferences of market participants

invested in S&P500 index options from 2001 to 2009. In line with economic theory, we found

that risk aversion increases during stressed market conditions and relaxes during normal

market conditions. Interestingly, some time before the subprime mortgage crisis, we found

evidence for risk-seeking behavior in terms of a positive variance risk premium and an in-

creasing S-shape characteristic of the pricing kernel. In addition, the long-run target process

allows one to easily identify changing market conditions and thus might be an interesting

quantity for analysts and central banks.

Moreover, we extracted the forward-looking information from S&P500 index options and

then performed out-of-sample Value-at-Risk (VaR) forecasts during the period of the sub-

prime mortgage crisis. In order to better classify the corresponding forecasting results, we

also performed VaR forecasts based on five alternative VaR models, namely the Heston,

Heston-Nandi, Black-Scholes, and an alternative 2-factor model, which also rely on option-

implied information, and a GARCH model, which relies on historical information only. We

found that the 2-factor SV models have the best forecasting performance, followed by the

Black-Scholes, the Heston, the Heston-Nandi and the GARCH model. In particular, the

2-factor SV models are the only ones able to perform highly accurate VaR forecasts for all

confidence levels (95%, 99% and 99.9%) and forecasting horizons (1, 2, 3 and 4 weeks), de-

spite the challenging forecasting period. These results highlight the value of option price

data for forecasting, but also the need to account for time-varying risk aversion when dealing

with this kind of information.

AppendixA. Characteristic function of the 2-factor SV model

Before we derive the characteristic function of the 2-factor SV model, we first need

to define and characterize affine processes. Following (Kahl, 2007, pp. 13 ff.), let Wt =
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[W1,t . . .Wd,t]
> be a d-dimensional standard Brownian motion defined on the probability

space (Ω,F ,P). Next, define the d-dimensional stochastic process Xt = [X1,t . . . Xd,t]
> via

the following stochastic differential equation:

dXt = µ(Xt)dt+ σ(Xt)dWt .

The drift vector µ : Rd → Rd is assumed to be continuous differentiable and the diffusion

matrix σ : Rd → Rd×d to be twice continuous differentiable. Now, an affine process can be

defined as follows (Kahl, 2007, p. 15):

Definition AppendixA.1 (Affine process). A process Xt is called affine if the covariance

matrix σ(x)σ(x)> and the drift µ(x) are affine in x. That is,

σ(x)σ(x)> = a+
d∑
i=1

xiαi , (A.1)

µ(x) = b+
d∑
i=1

xiβi ,

for some real-valued d× d-matrices a and αi and real-valued d-vectors b and βi.

As first shown by Duffie et al. (2000), the characteristic function of an affine process Xt

is known up to the solution of a system of Riccati equations and can be specified via the

following theorem (Filipović and Mayerhofer, 2009, p. 127):15

Theorem AppendixA.1. Suppose Xt is an affine process with drift and covariance matrix

specified by (A.1). Then the Ft-conditional characteristic function of XT is exponential affine

in Xt for all t ≤ T . That is, there exist C- and Cd-valued functions φ(t, u) and ψ(t, u) with

jointly continuous t-derivatives, such that

E[eiu
>XT | Ft] = eφ(T−t,u)+ψ(T−t,u)>Xt , (A.2)

15See Filipović and Mayerhofer (2009) for a proof.
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for all u ∈ Rd and t ≤ T . Moreover, φ and ψ = [ψ1 . . . ψd]
> solve the system of Riccati

equations

∂tφ(t, u) =
1

2
ψ(t, u)>aψ(t, u) + b>ψ(t, u) , (A.3)

∂tψi(t, u) =
1

2
ψ(t, u)>αi ψ(t, u) + β>i ψ(t, u) , 1 ≤ i ≤ d ,

subject to the boundary conditions φ(0, u) = 0 and ψ(0, u) = iu. In particular, φ is determined

by ψ via simple integration:

φ(t, u) =

∫ t

0

(
1

2
ψ(s, u)>aψ(s, u) + b>ψ(s, u)

)
ds .

The functions φ and ψ will also be called characteristic exponents. For some special cases,

as e.g. the Heston model, the ordinary differential equations (ODE)s (A.3) can be solved

explicitly. Unfortunately, in many cases this is not possible, so that numerical methods need

to be applied in order to approximate the solution. Duffie et al. (2000) propose to use the

Runge-Kutta method in this context.

The next lemma shows that the 2-factor model belongs to the class of affine processes.

Lemma AppendixA.1. Let St, σt and θt be the risk-neutral asset-price dynamics of the

2-factor SV model specified by (3). Then Xt = [ln(St) σt θt]
> is an affine process with drift

and covariance specified by (A.1), where

b =


r

0

κ2φ2

 , β1 = 0 , β2 =


−1/2

−κ?1
0

 , β3 =


0

κ?1

−κ2

 , (A.4)

a = 0 , α1 = 0 , α2 =


1 λ1ρ 0

λ1ρ λ2
1 0

0 0 0

 , α3 =


0 0 0

0 0 0

0 0 λ2
2

 . (A.5)

Proof. A process with drift and covariance specified by (A.1) is by Definition AppendixA.1

affine. Hence, we only need to check if the resulting dynamics coincide withXt = [ln(St) σt θt]
>,
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which is equivalent to

d ln(St) = (r − 1/2σt)dt+
√
σtdW̃1,t ,

dσt = κ?1(θt − σt)dt+ λ1

√
σtdW̃2,t , (A.6)

dθt = κ2(φ2 − θt)dt+ λ2

√
θtdW̃3,t .

If we plug (A.4) in µ(x) = b +
∑3

i=1 xiβi, it is apparent that the resulting drift term is the

same as in (A.6). Moreover, the covariance matrix of (A.6) is given by

dXtdXt =


σt λ1ρσt 0

λ1ρσt λ2
1σt 0

0 0 λ2
2θt

 dt . (A.7)

Again, if we plug (A.5) in σ(x)σ(x)> = a+
∑3

i=1 xiαi, we can see that the resulting covariance

matrix coincides with (A.7).

Now, we are able to proof Proposition 2.1.

Proof. According to Lemma AppendixA.1, Xt is an affine process, so that the characteristic

function of ln(ST ) can be calculated by virtue of Theorem AppendixA.1. In particular, the

ODEs of the characteristic exponents in (4) are simply functions of the affine drift and covari-

ance specification (A.4) and (A.5), respectively. Since we are interested in the characteristic

function of ln(ST ), we make the particular choice of u = [u 0 0]>. Hence, the ODEs for the

characteristic exponents are given by

∂tφ(t) = rψ1(t) + κ2φ2ψ3(t) , (A.8)

∂tψ1(t) = 0 , (A.9)

∂tψ2(t) = −1/2ψ1(t)− κ?1ψ2(t) + 1/2ψ1(t)2 + λ1ρψ1(t)ψ2(t) + 1/2λ2
1ψ2(t)2 , (A.10)

∂tψ3(t) = κ?1ψ2(t)− κ2ψ3(t) + 1/2λ2
2ψ3(t)2 , (A.11)
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subject to the boundary conditions φ(0) = 0, ψ1(0) = iu, ψ2(0) = 0 and ψ3(0) = 0. For

better clarity, we omitted the dependence of the characteristic exponents on u. Due to the

boundary condition ψ1(0) = iu, the solution of the second ODE (A.9) is simply ψ1(t) = iu.

Following (Kahl, 2007, p. 17), the third ODE (A.10) can be written as

dy

dt
= c1y

2 + c2y + c3 , (A.12)

where we set y = ψ2(t), c1 = 1
2
λ2, c2 = iuλρ− κ? and c3 = 1

2
(iu+ u2). The quadratic form

of this ODE allows us to write (A.12) as (Kahl, 2007, p. 18)

dy

dt
= c1

(
y − c̃∓2

) (
y − c̃∓3

)
, (A.13)

with

c̃+
2 =

−c2 +
√
d

2c1

and c̃−3 =
−c2 −

√
d

2c1

, (A.14)

or

c̃−2 =
−c2 −

√
d

2c1

and c̃+
3 =

−c2 +
√
d

2c1

. (A.15)

The coefficients c̃±2 and c̃∓3 , where the superscript indicates the choice of + or − in the

nominator, can be obtained by comparison of the coefficients of the equations (A.12) and

(A.13). This results in a quadratic equation, wherefore we have two possible solutions.

As shown by Albrecher et al. (2007) and Kahl and Loard (2006, 2010), the choice (A.15) is

numerically more stable. Therefore, we choose the coefficients (A.15), which will subsequently

simply be denoted by c̃2 and c̃3.

Next, the ODE (A.13) can be solved by seperation of variables, which is

dy
dt

= c1 (y − c̃2) (y − c̃3) ,

⇐⇒ 1

(y − c̃2) (y − c̃3)
dy = c1dt ,

⇐⇒
∫

1

(y − c̃2) (y − c̃3)
dy =

∫
c1dt ,

⇐⇒ 1

c̃2 − c̃3

ln

(
y − c̃2

y − c̃3

)
= c1t+ const.
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If we reset y = ψ2(t) and solve for ψ2(t), we get

ψ2(t) =
c̃2 − c̃3e

−
√
dt+(c̃2−c̃3)const

1− e−
√
dt+(c̃2−c̃3)const

.

Due to the boundary condition ψ2(0) = 0, it follows that

const =
1

c̃2 − c̃3

ln

(
c̃2

c̃3

)
,

and hence

ψ2(t) = c̃2
1−e

√
dt

1− c̃2
c̃3
e−
√
dt

= 1
λ2

(
c−
√
d
)

1−e−
√
dt

1−ge−
√
dt
.

Finally, the first ODE (A.8) can simply be solved by integrating the differential with respect

to t, which is

φ(t) =

∫ t

0

[rψ1(s) + κ?φ?ψ2(s)] ds ,

= iurt+ κ?φ?
1

λ2

(
c−
√
d
)∫ t

0

1− e−
√
ds

1− ge−
√
ds
ds , (A.16)

= iurt+ κ?φ?
1

λ2

(
c−
√
d
)[

t+
g − 1√
dg

ln

(
1− ge−

√
dt

1− g

)]

= iurt+ κ?φ?
1

λ2

[
t
(
c−
√
d
)
− 2 ln

(
1− ge−

√
dt

1− g

)]
.

Unfortunately, ψ3(t, u) cannot be calculated in closed form, wherefore we only state the

corresponding ODE at this point. Based on the numerical solution of (A.11), the ODE (A.8)

can then be solved via numerical integration.

AppendixB. Risk-neutral asset-price dynamics of the alternative 2-factor SV

model

In the following we derive the risk-neutral asset-price dynamics of the alternative 2-factor

SV model. Similarly as in Section 2.2, we start by defining the following Brownian motions
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with drift:

dŴ1,t = dW 1,t + γ1,tdt ,

dŴ2,t = dW 2,t + γ2,tdt ,

dŴ3,t = dW 3,t + γ3,tdt ,

where W 1,t, W 2,t and W 3,t are independent Brownian motions. The processes γ1,t, γ2,t and

γ3,t are assumed to be adapted to the filtration (Ft)t≥0 and specify the market price of risk

of St, σt and θt, respectively. Analogously to the Heston model, we impose the following

condition:
µ− r
√
σt
−
√

1− ρ2γ1,t − ργ2,t = 0 .

Hence, the risk-neutral asset-price dynamics are given by

dSt = rStdt+
√
σtStW̃1,t , (B.1)

dσt = [κ1(θt − σt)− λ1

√
σtγ2,t] dt+ λ1

√
σtdW̃2,t , (B.2)

dθt =
[
κ2(φ− θt)− λ2

√
θtγ3,t

]
dt+ λ2

√
θtdW̃3,t , (B.3)

where W̃1,t =
√

1− ρ2 Ŵ1,t + ρŴ2,t, W̃2,t = Ŵ2,t and W̃3,t = Ŵ3,t. For the market price of

variance risk γ2,t we impose the following condition:

κ1(θt − σt)− λ1γ2,t

√
σt = κ?1(θt − σt).

Hence, γ2,t is given by

γ2,t =
(κ1 − κ?1)(θt − σt)

λ1
√
σt

. (B.4)

Combining (B.2) with (B.4) results in the following risk-neutral variance dynamics:

dσt = κ?1(θt − σt)dt+ λ1

√
σtdW̃2,t .

Similarly as for the market price of variance risk, we impose the following condition for γ3,t:

κ2(φ− θt)− λ2γ3,t

√
θt = κ?2(φ? − θt).

Hence, γ3,t is given by

γ3,t =
κ2(φ− θt)− κ?2(φ? − θt)

λ2

√
θt

. (B.5)
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Combining (B.3) with (B.5) results in the following risk-neutral long-run target variance

dynamics:

dθt = κ?2(φ? − θt)dt+ λ2

√
θtdW̃3,t ,

Altogether, the risk-neutral asset-price dynamics of the alternative 2-factor SV model are

given by

dSt = rStdt+
√
σtStdW̃1,t ,

dσt = κ?1(θt − σt)dt+ λ1

√
σtdW̃2,t ,

dθt = κ?2(φ? − θt)dt+ λ2

√
θtdW̃3,t .

AppendixC. Option Pricing Comparison

We use the data set as described in §3.2 and perform an in-sample analysis for the

Heston, the two 2-factor SV (2FSV) model and the alternative 2-factor SV (A2FSV) model.

In order to compare the pricing effects related to the risk-neutral parameters, we estimate

the historical parameter simultaneously. Thus differences in the pricing performance arises

only from the risk-neutral parameters.

We performed an in-sample analysis for at-the-money (ATM) and out-of-the money

(OTM) options for for various times to maturity LZi in i = 1, 2, 3, 4 16 and strikes K1

(ATM) and K2 (OTM).17 We compared the performance in terms of the mean error of all

options in our sample and the means-squared error (MSE). As expected, both 2-factor SV

models out-perform the Heston model. While the mean error criterion favours the 2-factor

SV model, both models show roughly the same performance in terms of the MSE.

16The average maturities are 22, 45, 89 and 148 days.
17We use the following strike choice function Ki = bS/25c · 25 + i · 25, i = 1, 2. For the time period

considered the average moneyness of the (OTM) option is 96%.
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AppendixD. Return distribution

Let X be a random variable with characteristic function φX(u). Following Wu (2012),

the proability density function of X is then given by

fX(x) =
1

π

∫ ∞
0

e−iuxφX(u)du , (D.1)

and the cumulative distribution function of X by

FX(x) =
1

2
+

1

2π

∫ ∞
0

eiuxφX(−u)− e−iuxφX(u)

iu
du . (D.2)

Now, the continuous return of the asset-price process St within the period [t, t+τ ] is defined

as

rt,t+τ = ln(St+τ )− ln(St) , (D.3)

so that

Frt,t+τ (x) = P[rt,t+τ ≤ x] = P[ln(St+τ )− ln(St) ≤ x]

= P[ln(St+τ ) ≤ x+ ln(St)] = Fln(St+τ )(x+ ln(St)) . (D.4)

For affine option-pricing models, we generally only know the characteristic function of the

log-asset price ln(St). Hence, the return pdf and cdf can be recovered via equation (D.1) and

(D.2), respectively, together with equation (D.4).

AppendixE. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an extension of the classical Kalman Filter and

allows for a nonlinear state-space representation

xi = f(xi−1, ηi | θ1) , (E.1)

yi = g(xi, εi | θ2) , (E.2)

where f : Rm × Rm → Rm and g : Rm × Rn → Rn are possibly nonlinear functions. The

state equation (E.1) parameterized by θ1 describes the dynamics of the possibly unobservable
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state xi (n× 1) and the measurement equation (E.2) parameterized by θ2 relates the state of

the system to observations yi (m × 1). For ease of notation, we summarize the parameters

of the state-space representation in the vector θ = [θ1 θ2]. Moreover, the disturbance terms

ηi (m× 1) and εi (n× 1) as well as the initial state x0 (m× 1) are assumed to be normally

distributed with

ηi ∼ N (0, P ) , εi ∼ N (0, Q) and x0 ∼ N (m0, R0) . (E.3)

Based on these assumptions, the UKF approximates the distribution of the system via

xi

yi

∣∣∣∣∣∣ Ii−1 ≈ N

m−i (θ)

n−i (θ)

 ,

R−i (θ) C>i (θ)

Ci(θ) Si(θ)

 , (E.4)

where Ii = {y1, . . . , yi} denotes the available information at time i. The vectors m−i (θ) and

n−i (θ) specifying the conditional mean, and the matrices Ci(θ), R
−
i (θ) and Si(θ) specifying the

conditional variance, depend on the parametrization of the state-space representation. Fol-

lowing (Särkkä, 2011, p. 55 ff.), the parameters specifying (E.4) can be calculated recursively

via the following algorithm.

Algorithm AppendixE.1 (Unscented Kalman filter). Let (E.1) – (E.2) be the underlying

state-space representation and assume that the disturbance terms ηi and εi as well as the

initial state x0 are normally distributed as specified in (E.3). Then the state xi given all

observations up to time i is approximately normally distributed with

xi | Ii ≈ N (mi, Ri) ,

where Ii = {y1, . . . , yi} denotes the observations up to time i. Furthermore, the conditional

mean mi and the conditional variance Ri can be calculated recursively as follows:

First, define the augmented state vector x̃i−1 = [x>i−1 η>i ε>i ]>, which is of dimension

d = 2m+n, and approximate the conditional mean E[x̃i−1 | Ii−1] and variance V ar[x̃i−1 | Ii−1]

by

m̃i−1 =


mi−1

0

0

 and R̃i−1 =


Ri−1 0 0

0 P 0

0 0 Q

 .
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Moreover, implicitly define the matrices A (m× d), B (m× d) and C (n× d) , such that

xi−1 = Ax̃i−1 , ηi = Bx̃i−1 and εi = Cx̃i−1 .

Next, build the sigma vectors Xi−1 = [x̃i−1,0 . . . x̃i−1,2d] according to

x̃i−1,0 = m̃i−1 ,

x̃i−1,j = m̃i−1 + α
√
dσi−1,j for j = 1, . . . , d , (E.5)

x̃i−1,j = m̃i−1 − α
√
dσi−1,j−d for j = d+ 1, . . . , 2d ,

where σi−1,j is the jth row of the matrix square root

√
R̃i−1. The scaling parameter α,

with 0 < α ≤ 1, determines the spread of the sigma points around the mean of x̃i−1. The

corresponding weights for these sigma vectors are specified by

wµ
0 = λ/(d+ λ) , (E.6)

wΣ
0 = λ/(d+ λ) + (1− α2 + β) , (E.7)

wµ
i = wΣ

i = 1/(2d+ 2λ) for i = 1, . . . , 2d , (E.8)

where λ = d(α2 − 1). The vectors wµ
i and wΣ

i denote the weights for the mean and variance

approximation, respectively. Furthermore, the parameter β allows one to incorporate prior

knowledge about the distribution of x̃i−1.18

Finally, define the transformed sigma vectors

x−i,j = f(Ax̃i−1,j, Bx̃i−1,j)

y−i,j = g(x−i,j, Cx̃i−1,j)

and proceed with the following steps:

1. Prediction step:
m−i =

∑2d
j=0 wµ

j x−i,j ,

R−i =
∑2d

j=0 wΣ
j (x−i,j −m−i )(x−i,j −m−i )> .

18For example, if X is normally distributed, β = 2 would be the optimal choice. See Julier (2002) for

more details about the parameterization of the unscented transformation.

52



2. Update step:
mi = m−i + C>i S

−1
i (yi − n−i ) ,

Ri = R−i − C>i S−1
i Ci ,

where
n−i =

∑2d
j=0 wµ

j y−i,j ,

Ci =
∑2d

j=0 wΣ
j (x−i,j −m−i )(y−i,j − n−i )>,

Si =
∑2d

j=0 wΣ
j (y−i,j − n−i )(y−i,j − n−i )> .

The recursion is started with the unconditional mean m0 and the unconditional variance R0

of the initial state x0.

The distribution of the measurement yi conditional on the information Ii−1 can be ap-

proximated via

yi | Ii−1 ≈ N (n−i (θ), Si(θ)) .

So the log-likelihood function for observing ȳ1, . . . , ȳN can be approximated by

L(θ) = −nN
2

ln(2π)− 1

2

N∑
i=1

ln (|Si(θ)|)−
1

2

N∑
i=1

ξ>i Si(θ)
−1ξi , (E.9)

where ξi = ȳi−n−i (θ) denotes the prediction error. Now, the unknown parameter vector θ0 can

be estimated via the Quasi-maximum likelihood (QML) method, where (E.9) is maximized

with respect to θ.

AppendixF. Discretization of the Cox-Ingersoll-Ross process

In accordance with (van der Ploeg, 2006, p. 76 f.), we derive a discretization for the

Cox-Ingersoll-Ross process

dσt = κ(φ− σt)dt+ λ
√
σtdWt . (F.1)

First, define

σ̃t = eκtσt ,
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and consider the differential of σ̃t. By Itô’s lemma,

dσ̃t = κeκtσtdt+ eκtκ(φ− σt)dt+ eκtλ
√
σtdWt

= eκtκφdt+ eκtλ
√
σtdWt . (F.2)

Next, we integrate (F.2) over the interval [ti−1, ti] with ti − ti−1 = ∆t:

σ̃i − σ̃i−1 = κφ

∫ ti

ti−1

eκudu+ λ

∫ ti

ti−1

eκu
√
σudWu , (F.3)

where we set i = ti. Finally, we multiply equation (F.3) by e−κti and solve for σi, which is

σi = e−κ∆tσi−1 + κφ

∫ ti

ti−1

e−κ(ti−u)du+ λ

∫ ti

ti−1

e−κ(ti−u)√σudWu

= e−κ∆tσi−1 + φ
(
1− e−κ∆t

)
+ λ

∫ ti

ti−1

e−κ(ti−u)√σudWu

≈ e−κ∆tσi−1 + φ
(
1− e−κ∆t

)
+ e−κ∆tλ

√
σi−1 (Wi −Wi−1)

= e−κ∆tσi−1 + φ
(
1− e−κ∆t

)
+ e−κ∆tλ

√
σi−1

√
∆t εi , (F.4)

where εi ∼ N (0, 1). In contrast to the classical Euler approximation, where (F.1) is approx-

imated as

σi = σi−1 + κ(φ− σi−1)∆t+ λ
√
σi−1

√
∆t εi ,

equation (F.4) captures the drift term in closed form.
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