
1 

 

Sheath folds as a strain gauge in simple shear 1 

 2 

Marta Adamuszek*
(1)

, Marcin Dabrowski
(1,2) 

3 

 4 

(1)
 Computational Geology Laboratory, Polish Geological Institute – National Research 5 

Institute, Wrocław, Poland 6 

(2)
 Physics of Geological Processes, University of Oslo, 0316 Oslo, Norway 7 

 8 

 9 

Abstract 10 

We investigate initiation and evolution of sheath folds developing in multilayer 11 

sequences around slip surfaces in simple shear. The slip surface is initially circular and 12 

oriented at 135° to the shearing direction. The flow perturbation around the rotating and 13 

deforming slip surface initiates the growth of deflections of the layers, which serves as 14 

precursors for the sheath structure. The influence of the perturbed flow on the fold growth 15 

decreases with strain as the structure is moved away from the slip surface. For γ>10, the 16 

sheath fold evolution is dominated by a passive simple shear.  17 

We describe the fold geometry using: 1) interlimb angle (α), 2) hinge angle (β), and 3) 18 

aspect ratio of the eye-structures in the section normal to the shearing direction at the fold 19 

base (Ryz). We show that the fold shapes developing in different interfaces can be 20 

characterized by a unique combination of the three parameters depending on strain magnitude. 21 

We present three strain gauge diagrams, which can be used to decipher strain from sheath 22 

folds based on any combination of two out of three parameters (α, β, Ryz). 23 

We approximate the late evolution of the modelled sheath folds by analysing the 24 

passive deformation of cone structures in simple shear. We show that Ryz is asymptotically 25 

proportional to the square root of strain magnitude. 26 

 27 

Keywords (6): sheath folds, non-cylindrical folds, eye-structures, simple shear, cone 28 

shape, strain gauge 29 
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1. Introduction  30 

Non-cylindrical fold structures, which are characterized by a sharp hinge line bend 31 

(hinge angle) of more than 90° are termed sheath folds (Ramsay and Huber, 1987). In 32 

sections normal to the fold elongation, they give rise to a characteristic eye-shaped pattern. 33 

The number of closed contours seen in each section depends on the relation between the 34 

position of the section, the size of the fold, and layer thickness (e.g., Reber et al., 2012). 35 

Alsop and Holdsworth (2006) used the quotient of the aspect ratios of the outermost and the 36 

innermost closed contour to develop sheath fold classification. The authors distinguished 37 

three types of folds: analogous-eye, cat’s-eye, and bull’s-eye, in which the ratio of the 38 

outermost closed contour is the same, smaller, and larger from the ratio of the innermost 39 

closed contour, respectively. Further, they related the three fold patterns to the corresponding 40 

types of bulk strain deformation: plane strain, flattening, and constrictional. Reber et al. 41 

(2013a) showed that the sheath fold classification based on the contour aspect ratios may lead 42 

to erroneous results and should be carefully used for bulk strain type interpretations. Similar 43 

concerns regarding genetic interpretations based on the sheath fold classification were 44 

expressed in the work of Marques et al. (2008).  45 

Sheath folds are found in various rock types in a broad spectrum of geological settings 46 

across a wide range of scales (Alsop et al., 2007). However, it is generally recognized that 47 

they predominantly form during high strain deformation in a simple shear-dominated regime 48 

(Cobbold and Quinquis, 1980). Various mechanisms of sheath fold formation in simple shear 49 

have been suggested in the literature (Figure 1A). Passive amplification of a pre-existing 50 

dome-shaped layer interface perturbation is perhaps the most widespread model used to 51 

explain sheath fold development (Quinquis et al., 1978; Minnigh, 1979; Cobbold and 52 

Quinquis, 1980; Skjernaa, 1989; Mies, 1993). Approximating the initial layer interface 53 

perturbation as an upright cone, Mies (1993) used analytic geometry and graphical 54 

simulations to estimate shear strain based on 1) the aspect ratios of the contours, 2) the 55 

interlimb angle, and 3) the hinge angle (Figure 1B). Based on analogue experiments, Marques 56 

et al. (2008) showed that sheath folds can develop in perturbed layers with dissimilar 57 

viscosities of a ratio smaller than 10.  58 

The other group of models explains sheath fold development by various perturbation 59 

mechanisms of the simple shear flow field such as 1) above a rigid corrugated basement 60 

(Cobbold and Quinquis, 1980), 2) around rigid inclusions (Marques and Cobbold, 1995; 61 

Rosas et al., 2002; Marques et al., 2008), and 3) around slip surfaces (Reber et al., 2012; 62 
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Reber et al., 2013a; Reber et al., 2013b). Cobbold and Quinquis (1980) studied theoretically 63 

and experimentally sheath fold evolution above the corrugated surface. The authors derived a 64 

two-dimensional analytical solution for the velocity field above a rigid layer with regularly 65 

spaced grooves. Rosas et al. (2002) demonstrated how a sheath fold can develop around a 66 

rotating rigid inclusion in a shear zone. The impact of various parameters such as the shape of 67 

the inclusion and the distance of the marker layer from the inclusion was analysed. The study 68 

allowed for indicating configurations that are less likely for the sheath folds to develop. A 69 

systematic study of sheath fold formation around a slip surface was performed by Reber et al. 70 

(2013a). A range of parameters including slip surface size and orientation, strain magnitude, 71 

layer thickness, and cross-section location were investigated in terms of their impact on the 72 

aspect ratio of the outermost and innermost contours and the sheath fold length. The three-73 

dimensional analytical flow model allowed for analysis of the structure development in high 74 

resolution. The analysis was carried out on densely spaced yz-sections. The slip surface 75 

model was also positively tested for the case of a mechanically stratified matrix with 76 

viscosity ratio less than 50 between the layers using analogue experiments (Reber et al., 77 

2013b).  78 

Alsop and Holdsworth (2012) presented a natural multilayer sheath fold example with 79 

rheologically distinct layering. Based on a series of sections, the authors described a three-80 

dimensional shape of the 11 interfaces constituting the structure. They showed that the aspect 81 

ratio of the closed contours is larger in folds with larger hinge and interlimb angles. Moreover, 82 

the aspect ratio increases towards the fold nose Thus, following Alsop and Holdsworth 83 

(2006), the fold was classified as a cats-eye fold. The interlimb angle changes between 12 84 

and 40 degrees, whereas the aspect ratio of the closed contour observed in the most distant 85 

sections for different interfaces varies between 4 and 5.6. According to the authors, the 86 

overall geometrical analysis suggests that the fold was developed during general shear 87 

deformation due to the amplification of an initial perturbation. 88 

In this paper, we analyse the initiation and evolution of sheath folds that form around 89 

slip surfaces in simple shear. The aim of the work is to gain a more detailed insight into 90 

sheath fold evolution. Similarly to Reber et al. (2013a), we use the analytical Eshelby 91 

solution reduced to the case of an incompressible viscous medium and an inviscid elliptical 92 

inclusion (slip surface). However, in contrast to the previous work, we focus on the three-93 

dimensional shape analysis of individual interfaces rather than the eye-shaped structures 94 

displaying on the yz section. The approach significantly reduces the complexity of the 95 

analysis and allows for a better control on the evolution of fold shape parameters. We use the 96 
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term sheath structure sensu lato, including all non-cylindrical folds exhibiting eye patterns in 97 

the yz section, without the hinge angle necessarily below 90°. 98 

We show that the deformation of a right cone can be used to approximate the late 99 

shape evolution of the sheath fold in the slip surface model. We derive an analytical formula 100 

for the change of the aspect ratio of the outermost closed contour, the hinge angle, and the 101 

interlimb angle with strain. Finally, we present a strain gauge diagram based on a 102 

combination of two out of three parameters: 1) the aspect ratio of the outermost contour, 2)  103 

the hinge angle, and 3) the interlimb angle. 104 

2. Mechanical Model 105 

We study a three-dimensional mechanical model of sheath fold development around a 106 

slip surface in simple shear up to shear strain of γ=30. The slip surface is embedded in a 107 

homogeneous, isotropic, and linear viscous matrix. We use a Cartesian coordinate system xyz, 108 

with x parallel to the shear direction. The centre of a prescribed circular slip surface is located 109 

in the origin of the reference system. The slip surface is initially oriented at θ=135° to the 110 

shearing direction, which corresponds to the mode I fracture orientation (Figure 2A). The 111 

spatial coordinates are normalized by the slip surface radius. Thus, the slip surface radius is 112 

equal to 1 and its maximum vertical extent is z0=0.707. During deformation, the slip surface 113 

can passively deform (rotate and stretch) but it cannot propagate (Means, 1989). Due to the 114 

point symmetry, we analyse only the upper part of the model. We use nine planes of passive 115 

markers that are equally distributed above the slip surface and located at z0=0.8, 0.95, 1.1, 116 

1.25, 1.4, 1.55, 1.7, 1.85, and 2.0 to visualize the fold evolution. Since no mechanical 117 

layering is present in the model, the developing folds are passive sheath folds (e.g., Cobbold 118 

and Quinquis, 1980). The fold geometry in each interface is described using the interlimb (α) 119 

and hinge (β) angles. The interlimb angle is measured as the minimum acute angle between 120 

the fold limbs in the area, where the fold forms a sheath structure, whereas the hinge angle is 121 

measured as the minimum angle along the hinge line, where hinge line is a curve that joins 122 

points of the maximum curvature (Figure 1B). Additionally, we examine the development of 123 

flanking structures on the central xz-section and eye-shaped patterns on multiple yz-sections.  124 

We track the evolution of interfaces by numerically integrating the velocity field 125 

around the slip surface with strain. The velocity field is obtained using a modified Eshelby 126 

solution (see Exner and Dabrowski, 2010 for details). In simulations, we use a 4
th

 order 127 

Runge-Kutta scheme for time integration (e.g., Keller, 1993). 128 
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3. Results 129 

3.1. Sheath fold structure 130 

Figure 3 shows the side and top views of the four selected interfaces after γ=30, for 131 

which z0=0.8, 1.1, 1.4, and 1.7. The thick black lines indicate the positions of the yz section 132 

at the sheath structure base and the contour shapes are shown on the right side of the figure. 133 

The analysed interfaces form the outermost closed contour of the eye-pattern on the selected 134 

yz section. 135 

The folds have notably different geometry and size depending on the interface. In the 136 

side view, we can distinguish a long upper limb and a short lower limb. The lower limb is 137 

inverted and has a nearly flat shape. The geometry of the upper limb is more complex due to 138 

local curvature changes resulting in a second subsidiary hinge zone. The fold appears to have 139 

an asymmetric box-shape with a straight segment between the hinges. The straight segment is 140 

longer for distant interfaces.  141 

The length and orientation of the inverted limb controls the span along x-axis where 142 

the closed contours and thus the sheath structure sensu lato can be observed. The length of 143 

the inverted limb and, thus, the length of the sheath structure is smaller for distant interfaces. 144 

The interlimb angle increases for distant interfaces and is equal to α=2.3° for z0=0.8 and 145 

α=5.0° for z0=1.7 (note vertical exaggeration for the side view in Figure 3). The hinge angle 146 

(β) is the smallest for the lowermost interface and the largest for the most distant interface. 147 

For z0=0.8, β is equal to 13° and for z0=1.7 it is 53°. The closed contour aspect ratio (Ryz) is 148 

calculated as a ratio between the maximum extents of the closed contour measured in the 149 

horizontal and vertical directions. Ryz is higher for distant interfaces.  150 

Figure 3 demonstrates the complexity of the sheath structure geometry. The fold 151 

outline observed in the top view shows a sine-shaped hinge line variation. The contour shapes 152 

in the yz section are asymmetric about the horizontal plane. The asymmetry is more 153 

pronounced for proximal interfaces, which exhibit pyramidal shapes with rounded corners. 154 

The more distant interfaces develop an almost elliptical geometry.  155 

A small-scale sheath structure develops below the main sheath fold on the other side 156 

of the slip surface. In a yz cross-section, we would observe a double-eye fold (see Reber et al., 157 

2012). In the current analysis, we focus on the structures that develop above the plane 158 

containing the slip surface. 159 
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We quantify the shape of the nine studied interfaces after γ=30 using four parameters: 160 

the fold height and length in the central xz section and the aspect ratio and asymmetry of the 161 

closed contours appearing on different yz sections (Figure 4). The fold height is measured as 162 

the distance between the topmost point on the fold interface and the initial interface plane. 163 

The fold length is calculated as a distance between the two most distant yz sections, in which 164 

the closed contours can be observed. The aspect ratio of the closed contour is measured for 165 

different yz sections and we use ryz to differentiate it from the aspect ratio measured at the 166 

sheath structure base (Ryz). To quantify the degree of asymmetry, we split each closed 167 

contour into the lower and upper part dividing it by the line joining the left- and rightmost 168 

hinge points. The degree of asymmetry is defined as the ratio between the heights of the 169 

upper and lower parts of the contour. When the asymmetry coefficient is close to 1, the upper 170 

and lower part have equal heights and the contour is approximately mirror symmetric around 171 

the horizontal plane. For the analysed sheath structure, the asymmetry coefficient is always 172 

larger than 1. 173 

The height and length of the sheath structure are larger in the proximal interfaces than 174 

in the distant ones (Figure 4A and B). The fold height is 5 times larger in the innermost 175 

interface z0=0.8 than in the outermost interface z0=2.0, whereas the fold length is more than 176 

an order of magnitude greater for z0=0.8 than for z0=2.0. Figure 4C and D shows the variation 177 

of the aspect ratio, ryz, and the asymmetry of the closed contour along the x-axis for different 178 

interfaces. The aspect ratio ryz is generally higher for distant interfaces and ranges between 6 179 

and 11.5. For inner interfaces, ryz variation is characterized by a local minimum along the 180 

length of the fold, whereas for the outer interfaces it decreases towards the apex. If we 181 

analyse sections at the fold base, we cut through the inner interface with smaller ryz. Thus, we 182 

observe bull’s-eye-folds. In sections away from the fold base, we can also find analogous-183 

eyes and cat’s-eyes. 184 

The highest asymmetry is observed close to the fold base and gradually decreases 185 

towards the fold apex. The largest variation occurs in the proximal interfaces, e.g., for z0=0.8, 186 

where it changes from 7.4 at the fold base to almost 1 at the apex. The eye patterns 187 

developing in distant interfaces are more symmetrical e.g., for z0=2.0 the value is between 1.7 188 

and nearly 1.  189 
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3.2. Interface shape evolution 190 

We analyse the shape evolution of interfaces with strain. Figure 5 shows the 191 

intersections of interfaces in the central xz section (y=0) for selected strain values γ=1, 5, 10, 192 

20, and 30. A rapid rotation of the slip surface is observed in the initial stages of deformation. 193 

The orientation measured with respect to the shearing direction changes from the initial value 194 

of θ=135° to θ=14° for γ=5 and θ=6° for γ=10. The angle approaches the asymptotic value of 195 

θ=0° with further deformation. The length of the slip surface interception in the xz section 196 

(slip line) changes during deformation. Initially, it decreases attaining a minimum length at 197 

γ=1. Further deformation leads to elongation of the slip line. For γ=10, the aspect ratio of the 198 

slip surface is around 6, and for γ=30, it exceeds 20. The rotation of the slip surface promotes 199 

interface bending and asymmetric folding. Fold structures develop in the vicinity of both tips 200 

of the slip surface. The structures below and above the slip surface are point symmetric with 201 

respect to the centre of the slip surface. We focus our analysis on the regions above the slip 202 

surface. 203 

We distinguish three evolving regions hosting different kinds of structures (Figure 5). 204 

The regions are bounded by the extrapolation of the slip line and separated by the vertical 205 

lines that intercept the slip line tips. The interfaces in region I are virtually undeformed. Only 206 

towards the triangular region III, we observe a narrow zone with slightly deflected interfaces. 207 

In region II, which extends above the slip surface, the interfaces form a gentle asymmetrical 208 

synform, with a steeper and longer right limb compared to the left limb (note the vertical 209 

exaggeration 5:1 in Figure 5). The interface deflections decrease away from the slip surface. 210 

Initially, the interface deflections grow and, at the same time, the synform is stretched. The 211 

initially rapid evolution of the deflections slows down with strain and the syncline becomes 212 

more gentle due to progressive stretching. In the part of the region close to the slip surface, 213 

the interfaces that are initially cut by the slip surface develop an antiformal structure. The 214 

antiform migrates towards region III, becoming the innermost, core part of the sheath fold 215 

structure. For γ=5, the boundary line between region II and III intercepts the fold hinge zone 216 

for all the interfaces. Folds developed in the proximal interfaces are tight, strongly 217 

asymmetric and their amplitudes are large. Folds developing in the distant interfaces are 218 

wider, more symmetrical and have smaller amplitudes. Although further deformation causes 219 

only a slight fold growth in the vertical direction, we observe a significant stretch of the hinge 220 

zone, rotation and eventually inversion of the right fold limb. The hinge zone located above 221 

the tip of the slip surface gets smoother, whereas the hinge zone that defines the apex of the 222 
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sheath structure sharpens. As a result, an asymmetric box fold forms in region III, which 223 

further transforms into a non-cylindrical fold structure and finally a sheath fold. The folds 224 

develop earlier in the proximal interfaces than in the distant ones. The position of the yz-225 

section along the x-axis, in which any given interface forms the outermost closed contour is 226 

determined by the location of the rearmost (here leftmost) point of the inverted fold limb. The 227 

positions of such sections are found closer to the origin of the coordinate system in the 228 

proximal interfaces.  229 

We show the evolution of the fold height, fold length, the outermost closed contour 230 

aspect ratio at the sheath structure base, and the closed contour asymmetry as a function of 231 

strain for the nine selected interfaces in Figure 6. The proximal interfaces develop closed 232 

contours earlier during deformation compared to the more distant interfaces. Closed contours 233 

can be found in the two innermost interfaces z0=0.8 and 0.95 already for γ=6, whereas it 234 

requires γ=24 to develop closed contours in the z0=2.0 interface.  235 

The fold height is always the largest for z0=0.8. For γ=15, it reaches ca. 0.55 and 236 

further deformation leads to only minor changes. The maximum fold height decreases for 237 

distant interfaces. The amount of strain required to reach the nearly maximum possible height 238 

is larger for outer interfaces. At each stage of deformation, the folds are longer in the 239 

proximal than in the distant interfaces. Ryz increases with strain for all interfaces and the 240 

value is always smaller in the proximal than distant interfaces. For γ=15, we observe closed 241 

contours in the six lowermost interfaces. Their aspect ratios Ryz vary between 5 and 6.5. For 242 

γ=30, closed contours are present in all the interfaces and their aspect ratio varies between 6.5 243 

and 11.6. The asymmetry of the contours increases with strain. For z0=0.8 it is equal to ca. 244 

1.3 at γ=6 and 7.6 at γ=30. The asymmetry developed in the distant interfaces is always 245 

smaller than in the proximal ones. 246 

3.3. Strain gauge diagrams 247 

Dashed lines in Figure 7A and B show the evolution of Ryz for the nine interfaces as a 248 

function of the interlimb angle (α) and hinge angle (β), respectively, whereas, in Figure 7C, 249 

they illustrate a relation between α and β. Solid lines connect the values obtained for different 250 

interfaces for selected strain values γ=10, 15, 20, 25, and 30. Ryz exhibits an approximate 251 

linear dependence on both α and β in the double-logarithmic plot. Similarly, a linear trend is 252 

observed in the α and β relation. Ryz increases and both α and β decrease with strain. For a 253 

given strain, Ryz, α, and β are always larger for distant interfaces. Hence, the fold shape can 254 
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be described uniquely using the three parameters for a given strain. However, it is sufficient 255 

to use two out of the three geometrical parameters to decipher the shear strain. Thus, the plots 256 

presented in Figure 7 can be used as strain gauge diagrams.  257 

The grey field in Figure 7B and C delineates the area, where the hinge angle (β) is 258 

less than 90° and the non-cylindrical fold satisfy the sheath fold definition. During 259 

deformation, the folds that are initially characterized with a large hinge angle evolve into 260 

sheath fold sensu stricto. However, we can always find distant interfaces that are 261 

characterized by a wide hinge angle of more than 90°. 262 

3.4. Analysis of the rate of deformation 263 

In Figure 8, the isocontours show the deviation of the rate of deformation measured in 264 

the model (D) from the background rate of deformation ( D ), where the rate of deformation is 265 

given by the symmetric part of the velocity gradient. The deviation is quantified using the 266 

second invariant of the difference between the two rate of deformation tensors D D D  . 267 

The blue and green contour lines indicate the values of D  equal to 0.05 and 0.2, respectively, 268 

whereas the thick and thin grey lines show the selected interface shapes.  269 

A zone of increased deformation localizes along the slip surface and shows a 270 

characteristic butterfly shape at the both slip surface tips. The shape of the zone evolves as 271 

the size and orientation of the slip surface changes. At the initial stages, shearing is localized 272 

close to the slip surface such that for γ=1 the 0.05D   contours outline a narrow area and the 273 

0.2D   contours are almost undistinguishable (Figure 8A). Further deformation and the 274 

stretching of the slip surface cause that the zone is longer and wider and the butterfly shape is 275 

greater (Figure 8B). For γ>10, the two contours that outline the zone along the slip surface 276 

grow horizontally but do not expand vertically, whereas the size of the butterfly shape 277 

decreases (Figure 8C, D, and E).  278 

At the initial stages of deformation, the perturbation of the interfaces is initiated and 279 

grows around the regions of high D (Figure 8A and B). However, already for γ>10, the 280 

perturbed interfaces move to the region ahead of the slip surface tip, where the background 281 

deformation dominates, and evolve into sheath folds. The influence of the slip surface on the 282 

sheath fold development is negligible for γ>20. 283 

To estimate the role of passive deformation in sheath structure evolution, we compare 284 

the fold shape developed in the z0=0.8 interface for γ=9 (G9) with the fold shapes that are 285 

generated in the same interface for larger strains γ=15 (G15) and γ=21 (G21). The two latter 286 
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folds are subject to a passive simple shear backward deformation of γ=-6 and γ=-12 287 

respectively, such that the three models illustrate the fold shape for effectively the same strain 288 

of γ=9. The contour plots in Figure 9A show the top view of the elevation of the structure for 289 

the three folds and the two dashed lines mark the position of the yz and the central xz sections, 290 

which are shown in Figure 9B and C, respectively.  291 

The three structures exhibit similar shapes in the region past the slip surface tip 292 

(Figure 9C). The shape of the inverted fold limb and the fold apex are almost identical in the 293 

three models. A small discrepancy is noticeable in the upper fold limb, close to the sheath 294 

structure base, where the interface in the actual G9 model plunges slightly below the upper 295 

limbs of the retrodeformed folds. As a result, we observe a small misfit between the shapes of 296 

the closed contours in Figure 9B. The straight segment of the upper limb is the longest in G21. 297 

The significantly different shape of the upper limb is the main reason of the discrepancy 298 

between the three fold shapes observable in Figure 9A and Figure 9B.  299 

4. Passive deformation model of the sheath fold evolution 300 

To develop a passive deformation model of the sheath structure evolution for large 301 

strains, we approximate the fold shape with a right circular cone structure with an initial 302 

opening angle α0. The cone is inclined to be horizontal along the slant height. We analyse the 303 

cone shape evolution during progressive simple shear and measure: 1) the aspect ratio of the 304 

contour in the yz sections (Ryz), 2) the cone angle in the central xz plane that bisects the cone 305 

in the centre (α), which is analogous to the interlimb angle and 3) the angle in the plane 306 

normal to the xz plane that also bisects the cone in the centre (β), which is analogous to the 307 

hinge angle (Figure 10).  308 

The cone intercepts with a reference vertical section giving an ellipse (the black line 309 

in Figure 10). The lengths of the horizontal and vertical axes of the ellipse are denoted by Ry 310 

and Rz, respectively. In the analysis, we set the origin of the coordinate system in the 311 

lowermost point of the reference ellipse (the black dot in Figure 10). The aspect ratio of the 312 

ellipse is given by (see Appendix A) 313 

 
 0

0

cos

cos
2

yz
R






 
 
 

  (1) 314 

The aspect ratio of the ellipse increases with strain. The length of the vertical axis 315 

remains the same (
z z

R R  ), whereas the length of the horizontal axis (
y

R  ) is inherited from 316 
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an ellipse embedded in a cone section inclined at an angle φ to the reference vertical section 317 

(the white contour in Figure 10). The angle is related to shear strain γ through 1
tan 


 . 318 

The ellipse aspect ratio Ryz changes with strain as (see Appendix B): 319 

 
   0 0

0

sin cos

cos
2

yz
R

  






 
 
 

  (2) 320 

For the initially elliptical cone shape, (see Appendix C), we obtain 321 

 
   0 0

0

sin cos

cos
2

yz
R f

  






 
 
 

  (3) 322 

where f  denotes the initial cone aspect ratio. Note that Eq. (2) and (3) differ only by the 323 

factor f , which indicates that the initial flattening of the cone does not influence the scaling 324 

between Ryz and α0. 325 

The evolution of the cone angles α and β with strain are given by the following 326 

expressions (Appendix D) 327 

 
 

   

01

0 0

sin
tan

sin cos




  


 

  
 

  (4) 328 

and 329 

 
 

1

sin
2

2 tan
cos

yz
R








  
  
 

 
 

 
 

  (5) 330 

Note that we have simplified the expression for β by deriving it as a function of α and 331 

not α0.  332 

Figure 11 shows the evolution of Ryz, α, and β with strain obtained using the 333 

analytical expressions (Eq. (2), Eq. (4), and Eq. (5)) for α0 varying between 10 and 170 334 

together with the simulation results for the nine analysed interfaces. The analytical expression 335 

for Ryz gives an exact linear trend with strain in the double-logarithmic plot only for α0=90 336 

 2
yz

R    (6) 337 



12 

 

For α0≠90, the relation is visibly non-linear with strain for small strain and almost linear for 338 

larger strain. The contribution of the  0
cos   term in the nominator in Eq. (2) decreases with 339 

strain and for larger strains the expression can be approximated with  340 

  0yz
R c     (7) 341 

where c  is a constant dependent on the initial cone angle. In the case of an elliptical cone 342 

shape, the slope does not change but it will be shifted upwards or downwards by a factor f  343 

(Appendix C). The simulation results for all analysed interfaces (Figure 11B) show a similar 344 

trend to the one observed for the right cone.  345 

The analytical expression for α is also non-linear for small strains and becomes nearly 346 

linear with strain (Figure 11C). It can be approximated with a relation 347 

  0

1
c 


   (8) 348 

The curves are convex for α0<90° and concave for α0>90°. For the case of α0=90°, Eq. (4) 349 

reduces to  350 

 1 1
tan




   (9) 351 

The relations shown for the numerical results have concave shape characteristics similar to 352 

the analytically derived solution for large α0 >160° (cf. Figure 11C and D). 353 

The analytical solution for the evolution of β with strain shows approximately linear 354 

relation in the double-logarithmic plot for all α0, whereas the numerical results exhibit 355 

slightly curved lines for all interfaces (cf. Figure 11E and F). However, the curves shown in 356 

the two plots are characterized by distinctly different slopes in the log-log axis. 357 

5. Discussion 358 

5.1. Sheath fold geometry 359 

Sheath folds are commonly described as structures with either conical (e.g., Ramsay, 360 

1958) or paraboidal (e.g., Carey, 1962) shape. However, we show that sheath folds may 361 

exhibit a more complex geometry. In the yz section, the simulated sheath folds at their base 362 

show strongly asymmetrical, pyramidal contours with rounded corners, whereas the contours 363 

are more elliptical at the apex (Figure 3). In the multilayer sequence, each interface is 364 

characterized by a distinct set of geometrical parameters such as interlimb angle (α), hinge 365 
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angle (β), and aspect ratio of the outermost closed contour (Ryz). A single parameter is not 366 

sufficient to uniquely describe the interface (Figure 7). Due to a large variation in the shape 367 

of individual interfaces, the description of the multilayer sequence is a challenging task. 368 

Moreover, the classification of such a structure as sheath fold might be problematic, where 369 

e.g. only some layers have a hinge angle below 90° and can be classified as sheath folds 370 

sensu stricto (see Figure 7B).  371 

Based on serial sectioning of a natural example of a multilayer sheath structure, Alsop 372 

and Holdsworth (2012) depicted it as a self-similar structure and argued that the bulk three-373 

dimensional fold geometry can be reproduced from the analysis of a single yz section. In this 374 

study, sheath folds exhibit higher Ryz in the proximal than in the distant interfaces and the 375 

increase of Ryz is correlated with an increase of α and β. Alsop and Holdsworth (2012) 376 

concluded that the fold was formed due to the amplification of the initial layer perturbation in 377 

general shear, and the viscous layering played a key role during deformation. Since we 378 

describe the sheath structure development due to flow perturbation around a slip surface 379 

embedded in a homogeneous rock matrix, the difference in the fold shapes can be attributed 380 

to both the different mechanisms of the fold formation and the mechanical role of the layers. 381 

Additionally, some discrepancy between observations can be related to the difference in the 382 

orientation of the yz-sections. Alsop and Holdsworth (2012) analysed the yz-sections oriented 383 

normal to the fold elongation, whereas we orient them normal to the shearing direction. In 384 

our opinion, the shearing direction, which in the case of simple shear deformation coincides 385 

with orientation of lineation and foliation, is easier to establish accurately in the field than the 386 

fold elongation, especially when the analysed fold is not exposed in three-dimensions. For 387 

large deformation, the folds are oriented subhorizontally and the difference between different 388 

approaches of defining the yz sections diminishes. 389 

In our fold shape analysis, we choose to analyse the closed contours in each interface 390 

in the yz-section located at the fold base. The analysed interfaces form the outermost closed 391 

contour in such sections. The outermost closed contour is one of the most distinct features of 392 

the fold and it is generally easy to measure in the field. The same parameter has been used in 393 

the sheath fold classification by Alsop and Holdsworth (2006) and the detailed sheath fold 394 

analysis by Reber et al. (2012). The results of the Ryz analysis presented in the study are 395 

consistent with the results presented in the work of Reber et al. (2013a).  396 
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5.2. Evolution of the sheath structures  397 

During initial stages of deformation, the flow perturbation around rotating slip surface 398 

leads to development of the interface deflections near the slip surface tip, which are a trigger 399 

for the sheath structure development. Due to shearing, the sheath structure starts to develop 400 

ahead of the slip surface and it is accompanied by the formation of a synformal structure 401 

directly above the slip surface. Since the interfaces away from the fold and synformal 402 

structures are nearly undeformed, the fold growth must be balanced by the growth of the 403 

synform. Formation of the two structures was also described by Adamuszek et al. (2016), for 404 

sheath folds developing around layer-parallel slip surfaces.  405 

For γ>10, the evolution of the sheath structure is dominated by the passive simple 406 

shear deformation and is practically independent from the flow perturbation around the slip 407 

surface. Hence, the late evolution of the fold geometry can be easily obtained for an arbitrary 408 

strain by subjecting the fold to the simple shear deformation. 409 

5.3. Strain map 410 

The shape of each interface at different deformation stages can be uniquely described 411 

using the hinge angle α, the interlimb angle β, and the aspect ratio of the outermost closed 412 

contour Ryz. This gives a potential tool to decipher strain from the fold geometry. We show 413 

that two shape parameters are necessary to close the relation. We provide three strain gauge 414 

diagrams that relate strain magnitude to Ryz and α, Ryz and β, or α and β (Figure 7).  415 

The diagrams illustrate that single geometrical parameter is not sufficient to determine 416 

strain and some generalizations can lead to erroneous interpretations e.g., large interlimb 417 

angle is not diagnostic for small strain values. For some cases, the diagrams can be used to 418 

obtain constraints on the strain magnitude value e.g., Ryz=10 indicates γ>25. 419 

The diagrams are constructed based on the analysis of the folds developed for a 420 

specific initial geometry and boundary conditions. However, based on the analysis provided 421 

by Reber et al. (2012), we expect that the gauge diagrams would look differently for models 422 

with e.g. different shape and orientation of the slip surface. The analysis of sensitivity of an 423 

additional factor on the set of three parameters could be a potential tool to gain more 424 

information about deformation or initial conditions. Since the exposures of natural sheath 425 

structures rarely allow obtaining the three geometrical parameters, we limited the analysis to 426 

two parameters and assumed a slip surface geometry and conditions that seem to be most 427 

likely to occur in nature in simple shear deformation regime.  428 
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Detailed field measurements of sheath folds such as presented by Alsop and 429 

Holdsworth (2012) can be used to estimate strain magnitude. According to our model, the 430 

obtained values of α varying between 12 and 40 degrees and Ryz varying between 4 and 5.6 431 

correspond to shear strains between 8 and 15. However, neglecting effects due to the coaxial 432 

component of deformation and viscosity differences between the layers may not be justified 433 

in this case. 434 

5.4. Cone shape 435 

Despite the complex geometry of the sheath structure, we used a right cone to 436 

approximate the fold shape and analyse how it deforms during simple shear. The approximate 437 

model can be only applied to the passive stage of the sheath fold evolution, away from the 438 

slip surface, so generally for γ>10. Both the numerical simulations and the analytical solution 439 

show that Ryz scales with   for large strain. Since in the analytical solution, we consider 440 

the cone with a circular base, and the simulation results and the analytical solution are not 441 

exactly the same. If we use an elliptical cone shape, we obtain the scaling that allows 442 

matching the two curves. Using the initial cone angle α0>160°, we could also reproduce the 443 

correlation between α and γ. However, we could not obtain the exact scaling between β and γ. 444 

This could be attributed to the simplification of the sheath structure while using the cone 445 

shape. In the analytical solution, the hinge line variation is approximated with two half-lines 446 

originating at the cone apex, whereas the results of the simulation show a sine-shaped hinge 447 

line variation (top view of structure in Figure 3). 448 

The deformation of the right cone shape to approximate the sheath fold development 449 

was also studied by Skjernaa (1989) and Mies (1993). However, the authors examined the 450 

fold evolution during passive amplification of the pre-existing perturbation and they used a 451 

differently oriented cone. Thus, the results of their analysis are significantly different to those 452 

presented in the study. 453 

6. Conclusions 454 

1. The flow perturbation around rotating and deforming slip surfaces in simple shear 455 

causes interface deflections, which are precursors of the sheath structure.  456 

2. Progressive deformation moves the developing sheath fold away from the slip 457 

surface into the regions, where passive simple shear dominates. For shear strain 458 

γ>10, passive deformation controls the sheath structure evolution.  459 
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3. Each interface of the sheath fold structure has a unique shape at a given strain. We 460 

present three strain gauge diagrams that allow using two out of three parameters 1) 461 

the aspect ratio of the outermost closed contour, 2) the hinge angle, and 3) the 462 

interlimb angle to estimate the shear strain.  463 

4. For large strains, the fold shape evolution can be approximated by the deformation 464 

of a horizontally oriented cone shape. We developed an analytical expression that 465 

describes the evolution of the aspect ratio of the outermost closed contour, the 466 

interlimb angle, and the hinge angle. Due to the simplification of the fold 467 

geometry, noticeable differences in the evolution of these parameters between 468 

analytical solution and numerical result are recorded only for the hinge angle.  469 
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Figure captions 524 

Figure 1 A) Models of sheath fold formation in simple shear: passive amplification of 525 

a pre-existing perturbation, flow perturbation above a corrugated rigid basement, flow 526 

perturbation around a rigid inclusion, and flow perturbation around a slip surface (weak 527 

inclusion) (modified after Cobbold and Quinquis, 1980). B) 3-dimensional sketch illustrating 528 

interlimb angle (α), hinge angle (β), and aspect ratio of the outermost closed contour (Ryz) of 529 

a sheath fold. 530 

 531 

Figure 2. Schematic illustration of the model geometry in the xz section showing the 532 

slip surface and the analysed interfaces. The model is subject to simple shear deformation 533 

that acts in x direction. The slip surface is oriented at θ=135° to the shearing direction. 534 

 535 

Figure 3 Side (xz) and a top (xy) view of the fold shapes for selected interfaces after 536 

γ=30 for A) z0=0.8, B) z0=1.1, C) z0=1.4, and D) z0=1.7. Dotted white lines in the side view 537 

show the hinge line of the structure. α and β indicate the interlimb and hinge angle, 538 

respectively. Note that vertical exaggeration in the side view is 5:1. The black thick line 539 

shows the locations of the outermost contour, which are presented in the yz view (the yz view 540 

is in scale). Ryz denotes the aspect ratio of the outermost closed contour. 541 

 542 

Figure 4 A) Fold height and B) fold length for different interfaces. Variation of C) the 543 

aspect ratio (ryz) and D) asymmetry of the closed contour along the x-axis. The results are 544 

presented for γ=30. Star markers in C) and D) refer to the fold geometry presented in Figure 3. 545 

 546 

Figure 5 The central xz section for A) γ=1, B) γ=5, C) γ=10, D) γ=20, and E) γ=30. 547 

Selected interfaces are marked with thick lines (z0=±0.8, 1.1, 1.4, 1.7). Dashed lines separate 548 

three distinct regions of deformation: I – undeformed or slightly deformed, II – forming basin 549 

or dome structures, III – forming the sheath structure. The orientation of the slip surface (θ) is 550 

indicated in the right lower corner. Note the vertical exaggeration of 5:1. 551 

 552 

Figure 6 A) Fold height, B) fold length, and C) aspect ratio (Ryz) and D) asymmetry 553 

of the outermost closed contour presented as a function of strain (γ) for nine different 554 

interfaces. 555 

 556 
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Figure 7 Aspect ratio of the outermost contour (Ryz) as a function of A) interlimb 557 

angle (α) and B) hinge angle (β). Solid lines show the simulation results for different 558 

interfaces and dashed lines join the points of the same strain. The grey field in B) indicates 559 

the area of sheath folds sensu stricto. 560 

 561 

Figure 8 Colourmap illustrating the second invariant of the difference between the 562 

rate of deformation measured in the model and in the background for γ=1, 5, 10, 20, and 30. 563 

The blue and green contour lines mark 0.05 and 0.2 contour values, respectively. Grey lines 564 

show the interface shape. For selected interfaces z0=±0.8, 1.1, 1.4, 1.7, and 2.0, we use a 565 

thick line. Note that vertical exaggeration is 5:1. 566 

 567 

Figure 9 A) Top view of the z0=0.8 interface for three cases: at γ=9, at γ=15 subjected 568 

to passive backward deformation of γ=-6, and at γ=21 subjected to passive backward 569 

deformation of γ=-12. Black dashed lines indicate the yz and xz cross-section positions, 570 

which are shown in B) and C), respectively. 571 

 572 

Figure 10 Circular cone shape with initial opening angle α0 used to approximate 573 

sheath structure evolution. α and β denote the cone angles measured during deformation in 574 

the two orthogonal planes that intersect along the cone axis. The thick black ellipse is a 575 

contour of a cone intersection with a vertical section. Ry and Rz denote the horizontal and 576 

vertical axis, respectively. The thick white line is an intersection of the cone with an inclined 577 

section, which contains the lowermost point (red dot) of the black ellipse. 
y

R   and 
z

R   denote 578 

the two axes of the white ellipse. The white ellipse corresponds to the location of the black 579 

ellipse prior to a certain amount of simple shear. A) shows the cone structure and the 580 

contours in a three-dimensional perspective whereas B) and C) are the side xz and yz views, 581 

respectively. 582 

 583 

Figure 11 Evolution of A) and B) contour aspect ratio, C) and D) interlimb angle, and 584 

E) and F) hinge angle with strain. The plots on the left show the analytical solution for 585 

different initial cone angles (α0) varying between 10 and 170 degrees, whereas the plots on 586 

the right illustrate simulation results for the outermost contour for the nine analysed 587 

interfaces. 588 

 589 
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Figure A1 Cone shape illustrating a simplified model of a sheath fold. Dark red line 590 

shows the cone axes, whereas the black line shows a contour of a vertical section through the 591 

cone. Red line illustrates a contour through the cone normal to the cone axis. See text for 592 

details. 593 

 594 

Figure A2 Three-dimensional model of the initial cone shape that is used for the 595 

approximation of the initial sheath fold shape. Black line shows the contour of the initial 596 

section through the cone normal to the slant height, whereas the white line illustrates the 597 

contour at the angle φ. A) shows a 3D perspective and B) and C) show side and top views of 598 

the cone, respectively. See text for details. 599 

 600 

Figure A3 A three-dimensional model of the deformed cone shape. White line 601 

illustrates the contour that was initially at the angle φ (see Figure A2). Red line is an axillary 602 

contour showing the section through the cone normal to the cone axis. A) shows a 3D 603 

perspective and B) and C) show side and top view of the cone, respectively. See text for 604 

details. 605 

  606 
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Appendix: Evolution of a cone shape in simple shear. 607 

A. Ellipse ratio for the initial section 608 

We derive the aspect ratio of the ellipse on a vertical section, which cuts the cone with 609 

the initial opening angle 
0

  at A at the right angle (black contour). The vertical ellipse axis 610 

Rz is half of the A B  segment and it can be easily found in the xz section (Figure A1B), 611 

where  0
tanAB AO   , thus 612 

  0
tan

2
z

AO
R    (10) 613 

In order to determine the horizontal ellipse axis Ry, we construct an axillary section 614 

through the cone, which is oriented normal to the cone axis and intersects the vertical section 615 

along Ry axis (red contour). The axillary section gives a circle with a radius r. We find Ry 616 

using the Pythagoras theorem in the right triangle MCE (see Figure A1C), where the segment 617 

C E  is Ry of an ellipse and M E  is the circle radius r, thus 618 

 
2

2

y
R r M C    (11) 619 

We define M C  as the difference between two segments (see Figure A1B) 620 

 M C KC r    (12) 621 

and use it in Eq. (11) 622 
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2
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r r
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  
    
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 (13) 623 

Next, we find K C  as (see Figure A1B): 624 
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2
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

 
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   
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  (14) 625 

and derive r using the relation (see Figure A1B) 626 

 0
sin

2
r KM KO

 
    

 
 (15) 627 

Using the fact that  628 
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2

AO BO
K O


  (16) 629 

and that 630 

 
 0

cos

AO
BO


  (17) 631 

we obtain 632 
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1 cos1
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 (18) 633 

We rearrange Eq. (18) using the half angle formula, where 634 

   
2

0 0
cos 2 1 cos 2      and further the double angle formula, where 635 

     0 0 0
sin 2 sin 2 cos 2    and get  636 
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 (19) 637 

We expand the part under the square root in Eq. (13) using Eq. (14) and Eq. (19), and 638 

simplify it 639 
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 (20) 640 

Substituting Eq. (20) and Eq. (14) into Eq. (13), the horizontal ellipse axis is given by 641 
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 (21) 642 

Finally, we calculate the elliptical ratio (Ryz) using Eq. (21) and Eq. (10), thus 643 
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B. Ellipse ratio of the deformed cone 645 

Now, we derive the vertical and horizontal ellipse axes of an ellipse 
z

R   and 
y

R  , 646 

accordingly, as a function of φ, which represent different section orientation with respect to 647 

the vertical direction. The relation between φ and γ is given by 648 

  tan   (23) 649 

The vertical ellipse axis 
z

R   is represented by half of the segment PB segment and it 650 

can be derived from the relations visible in the xz section (Figure A2B). 651 
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y
R   is found from the relations visible in Figure A2C using the Pythagoras theorem in 653 

the triangle TEM: 654 

 
2

2

y
R r M E    (25) 655 

We find M E  as the difference between two segments M E r K E   (Figure A2B), 656 

thus 657 
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To get K E , we use law of sines in the triangle KEP and obtain a relation 659 
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 (27) 660 

which we rearrange and simplify 661 
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 (28) 662 

Substituting 
z

R   from Eq. (24), we obtain 663 
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Next, we derive r  from relation (Figure A2B) 665 

 0
sin

2
r KM KO
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    
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 (30) 666 

where  667 

 
2

PO BO
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
  (31) 668 

PO  is defined as  669 

 PO PA AO   (32) 670 

where  671 

  2 tan 2
z z

PA R R      (33) 672 

We get 
z

R   from Eq. (24) and substitute Eq. (33) into Eq. (32) 673 
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We expand Eq. (31) using Eq. (34) and Eq. (17) 675 

 

  
 

 
 

 

0

0 0

0

0

tan 1
cos 1 cos

tan
2 2 cos

AO
AO

AO
K O

 
 

 


 
 

   
 

 (35) 676 

Using the half angle formula for the cosine function, we get 677 

  
 

2 0

0

0

2 cos
2

tan
2 cos

AO
K O



 


  
  
 

  
 

 
 

 (36) 678 

We substitute Eq. (36) into Eq. (30) 679 

  
 

2 0

0

0

0

2 cos
2

tan sin
2 cos 2

AO
r




 



  
  

  
    
   

 
 

 (37) 680 

and modify it using the formula for double angles for the sine function 681 
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 682 

 

 

 
 

0

0

0 0 0

0 0

0

cos sin
2

tan sin tan sin cos
2 2 cos 2 2 2

AO AO
r




  
   



  
          

          
        
 
 

 (38) 683 

We expand the part under the square root in Eq. (26) 684 

 

 

 

0 0

0

0

0

0 0 0

2 tan sin cos
2 2 22

1 1
tan

2
cos

2

2 sin cos cos 1
2 2 2

AO

r

K E AO

 
 





  


    
     

     
   


 
 
 

      
       

      

 (39) 685 

and simplify it 686 

    
20 0 0

0 0

2
1 2 sin cos 2 cos 1 sin cos

2 2 2

r

KE

  
   

      
          

     
 (40) 687 

Substituting Eq. (40) and Eq. (29) into Eq. (26), we obtain  688 

 
 

   
0

0 0

0

tan
sin cos

2
cos

2

y

AO
R


  


   

 
 
 

 (41) 689 

Therefore, the axial ratio of the tilted ellipse with respect to the initial cone shape is 690 

given by 691 

 

 
   

 

 

 
   

0

0 0

0

0 0

00

tan
sin cos

2
cos

sin cos2
cos

tan
cos

22 cos

y

z

AO

R

R AO


  



  






 
 
   

 
  

  
 

 (42) 692 

However, if we take the fact that 
z

R   after deformation becomes 
z

R  (Eq. (10)), the 693 

equation showing an evolution of the cone shape visible on the section has the form 694 

 

 
   

 

   

0

0 0

0

0 0

0

0

tan
sin cos

2
cos

sin cos2

costan
22

y

z

AO

R

R AO


  



  




 
 
   

 
 

  
 

 (43) 695 
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C. Ellipse ratio of the elliptic cone during deformation 696 

We also study a modified case of the elliptical cone, where the cone has an elliptical 697 

shape in the section normal to the cone axis. The elliptilicity of the section is quantified with 698 

a parameter f , which is the ratio of the major to minor ellipse axis f r r
 

 . We 699 

distinguish two cone angles α and β, which represent the largest and the smallest angle 700 

between the cone’s surface in the sections that cut through the cones axis. α is the cone angle 701 

that is measured in the xz section. In the derivation, we use r r

  and r fr fr

 
  . 702 

In such a case, 
z

R   is the same as in the previous analysis. The difference appears in 703 

the analysis of 
y

R  . We employ the ellipse equation, where    
2 2

1
y

M E r R r
 

  . We 704 

rearrange the equation as 705 

  
2

2
2y

R
M E r

f

 
  
 

 (44) 706 

thus 707 

 
2

2

y
R f r M E     (45) 708 

The derivation of the elliptical cone is analogous as in Appendix B, thus, the final 709 

formula is 710 

 
   0 0

0

sin cos

cos
2

y

yz

z

R
R f

R

  



 
 

 
 
 

 (46) 711 

D. Evolution of the two cone angles 712 

After deformation, the point P moves to the initial position of A (cf. Figure A2 and 713 

Figure A3). The length 2
z

PB AB R   does not change. We can use Figure A3B and C to 714 

calculate the evolution of cone angles α and β. The change of angle α can be described 715 

through the relation (Figure A3B) 716 

 
1 2

tan z
R

PO



  (47) 717 

We substitute Eq. (10) and Eq. (34) and simplify the relation 718 

  
 

 

 

   

0 01 1

0 00

tan sin
tan tan

sin costan 1

AO

AO

 


   

 
 

   
      

 (48) 719 
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The angle β can be described as  720 

 
1

2 tan
r

M O





  (49) 721 

where (see Figure A3B) 722 

 

tan
2

r
M O






 
 
 

 (50) 723 

We find r


 using the relation  724 

 sin
2

r KO


 
   

 
 (51) 725 

where   2KO PO BO  and  cosBO PO  , thus 726 

 
 

 

 

1 cos1
1 sin sin

2 cos 2 2 cos 2

PO PO
r


 

 

      
             

      

 (52) 727 

We simplify the equation using the half angle formula for the cosine function and the 728 

double angle formula for the sine function 729 

 
 

 
 

sin
cos cos tan

2 2 cos 2 2

PO PO
r


 




   
      

   
 (53) 730 

We substitute  2 tan
z

PO R  , so 731 

 cos
2

z
r R


 
  

 
 (54) 732 

We find  using the formula for the ellipse in the point E (Figure A3C) 733 
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1
y

RM C

r r
 

  
     

   

  (55) 734 

and rearrange the formula  735 

 
2 2 2

2 2

2
1

y y y
R R R r

r

r M C r M CM C

rr





 



   
  

   
  
 

 (56) 736 

We substitute Eq. (54) and the expression M C KC r


   into Eq. (56) and simplify it  737 

 

   
2 2 2

2 2

cos cos cos
2 2 2

2

y z y z y z
R R R R R R

r

r M C r K C r r K C K C



   

       
         

     
  

   

 (57) 738 

Expanding the expression under the square root and substituting the relation 739 

 cos 2
z

KC R   and Eq. (54), we get 740 

r

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  
2

2

2

2 2 cos
2
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2 2

z z

z

R R
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


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    
   
   

 (58) 741 

We simplify the expression and use the double angle formula for the cosine function 742 
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z z z

R
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     
     

 (59) 743 

Thus 744 
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 (60) 745 

Finally, we substitute Eq. (60) and Eq. (50) into Eq. (49) and simplify it 746 
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