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Abstract

The definiteness of the Mulliken and Dirac electron repulsion integral (ERI) matri-

ces is examined for different classes of resolution-of-the-identity (RI) ERI approxima-

tions with particular focus on local fitting techniques. For global RI, robust local RI,

and nonrobust local RI we discuss the definiteness of the approximated ERI matrices

as well as the resulting bounds of Hartree, exchange, and total energies. Lower bounds

of Hartree and exchange energy contributions are crucial as their absence may lead to

variational instabilities, causing severe convergence problems or even convergence to a

spurious state in self-consistent-field optimizations. While the global RI approximation

guarantees lower bounds of Hartree and exchange energies, local RI approximations are

generally unbounded. The robust local RI approximation guarantees a lower bound of

the exchange energy but not of the Hartree energy. The nonrobust local RI approxi-

mation guarantees a lower bound of the Hartree energy but not of the exchange energy.

These issues are demonstrated by sample calculations on carbon dioxide and benzene

using the pair atomic RI approximation.
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1 Introduction

Solving the electronic Schrödinger equation of molecular system within the clamped-nucleus

Born-Oppenheimer approximation is a central problem in quantum chemistry. Variational

optimization of an approximate wave function is possible since the eigenvalues of the Hamil-

tonian are bounded from below on the Sobolev space of admissible wave functions.1 This

indicates a delicate balance between the total kinetic energy and the total potential (Coulom-

bic electron–nucleus attraction and electron–electron repulsion) energy and, indeed, it can

be shown that the potential energy is bounded from above by the kinetic energy.1

In practical computational models using expansions in local atom-centered one-electron

basis functions, whether analytical or numerical, the electron-electron interactions are de-

scribed by means of electron repulsion integrals (ERIs) and insisting on a numerically exact

treatment of ERIs would prevent studies of all but the smallest systems. To accelerate cal-

culations the ERIs are approximated, either by prescreening techniques designed to avoid

calculation of ERIs that contribute insignificantly to the quantity of interest, or by more dras-

tic approximations that replace some or all ERIs with less computationally demanding ex-

pressions. Modern examples include prescreening based on integral estimates,2–7 resolution-

of-the-identity (RI, also called density fitting, DF) approximations,8–44 pseudospectral and

seminumerical integration methods,45–51 and tensor decomposition techniques.52–66

Introducing the limited expansion of diatomic overlap (LEDO) approximation,67 Billings-

ley and Bloor formulated four criteria that an acceptable ERI approximation should satisfy:

(1) formal applicability to any atomic orbital (AO) basis set, (2) invariance to rotation of

the molecular coordinate system, (3) reliable behavior within reasonable ranges of such pa-

rameters as orbital exponents and geometry, and (4) at least an order of magnitude faster

than exact calculation. A fifth criterion, guaranteed variational stability, may be obvious

but appears to be overlooked in the literature.

Merlot et al.38 proved theoretically that local RI approximations combined with Dun-

lap’s robust fitting scheme14,20,21,37 lead to Hartree energies without a rigorous lower bound
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and thus to potential variational collapse, and demonstrated computationally that the most

radical local RI scheme, the pair-atomic RI (PARI) approximation, indeed shows variational

instability. Although variational collapse is relatively rare within the PARI approximation,

occurring in about 1% of the predominantly organic molecules tested,38,40 this clearly is

an unfortunate property of any ERI approximation. In an attempt to circumvent varia-

tional instability issues, Ihrig et al.43 used the nonrobust PARI approximation with large

automatically generated auxiliary basis sets to offset the concomitant reduction of accuracy,

showing that reasonable accuracy is achieved not only for the Hartree contribution but also

for the exact exchange and correlation contributions. The implementation of Ihrig et al. is

based on numerical AOs and it seems natural to adapt their auxiliary basis set generation

scheme, which can be viewed as an extension of the atomic Cholesky decomposition (aCD)

approach,68,69 to Gaussian-type orbitals. In this work, we present a theoretical analysis of

variational stability within RI approximations and use a Gaussian adaptation of the auxiliary

basis set generation of Ihrig et al. to illustrate our findings computationally.

2 Theory

2.1 General properties of electron repulsion energies

Before analyzing effects of ERI approximations on variational stability, we first recapitulate

some well-known properties of exact ERIs and electron repulsion energies. We assume that

an orthonormal set of spin orbitals have been chosen such that the second-quantization

Coulombic two-electron operator can be written as (see, e.g., Helgaker et al.70)

Ĝ =
1

2

∑
pqrs

〈pq|rs〉a†pa†qasar (1)

where a†p and ap are creation and annihilation operators corresponding to the spin orbitals

and satisfying the anticommutation relations [a†p, aq]+ = δpq and [a†p, a
†
q]+ = [ap, aq]+ = 0.
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We have used Dirac notation for the ERIs in spin-orbital basis,

〈pq|rs〉 =

∫∫
ψp(x1)

∗ψq(x2)
∗r−112 ψr(x1)ψs(x2)dx1dx2 (2)

where the integrations are over combined spin and space variables xi = (ri, ξi) and r12 =

|r1 − r2|.

The electron repulsion energy in an arbitrary state |Ψ〉 in Fock space is expressed in

terms of the ERIs and the Hermitian two-electron density matrix dpq,rs = 〈Ψ|a†pa†qasar|Ψ〉,

which is easily shown to be positive semidefinite

∑
pqrs

v∗pqdpq,rsvrs = 〈Ψv|Ψv〉 ≥ 0 (3)

where v is a complex vector and |Ψv〉 =
∑

pq vpqaqap|Ψ〉. Hence, the two-electron density

matrix may be Cholesky decomposed, dpq,rs =
∑

J L
∗
pq,JLrs,J , and the electron repulsion

energy can be written as

〈Ψ|Ĝ|Ψ〉 =
1

2

∑
J

∑
pqrs

L∗pq,J〈pq|rs〉Lrs,J (4)

Each term in the J-sum is nonnegative if and only if the Dirac ERIs form a Hermitian

positive semidefinite matrix. Noting that the Coulomb operator r−112 is nonnegative, this is

easily verified: ∑
pqrs

v∗pq〈pq|rs〉vrs =

∫∫
r−112 |fv(x1,x2)|2dx1dx2 ≥ 0 (5)

where v is a complex vector and fv(x1,x2) =
∑

pq vpqψp(x1)ψq(x2). Consequently, the

electron repulsion energy is bounded from below

〈Ψ|Ĝ|Ψ〉 ≥ 0 (6)

We thus have demonstrated the intuitively obvious result: the electron repulsion energy is
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nonnegative in any (exact or approximate) state. Clearly, nonnegativity is guaranteed only

if the Dirac ERI matrix is positive semidefinite, placing a rather severe constraint on ERI

approximations designed to accelerate computations.

It is important, however, to distinguish between variational instability and negative elec-

tron repulsion energy. Variational stability is guaranteed as long as the electron repulsion

energy is bounded from below, even if the greatest lower bound is negative (and finite). Of

course, a negative electron repulsion energy indicates that the electron-electron interaction

is, effectively, attractive and hence unphysical, but it does not in itself indicate variational

collapse.

For the important special case of a single-determinant state |Ψ〉, the electron repulsion

energy can be written as the sum of the Hartree energy, EH , and the exchange energy, Ex,

E = 〈Ψ|Ĝ|Ψ〉 = EH + Ex, EH =
1

2

∑
ij

〈ij|ij〉, Ex = −1

2

∑
ij

〈ij|ji〉 (7)

where i, j refer to spin orbitals that are occupied in |Ψ〉. Slater71 (see also Roothaan,72

Whitten,9 and Power and Pitzer73) used Poisson’s equation and Green’s theorem to show

that for any function f(r) decaying sufficiently rapidly as |r| → ∞ we have

∫∫
f(r1)

∗r−112 f(r2)dr1dr2 ≥ 0 (8)

It follows from this inequality that the Hartree energy is nonnegative, EH ≥ 0. The exchange

energy is easily shown to be nonpositive,

Ex = −1

2

∫∫
r−112 |ρ(x1,x2)|2dx1dx2 ≤ 0 (9)

where ρ(x1,x2) =
∑

i ψi(x1)
∗ψi(x2). Since the total electron repulsion energy is nonnegative,
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the Hartree energy must be greater than the absolute value of the exchange energy, i.e.

EH ≥ −Ex ≥ 0 (10)

This relation ensures variational stability of Hartree-Fock (HF) theory.

Roothaan72 obtained this result by proving a stronger inequality relating the individual

integrals 〈ij|ij〉 and 〈ij|ji〉, which are both real and nonnegative. Following Roothaan,72 we

note that the positive semidefiniteness of the Dirac ERI matrix implies 〈ij − ji|ij − ji〉 ≥ 0

and thus

〈ij|ij〉 ≥ 〈ij|ji〉 ≥ 0 (11)

from which inequality (10) follows immediately.

2.2 RI approximation

The perhaps most widespread approach to accelerate electronic structure calculations using

atom-centered basis functions is the RI approximation to ERIs. The RI approach does not

aim directly at the Dirac ERI matrix. Rather, it exploits the rank deficiency of the Mulliken

ERI matrix in AO basis,

(ab|cd) =

∫∫
a(r1)b(r1)r

−1
12 c(r2)d(r2)dr1dr2 (12)

where a, b, c, d denote AOs, which we assume real. It follows from Slater’s result (8) that the

Mulliken ERI matrix is symmetric positive semidefinite,

∑
abcd

vab(ab|cd)vcd = (fv|fv) ≥ 0 (13)

where fv(r) =
∑

ab vaba(r)b(r) with vab real.

Employing an auxiliary basis set {α(r)}, usually chosen to be atom-centered, the basic
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idea of the RI approach is to fit the AO products according to

|ab) ≈ |ãb) =
∑
α

|α)Cab
α (14)

Introducing the Coulomb-metric fitting error |∆ab) = |ab− ãb), the identity

(ab|cd) = (ãb|c̃d) + (ãb|∆cd) + (∆ab|c̃d) + (∆ab|∆cd) (15)

is readily obtained. Determining the fitting coefficients C by variational minimization of the

Coulomb-metric norm of the individual fitting errors,

τ 2ab = (∆ab|∆ab) (16)

we obtain the rather obvious requirement that the fitting error must belong to the orthogonal

complement of the space spanned by the auxiliary functions. That is, (α|∆ab) = 0, which

may be recast as the linear fitting equations

∑
β

(α|β)Cab
β = (α|ab) (17)

The terms linear in the fitting error thus vanish in Eq. (15) and the RI approximation to

the ERIs,

(ab|cd) ≈ (̃ab|cd) = (ãb|c̃d) (18)

becomes bilinear in the fitting errors:

|(ab|cd)− (ãb|c̃d)| = |(∆ab|∆cd)| ≤ τabτcd (19)

The fitting error norms τab can be made arbitrarily small by a suitable choice of auxiliary

basis set, and the overall accuracy of the RI approximation may thus be controlled.
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While the RI Mulliken ERI matrix is symmetric positive semidefinite

∑
abcd

vab(̃ab|cd)vcd =
∑
abcd

vab(ãb|c̃d)vcd = (f̃v|f̃v) ≥ 0 (20)

where f̃v(r) =
∑

α[
∑

ab vabC
ab
α ]α(r), the RI Dirac ERI matrix is symmetric indefinite

∑
abcd

vab〈̃ab|cd〉vcd =
∑
abcd

vab(̃ac|bd)vcd =
∑
ab

(Xab|X̄ba) (21)

Xab(r) =
∑
α

[∑
c

Cac
α vcb

]
α(r), X̄ba(r) =

∑
α

[∑
c

Cbc
α vac

]
α(r) (22)

This implies that, for a general electronic state, the total electron repulsion energy may be

negative within the RI approximation, which thus threatens variational stability unless a

lower bound can be established. The indefiniteness can be seen more clearly by considering

the RI approach an explicit approximation of the Coulomb operator,

r−112 ≈
∑
J

φJ(r1)φJ(r2) (23)

Here we have introduced the auxiliary potentials

φJ(r) =

∫ ∑
α α(r′)LJα
|r − r′| dr′ (24)

and the Cholesky decomposed inverse metric matrix

(α|β)−1 =
∑
J

LJαL
J
β (25)

where the common short-hand notation (α|β)−1 is used for the α, β element of the inverse

of the metric matrix with elements (α|β). The RI approximation to the ERIs may then be

8



written in terms of overlap integrals,

(ab|cd) ≈ (ãb|c̃d) =

[∫
a(r)b(r)φJ(r)dr

] [∫
φJ(r)c(r)d(r)dr

]
(26)

which paves the way for a Poisson-basis formulation of RI.74 Evidently, the RI Coulomb

operator, Eq. (23), is not generally positive and integrals of the form

IJ =

∫∫
f(r1, r2)

2φJ(r1)φJ(r2)dr1dr2 (27)

may be negative, implying that the RI Dirac ERI matrix is not positive semidefinite in

general.

We now turn to the important case of a closed-shell single-determinant state. The RI

Hartree energy is nonnegative

ẼH =
1

2

∑
abcd

Dab(ãb|c̃d)Dcd ≥ 0 (28)

where D is the density matrix in AO basis. Furthermore,

∆ẼH = EH − ẼH =
1

2

∑
abcd

Dab(∆ab|∆cd)Dcd ≥ 0 (29)

and hence the RI Hartree energy is bounded both from above and from below

0 ≤ ẼH ≤ EH (30)

The RI exchange energy is nonpositive

Ẽx = −1

4

∑
abcd

Dab(ãc|b̃d)Dcd = −1

4

∑
ij

(ĩj|ĩj) ≤ 0 (31)

where i, j refer to occupied molecular orbitals (MOs) obtained, for instance, from Cholesky
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decomposition of the positive semidefinite density matrix D 75 or by diagonalization of the

Fock matrix. Furthermore,

∆Ẽx = Ex − Ẽx = −1

4

∑
abcd

Dab(∆ac|∆bd)Dcd = −1

4

∑
ij

(∆ij|∆ij) ≤ 0 (32)

and hence also the RI exchange energy is bounded both from above and from below

Ex ≤ Ẽx ≤ 0 (33)

With EH = ẼH + ∆ẼH and Ex = Ẽx + ∆Ẽx, Eq. (10) can be recast as

ẼH + Ẽx ≥ −
(

∆ẼH + ∆Ẽx

)
(34)

which shows that a single-determinant state may exist for which the total RI electron repul-

sion energy is negative. This, however, does not imply that the RI approximation leads to

variational instability, since both ẼH and Ẽx are bounded from below. Moreover, using the

same auxiliary basis for both contributions and recalling that ∆ẼH and ∆Ẽx are oppositely

signed quantities, one expects substantial error cancellation so that the right-hand side of

Eq. (34) is close to zero.

The fitting equations (17) ensure that the integral errors are minimized and, using a

carefully designed auxiliary basis set, we can easily make the errors of the RI Hartree and

exchange energies small enough that the positivity of total electron repulsion energy is guar-

anteed in practice. Indeed, we are not aware of any published examples of negative electron

repulsion energies caused by the RI approximation. Auxiliary basis sets have been opti-

mized for Hartree and exchange energies by, e.g., Weigend.22,76,77 An alternative approach

is to use the aCD procedure to automatically generate an auxiliary basis set with tunable

accuracy68,69 and wider applicability.78–80
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2.3 Local RI approximations

Local RI approximations can be roughly divided into three main categories, local domain

fitting, local metric fitting, and combinations of the two. The common idea is to explicitly

and/or implicitly curb the long-range decay26,27 of the fitting coefficients, by limiting the

auxiliary basis expansion to functions in the neighborhood of the target product (local do-

main fitting) and/or by using a local metric to quench contributions from distant auxiliary

functions (local metric fitting).

For our present purposes the details of the local fitting procedure are not important. The

crucial point is that the linear equations (17) for a given AO product ab are not satisfied for

all auxiliary functions, i.e. (α|∆ab) 6= 0 for some or, in the case of local metric fitting, all

auxiliary functions. The identities (15) and

(ab|cd) = (ãb|cd) + (ab|c̃d)− (ãb|c̃d) + (∆ab|∆cd) (35)

point to two different ERI approximations. The nonrobust ERI approximation

(ab|cd) ≈ (̃ab|cd)nr = (ãb|c̃d) (36)

leads to ERI errors linear in the fitting error, while Dunlap’s robust ERI approximation14,20,21,37

(ab|cd) ≈ (̃ab|cd)r = (ab|c̃d) + (ãb|cd)− (ãb|c̃d) (37)

shows bilinear errors. Neither of these expressions leads to a positive semidefinite Dirac ERI

matrix, implying that total electron repulsion energies are not manifestly nonnegative.

The nonrobust ERI expression gives a positive semidefinite Mulliken ERI matrix, imply-

ing that the nonrobust Hartree energy is nonnegative

Ẽnr
H =

1

2

∑
abcd

Dab(̃ab|cd)nrDcd ≥ 0 (38)
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and hence bounded from below. Since the Mulliken ERI error matrix, (ab|cd)− (̃ab|cd)nr, is

symmetric indefinite by Eq. (15), the nonrobust Hartree energy is not bounded from above

by the exact Hartree energy for a given single-determinant state. Analogously, the nonrobust

exchange energy is nonpositive,

Ẽnr
x = −1

4

∑
abcd

Dab(̃ac|bd)nrDcd = −1

4

∑
ij

(ĩj|ĩj) ≤ 0 (39)

and hence bounded from above, but unbounded from below by Eq. (15). This implies that

the nonrobust total electron repulsion energy may become negative and even variationally

unstable. Note that variational instability solely arises from the nonrobust exchange contri-

bution.

The robust ERI expression gives an indefinite Mulliken ERI matrix, implying that the

robust Hartree energy is not bounded from below.38 It is, however, bounded from above by

the exact Hartree energy for a given single-determinant state,

EH − Ẽr
H =

1

2

∑
abcd

Dab(∆ab|∆cd)Dcd ≥ 0 (40)

The robust exchange energy is not bounded from above, i.e. it may become positive, but

bounded from below,41

Ex − Ẽr
x = −1

4

∑
abcd

Dab(∆ac|∆bd)Dcd = −1

4

∑
abcd

(∆ij|∆ij) ≤ 0 (41)

Consequently, the robust electron repulsion energy is not bounded from below and robust

local RI thus is variationally unstable in general. In contrast to nonrobust local RI, however,

the instability solely arises from the Hartree contribution.

Manzer et al.41 showed that the robust exchange energy is in fact bounded from below

by the RI exchange energy, i.e.

Ẽr
x ≥ Ẽx ≥ Ex (42)
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The combination of (global) RI or nonrobust local RI for the Hartree contribution and

robust local RI for the exchange contribution thus is not expected to present stability issues

in practice, but may yield negative electron repulsion energies.

3 Computational investigation

3.1 Automatic generation of auxiliary basis sets

The PARI approximation, in which products of two AOs a and b are expanded using aux-

iliary functions located on the two centers, is the most extreme case of robust local RI.38

With the nonrobust PARI (NRPARI) approximation, the calculation of three-center inte-

grals is avoided at the expense of energy errors that are linear in the fitting error, implying a

significantly reduced accuracy. These increased errors must be compensated by using larger

customized auxiliary basis sets, which ideally include explicitly the product space of the

regular basis set.

Inspired by the generation of numerical auxiliary bases proposed by Ihrig et al.,43 we have

computed atom-centered auxiliary Gaussian basis sets for use in nonrobust local RI through

a modification of the aCD scheme.68,69 The auxiliary basis set is automatically generated

for each atom based on the employed regular basis set {a} centered on that atom. In a first

optional step, functions {x} are added with higher angular momentum or smaller exponents

than the functions in {a}, forming the extended basis {a}∪{x}. The complete product space

{p} is built according to {p} = ({a} ∪ {x}) ⊗ ({a} ∪ {x}). One may choose to decontract

{a} before building the product space. The matrix of integrals (p|p) is then constructed

using the Coulomb metric, followed by a two-stage pivoted Cholesky decomposition. First,

the (pa|pa) block is decomposed using a low threshold τa, followed by the decomposition of

the remaining entries with a higher threshold τx. This two-stage procedure guarantees that

the proximity of nuclei is well described by functions with high exponents and low angular

momentum while expensive functions with high angular momentum are removed to a larger
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proportion. The final auxiliary basis is selected from {p} according to the obtained pivots.

The angular functions of the auxiliary basis set can be chosen to be either solid harmonics

or Cartesians.

Forming the complete product space {a} ⊗ {a} in combination with Cartesian angular

functions leads to exact results for single atoms by definition, because the product space is

fully spanned. This does not hold for systems with more than one atom; here the addition

of {x} is imperative for accuracy.

The choice of {x} depends on the chosen regular basis {a}. For a double-ζ quality regular

basis we found that for complementing the functions with maximum angular momentum lmax

an additional function with an exponent of ∼ 0.3 is best, while for functions with angular

momenta lmax + 1 and lmax + 2, exponents of ∼ 1.0 recover the most energy in agreement

with general rules for basis set construction.81 If several functions with lmax + 1 and lmax + 2

are added, exponents of 1.0 and above are preferable.

For small organic molecules, sub-milli Hartree accuracy can be achieved using a double-ζ

regular basis set and an auxiliary basis set which is generated in the described way with

one additional diffuse function with angular momenta of lmax + 1 and lmax + 2 each relative

to the regular basis set. By adding more additional functions and choosing lower Cholesky

thresholds, arbitrarily high accuracy can be obtained.

The auxiliary basis set generation is fast and needs to be performed only once. However,

{x} and τx must be chosen carefully to gain any performance advantage over conventional

integral-direct techniques.

3.2 Definiteness of ERI tensors

Using benzene as an example system with RCC = 1.388 Å and RCH = 1.073 Å, Table 1 lists

the smallest eigenvalues of the Mulliken and Dirac ERI matrices in AO basis, thus demon-

strating some of the derived bounds (or lack thereof) of Coulomb and exchange energies.

For screened ERIs both error matrices and the Mulliken ERI tensor have negative eigen-
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Table 1: Smallest eigenvalues in Hartree (Ha) of the Mulliken and Dirac ERI matrices as
well as their respective error matrices (∆(ab|cd) = (ab|cd)unscreened− (ab|cd)screened in the case

of exact integrals and ∆(ab|cd) = (ab|cd)unscreened − (̃ab|cd) in case of RI approximated inte-
grals (and analogously for ∆〈ab|cd〉).). The underlying system is benzene with cc-pVDZ82

as regular basis set and either df-def277 as auxiliary basis set (RI, PARI) or an automat-
ically generated basis using no additional functions, solid harmonic angular functions, no
decontraction, and Cholesky thresholds as given in the table (NRPARI).

(ab|cd) ∆(ab|cd) 〈ab|cd〉 ∆〈ab|cd〉
screening threshold: 10−8 Ha

exact -1.182e-08 -5.640e-08 1.697e-08 -1.070e-08
RI -2.070e-13 -3.461e-08 1.685e-08 -7.155e-03
PARI -3.432e-02 -3.057e-08 -1.503e-03 -1.073e-02
NRPARI, τa = 10−3 Ha -2.047e-13 -0.2682 -1.807e-02 -7.294e-02
NRPARI, τa = 10−4 Ha -2.047e-13 -0.2682 -1.807e-02 -7.294e-02
NRPARI, τa = 10−6 Ha -2.104e-13 -0.2663 -1.728e-02 -6.926e-02
NRPARI, τa = 10−8 Ha -2.104e-13 -0.2663 -1.728e-02 -6.926e-02

screening threshold: 10−12 Ha

exact -1.670e-12 -1.787e-11 1.697e-08 -5.799e-12
RI -2.031e-13 -5.701e-12 1.685e-08 -7.155e-03
PARI -3.432e-02 -4.508e-12 -1.503e-03 -1.073e-02
NRPARI, τa = 10−3 Ha -2.142e-13 -0.2682 -1.807e-02 -7.294e-02
NRPARI, τa = 10−4 Ha -2.142e-13 -0.2682 -1.807e-02 -7.294e-02
NRPARI, τa = 10−6 Ha -2.157e-13 -0.2663 -1.728e-02 -6.926e-02
NRPARI, τa = 10−8 Ha -2.157e-13 -0.2663 -1.728e-02 -6.926e-02

values which are due to, and can be controlled by, the screening threshold.

In case of global RI, the Mulliken ERI tensor and the associated error matrix have

negative eigenvalues which are introduced by screening. The Dirac ERI error matrix has

negative eigenvalues which are not directly controlled by the screening threshold.

In the (robust) PARI approximation, the Mulliken ERI tensor is indefinite and the

Hartree energy is not bounded from below, which leads to the variational collapse described

by Merlot et al.38 The Mulliken ERI error matrix has negative eigenvalues which are due

to screening. The Dirac ERI tensor is indefinite as well, causing the PARI exchange energy

to be unbounded from above, which does not impose a problem during SCF optimizations.

Despite the Dirac ERI error matrix being indefinite, the exchange energy is bounded from
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below as shown in eq. (41).

In the NRPARI approximation very large negative eigenvalues occur in the Mulliken ERI

error matrix which are due to large elementwise errors but as it indicates the missing upper

bound, this does not impose a problem on SCF optimizations. The indefiniteness of the Dirac

ERI tensor does not lead to the absence of an upper bound as shown in eq. (39). Instead,

it causes the exchange energy to have no lower bound, an issue that will be investigated in

the following.

3.3 RI representations of the Coulomb operator

First we demonstrate the possibility of obtaining negative values of the approximated Coulomb

operator in global RI, eq. (23). This potential is shown in Fig. 1 for the CO2 molecule with

RCO = 1.160 Å, using cc-pVDZ as regular basis set and either df-def2 or automatically

generated basis sets as described above (Fig. 1).
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Figure 1: (a) Approximation of the Coulomb operator by global RI using cc-pVDZ/df-def2
plotted along the molecular axis. The first electron is placed at the carbon atom, one oxygen
atom, and two arbitrary points on the molecular axis. The ideal r−112 dependence is indicated
as a dotted line.; (b) and (c) Approximation of the Coulomb operator by global RI using cc-
pVDZ and an auxiliary basis set generated without added functions, solid harmonic angular
functions, no decontraction, and Cholesky thresholds b) τa of 10−4 Ha and c) 10−6 Ha.

In the df-def2 reference calculation (Fig. 1(a)), r−112 is reproduced well in the proximity

of atoms while the approximation deviates significantly with increasing distance from cen-

ters on which basis functions are located. However, the approximated potential is positive
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throughout and features the correct r−1 long range behavior. Using an auxiliary basis set

with a small number of highly contracted orbitals which include high-exponent s-functions,

may lead to stabilizing interactions between electrons located close to neighboring nuclei

(Fig. 1(b)). This issue vanishes with larger basis sets (Fig. 1(c)), however, this behavior is

hard to predict.

As predicted (eq. (39)) the issue of obtaining negative values for the Coulomb operator

and hence negative ERI eigenvalues also applies to nonrobust local RI which is demonstrated

at the example of NRPARI. In the nonrobust local RI approximation, r−112 is approximated

as

r−112 ≈
∑
αβγδ

∫
α(r′)

|r1 − r′| dr
′(α|β)−1(β|γ)(γ|δ)−1

∫
δ(r′)

|r2 − r′| dr
′ (43)

for an integral (ab|cd) where functions α and β are located on the same centers as a and b,

and γ and δ are located on the centers of c and d.

Using CO2 and benzene as test systems, negative values for the Coulomb operator are

found for the integrals of type (ab|ab) where a and b are located on neighboring second row

atoms (Figs. 2 and 3). They are located close to but not always on atomic centers. Not

unexpectedly, the electron repulsion is poorly described at large distances from either of the

two centers on which the product is expanded.

3.4 Variational instabilities in SCF optimizations

Even though stabilizing electron-electron interactions are confined to small spatial domains,

the SCF optimizer may amass extremely high electron density in them, leading to largly neg-

ative exchange energies and hence very low total energies. This problem is aggravated by the

fact that electron density in close proximity to nuclei is further stabilized by nuclear-electronic

attraction. Fig. 4 visualizes how, during the HF optimization of benzene, unphysically low

energies result from extremely large off-diagonal entries in the density which correspond to

near-orthogonal atomic orbitals. These high densities can be monitored through the eigen-
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Figure 2: Coulomb operator in the nonrobust local RI approximation (eq. (43)) for the
integrals (ab|ab) where a and b are located on (a) the carbon atom and the right oxygen atom,
and (b) the carbon atom and the left oxygen atom. The regular basis set is cc-pVDZ and
the auxiliary basis set was generated as described above without added functions, without
decontraction, solid harmonic angular functions, and a Cholesky threshold of 10−3 Ha. The
plotted coordinates lie on the molecular axis.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

[a
u

]

[au]

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 3: Coulomb operator in the nonrobust local RI approximation (eq. (43)) for the
integral (ab|ab) where a and b are located on two neighboring carbon atoms in benzene. The
regular basis set is cc-pVDZ and the auxiliary basis set was generated as described above
without added functions, without decontraction, solid harmonic angular functions, and a
Cholesky threshold of 10−3 Ha. The plot lies in the molecular plane; positions of atoms are
indicated as ‘+’.
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values of the density matrix. In all of the following calculations the density is optimized

using the Roothaan-Hall scheme in combination with DIIS.
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Figure 4: Energy contributions during the HF optimization of benzene using NRPARI with
cc-pVDZ as a regular basis set and an auxiliary basis set generated without added functions,
with solid harmonic angular functions, no decontraction, and a Cholesky threshold of 3·10−3.
The second subplot depicts the eigenvalues of the one-electron density matrix which clearly
correspond to the above energy plot.

While negative values of the approximated Coulomb potential are clearly unphysical,

their presence need not in every case lead to unphysical electronic states. As an example,

neither of the carbon dioxide calculations for which the Coulomb operators are plotted above

show variational instabilities and do not lead to unphysically low exchange energies.

These physically correct states which are obtained in the presence of stabilizing electron–

electron interactions make it even harder to predict when calculations will fail, and hence,

how far the size of the auxiliary basis set may be reduced. As Fig. 5 shows, removal of

functions from the auxiliary basis set through an increased τa does not lead to a gradual

but rather to a sudden decay. The same auxiliary basis set may lead to unphysical states
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for some molecules while the SCF optimization still converges to the physical state for other

molecules of comparable size and with similar structural features. The Cholesky threshold

τa = 3·10−3 Ha at which the variational breakdown occurs is not an unrealistic choice, taking

into account the inherent basis set incompleteness error of cc-pVDZ, which is estimated to

be 75 mHa by comparison with the accurate pcseg-4 basis set of Jensen.83,84 Moreover, no

significant error reduction is observed for similar molecules by lowering τa. More accuracy

would be achieved by augmentation in the auxiliary basis set generation, but this increases

the computational cost significantly.
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Figure 5: Energy errors of HF/NRPARI-K compared to exact HF of butadiene, benzene,
and cyclohexadiene. Using cc-pVDZ as regular basis set, no added functions and varying
Cholesky thresholds during the basis set generation.

As a second example, we look at a series of HF/NRPARI-K energies of a benzene molecule

with the same geometry as above; the regular basis sets are pcseg-1, pcseg-2, and pcseg-3,83

and the auxiliary basis sets are automatically generated with no additional functions {x},

and a Cholesky threshold τa = 10−7 Ha. The energy errors of the converged NRPARI-

K calculations relative to the exact energies of the respective converged electron densities

are +7.91 mHa for pcseg-1, +0.46 mHa for pcseg-2, and −2, 699, 554, 500 mHa for pcseg-3.

Somewhat surprisingly, the NRPARI-K/pcseg-3 calculation converges in just 6 cycles. For
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the first two basis sets, pcseg-1 and pcseg-2, these errors are utterly negligible compared

with the basis set incompleteness errors of 157 mHa and 25.6 mHa, respectively, as estimated

relative to pcseg-4. The estimated basis set error of pcseg-3 is just 3.3 mHa. This example

clearly demonstrates that even for low Cholesky thresholds corresponding to errors that are

acceptable for production calculations, convergence to unphysical states cannot be ruled out.

4 Conclusions

We have presented a theoretical analysis of the variational stability of global and local RI

approximations by examining the definiteness of the Mulliken and Dirac ERI matrices. For

general trial wave functions, neither global nor local RI approximations guarantee variational

stability. For the important special case of a single determinant wave function, the global RI

approximation may produce negative electron–electron repulsion energies but since both the

Hartree and exchange contributions are bounded from below, variational stability is guaran-

teed. Unfortunately, this property is not conserved within local RI approximations. Within

robust local RI approximations, the Hartree contribution is unbounded from below whereas

the exchange contribution is bounded from below. Conversely, within nonrobust local RI

approximations, the Hartree contribution is bounded from below whereas the exchange con-

tribution is unbounded from below. Table 2 summarizes ERI matrix properties and lower

Table 2: Summary of results on positive definiteness of ERI matrices and on the existence of
lower bounds of single-determinant energy contributions. Lack of lower bounds implies that
variational stability is not guaranteed.

ERI matrix Energy contribution
positive semidefinite? bounded from below?

Mulliken Dirac Hartree Exchange

Exact Yes Yes Yes Yes
RI Yes No Yes Yes
Robust local RI No No No Yes
Nonrobust local RI Yes No Yes No
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bounds (or lack thereof) of RI, robust local RI, and nonrobust local RI relative to the exact

Hartree and exchange energies for a given single-determinant state. The theoretical findings

are illustrated by calculations on two simple molecules, CO2 and benzene.

The variational stability problems can be alleviated by using a sufficiently flexible aux-

iliary basis set, thus trading efficiency for accuracy. We have adapted an automated auxil-

iary basis set generation scheme proposed by Ihrig et al.43 for numerical basis functions to

Gaussian-type orbitals, aiming at improved accuracy of the nonrobust PARI approximation

in particular. Very large auxiliary basis sets are required to achieve satisfactory accuracy and

the methodology, in its present formulation, is not competitive. The more commonly used

local domain fitting is an alternative approach to obtaining sufficient accuracy. In addition

to the well-known continuity problems associated with this approach, our analysis shows

that one can not generally determine the smallest domain size at which variational collapse

is avoided. In the end, the only safe approach would be to use nonrobust local (or global) RI

for the Hartree contribution and robust local RI for the exchange contribution. In particular,

we note that nonhybrid Kohn-Sham density-functional theory (KS-DFT) calculations should

avoid robust local RI approximations.

Finally, we note that the tensor hypercontraction (THC) scheme developed by Mart́ınez

and coworkers53–55,57–62,64–66 is based on either global or local RI and thus inherits the proper-

ties of the parent RI approximation as summarized in Table 2. Since the THC approximation

is not competitive for single determinant optimizations and instead is applied to nonvari-

ational electron correlation models (Møller-Plesset perturbation theory and coupled-cluster

theory), variational instability issues are not a major concern at present.
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