Performance Evaluation of NEAT
Internet Transport Layer APl and
Library

Fredrik Haugseth

Thesis submitted for the degree of
Master in Informatics: Programming and Networks
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Performance Evaluation of
NEAT Internet Transport Layer
API and Library

Fredrik Haugseth

© 2018 Fredrik Haugseth

Performance Evaluation of NEAT Internet Transport Layer API and
Library

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

For many years, the only available transport protocols were TCP and
UDP. More recently, innovative transport protocols like SCTP have been
developed, and they can improve application performance. However, they
are not widely used in the Internet partly due to the inflexible BSD sockets
API that most network applications are programmed with. In particular,
the API requires that the application specifies which transport protocol to
associate with every network socket. Many middleboxes in the Internet
support only TCP and UDP, which often leads application developers to
use these protocols. If a protocol like SCTP is used, it is the responsibility
of the programmer to devise a fallback method (e.g. use TCP instead) if it
is not supported in the network path.

NEAT is a new transport layer networking library that provides a
flexible platform- and protocol-independent API where the application
can specify transport services instead of specific transport protocols. The
transport services are transparently mapped to specific transport protocols
internally in NEAT, which enables an applications to leverage new
protocols without the need to re-code the application.

NEAT implements a Happy Eyeballs mechanism that probes the network
for the support of transport protocols. Therefore, NEAT enables applica-
tions to easily leverage the best available protocols that match the specified
transport services, and that are supported in the network path.

We find that NEAT introduces quite a lot of CPU overhead compared
to using other state-of-the-art networking APIs. However, based on our
analysis, a lot of this CPU overhead can be mitigated through optimizations
in the code. We also find that NEAT introduces some memory overhead,
but this overhead seems to be small and insignificant; especially in modern
systems with abundant memory.

ii

Contents

1 Introduction 1
1.1 Problemstatement 2
1.1.1 Global concern of using NEAT 2
1.1.2 Local concern of using NEAT 3
12 Researchquestions 3
1.3 Contributions 0 L. 4
14 Researchmethodology 4
1.5 Thesisstructure 4
2 Background 5
2.1 TheBSDsockets AP 5
211 Overviewofthe APT 9
21.2 Inflexibilityofthe APT 9
2.2 The NEAT Internet Transport Layer APl and Library 11
2.2.1 Leveraging user-space libraries and UDP encapsulation 12
2.2.2 Transport protocol selection using Happy Eyeballs . 13
223 Event-handling 15
224 The NEAT architecture 21
225 Overviewofthe APT 28

2.3 Existing approaches to de-ossify the Internet transport layer
and why NEATisneeded 28
2.4 Related studies concerning resource usage 30
3 Research Methodology 33
3.1 Local resource usage: NEAT vs other APIs 33
3.1.1 How our work builds on existing research 33

3.1.2 Comparing NEAT to other APIs to quantify the
resource overhead of NEAT 34
3.1.3 Choice of operating system 34
3.14 Performance metrics 35
3.1.5 Datasamplingmethod 36
3.1.6 Dataanalysismethod 41
3.1.7 NEAT evaluation testsuite 42
4 Experimental setup 43
41 Testbedtopology 43

411

Overview e 43

iii

412 Hardware
413 Software Lo L
42 Controlling experiments with TEACUP
43 Experimentscenarios
43.1 Connection establishment
432 Datatransfer,
44 Configurations.
441 General configurations for the experimental hosts . .
442 Server-side configurations
443 Client-side configurations

Evaluation

5.1 Connection establishment
5.1.1 Connection establishmentdelay
512 CPUwusage
513 Memoryusage

52 Datatransfer L L oo L

Discussion

Conclusive Remarks and Future Work
7.1 Researchfindings
72 FutureWork

Appendices

A TEACUP testbed

Al Testbedsetup
A.1.1 VLAN configuration
A.1.2 Addressing and routing settings
A.1.3 Miscellaneous settings

A2 TEACUPextensions
A21 Customtraffic.
A22 Customloggers

A.3 Example of using TEACUP

NEAT evaluation test suite

B.1 Download and installation
B2 Overview e
B3 Applicationso o o o
B4 Parsingdata

Programming with the NEAT API and the BSD sockets API

C.1 Programming with the BSD sockets API
Cl1 APL
C12 Examples

C.2 Programming with the NEAT APT
C21 Overview
C22 APL

iv

55
55
56
58
66
69

73

75
75
75

77

77
77
77
78
79
79
79
80
80

87
87
88
89
89

C.2.3 Examples

Vi

List of Figures

2.1

2.2

2.3

24

4.1

51

52

5.3

54

55

5.6

5.7

5.8

5.9

The architecture of NEAT. This figure is inspired by Fig. 1 in

How data flow between the Policy components and the
NEAT system. This figure is taken from [43].
The order in which the Policy Manager receives data from its
sources. This figure is taken from [43].
The components of NEAT and their interactions. This figure
istakenfrom [43].

The experimental network testbed setup

Comparison of the connection establishment delay per flow
between kqueue, libuv and NEAT when multiple flows are
opened concurrently using TCP..
Comparison of the connection establishment delay per flow
between kqueue, libuv and NEAT when multiple flows are

The delay overhead of using SCTP compared to TCP in
a loop that creates and connects sockets. This data was
sampled in the kqueue client application that also adds each
socket tothekqueue. L.
The CPU time spent when establishing connections using
TCP at the client-side.
The CPU time spent when establishing connections using
SCTP at the client-side.
The CPU time spent when establishing connections by
performing HE between TCP and SCTP at the client-side.
TCP connections are initiated before SCTP connections and
alwayswin. Lo L
The CPU time spent when establishing connections by
performing HE between TCP and SCTP at the client-side. In
the case of Figure 5.7b, the TCP connections are delayed long
enough such that SCTP connections always win.
The CPU time spent when establishing connections using
TCP at theserver-side.
The CPU time spent when establishing connections using
TCP at theserver-side.

Vii

25

57

57

5.10

511

5.12

513

5.14

5.15

5.16

5.17

Al

The CPU time spent when accepting incoming connection
requests while the remote NEAT client performs Happy
Eyeballs between TCP and SCTP. The TCP connections are
initiated before the SCTP connections and always win.

The CPU time spent when accepting incoming connection
requests while the remote NEAT client performs Happy
Eyeballs between TCP and SCTP. In the case of Figure 5.11b,
the TCP connections are delayed long enough such that
SCTP connections alwayswin.
The increase in application memory consumption when
establishing connections using TCP at the client-side.
The increase in application memory consumption when
establishing connections using SCTP at the client-side.

The increase in application memory consumption when
establishing connections using TCP at the server-side.
The increase in application memory consumption when
establishing connections using SCTP at the server-side. . . .
CPU time spent when transferring data using TCP on the
client-side for different numbers of flows and for different
dataobjectsizes.. oo L L
CPU time spent when transferring data using TCP on the
server-side for different numbers of flows and for different
dataobjectsizes.. oo L L

The TEACUP testbed in the CPS lab at the Department of
Informatics, University of Oslo.

viii

65

67

68

List of Tables

2.1

2.2

2.3

24
2.5

3.1

4.1
4.2
4.3

44

51

52

5.3

54

5.5

5.6

5.7

Network services that are not supported by TCP and UDP,
and examples of applications that can benefit from these
SEIVICES. . . . v i i e e
The core functions of the BSD sockets API
The high-performance event-handling APIs of different op-
eratingsystems. L L
The core functions of the NEATAPI
The core set of callback functions that can be set through the
NEAT APL e

The performance metrics considered in this thesis.

The hardware components of the experimental hosts.

Definition of connection establishment period for the differ-
ent APIs considered in this thesis.
Definition of data transfer period.

The connection establishment delay overhead of using
NEAT compared to libuv on the client-side.
CPU time overhead of using NEAT compared to libuv
during connection establishment on the client-side.
Total number of CPU instructions executed by various
functions in the kqueue, libuv and NEAT client applications
when opening 256 TCP flows at the client-side. Note that we
have enclosed the kqueue event loop in a separate function
start_event_loop to make it more comparable to NEAT and
libuv.
Total number of CPU instructions executed by NEAT func-
tions that are called outside the NEAT event loop when
opening 256 TCP flows on the client-side.
Extract of the most CPU demanding operations executed
within the NEAT functions that are called outside the NEAT
event loop when opening 256 TCP flows on the client-side. .
Extract of the most CPU demanding internal NEAT func-
tions when opening 256 TCP flows on the client-side.

CPU time overhead of using NEAT compared to libuv
during connection establishment on the server-side.

ix

44

60

60

5.8

59

5.10

511

B.1
B.2

C1

C2

The memory usage overhead of using NEAT compared to
libuv during connection establishment on the client-side. . .
The memory usage overhead of using NEAT compared to
libuv during connection establishment on the server-side. . .
CPU time overhead of using NEAT compared to libuv
during data transfer with TCP on the client-side.
CPU time overhead of using NEAT compared to libuv
during data transfer with TCP on the server-side.

Overview of the NEAT evaluation test suite repository. . . .
Overview of the application options for the NEAT, libuv, and
kqueue servers and clients.

The core set of callback functions that can be set through the
NEATAPL
The core functions of the NEAT APL.

Preface

Acknowledgements

I would like to express my sincere gratitude and appreciation to my
supervisor Dr. Naeem Khademi for providing me with invaluable feedback
and guidance on research work and thesis writing. I want to thank you for
your patience and for the long hours of discussions that has developed me
both personally and professionally.

Further, I would like to thank Prof. Michael Welzl for his guidance,
and for giving me pointers to relevant research works. Thanks to Prof.
Stein Gjessing and Dr. Safiqul Islam for showing interest in my work and
helping me in the writing process.

Thanks to the members of the Networks and Distributed Systems (ND)
group at the Department of Informatics for making the group such a great
place for collaboration and knowledge sharing. In particular, I would
like to thank Marcel Marek for helping me with technicalities related to
testbed and experiment setup, and Kristian A. Hiorth for helping me with
troubleshooting the FreeBSD kernel.

Thanks to Prof. Michael Tiixen and Felix Weinrank from Miinster
University of Applied Sciences, Germany, for providing information about
the SCTP protocol and the internal workings of the NEAT library.

A great thanks to family and friends who have supported me through-
out the project. I would like to give out a special thanks to my parents for
their endless support and for always believing in me no matter what.

I dedicate this thesis to my dear Juliane who has constantly supported
and encouraged me throughout the thesis work. I could not have done this
without you!

xi

xii

Chapter 1

Introduction

NEAT (A New, Evolutive API and Transport-Layer Architecture for the
Internet) is a new, open-source, transport layer networking Application
Programming Interface (API) and library that is designed to change the way
network applications interact with the network [64]. In particular, the
APl is platform- and protocol-agnostic, meaning that the application does
not specify which transport protocols or operating system mechanisms to
use when communicating with other machines over the network. Instead,
these details are handled internally by NEAT, and NEAT can therefore offer
a cross-platform, uniform API for all operating systems. Currently, the
reference implementation of NEAT [64] can be run on FreeBSD, Linux, OS
X, and NetBSD.

In order for NEAT to select transport protocols and options internally,
it requires the application to specify which network properties are required
and desired when communicating over the network. It also selects
protocols based on information about the current network and host
characteristics. This information is maintained and updated internally
by NEAT. Based on these inputs, the NEAT library can leverage the best
available transport protocols and features that are available in the system!?,
and that match the requirements of the application. In this way, developers
can leverage novel transport protocols and advanced network services in
their applications without having to re-code or re-design the application.

NEAT and similar libraries [87, 88] have recently been developed,
and the goal is that they replace the existing BSD sockets API [83] that
most of existing network applications are developed with. The reason
why a new networking API is needed is that the BSD sockets API is too
inflexible. When programming network applications with the BSD sockets
API, most developers use either the Transmission Control Protocol (TCP)
[REC793] or the User Datagram Protocol (UDP) [RFC768] because these
protocols are safe alternatives that will most likely work in the Internet.
There exists other transport protocols like the Stream Control Transmission
Protocol (SCTP) [RFC4960] that can offer other network services, but such
protocols are not as widely supported in the Internet. If developers want

ISince NEAT is a user-space library, it can leverage both user-space and kernel-space
protocols and libraries.

to leverage protocols like SCTP in their network applications, they will
need to implement a fallback mechanism and use e.g. TCP in case another
protocol is not supported. This introduces unnecessary complexity to the
application logic, that can be handled by a more flexible library like NEAT.
The hope is that libraries like NEAT will change the global traffic patterns
if ubiquitously deployed, which can reenable the innovation and evolution
of the Internet transport layer [71] and make other transport protocols than
TCP and UDP more available to developers.

This thesis investigates whether NEAT-like systems can be widely
deployed in the Internet, and how it will perform on a local machine with
regards to resource utilization. An important aspect to global deployability
of such a system is how well it can scale when the system is under heavy
load. The scalability of the system is determined by how well it can
handle an increasing load of any kind, for instance an increasing number of
incoming and outgoing requests. This thesis considers multiple scenarios
that puts the NEAT library under various load, and it analyses how this
load affects the scalability of the library with regards to resource utilization.

1.1 Problem statement

The performance and scalability of NEAT-like systems is not well under-
stood. A major concern is whether such systems can be deployed in the
Internet at global scale. We argue that in order to address this concern, the
following concerns need to be addressed:

1. The wide-spread deployment of NEAT-like systems may introduce
more network traffic than the network can handle, which can lead to
congestion collapse, lower throughput, or unfair sharing of network
resources.

2. The resource usage on a local machine running a NEAT-like system
may be too high to meet the requirements of the end-user.

These concerns cover both a global (1), Internet-wide concern, and a
local (2), resource usage concern. We expect that if these concerns can be
addressed, we can conclude that NEAT-like systems can be deployed in
the Internet. There are also other factors to the deployability of NEAT-like
systems. For instance factors such as deployment strategy/process, and
the prospects of future deployment of such a system. However, we do not
consider these additional topics in this thesis. Below we address both of
the concerns listed above:

1.1.1 Global concern of using NEAT

NEAT implements a Happy Eyeballs*> (HE) mechanism that initiates several
connection requests simultaneously with different transport protocols.
This is done to probe the end-to-end network path including the remote

2See Section 2.2.4 for a detailed description of the Happy Eyeballs mechanism in NEAT.

2

end-host for the support of transport protocols without introducing any
significant delay compared to normal connection establishment using a
single protocol. This mechanism of NEAT introduces additional traffic to
the network, but the results of connection attempts can be cached so that
subsequent connection attempts can skip unsupportive transport protocols
[70]. When there are many available transport protocols to choose from, the
HE mechanism can lead to a burst of connection requests that can congest
the network. However, this can be mitigated by adding a short delay to
every connection request so that they are spread out over time [99].

HE is already widely deployed in the Internet. For example, web
browsers like Chrome and Firefox use HE to probe the end-to-end support
for Quick UDP Internet Connections (QUIC) [37], and they fall back to TCP
if end-to-end support is missing for QUIC [11]. HE is also widely used to
facilitate IPv6 [RFC8200] adoption in the Internet [RFC6555]. The already
ubiquitous deployment of HE in the Internet testifies that the extra network
traffic introduced by NEAT is acceptable.

Another concern is whether the use of HE in NEAT will lead to more
aggressive transmission of data [11]. This concern is addressed by noting
that the aggressiveness of a sender is related to the congestion control
algorithm and not by the transport protocol [11]. Also, modern congestion
control algorithms like CUBIC [26] are less aggressive than previous
congestion control algorithms, by decreasing the CWND backoff factor to
facilitate low-latency data transfer [42]. These global trends testifies that
the extra network traffic introduced by NEAT-like systems can traverse the
Internet without disrupting the services that are already provided by the
network, like fair bandwidth-sharing. We therefore choose to exclude the
global concern in this thesis.

1.1.2 Local concern of using NEAT

All computer systems have a limited set of resources related to computing
power and memory, and the number of available resources depends on the
type of system, e.g. embedded, mobile, desktop, and high-load servers.
This thesis evaluates the local resource usage of the NEAT library, and
investigates on the local resource overhead of using NEAT compared to
other state-of-the-art networking APIs (RQ, see Section 1.2). We argue that
this investigation enables us to conclude whether the local resource usage
concern mentioned above can be addressed. By comparing the resource
usage of NEAT with the resource usage of the other APIs, we can quantify
the resource overhead.

1.2 Research questions

In this thesis we elaborate on the following research question:

RQ. What is the local resource overhead of using NEAT compared to other
state-of-the-art APIs?

1.3 Contributions
During the work on this master thesis, we have done the following:

1. Evaluated the performance and scalability of the NEAT library [64]
compared to other state-of-the-art networking APIs under various
network scenarios.

2. Contributed to the NEAT library [64] with bug fixes and extensions.

3. Made a test suite [63] for evaluating the performance of NEAT. The
test suite also includes scripts for parsing results and producing
graphs.

1.4 Research methodology

In order to evaluate the resource utilization of the NEAT library, we run
our experiments in a physical testbed setup consisting of several machines.
We run our experiments in a typical client-server fashion where we run
the server and client applications on different machines, and connect the
machines by a router on which we emulate various network conditions.
In this way, we can evaluate NEAT on real hardware, but in a controlled
environment to get concise results.

1.5 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 provides
background on relevant concepts and related work. The BSD sockets API
is introduced with a history of its evolution and features, and how it leads
to the ossification of the Internet transport layer. Then, NEAT is introduced,
describing how NEAT enables innovation and evolution of the Internet
transport layer. Chapter 3 describes how the research question of this
thesis is answered by collecting and analyzing the relevant data. Chapter
4 describes how to set up the experiments performed in this thesis and
which experiment scenarios that are considered. Chapter 5 presents the
results for the evaluation experiments of NEAT, comparing NEAT to other
networking APIs. Then in Chapter 6 the results presented in Chapter 5 are
discussed and compared. Finally, Chapter 7 wraps up the thesis, answering
RQ and lists future work.

Chapter 2

Background

This chapter begins with an overview of the BSD sockets API [83],
describing how it formed the Internet as we know it, and pointing out
its limitations. Some limitations is that it is hard to implement modern
network services that require the use of other transport protocols than TCP
[REC793] and UDP [RFC768], because the API exposes protocol-specific
details and puts responsibility on the application developer to integrate
other protocols and implement fallback mechanisms. The work in [71]
describes how this has lead to the ossification of the Internet transport
layer, i.e. that it has become hard to facilitate innovation of new transport
protocols and deploying them in the Internet.

Following this the NEAT transport layer API and library [64] is
presented. It is described how NEAT addresses the limitations of the BSD
sockets API, and provides a platform- and protocol-independent API. Also
the components of NEAT is presented, describing how they help in de-
ossifying the Internet transport layer, and how they enable novel transport
protocols and features to be easily accessible by applications.

Then, a list of other libraries and APIs that can potentially de-ossify the
Internet transport layer is presented. We argue that NEAT is the most
promising solution that can pave the way for establishing standards on
how NEAT-like transport systems should be implemented in the Internet.

Finally, a summary of related work related to resource usage evaluation
is given.

2.1 The BSD sockets API

The Berkeley sockets API (also known simply as the sockets API or the BSD
sockets API) was developed by the Computer Systems Research Group at
the University of California at Berkeley, and was first implemented in the
4.1cBSD operating system in 1982 [67]. Later, the API has evolved into
a POSIX standard for developing network applications in UNIX systems
[83]. All major operating systems implements the concept of network sockets,
which are accessible through a BSD or POSIX like sockets API[6, 58]. These
sockets are used to communicate with other machines over a network, and
are often implemented as socket descriptors that are treated like regular files

in the operating system. In particular, reading and writing to a socket
descriptor is handled the same way as reading and writing to a regular
file. This simple, familiar, and high-level approach to data communication
lead to the success and wide-spread adoption of the BSD sockets API.

The standard mandates that the application must specify the transport
layer protocol to use for data transmission [33, 34]. To begin with, only two
such transport protocols were available, namely the Transmission Control
Protocol (TCP) [RFC793], which offers a stream-oriented, reliable and
ordered delivery service, and the User Datagram Protocol (UDP) [RFC768],
which offers a message-based, unreliable, unordered delivery service. Even
though the Internet has evolved tremendously since the standard was
proposed, the vast majority of network applications today still depend on
either TCP or UDP [4].

Over the years, the use cases and context of the TCP and UDP
protocols have changed from the original design philosophy of the Internet
[14]. Originally, the few Internet home users in existence were typically
connected to a Local Area Network (LAN) through a single network
interface, and there were only a single network interface to access the
Internet [67]. In the modern Internet, networks have much larger
Bandwidth-Delay Products (BDP) due to faster networking equipment,
and the Internet has grown to become a world-wide web of inter-connected
devices. Several extensions to TCP have been added over the years to
tackle these challenges [RFC7323]. TCP has historically been used for file
transfer, web browsing and video streaming, while UDP has been used
for service discovery and interactive media [44]. However, there are many
applications that require more specialized services than what TCP and
UDP can offer (see Table 2.1 for a list of such services [39] and examples
of applications). For instance, modern end-hosts are often connected to
several network interfaces. A laptop may be connected to the Internet
via Ethernet, Wi-Fi and mobile network. To improve the availability and
quality of a network connection, the applications on the laptop can be
configured to use several network interfaces simultaneously which enables
data to be sent over multiple paths in the network. This mechanism is
called multihoming and is not available when using TCP and UDP.

Several new transport layer protocols have been developed since TCP
and UDP were proposed, e.g. Stream Control Transmission Protocol (SCTP)
[RFC4960], Datagram Congestion Control Protocol (DCCP) [RFC4340], and
The Lightweight User Datagram Protocol (UDP-Lite) [RFC3828]. They offer
services beyond what TCP and UDP can offer, for example SCTP can
mitigate the Head-of-Line Blocking (HoLB) problem that is prevalent when
using TCP [23, 79, 81]. This problem occurs when a packet is lost, in which
case all subsequent packets are not delivered to the remote peer until the
lost packet has been retransmitted and delivered successfully. The reason
why HoLB occurs in TCP is because TCP offers both a reliable and ordered
delivery service which means that all packets will need to be delivered
in the exact sequence as they are sent. This can be a problem for many
applications. For instance, if a web browser requests several web objects
from the same web server over a single TCP connection, and the first web

Service Application

Partial Real-time applications where the application data can

reliability expire and lose the usefulness due to later events (time
passing, newer messages, etc) [54]. An example is a sensor
that samples various data and sends this data over the
network for processing. The sensor may only be interested
in sending the newest sampled data and not outdated
data.

Partial error Applications that can handle partially corrupted data
detection delivery from lossy links. For example, voice codecs like
Adaptive Multi-Rate (AMR) [RFC3267] can cope better with
errors in the payload than loss of entire packets [RFC3828].

Multistreaming Applications that can partition the application data into
independent parts. For example, when a web browser
requests multiple web objects from a web server, each
of these web objects can be sent on different streams
[REC3286]

Multihoming Applications that must stay connected to remote peers
even when a proper subset of the connecting network
links go down [RFC3286]. An example is a video chat
application that can fallback to use mobile network if a Wi-
Fi network goes down.

Table 2.1: Network services that are not supported by TCP and UDP, and
examples of applications that can benefit from these services.

object sent from the server is lost, none of the subsequent web objects will
be delivered to the web browser application until the lost web object has
been retransmitted and successfully delivered. If the Round-Trip Time (RTT)
of the connection is large, this can lead to a significant delay to the delivery
of web content because it can take some time for the lost web object to be
retransmitted. When using SCTP, the web objects can be sent on different
SCTP streams, and if data is lost within a certain stream, it will not affect the
data sent and delivered on the other streams.

Although the transport protocols beyond TCP and UDP can offer many
improvements over TCP and UDP, they contribute to a small portion of the
total Internet traffic today [71]. There are primarily two reasons why they
are not more frequently used as transport solutions [27]:

1. Inflexibility of the BSD sockets API: The BSD sockets API requires
that the application developer specifies which transport protocol
should be used for a specific network socket, and it is also the
responsibility of the application developer to set protocol-specific
options for each socket. This means that applications will need to
be re-coded if new transport protocols or transport protocol features
are to be leveraged, which might not be worth it from a business
perspective. Also, it is not guaranteed that a new transport protocol

7

is supported end-to-end in a network path, that is, supported both
by the end-hosts and by middleboxes on the path. There can be
Network Address Translation (NAT) middleboxes in the path that does
not support the protocol [28]. If an application attempts to use
a transport protocol for communication (e.g. SCTP), and it is not
supported end-to-end in the network, it is the application developer’s
responsibility to devise a fallback method (e.g. by using TCP or UDP
instead), which adds more complexity to the application logic. The
configuration of the protocol-specific options may also depend on
the network environment the application will run in, which further
increases the complexity of integrating new transport protocols into
applications.

2. Deployment vicious circle: Middleboxes in a network may need to
be reconfigured or upgraded in order to support new transport layer
protocols and extensions. Since application developers cannot rely
on new transport protocols to work over many network paths in the
Internet, they often tend to use the safe option of using either TCP
or UDP since these protocols have been supported in the Internet
from the start. The middlebox vendors and maintainers hesitate to
invest money in upgrading the networking equipment to support
new protocols because they know that few applications use these
new protocols. Also, other parts of the network may not support
the protocols yet, meaning they may not be supported end-to-end in
the network even though some elements in the network path support
them.

Both the complexity of introducing new transport layer protocols into
applications using the BSD sockets API, and the issues with deploying
these protocols in the Internet, has lead to the ossification! of the Internet
transport layer [71]. This has made it hard to realize innovation and
evolution in the Internet transport layer, and is the reason why TCP and
UDP are still so widely used today. This is a problem because TCP and
UDP do not offer the services required by many applications. In addition,
innovative transport protocols have been shown to improve application
performance [59, 60]. As modern society is increasingly depending on
technology and global communication over the Internet, it is important
to deploy high performance transport systems that can meet modern
requirements.

IThe Internet transport layer is a broad and abstract term that incorporates both the
term transport layer, that is about end-fo-end communication over a network, and the broad
term Internet, that describes the global network of inter-connected devices with different
software and hardware technologies. Internet transport layer encompasses the concepts of
both these terms, to describe the end-to-end communication methods and technologies that
are widely deployed at global scale. We argue that these methods and technologies have
converged to specific standards, and that it has become hard to change them. We use the
term ossification to describe this phenonmenon.

Function Description

socket Creates a new socket (communication endpoint)
bind Binds socket to local IP address and port number
listen Makes a socket listen to incoming connections
accept Blocks a socket until a connection request arrives
connect Sends a connection request

send Sends data over a connection

recv Receives data over a connection

close Releases the socket

Table 2.2: The core functions of the BSD sockets API

2.1.1 Overview of the API

The BSD sockets API enables the programmer to easily access network
services through a uniform API that is designed to be independent from
the underlying protocol stack. Even though the application developer
will need to specify the transport protocol to associate with each network
socket, the same API functions are used for most transport protocols.

Table 2.2 lists the core functions of the BSD sockets API that are required
to create and release sockets, handle connection requests, and transfer data.
In addition to these core functions, there are several other functions in the
API that are used to tune various options and to handle Domain Name
System (DNS) [RFC1035] requests. For example, setsockopt is used to
set the majority of socket options, fcntl is primarily used to tune non-
blocking sockets and asynchronous I/O (see Section 2.2.3), and ioctl is
often used to access implementation-dependent options and attributes [71].
For a description and reference of BSD sockets API functions relevant for
this thesis, see Appendix C.

2.1.2 Inflexibility of the API

This section highlights why the BSD sockets API is too inflexible to enable
applications to easily leverage other transport protocols than TCP and UDP,
which has lead to the ossification of the Internet transport layer as described
above.

Exposure of protocol-specific details

When creating a new network socket with the BSD sockets API, the
application must specify which transport protocol to associate with it.
Listing 2.1 shows the protocol-specific details that the application must
specify in order to create a socket. AF_INET specifies that the socket should
be used in an IPv4 network, and IPPROTO_TCP specifies that the transport
protocol TCP should be used for end-to-end communication.

WN =

O OIANUTHWN -

Listing 2.1: Code example showing the protocol-specific details exposed in
BSD sockets API function socket.
some_socket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

Modifiying the transport protocol specified in the BSD sockets API
function socket is not necessarily enough to leverage other network
services than those provided by TCP and UDP. Protocol-specific details
are also exposed when setting socket options and sending/receiving data.
Listing 2.2 shows how the TCP specific option TCP_NODELAY can be enabled,
which disables the Nagle algorithm [RFC896].

Listing 2.2: Code example showing the protocol-specific details exposed
when setting socket options with the BSD sockets API.

int flag = 1;
setsockopt (some_socket, IPPROTO_TCP, TCP_NODELAY,
(char *)&flag, sizeof (int));

The BSD sockets API functions listed in Table 2.2 constitute a simple
API where the user can connect ro remote peers and send/receive data.
However, the API is not expressive enough to offer all kinds of specialized
services that are provided by different protocols. The BSD sockets API
functions sendmsg and recvmsg enable the application to respectively send
and receive ancillary data that can contain protocol-specific data needed
to provide more advanced network services. For example, SCTP uses
the ancillary data to provide multistreaming and multihoming services.
The set of ancillary data that can be sent/received for a specific protocol
may be complex, which demands that the application developer have
deep knowledge about the protocol and its implementation on different
operating systems. Additionally, handling of the ancillary data introduces
extra application logic complexity. Listing 2.3 gives an example of the
protocol-specific details exposed with ancillary data.

Listing 2.3: Code example showing the protocol-specific details exposed
when handling ancillary data with the BSD sockets APL

recvmsg (some_socket , &msghdr, 0);

/* Iterate the ancillary data (if present). */

for (cmsg = CMSG_FIRSTHDR (&msghdr); cmsg != NULL;
cmsg = CMSG_NXTHDR (&msghdr, cmsg)) {
if (cmsg->cmsg_len == 0) {
/* Handle error */
}
if (cmsg->cmsg_level == IPPROTO_SCTP) {
if (cmsg->cmsg_type == SCTP_RCVINFO0) {
rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA (cmsg);
/* Determine the stream the message were
received on. */
stream_id = rcvinfo->rcv_sid;
}
/* Handle other SCTP ancillary data. */
}

/* Handle ancillary data from other protocols. */

10

20

No fallback mechanism

If a protocol or protocol configuration is not supported end-to-end in
the network, the application will need to fallback to another protocol
or configuration until end-to-end communication can be established.
However, this fallback functionality is not provided with the BSD sockets
APL

API changes needed to integrate new functionality

The BSD socket API did not originally support multihoming, but it has
later been extended to support it [RFC6458]. The API also needed to be
extended in order to support IPv6 [RFC3493]. For example, to create a
IPv6 socket instead of IPv4 socket, AF_INET6 must be specified instead
of AF_INET in the BSD sockets API function socket. In general, the API
needs to be changed whenever new functionality is added. This is to
preserve backwards compatibility with legacy software. The consequence
of extending the API is that existing applications will need to be re-coded
in order to leverage new functionality.

2.2 The NEAT Internet Transport Layer API and Lib-
rary

NEAT (A New, Evolutive API and Transport-Layer Architecture for the
Internet) is a new, open-source, user-space software library [64] which is
implemented in accordance to the ongoing standardization efforts at the
Transport Services (TAPS) Working Group [35] of the Internet Engineering
Task Force (IETF). The NEAT library is developed by the NEAT Project [61].
The goal of NEAT is to re-enable the evolution of the Internet transport
layer by offering a protocol- and platform-independent programming
interface to the application layer.

Instead of requiring the application developer to specify transport
protocols and options like with the BSD sockets API, the NEAT API
is protocol agnostic, and requires that the application developer specifies
transport services for each NEAT flow. NEAT flows can be viewed as
communication endpoints, and are either mapped one-to-one to network
sockets or to SCTP streams if SCTP is used?, Each transport service [94]
consists of a set of transport features, which are defined as end-to-end
features that the transport layer provides to an application. These features
includes security, reliable delivery, ordered delivery, message or stream
orientation, etc. The combination of these transport features provides
a complete service to an application. In the NEAT terminology>, these

2Section 2.2.4 provides more details about NEAT flows and the architecture of NEAT.
3See Appendix A in [43] for a general overview of the NEAT terminology.

11

transport services are called NEAT properties, and the NEAT library will
choose the best available transport protocols and options for an application
based on the NEAT properties specified through the NEAT API. This way,
the NEAT library offers a protocol-agnostic API for transport protocol
selection.

This section provides an overview of the NEAT API and library,
describing how the components of NEAT enables applications to access
advanced and innovative network services that can lead to de-ossifying the
Internet transport layer [71]. The rest of this section is organized as follows.
Section 2.2.1 elaborates on the complexity of implementing transport
protocols in operating systems, and that many protocols are instead
implemented in user-space or encapsulated in UDP. It also describes how
UDP encapsulation can improve the chances of NAT traversal. Since
NEAT is a user-space library it can leverage both user-space and kernel-
space protocols, libraries, and mechanisms. Section 2.2.2 describes different
methods for determining which transport protocols are supported between
the local endpoint and the remote peer. The Happy Eyeballs mechanism
of NEAT is introduced. Section 2.2.3 describes different event-handling
mechanisms, their benefits and limitations, and explains why NEAT uses
the callback-based approach offered by libuv [50]. Section 2.2.4 presents an
overview of the NEAT architecture summarizing all components and how
they interact.

2.2.1 Leveraging user-space libraries and UDP encapsulation

It is important to note that NEAT builds upon the BSD sockets API, and
that the same services can be provided both through using NEAT and the
BSD sockets API directly. There are however many benefits to using NEAT
instead of directly accessing the socket layer.

NEAT is a user-space library, and therefore has access to both user-
space and kernel-space libraries and mechanisms on a particular platform.
On the other hand, the BSD sockets API is part of the operating system
and communicates directly with the socket layer of the kernel. Updates
to the BSD sockets API will therefore follow the release cycles of the
operating system which may be very long especially for stable releases.
Consequently, new transport protocols and options may not be available
in the operating system for a long time. Additionally, the new transport
protocols will need to be integrated into different operating systems
that have different implementation requirements and behaviours. Many
transport protocols are therefore implemented in user-space so that they
can be decoupled from the operating system details, and be provided more
timely updates.

There are several transport protocols implemented in user-space in-
cluding SCTP [1, 72], Google’s QUIC (Quick UDP Internet Connections)
[37], and WebRTC (Web Real-Time Communication)* [9]. However, one

“WebRTC is not a stand-alone transport protocol but is a library that leverages other
protocols to achieve peer-to-peer communication.

12

problem with transport protocols implemented in user-space is that every
application will run a separate network stack which can lead to increased
memory usage, sub-optimal performance and errors. Another problem
with user-space library implementations is that the application developer
will need to interact with a variety of different APIs which can increase the
application logic complexity.

The NEAT library can be updated to add the support for new user-
space libraries when they become available. For all the user-space libraries
that are available on the operating systems that NEAT supports, the NEAT
library can leverage the different APIs and libraries internally if they
match the requirements specified by the user. This enables the NEAT
application to leverage the services provided by the user-space libraries
without accessing the APIs directly.

A common method for implementing user-space transport protocols is
to use UDP as a substrate protocol and implement new features on top of
it [16]. The primary reason why UDP is used as the underlying transport
is to improve the chances that the encapsulated packets belonging to that
transport will be able to traverse NAT middleboxes [13, 28, 85, RFC6951].
The reason why UDP has a better chance to to traverse NAT middleboxes
compared to newer protocols is that UDP has been used in the Internet
from the start. UDP is also a very minimal protocol that only supports port
numbers and a checksum, which makes it a good candidate for further
extensions. Since UDP is so simple and minimalistic, all applications
that use UDP will need to implement the same core set of functionality,
e.g. congestion control to not cause congestion collapse in the network
[RFC8085]. UDP encapsulation can help innovative transport protocols
to be deployed in the Internet, but it is not a problem-free solution. In
particular, the extra UDP layer poses some overhead on the systems that
handles the encapsulated packets. Also, NAT gateways typically use
shorter timeouts for UDP port mappings than e.g. TCP port mappings,
so it is more desirable to use a native transport for long-lived connections
[13].

2.2.2 Transport protocol selection using Happy Eyeballs

The BSD sockets API does not provide any mechanisms for determining
which transport protocols or transport protocol extensions are supported
both on a network path and at the remote endpoint(s). Also, if more than
one protocol is found to be supported end-to-end, the BSD sockets API
does not offer any negotiation mechanisms between the endpoints to use
the best available protocol. If a protocol is used but it fails to traverse the
network path e.g. due to an unsupportive NAT middlebox, the application
developer must devise a fallback method and attempt the use of another
protocol until end-to-end communication is established. Sometimes the
packets are silently dropped by middleboxes, and the application may not
be notified that a protocol is not supported. This all puts responsibility on
the application developer to add support for new transport protocols.
There exists multiple approaches to discover the support for transport

13

protocols and extensions between two endpoints. [20] proposes a negoti-
ation mechanism where remote endpoints can list the available transport
protocols and negotiate on the best fitting one. [100] describes how the
Uniform Resource Identifier (URI) format can be extended to include in-
formation about transport protocols. For instance “http” would suggest to
use TCP as transport while “http-sctp” would suggest to use SCTP. An-
other approach is to use the Session Initiation Protocol (SIP) [RFC3261] and
have the SIP clients and proxies select a transport protocol based on the
transport protocols returned in the DNS SRV records [RFC2782, RFC3263].
However, all these approaches only determine whether a transport pro-
tocol is supported by both endpoints, but does not determine if the pro-
tocol is supported by NAT middleboxes, load balancers, firewalls, etc. in
the network.

NEAT uses a mechanism called Happy Eyeballs for transport selection
that discovers if the protocols are supported along the entire network path
and by the endpoints [25]. The Happy Eyeballs mechanism was first
introduced to facilitate IPv6 adoption in the Internet [RFC6555], but the
same technology has been found to also facilitate transport selection [97,
98]. It works by simultaneously initiating different transport protocols
when wanting to connect to the remote peer. If one of the protocols fails
to traverse the entire network path due to e.g. an unsupportive NAT
middlebox, the others may succeed and successfully establish connections.
The idea is that one can probe the network for the support of a desired
protocol and fallback to another if the former is not supported (e.g. fallback
to TCP if SCTP is not supported) without introducing any significant
connection establishment delay overhead. If it is desired that one protocol
is used over another (e.g. SCTP over TCP), the initiation of the connection
establishment for the less desired protocol can be delayed by a short
amount of time to give the most desired protocol a head-start [99].
Although the simultaneous initiation of several protocols can produce
some delay, and adds system and network load, this can be mitigated by
caching connection data when opening many flows [97, RFC6555, 99].

The transport layer Happy Eyeballs mechanism used by NEAT com-
bined with its protocol- and platform-independent user API is what en-
ables the use of new transport protocols, paving the way for more innov-
ation. The Happy Eyeballs mechanism gives innovative protocols and ex-
tensions that can improve application performance a chance by trying to
establish connections with them first. This leads to a change to the traffic
travelling on the wire and through middleboxes. The new traffic patterns
can potentially lead middlebox vendors and maintainers to upgrade and
reconfigure the equipment to support the traffic [44]. In addition, the pro-
tocol agnostic API enables new features to be added seamlessly.

An implementation of Happy Eyeballs has been made by Apple [82]
to facilitate IPv6 adoption. Also, popular web browsers like Firefox
and Chrome use Happy Eyeballs to discover the end-to-end support for
the QUIC transport protocol and fall back to TCP if it is not supported
[11]. The global deployment of Happy Eyeballs indicates that it is a
suitable mechanism for transport selection. The same issues with IPv6

14

adoption are also present with transport protocol deployment (lack of
end-to-end support). Although most of todays Internet supports IPv6,
the connectivity for IPv6 is still worse than IPv4 [32], and there does
not exist any mechanisms to determine the end-to-end support of an
Internet protocol without testing it in the network. [2] show that the
Happy Eyeballs implementation in Chrome® introduces less connection
establishment delay compared to other implementations. [8] evaluates
how the delay introduced between IPv6 and IPv4 candidates affects the
connection establishment time. [70] evaluates the local resource cost of
transport protocol selection with the Happy Eyeballs mechanism on the
server-side, and shows that the increase in resource usage is proportionally
not so large compared to initiating connections with a single protocol,
especially when caching of connection results is enabled (see Section 2.4
for more information on this study).

2.2.3 Event-handling

NEAT is a complex library that needs to handle a variety of events
like reading and writing to network sockets, polling network sockets
for readability or writability, handle timeouts and signals, and facilitate
communicate between NEAT components. There are different APIs that
can handle such events with different benefits and limitations. Also,
some of the event-handling APIs are only supported on specific operating
systems.

This section describes different approaches to event-handling. First
it describes APIs available in most operating systems due to POSIX
standardization. Second it describes APIs that are available in specific
operating systems. Third it describes different callback-based APIs that
calls user-specified functions when events occur. Fourth it describes the
difference between asynchronous I/O and non-blocking I/O. Finally, it
elaborates on the event-handling mechanisms used in NEAT.

POSIX APIs

select [80] and poll [75] are event-handling mechanisms that are standard-
ized in POSIX [33, 34] and available in most operating systems. They are
used by applications to monitor file descriptors for events, waiting until
an event occurs. Frequently, they are used to monitor socket descriptors to
determine when data is writable or readable.

select is the oldest and most inefficient mechanism. An example of an
event loop implemented with select is given in Listing 2.4. select performs
poorly when monitoring a lot of socket descriptors. It was implemented
in a time before the global-scale Internet of today, and was not designed to
scale well with thousands of connections in multi-threaded environments.
It has the following limitations:

SChrome first attempts connecting to one address family (IPv6 or IPv4) and falls back to
the other after 300 ms if no response is received.

15

Listing 2.4: Code example of an event loop using select

1 for (;;) {

2 /% Need to re-copy socket descriptors for every iteration
3 because select modifies the fd_set passed as argument */
4 read_fd_set = active_read_£fd_set;

5

6 /% Block until event is avatilable */

7 if (select(FD_SETSIZE, &read_fd_set, NULL, NULL, NULL) < 0) {
8 /% Handle error */

9 }

10

11 /% Iterate through all descriptors to see if an event s
12 available for any of them */

13 for (i = 0; i < FD_SETSIZE; ++i) {

14 /* If an event is available */

15 if (FD_ISSET(i, &read_fd_set)) {

16 if (i == server_socket) {

17 /% Adccept mew commection */

18 } else {

19 /* Read data from client */

20 }

21 }

22 }

23 '}

* Supports at maximum 1024 simultaneous connections. This is
because the fd_set structures passed as arguments have a limitation
on the number of bits that can be set. The maximum number of
simultaneous connections allowed is determined by the FD_SETSIZE
macro.

* Modifies the fd_set structures passed as arguments. This means that
the user must re-copy the socket descriptors that should be monitored
every iteration of the event loop.

* To determine which socket descriptor an event is available for, the
user must iterate through all the monitored socket descriptors and
call FD_ISSET to check if an event is available.

¢ Does not support multi-threaded environments where another thread
modifies the fd_set given as argument while select is blocking. This
will lead to unspecified behaviour.

¢ Can only determine if a socket descriptor is closed by the remote peer
by trying to read from the socket. The read will return 0.

* Requires that the user must calculate the largest socket descriptor
that is monitored. Alternatively, the macro FD_SETSIZE can be used
(which is the upper bound).

poll is a more modern event-handling mechanism and mitigates many
of the issues with select. An example of an event loop implemented with
poll is given in Listing 2.5. poll mitigates the following issues of select:

16

1
2
3
4
5
6
7
8

\©

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 2.5: Code example of an event loop using poll

for (5;) {
/*¥ Block until event is available */
if (poll(pollfds, number_of_fds, NULL) < 0) {
/* Handle error */

}

/% Iterate through all descriptors to see if an event s
available for any of them */
for (i = 0; i < number_of_£fds; ++i) {
/* If no event, try next */
if (pollfds[i].revents == 0) {
continue;

}

if (pollfds[i].fd == server_socket) {
/% Accept new connection */
} else {
if (pollfds([i].revents == POLLIN) {
/* Read data from client */
}

}

e There is no limit on the number of simultaneous connections.

* Does not modify the pollfd structures passed as arguments. This
means that the user does not need to re-copy the structures for every
iteration of the event loop.

¢ Can determine if the remote peer closed the connection without
having to read from the socket descriptor by setting the POLLHUP flag
in the revents field of the pol1£d structures.

¢ The user does not need to specify the maximum socket descriptor that
will be monitored.

However, poll still has the same multi-threading issues as select. Also,
the user must still iterate through all of the pol1fd structures to determine
which socket descriptor an event is available for. This might not be
a problem except for the cases when the application needs to handle
thousands of connections. The choice of event handling mechanism used at
the client-side is usually not significant except for peer-to-peer applications
with thousands of connections.

Platform-specific APIs

Every operating system typically include a high-performance event-
handling API that depends on implementation details of the operating
system which are not standardized by POSIX. Table 2.3 lists the high-
performance event-handling APIs on all major operating systems.

17

Operating system Event-handling API

Linux epoll [17]
FreeBSD kqueue [45]
NetBSD

OpenBSD

DragonflyBSD

macOS

Microsoft Windows 1/O Completion Ports (IOCP) [36]
Solaris Event Ports [18]

Table 2.3: The high-performance event-handling APIs of different operat-
ing systems.

These high-performance APIs are designed to support server-side
applications that can handle tens of thousands of connections in a
multi-threaded fashion. Listing 2.6 gives an example of an event loop
implemented with kqueue. Using these platform-specific APIs are not
always better than using poll, especially when the connections are short-
lived or when the events that are monitored for each socket descriptor are
modified rapidly. This can be the case in the web, where a server may
need to accept thousands of new short-lived connections every second.
In this case, epoll requires that a system call is made for every socket
descriptor when modifying the monitored events for that descriptor, which
can introduce a high amount of resource usage. kqueue can modify the
monitored events for multiple socket descriptors in a single system call
which is more efficient than epoll.

Callback-based APIs

Several cross-platform event-handling libraries have been developed, like
libevent [49], libev [48], and libuv [51]. These libraries offer callback-based
APIs that enable the applications to set user-specified callback functions.
These callback functions are set for specific kinds of events and called
whenever the events occur, for instance whenever a network socket is
writable or readable, or when a signal is received. These libraries are
designed based on the concept of an event loop that loops continuously
monitoring events, and calling callbacks whenever events occur. The event
loop is an abstraction of the platform-specific event-handling API that is
available in the currently running operating system. For example, if libuv
is run in FreeBSD, it will use kqueue internally to handle events.

libevent was developed first, and it was developed to replace the event
loop in event-driven network servers. However, due to several limitations
and security vulnerabilities [96], the library libev was developed to replace
libevent. libev is a stripped-down implementation of libevent that is more
resource efficient [96]. However, a major drawback of libev is that it does
not support event-handling with IOCP in Microsoft Windows.

18

1
2
3
4
5
6
7
8

\©

10
11
12
13
14
15
16
17
18
19
20
21

Listing 2.6: Code example of an event loop using kqueue

for (5;) {
/*¥ Block until event is available */
if ((nev = kevent(kq, NULL, O, evlist, evlist_length, NULL))
/* Handle error */

}

/% Iterate through the events */
for (int i = 0; i < nev; i++) {
if (evlist[i].flags & EV_ERROR) {
/% Handle error */

}
if (evlist[i].ident == server_socket) {
/% Accept new connection */
} else {
if (evlist[i].filter == EVFILT_READ) {
/* Read data from client x/
}
}

}

libuv (Unicorn Velociraptor Library) [51] was originally developed
on top of libev with extensions to support IOCP for Microsoft Windows.
However, in later versions® it does not depend on libev and is a stand-
alone state-of-the-art library for cross-platform event-handling supporting
all major operating systems [3]. libuv was primarily developed for use by
Node.js [68], but is also used by other projects [40, 55, 64]. Listing 2.7 gives
an example of how callbacks can be set in a server application using libuv.

Asynchronous vs non-blocking I/0

It is important to understand the differences between asynchronous 1/0 and
non-blocking 170.

Non-blocking I/O If the user creates a socket it is put in blocking mode
by default. This means that all the system calls that are performed on
the socket will block (the process will sleep) until the system call can
complete successfully. For instance accept will block until a new incoming
connection can be processed, and recv will block until there are data to be
read. Intuitively this seems sub-optimal since the application can do other
useful work instead of waiting for I/O. This is why a socket can optionally
be put into non-blocking mode. In this mode, all system calls will return
immediately even if there are data to be processed or not. If the system
call would block if the socket was set in blocking mode, the system call will
instead return with errno set to either ENOULDBLOCK or EAGAIN if the socket

®In version node-v0.9.0 of libuv the libev dependency was removed.

19

-1) {

OO UTHWN -~

NNDNDNDNNNDNDNNNNR PR R R R R
OO UIHRWNNR OOV UTIER WNRRO

Listing 2.7: Code example of the callback-based API in libuv

uv_loop_t *loop = calloc(l, sizeof (uv_loop_t));
struct server_ctx *ctx = calloc(l, sizeof (*xctx));
ctx->handle = calloc(l, sizeof (*ctx->handle));
ctx->server_socket = server_socket;

/* Initialize the event loop */
if (uv_loop_init (loop) != 0) {
/* Handle error */

}

/% Initialize a handle to a event watcher for a server socket */
if (uv_poll_init(loop, ctx->handle, ctx->server_socket) < 0) {
/* Handle error */

}

/% Register the callback that will be called when receiving incoming

connections. In this case, call on_connected */
if (uv_poll_start(ctx->handle, UV_READABLE, on_connected) < 0) {
/* Handle error */

}

/% Set the pointer to the user data that can be associated with each
handle. This enables us to easily access data that are related to

a specific socket omnce a callback is issued */
ctx->handle->data = ctx;

/* Start the event loop */
uv_run (loop, UV_RUN_DEFAULT);

is put in non-blocking mode. The application can then attempt to issue the
system call later to see if new data are available.

Asynchronous I/O When using an event-handling API the I/O events
are handled in an asynchronous manner, and if no event-handling API
is used the events are handled in a synchronous manner. If no event-
handler is used, the only way to determine if events are available is to
continuously loop the set of socket descriptors checking for events. On
the other hand, when event-handling APIs like select, poll, and kqueue are
leveraged, the application can be notified about events asynchronously. The
event-handling APIs do not require the monitored socket descriptors to put
in non-blocking mode, because the event loop is not issuing any I/O system
calls on the sockets.

Non-blocking sockets are often used together with asynchronous 1/O to
improve performance [10]. For instance if a socket descriptor is marked
readable by select and the socket is in blocking mode, the BSD sockets API
function recv can potentially block if it is called more than once for every
event loop iteration. If the application receive buffer is small, the event
loop will need to iterate many times in order to read a lot of data. This will
increase the CPU usage and delay of the application because select is called
unnecessary many times. If the sockets are put in non-blocking mode, recv

20

can be called arbitrarily many times in every event loop iteration until all
data has been received.

Asynchronous event-handling in NEAT using libuv

The NEAT library uses libuv internally for all event-handling. This
enables NEAT to leverage the best event-handling APIs available in every
operating system by accessing a uniform, cross-platform APYI”. NEAT offers
a callback-based API, and the callbacks are administred internally by libuv.
NEAT uses a callback-based approach so that the details of the NEAT
event loop can be hidden from the application. When callbacks are set in
NEAT, they are not called directly from libuv once the associated events
occur. Instead, libuv calls internal callback functions in NEAT that handles
internal logic, and from these internal callback functions the user-specified
callback functions are called.

When libuv is used as the event-handling API, the sockets are
automatically put in non-blocking mode, and the events are handled
asynchronously. This enables NEAT to be notified by libuv when events
occur, and enables NEAT to perform I/O operations efficiently.

A drawback of using libuv in NEAT is that libuv will always use
the platform-specific event-handling APIs even though these APIs are not
always the best options for handling events efficiently as described earlier.
For instance, in Linux epoll is always used although using poll can be more
efficient in some scenarios (e.g. for short-lived connections). NEAT uses
libuv to be as portable as possible, and to minimize the number of bugs
related to event-handling. The NEAT library is still prototype software, and
in a later version, the internal event-handling in NEAT can be optimized
based on the callbacks that are set and the NEAT properties.

2.2.4 The NEAT architecture

The NEAT architecture consists of several independent categories of com-
ponents that are responsible for specific tasks. The transport services
provided by these components are accessed through the NEAT User API
(NEAT API). This is the interface the user interacts with to access the ser-
vices of the NEAT system. All the components of NEAT including the NEAT
API are part of the NEAT User Module. The NEAT API enables the de-
veloper to specify the transport services at runtime, and the NEAT system
will dynamically handle these requests based on cached information, cur-
rent network configurations and local policies. The components of NEAT
constitute a Happy Eyeballs mechanism that is used for transport selection.
Figure 2.1 illustrates the context in which the NEAT library operates,
and depicts the different component categories that constitute the NEAT
architecture. There are five component categories: Framework, Policy,
Selection, Transport, and Signaling & Handover [44]. A detailed description
of the NEAT architecture and the different components can be found in

’Currently NEAT is supported on FreeBSD, Linux, OS X and NetBSD.

21

Application

A
NEAT User Module v
NEAT API
3 el Policy
[© ! Information
S Selection Framework Base §
o 3 5
= Polic 2
& y =
17 Manager -
S 5 k)
1%} A . fq o
Q Transport Signaling & Characteristics | | @
= Handover Information
) Base
¢ A
User-space protocols

Kernel-space protocols

Figure 2.1: The architecture of NEAT. This figure is inspired by Fig. 1 in
[44].

[43]. The following is an overview of the most important functionality and
mechanisms. Note that this is the intended architecture of NEAT, and that
the functionality of the actual reference implementation [64] may not fully
conform to this specification. The reference implementation is a prototype
software, although it implements the main ideas from the architectural
specification.

As illustrated in Figure 2.1, the NEAT User Module is located in user-
space, and has direct access to both kernel mechanisms and other user-
space mechanisms. The workings of the NEAT components are hidden from
the application, and the application has a single interface to deal with.

Framework The Framework components constitute the core functionality
of the NEAT library, and are the minimum requirement to implement
the NEAT system. These components are responsible for binding the
other components together to form a coherent system. The Framework
components are:

e The NEAT API that replaces the BSD sockets API to request network
services in a platform- and protocol-independent fashion. The NEAT
API is callback-based and provides asynchronous I/O operations.

* The concept of a NEAT Flow Endpoint or simply NEAT flow. The
sockets instantiated by the BSD sockets API is replaced with this
platform- and protocol-independent data structure. It represents
an endpoint that maps to a single socket or to a single stream if
multiplexed data delivery is used [RFC4960]. Like the Transmission
Control Block (TCB) [RFC675] contains information for a TCP socket,

22

the NEAT flow aggregates the data that are needed to model an
endpoint, including data like the associated socket descriptor, remote
address, remote port, congestion control algorithm, Happy Eyeballs
candidate list, etc.

* The ability to connect to a name. If the application specifies a specific IP
address to connect to, this component is not needed, but if it specifies
a remote domain name, the name will need to be resolved through
a DNS lookup. The DNS lookup in NEAT extends upon the POSIX
DNS lookup function getaddrinfo by enabling DNS lookup on all
interfaces, and can lookup more than a specific transport protocol.

* The ability to retrieve statistics from the NEAT system. A user should
be able to retrieve the current system state including information
about which flows are open, the transport protocol used for each
flow, the transport protocol options that are enabled/disabled, etc.
Also, general flow statistics like the number of bytes sent/read, the
number of messages sent/read, etc. should be available.

Policy The Policy components are responsible for generating a ranked
list of transport solution candidates based on the NEAT properties specified
through the NEAT API. These candidates are used when performing Happy
Eyeballs for transport selection. The Policy components comprise three
entities: the Policy Manager (PM), the Characteristics Information Base (CIB),
and the Policy Information Base (PIB). These components interact with each
other to map the specified application properties to specific transport
protocols and options.

The Policy Manager is the core component of the Policy components, and
it manages both the CIB and the PIB. The NEAT system communicates with
the PM through the Policy Interface. In the reference implementation of the
NEAT library, the PM is implemented as a separate Python daemon that
runs independently from the NEAT application, and the Policy Interface of
the PM is implemented as a UNIX domain socket. The NEAT application
sends the NEAT properties through this interface, and the PM responds
with a candidate list back to the NEAT application. The NEAT application
specifies the NEAT properties in a JavaScript Object Notation (JSON) format
[15] because JSON is a format that is suitable for storing key-value
information, is easy to parse, and is human-readable. When the application
opens a new NEAT flow, the NEAT properties specified for that flow are
handled by the PM given that it is running®.

In order for the PM to build the candidate list, it takes as input the NEAT
properties specified through the NEAT API, and information from the CIB
and PIB. The CIB and PIB are repositories that store various information
and data. The CIB stores information about available interfaces, supported

8NEAT can open flows when the Policy Manager is not running. The NEAT library
implements a simple Policy Manager function internally in the library that can translate
simple NEAT properties to transport solutions. However, for more advanced NEAT
properties and to leverage the CIB and the PIB, the Policy Manager must be running.

23

PM inputs: Application Policies /

Policy Manager

\4

PM output: Candidate
ranked list of JSON objects containing transport
NEAT properties of candidates solutions

Figure 2.2: How data flow between the Policy components and the NEAT
system. This figure is taken from [43].

transport protocols, network configuration and characteristics, current
connections, cached data from previous connections, etc. In other words, it
stores information about the characteristics of hosts, networks and systems,
and this data is continuously being updated. The PIB stores policies and
profiles that map the high-level properties requested by the application
to actual transport protocols and options. This mapping constitute the
semantics of the transport services specified via the NEAT properties. Unlike
the data stored in the CIB that is continuously updated, the data in the
PIB remain static during runtime. Figure 2.2 [43] illustrates how the PM
retrieves information from several sources to produce the candidate list.

The difference between the policies and profiles stored in the PIB is that
the profiles are applied before the CIB lookup while policies are applied
afterwards. The motivation behind using profiles is that high-level NEAT
properties can be mapped to specific host-specific properties related to the
CIB. For instance, a low delay NEAT property can be mapped to a specific
link medium (e.g. use Ethernet and not Wireless for low latency). When the
CIB lookup occurs, the NEAT properties are updated to form a preliminary
candidate list. Based on the profiles we might e.g. want to send data
on a specific link medium, on a specific interface, on an interface with a
specific MTU or bandwidth, etc. Finally, the policies update each of the
preliminary candidates to form a complete transport solution candidate list
that is returned back to the NEAT framework. Figure 2.3 [43] illustrates the
workflow of the PM.

Selection The Selection components are responsible for selecting an
appropriate transport solution that will work end-to-end and enable the
application to communicate with the remote peer. A transport solution
is the complete description of a transport candidate including transport
protocol, its options, and other configurations that may or may not be
supported end-to-end in a network. The PM returns a list of such transport
solutions that must be handled by the Selection components. Happy Eyeballs
is one of the components, that attempts to establish communication with
the remote peer based on the ranking of the transport solution candidates.
The PM ranks candidates with different priorities based on the user-

24

3 PR (async access)

£ 2. Updated)

=3 ™ request Profiles

s o properties

i & _
c . iti .

g © | 3macnea| Py | f SEEEEET o

S—p = CiB Information OB atio o

5 > | candidates Base ase 4

= =

g g 4. Updated

[-% . Update -

[}

2 < PIB Policies

— candidates N >

5. Ranked

candidates‘

Connection
Selection

Connection handle

Figure 2.3: The order in which the Policy Manager receives data from its
sources. This figure is taken from [43].

specifed properties and cached data. Candidates with lower priorities have
higher precedence than candidates with higher priorities. The candidates
are scheduled with a certain delay between each candidate to not cause
bursty network behaviour and to let transport solutions a better chance at
establishing communication before doing a fallback. Based on the priority
value of a candidate and the delay introduced between two candidates,
the total time a candidate needs to be delayed during Happy Eyeballs can
be calculated by multiplying its priority value with the delay value. This
means that the first candidate with a priority value of 0 will be attempted
immediately while all other candidates are delayed appropriately. In the
reference implementation, the delay introduced between candidates is set
to a static value of 10 ms. The Happy Eyeballs candidates are scheduled in an
asynchronous manner by using timers, offered in the underlying libuv event
loop.

It is important to note that the transport solutions are not limited to
transport layer details. Basically any network feature that may have the
potential for being blocked in the network can be probed using Happy
Eyeballs. An example of such features is the Quality of Service (QoS) marking
of the packets. QoS marking enables the programmer to specify desired
requirements for the sent network packets (e.g. that they should have
higher priority compared to other packets, or that they should have low
latency). In the BSD sockets API, the packets can be marked with QoS
codes through the setsockopt system call. This modifies the Differentiated
Services Code Point (DSCP) part of the Type of Service (ToS) field in case of
IPv4, and Traffic Class field in the case of IPv6. The NEAT API enables the
application to specify high-level abstract QoS types that can be mapped to
several specific QoS codes internally by NEAT.

There are different network features that can be included in transport
solutions, but where the transport protocol does not have the capability
to signal the application about a successful or failed transport selection
process. Examples of this is connectionless transport protocols like UDP

25

and UDP-Lite or QoS marking. In these cases, the application has
full responsibility to define the semantics of the network service, and it
needs to handle varying network conditions. In order to integrate these
features with the transport selection process, another Selection component
called Happy Apps is included. This component is only activated when
the transport protocol cannot handle the selection signaling as described
above. With Happy Apps enabled, an application-defined callback will be
issued after some time, where the application can specify how ‘happy’ it is
(e.g. the application can specify that it is happy beause it received response
from the remote peer). If the application signals that it is ‘unhappy” with
the current condition, the NEAT system can fallback to another transport
solution. This mechanism can be used to probe different QoS codes in the
network.

Use of the Happy Eyeballs mechanism allows for protocols such as SCTP
to be tried on the wire on the client-side, hence giving more incentive for
the wider adoption of it in the Internet. However, SCTP uses a four-way
handshake (4WHS) for connection establishment while TCP uses a three-
way handshake (3WHS). This means that it takes 1 Round-Trip Time (RTT)
before a TCP client can send data, while for SCTP it takes 2 RTTs. This
means that if SCTP and TCP is initiated concurrently using Happy Eyeballs,
TCP will probably win. Even if SCTP is given a head-start, and a delay
is introduced before attempting to connect with TCP, TCP will in many
cases still win over SCTP. This is a major drawback in the Happy Eyeballs
mechanism. See Chapter 7 for a discussion on the possible solutions to
this problem. More generally, Happy Eyeballs only works properly if the
different transport solutions uses the same number of RTTs to connect.

For every Happy Eyeballs candidate that are probed in the network,
the result is stored in the CIB for later reference. The result may include
that the connection was successful or failed. This caching of connection
establishment results mitigates the problem of introducing extra network
traffic because if subsequent connection establishment requests are made
to the same remote peer, NEAT can lookup the CIB and determine which
transport solutions are supported end-to-end. The state of the network may
of course change over time, and therefore, the cached data in the CIB will
expire after some time. In order to get a clear picture about the transport
protocols that are supported in the network, transport solution candidates
may be given a chance to successfully connect before they are aborted.

Transport The Transport components are responsible for configuring and
managing the transport protocols that are selected with the Selection
components. This includes handling the transport protocols and features
in such a way that a single, uniform API can be exposed to the user.
For example, even though UDP is a connectionless protocol, the Transport
components implement a virtual accept mechanism where the application
can accept UDP ‘connections’ by calling neat_accept (see Appendix C for
a description of NEAT API functions). Since the application in many cases
do not specify the specific transport protocol to use, the application cannot

26

set protocol specific options, like the Nagle algorithm for TCP [RFC896].
Instead, these options are set automatically by NEAT based on the given
properties.

The NEAT Library currently supports the following transport protocols:
TCP, UDP, kernel-space SCTP, user-space SCTP, Multipath TCP (MPTCP)
[RFC6824], UDP-Lite, SCTP over UDP in kernel-space, SCTP over UDP
in user-space, and WebRTC (not a transport protocol, but an aggregation
of protocols that can offer a flexible transport service). The Transport
components need to configure these transport protocols to operate as
efficiently as possible based on the user-specified properties. If the use of
a specific transport protocol is forced through the properties, and services
that are not supported by this protocol are also specified, these services are
simply ignored by the PM. An example of a service that is not supported by
all the protocols is multihoming, that enables a peer to communicate with the
remote peer over several network interfaces. When this service is specified,
the Transport components are responsible for binding to all of the specified
addresses, for instance with sctp_bindx.

NEAT supports peer-to-peer communication by using the data channels
of the WebRTC library. By leveraging protocols like Session Traversal Utilities
for NAT (STUN) [RFC5389], and Traversal Using Relays around NAT (TURN)
[REC5766], WebRTC can improve the chances to traverse middleboxes.

A feature provided by some Transport components is the ability to
prioritize data sent on different NEAT flows in a flow group. This means
that the bandwidth capacity can be shared among the NEAT flows based
on their priority values. If only TCP flows are opened, the flows can be
coupled with the Coupled Congestion Control (CCC) mechanism described
in [95]. This mechanism is currently only implemented in FreeBSD [21]. In
this case, the Congestion Window (CWND) of the flows are limited by the
priority values of the flows. If only SCTP flows are opened, either a new
SCTP associatioon is established for every NEAT flow, or the NEAT flows
can be transparently mapped to different SCTP streams in a single SCTP
association using the Transparent Flow Mapping mechanism in NEAT [24,
92]. If Transparent Flow Mapping is used, the data sent on the different
SCTP streams can be scheduled as defined in [RFC8260]°. If a combination
of TCP and SCTP flows are opened, the priority values are simply ignored
because there does not exist any mechanisms for coupling TCP and SCTP
connections.

Another feature that can be specified through the NEAT properties is
security. Based on the transport protocol in use, this enables encryption and
decryption of user data to facilitate confidentiality, integrity, and availability
concerns related to data transfers, and enables the end-hosts to authenticate.
NEAT wuses the Transport Layer Security (TLS) [RFC5246] and Datagram
Transport Layer Security (DTLS) [RFC6347] protocols implemented in the
OpenSSL library [69] to provide this service. TLS is used with TCP, and
DTLS is used with UDP and SCTP.

9The SCTP scheduling algorithms defined in [RFC8260] are not implemented in any
major operating system yet.

27

NEAT
Framework
Components

NEAT Flow =P Middlebox INEAT S NEAT Flow Endpoint

n integrated group and 5
Endpoint usrsctp Traversal local priority Statistics

N A ‘ CiB
NEAT API N olicy
Framework s Interface (Pl) source
format
NEAT Policy Manager
CiB
Happy Eyeballs
onnect to a SCTP/TOR,
name

NEAT
Transport
Components

NEAT
Selection
Components

Policy

Policy file
Components

Happy Apps format
IPv4/IPv6)

PIB
ecurity

Figure 2.4: The components of NEAT and their interactions. This figure is
taken from [43].

Signaling & Handover Signaling & Handover components are optional
extensions to the NEAT system to complement the functions of the
Transport components. They can send signals to remote devices and peers
independent of user data, for example it can be used in Software-Defined
Networking (SDN) [46].

Figure 2.4 [43] gives an overview of all the components in the different
component categories, and illustrates how they interact.

2.2.5 OQOverview of the API

This section gives a brief overview of the NEAT API for the functions
and callbacks that are considered in this thesis. For a description of how
programming can be done in NEAT and a more in-depth description of the
core functions of the API, see Appendix C.2. For a detailed reference to the
NEAT API, see Appendix B in [43].

Table 2.4 lists the core functions of the NEAT API and gives a short
description of their functionality. Table 2.5 lists the core callbacks of the
NEAT API and describes in which scenarios they are called.

2.3 Existing approaches to de-ossify the Internet
transport layer and why NEAT is needed

The TAPS working group is working on defining a TAPS Transport
System for leveraging innovative transport protocols and features through
a platform- and protocol-independent API where the user can specify
Transport Services. The working group is primarily working on three
documents to define this system [5]:

* Defining the architecture of the system.
* Defining the abstract API.

* Defining guidelines on how the system can be implemented.

28

Function Description

neat_init_ctx Creates a new NEAT context (one per event loop).

neat_new_flow Creates a new NEAT Flow Endpoint.

neat_set_property Sets the user-specified J[SON properties for a specified
NEAT Flow.

neat_set_operations Sets the user-specified callbacks for a specified NEAT
Flow.

neat_start_event_loop Starts the NEAT event loop running libuv internally.

neat_get_event_loop Returns the [ibuv handle used internally in the

NEAT event loop.

neat_open Connects to the specified remote peer using the
specified NEAT Flow.

neat_accept Accepts connection requests using the specified
NEAT Flow.

neat_read Reads data from the specified NEAT Flow.

neat_write Writes data to the specified NEAT Flow.

neat_close Closes the specified NEAT Flow.

neat_stop_event_loop Stops the NEAT event loop.

neat_free_ctx Releases all the resources associated with the spe-
cified NEAT context.

Table 2.4: The core functions of the NEAT API

Callback Description

on_connected The NEAT Flow successfully connects or a remote
peer has connected.

on_error An error has occured.

on_readable The NEAT Flow is readable.

on_writable The NEAT Flow is writable.

on_all_written All the data that is buffered in the NEAT Flow is
successfully sent.

on_aborted The NEAT Flow is aborted.

on_close The remote peer closes the connection or the ap-
plication closes the connection associated with the
NEAT Flow.

Table 2.5: The core set of callback functions that can be set through the
NEAT API

29

The TAPS group has done work on three concurrent projects: NEAT
[61], Post Sockets [88], and Socket Intents [87]. The participants of these
projects collaborate to define the coherent concept of the TAPS Transport
System. NEAT and Socket Intents provide actual implementation code [7,
64], while Post Sockets only provides an abstract API specification [88].
However, one of the authors of Post Sockets, Brian Trammell, has later
collaborated with Apple which has implemented code. However, at the
moment, this code is not open-source.

Out of the three TAPS projects, NEAT has the most explicit implement-
ation approach, supporting a variety of different protocols and features.
Socket Intents is mainly developed to facilitate path selection, by leveraging a
similar mechanism to the NEAT Policy Manager. Post Sockets is quite similar
to NEAT, but it requires that all data are sent as messages.

The work done by the TAPS working group is probably the most
promising research for building a specification of a Transport Service System
because it is part of the IETF that proposes Internet standards that should
be followed by the wide Internet community. However, other related work
has been conducted. [29] discusses the inflexibility of the BSD sockets
API, and proposes Dynamic Application Oriented Network Services (DANCE)
which is a model where the user can specify transport services through a
new API [77]. Work done in another master thesis proposes a protocol-
independent API [39, 93], and a paper related to a Ph.D thesis does the
same [56]. [44, 71] provides a survey of related work.

2.4 Related studies concerning resource usage

The impact of Happy Eyeballs between SCTP and TCP on the server-side
has already been evaluated in [70]. The paper considers CPU utilization,
and memory usage attributed by network data structures in the kernel.
RFC6556 [RFC6556] describes how the performance of a HE algorithm
can be tested in the case of a dual-stack host that supports both IPv4 and
IPv6 address families, and wants to use HE to quickly determine which
addresses are available end-to-end in the network. However, RFC6556
only considers the timeliness of the algorithm, meaning that it only tests
whether a specific HE implementation can establish connections within
some time frame. On the other hand, [70] considers HE for transport
protocol selection, and describes how the HE mechanism impacts the
resource usage on a local machine with regards to CPU and memory, and
describes how these metrics can be measured. The HE mechanism that is
implemented and evaluated in the paper is not part of the NEAT library;
therefore, the paper evaluates only a part of what needs to be evaluated in
order to evaluate the performance of the entire NEAT library.

The paper examines how much resource overhead is induced by
receiving extra connection requests from the client as a result of HE. The
paper shows that HE increases the CPU load as compared with a single TCP
or SCTP connection establishment!?, and that HE has a negligible memory

19The increase in CPU load on the server was reported to be in the order of 10% on

30

usage overhead compared to single TCP/SCTP flows [70]. The paper also
shows that when caching of connection-request results was enabled in the
experiments, the CPU load was substantially reduced because there was no
need to attempt the initation of all protocols for every connection attempt
[70].

Work has also been done to measure the CPU and memory impact
of the NEAT library in a mobile broadband network scenario [11]. The
study reports that when downloading files from a remote server, the CPU
utilization increases with on average 4.27% (from 13.8% to 18.07%) when
using NEAT compared to not using NEAT, and that the memory usage
increases with on average 1.1 MB (from 1.9 MB to 3.0 MB). The CPU impact
of connection establishment was included in these results!!.

average when responding with web objects of 35KiB [70].
11Some of this information is not available in [11]. Instead we contacted the authors so
that they could clarify the methodology further.

31

32

Chapter 3

Research Methodology

This chapter elaborates on the data collection and analysis methods used
to answer the research questions in Section 1.2. Chapter 4 gives a detailed
description of how these methods are applied in the experiments.

3.1 Local resource usage: NEAT vs other APIs

This section elaborates on the methods used to address RQ. It first provides
an overview of how related work is used as a foundation to our own
research, and it describes how our work complements the results, methods
and limitations of the related work. It elaborates on the motivation
behind comparing NEAT to other state-of-the-art networking APIs to get
comparable results. Then it explains the performance metrics considered
in this thesis, and elaborates on why we have considered these metrics.
Finally, a technical description of how we sample the relevant metric data
is given, and which techinques we have used to analyze the sampled data.

We base the research methodology in this thesis on real-life experiments
in a controlled physical network setup, where we run our experiments
based on multiple scenarios in order to sample the relevant data.

3.1.1 How our work builds on existing research

Section 2.4 lists research that has been conducted to evaluate the resource
usage of the Happy Eyeballs mechanism and NEAT. However, this research
does not cover all aspects of the performance evaluation of NEAT.

The evaluation of HE [70] was realized by implementing a HE
mechanism in httperf [31], and extending the HTTP server lighttpd [52]
to listen for both TCP and SCTP. That is, the paper does not consider the
performance of the NEAT library; it only considers the impact of HE. Also,
only the server-side performance is considered, which ignores the resource
utilization of the host performing HE on the client-side. Finally, the paper
only considers the memory usage of kernel data structures like mbufs used
to store packets in the kernel. The paper does not consider the memory
usage of the server application, e.g. stack usage, heap usage, or virtual
memory page usage.

33

The mobile broadband network evaluation of NEAT [11] is more closely
related to the work done in this thesis compared to the evaluation in [70]
since it measures the impact of the entire NEAT library and not just a part of
it. However, the study considers only a single scenario where a NEAT client
downloads data from a remote server. It does not consider other scenarios
like different numbers of incoming/outgoing requests. Also, it does not
differentiate between the evaluation of connection establishment and data
transfer, but instead includes the measured resource usage for both these
cases into a single average value. Finally, it does not show the distribution
of the sampled data.

3.1.2 Comparing NEAT to other APIs to quantify the resource
overhead of NEAT

In this subsection we elaborate on how we can quanitfy the direct resource
overhead of using the NEAT library compared to using other networking
APIs. By direct resource overhead we mean the difference in resource
usage between NEAT and other APIs. In other words, how much
the resource usage increases by using NEAT compared to another APIL
To be able to measure this overhead we consider identical applications
implemented with each of the APIs, that is, the only thing that differs
between these applications is how they access the network services through
the networking APIs; the semantics of the applications is the same.

We decided to compare the resource utilization of a NEAT application
with an identical application programmed with libuv, since NEAT uses
libuv internally to handle asynchronous I/O. We also decided to measure
the resource utilization of an identical kqueue application, since libuv uses
kqueue internally to handle asynchronous I/O!. For an explanation about
why we decided to use kqueue, see Section 3.1.3.

We can evaluate the overhead of NEAT by comparing the resource
usage of NEAT and libuv. However, including kqueue results enables us to
understand how the resource overhead of a callback-based approach like
libuv compares to a simple event handler like kqueue. This gives a better
context to understand the resource overhead of NEAT compared to libuv.
Also, the libraries impose an increased level of abstraction: libuv provides
platform-independence, while NEAT extends upon this with protocol-
independence. A comparison of the three networking APIs enables us to
understand the overheads to provide these services.

3.1.3 Choice of operating system

Our experiments could potentially run on either FreeBSD or Linux since
both are open-source well-documented OSes with active user communities
and are supported by NEAT. We decided to use FreeBSD instead of Linux
because FreeBSD’s SCTP implementation is more compatible with the IETF
standards in comparison with Linux [89].

1 At least when running FreeBSD 4.1 and above.

34

Metric Description

CPU time The time spent by the CPU to execute instructions. This
can be measured at a per-process level where the time can
be divided into the following categories:

* User time: The time spent by the CPU executing
instructions for the process in user-space.

¢ System time: The time spent by the CPU executing
instructions in the kernel on behalf of the process.

CPU instruction The number of CPU instructions executed. This can be

count measured at a per-process level, giving the number of CPU
instructions executed by every function that is called by
the process.

Resident Set Size The number of bytes that are currently resident in the
(RSS) Random-access memory (RAM) for a specific process.

Heap memory us- The number of bytes that has been dynamically allocated.
age This can be measured at a per-process level.

Real-time delay The wall-clock time spent during a computation. This
includes CPU idle time that would not otherwise be
accounted for in the CPU time.

Table 3.1: The performance metrics considered in this thesis.

We consider kqueue for our experiments rather than epoll because
kqueue is generally deemed as a more efficient state-of-the-art API [78]
which can provide a better baseline for our evaluations. Since kqueue is
not available on Linux, we decided to use FreeBSD.

3.1.4 Performance metrics

Due to the numeric nature of resource usage (and hence resource over-
head), quantitative research approach for data collection and analysis is
applied. In this thesis we consider the performance metrics listed in Table
3.1. We build our research based on the methods used in [70], and com-
plement these methods with additional considerations to target the limit-
ations discussed in section 2.4. In particular, we aim to measure the im-
pact of the NEAT library; not only the impact of the HE mechanism. Also,
we aim to find the per-process resource usage instead of the global system
resource usage so that we can pinpoint the bottlenecks and overheads of
using NEAT.

We choose to collect CPU and physical memory data because the CPU
and physical memory are key resources on every computing system, and
they are limited resources that are shared among all processes on the
system. In order for NEAT to be deployable in end-hosts, it must share
these resources fairly with other processes, but also use the resources in an

35

efficient way so that the end-user will experience the library as responsive
and fast. We also choose to collect real-time application delay to quantify
the responsiveness of the library.

3.1.5 Data sampling method

This subsection provides technical details about how the different perform-
ance metrics listed in Table 3.1 are sampled, and it elaborates on our con-
siderations and thoughts when choosing these methods.

[53, 73] provide information about tools and methodologies to sample
performance data in FreeBSD and Linux. These sources describe different
observation tools that can monitor the global system and per-process
resource usage associated with different parts of the operating system and
different hardware. The information in these sources are used as a base for
the methodology in this thesis.

CPU time

Operating systems like Linux and FreeBSD offer a large set of performnace
observability tools that can provide information about global and per-
process CPU usage. Some examples of such tools are top, ps, mpstat, sar,
and iostat. These tools report either the percentage of time, or the number
of CPU ticks (‘jiffies’), that the CPU has executed for the different types of
tasks. The types of tasks are not the same for all operating systems, but
they can usually be divided into the following categories:

user: The CPU is running in user-space executing application code.

system: The CPU is running in the kernel, for instance executing
system calls, and running device drivers and kernel modules.

¢ interrupt: The CPU is servicing interrupt requests.

idle: The CPU is idle and is not doing any useful work.

Based on the operating system and configuration, the timer hardware
can be programmed to interrupt the kernel a specific number of times every
second [30]. The time between two such interrupts is defined as a CPU tick.
Note that CPU ticks are not the same as CPU clock cycles: modern CPUs can
execute billions of instructions every second, but many operating systems
require that the kernel operates at a smaller clock rate. The reason is to
for instance be able to schedule processes and perform context switching
at a fixed rate, but not so quick that the machine is using too much power,
or that the operating system will need to spend too much CPU time for
housekeeping instead of executing more useful application code [30].

The tools mentioned above provide millisecond-precision CPU time
measurements and therefore are not suitable for precisely measuring the
impact of short-lived operations like opening a NEAT flow. Also since
these tools run independently of the application of interest, it makes it hard
to accurately synchronize the sampling of relevant data. This is mitigated

36

Gl WO IN =

Listing 3.1: Code example showing how to sample CPU time data for the
calling process.

#include <time.h>
struct timespec ts;

clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &ts);

by using the C function system to execute shell-commands from within the
application. Therefore, the current CPU usage of an application at specific
points (in the code) could be sampled by calling system.

procstat tool of FreeBSD can report CPU time of a specific process at
microsecond granularity. This is the best precision we have been able to
achieve for any of the tools that we have examined. The CPU time data
reported by procstat is also not restricted by the CPU tick unit, which makes
the data more accurate in addition to more precise. procstat is used in [70] to
measure per-process CPU utilization.

The C function clock_gettime reports the per-process CPU time with
similar precision as procstat (microsecond-precision). This function has the
benefit that we do not need to call system to run a command-line tool
in the shell. An example of how to sample the current CPU time of the
calling process can be found in Listing 3.1. While procstat reports both the
accumulated user and system times of the process (that is, how much time
the process has executed in user-space and kernel-space), clock_gettime
reports the sum of these values?.

CPU instruction count

The CPU instruction count metric is included as an additional CPU usage
metric because it enables performing more fine-grained analysis on the
collected CPU time data. While CPU time data can quantify the CPU
overhead of NEAT operations, it is also desirable to profile the NEAT code
during runtime to determine which NEAT functions account for the most
overhead. The CPU instruction count metric is a different metric than CPU
time, but it gives a good indication of the CPU-intensive bottlenecks in
the code. By profiling the code, we can determine how many times each
function is called, and how many CPU instructions are executed for every
function®.

The Valgrind tool suite [90] includes different tools for profiling applica-
tions. One of these tools is Callgrind [12] that can count the number of CPU
instructions executed by every function of a given application. It is also
capable of collecting this data for loaded shared libraries, which enables it

2clock_gettime can be given different clock IDs to get the current time values for
different clocks in the operating system. The clock ID CLOCK_PROCESS_CPUTIME_ID reports
the sum of the calling process’s user and system time.

3The number of CPU instructions executed by a function also includes the CPU
instructions executed by functions called from that function.

37

Listing 3.2: Example of running Callgrind to profile the CPU usage of an
application on the command-line. The $ symbol is the command prompt.

$ LD_BIND_NOW=y valgrind --tool=callgrind ./neat_application

to profile the CPU instructions executed by NEAT library functions when
NEAT is loaded as a shared library into an application. Callgrind requires
that the application is compiled with debugging information included®.

Normally when an application is executed in FreeBSD, the dynamic
linker will load the required shared libraries on-demand when they are
needed in the code. However, this loading process introduces some
additional CPU usage. Our goal with profiling the applications is not to
calculate precise CPU usage (this is instead done by sampling the CPU
time). Instead, we want to understand which application functions have
the biggest impact on CPU usage. In order to remove the CPU usage of
the dynamic linking process from the profiling results, the environment
variable LD_BIND_NOW is enabled before Callgrind starts (see Listing 3.2).
This causes all shared libraries to be loaded before the application starts.

Note that Callgrind significantly slows down the execution of an
application because different counters are increased during runtime. This
is another reason why Callgrind is not ideal for quantifying the actual CPU
usage of an application.

An example of how we run Callgrind on the command-line is given
in Listing 3.2. When the application terminates, the Callgrind tool will
generate a log file containing the sampled data.

Resident Set Size

The memory used by an application at runtime (the virtual address space)
can be categorized as follows:

¢ Text segment: Contains executable instructions to run the application
(the compiled code).

¢ Data segment: Contains the global variables.

¢ Stack: Contains stack frames. A new stack frame is created for every
function call, and removed when a function returns. The stack frames
contain local variables of the function, function arguments, return
address, etc.

* Heap: Contains the memory that is dynamically allocated during
runtime.

Modern operating systems generally manage the available memory
resources (physical memory and secondary storage) as virtual memory to

4On FreeBSD we compiled the applications with the clang compiler. We had to specify
the -g compiler flag to compile with debugging information.

38

simplify memory management for applications. This memory is divided
into pages of a fixed size. Therefore the memory consumption of an
application is measured in the number of pages it uses.

Some tools that measure the memory usage of a process are ps, pmap,
and smem. These tools report the total number of pages that are allocated
for the process. However, this number can be interpreted in the following
ways:

* Resident Set Size (RSS): The memory that is resident in physical
memory (RAM) including memory used by shared libraries. RSS can
over-estimate the memory usage of a process because it includes the
total memory usage of shared libraries although this memory can be
shared among multiple processes.

* Virtual Memory Size (VSZ): The memory that are accessible by a
process in its address space. This includes the memory reported by
RSS, but also includes memory that are swapped to disk, that are
allocated but uninitialized, etc.

* Unique Set Size (USS): The memory in RAM that is unique for the
process. This excludes any memory that can be shared with other
processes, like shared libraries.

* Proportional Set Size (PSS): The same as USS, but includes the
proportion of memory used by shared libraries. For example, if five
processes depend on the same shared library that consumes 50 pages,
the shared memory usage reported with PSS will be 10 pages.

In this thesis we consider the RSS of the application because it describes
the total memory impact of the application. VSZ is not suitable for
reporting the real memory usage because some of the memory it reports
might not even be present in physical memory. USS might not include
memory usage of shared libraries if those libraries are used by more than
one process. In this case, the total memory usage of the application will not
be correctly reported. PSS gives a good estimation of total system memory
usage by processes, but it does not report the total memory usage of a single
application.

We sample the RSS of the application by using the ps command-line
tool. In order to synchronize the sampling of memory data at specific points
in the application code, we run ps from inside the application by using the
C function system. An example of how we sample RSS is given in Listing
3.3.

Heap memory usage

The Resident Set Size of the process gives an accurate value for the total
physical memory usage. However, it does not imply what parts of the
code is causing the memory usage. This can be determined by profiling
the application at runtime, similar to how the CPU instruction count metric
is sampled.

39

OO UTHWN -~

[Y Gy g G Y
ANUIk WN-RO

Listing 3.3: Code example of sampling RSS from within the application.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

char command_string [200];

/% Get the PID of this process. */
long int my_pid = (long int)getpid ();

/% Build the string that will be ezecuted. */
snprintf (command_string, sizeof (command_string),
"ps -o rss -p %ld >> rss.log &", my_pid);

/* Ezecute it. */
system(command_string);

Listing 3.4: Example of running Massif to profile the heap memory usage
of an application on the command-line. The $ symbol is the command
prompt.

$ LD_BIND_NOW=y valgrind --tool=massif ./neat_application

The Valgrind tool suite [90] includes a tool called Massif [57] that logs
the current heap usage, stack usage, or total virtual memory page usage
throughout the execution of the application. Massif keeps track of the
amount of dynamic memory that is allocated at every point in the code that
allocates memory. This enables summarizing the memory usage statistics
in such a way that the total memory usage allocated by every application
function can be determined. Massif can also collect the memory usage for
shared libraries that are loaded into the application.

Like Callgrind, Massif requires that the application is compiled with
debugging information. We also decide to enable the LD_BIND_NOW
environment variable when using Massif, to run the application the same
way as when using Callgrind.

We consider the heap usage statistics collected by Massif. Heap memory
usage is a subset of the Resident Set Size memory, and is therefore not
a precise representation of the total memory usage. However, the heap
memory usage constitutes a large portion of the total memory usage of
the application, and gives a good indication to find the most memory-
consuming parts of the code. An example of how we run Massif on the
command-line can be found in Listing 3.4.

Real-time delay

Operating systems maintain different system-wide and per-process clocks.
The system-wide clocks include clocks that represent the current wall-clock

40

O CONANUTHWN -

NNNDNNRPRP PR PR PR R R R R
WINNFROOVONNOUERWN-,O

Listing 3.5: Code example showing how to sample current time data and
calculate the real-time delay of a code part.

#include <time.h>

struct timespec before;

struct timespec after;

struct timespec real_time_delay;

/* Sample current time before code part. */

clock_gettime(CLDCK_MONOTONIC_PRECISE, &before);

/* Some code part to time. */

/* Sample current time after code part. */

clock_gettime (CLOCK_MONOTONIC_PRECISE, &after);

/* Calculate the real-time delay. */

if ((after.tv_nsec - before.tv_nsec) < 0) {
real_time_delay.tv_sec = after.tv_sec - before.tv_sec - 1;
real_time_delay.tv_nsec = after.tv_nsec - before.tv_nsec + 1000000000;

} else {
real_time_delay.tv_sec = after.tv_sec - before.tv_sec;
real_time_delay.tv_nsec = after.tv_nsec - before.tv_nsec;

}

time that are affected by the current time of day value of the system. These
clocks may be modified by protocols like the Network Time Protocol (NTP)
[RFC5905]. There are also monotonic clocks that increase in SI seconds, that
cannot be modified, and are running from an unspecified point in time.

To measure the real-time delay of a code part, the current time must
be sampled both before and after running the code part. The real-time
delay is the difference of these values. Since we are interested in the
time difference, there is no need to sample the current-time-of-day clock.
We choose to sample the monotonic clock because it cannot be modified
while experiments are running, and it provides nanosecond-precision
time samples. The monotonic clock can be sampled with the C function
clock_gettime with the clock ID CLOCK_MONOTONIC_PRECISE’.

3.1.6 Data analysis method

All of the data sampled are put into different log files for later parsing and
manipulation. When using the C function system to execute command-
line tools from the application, either the tool implicitly creates a log file as
a result, or the output of the tool is redirected to a log file. The data that are
sampled with the C function clock_gettime are initially stored inside the

5FreeBSD and Linux have different names for clock IDs. Both systems provide different
precision for the different clocks. For example, the monotonic clock can be sampled at
maximum precision, or at the precision of a CPU tick. In this thesis, we consider the most
precise clock.

41

application, but later written to a log file. The log files are named based on
the experiment scenario and parameters, which makes it easier to identify
them later. We use shell scripts to extract the relevant data from the log files,
use R [76] to calculate the statistical data, and use gnuplot [22] to visualize
the data.

3.1.7 NEAT evaluation test suite

We have made a fest suite to evaluate the performance of NEAT [65]. The
goal of this test suite is to measure the resource overhead of the NEAT library
compared to libuv and kqueue.

The test suite includes source code in C for client and server applica-
tions programmed using NEAT, libuv, and kqueue. It also includes shell
scripts to manage the resource usage data that are sampled during exper-
iment runs, and data visualization shell scripts. The test suite makes it
possible for anyone to reproduce the results demonstrated in this thesis.

42

Chapter 4

Experimental setup

This chapter describes the experimental setup that is used to perform
the experiments considered in this thesis work. First it describes the
physical testbed setup that is used to run the experiments. Then, TEACUP
(TCP Experiment Automation Controlled Using Python) is introduced,
which is used to administer the experiment runs on the testbed. Then,
the experiment scenarios considered in this thesis is presented. Finally,
the different configuration settings that are set prior to running the
experiments are presented.

4.1 Testbed topology

This section provides a detailed description of the testbed topology we
have used to run the experiments, describing the relevant hardware and
software components and how they interact. The experiments were run in
the TEACUP testbed setup in the CPS lab at the Department of Informatics,
University of Oslo. For a complete overview of this testbed setup, how to
use TEACUP, and how we extended TEACUP to meet our requirements,
see Appendix A.

41.1 Overview

Figure 4.1 gives an overview of the experimental network testbed setup we
have used to run our experiments. The testbed consists of two experimental
hosts that are used to run server and client applications respectively. These
two experimental hosts are connected to a router which routes the packets
sent from one experimental host to the other. By having a router on the
network path between the experimental hosts, we are able to emulate
various network conditions by configuring the router.

The experimental hosts and the router are connected to a control server
that administers all the experiments. The control links connecting the
experimental hosts and router to the control server are used by the control
server to control the experiments and to retrieve different log files from
the experiments. The experimental links connecting the experimental
hosts to the router are used to send experimental data and packets. The

43

Control server

¢ ulf joluod

Experimental link 1 Experimental link 2

Server Router Client

Figure 4.1: The experimental network testbed setup

Hardware type Model

Machine HP Compagq 8100 Elite CMT

CPu Intel Core i7-870 @ 2.93 GHz

RAM 4 x Samsung 4GB PC3-10600 DDR3-1333MHz
Experimental interface NIC ~ Intel 1210 Gigabit Network Connection
Control interface NIC Intel 82578DM Gigabit Network Connection

Table 4.1: The hardware components of the experimental hosts.

experimental hosts and router are configured so that none of the control
packets sent on the control links can interfere with the experimental traffic
on the experimental links.

4.1.2 Hardware

The hardware setup of the experimental hosts is listed in Table 4.1. The
hardware setup of the router is listed in Table 4.2. Note that the hardware
components of the experimental hosts and the router is the same except that
the router consists of an additional NIC to connect the experimental hosts.
Also note that that the different machines of the testbed are connected by
a Cisco Catalyst 2950 switch. See Appendix A for a complete description of
the testbed.

4.1.3 Software

The experimental hosts run FreeBSD 11.0-RELEASE-p1 and applications
are compiled with clang version 3.8.0. The router runs Ubuntu 16.04.2 with

44

Hardware type Model

Machine HP Compagq 8100 Elite CMT

CPU Intel Core i7-870 @ 2.93 GHz

RAM 4 x Samsung 4GB PC3-10600 DDR3-1333MHz
Experimental interface NICs 2 x Intel 1210 Gigabit Network Connection
Control interface NIC Intel 82578DM Gigabit Network Connection

Table 4.2: The hardware components of the router.

Linux kernel 4.6.0!. The control server runs Ubuntu 16.04.1 with Linux
kernel 4.8.0-36-generic.

4.2 Controlling experiments with TEACUP

TEACUP (TCP Experiment Automation Controlled Using Python) is a tool
that simplifies the process of running TCP experiments in a testbed scenario
by automating the experiment runs and providing a config file where the
experiment parameters can be defined [47, 86]. The experiments performed
in this thesis were controlled using TEACUP. TEACUP only supports
running TCP experiments by default, which means that it cannot automate
all kinds of experiments. To enable TEACUP to run any kind of application
on the experimental hosts so that any kinds of traffic generators or traffic
sinks can be used, we extended the TEACUP code with the support for
custom traffic generators and custom loggers. For more information on this
extension, see Section A.2. This extension enables running NEAT, libuv,
and kqueue applications in different scenarios and to sample the resource
usage of these applications.

TEACUP is installed on the control server and is responsible for
establishing Secure Shell (SSH) connections to the experimental hosts
to start and stop traffic generators, traffic sinks and loggers in the
experiments, and to configure the hosts prior to every experiment. It is also
responsible for configuring the router with shaping, scheduling, policing
and dropping rules based on the specification of the experiments. TEACUP
is controlled by a configuration file which among other things controls
which experimental hosts should be used as traffic generators and traffic
sinks, and how parameters should be varied for each experiment run. Note
that TEACUP only communicates with the experimental hosts over the
control links, and does not interfere with the experimental traffic sent on
the experimental links.

For detailed information about the TEACUP configuration files we used
for the experiments, see Appendix A.

1The Linux kernel of the router is patched with Web10G [91], but this should not affect
our experiments as we are only concerned with the performance of the experimental hosts.

45

4.3 Experiment scenarios

This section describes the different experiment scenarios considered in this
thesis to answer RQ.

In all the experiments, the router was configured to shape the band-
width at 10 Mbit/s for the outbound interfaces int2 and int3 (see Figure 4.1).
Also, the router was configured to delay packets for 50 ms on the same in-
terfaces using netem [66]. This router setup emulates a network path with a
RTT of 100 ms and 10 Mbit/s bandwidth, which is used to have more con-
trol over the behaviour of the network, and to emulate the network con-
ditions when accessing services in the Internet. The socket buffers in the
experimental hosts were set sufficiently large so that the router can become
the bottleneck without limiting the data rate in the experimental hosts.

4.3.1 Connection establishment

Key functionality in NEAT includes translating NEAT properties specified
by the user into the best available transport solutions, and then perform
transport selection using the Happy Eyeballs mechanism. To evaluate the
performance of this functionality, we decide to measure the resource usage
of the connection establishment process in NEAT and compare these results
to similar experiments performed with libuv and kqueue.

Overview

Table 4.3 specifies how we define the connection establishment period of
NEAT, libuv and kqueue. Sampling of CPU time, Resident Set Size, and
current time is performed at the beginning and end of the connection
establishment period to be able to calculate the total CPU usage, memory
usage, and delay of connection establishment.

In the definition of the connection establishment period we choose to
specify the start of the period from the point the different libraries and APIs
are initialized. This is done because the different APIs perform different
code at different places in the API functions, and to get comparable results
it is important to include all similar code parts between the APIs in
the resource usage measurements. For example, alternatively we could
start to sample data from the start of the event loop instead of including
initialization code, but then we would exclude the resource impact of
issuing the BSD sockets API function connect for libuv and kqueue which
is called before the event loop starts for all flows. In comparison, the NEAT
function neat_open does not call connect internally, but schedules this call
until the NEAT event loop has started.

We do not run the Policy Manager of NEAT in any of the connection
establishment experiments. Instead, we use the internal simple Policy
Manager provided by the NEAT library that can translate simple NEAT
properties to transport solutions. In the experiments, the NEAT properties
passed to the NEAT applications specifies that certain transport protocols

46

API Definition of connection establishment period

NEAT From the point the NEAT function neat_init_ctx is is-
sued until all NEAT flows considered in the experi-
ment have successfully connected and the NEAT callback
on_connected has been called for each of the NEAT flows.

libuv From the point the libuv function uv_loop_init is issued
until all flows considered in the experiment are writable
or readable and the associated callbacks that signals that
the connection is established have been called.

kqueue From the point the kqueue function kqueue is issued
to create the kqueue until all the flows considered in
the experiment have connected and the kqueue function
kevent has returned successfully with each of the flows
marked writable or readable.

Table 4.3: Definition of connection establishment period for the different
APIs considered in this thesis.

are required. This allows us to control which transport protocols are used in
experiments.

In the experiments we consider the time it takes for different flows to
be established in NEAT, libuv and kqueue. This delay is measured in SI
milliseconds. We define the per-flow connection delay in NEAT as the
elapsed time from when the NEAT function neat_open is issued for a flow
until the on_connected callback is called for that same flow. For libuv and
kqueue, we define the per-flow connection delay as the elapsed time from
when the connect is issued for a socket until that same socket is writable.
In libuv we consider the socket to be writable when the associated callback
for that event is called. For kqueue we consider the socket writable when
the kevent function notifies the application that the socket is writable.

For more information on the TEACUP configuration files we used to
run connection establishment experiments, see Appendix A. For references
to the source code for the NEAT, libuv, and kqueue applications that
were considered to measure connection establishment resource usage, see
Appendix B.

Experiment parameters

This section describes the different experiment factors and parameters are
considered for the evaluation of the resource usage during connection
establishment in NEAT, libuv, and kqueue.

Scenario The experiment scenario is a client application connecting to
a server application. The resource usage data is sampled both on the
client-side and the server-side. The router emululates a RTT of 100 ms and
bandidth of 10 Mbps.

47

APIs The connection establishment experiments are performed with
NEAT, libuv, and kqueue applications. In each experiment, the same API
is used both on the server-side and client-side.

Number of flows We have considered opening different numbers of
flows to put the APIs under different load in the experiments. We have
considered 1, 2, 4, ..., 256 flows. This large range enables investigating
how the APIs scale to an increased load. Note that when Happy Eyeballs
between TCP and SCTP is used in the NEAT experiments, the number of
connection requests initiated is not equal to the number of flows opened.

Transport protocols We have considered establishment of both TCP and
SCTP connections. In every experiment except the experiments using
Happy Eyeballs, the client and server are initiating/listening to the same
transport protocol.

Happy Eyeballs scenarios In some of the NEAT experiments, Happy
Eyeballs is performed between TCP and SCTP on the client-side. We have
considered the following Happy Eyeballs scenarios:

1. Server only listens to TCP.
2. Server only listens to SCTP.

3. Server listens to both TCP and SCTP. The default Happy Eyeballs
delay of 10 ms is used?. This causes TCP to always win over SCTP.

4. Server listens to both TCP and SCTP. The Happy Eyeballs delay is set
to 260 ms to ensure that SCTP always wins over TCP.

Number of experiment runs All the experiments were run 10 times to get
a good overview of the distribution of the data®.

Performance metrics All the performance metrics listed in Table 3.1 are
considered.

2When NEAT performs Happy Eyeballs with several candidates, it adds a static delay
of 10ms between initiating the candidates to not cause bursty behaviour and to give the
best transport solutions a head-start to establish connections first. We have conntributed to
the NEAT library by adding an option where the Happy Eyeballs delay can be set by the
application.

3The profiling experiments using the Valgrind tools Callgrind and Massif were run
independently of the other experiments, and were only run for the experiments that we
wanted to analyze in greater detail. For example, we only ran profiling experiments in the
cases of 1 flow opened and 256 flows opened. Also, these experiments were run only once
to give an indication of the code parts with CPU or memory bottlenecks.

48

Definition of data transfer period

Client-side From the point right before the first data is sent until all
(sender) data has been sent.
Server-side From the point right before the first data is read until all
(receiver) data has been read.

Table 4.4: Definition of data transfer period.

4.3.2 Data transfer

Although the novelty in NEAT is attributed to the platform- and protocol-
independent selection of transport solutions based on the specified NEAT
properties, it is also important to evaluate NEAT during data transfer.
The NEAT API functions that send and receive data is also platform- and
protocol-independent, and it is desired to understand how much resource
overhead such an API introduces. To evaluate this functionality, we decide
to measure the resource usage of sending different data object sizes in
NEAT and compare these results to similar experiments performed with
libuv.

Overview

Table 4.4 specifies how we define the data transfer period based on whether
the application is receiving or sending data. Sampling of performance
metrics is performed at the beginning and end of the data transfer period
to be able to calculate the total resource usage of the data transfer.

We have developed both HTTP client and HTTP server applications
running NEAT, libuv, and kqueue. These applications are used to evaluate
the resource usage of data transfer. The HTTP applications work the
following way. First the HTTP client connects to the HTTP server using
either TCP or SCTP. When the connections are established the HTTP client
sends HTTP POST [RFC7231] requests to the HTTP server with enclosed
user data of arbitrary length in the body of the request messages. When
the HTTP server parses the HTTP requests, it can determine the length of
the user data contained within and the number of bytes that remains to be
received. The HTTP applications use the picohttpparser [74] library to parse
the HTTP requests.

For more information on the TEACUP configuration files we used to
run data transfer experiments, see Appendix A. For references to the source
code for the NEAT, libuv, and kqueue applications that implements the
data transfer functionality, see Appendix B.

Experiment parameters

This section describes the different experiment factors and parameters
we have considered for the evaluation of the resource usage during data

49

transfer in NEAT and libuv.

Scenario The experiment scenario is a client application connecting to a
server application and then sending a specific number of bytes. The data
transfer resource usage is sampled both on the receiving side (server-side),
and on the sending side (client-side).

APIs Due to time limitations we only performed data transfer experi-
ments with NEAT and libuv applications. In each experiment, the same
APl is used both on the server-side and client-side.

Number of flows We have considered opening different numbers of
flows to put the APIs under different load in the experiments. We have
considered 1, 2, 4, and 8 flows to determine how the increase in the number
of flows affects the resource usage.

Data object sizes We have considered sending data objects of 1kB, 10kB,
100kB, 1000 kB, and 10000 kB. Note that the data objects are sent on every
flow in the experiment.

Transport protocols We have considered data transfer with both TCP and
SCTP connections.

Number of experiment runs All the experiments were run 10 times to get
a good overview of the distribution of the data.

Performance metrics All the performance metrics listed in Table 3.1 are
considered except the CPU instruction count and heap memory usage.

We did not profile the applications during data transfer with the
Valgrind tools Callgrind and Massif because we found the overhead of
NEAT to be small, and did not need to determine the bottleneck in the
code.

4.4 Configurations
This section describes the different configurations and options that are set
prior to every experiment run. It describes the general configurations that

apply to both the experimental hosts, and configurations that are specific
to either the server-side or the client-side.

4.4.1 General configurations for the experimental hosts

The following configurations are made for all the experimental hosts.

50

net.inet.tcp.recvbuf_auto=0

This option disables the auto-tuning of the data receiver’s receive window
used in the flow control mechanism. Instead we set a statically large receive
window size so that the bottleneck in the network always occurs in the
router.

net.inet.tcp.sendbuf_auto=0

Same as for receiver window auto-tuning, this disables the auto-tuning of
the sender’s window, but this relates to the congestion window. Instead, we
set a statically large sending window size so the bottleneck in the network
always occurs in the router.

net.inet.tcp.recvspace=300000

Set a statically large receive window size. Since the BDP of the network
path between the experimental hosts is 100Mbps /s * 100ms = 1250000bytes,
we set a receive window that is more than double this size so that the
bandwidth is not limited by the receiver.

net.inet.tcp.sendspace=300000

Set a statically large sending window size.

net.inet.sctp.recvspace=300000

Also set a statically large receive window for SCTP. Auto-tuning of receive
window is not supported for SCTP.

net.inet.sctp.sendspace=300000

Also set a statically large sending window size for SCTP. Auto-tuning of
congestion window is not supported for SCTP.

net.inet.tcp.sendbuf_max=2097152 (set by TEACUP)

This option is set by TEACUP, but should not be relevant since we disable
window auto-scaling.

net.inet.tcp.recvbuf_max=2097152 (set by TEACUP)

This option is set by TEACUP, but should not be relevant since we disable
window auto-scaling.

51

net.inet.tcp.ms1=5000

Set the Maximum Segment Lifetime (MSL) of TCP segments to a small value
(in milliseconds). This value is used when calculating the TIME_WAIT
interval of TCP connections [RFC793]. The formula to determine the
TIME_WAIT value is 2 * MSL. By lowering the TIME_WAIT interval to
10 seconds, we are guaranteed that no TCP connections are lingering in
TIME_WAIT state between experiments.

net.inet.tcp.tso=0 (set by TEACUP)

Disables the TCP Segmentation Offload (TSO) mechanism that enables large
packets to be sent through the network stack without being fragmented.
Instead, the Network Interface Controller (NIC) is responsible for fragmenting
the packets before transmission can begin. This option can enable higher
throughput for Gigabit network speeds, but can also make the transfer
bursty [41]. Since our goal is to emulate a certain bandwidth and a certain
delay in our network, TEACUP disables this option to get as stable network
conditions as possible.

net.inet.tcp.hostcache.expire=1 (set by TEACUP)

Sets the timeout in seconds before a host cache entry is marked as expired.
The host cache stores entries with information about the path between the
local peer and the remote peer, like RTT, Path Maximum Transmission Unit
(PMTU), and Slow-Start Threshold (ssthresh) [84]. TEACUP sets host cache
options in such a way that the entries are purged (removed) between every
experiment run so that subsequent experiments can start from a clean state.

net.inet.tcp.hostcache.prune=5 (set by TEACUP)

Remove expired host cache entries every 5 seconds. This ensures that no host
cache data remain between experiment runs.

net.inet.tcp.hostcache.purge=1 (set by TEACUP)

Tells the host cache to expire all the entries on the next prune run. Since we
have set the option to prune often, all the host cache entries will be removed
beween experiment runs.

net.inet.tcp.cc.algorithm=newreno

Sets the congestion control algorithm to newreno for TCP. We choose to use
this algorithm because it is simple and works well to achieve our goal of
emulating a bandwidth of 10 Mbps.

52

4.4.2 Server-side configurations

There are no specific configurations made only for the server-side. The
default values can sufficiently handle up to 256 connections from the client
applications and send/receive packets for those connections.

4.4.3 Client-side configurations
net.inet.ip.portrange.randomized=0

When connecting a socket to a remote peer, an ephemeral port is assigned
to the connection. Normally this port number is chosen at random from
a given interval, e.g. between 1024 and 65535. This option disables this
randomization of port number assignment, and instead assigns the port
numbers in sequence. We found that if we do not set this option, we would
sporadically get a “Address already in use” error message when calling
connect. We could not determine the source of this error, but found setting
this option a good work-around.

53

54

Chapter 5

Evaluation

This chapter presents the results from the performance evaluation of the
NEAT library. It considers the performance metrics listed in Table 3.1, and
considers the experimental setup described in Chapter 4. The purpose
of this chapter is to showcase the local resource overhead of using the
NEAT library compared to other APIs in different scenarios, and identify
the bottlenecks in the library code.

The two main scenarios considered in this chapter are:

1. Connection establishment: How connection setup influences the
resource usage of an application.

2. Data transfer: How transferring web objects of different sizes
influences the resource usage of an application.

This chapter illustrates how the local resource usage of an application is
affected by the number of opened flows. In libuv and kqueue the number of
opened flows is simply the number of times the BSD sockets API function
connect is called, while in NEAT it is the number of opened NEAT flows.
By considering different numbers of opened flows in different experiment
scenarios, it can be observed how the APIs scale to different load.

Unless explicitly stated otherwise, the figures show the minimum, 10th
percentile, median, 90th percentile, and maximum values of the sampled
data. By including the distribution of the data in the figures, the stability of
the data can be evaluated.

This chapter is split into two parts. The first part shows the delay, CPU
usage, and memory usage during connection establishment for both client
and server applications. The second part shows the CPU usage during data
transfer for both client and server applications.

5.1 Connection establishment

This section presents the evaluation of the connection establishment
scenario. This scenario considers initiating and accepting connection
requests without transmitting any additional data. Table 4.3 in Section 4.3
describes how connection establishment is defined on both client- and server-
side for the different networking APIs considered in the experiments.

55

Scenario Memory usage overhead (kilobytes) Meory usage overhead (%)

1 TCP flow 72.20
256 TCP flows 108.56
1 SCTP flow 70.62
256 SCTP flows 99.84

71
104
34
41

Table 5.1: The connection establishment delay overhead of using NEAT
compared to libuv on the client-side.

5.1.1 Connection establishment delay

Figures 5.1 and 5.2 show the per-flow connection establishment delay on
the client-side when opening TCP and SCTP flows respectively. The server-
side is listening to TCP and SCTP respectively. The figures show how
the number of flows opened affects the per-flow connection establishment
delay. All the flows are opened in a loop before starting the event loop.

It can be observed that SCTP flows use 100 ms more than TCP flows
to connect. This is because SCTP performs a 4-way handshake while
TCP performs a 3-way handshake, and the RTT of the experiments was
set to 100ms. The values of the per-flow SCTP connection delay data
is deviating more from the median value compared to TCP. This is
because it takes a longer time to establish SCTP connections compared
to TCP connections because SCTP needs to generate a state cookie for
the connections [RFC4960]. One of the reasons why the connection
establishment delay values reported in Figures 5.1c and 5.2c are larger than
the results for libuv and kqueue is that the NEAT function neat_open does
not initiate the connection immediately. Instead, the connection is initiated
once the application enters the NEAT event loop.

Table 5.1 shows the connection establishment overhead in NEAT
compared to ilbuv. These overhead results show that the connection
establishment delay is large in NEAT compared to libuv and kqueue. They
also show that the initialization of the NEAT library introduces a large
overhead since opening 1 NEAT flow takes 72 ms longer than in libuv and
kqueue. However, as can be seen from the results when opening 256 flows,
the 72 ms overhead is not introduced for every flow.

Figure 5.3 illustrates how much more time it takes to execute the loop
that opens connections in the kqueue client application when opening
SCTP flows compared to TCP flows. It can be observed that the delay
overhead of initializing SCTP sockets is larger than for TCP. It takes about
2 times longer to initialize and connect with the SCTP sockets compared
with the TCP sockets.

56

400 —
350
300
2 250
%200
g 150
100
50

4 8 16 32 64 128256
Number of flows opened

(c) NEAT

400
350 f-nnnn e mmsree s

30
€ 250

o

400 T T T T T T T T T 400 T T T T T T T T T
350 350 - 1
300 [300 [1
€250 -] €250 - 1
3200 f 3200 F 1
o L
8 150 F------rmmmr e 8 150 - 1
100 brrer——eeeee—e e e —— e — 100 . e e T |
Lo SO - 1
0 i é zl é 1‘6 3‘2 6‘4 128 256 0 i ﬁ 21 é 1‘6 3‘2 6‘4 128 256
Number of flows opened Number of flows opened
(a) kqueue (b) libuv
Figure 5.1: Comparison of the connection establishment delay per flow
between kqueue, libuv and NEAT when multiple flows are opened
concurrently using TCP.
00— 400
350 - 350 - 9
. 300 -y . 300 -
€250 & 250
>.200 5200}
o o
8 150 8 150
100 100 ---
50 50
12 2 071 2 4 8 16 32 64 12825

1 2 4 8 16 32 64 128256
Number of flows opened

(a) kqueue

1 2 4 8
Number of flows opened

(b) libuv

1 2 4 8 16 32 64 128256
Number of flows opened

(c) NEAT

Figure 5.2: Comparison of the connection establishment delay per flow
between kqueue, libuv and NEAT when multiple flows are opened
concurrently using SCTP.

10 B B B B B B B B B 10 B B B B B B B B B
1 S 1 S
n @ =
E 6 E 6
&) B
B O B
[a) (o
2 R 7 GRLSRREEEIIRIPELICLIEE EERRRRRREES
i L=
0 —— e e e— T 1 1 1 1 0 —— T 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of flows opened Number of flows opened
(a) TCP (b) SCTP

Figure 5.3: The delay overhead of using SCTP compared to TCP in a loop
that creates and connects sockets. This data was sampled in the kqueue
client application that also adds each socket to the kqueue.

57

180 180
160 [~ 160
T LAO —. 140
w [l
OEI20p £120
Q100 [@ 100
E ool £ s
B B0 [Z 60
© 40| © a0t
20 o SRR 20
—— e e e e - 0 —_—_— e e T 0 L L L L L L L L L
1 2 4 8 16 32 64 128256

—_ = "
8 16 32 64 128 256
Number of flows opened

1 2 4

(a) kqueue

1 2 4
Number of flows opened

(b) libuv

Number of flows opened

(c) NEAT

Figure 5.4: The CPU time spent when establishing connections using TCP

at the client-side.

1 2 4
Number of flows opened

Number of flows opened

180 180
rrr 1 T e I -1] ST
——— B T e T .10 L RRRRRRRRRRPUSEREs
rrr T 1 Euo%
rrr éloo élooé
rrr S B0 d F B |
rrr L] e - S ﬁ%

a o
rrr © 40 p e U 40~7QEE~
"""""""""""""""""""""" — 20”'""""'"""""""""""';'é"’ 20 -
—_ e e e e e —— oL=——r—————F =" L 0
8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256

Number of flows opened

(a) kqueue (b) libuv (c) NEAT

Figure 5.5: The CPU time spent when establishing connections using SCTP
at the client-side.

5.1.2 CPU usage

This subsection presents how connection establishment influences the CPU
usage of NEAT, libuv, and kqueue applications. First it presents how the
active connection establishment performed by the client-side influences the
CPU usage. Then it presents the CPU usage of accepting new incoming
connections at the server-side. This subsection also considers the CPU
impact of using the Happy Eyeballs mechanism in NEAT.

Client-side CPU usage

Figures 5.4 and 5.5 show the client-side CPU time spent when establishing
connections with TCP and SCTP respectively. They show that when the
number of outgoing connection requests increases, the CPU time spent
by the application also increases. It can be observed that kqueue and
libuv have very similar CPU usage, while the overhead of NEAT is large
in comparison. Table 5.2 shows the CPU time overhead of using NEAT
compared to libuv. The CPU time overhead of the initialization of the
NEAT library is large in comparison to libuv by observing that the CPU
overhead of opening a single flow in NEAT is 31ms. Also, the CPU
time overhead of opening a single NEAT flow is large in comparison to
libuv by observing that the CPU time difference in opening 1 TCP flow
and 256 TCP flows in NEAT is 81 ms, while it is 8 ms for libuv. Thus,

58

Scenario CPU time overhead (ms) CPU time overhead (%)

1 TCP flow 31,95 1046
256 TCP flows 104,19 952
1 SCTP flow 28,20 949
256 SCTP flows 112,11 739

Table 5.2: CPU time overhead of using NEAT compared to libuv during
connection establishment on the client-side.

the CPU time overhead of opening a single flow in NEAT compared to
libuv is approximately 10 times larger. Finally, the use of SCTP introduces
additional CPU usage for all the APIs (see Figure 5.5 compared to Figure
5.4) but the additional cost is greater in NEAT in comparison.

In order to understand the large resource overhead of the NEAT library
on the client-side, we performed CPU profiling of the NEAT application
using the Callgrind tool of the Valgrind tool suite (see Section 3.1.4 for more
information). Table 5.3 presents the CPU instruction executed by an extract
of functions called in the NEAT, libuv, and kqueue applications when
opening 256 TCP flows at the client-side. It shows that the NEAT library
imposes a large CPU instruction count overhead compared to libuv and
kqueue. As can be observed from the table, about half of the overhead is
introduced outside the NEAT event loop, while the other part is introduced
within the event loop.

Table 5.4 presents the total number of CPU instructions executed by the
NEAT functions called from outside the NEAT event loop when opening
256 TCP flows at the client-side. It shows that the functions that are called
256 times have the largest overhead (neat_open, neat_set_property,
neat_new_flow). By investigating these functions individually, we find that
much of the CPU usage is derived from calling various JSON operations
from the libjansson library [38]. Table 5.5 shows the most CPU demanding
operations that are executed within these NEAT functions. Notably,
6,300,672 CPU instructions are executed to convert the NEAT properties to
JSON objects, and later 8,683,264 CPU instructions are executed to convert
these JSON objects back to string representation to be sent to the Policy
Manager. This happens although the Policy Manager is not running.

Table 5.6 presents an extract of the most CPU demanding internal
functions of the NEAT library when opening 256 TCP flows at the client-
side. The function nt_send_result_connection_attempt_to_pm is called
every time a Happy Eyeballs connection attempt either suceeds or fails. In
this case, the result of the connection attempt is sent to the CIB of the
Policy Manager to be cached. This is done by first converting the JSON data
structures containing the connection result to a string, and then sending
that string to the Policy Manager. This JSON-to-string conversion occurs
even when the Policy Manager is not running. In the case of opening
256 TCP flows, this operation uses 16,129,024 CPU instructions which

59

kqueue libuv NEAT

main 1,122,359 1,343,781 63,804,570
start_event_loop 589,677 - -
neat_start_event_loop - - 32,782,775
uv_run - 702,909 32,782,728
on_connected 573,952 615,936 807,680

Table 5.3: Total number of CPU instructions executed by various functions
in the kqueue, libuv and NEAT client applications when opening 256 TCP
flows at the client-side. Note that we have enclosed the kqueue event loop
in a separate function start_event_loop to make it more comparable to
NEAT and libuv.

Function CPU instructions Number of times called
neat_open 22,889,216 256
neat_set_property 7,005,184 256
neat_new_flow 702,464 256
neat_init_ctx 260,664 1
neat_set_operations 39,936 256

Table 5.4: Total number of CPU instructions executed by NEAT functions
that are called outside the NEAT event loop when opening 256 TCP flows
on the client-side.

NEAT function CPU demanding operation = CPU instructions
neat_open json_dumps 8,683,264
getnameinfo 3,449,600
json_pack 2,913,280
json_delete 1,474,560
neat_set_property json_loads 6,300,672
neat_new_flow calloc 573,696

Table 5.5: Extract of the most CPU demanding operations executed within
the NEAT functions that are called outside the NEAT event loop when
opening 256 TCP flows on the client-side.

60

NEAT internal function CPU instructions

nt_send_result_connection_attempt_to_pm 16,129,024
open_resolve_cb 10,925,056
uvpollable_cb 1,251,584

Table 5.6: Extract of the most CPU demanding internal NEAT functions
when opening 256 TCP flows on the client-side.

is much more than the CPU instructions executed by the kqueue and
libuv applications all together. Another CPU demanding internal NEAT
function is open_resolve_cb which is responsible for constructing a list of
connection candidates based on all the available source-destination address
pairs. The overhead of this function is related to address-to-name resolving
and gathering of interface information.

We have investigated the CPU usage of the NEAT library when only
a single TCP flow is opened. From Figure 5.4 it can be observed that the
CPU time spent by opening a single flow in NEAT is greater than opening
256 flows in libuv and kqueue. However, Callgrind analysis shows that the
total number of CPU instructions executed when opening a single flow in
NEAT is approximately 600,000 for the main function. This number of CPU
instructions is in fact smaller than the number of CPU instructions reported
for libuv and kqueue in Table 5.3.

We also investigated why the use of SCTP instead of TCP introduces
more CPU time when using NEAT compared to using libuv (Figure 5.4 vs
Figure 5.5). Callgrind analysis shows that when SCTP is used as a transport
protocol in NEAT, the NEAT library first reads SCTP control messages
related to the association establishment process before the application is
notified that the connection has been established. One of these SCTP
control messages that signals to the application that the association has
been established is SCTP_ASSOC_CHANGE [RFC6458]. In the kqueue and libuv
applications that we have developed, SCTP control messages are not used.
This is why the overhead of using SCTP compared to TCP is greater in the
NEAT application compared to the kqueue and libuv applications.

Figures 5.6 and 5.7 show the CPU time spent when establishing
connections by performing Happy Eyeballs between TCP and SCTP in the
NEAT client application. Figure 5.6a considers establishing connections to
a server listening only to TCP, while in Figure 5.6b the server is listening
for both TCP and SCTP. In Figure 5.6b the default setting for Happy Eyeballs
delay is used!. This causes TCP connections to always win over SCTP.
Figure 5.7a considers establishing connections to a server listening only to
SCTP, while in Figure 5.7b the server is listening to both TCP and SCTP. In
Figure 5.7b we have changed the Happy Eyeballs delay value so that SCTP

IThe NEAT library adds a delay of 10 ms between Happy Eyeballs candidates by default.
We have added an option to the NEAT library that enables us to modify this delay.

61

180

CPU time (ms)
[e
N D 0 oOoON B
o O O O O O O

I
-
il
I
B
B

o

(a) NEAT client performing HE between TCP and
SCTP. The server only listens to TCP. TCP always

wins.

1 2 4 8 16 32 64 128256

Number of flows opened

180

=
[*)]
o

o
o

= e
N B

o O

T

| I

CPU time (ms)
33
m
1|
i]
I

S
o
T

I

N
o

o

1 2 4 8 16 32 64 128256
Number of flows opened

(b) NEAT client performing HE between TCP and

SCTP. The server listens to both TCP and SCTP.

TCP always wins.

Figure 5.6: The CPU time spent when establishing connections by
performing HE between TCP and SCTP at the client-side. TCP connections
are initiated before SCTP connections and always win.

always wins over TCP?.

Based on the results in Figure 5.6 and Figure 5.7 the CPU impact of
the Happy Eyeballs mechanism on the client-side is independent of which
protocols are listened for at the server-side. Based on the figures it can also
be observed that the CPU time spent by the application is greater when
using Happy Eyeballs compared to using a single transport protocol (see

Figure 5.4 and Figure 5.5).

2We found that a Happy Eyeballs delay value of 260 ms would cause SCTP to always win

over TCP in our testbed setup.

62

1 2 4 8 16 32 64 128256
Number of flows opened

(a) NEAT client performing HE between TCP

and SCTP. The server only listens to SCTP. SCTP

always wins.

1 2 4 8 16 32 64 128256
Number of flows opened

(b) NEAT client performing HE between TCP and

SCTP.

The server listens to both TCP and SCTP.

SCTP always wins

Figure 5.7: The CPU time spent when establishing connections by
performing HE between TCP and SCTP at the client-side. In the case of
Figure 5.7b, the TCP connections are delayed long enough such that SCTP
connections always win.

Server-side CPU usage

Figure 5.8 and Figure 5.9 show the CPU time spent when accepting
TCP and SCTP connections respectively on the server-side. The figures
show the results of running NEAT, libuv, and kqueue applications on the
server-side, accepting connection requests sent from a remote client. In
every experiment the same networking API is used for the server and
client applications. The data presented in Figure 5.8 and Figure 5.9 were
sampled in the same experiments as considered in Figure 5.4 and Figure
5.5 respectively. More generally, we sampled both client-side and server-
side data in all experiment runs. In Figure 5.8 the server applications are
listening for TCP and the client that connects is using TCP. In Figure 5.9
the server applications are listening for SCTP and the client that connects
is using SCTP.

Compared to the large CPU time overhead of using NEAT compared
to libuv and kqueue presented in Figure 5.4 and Figure 5.5, the CPU time
overhead on the server-side presented in Figure 5.8 and Figure 5.9 is much
smaller in comparison. This is because the NEAT server application does
not need to perform Happy Eyeballs to determine the supported transport
protocols in the end-to-end network path, and therefore there is no need to
store the connection results in the CIB repository. Table 5.7 shows the CPU
time overhead of using NEAT compared to libuv.

By performing CPU profiling with Callgrind we found that most of
the CPU instructions are executed in the NEAT event loop calling the
do_accept NEAT internal function to accept new incoming connections.
The CPU time overhead of using SCTP in NEAT compared to using TCP,
as can be seen by comparing Figure 5.8c and Figure 5.9¢ has the same
explanation as described in the client-side scenario, namely that the NEAT
library reads SCTP control messages before calling do_accept to accept the

63

40
35
- 30
Es
£20
=
= 15
o
O 10

Scenario CPU time overhead (ms) CPU time overhead (%)
1 TCP flow 11,96 744
256 TCP flows 15,50 295
1 SCTP flow 11,34 700
256 SCTP flows 21,71 403

Table 5.7: CPU time overhead of using NEAT compared to libuv during
connection establishment on the server-side.

40
35
% 30
E s
£20
=
- 15
o
O 10

1 2 4 8 16 32 64 128256
Number of flows opened

(a) kqueue

1 2 4 8 16 32 64 128256
Number of flows opened

(b) libuv

4 8 16 32 64 12825
Number of flows opened

(c) NEAT

Figure 5.8: The CPU time spent when establishing connections using TCP

at the server-side.

connection.

Figure 5.10 and Figure 5.11 show the CPU time spent when accepting

connections in the NEAT server application while the remote client
application performs Happy Eyeballs between TCP and SCTP. The figures
consider the same scenarios as described for Figure 5.6 and Figure 5.7 but
instead show the impact on the server-side. To recap, in Figure 5.10 only
TCP connections are established (using the default HE delay of 10ms),
while in Figure 5.10 only SCTP connections are established (by delaying
the TCP connections by 260ms). In Figure 5.10a and Figure 5.11a the
application listens to TCP and SCTP respectively. In Figure 5.10b and
Figure 5.11b the application listens to both TCP and SCTP.

40

35
- 30
E s
20
15
O 10

PU time

1 2 4 8 16 32 64 128256
Number of flows opened

(a) kqueue

1 2 4 8 16 32 64 128256
Number of flows opened

(b) libuv

4 8 16 32 64 128256
Number of flows opened

(c) NEAT

Figure 5.9: The CPU time spent when establishing connections using TCP

at the server-side.

64

N
o

40 T T T T T T T T T
35 oo ro s

w
6]

)
w
o

w

o

25

CPU time (ms)
= N
Ul O

CPU time (ms

=
v O
T

o

012 4 8§ 16 32 64 12825 1 2 4 8 16 32 64 128256
Number of flows opened Number of flows opened

(@) The client performing HE between TCP and (b) The client performing HE between TCP and
SCTP. The NEAT server only listens to TCP. TCP SCTP. The NEAT server listens to both TCP and
always wins. SCTP. TCP always wins.

Figure 5.10: The CPU time spent when accepting incoming connection
requests while the remote NEAT client performs Happy Eyeballs between
TCP and SCTP. The TCP connections are initiated before the SCTP
connections and always win.

In Figure 5.10 and Figure 5.11 it can be observed that when the NEAT
server listens for both TCP and SCTP in comparison to only one of them,
the CPU time spent by the application increases. This is because the NEAT
server accepts twice the number of connections in this case. Also the
CPU time impact presented in Figure 5.10b and Figure 5.11b seem to be
very similar, which means that the CPU usage of the server application is
independent of which transport protocol the client application deems as
the winning candidate during connection establishment.

65

D
o
e
o

35 35
G 30 e - 30
Epnt T Exs
g20f £ 20
= | S
> 15 B ES L B : ------- > 151
O10r-F L BT O 10
5P 5
9712 4 8 16 32 64 128256 9712 4 8 16 32 64 128256
Number of flows opened Number of flows opened

(a) The client performing HE between TCP and (b) The client performing HE between TCP and
SCTP. The NEAT server only listens to SCTP. ~ SCTP. The NEAT server listens to both TCP and
SCTP always wins. SCTP. SCTP always wins.

Figure 5.11: The CPU time spent when accepting incoming connection
requests while the remote NEAT client performs Happy Eyeballs between
TCP and SCTP. In the case of Figure 5.11b, the TCP connections are delayed
long enough such that SCTP connections always win.

5.1.3 Memory usage
Client-side memory usage

Figure 5.12 and Figure 5.13 show how much the memory usage increases
when establishing connections with TCP and SCTP respectively. The
memory usage considered in these figures is the Resident Set Size of the
application. The figures show the results of running NEAT, libuv, and
kqueue applications on the client-side, establishing connections to a server.
The server application in the experiments uses the same networking API
as the client application. In Figure 5.12 the client application is establishing
TCP connections to a server that only listens for TCP. In Figure 5.13 the
client application is establishing SCTP associations to a server that only
listens for SCTP.

Table 5.8 shows the memory usage overhead of using NEAT compared
to libuv. In Figure 5.12 and Figure 5.13 it can be observed that libuv
adds a very small memory overhead compared to kqueue, and that NEAT
has some memory overhead compared to libuv, but this overhead is
proportionally not as large as in the CPU results. The memory usage of
kqueue and libuv does not seem to be affected by the choice of TCP or
SCTP, while the use of SCTP causes the NEAT application to use some
additional memory.

In order to analyze what parts of the NEAT code is causing the memory
overhead, we performed profiling on the applications using the Massif
tool of the Valgrind tool suite (see Section 3.1.4 for more information).
First we considered the scenario in Figure 5.12 with 256 opened TCP
flows. In libuv, we find that about 75% of the memory is allocated
in on_connected while about 25% of the memory is allocated in main.
The total heap memory usage is approximately 3.4 MiB. In NEAT, we
find that about 29% of the memory is allocated in on_connected, 9%

66

Scenario Memory usage overhead (kilobytes) Meory usage overhead (%)

1 TCP flow 94.20
256 TCP flows 6733.78
1 SCTP flow 98.304
256 SCTP flows 8272.18

230
183
240
225

Table 5.8: The memory usage overhead of using NEAT compared to libuv

during connection establishment on the client-side.

,,, ,312000,,,,J,,,,‘,,,,,‘,,,,‘,,,,‘,,,,,‘,,,,L,,,J,,,,‘,,,,, ,;;12000,,,,J,,,,‘,,,,,‘,,,,‘,,,,‘,,,,J,,,,‘,,,,J,,,,,,,,,
3]
——— BL0000 [~ Y0000 [
K] o
——— £ 8000 [--------oroe ooy @ G000 [
(] ()
——— 26000 [~ Q00 [
(%] (%2}
3 3
—————————————————————————————————————— Ziio] SA000 [54000 [
S)
——— £ 2000 [~ s B Q00 [e
(] () —_—
e = = = L= .
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
Number of flows opened Number of flows opened Number of flows opened
(a) kqueue (b) libuv (c) NEAT

Figure 5.12: The increase in application memory consumption when
establishing connections using TCP at the client-side.

allocated in main, and that about 62% of the memory is allocated either
within the NEAT event loop or within the functions of the NEAT API.
25% of the total memory consumption is related to allocating memory
for the platform- and protocol-independent representation of network
sockets for all Happy Eyeballs candidates internally in NEAT (struct
neat_pollable_socket) in the open_resolve_cb function. Also, about 25% of
the total memory consumption is related to allocating such internal socket
representations when calling neat_open for all of the flows. The remaining
memory usage seems to be related to various JSON allocations, allocation
for the neat_flow structures, and other minor allocations. The total memory
usage was sampled to be about 8.9 MiB.

We also profiled the NEAT application when opening 256 SCTP flows
to determine why the memory usage is greater than when using TCP.
We find that the memory structures that are allocated for TCP is also
allocated for SCTP. However, we also find that the NEAT internal function
resize_read_buffer is allocating approximately 20MiB. This is more
memory than the reported Resident Set Size in Figure 5.13c. We suspect
that this memory is allocated but not resident in RAM because it is not
used until data is received.

67

1 2 4 8 16 32 64 128256
Number of flows opened

(a) kqueue

1 2 4 8 16 32 64 128256
Number of flows opened

(b) libuv

T T T T 712000 T T 712000 T T T -
I [
g g

rrr BL0000 [o oo BI0000 [

rrr S 8000 -] T G000 [
() (]

rrr D GO0 -~ d BUGOQ e
5 5

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr] 34000 [24000 e
o [=] -

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr oo B 2000 f e £ 000 e
s _— g _

— e 0 —_— e e T n 0 e T

1 2 4 8 16 32 64 128256
Number of flows opened

(c) NEAT

Figure 5.13: The increase in application memory consumption when
establishing connections using SCTP at the client-side.

Server-side memory usage

Figure 5.14 and Figure 5.15 show how much the memory usage increases
when accepting TCP and SCTP connections respectively. The memory
usage considered in these figures is the Resident Set Size of the application.
The figures show the results of running NEAT, libuv, and kqueue
applications on the server-side, accepting connection requests sent from
the remote client. In every experiment the same networking API is used
for the server and client applications. In Figure 5.14 the server applications
are listening for TCP and the client that connects is using TCP. In Figure 5.15
the server applications are listening for SCTP and the client that connects
is using SCTP.

Table 5.8 shows the memory usage overhead of using NEAT compared
to libuv. It can be observed that the libuv and kqueue memory usage results
for the client-side presented in Figure 5.12 and Figure 5.13 is about idnetical
to the memory usage on the server-side, presented in Figure 5.14 and Figure
5.15. However, in the case of NEAT, the memory usage is smaller on the
server-side than the client-side. Also, the use of SCTP introduces some
overhead in NEAT compared to using TCP. This overhead of using SCTP is
not present in the kqueue and libuv results.

By profiling the NEAT server, we find that the memory that is allocated
by the open_resolve_cb NEAT internal function at the client-side is not
present at the server-side because the server is not performing Happy

Scenario Memory usage overhead (kilobytes) Meory usage overhead (%)
1 TCP flow 86.01 210
256 TCP flows 3379.2 90
1 SCTP flow 86.01 210
256 SCTP flows 5181.44 138

Table 5.9: The memory usage overhead of using NEAT compared to libuv
during connection establishment on the server-side.

68

_10000 _10000 _10000
wn wv (%)
]]]
B 8000 e B 8000 [+ B 8000 [+
2 2 2 —
G000 [000 oo =000 [
() (] (]
g g =
84000 -----nnmmmmomee e soeef B 4000 [-oonee e oo B4000 - e
g § g
S 2000 -+ +-nnnrreeeee e SR, 8 2000 f+------nnerneeee e e S 2000 f-++-nnernreeeesn e
[J— (7] —_— [} J—
=2 . = - 2 lbl———_— . .
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
Number of flows opened Number of flows opened Number of flows opened
(a) kqueue (b) libuv (c) NEAT
Figure 5.14: The increase in application memory consumption when
establishing connections using TCP at the server-side.

_10000 _10000 _10000
wn n wn
] g] -
B 8000 [--nmmmeee e 38000 [+ B 8000 [---nmmeeee e
2 2 2
= 6000 [+~ = 6000 -] = 6000 [+~ ornnne s
[() [
g g g —
84000 -----nnmmmmone e sosef B 4000 [oo B8000 - T
o) fa
£ 2000 [---o-om szaceseseo € 2000 [---cnren e i £ 2000 [-----no e T
s — s — s —

712 4 8 16 32 64 12825 0712 4 8 16 32 64 128256 0712 4 8 16 32 64 12825

Number of flows opened Number of flows opened Number of flows opened

(a) kqueue (b) libuv (c) NEAT

Figure 5.15: The increase in application memory consumption when
establishing connections using SCTP at the server-side.

Eyeballs. This seems to be the reason why the NEAT client uses more
memory than the NEAT server.

The memory usage overhead of the NEAT server compared to libuv and
kqueue is the same as described for the client-side memory results, and
is caused by allocating the internal platform- and protocol-independent
representation of network sockets in NEAT (struct neat_pollable_socket).
These structures are allocated when the NEAT function neat_new_flow is
called.

The memory overhead in Figure 5.15c compared to Figure 5.14c is
not completely clear as described for the client-side memory results, but
we believe this overhead is caused by the resize_read_buffer which is
called as a result of receiving SCTP control messages during connection
establishment that negotiates the receive buffer size.

5.2 Data transfer

This section presents our evaluation of the data transfer experiment
scenario. It considers data transfer in NEAT and libuv using either TCP or
SCTP as the transport protocol. The purpose of this section is to evaluate
the overhead of using NEAT for data transfer compared to libuv. We
define the data transfer period when performance metrics are sampled as
described in Table 4.4. For more information regarding the experiment

69

100000

CPU time (ms)

10000
1000
100
10

0.1

100000
10000
m
£ 1000
[0)
£ 100
£ 10
(@]
1+--- 1---
1 1 | | 1 01 1 | 1 1 1
1 10 100 1000 10000 1 10 100 1000 10000
Number of kilobvtes sent per flow Number of kilobvtes sent per flow
(a) libuv (b) NEAT

Figure 5.16: CPU time spent when transferring data using TCP on the
client-side for different numbers of flows and for different data object sizes.

Scenario CPU time overhead (ms) CPU time overhead (%)
1 TCP flow, 10 MB 38,63 41
8 TCP flows, 10 MB 298,67 42

Table 5.10: CPU time overhead of using NEAT compared to libuv during
data transfer with TCP on the client-side.

scenario, see Section 4.3.

Figure 5.16 shows the CPU time spent on the client-side (sender) during
data transfer of different data object sizes and for different numbers of
concurrent flows running TCP. Note that the axes are logscale. Table 5.10
shows the CPU time overhead of using NEAT compared to libuv. It can be
observed that transferring data in NEAT has a slight CPU time overhead
compared to libuv, but this overhead is small in comparison to the total
CPU time usage. The reason why the CPU time usage is low until sending
1000 kB and more is most likely because we have set our socket buffer send
space to 300 kB, and if less than 300 kB of data is sent the data will be added
directly to the socket buffers without any delay.

Figure 5.17 shows the CPU time spent on the server-side (receiver)
during data transfer of different data object sizes and for different numbers
of concurrent flows running TCP. Note that the axes are logscale. Table 5.11
shows the CPU time overhead of using NEAT compared to libuv. It can
be observed that receiving data in NEAT has a slight CPU time overhead
compared to libuv, but this overhead is small in comparison to the total
CPU time usage.

70

100000

CPU time (ms)

10000
1000
100
10

1

0.1

100000

10000
m
£ 1000
[0
£ 100
=]
£ 10
(@)
1 P
1 10 100 1000 10000 0.1 1 10 100 1000 10000
Number of kilobytes sent per flow Number of kilobytes sent per flow
(a) libuv (b) NEAT

Figure 5.17: CPU time spent when transferring data using TCP on the
server-side for different numbers of flows and for different data object sizes.

Scenario CPU time overhead (ms) CPU time overhead (%)
1 TCP flow, 10 MB 36,12 33
8 TCP flows, 10 MB 284,26 35

Table 5.11: CPU time overhead of using NEAT compared to libuv during
data transfer with TCP on the server-side.

71

72

Chapter 6

Discussion

In this chapter we discuss the evaluation results presented in Chapter 5.
The goal is to give an overview of the results, how they can be interpreted
in a macroscopic view, whether the NEAT library is scalable in different
scenarios, and discuss possible improvements to the code that can mitigate
some of the performance issues.

This thesis considers CPU usage, memory usage, and delay as metrics
to evaluate the performance of NEAT in different scenarios. In general
we find that the use of NEAT introduces a significant resource overhead
compared to using libuv and kqueue. The fact that NEAT introduces
resource overhead is not a problem by itself. It is expected that an advanced
networking library and API like NEAT will be more resource intensive
compared to simpler, less complex solutions. Also, NEAT is a prototype
library where the development focus has been to provide rich functionality
rather than developing efficient code. Even if the NEAT library is too
resource intensive in the current version, the performance can be improved
by optimizing the code. The resource overhead of a NEAT-like system
becomes a problem if it is too high to meet the requirements of the end-
users.

We found that the delay of establishing connections in NEAT is high
compared to libuv and kqueue. We found that NEAT introduces a delay
of about 70-100 ms based on the number of flows and transport protocol
used. A small delay is important to real-time applications that have strict
timing requirements. We find that the real-time delay during connection
establishment in NEAT is too high to be useful for such applications. On
the other hand, applications that uses long-lived connections may accept
an increased delay during connection establishment in order to leverage
the best available network services. In this case, the use of the NEAT library
is feasible.

The CPU usage of NEAT was also found to be large in comparison
to libuv and kqueue results. We found that the CPU usage when using
NEAT was in the order of 500% to 1000% larger than libuv. The analysis we
performed uncovered that JSON operations related to converting strings
to JSON objects and vice versa constitute a large portion of the total CPU
usage when opening many NEAT flows. String manipulation is CPU

73

intensive and should be avoided if possible by optimized code. The
Concise Binary Object Representation (CBOR) [RFC7049] format is a solution
to decrease the sizes of the JSON objects and thus improve efficiency.
Optimally, the NEAT properties should only be converted from string
format to some internal format once, instead of first converting to JSON
format and then back to string as is done in the current implementation of
NEAT. The current NEAT implementation requires that NEAT properties
must be specified for every new NEAT flow. An optimization to this could
be to enable the application developer to specify the property string once,
convert the string to internal representation, and return an identifier which
can be used later when opening new NEAT flows to specify the same
services without having to convert the string again.

Other CPU intensive operations in the current NEAT version include
gathering of interface information and address-to-name resolution, which
is performed for every source-destination address pair for every opened
NEAT flow. This can be improved by caching the gathered information,
and reuse this information when creating new flows.

The memory overhead in NEAT is comparably smaller than the CPU
overhead and delay overhead of NEAT. We found that the memory increase
by using NEAT is around 100% to 200% larger than when using libuv.
The memory usage in NEAT seems to closely relate to the number of
open NEAT flows. We found that when the number of NEAT flows
doubles, the memory usage doubles, just like the libuv and kqueue
results. We argue that the memory usage of NEAT does not seem
very large; especially when considering the abundant cheap memory in
modern computers. The memory overhead is attributed to allocating
the platform- and protocol-independent socket representation internal to
NEAT. This is a data structure that aggregates data required by different
transport protocols and features. A possible optimization would be to split
this structure into several sub-structures related to specific protocols and
features, and only allocate the memory that is required. The memory usage
of NEAT may still be too large for some applications, like applications
running in an embedded environment with very limited resources.

It is important to note that the metrics considered in this thesis are
connected. When an application spends a lot of CPU time to execute an
operation, the consequence is that the real-time delay of executing the same
operation will be large. Also, when the memory usage for an application is
large, there might be more cache misses which can lead to increased CPU
time and real-time delay.

74

Chapter 7

Conclusive Remarks and
Future Work

In this thesis we investigated the local resource usage of the NEAT library
compared to other APIs. This investigation was conducted to give a clearer
answer to whether NEAT-like systems can be deployed in the Internet. We
were able to quantify the resource overhead of NEAT and find bottlenecks
in the code. This answered our Research Question (What is the local resource
overhead of using NEAT compared to other state-of-the-art APIs?)

7.1 Research findings

In this thesis we evaluated the performance of the NEAT library by
comparing the resource usage of NEAT to networking APIs libuv and
kqueue. This comparison made it possible to quantify the resource
overhead of using NEAT compared to the other APIs and answer our
Research Question.

In our evaluation we found that NEAT introduces a significant amount
of CPU usage and delay when establishing connections compared to libuv
and kqueue. The increase in memory overhead when opening/accepting
new flows in NEAT is not as large in comparison, and the memory over-
head can most likely be supported by the abundant memory available in
modern computers. However, due to the general resource overhead of us-
ing NEAT, it might not meet the requirements for certain applications and
systems. For instance, embedded systems may have limited computing,
memory and power resources that cannot handle the overhead of NEAT.

Our evaluation has shed light on the possibility to deploy NEAT-like
systems in the Internet. Before this can happen, an efficient implementation
needs to be implemented that can compete with existing APIs.

7.2 Future Work

Happy Eyeballs between TCP and SCTP Because a client application
uses 1 RTT to establish connections with TCP and 2 RTTs with SCTP,

75

the result of using Happy Eyeballs between TCP and SCTP is often that
TCP wins; even when the SCTP candidate is initiated before the TCP
candidate. There are several possible solutions to solve this problem!.
One solution is to use a user-space implementation of SCTP that can call
a user-specified callback function whenever the INIT-ACK message of the
SCTP connection establishment process has arrived. In this way, the Happy
Eyeballs mechanism will be notified that SCTP is supported end-to-end in
the network after 1 RTT. However, this solution is not possible for a kernel
implementation of SCTP because the user-specified callback can block the
kernel process calling the callback. Another possibility is to use a similar
API like TCP Fast Open (TFO) [RFC7413] which enables application data to
be sent (and processed) during connection establishment. The specification
of SCTP Fast Open is not available yet.

Evaluating flow grouping and priority In this thesis we have considered
both TCP and SCTP in the experiments to investigate how the choice of
transport protocol impacts performance. However, a seperate study can
be performed on the flow grouping and priority functionality of NEAT,
which enables individual TCP flows and individual SCTP streams to be
prioritized so that they get a specific share of the available bandwidth.
An interesting scenario would be to port an existing application to use
NEAT, and leverage the priority functionality to improve application
performance.

Leverage the Policy Manager to make multihoming decisions A seper-
ate study can use the Policy Manager in NEAT to evaluate multiple scen-
arios. The Policy Manager enables transport services to be translated to
specific protocols and options. Future work may include an investigation
of the flexible services that can be offered by running the Policy Manager.
For instance, the current RTT of all the available network links connected
to an end-host can be sampled and updated continously into the NEAT
Policy Manager. When doing this, the choice of which link to send data on
for a multihomed host can be decided dynamically by the Policy Manager
which can improve application performance.

In summary, we find that the resource usage of NEAT is too large in
the current version to be scalable in the Internet. However, we have found
many possible optimization solutions that can improve the performance of
the library.

IThe solutions to the problem of using Happy Eyeballs between TCP and SCTP were
provided by Michael Tiixen (one of the implementors of SCTP).

76

Appendix A

TEACUP testbed

This appendix describes the physical network testbed that we used to
run the experiments considered in this thesis, and describes how to set
up this testbed and run TEACUP experiments on it. First, the topology
of the testbed is presented, describing how the different components are
connected and configured. Second, the extensions we have made to
TEACUP is explained. Finally, an example of how to use TEACUP and
write a TEACUP config file is described.

A.1 Testbed setup

Figure A.1 illustrates the physical network testbed in the CPS lab at the
Department of Informatics, University of Oslo. The testbed consists of
5 experimental hosts (EI-E5), control server, router, and Cisco network
switch. The Cisco switch is not shown in the figure to make the illustration
of the topology more clean. Instead, the different Virtual LANs (VLANSs)
configured in the switch are included to illustrate the different networks
in the testbed. All the hosts are connected to the switch with Fast Ethernet
connections. The experimental host E1 is placed in another VLAN than
experimental hosts E2-E5 so that experimental data sent from a host in one
VLAN to the other will pass the router. The router can be configured with
different traffic control rules to emulate various network conditions.

This appendix does not describe the specific hardware and software
specifications of the testbed. The purpose of this appendix is to describe
how a TEACUP testbed can be built and configured. For more informa-
tion on the specific hardware and software related to the experiments con-
sidered in this thesis, see Section 4.1. For a detailed in-depth technical re-
port on how a TEACUP testbed can be set up, see [102].

A.1.1 VLAN configuration

All the hosts in the testbed are connected to different ports on a Cisco
switch. Based on which network interface in the hosts are connected to
the switch, different VLANs are configured for the different switch ports
(see Figure A.1 for an illustration of the VLANs the network interfaces are

77

Control server

I
E1 E2\ E3 E4 /E5
Router
Experiment Experiment
VLAN 10 VLAN 11

Figure A.1: The TEACUP testbed in the CPS lab at the Department of
Informatics, University of Oslo.

connected to). In the switch configuration, the setting switchport access
vlan <VLAN-ID> is set for the switch ports, where <VLAN-ID> is the VLAN
number shown in the figure. This setting is not set for VLAN 1 ports
because it is the default of the switch. The configuration of the VLANs
enables control messages and experiment data to traverse the switch with
no interference.

A.1.2 Addressing and routing settings

The following settings are set:

e A DHCP server is installed on the control server to configure the
experimental hosts and the router with static IP addresses in the
control VLAN network. This centralizes the information in the
control server.

* The experimental hosts and router are given hostnames that map to
the control network IP addresses configured via DHCP. This enables
communicating with the different hosts by name, which is also a
requirement to run TEACUP.

¢ All experimental hosts and routers are configured with static IP
addresses in the experimental VLAN networks.

78

¢ The experimental hosts set routing rules to route packets destined to
the remote experimental VLAN via the router.

A.1.3 Miscellaneous settings

The following settings are set:

¢ Disable that the hosts can sleep, go to screen lock, etc. because this
may disrupt the experiments.

* Automatic updates should be disabled to have control over the
software that is used during experiments.

A.2 TEACUP extensions

This section describes the extensions we added to TEACUP to support
custom traffic! and custom loggers. This includes technical details about
TEACUP code. See Section A.3 for an overview of how tu use TEACUP.
See [103] for an in-depth description of TEACUP.

A.2.1 Custom traffic

TEACUP supports several types of traffic generators and sinks by default,
which are started by calling tasks with different parameters that can control
the experiment behaviour. Examples of supported tasks include start_iperf
that starts an iperf server and client on the specified machines and send data
for a specified time, start_ping that starts a ping client, and start_httperf that
starts an httperf client. The tasks that will be run for a specific experiment
is specified by the TEACUP config variable TPCONF_traffic_gens.

To extend TEACUP with the capability to run custom traffic, we added
a new type of task called start_custom_traffic. We have specified
a rich set of parameters for the task that enables the user to control
how TEACUP should control custom applications. We have added the
following parameters:

* name: The name of the application/command to run.

¢ directory: The directory where the application can be found. If not
specified, the application must be available in the locations specified
by the PATH environment variable.

* hostname: The name of the host to run the application.

¢ copy_file: If enabled (1), the application will be copied from the
directory specified by directory on the control server to /usr/bin/ on
the host specified by hostname. This is disabled by default.

1By custom traffic we mean any kind of application that can either send or receive
data. The custom traffic extension is so general that any command or application can be
controlled by TEACUP.

79

¢ add_prefix: If enabled (1), adds the current TEACUP experiment test
ID? as the last argument to the application specified by name. This
can allow the application to produce logs with filenames similar to
those log files produced by TEACUP by default. This is disabled by
default.

¢ parameters: The parameters that will be concatenated at the end of
the application specified by name.

A.2.2 Custom loggers

TEACUP does not support specifying any loggers by default. We therefore
added the new TEACUP config variable TPCONF_custom_loggers that
enables the user to specify custom loggers. This variable expects the same
format as TPCONF_traffic_gens except that a starting time is not needed
for the specified tasks. When specifying traffic generators, there is an
option to schedule how long after the experiment has started that the traffic
generator will start. When specifying loggers, this option is not needed
since all loggers are expected to be started before the experiments begin.

Also, when specifying custom loggers with TPCONF_custom_loggers
it is required that the task start_custom_logger is used. This
task has the same parameters available as the custom traffic task
start_custom_traffic. In addition, it offers the parameter logname that
enables the user to specify the name that will be appended to the TEACUP
test ID when producing log files.

A.3 Example of using TEACUP

TEACUP depends on the Python package Fabric which is designed to
simplify the process of executing shell commands remotely over Secure
Shell (SSH) [19]. Once Fabric is installed® the command-line tool fab will be
available. This tool is used to run TEACUP experiments. To run a TEACUP
experiment the following should be in place:

1. The TEACUP code is placed in some directory on the control server.
2. A separate directory is created for every TEACUP experiment.

3. The experiment directory contains a TEACUP config file called
config.py that defines the experiment and points to the TEACUP
code.

4. The experiment directory contains a fabfile.py file that can be
copied directly from the TEACUP code directory. This file is used
to initiate the experiments when using the Fabric tool fab.

2All TEACUP experiments have a test ID that identifies the experiment and the
parameters that are set.
3The Fabric package can be installed with the Python package manager pip.

80

OCCONANUTHWN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Once all the above items are in place, the TEACUP experiment can be
run by moving into the experiment directory and execute the command
fab run_experiment_multiple. An example TEACUP config is given in
Listing A.1. The example contains comments that describes the config file.

When the TEACUP experiment has completed, the experiment direct-
ory will contain a directory with the same name as the TEACUP experiment
test ID. This directory contains a variety of log files from the experiment.

Listing A.1: Example TEACUP config file.

import sys
import datetime
from fabric.api import env

Sets the username and password that Fabric will use when
establishing SSH connections to exzperimental hosts and

router.

env.user = ’root’

env.password = ’toor’

Sets the shell in which all the TEACUP commands will be
executed in.
env.shell = ’/bin/sh -c’

Sets the path where the TEACUP code can be found.
TPCONF_script_path = ’/home/teacup/fredhau/git/teacup-code’
sys.path.append (TPCONF_script_path)

Disables debug log messages
TPCONF_debug_level = 0

Stores the first 400 bytes of the packets captured with
tcpdump. This is enough to contain the protocol header
information.

TPCONF_pcap_snaplen = 400

Specifies the hostname of the Touter machine.
TPCONF_router = [’router’,]

Specifies the hostnames of the exzperimental hosts to consider
in the exzperiments.
TPCONF_hosts = [’testhostl’, ’testhost5’,]

Maps the hostname of the router and ezxzperimental hosts
to IP addresses in the exzperimental VLAN networks.
TPCONF_host_internal_ip = {

router’: [’172.16.10.254°, °172.16.11.254°],

’testhostl’: [172.16.10.1°],

’testhostb?: [°172.16.11.4°],

Sets the upper limit on the acceptable difference in time
in the experimental hosts. Time synchronization is needed
to analyze captured packets from several hosts. This s
not relevant for this exzperiment.

TPCONF_max_time_diff = 1

H R W™ W

Sets the TEACUP test ID that tdentifies every TEACUP

81

103

exzperiment.

now

= datetime.datetime.today ()

TPCONF_test_id = now + ’_neatnomultconnectiontcp’

Sets the directory on the ezperimental hosts and router where
TEACUP log data will be stored during experiments.
TPCONF_remote_dir = ’/tmp/’

The number of exzperiment runs to perform for every
combination of the experiment parameters.
TPCONF_runs = 10

H W R R W

Sets the network conditions that will be emulated in
the router.

The V_#* wariables used are are the parameters that are wvartied
in the experiments. They are described in the bottom of this
config file.

TPCONF_router_queues = [

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
t

(’1°, " source=’172.16.10.0/24°, dest=’172.16.11.0/24°, "
" delay=V_delay, loss=V_loss, rate=V_up_rate, "
" queue_disc=V_agm, queue_size=V_bsize "y,

(’2?, " source=’172.16.11.0/24°, dest=’172.16.10.0/24°, "
" delay=V_delay, loss=V_loss, rate=V_down_rate, "
" queue_disc=V_agm, queue_size=V_bsize "y,

Specify the custom traffic applications that
will be run in the TEACUP ezperiments.

In this case run a NEAT server and NEAT client.
The first argument of each tuple below specifies
the time at which the application will be started.
The client will be started 2 seconds after the
server to give the server time to initialize.

The second argument of the tuples are a
bookkeeping ID used by TEACUP internally to
tdentify the different traffic generators.

The task "start_custom_traffic" is specified

for both the NEAT server and NEAT client to

use the TEACUP exztemsion for custom traffic.

The detatls of the options set in the "parameters”
task option are mnot relevant for the description of
the TEACUP config file. However, note that

V_* wariables and literals can easily

be set as parameters, and Python code can be

used to manipulate the arguments.

raffic_custom = [

(’0.0°, °1°, " start_custom_traffic,"

" name=’neat_server’,"

" directory=’/usr/home/fredhau/neat-test-suite/build’,"

" hostname=’testhostl1’,"

" duration=V_duration,"

" add_prefix=’1’,"

" parameters=’-R s -A -s -C Ys -a %s -b %s -I Us -M ¥%s -p
%bs -v hs -u %s’ % (’fredhau/testhostl-freebsd/neat/mno
-mult/connection/tcp’, str(int(V_connections) * int(
V_flows)), V_flows, ’0’, ’172.16.10.1°, V_transports,
12327, 1, 2)"),

(’2.0?, ?’2°, " start_custom_traffic,"

1gnore this

82

104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Thes
TPCONF

Run

expe
abou
will
TPCONF

H W R W

Use
usin
TPCONF

Enabd
TPCONF
¥
TPCONF
}

Ezec
Thes
the

TPCONF
’testh

’testh

Dela

name=’neat_client’,"

directory=’/usr/home/fredhau/neat-test-suite/build’,"

hostname=’testhostb’,"

duration=V_duration," # 4ignore this

add_prefix=’1’,"

parameters=’-R %s -A -s -C %s -a %s -b %s -i %s -1 %s -M
%s -n %hs -v %s -u %s %s %hs’ % (’fredhau/testhosth-
freebsd/neat/no-mult/connection/tcp’, V_flows, V_flows
, 07, 2172.16.11.4°, 10240, V_tramnsports, V_flows, 1,
2, 2172.16.10.1°, 12327)"),

tells TEACUP which traffic gemerators to use.
_traffic_gens = traffic_custom

every experiment for 4 seconds. Since the
riment considered in this config file s
t connection establishment, the experiments

not need to rTun long.
_duration = 4
the "newreno" congestion control algorithm when
g TCP.
_TCP_algos = [’newreno’,]

les setting per-host congestion control algorithm.
_host_TCP_algos = {

_host_TCP_algo_params = {

ute the specified commands in the specified hosts.

e sysctls are described in greater detail <n
"Experimental Setup" chapter.
_host_init_custom_cmds = {

ost2’ : [’sysctl net.inet.tcp.recvbuf_auto=0’,

’sysctl net.inet.tcp.sendbuf_auto=0’,
’sysctl net.inet.tcp.sendspace=300000"7,
’sysctl net.inet.tcp.recvspace=300000",
’sysctl net.inet.sctp.sendspace=300000",
’sysctl net.inet.sctp.recvspace=300000"’,
’sysctl net.inet.tcp.msl=5000’ 1,

ostb5’ : [’sysctl net.inet.tcp.recvbuf_auto=0’,
’sysctl net.inet.tcp.sendbuf_auto=0’,
’sysctl net.inet.tcp.sendspace=300000",
’sysctl net.inet.tcp.recvspace=300000",
’sysctl net.inet.sctp.sendspace=300000"’,
’sysctl net.inet.sctp.recvspace=300000",
’sysctl net.inet.ip.portrange.randomized=0"’,
’sysctl net.inet.tcp.msl=5000’]

y packets for 50 ms in the router in both

transfer directions. This gives a total

Roun
TPCONF

d-Trip Time (RTT) of 100 ms.
_delays = [50]

Do not introduce any emulated loss.

TPCONF

_loss_rates = [0]

83

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

205

206

207

208

209

210

Use the same emulated bandwidth for both of the outbound

#

interfaces in the router.

TPCONF_bandwidths = [

HORH W R R W™ R R R

(’10mbit’, ’10mbit’),

Use the "bfifo" Active Queue Management (AQM) algorithm

with a queue size based on the current Bandwidth
Delay Product (BDP) of the ezperiment. This s
calculated by multiplying the currently set
bandwidth with the Round-Trip Time (RTT) of

the experiment, calculated by multiplying

the value of "TPCONF_delays" with 2.

This queue stize ensures that the router queue

1s large enough to handle the specified bandwidth.

TPCONF_aqms = [’bfifo’,]
TPCONF_buffer_sizes = [’bdp’]

#

Ignore this, not used for connection exzperiments.

TPCONF_data_sizes = [123]

Sets the different numbers of flows to be constidered.
TPCONF_flows = [1, 2, 4, 8, 16, 32, 64, 128, 256]

HOoRH W R R W W R

Sets the transport protocol to be considered.
The second number specifies the number of
connections per flow the server should ezpect.
This is only relevant when the NEAT client
performs Happy Eyeballs between TCP and SCTP
and the NEAT server listens for both

(in this case, 2 connections are ezpected

for every flow).

TPCONF_transports = [(’TCP’, ’1°)]

HOWH R O R W™ R W

Here the different exzperiment parameters are
defined. For each parameter, one or more

V_ wvariables are defined. The V_ wvariables are

used in the config file to specify a parameter

that may potentially be wvaried between ezperiments.
The V_ wariable is wvartied between ezxzperiments if

the parameter is specified in "TPCONF_wary_parameters”

(see below).

TPCONF_parameter_list = {

#

Vary name V_ wariable file name
extra wvars

’delays’ ¢ ([’V_delay’], [’del-],
TPCONF_delays, B,

’loss’ : ([’V_loss’], [’1loss’],
TPCONF_loss_rates, {H,

’tcpalgos’ : ([’V_tcp_cc_algo’],[’tcp’],
TPCONF_TCP_algos, {H,

’aqms’ ¢ ([’V_agm’], [’agm’],
TPCONF_aqms , {H,

‘bsizes’ : ([°V_bsize’], [’bs?],
TPCONF_buffer_sizes, i»,

’runs’ : ([’V_runs’], [’run’],
TPCONF_runs), i,

’bandwidths?’ : ([’V_down_rate’, ’V_up_rate’],

84

values

range (

[’down’,

211

212

213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

up’], TPCONF_bandwidths, {}),

’data_sizes’ : ([’V_data_size?’], [’dsize’],
TPCONF_data_sizes, {}),

'flows’ : ([°V_flows’], [’flows’], TPCONF_flows,
{1,

’transports’ : ([’V_transports’, ’V_connections’], [’
transports’, ’connectionsperflow’], TPCONF_transports,
i,

Sets the default wvalues of the V_ wariables <f

the assoctiated parameter names are not spectified
a2n "TPCONF_vary_parameters”
TPCONF_variable_defaults = {

V. wvartable value
’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays [0],
’V_loss’ : TPCONF_loss_rates [0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos [0],
’V_down_rate’ : TPCONF_bandwidths [0] [0],
’>V_up_rate’ : TPCONF_bandwidths [0] [1],
’V_aqm’ : TPCONF_aqms [0],
’V_bsize’ : TPCONF_buffer_sizes [0],
’V_data_size’ : TPCONF_data_sizes [0],
'V_flows? : TPCONF_flows [0],
>V_transports’ : TPCONF_transports [0] [0],
>V_connections’ : TPCONF_transports [0] [1],

}

Specifies the V_ wvariables that will be wvaried between

experiments. All combinations of the paramters are

considered.

TPCONF_vary_parameters = [’flows?’, ’data_sizes?’, ’transports’,
>runs’]

85

86

OCCONANUTHWN -

Appendix B

NEAT evaluation test suite

This appendix describes the structure of the NEAT evaluation test suite
available on Github and how to use it [63]. This test suite was used
when performing the experiments presented in this thesis. This enables
anyone to clone the repository and run the same experiments. For more
detailed information about source code, scripts, and config files, refer to
the comments in the files or to the README files.

B.1 Download and installation

This section describes how the NEAT evaluation test suite can be down-
loaded and installed, and describes how to install the dependencies. As de-
scribed in Chapter 4 the NEAT evaluation test suite source code is installed
and tested on FreeBSD. However, we used Ubuntu 16.04.1 LTS when we
parsed the results and produced graphs.

Before installing the NEAT evaluation test suite, the NEAT library must
be installed:

Install NEAT dependencies
pkg install cmake libuv ldns jansson swig30

Get NEAT source code
git clone https://github.com/NEAT-project/neat.git

Checkout the wersion of NEAT used in this thesis
cd neat
git checkout 2253d7464f33f149d58ba216e7dc99b£1140946f

Install NEAT
mkdir build

cd build

cmake

make install

Then install the NEAT evaluation test suite:

Get NEAT ewaluation test suite source code
git clone https://github.com/fredhau/neat-test-suite.git

Install 2t

87

\O G0 g O U1

N =

[6V]

O
WIN = OOV U1

Directory Description

teacup-code Contains the original TEACUP version 1.0 revi-
sion 1364 code with custom traffic and custom
logger extensions.

teacup-configs Contains the TEACUP configs used in the ex-
periments.
src Contains the source code for NEAT, libuv, and

kqueue clients and servers, in addition to source
code for utility functions.

include Contains header files required by the source
code in src.

scripts Contains scripts to parse the sampled data and
produce graphs.

Table B.1: Overview of the NEAT evaluation test suite repository.

cd neat-test-suite
mkdir build

cd build

cmake

make

To parse and produce graphs of the sampled experiment data both R
and gnuplot are needed. To install them in Ubuntu, run:

Install R

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
E298A3A825C0D65DFD57CBB651716619E084DAB9

sudo add-apt-repository ’deb [arch=amd64,i386] https://cran.
rstudio.com/bin/linux/ubuntu xenial/’

sudo apt-get update

sudo apt-get install r-base

Install the R package ‘‘gtools’’
sudo R

install.packages (‘‘gtools’?)

q ()

Install gnuplot
sudo apt-get install gnuplot

B.2 Overview

Table B.1 lists the directory structure of the test suite and describes which
files are contained in each directory.

88

1

B.3 Applications

After following the steps to install the NEAT evaluation test suite as
described above, the result is the following applications:

® neat_server
® neat_client

® libuv_server

libuv_client
® kqueue_server

® kqueue_client

Table B.2 lists the application options that are used in the TEACUP
config files in teacup-configs and describes what each of the options
mean.

The client-side applications have the following synopsis:

<client_application> <options> <server IP> <server port>

The server-side applications have the following synopsis:

<server_application> <options>

B.4 Parsing data

When using the config files specified in teacup-configs, all the application
log files for all TEACUP experiments will be stored in a hierarchical
directory structure on the experimental hosts. These log files are different
from the log files that are created by different loggers started with TEACUP
by default. These default log files are moved to the control server after
every experiment, while this is not the case for the log files produced by
the client and server applications.

The scripts directory contains different scripts for managing the
sampled experiment data in the application log files.

To extract the relevant data from the application log files, run:

./parse_all.sh <ROOT-DIR>

In this case, <ROOT-DIR> is the root directory in which all the application
log files are stored in a specific directory hierarchy. The result of this
parsing process will be put in the data subdirectory of every experiment
directory in the directory hierarchy.

To calculate differences between the extracted data, aggregate results,
and produce tables that can later be used to produce graphs, run:

./calculate_diffs_all.sh <ROOT-DIR>

89

Option Description

-R <dir> Store log data produced by the application to
directory <dir>.

-A Expects the last argument when running the
application to be the appended string TEACUP
test ID + the parameters set in the current

experiment.
-5 Enable sampling of resource usage data.
-C <flows> If on the server-side, expect <flows> connec-

tions from the client to be established otherwise
report error. If on the client-side, expect <flows>
flows to connect (if Happy Eyeballs is used in
NEAT, one flow can open several connections).

-D <flows> Expect <flows> flows to send/receive all HTTP
data. Otherwise, report an error.

-a <num> The number of TCP connections expected to
succeed.

-b <num> The number of SCTP connections expected to
suceed.

-h <bytes> Client-side option. Send <bytes> bytes in a
HTTP POST request to the server.

-H <bytes> On the server-side allocate <bytes> bytes of

random data that can be used as a data pool
when responding to HTTP GET requests from
the client. On the client-side request <bytes>
bytes of data from the server by sending a HTTP

GET request.

-i <IP> Client-side option. Only initiate connections
from the local network interface with IP address
<IP>.

-1 <IP> Server-side option. Only listen to connections
on the network interface with the IP address
<IP>.

-1 <size> Sets the size of the application receive buffer.

-M <protocol> Use the transport protocol <protocol>. This can
be TCP, SCTP, or SCTP-TCP.

-n <num> Client-side option. Initiate <num> flows.

-p <port> Server-side option. The port number to listen to.

-v <level> NEAT applications only. Sets the log level of the
NEAT library.

-u <level> Sets the log level of user-specified log messages.

Table B.2: Overview of the application options for the NEAT, libuv, and
kqueue servers and clients.

90

This script creates tables that describes resource usage during connec-
tion establishment and data transfer. The tables will be put in the tables
subdirectory of every experiment directory in the directory hierarchy.

From the tables created with calculate_diffs_all.sh, graphs can be
produced. To produce graphs of the results, run:

./produce_graphs_all.sh <ROOT-DIR>

The graphs will be put in the graphs subdirectory in the scripts
directory.

91

92

Appendix C

Programming with the NEAT
API and the BSD sockets API

This appendix serves as a guide and reference on how to develop
applications with the BSD sockets API and the NEAT API. The purpose
of this reference is that the reader can easily lookup specific API functions
when they are mentioned in the thesis text.

C.1 Programming with the BSD sockets API

This section describes the BSD sockets API. First, a description of some of
the core functions of the API relevant for this thesis is given. Finally, server
and client examples are provided.

C11 API

int socket(int domain, int type, int protocol)

Creates a new socket descriptor that can be used for communication.
domain specifies the network domain in which the socket should operate in:
AF_INET creates an IPv4 socket, AF_INET6 creates an IPv6 socket, AF_UNIX
creates a UNIX domain socket used for inter-process communication, etc.
type specifies the network service of the socket: SOCK_STREAM means a
stream-oriented, reliable, connection-oriented service, while SOCK_DGRAM
means a message-oriented, unreliable, connectionless service. protocol
is the actual transport protocol that will be associated with the socket:
IPPROTO_TCP means TCP, IPPROTO_UDP means UDP, IPPROTO_SCTP means
SCTP, etc.

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)

Binds the socket descriptor sockfd to the local address specified by the addr
structure. For IPv4 this address consists of the IP address of the interface
to bind to in addition to the port number that will be associated with the
application so that the operating system can forward received data to the

93

correct application. It is also possible to bind to all interfaces by specifying
the address INADDR_ANY.

int listen(int sockfd, int backlog)

Enable the socket sockfd to listen for incoming connections. backlog spe-
cifies the maximum length of the queue containing incoming connection
requests.

int accept(int sockfd, struct sockaddr *addr, socklen_t addrlen)

Block until the socket sockfd has incoming connections to be processed. If
sockfd is in non-blocking mode, accept will not block (see Section 2.2.3).
The address of the remote peer will be populated into the given addr
structure.

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen)

Sends a connection request through socket sockfd to the remote peer with
the address specified in the addr structure.

ssize_t send(int sockfd, const void *buf, size_t len, int flags)

Attempts to send len bytes of data found in buffer buf to the socket
sockfd. If more advanced functionality is required when sending data, e.g.
ancillary control data, sendmsg can be used instead. The return value is the
number of bytes actually sent.

ssize_t recv(int sockfd, void *buf, size_t count, int flags)

Attempts to read count bytes from socket sockfd and put them into the buf
buffer. If more advanced functionality is required when handling data, e.g.
ancillary control data, recvmsg can be used instead. The return value is the
number of bytes actually read.

int close(int fd)

Releases all resources associated with the socket £d. Can either perform
a graceful or abortive close based on whether the SO_LINGER option is
enabled.

C.1.2 Examples

Listing C.1 illustrates how the core functions of the BSD sockets API can
be leveraged to implement a simple server. The specific details of the event
loop is omitted as they are not related to the BSD sockets API. Details about
non-blocking I/O and asynchronous I/O can be found in Section 2.2.3.
Listing C.2 illustrates the code for a simple client that connects to a server.

94

O CONANUTHWN -

NINNNDDNNNNNNNR R R R R R,
NG WONROOVWONOUTIE WNREFRO

Listing C.1: Code example showing the core functions in a server
implemented with the BSD sockets API

struct sockaddr_in server_addr;

struct sockaddr_storage client_addr;
socklen_t socklen = sizeof (client_addr);
int server_socket;

/% Create new TCP socket that will be used over IPuj */
server_socket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* Specify the local address and port information.
Here we bind to local address "192.168.10.1", port 12327 */
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons (12327);
inet_pton (AF_INET, "192.168.10.1", &server_addr.sin_addr);

/* Bind the server socket to the local address */

bind(server_socket, (struct sockaddr *)&serv_addr, sizeof (serv_addr));

/% Start listening onm incoming connections */

listen(server_socket, SOMAXCONN);

/* Some kind of event loop */

for (;;) {
/* When an incoming connection request %s available, call accept */
accept (server_socket, (struct sockaddr *)&client_addr, &socklen);

}

The code also illustrates how a socket can be set non-blocking through the
sockets APL

C.2 Programming with the NEAT API

This section describes the NEAT API. First, an overview of the NEAT
library programming model is given. Second, a description of some of the
core functions of the NEAT API relevant for this thesis is given. Finally, an
example of a NEAT server is given, and it is shown how the server code
can easily be modified to make the application a client.

C.2.1 Overview

As described in Section 2.2.3, NEAT provides a callback-based API admin-
istred by libuv internally. When setting callbacks in NEAT, the applic-
ation must modify a pre-defined set of function variables that are asso-
ciated with every NEAT flow, see Table C.1. These callbacks are called
from within the NEAT event loop when specific events occur for the NEAT
flows. This is almost similar to how libuv works, but when programming
with libuv, callbacks must be set for a specific event source, e.g. a socket

95

OO UTHWN -~

NINNNDNRPR PR PR R R R R,
BWONRPROWOVENNUITER WN RO

Listing C.2: Code example showing the core functions in a client
implemented with the BSD sockets API
struct sockaddr_in server_addr;

int client_socket;
int flags;

/% Create new TCP socket that will be used over IPvuj */
client_socket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* Specify the remote address and port information for the server
server_addr.sin_family = AF_INET;

server_addr.sin_port = htons (12327);

inet_pton(AF_INET, "192.168.10.1", &server_addr.sin_addr);

/* Make socket non-blocking */

flags = fcntl(client_socket, F_GETFL, 0);
flags |= O_NONBLOCK;

fcntl(client_socket, F_SETFL, flags);

/% Send a connection request to the remote server */

connect (client_socket, (struct sockaddr *)&server_addr, sizeof (server_addr));

/* Some kind of event loop */
for (;;) {

}

descriptor, timer, signal, etc., and only one callback can be set for every
event source. It is the responsibility of the application to check exactly which
event occured for the event source. NEAT will do this checking internally,
and call the appropriate callback registered for each specific event. Note
that the internal /ibuv loop handle is accessible through the NEAT func-
tionneat_get_event_loop. This enables the programmer to add additional
events to the event loop, like signal handling. It also enables the program-
mer to link NEAT and other libraries in the same event loop.

A central entity when programming with the NEAT API is the concept
of a NEAT context. This is a data structure that maintains all the global
information about the current NEAT session, and for most situations, only
a single NEAT context is needed for each application. Associated with each
NEAT context is a libuv event loop handle, and a list of created NEAT flows.
It also contains a list of available source addresses that is continuously
updated. A NEAT flow must belong to a single NEAT context, and it cannot
be moved to another NEAT context later.

Table C.2 lists the core functions of the NEAT API. Below the API is

described in greater detail for all the functions. For a detailed description
of the NEAT API, see Appendix B in [43].

96

Callback

Description

on_connected

on_error
on_readable
on_writable

on_all_written

on_aborted

on_close

The NEAT Flow successfully connects or a remote
peer has connected.

An error has occured.
The NEAT Flow is readable.
The NEAT Flow is writable.

All the data that is buffered in the NEAT Flow is
successfully sent.

The NEAT Flow is aborted.

The remote peer closes the connection or the ap-
plication closes the connection associated with the
NEAT Flow.

Table C.1: The core set of callback functions that can be set through the

NEAT API

Function

Description

neat_init_ctx
neat_new_flow

neat_set_property

neat_set_operations

Creates a new NEAT context (one per event loop).
Creates a new NEAT Flow Endpoint.

Sets the user-specified J[SON properties for a specified
NEAT Flow.

Sets the user-specified callbacks for a specified NEAT
Flow.

neat_start_event_loop Starts the NEAT event loop running libuv internally.

neat_get_event_loop

neat_open

neat_accept

neat_read

neat_write
neat_close
neat_stop_event_loop

neat_free_ctx

Returns the libuv handle used internally in the
NEAT event loop.

Connects to the specified remote peer using the
specified NEAT Flow.

Accepts connection requests using the specified
NEAT Flow.

Reads data from the specified NEAT Flow.
Writes data to the specified NEAT Flow.
Closes the specified NEAT Flow.

Stops the NEAT event loop.

Releases all the resources associated with the spe-
cified NEAT context.

Table C.2: The core functions of the NEAT API.

97

—_

OO XU WN -

C.2.2 API

struct neat_ctx *neat_init_ctx(void)

Initializes the libuv event loop, the global data structures, and performs
platform-specific operations related to maintaining the list of source
addresses. The return value is the allocated and initialized NEAT context.

struct neat_flow *neat_new_flow(struct neat_ctx *ctx)

Allocates and initializes the data structures required to represent a NEAT
Flow Endpoint. One of the elements of this data structure is the internal
platform- and protocol-independent representation of a network socket in
NEAT (struct neat_pollable_socket). Note that this function does not
actually open any socket descriptor. The flow is added to the NEAT context
and returned as return value.

neat_error_code neat_set_property(struct neat_ctx *ctx, struct neat_flow

*flow, const char *properties)

Associates the NEAT properties specified in the properties string to the
specified NEAT flow flow. An example of the format of the NEAT properties
is given in Listing C.3. The properties is given in a J[SON format, and the
function converts the properties given in the string to actual [SON objects
using the libjansson library [38]. Every property consists of a key-value
pair, where the value consists of a list of other key-value pairs that defines
the property. One of the fields is value which denotes the value of the
property. Another field is precedence which denotes whether the property
is optional (1) or mandatory (2). Mandatory properties constitute the strict
requirements of the application that cannot be broken. optional properties
consitute the desired network services, and will be more prioritized by the
Policy components, but may not be used as the final end-to-end transport
solution

Listing C.3: NEAT properties example showing the JSON format

{

"transport": {

"value": "reliable",
"precedence": 2

1,

"multihoming": {
"value": true,
"precedence": 1

}

}

neat_error_code neat_set_operations(struct neat_ctx *ctx, struct
neat_flow *flow, struct neat_flow_operations *ops)

Sets the callbacks for the NEAT flow flow. The callbacks are specified in
the ops structure. An example of how the callbacks can be set is given in

98

O CONNUTHWN -

Listing C.5.

neat_error_code neat_start_event_loop(struct neat_ctx *ctx, neat_run_mode
run_mode)

Starts the NEAT event loop. It works as an abstraction layer over uv_run
that starts the libuv event loop. The run_mode specifies how the event loop
shall operate. NEAT_RUN_DEFAULT means that the event loop will continue to
run until there are no more active and referenced handles in the loop. The
user will need to call neat_stop_event_loop in order to stop the execution
of the loop. NEAT_RUN_ONCE means that the event loop will run only one
iteration, but the event loop may block if there are no pending callbacks.
NEAT_RUN_NOWAIT is equal to NEAT_RUN_ONCE, but the event loop will not
block. This can be useful if the NEAT event loop should be integrated with
another event loop. In this case, the event loops can run in tandem. An
example of this is given in Listing C.4.

Listing C.4: Code example of a NEAT application running in tandem with
another event loop

for (;;) {
if (event_loop_closed) {
break;
}

/% NEAT will run in tandem with another event loop */
neat_start_event_loop(ctx, NEAT_RUN_NOWAIT);
some_other_event_loop(...);

uv_loop_t *neat_get_event_loop(struct neat_ctx *ctx)

Returns a handle to the libuv loop run internally in the NEAT event loop
associated with the NEAT context ctx.

neat_error_code neat_open(struct neat_ctx *ctx, struct neat_flow
*flow, const char *name, uintl6_t port, struct neat_tlv optionall],
unsigned int opt_count)

Attempts to connect to the remote peer specified by the domain name or
address name and port port. It is required that the properties for the flow
is specified through neat_set_property before calling this function. This
function does not actually initiate a connection request, but the request is
added to the queue of requests that needs to be resolved. The resolver is
running in the NEAT event loop. If name is a literal address, the address does
not need to be resolved, and the connection request will be made as soon
as possible within the event loop. Optional options can also be specified
through the optional array. opt_count is the length of this array. Options
include priority, flow group, stream count, etc.

99

neat_error_code neat_accept(struct neat_ctx *ctx, struct neat_flow
*flow, uintl6_t port, struct neat_tlv optional[], unsigned int opt_count)

Signals to the NEAT system that the NEAT flow flow will be used as a
listening flow listening on port port. Based on the properties specified
for the flow, several listening sockets can be created for various transport
protocols. Note that this function does not actually accept a new incoming
connection like the BSD sockets API function accept. Instead, NEAT will
accept new incoming connections internally whenever a listening socket is
readable, create anew NEAT flow, and call the on_connected callback for that
flow. This function supports optional options, including the possibility to
specify on which local addresses to listen for incoming connections.

neat_error_code neat_read(struct neat_ctx *ctx, struct neat_flow
*flow, unsigned char *buffer, uint32_t amt, uint32_t *actualAmt,
struct neat_tlv optional[], unsigned int opt_count)

Attempts to read amt bytes from the NEAT flow flow and place them in the
buffer buffer. The actual number of bytes read is stored in actualAmt. This
function should be called within the on_readable callback that signals the
application that the flow is readable. The optional options array that may
optionally be passed as an argument will be filled with extra information
that may be interesting to the application, e.g. the stream number for SCTP.

neat_error_code neat_write(struct neat_ctx *ctx, struct neat_flow
*flow, const unsigned char *buffer, uint32_t amt, struct neat_tlv
optional[], unsigned int opt_count)

Attempts to buffer amt number of bytes specified in the buffer buffer
for transfer on the NEAT flow flow. Note that unlike the BSD sockets
API function send that returns the number of bytes sent, this function
simply buffers all of the specified data for potential later transmission.
The rationale for this is to enable message-oriented transport protocols like
SCTP and UDP to specify entire messages to be sent. The on_writable
callback will only be called if there are no buffered data left; otherwise,
NEAT will internally try to send the buffered data. Through the optional
option array, the user may e.g. specify which SCTP stream that data should
be sent on.

neat_error_code neat_close(struct neat_ctx *ctx, struct neat_flow
*flow)

Closes the NEAT flow, closing all socket descriptors associated with it and
releasing the resources. The on_close callback will be called as a result,

where the user can free any application-allocated resources associated with
the NEAT flow.

100

void neat_stop_event_loop(struct neat_ctx *ctx)

Provides an abstraction layer over the libuv function uv_stop that stops
the event loop. The NEAT event loop will complete the current it-
eration of the event loop, and then the application will return from
neat_start_event_loop.

void neat_free_ctx(struct neat_ctx *ctx)

Releases all the resources associated with the NEAT context. In particular,
all NEAT flows that has not yet been closed are released. Deallocation
callbacks for the remaining open handles in the event loop is queued for
execution. The event loop will need to be run again so that these callbacks
can be called, and all resources deallocated for the event loop.

C.2.3 Examples

Listing C.5 gives an example of a simple NEAT application that leverages
the core functions of the NEAT API to implement a server that is listening
for incoming connection requests. The example shows how the NEAT
properties can be specified to force the use of specific transport protocols.
The application will listen to both TCP and SCTP connections from the
clients. If the function neat_accept is changed to neat_open, the example
will instead show a simple NEAT client application that performs Happy
Eyeballs between SCTP and TCP.

101

OO UTHWN -~

W W WNDNNDNRNNDNNNDN PR PR R e
N—ROWOWONAOUIRRWNROWOWONAOUI R WNRFRO

Listing C.5: Code example of a NEAT server application

/* Need to include this to access the NEAT User API */
#include <neat.h>

/% User-specified NEAT properties. In this ezample we
force the application to listen to both SCTP and TCP */
static char #*properties = "\
0\
\"transport\": {\
\"value\": [\"SCTP\", \"TCP\"],\
\"precedence\": 2\
N
I

/% Callback that is called when receiving incoming
connection requests. */

static neat_error_code

on_connected(struct neat_flow_operations *ops)

{
/* Set callbacks for the newly created NEAT Flow #*/
ops->on_writable = on_writable;
ops->on_readable = on_readable;
neat_set_operations (ops->ctx, ops->flow, ops);
return NEAT_O0K;

}
int
main(int argc, char *argv[])
{
struct neat_ctx *ctx;
struct neat_flow *flow;
struct neat_flow_operations ops;
memset (&ops, O, sizeof (ops));
/* Create NEAT contexzt. #*/
ctx = neat_init_ctx();
/% Create a NEAT flow (will be used for listening). */
flow = neat_new_flow(ctx);
/* Specify the properties to associate with the flow.
neat_set_property(ctx, flow, properties);
/% Set some callback functions for the flow. */
ops.on_connected = on_connected;
OpS.ONn_error = ON_Error;
neat_set_operations(ctx, flow, &ops);
/* Listen on port 8080 for imcoming connections */
neat_accept (ctx, flow, 8080, NULL, O0);
/% Start the NEAT event loop */
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);
/% Release resources assoctiated with the NEAT context
neat_free_ctx(ctx);
}

*/

*/

102

Bibliography

[4]

[5]

[RFC6556]

[9]

A portable SCTP userland stack (Github repository). URL: https:
//github.com/sctplab/usrsctp.

Emile Aben. Hampering Eyeballs - Observations on Two "Happy
Eyeballs” Implementations. RIPE NCC. Nov. 2011. URL: https:
//labs.ripe.net/Members/emileaben/hampered-eyeballs.

An Introduction to libuv. URL: https://nikhilm.github.io/uvbook/
introduction.html (visited on 22/04/2018).

Analyzing UDP usage in Internet traffic. URL: https: / / www .
caida . org / research / traffic - analysis / tcpudpratio (visited on
26/02/2018).

Architecture, interface, and implementation drafts for the definition
of an abstract API for IETF TAPS (github public repository). URL:
https://github.com/taps-api/drafts (visited on 08/05/2018).

Vaggelis Atlidakis et al. 'POSIX Abstractions in Modern
Operating Systems: The Old, the New, and the Missing’. In:
Proceedings of the Eleventh European Conference on Computer
Systems. EuroSys "16. London, United Kingdom: ACM, 2016,
19:1-19:17. 1SBN: 978-1-4503-4240-7. DOI: 10.1145 /2901318.
2901350. URL: http://doi.acm.org/10.1145/2901318.2901350.

Augmented socket interface for an application to express knowledge
about its communication. URL: https://github.com/fg-inet/socket-
intents (visited on 08/05/2018).

Vaibhav Bajpai and Jiirgen Schonwélder. ‘Measuring the
Effects of Happy Eyeballs’. In: Proceedings of the 2016 Applied
Networking Research Workshop. ANRW ’16. Berlin, Germany:
ACM, 2016, pp. 38—44. ISBN: 978-1-4503-4443-2. DOI: 10.1145/
2959424.2959429. URL: http://doi.acm.org/10.1145 /2959424
2959429,

Fred Baker. Testing Eyeball Happiness. RFC 6556. RFC Editor,
Apr. 2012, pp. 1-10. URL: https://rfc-editor.org/rfc/rfc6556.txt.

A. Bergkvist et al. WebRTC 1.0: Real-time Communication
Between Browsers. W3C Working Draft. Nov. 2017. URL: http:
//www.w3.org/TR/webrtc/.

103

[10]

[RFC7323]

[RFC7049]

(1]

(12]

[RFC1958]

[REC675]

[RFC7413]

(13]

[RFC793]

Blocking 1/O, Nonblocking 1/O, And Epoll. URL: https: / /eklitzke.
org / blocking - io - nonblocking - io - and - epoll (visited on
25/04/2018).

David Borman et al. TCP Extensions for High Performance. REC
7323. REC Editor, Sept. 2014, pp. 1-49. URL: https://rfc-editor.
org/rfc/rfc7323.txt.

Carsten Bormann and Paul E. Hoffman. Concise Binary Object
Representation (CBOR). RFC 7049. RFC Editor, Oct. 2013, pp. 1-
54. URL: https://rfc-editor.org/rfc/rfc7049.txt.

Z. Bozakov et al. Validation and evaluation results. Deliverable
D4.3. The NEAT Project (H2020-ICT-05-2014), Apr. 2018.

Callgrind: a call-graph generating cache and branch prediction
profiler. URL: http://valgrind.org/docs /manual/cl-manual.html
(visited on 21/05/2018).

Brian E. Carpenter. Architectural Principles of the Internet. REC
1958. REC Editor, June 1996, pp. 1-8. URL: https:/ /rfc-editor.
org/rfc/rfc1958.txt.

V. Cerf, Y. Dalal and C. Sunshine. Specification of Internet
Transmission Control Program. RFC 675 (Historic). Obsoleted by
RFC 7805. Internet Engineering Task Force, Dec. 1974. URL:
http://www.ietf.org/rfc/rfc675.txt.

Yuchung Cheng et al. TCP Fast Open. RFC 7413. RFC Editor,
Dec. 2014, pp. 1-26. URL: https://rfc-editor.org/rfc/rfc7413.txt.

S. Cheshire, J. Graessley and R. McGuire. Encapsulation of TCP
and other Transport Protocols over UDP. Internet-Draft draft-
cheshire-tcp-over-udp-00. Internet Engineering Task Force,
Jan. 2014. URL: https:/ /tools.ietf.org /html/draft- cheshire- tcp-
over-udp-00.

D. Clark. ‘The Design Philosophy of the DARPA Internet
Protocols’. In: SIGCOMM Comput. Commun. Rev. 18.4 (Aug.
1988), pp. 106-114. 1SSN: 0146-4833. DOI: 10.1145/52325.52336.
URL: http://doi.acm.org/10.1145/52325.52336.

Dr. Steve E. Deering and Robert M. Hinden. Internet Protocol,
Version 6 (IPv6) Specification. REC 8200. RFC Editor, July 2017,
pp- 1-42. URL: https://rfc-editor.org/rfc/rfc8200.txt.

ECMA. The JSON Data Interchange Format. 2013. URL: http:
/ / www .ecma- international . org / publications / files | ECMA-ST /
ECMA-404.pdf.

Korian Edeline et al. “Using UDP for Internet Transport
Evolution’. In: CoRR abs/1612.07816 (2016). arXiv: 1612.07816.
URL: http://arxiv.org/abs/1612.07816.

Jon Postel (editor). Transmission Control Protocol. REC 793. RFC
Editor, Sept. 1981, pp. 1-91. URL: https:/ / rfc-editor.org /rfc/
rfc793.txt.

104

[RFC8085]

[19]

[RFC7231]

[RFC4340]

[RFC6824]

[20]

[21]

[RFC3493]

Lars Eggert, Gorry Fairhurst and Greg Shepherd. UDP Usage
Guidelines. RFC 8085. RFC Editor, Mar. 2017, pp. 1-55. URL:
https://rfc-editor.org/rfc/rfc8085.txt.

epoll(7) — Linux manpage. URL: http://man7.org/linux /man-
pages/man7/epoll.7.html (visited on 19/04/2018).

Event Ports — Solaris event handling. URL: https://docs.oracle.
com/cd/E36784 01/html/E36874/port-create-3c.html (visited
on 20/04/2018).

Fabric — Pythonic remote execution. URL: http://www.fabfile.org/
(visited on 03/06/2018).

Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFEC 7231. RFC Editor, June
2014, pp. 1-101. URL: https://rfc-editor.org/rfc/rfc7231.txt.

Sally Floyd, Mark J. Handley and Eddie Kohler. Datagram
Congestion Control Protocol (DCCP). RFC 4340. RFC Editor,
Mar. 2006, pp. 1-129. URL: https://rfc-editor.org/rfc/rfc4340.txt.

Alan Ford et al. TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824. RFC Editor, Jan. 2013, pp. 1-64.
URL: https://rfc-editor.org/rfc/rfc6824.txt.

Bryan Ford and Janardhan R. Iyengar. ‘Efficient Cross-Layer
Negotiation’. In: Eight ACM Workshop on Hot Topics in Networks
(HotNets-VIII), HOTNETS '09, New York City, NY, USA, October
22-23,2009. 2009. URL: http://conferences.sigcomm.org/hotnets/
2009/papers/hotnets2009-final123.pdf.

FreeBSD implementation of Coupled Congestion Control for TCP
(gitlab public repository). URL: https://gitlab.com/kristahi/freebsd
(visited on 06/05/2018).

Robert E. Gilligan et al. Basic Socket Interface Extensions for IPv6.
RFC 3493. RFC Editor, Mar. 2003, pp. 1-39. URL: https:/ /rfc-
editor.org/rfc/rfc3493.txt.

gnuplot (homepage). URL: http://www.gnuplot.info/ (visited on
22/05/2018).

K.J. Grinnemo, T. Andersson and A. Brunstrom. ‘Performance
Benefits of Avoiding Head-of-Line Blocking in SCTP’. In: Joint
International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services - (icas-
isns’05). Oct. 2005, pp. 44—44. DOI: 10.1109/ICAS-ICNS.2005.73.

Karl-Johan Grinnemo et al. Final Report on Transport Protocol
Enhancements. Deliverable D3.2. NEAT Project (H2020-ICT-05-
2014), Feb. 2017.

105

[RFC2782]

[26]

[27]

[29]

(30]

[31]

[34]

Karl-Johan Grinnemo et al. Happy Eyeballs for Transport Selec-
tion. Internet-Draft draft-grinnemo-taps-he-03. Work in Pro-
gress. Internet Engineering Task Force, July 2017. 10 pp. URL:
https://datatracker.ietf.org/doc/html /draft- grinnemo-taps- he-
03.

Arnt Gulbrandsen and Dr. Levon Esibov. A DNS RR for
specifying the location of services (DNS SRV). RFC 2782. RFC
Editor, Feb. 2000, pp. 1-12. URL: https:/ / rfc- editor.org /rfc/
rfc2782.txt.

Sangtae Ha, Injong Rhee and Lisong Xu. ‘CUBIC: A New TCP-
friendly High-speed TCP Variant’. In: SIGOPS Oper. Syst. Rev.
42.5 (July 2008), pp. 64-74. 1SSN: 0163-5980. DOI: 10. 1145 /
1400097.1400105. URL: http://doi.acm.org/10.1145/1400097.
1400105.

M. Handley. “Why the Internet Only Just Works’. In: BT
Technology Journal 24.3 (July 2006), pp. 119-129. 1SSN: 1358-
3948. DOI: 10.1007 /s10550- 006-0084-z. URL: http://dx.doi.
org/10.1007 /s10550-006-0084-z.

David A. Hayes, Jason But and Grenville Armitage. ‘Issues
with Network Address Translation for SCTP’. In: SIGCOMM
Comput. Commun. Rev. 39.1 (Dec. 2008), pp. 23-33. I1SSN: 0146-
4833. DOI: 10.1145/1496091.1496095. URL: http://doi.acm.org/
10.1145/1496091.1496095.

D. Henrici and B. Reuther. ‘Service-oriented Protocol Inter-
faces and Dynamic Intermediation of Communication Ser-
vices’. In: Proceedings of the 2nd IASTED International Conference
on Communications, Internet and Information Technology (CIIT).
Scottsdale (AZ), USA, Nov. 2003.

How fast should HZ be? URL: https://lwn.net/Articles /145973 /
(visited on 17/05/2018).

httperf (SourceForge). URL: https: / / sourceforge . net / projects /
httperf/ (visited on 11/05/2018).

Geoff Huston. Bemused Eyeballs: Tailoring Dual Stack Applica-
tions for a CGN Environment. May 2012. URL: https://labs.apnic.
net/7p=188.

‘IEEE Standard for Information Technology- Portable Operat-
ing System Interface (POSIX) Base Specifications, Issue 7’. In:
IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) (Dec.
2008), pp. c1-3826. DOI: 10.1109/IEEESTD.2008.4694976.

‘IEEE Standard for Information Technology - Portable Oper-
ating System Interface (POSIX(R))". In: IEEE Std 1003.1, 2004
Edition The Open Group Technical Standard. Base Specifications,
Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor
1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. Shell (Dec. 2008),
pp. 1-3874. DOI: 10.1109/IEEESTD.2008.7394902.

106

[35]

[36]

[37]

[38]

[RFC3828]

[39]

[40]

[41]

[42]

IETF. Transport Services (taps) Working Group. URL: https: / /
datatracker.ietf.org/wg/taps/about/ (visited on 15/04/2018).

IOCP - I/O Completion Ports (Windows). URL: https://msdn.
microsoft.com /en-us/library /windows /desktop /aa365198(v=uvs.
85).aspx (visited on 20/04/2018).

Jana Iyengar and Martin Thomson. QUIC: A UDP-Based
Multiplexed and Secure Transport. Internet-Draft draft-ietf-quic-
transport-10. Work in Progress. Internet Engineering Task
Force, Mar. 2018. 101 pp. URL: https: / / datatracker . ietf.org /
doc/html/draft-ietf-quic-transport-10.

Jansson — C library for working with [SON data. URL: www.digip.
org/jansson/ (visited on 07/05/2018).

Lars-Erik Jonsson et al. The Lightweight User Datagram Protocol
(UDP-Lite). RFC 3828. RFC Editor, July 2004, pp. 1-12. URL:
https://rfc-editor.org/rfc/rfc3828.txt.

Stefan Jorer. ‘A Protocol-Independent Internet Transport API".
MA thesis. University of Innsbruck, Dec. 2010.

Julia — Dynamic programming language for numerical computing.
URL: https://julialang.org/ (visited on 19/04/2018).

Rishi Kapoor et al. ‘Bullet Trains: A Study of NIC Burst
Behavior at Microsecond Timescales’. In: Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments
and Technologies. CONEXT "13. Santa Barbara, California, USA:
ACM, 2013, pp. 133-138. 1SBN: 978-1-4503-2101-3. DOI: 10 .
1145 /2535372 .2535407. URL: http:/ /doi.acm.org/10.1145/
2535372.2535407.

Dragana Damjanovic Kashif Munir Michael Welzl. ‘Linux
beats Windows! - or the Worrying Evolution of TCP in Com-
mon Operating Systems’. In: Proceedings of the International
Workshop on Protocols for Fast Long-Distance Networks (PFLD-
net '07). Marina Del Rey (Los Angeles), California, USA: ENS
Lyon, Feb. 2007, pp. 43—48. URL: http://www.welzl.at/research/
publications/pfldnet2007.pdf.

Naeem Khademi et al. Final Version of Core Transport System.
Deliverable D2.3. NEAT Project (H2020-ICT-05-2014), Aug.
2017. URL: https://www.neat-project.org/publications/.

N. Khademi et al. ‘NEAT: A Platform- and Protocol-
Independent Internet Transport API". In: IEEE Communications
Magazine 55.6 (2017), pp. 46-54. 1SSN: 0163-6804. DOI: 10.1109/
MCOM.2017.1601052.

kqueue(2) — FreeBSD manpage. URL: https:/ /www . freebsd.org/
cgi/man.cgi?query=kqueue&sektion=2 (visited on 20/04/2018).

107

[51]

[52]

(53]

[RFC5905]

[57]

[RFC5766]

D. Kreutz et al. ‘Software-Defined Networking: A Compre-
hensive Survey’. In: Proceedings of the IEEE 103.1 (Jan. 2015),
pp. 14-76. 1SSN: 0018-9219. DOI: 10.1109/JPROC.2014.2371999.

Jonathan Kua and Grenville Armitage. Generating Dynamic
Adaptive Streaming over HTTP Traffic Flows with TEACUP
Testbed. Tech. rep. 161216A. Melbourne, Australia: Centre for
Advanced Internet Architectures, Swinburne University of
Technology, 16 December 2016. URL: http:/ /caia.swin.edu.
au/reports/161216A/CAIA-TR-161216A.pdf.

libev (homepage). URL: http:/ /software.schmorp.de/pkg/libev.html
(visited on 22/04/2018).

libevent — an event notification library. URL: http://libevent.org/
(visited on 22/04/2018).

libuv — Cross-platform asynchronous 1/O. URL: https://libuv.org/
(visited on 19/04/2018).

libuv (Github public repository). URL: https:/ /github.com/libuv/
libuv (visited on 19/04/2018).

Lighttpd — fly light. URL: https: //www.lighttpd.net/ (visited on
11/05/2018).

Linux Performance. URL: http : / / www . brendangregg . com /
linuxperf.html (visited on 17/05/2018).

Igor Lubashev. Partially Reliable Streams for QUIC. Internet-
Draft draft-lubashev-quic-partial-reliability-01. Work in Pro-
gress. Internet Engineering Task Force, Jan. 2018. 8 pp. URL:
https: / / datatracker . ietf. org / doc / html / draft- lubashev - quic-
partial-reliability-01.

Luvit — Asynchronous 1/O for Lua. URL: https://luvit.io/ (visited
on 19/04/2018).

D. Martin, H. Wippel and H. Backhaus. ‘A future-proof
application-to-network interface’. In: 2011 International Confer-
ence on the Network of the Future. Nov. 2011, pp. 20-24. DOI:
10.1109/NOF.2011.6126676.

Jim Martin et al. Network Time Protocol Version 4: Protocol
and Algorithms Specification. REC 5905. RFC Editor, June 2010,
pp- 1-110. URL: https://rfc-editor.org/rfc/rfc5905.txt.

Massif: a heap profiler. URL: http://valgrind.org/docs/manual /ms-
manual.html (visited on 22/05/2018).

Philip Matthews, Jonathan Rosenberg and Rohan Mahy.
Traversal Using Relays around NAT (TURN): Relay Extensions
to Session Traversal Utilities for NAT (STUN). RFC 5766. REC
Editor, Apr. 2010, pp. 1-67. URL: https: / / rfc- editor.org / rfc /
rfc5766.txt.

108

[RFC5389]

[58]

[RFC1035]

[RFC896]

[59]

[60]

[68]
[69]

Philip Matthews et al. Session Traversal Ultilities for NAT
(STUN). REC 5389. RFC Editor, Oct. 2008, pp. 1-51. URL: https:
//rfc-editor.org/rfc/rfc5389.txt.

Microsoft. Windows Sockets 2. URL: https://msdn.microsoft.com/
en-us/library/windows/desktop/ms740673(v=vs.85).aspx (visited
on 26/02/2018).

P. Mockapetris. Domain names - implementation and specification.
RFC 1035. RFC Editor, Nov. 1987, pp. 1-55. URL: https: / /rfc-
editor.org/rfc/rfc1035.txt.

John Nagle. Congestion Control in IP/TCP Internetworks. RFC
896. REC Editor, Jan. 1984, pp. 1-9. URL: https:/ / rfc- editor.
org/rfc/rfc896.txt.

P. Natarajan. Leveraging Innovative Transport Layer Services
for Improved Application Performance. University of Delaware,
2009. URL: https://books.google.no/books?id=MT1tswEACAAJ.

Preethi Natarajan, Paul D. Amer and Randall Stewart.
‘Multistreamed Web Transport for Developing Regions’. In:
Proceedings of the Second ACM SIGCOMM Workshop on Net-
worked Systems for Developing Regions. NSDR ’08. Seattle, WA,
USA: ACM, 2008, pp. 43—48. 1SBN: 978-1-60558-180-4. DOI: 10.
1145 /1397705.1397717. URL: http://doi.acm.org /10.1145/
1397705.1397717.

NEAT — A New, Evolutive API and Transport-Layer Architecture
for the Internet. URL: https: / / neat - project . org (visited on
15/04/2018).

NEAT documentation (readthedocs). URL: https : / / neat .
readthedocs.io/en/latest/ (visited on 08/05/2018).

NEAT evaluation test suite (Github public repository). URL: https:
//github.com/fredhau/neat-test-suite (visited on 03/06/2018).

NEAT Library (Github repository). URL: https: / / github.com /
NEAT-project/neat (visited on 15/04/2018).

neat-performance (test suite for testing the performance of NEAT).
URL: https://github.com/fredhau/neat-performance.

NetEm - Network Emulator. URL: http://man7.org/linux/man-
pages/man8/tc-netem.8.html.

George V. Neville-Neil. “Whither Sockets?” In: Queue 7.4 (May
2009), 35:34-35:35. 1SSN: 1542-7730. DOI: 10.1145 / 1538947 .
1538949. URL: http://doi.acm.org/10.1145/1538947.1538949.

Node.js. URL: https://nodejs.org/en/ (visited on 19/04/2018).

OpenSSL — Cryptography and SSL/TLS Toolkit. URL: https: //
www.openssl.org (visited on 06/05/2018).

109

[75]

[RFC768]

[76]

[RFC5246]

[RFC6347]

[77]

Giorgos Papastergiou et al. ‘On the Cost of Using Happy
Eyeballs for Transport Protocol Selection’. In: Proceedings of the
2016 Applied Networking Research Workshop. ANRW "16. Berlin,
Germany: ACM, 2016, pp. 45-51. 1SBN: 978-1-4503-4443-2. DOI:
10.1145/2959424.2959437. URL: http://doi.acm.org/10.1145/
2959424 .2959437.

G. Papastergiou et al. ‘De-Ossifying the Internet Transport
Layer: A Survey and Future Perspectives’. In: IEEE Commu-
nications Surveys Tutorials 19.1 (Firstquarter 2017), pp. 619-639.
ISSN: 1553-877X. DOI: 10.1109/COMST.2016.2626780.

B. Penoff et al. ‘Portable and Performant Userspace SCTP
Stack’. In: 2012 21st International Conference on Computer Com-
munications and Networks (ICCCN). July 2012, pp. 1-9. DOI: 10.
1109/ICCCN.2012.6289222.

Performance Analysis of BSD. URL: http://www.brendangregg.
com/blog/2015-03-06/performance-analysis-bsd.html (visited on
17/05/2018).

picohttpparser — tiny HTTP parser written in C (github public
repository). URL: https://github.com/h20/picohttpparser (visited
on 26/05/2018).

poll(2) — Linux manpage. URL: http: / /man7.org /linux / man-
pages/man2/poll.2.html (visited on 19/04/2018).

Jon Postel. User Datagram Protocol. RFC 768. RFC Editor, Aug.
1980, pp. 1-3. URL: https://rfc-editor.org/rfc/rfc768.txt.

R: The R Project for Statistical Computing. URL: https: //www.r-
project.org/ (visited on 22/05/2018).

Eric Rescorla and Tim Dierks. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246. REC Editor, Aug. 2008,
pp- 1-104. URL: https://rfc-editor.org/rfc/rfc5246.txt.

Eric Rescorla and Nagendra Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347. RFC Editor, Jan. 2012,
pp- 1-32. URL: https://rfc-editor.org/rfc/rfc6347 txt.

B. Reuther, D. Henrici and M. Hillenbrand. ‘DANCE: Dynamic
Application Oriented Network Services’. In: Proceedings. 30th
Euromicro Conference, 2004. Aug. 2004, pp. 298-305. DOI: 10.
1109/EURMIC.2004.1333384.

Scalable Event Multiplexing: epoll vs. kqueue. URL: http://people.
eecs. berkeley.edu / “sangjin /2012 /12 /21 / epoll- vs- kqueue . html
(visited on 20/05/2018).

M. Scharf and S. Kiesel. ‘'NXG03-5: Head-of-line Blocking
in TCP and SCTP: Analysis and Measurements’. In: IEEE
Globecom 2006. Nov. 2006, pp. 1-5. DOI: 10.1109 / GLOCOM .
2006.333.

110

[RFC3261]

[RFC3263]

[83]

[84]

[RFC4960]

[RFC6525]

[RFC8260]

Eve Schooler et al. SIP: Session Initiation Protocol. RFC 3261.
RFC Editor, July 2002, pp. 1-269. URL: https: //rfc-editor.org/
rfc/rfc3261.txt.

Henning Schulzrinne and Jonathan Rosenberg. Session Initi-
ation Protocol (SIP): Locating SIP Servers. RFC 3263. RFC Editor,
July 2002, pp. 1-17. URL: https://rfc-editor.org/rfc/rfc3263.txt.

select(2) — Linux manpage. URL: http://man7.org /linux /man-
pages/man2/select.2.html (visited on 19/04/2018).

T. Seth et al. Performance requirements for signaling in inter-
net telephony. Internet-Draft draft-seth-sigtran-req-00.txt. IETF,
Nov. 1998. URL: https://tools.ietf.org/html/draft-seth-sigtran-
req-00.

David Shinazi. Apple and IPv6 — Happy Eyeballs. Email to the
IETF v6ops mailing list. July 2015. URL: https://www.ietf.org/
mail-archive/web/v6ops/current/msg22455.html.

W. Richard Stevens, Bill Fenner and Andrew M. Rudoff. UNIX
Network Programming, Vol. 1. 3rd ed. Pearson Education, 2003.
ISBN: 0131411551.

Lawrence Stewart and James Healy. Tuning and Testing the
FreeBSD 6 TCP Stack. Tech. Rep. 070717B. CAIA, July 2007.
URL: http://caia.swin.edu.au/reports /070717B / CAIA- TR-
070717B.pdf.

R. Stewart, M. Tiixen and I. Ruengeler. Stream Control Trans-
mission Protocol (SCTP) Network Address Translation Support.
Internet-Draft draft-ietf-tsvwg-natsupp-11. Internet Engineer-
ing Task Force, June 2017. URL: https: / /tools.ietf.org / html /
draft-ietf-tsvwg-natsupp-11.

Randall R. Stewart. Stream Control Transmission Protocol. REC
4960. RFC Editor, Sept. 2007, pp. 1-152. URL: https://rfc-editor.
org/rfc/rfc4960.txt.

Randall R. Stewart, Michael Tiixen and Peter Lei. Stream
Control Transmission Protocol (SCTP) Stream Reconfiguration.
RFC 6525. RFC Editor, Mar. 2012, pp. 1-34. URL: https:/ /rfc-
editor.org/rfc/rfc6525.txt.

Randall R. Stewart et al. Stream Schedulers and User Message
Interleaving for the Stream Control Transmission Protocol. RFC
8260. REC Editor, Nov. 2017, pp. 1-23. URL: https://rfc-editor.
org/rfc/rfc8260.txt.

TCP Experiment Automation Controlled Using Python (TEACUP).
URL: http://caia.swin.edu.au/tools/teacup/.

111

(871

[REC6951]

[RFC6458]

[94]

[95]

[96]

Philipp S. Tiesel, Theresa Enghardt and Anja Feldmann. Socket
Intents. Internet-Draft draft-tiesel-taps-socketintents-01. Work
in Progress. Internet Engineering Task Force, Oct. 2017. 15 pp.
URL: https:/ /datatracker.ietf.org /doc /html / draft- tiesel - taps-
socketintents-01.

Brian Trammell et al. Post Sockets, An Abstract Programming
Interface for the Transport Layer. Internet-Draft draft-trammell-
taps-post-sockets-03. Work in Progress. Internet Engineering
Task Force, Oct. 2017. 31 pp. URL: https://datatracker.ietf.org/
doc/html/draft-trammell-taps-post-sockets-03.

Michael Tiixen and Randall R. Stewart. UDP Encapsulation of
Stream Control Transmission Protocol (SCTP) Packets for End-Host
to End-Host Communication. RFC 6951. RFC Editor, May 2013,
pp- 1-12. URL: https://rfc-editor.org/rfc/rfc6951.txt.

Michael Tiixen et al. Sockets API Extensions for the Stream
Control Transmission Protocol (SCTP). REC 6458. RFC Editor,
Dec. 2011, pp. 1-115. URL: https://rfc-editor.org/rfc/rfc6458.txt.

Geir Ola Vaagland. ‘Improvements of the Linux SCTP APT'.
MA thesis. University of Oslo, May 2014.

Valgrind (home page). URL: http: / / valgrind . org/ (visited on
21/05/2018).

Web10G (homepage). URL: https://www.web10g.org/ (visited on
27/05/2018).

F. Weinrank and M. Tiixen. ‘Transparent flow mapping for
NEAT’. In: 2017 IFIP Networking Conference (IFIP Network-
ing) and Workshops. June 2017, pp. 1-6. DOI: 10 . 23919 /
IFIPNetworking.2017.8264876.

M. Welzl, S. Jorer and S. Gjessing. ‘“Towards a Protocol-
Independent Internet Transport API'. In: 2011 IEEE Interna-
tional Conference on Communications Workshops (ICC). June 2011,
pp- 1-6. DOI: 10.1109/iccw.2011.5963568.

Michael Welzl and Stein Gjessing. A Minimal Set of Trans-
port Services for TAPS Systems. Internet-Draft draft-ietf-taps-
minset-03. Work in Progress. Internet Engineering Task Force,
Mar. 2018. 46 pp. URL: https:/ /datatracker.ietf.org/doc/html/
draft-ietf-taps-minset-03.

M. Welzl et al. TCP-CCC: single-path TCP congestion control
coupling. Internet Draft draft-welzl-tcp-ccc, work in progress.
Oct. 2016. URL: https://tools.ietf.org/html/draft-welzl-tcp-ccc.

What's the difference between libev and libevent? Sept. 2017. URL:
https: / / stackoverflow . com / questions / 9433864 / whats - the -
difference-between-libev-and-libevent (visited on 22/04/2018).

112

[RFC6555]

[98]

[99]

[100]

[101]

[RFC3267]

[RFC3286]

[102]

[103]

Dan Wing and Preethi Natarajan. Happy Eyeballs: Trending
Towards Success with SCTP. Internet-Draft draft-wing-tsvwg-
happy-eyeballs-sctp-02. Work in Progress. Internet Engineer-
ing Task Force, Oct. 2010. 8 pp. URL: https://datatracker.ietf.
org/doc/html/draft-wing-tsvwg-happy-eyeballs-sctp-02.

Dan Wing and Andrew Yourtchenko. Happy Eyeballs: Success
with Dual-Stack Hosts. RFC 6555. RFC Editor, Apr. 2012, pp. 1-
15. URL: https://rfc-editor.org/rfc/rfc6555.txt.

Dan Wing and Andrew Yourtchenko. ‘Improving User Exper-
ience with IPv6 and SCTP’. In: The Internet Protocol Journal 13.3
(Sept. 2010). URL: https://www.cisco.com/c/en/us/about/press/
internet- protocol- journal / back- issues / table- contents- 49 / 133-
he.html.

Dan Wing, Andrew Yourtchenko and Preethi Natarajan. Happy
Eyeballs: Trending Towards Success (IPv6 and SCTP). Internet-
Draft draft-wing-http-new-tech-01. Work in Progress. Internet
Engineering Task Force, Aug. 2010. 13 pp. URL: https: / /
datatracker.ietf.org/doc/html/draft-wing-http-new-tech-01.

L. Wood. Specifying transport mechanisms in Uniform Re-
source Identifiers. Internet-Draft draft-wood-tae-specifying-uri-
transports-08. Internet Engineering Task Force, May 2010.
URL: https:/ /tools.ietf.org / html / draft- wood - tae- specifying-
uri-transports-08.

Xipeng Xiao and L. M. Ni. ‘Internet QoS: A Big Picture’. In:
Netwrk. Mag. of Global Internetwkg. 13.2 (Mar. 1999), pp. 8-18.
ISSN: 0890-8044. DOI: 10.1109/65.768484. URL: http://dx.doi.
org/10.1109/65.768484.

Qiaobing Xie et al. Real-Time Transport Protocol (RTP) Payload
Format and File Storage Format for the Adaptive Multi-Rate (AMR)
and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs.
RFC 3267. REC Editor, July 2002, pp. 1-49. URL: https://rfc-
editor.org/rfc/rfc3267.txt.

John Yoakum and Lyndon Ong. An Introduction to the Stream
Control Transmission Protocol (SCTP). REC 3286. RFC Editor,
May 2002, pp. 1-10. URL: https://rfc-editor.org/rfc/rfc3286.txt.

Sebastian Zander and Grenville Armitage. CAIA Testbed for
TEACUP Experiments Version 2. Tech. Rep. 150210C. Mel-
bourne, Australia: Centre for Advanced Internet Architec-
tures, Swinburne University of Technology, 2015. URL: http:
//caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf.

Sebastian Zander and Grenville Armitage. TEACUP v0.8 —
A System for Automated TCP Testbed Experiments. Tech. Rep.
150210a. Melbourne, Australia: Centre for Advanced In-
ternet Architectures, Swinburne University of Technology,

113

[104]

2015. URL: https : / / pdfs . semanticscholar . org / edab /
37857299025c1b48f57c76bc144c81788381.pdf.

H. Zimmermann. ‘OSI Reference Model - The ISO Model
of Architecture for Open Systems Interconnection’. In: IEEE
Transactions on Communications 28.4 (Apr. 1980), pp. 425-432.
ISSN: 0090-6778. DOI: 10.1109/TCOM.1980.1094702.

114

