
Thermal Balancing by
Autonomous Virtual Machine

Migration

Habtetsega Moges Bekele

Thesis submitted for the degree of
Master in Network and System Administration

30 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Thermal Balancing by
Autonomous Virtual Machine

Migration

Habtetsega Moges Bekele

© 2018 Habtetsega Moges Bekele

Thermal Balancing by Autonomous Virtual Machine Migration

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

With the ever growing server density and infrastructures encompassed in
data centers, heat generation and power dissipation has increased drastic-
ally. This has brought a serious impact on system performance and reliab-
ility. Therefore, it has demanded an efficient thermal management, where
thermal balancing is one of the various techniques.

This thesis presents a design and implementation of an autonomous
virtual machine (VM) migration in order to attain thermal balance in server
cluster hosting the VMs.

Two algorithms, based on server temperature readings, have been
implemented to attain thermal balance in server cluster. The first algorithm
employs temperature readings of all the servers in the cluster, to make
autonomous VM migration by choosing the coolest server. Whereas, the
second algorithm requires only the temperature reading of the server
where the VMs are hosted on and the VMs learn their environment by trial
and error to do the autonomous migration. The results showed that both
algorithms were able to maintain thermal balance in the server cluster by
applying the autonomous migration.

i

ii

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 4
1.2 Problem Statement . 5

2 Background 7
2.1 Virtualization . 7
2.2 Libvirt . 7
2.3 Kernel-based Virtual Machine 8
2.4 Live Migration . 8

2.4.1 Live Migration Techniques 8
2.5 Non-Uniform Memory Access Architecture 9
2.6 Reinforcement Learning . 10

2.6.1 Elements of Reinforcement Learning 11
2.6.2 Learning Automata . 12

2.7 Tools . 12
2.7.1 The Core Project . 13
2.7.2 ezremaster . 13
2.7.3 Bokeh . 13
2.7.4 systemd . 13
2.7.5 stress-ng . 14

2.8 Related Works . 14
2.8.1 Autonomous VM Migration 14
2.8.2 Thermal Management in Data Centers 15
2.8.3 Power Consumption Reduction in Data Centers . . . 16

II The project 19

3 Approach 21
3.1 Objectives . 21
3.2 Design . 22

3.2.1 Environmental Setup 22
3.2.2 Algorithm Design . 23
3.2.3 Temperature Information Exchange 23
3.2.4 Autonomous Migration 23

3.3 Implementation . 23

iii

3.3.1 Underlying Tools and Technologies 24
3.3.2 Deployment Scripts 24
3.3.3 Algorithm Implementation 24

3.4 Experimentation, Result and Analysis 24
3.4.1 Experiments and Results 25
3.4.2 Data Analysis and Comparison 25

4 Design and Implementation 27
4.1 Environmental Setup . 27

4.1.1 Physical Server Specification and Configuration . . . 27
4.1.2 Virtual Machine Configuration 28
4.1.3 Workload Configuration on VMs 29

4.2 Design . 29
4.2.1 Choose Coolest Server 29
4.2.2 Learn to Balance . 33

4.3 Implementation . 34
4.3.1 Customizing an ISO Image 35
4.3.2 Registering a script as a Linux systemd service 35
4.3.3 Generating Workload on Running VMs 35
4.3.4 Deployment and Migration of Virtual Machines . . . 36
4.3.5 Monitoring Configuration 37

5 Results and Analysis 39
5.1 Experimental Results: Choose Coolest Server Algorithm . . 40

5.1.1 Preliminary Experiment 40
5.1.2 Uniform Workload Results 42
5.1.3 Uniform Workload Analysis 43
5.1.4 Variable workload Results 45
5.1.5 Variable workload Analysis 47
5.1.6 Dynamic workload Results 48
5.1.7 Dynamic workload Analysis 50

5.2 Experimental Results: Learn to Balance Algorithm 50
5.2.1 Uniform Workload Results 50
5.2.2 Uniform Workload Analysis 52
5.2.3 Variable Workload Results 53
5.2.4 Variable Workload Analysis 55

5.3 Algorithms Comparison . 56

III Conclusion 61

6 Discussion and Conclusion 63
6.1 Background . 63
6.2 Problem Statement . 64
6.3 Results and Analysis . 66
6.4 Algorithm Comparison . 68
6.5 Future Work . 68
6.6 Conclusion . 69

iv

Appendices 75

A Environmental Setup 77
A.1 Creating the customized Core .iso 77

B Developed Scripts 81
B.1 client.py . 81
B.2 server.py . 84
B.3 workload.py . 89
B.4 utils.py . 90

C Experimental Results 93
C.1 Choose Coolest Server Algorithm: Uniform Workload with

12 VMs . 93
C.2 Choose Coolest Server Algorithm: Variable Workload with

12 VMs . 95

v

vi

List of Figures

2.1 KVM Virtualization Architecture 8
2.2 NUMA Architecture . 10
2.3 Machine Learning Classifications 11
2.4 Elements of Reinforcement Learning 12

4.1 Server to Server Communication Design 31
4.2 VM to Server Communication Design 31
4.3 Algorithm Design: Choose Coolest Server 32
4.4 Algorithm Design: Learn to Balance 34

5.1 Calibrated server temperature readings 40
5.2 Idle server power consumption readings 40
5.3 Initial uniform workload distribution 41
5.4 Number of running VMs with uniform workload 41
5.5 Temperature with uniform workload 41
5.6 Power consumption with uniform workload 42
5.7 Number of running VMs with uniform workload 42
5.8 Uniform workload temperature readings 43
5.9 Uniform workload distribution after thermal balancing . . . 43
5.10 Uniform workload power consumption reading 43
5.11 Box plot for uniform workload temperature readings before

thermal balance . 44
5.12 Box plot for uniform workload temperature readings after

thermal balance . 45
5.13 Power consumption with variable workload 45
5.14 Initial variable workload distribution 46
5.15 Number of running VMs with variable workload 46
5.16 Temperature readings with variable workload 46
5.17 Variable workload distribution after thermal balancing . . . 46
5.18 Box plot for variable workload temperature readings before

thermal balance . 47
5.19 Box plot for variable workload temperature readings after

thermal balance . 48
5.20 Power consumption with dynamic workload 48
5.21 Initial dynamic workload distribution 49
5.22 Number of running VMs with dynamic workload 49
5.23 Temperature readings with dynamic workload 49
5.24 Dynamic workload distribution after thermal balancing . . . 49

vii

5.25 Initial uniform workload distribution 50
5.26 Power consumption with uniform Workload 51
5.27 Number of running VMs with uniform workload 51
5.28 Temperature readings with uniform workload 51
5.29 Uniform workload distribution after thermal balancing . . . 52
5.30 Learning Automata Probabilities 52
5.31 Box plot for Temperature Difference with Uniform Workload 53
5.32 Box plot for Temperature Difference with Uniform Workload 53
5.33 Initial variable workload distribution 54
5.34 Number of running VMs with variable workload 54
5.35 Temperature readings with variable workload 54
5.36 Variable workload distribution after thermal balancing . . . 54
5.37 Power consumption readings with variable Workload 55
5.38 Learning Automata Probabilities 55
5.39 Box plot for Temperature Difference with Variable Workload 56
5.40 Box plot for Temperature Difference with Variable Workload 56
5.41 Box plot for Temperature Difference with Uniform Workload 58
5.42 Box plot for for Temperature Difference with Uniform

Workload . 58
5.43 Box plot for Temperature Difference with Variable Workload 59
5.44 Box plot for for Temperature Difference with Variable Work-

load . 59

C.1 Variable workload distribution after thermal balancing . . . 93
C.2 Number of running VMs with uniform workload 93
C.3 Temperature readings with uniform workload 94
C.4 Uniform workload distribution after thermal balancing . . . 94
C.5 Power consumption reading with uniform workload 94
C.6 Initial Variable workload distribution 95
C.7 Number of running VMs with variable workload 95
C.8 Temperature readings with variable workload 95
C.9 Variable workload distribution after thermal balancing . . . 96
C.10 Power consumption reading with variable workload 96

viii

List of Tables

4.1 Physical Server Specification 28
4.2 List of NUMA Nodes and CPUs 28

5.1 Analysis: Choose Coolest Server with Uniform Workload . . 44
5.2 Analysis: Choose Coolest Server with Variable Workload . . 47
5.3 Analysis: Choose Coolest Server with Dynamic Workload . 50
5.4 Analysis: Choose Coolest Server with Uniform and Variable

Workloads . 57
5.5 Analysis: Learn to Balance with Uniform and Variable

Workloads . 57
5.6 Comparison of Algorithms: Box plot Analysis for Uniform

Workload . 60
5.7 Comparison of Algorithms: Box plot Analysis for Variable

Workload . 60

ix

x

Acknowledgment

I would like to start by thanking God for all the blessings in my life.

My supervisors, Hårek Haugerud and Anis Yazidi has been remark-
able mentors throughout the journey of this thesis. I am very grateful for
the guidance, ideas, comments and feedbacks you have given me. It was a
pleasure working with you!

I am also thankful to the University of Oslo (UiO) and Oslo Metropol-
itan University (OsloMet) for admitting me to this study program. The
past two years has been demanding and also rewarding.

Thanks to my teachers from both schools, and my classmates who I
have taken this study program with. You all were wonderful and kind.

My families and friend has been very supportive that I look up to
whenever I needed motivation. Thank you for the love!

Lastly, and most importantly, I would like to thank my beloved hus-
band for being the support and the inspiration I needed. I Love You!

Habtetsega Moges
May 22-2018

Oslo-Norway

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

The rapid growth of internet and internet service providers brought the
concept of cloud services, where internet users do not run and store data
on their own, but access them from servers of the service providers. To
reduce costly infrastructures and maintenance of running their own com-
puting networks and servers, companies are moving their applications to
cloud services. The cloud means someone else maintain applications and
services in a remote locations called data centers [23].

Data centers are energy consuming facilities which are estimated to ac-
count for 1.4% of the global electricity consumption [43]. This data centers
are scattered worldwide and are increasing in number and size. They range
from few servers in a room to tens of thousands of servers and other accom-
panying hardwares.

Those huge data centers have introduced another level of power con-
sumption, that came from the generated heat. Data centers are depend-
ent on coal and other coal-intensive sources and it is considered to be the
reason for the growing carbon footprint, which lead to a dramatic effect on
the environment [2]. A large data center is an industrial-scale operation
using as much electricity as a small town [21]. Mainly due to technolo-
gical advances such as cloud computing and internet services, the growth
in electricity consumption raised serious concern for data centers [6].

Virtualization is one of the fundamental technologies that made cloud
computing work. Virtualization softwares allow one physical server to run
several individual computing environments. Cloud providers have large
data centers full of servers to run their cloud services, but they cannot al-
locate a single server to each customer. Thus, they virtualize the server,
enabling each client to work with a separate “virtual” instance of the same
software [7].

The growth of virtualization has added another important dimension
to data center infrastructure management. Virtualization of hardware re-
sources has been used as a method of power saving in data centers. It

3

provides optimum hardware utilization, because it can run multiple oper-
ating systems on one physical server. The idea here is to combine many
small machines called virtual machines (VMs) into one large physical server,
so that the processor can be used more effectively.

A VM is a software simulation of a hardware platform that provides a
virtual operating environment for guest operating systems [39]. The VMs
interact with software emulation of the hardware they are running on,
called hypervisor also known as a virtual machine monitor (VMM). Hyper-
visor is a software program that runs on a physical host hardware platform
and supervises the execution of the guest operating systems on the VMs.

Techniques such as Server consolidation [45], VM migration [16] and Load
Balancing has been proposed to increase the utilization of servers and cre-
ate an opportunity to reduce the number of physical servers, saving huge
amount of energy and reducing carbon footprints.

1.1 Motivation

Although various techniques have been used largely, power consumption
of modern processors and server density in data centers is still growing
and thermal management in data centers is being an important factor. The
main objective of thermal management is to improve reliability and pre-
vent system failure [31]. A historically useful generalization supported by
Arrhenius’ equation is that for every 10◦C increase in temperature, the fail-
ure rate of a system doubles [22].

There are different mechanisms for thermal management, such as throt-
tling, dynamic voltage scaling and thermal balancing. Throttling is an in-
tentional lowering of the speed that is available over an internet connec-
tion, whereas Dynamic voltage scaling involves increasing or decreasing the
voltage used in a component depending upon circumstances. Yet, the fo-
cus of this thesis, thermal balancing, is an approach to balance the temperat-
ures of different servers through dynamic workload distribution in a server
cluster. Thermal balancing has three main advantages to be used in data
centers [18]. Firstly, it can effectively remove imbalanced heat in a server
cluster which reduces the cooling cost for the overall data center. Secondly,
it can prevent server overheating without causing any performance down-
sides. Finally, it can be applied to heterogeneous server clusters.

So far, different experiments and implementations have been carried
out on virtualization, server consolidation, thermal balancing and more, to
solve the issues from the generated heat and power dissipation in data cen-
ters. To mention a few; implementing deep learning algorithm at Google
resulted in 40% cooling bill reduction within their data centers [17]. An-
other technique was from Microsoft where they submerged data centers

4

to keep them cool and to harvest energy from the sea by building an un-
derwater data centers [8]. A study done on a real data center in [32] shows
that reducing the temperature difference from 10◦C to 2◦C resulted in a 25%
reduction of the total energy cost associated with the cooling infrastructure.

In similar manner, this thesis aims to achieve thermal balance in a server
cluster using virtualization technology and autonomous VM migration.

1.2 Problem Statement

How to achieve thermal balance on virtualized server cluster by autonomous mi-
gration of Virtual Machines hosted on them, based on the servers temperature read-
ings.

In order to achieve the goal of the project the following questions are
going to be addressed:

• How to remaster a custom VM based on light weight Linux distribu-
tion with a given workload?

• How to equip VMs with autonomous decision making capability?

• How to monitor and visualize VMs activities in server cluster in real
time?

In this thesis, small light weight Linux distribution VMs will be used
to handle a given workload. By constantly doing autonomous choices
of whether to move and where to move, their aim will be to maintain a
thermal balance in a server cluster.

Autonomous VM Migration - The provisioned VMs running on the
servers are going to make their own decision based on implemented al-
gorithms, to migrate, in a decentralized manner without co-ordination with
one another.

Temperature Readings - The temperature data gathered from the server’s
temperature sensors is going to be used by the VMs to make a decision,
whether to move and where to move.

5

6

Chapter 2

Background

This Chapter presents technologies, tools and concepts that are going to
be exercised in this thesis. In addition, it will cover some of the early
researches and related works done on the field.

2.1 Virtualization

Virtualization concepts were first introduced to reduce hardware cost and
improve productivity [10]. The common way of virtualization gives an
opportunity to run multiple operating systems on the same physical sys-
tem by providing virtualized hardware to a guest operating system. This
is done by a software layer called Virtual Machine Monitor (VMM) or hy-
pervisor. In virtualization technology the VMM is used to manage both
virtual machines (VMs) and the host machine by controlling the hardware
resources and providing guest operating systems. The VMs share resources
of the host system.

Hardware virtualization, which is one type of virtualization, is used in
many computing areas [10, 28], such as server consolidation, VM migration
and load balancing.

2.2 Libvirt

Libvirt is a library for managing virtualization solutions. It can be used
to manage KVM, ZEN and many more virtualization technologies. Lib-
virt provides both GUI and command line tools for management. Among
which, virtual machine manger is a well known GUI tool and virsh is a
command line tool to manage (start, stop, pause, migrate, etc.) VMs as in-
tended.

7

2.3 Kernel-based Virtual Machine

Kernel-based Virtual Machine(KVM) is a full virtualization solution and
requires a processor with hardware virtualization support. KVM supports
many operating systems including, Linux, BSD and Windows.

The KVM virtualization architecture can be seen on Figure 2.1.

User
Space

Process
...

User
Space

Process

Linux Kernel

Hardware Support, Virtualization Technologies for x86
(AMD-V / Intel-VT)

KVM (Modules)

Guest User Space
Process

Guest Kernel (LInux
Kernel)

QEMU

Figure 2.1: KVM Virtualization Architecture

2.4 Live Migration

Live virtual machine migration is a type of VM migration where a running
VM is migrated from one server to the other and it is important for dynamic
resource management in data centers [29].

There are three VM migrations including live migration. Where live mi-
gration means that migration is done without any disturbance to the host-
ing servers. The other one,cold migration involves shutting VM off from one
physical server and starting it on the other machine. and lastly, warm mi-
gration, allows the VM running on the first host server is suspended while
copying the RAM and CPU registers to the second host server servers and
then able to continue from the second host server.

Live migration can be done in two ways, sequential and parallel. In
sequential live migration the migration of VMs happen one after the other
whereas in parallel live migration VMs are migrated simultaneously [46,
48].

2.4.1 Live Migration Techniques

While doing a live migration; memory, storage and network connectivity of
the virtual machine are transferred from the host server to the destination
server. Memory migration of a VM in general have three phases[13, 26, 37].

8

Push Phase, Stop and Copy Phase and Pull Phase.

There are two techniques in order to migrate the VMs memory state,
Pre-copy memory migration and Post-copy memory migration [5].

2.4.1.1 Pre-copy memory migration

In pre-copy memory migration, the hypervisor copies all the memory
pages from source to destination while the VM is still running on the
source. For the case of “dirty” pages i.e, memory pages that change during
the process, they will be re-copied by subsequent iterations. Once the
number of dirty pages is relatively small, or reaches a maximum, the virtual
machine is stopped on the original host, CPU and remaining dirty pages are
transferred and the virtual machine is resumed at the destination host. The
approach behind Pre-copy memory migration is to transfer the memory
from source machine to destination over a series of iteration [5, 13].

2.4.1.2 Post-copy memory migration

Post-copy VM migration is initiated by suspending the VM at the original
host. While the VM is suspended, a minimal requirement for the execution
state of the VM is transferred to the destination host [5]. The VM is then
resumed at the destination host and the source host pushes the remaining
memory pages of the VM to the destination host. Post-copy sends each
page exactly once whereas, pre-copy can transfer the same page multiple
times if the page is changed repeatedly at the source host while migration.
On the other hand, pre-copy retains an up-to-date state of the VM at the
source during migration, whereas with post-copy, the VM’s state is distrib-
uted over both source and destination. Another thing to note here is, if the
destination fails during migration, pre-copy can recover the VM, whereas
post-copy cannot [5].

2.5 Non-Uniform Memory Access Architecture

Non-Uniform Memory Access (NUMA) is a method of configuring a
cluster of microprocessor in a multiprocessing system so that they can share
memory locally, improving performance and the ability of the system to be
expanded. This architectures appear as the solution to ease the scalability
of modern memory architectures, by interconnecting distributed memory
banks [19, 27] and appears as one way of reducing the number of CPUs
competing for access to a shared memory bus.

NUMA architecture, have identical processors connected to a scalable
network, and each processor has a portion of memory attached directly to
it. The primary difference between a NUMA and distributed memory ar-
chitecture is that no processor can have mappings to memory connected
to other processors in case of distributed memory architecture, however in

9

Intersocket
connection

Local
Memory
node 0

1 2

4 3

Local
Memory
node 1

1 2

4 3

Local
access

CPU

Remote
access

Node 0 Node 1

CPU

Figure 2.2: NUMA Architecture

NUMA, it is possible.

Figure 2.2 shows a NUMA architecture with two nodes and four CPUs
and a local memory for each node.

2.6 Reinforcement Learning

Reinforcement learning is one paradigm of machine learning inspired by be-
haviorist psychology. Instead of giving instructions, it lets the machine go
and figure out how to achieve a given task. It train algorithms using a
system of reward and punishment. In addition, reinforcement learning in-
volves learning what the next action should be and how to map situations
to actions so as to maintain higher rewards [40]. Agents learn by interacting
with their environment and receive rewards for performing correctly and
penalties for performing incorrectly. Therefore, an agent aims to maximize
its reward and minimize its penalty whenever decision is made.

The other two paradigms of machine learning are supervised learning
and unsupervised learning.

Supervised learning is machine learning in which, as the name indicates,
there is a given input together with the intended output. This set of labeled
examples of input and output pairs are provided by an external supervisor.
Each example is a description of a situation together with the label of the
correct action the system should take accordingly to a given situation.

Unsupervised learning on the other hand is task of learning to find the
hidden. It works in collections of uncategorized data. As the name indic-
ates it is without an external supervisor. Unsupervised learning aims for an
Artificial Intelligent (AI) system that is presented with uncategorized data
and act on it without prior training Whereas, objective of supervised learn-

10

Artificial Intelligence

Machine Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Figure 2.3: Machine Learning Classifications

ing is for the system to generalize, its responses so that it acts correctly in
situations not present in the training set.

Reinforcement learning differs from both supervised and unsupervised
learning in such a way that reinforcement learning does not rely on ex-
amples of correct behaviour in contrast to supervised learning and it is try-
ing to maximize a reward signal instead of trying to find hidden structure
as opposed to unsupervised learning.

In reinforcement learning, the agent has to exploit what it has already
experienced in order to obtain reward, but it also has to explore in order
to make better action selections in the future [41]. Another key feature
of reinforcement learning is that it explicitly considers the whole problem
of a goal-directed agent interacting with an uncertain environment. All
reinforcement learning agents have known goals that lead them to learn
parts of their environments based on subsequent chosen actions to impact
their environment. [40, 41].

2.6.1 Elements of Reinforcement Learning

In reinforcement learning system, six main elements are identified: agent:
which is the intelligent program, environment: the external condition the
agent interacts with, policy: a mapping from states to action that defines
the agent’s behaviour at a given time, reward function: which defines the
goal in the reinforcement learning problem and indicates what is good in
an immediate sense, value function: which is the total amount of reward an
agent can expect to accumulate, starting form that state and specifies what
is good in the long run. lastly, a model:something that mimic the behaviour

11

Reward

State

 Action

 Policy

Agent

Environment

Figure 2.4: Elements of Reinforcement Learning

of the environment so as to predict the next state and reward. Figure 2.4
shows elements of reinforcement learning.

2.6.2 Learning Automata

Automaton plural(Automata) is a term used in computer science and
mathematics for a theoretical machine that change its internal state based
on inputs and its previous state.

Learning Automata(LA) is type of machine learning algorithm that fall
into the range of reinforcement learning. A learning automaton as Wiki-
pedia defines it "is an adaptive decision-making unit situated in a random en-
vironment that learns the optimal action through repeated interactions with its
environment. The actions are chosen according to a specific probability distribu-
tion which is updated based on the environment response the automaton obtains
by performing a particular action."

Automaton interacts with the environment by choosing an action. This
action taken by the automaton initiates a response from the environment,
rewards or penalties, Based on the subsequent responses, the automaton
grows into developing a knowledge of its environment by choosing the
optimal action [1, 47].

2.7 Tools

In order to fully understand the needed features of the project, a short in-
troduction to the tools used is provided in this section.

12

2.7.1 The Core Project

The Core Project [36] is a project dedicated to providing a minimal Linux
distribution that can be configured for any number of purposes. There are
three main flavors in the Core suite.

Tiny core Linux(TLC) is a minimal Linux operating system developed by
Robert Shingledecker in 2008. Tiny core is designed to run from a RAM
copy created at boot time. This feature adds a number of functionality,
such as file protection, originality and fast creation. Its small size i.e, 16MB
makes it flexible enough to be stored and run USB, CD or even embedded
devices. It can also be configured to create customized ISO image, ready to
be booted in a VM.

Micro Core Linux(Core) is a smaller variant of Tiny Core without a graph-
ical desktop by default, even though it can be created if needed. Its size is
11MB and is good choice for servers.

CorePlus is 106MB in size with different windows managers, various
keyboard layouts and wireless support. It is not a distribution, rather an
instalation image.

2.7.2 ezremaster

ezremaster [35] is an open source Graphical User Interface(GUI) applica-
tion that simplifies remastering Tiny Core or Micro Core Linux. It supports
setting all of the boot codes, Adding extension to the remaster and recreat-
ing custom ISO image.

2.7.3 Bokeh

Bokeh [9] is a python interactive visualization library that is ideal for quick
and easy interactive plots, dashboards, and data applications. It differs
from other Python visualization libraries such as Matplotlib in the fact that
it is interactive and uses web browsers for presentation. Bokeh provides
elegant, concise construction of novel graphics with high-performance
interactivity over very large or streaming data sets.

2.7.4 systemd

In Unix-based computer operating systems, initialization(init) is the first
process started during booting of the computer system and continues run-
ning until the system is off.

systemd was started in 2010 by Lennart Poettering and Kay Sievers. In
May 2011 Fedora was the first major Linux distribution to enable systemd
as the default init system. As of 2015, most Linux distributions have
adopted systemd as their default init system. It handles all the system

13

service calls i.e. start, stop, enable. Enabling a system service ‘systemctl
enable <service-name>’, tells systemd to start the service on reboots.

2.7.5 stress-ng

stress-ng, is a re implementation of the original stress tool written by Amos
Waterland. It is designed to stress various components of a Linux system.
"stressng will stress test a computer system in various select-able ways. It was de-
signed to exercise various physical subsystems of a computer as well as the various
operating system kernel interfaces. stressng also has a wide range of CPU specific
stress tests that exercise floating point, integer, bit manipulation and control flow"
[15].

The stress-ng tool includes over 60 different stress tests, over 50 CPU
specific stress tests that exercise floating point, integer, bit manipulation
and control flow and over 20 virtual memory stress tests [14].

2.8 Related Works

This section will give a birds eye view on prior researches done on fields
related to the project. The related works are going to by presented in
three categories; Autonomous VM Migration, Temperature Aware Thermal
Management in Data Centers and Power Consumption Reduction in Data
Centers.

2.8.1 Autonomous VM Migration

An autonomous migration of virtual machines is designed to increase the
overall resource utilization on a cluster of servers.

The proposed approach in [11] uses learning framework that autonom-
ously finds and adjusts thresholds at run-time for different computing re-
quirements that consider previous migration history to find the one that
cope up with the current situation based on CPU utilization. Experimental
results showed that their approach autonomously finds thresholds close to
the best ones for different computing scenarios.

In [12] the authors extended the learning framework from their pre-
vious work in [11] to handle additional resource types i.e, memory util-
ization, and propose new proactive learning where they can examine the
best combination computing environment thresholds and resource weight.
Workload was also considered on both static and random distributions.
The experimental results were presented in four parameters: resource type
with fixed threshold, resource size, learning method, and workload distri-
bution showing the impact of both CPU and memory utilization on learn-
ing patterns.

14

In [16] the authors propose; an autonomous network aware VM migra-
tion strategy and showed that an autonomous agent can learn to utilize
available network resources and do a migration. They implement a dy-
namic reinforcement learning approach. While live migrating, they focus
on the current network traffic demand. They argued that time to migrate
VMs from an under utilized host can have significant impact on the cur-
rent cloud system performance in terms of resource consumption. Sequen-
tial migration was implemented in their approach i.e, one after the other
and they considered CPU utilization. Experimental results showed that RL
agent can learn to migrate when utilization of network traffic is low and
improve network resource usage at off peak hours.

2.8.2 Thermal Management in Data Centers

Various studies have been done and are still being conducted on thermal
management that focus on temperature aware approaches.

The proposed solution by [18] involve control-theoretical thermal bal-
ancing (CTB) algorithm that provide online feedback for different servers
in a server clusters. The CTB algorithm was engaged to monitor temperat-
ure and CPU utilization of servers in their server cluster. They implement
two thermal balancing algorithm designs. The first algorithm, CTB-T, uses
processor temperature as a feedback whereas, the second one; CTB-UT uses
both temperature and CPU utilization. In their algorithm design, they also
considered the thermal dynamics of the servers so that it can handle un-
certain thermal characteristics such as fluctuating power consumption and
thermal flaws. Their simulation result showed the maximum temperat-
ure difference among the servers has been minimized to 0.2% in both al-
gorithms with the second algorithm being able to converge quickly than
the first one.

Meanwhile, in [32] the authors showed that temperature aware work-
load placement is crucial in data centers to reduce cooling cost and increase
reliability. In their work they suggested implementing thermal balance by
smart workload placement based on temperature or CPU utilization might
not give the best results. Additionally, how the data center is designed and
which areas are exposed to high power utilization depending on the air
flow and the cooling capacity should be considered. They proposed a way
data centers architecture should be designed to get the best out of thermal
and power optimization solutions in general. They also argued that an
intelligent resource provisioning together with smart workload placement
algorithm that consider both heat flow and thermal dynamics has the po-
tential to reduce cooling infrastructure cost.

Temperature aware workload placement that considers scheduling
workloads was proposed by [30]. This approach has shortcomings when
it comes functioning on a data center when the utilization is 0% or

15

100%. The authors presented two scheduling algorithms called zone based
discretization (ZBD) and minimize heat re circulation (MinHR) and tested
them in real world data center. The algorithms are based on air flow in data
centers so that they can keep server inlet temperature within the threshold
and maximize the temperature that is pumped into the data center by
the Computing Room Air Conditioning (CRAC). The results showed that
DigitalMinHR was successful in highly reducing the cooling cost compared
to ZBD even though it took 56 hours to converge, and ZBD turned out the
persistent solution with only half an hour of convergence time.

2.8.3 Power Consumption Reduction in Data Centers

The authors in [42] pointed out that to reduce power consumption of a data
center, both workload on the servers and air flow should be controlled.
Their approach takes multiple parameters including outlet air temperat-
ure, power consumption of servers and sensor values for certain amount
of time and predict the temperature distribution based on that monitored
values. Their approach was examined in an experimental data center and
resulted in a maximum of 30% power consumption reduction when the
air conditioning was controlled by implementing temperature distribution
prediction.

In [33] the authors present strategy to reduce data center power con-
sumption by implementing cooling and load management together. Their
initial point was based on the fact that most data centers control cooling
and computational subsystems independently. Where, the cooling subsys-
tem works to keep the whole data center infrastructure below critical tem-
perature limit. On the other hand, the computational subsystem works to
gain high performance and minimize the overall server energy consump-
tion. With their study, they come up with a strategy to implement both
cooling and load management together by coordinating the two subsys-
tems. The results from their approach achieved better power management
than the traditional approach.

The idea of server consolidation intend to put the load of multiple serv-
ers to one server and do a clean shutdown on unused servers intern, reduce
power consumption. The proposed strategy in [45] begin with identifying
servers based on their workload and usage. They categorized them into
three resource pools; innovation, production and mission critical. After-
wards, server consolidation was applied to each of the categories. The ex-
periment result showed that their approach increased the utilization ratio
up to 50% saving huge amount of energy.

When data centers are designed there are some locations that gener-
ate higher heat than the others because of the air flow and the imple-
mented cooling capacity [32, 38]. The proposed solution by [38] examines
two methods to dig into redistributing workloads and its potential gain.
The approaches are called Row-Wise Thermal Management and Regional

16

Thermal Management. Given that the racks at the end of a row in a data
center are 10◦C higher than row the ones at the middle, implementing the
load distribution considered both thermal dynamics and workloads. They
stated, the two approaches can also be implemented together. 14% energy
consumption was reduced by workload redistribution using the two ap-
proaches when experiments were conducted.

17

18

Part II

The project

19

Chapter 3

Approach

This chapter outlines the proposed solution in order to answer the problem
specified in the problem statement: "How to achieve thermal balance on vir-
tualized servers by autonomous migration of Virtual Machines running on them
based on the server’s temperature reading".

The proposed solution to the given problem is organized in 3 phases:

(i) Design.

(ii) Implementation.

(iii) Experimentation and Analysis.

The coming consecutive chapters will cover every bits and pieces of each
phase in detail, and this chapter gives an idea of how the components of
this study are organized in those chapters.

3.1 Objectives

As stated in the introduction chapter, this thesis aims to achieve a thermal
balance among virtualized servers. The proposed solution will be based on
autonomous migration of virtual machines hosted on servers in a server
cluster. Different tools and technologies described in the background
chapter will be used.

In this thesis, autonomous migration of VMs will be implemented. The
experiments will be conducted using two different approaches. The first
approach will enable an autonomous migration of VMs based on the VMs
global information of all physical server’s CPU temperature. The second,
alternative approach will be based on partial information, where the VMs
will only know the temperature of the physical server they are hosted on.
Two different algorithms will be implemented to test the functionality of
the proposed approaches and results will be evaluated.

21

3.2 Design

This phase of the solution is where all the planning and setting up the test
environment happens. It is basically where the blue print of the project will
be sketched. This involves 5 main tasks:

(i) Physical machine selection and configuration.

(ii) Virtual machine selection and configuration.

(iii) Workload configuration.

(iv) Designing the two approaches.

(v) Designing the algorithm according to the design plans.

The above main tasks will have detailed explanation in the next chapter,
for now a short and brief introduction on what to expect in the details will
be given in 4 consecutive sub sections.

3.2.1 Environmental Setup

For successfully designing the proposed solution, three physical servers
will be configured. From the presented technologies and tools in the
background chapter, the three physical servers will use:

(1) KVM: as virtualization technology.

(2) Libvirt: as virtual machines managing solution.

(3) sensors: to print temperature readings from the servers.

(4) Bokeh: to monitor the temperature readings at the servers in real time.

(5) python and bash: as scripting language.

When it comes to the VMs, a micro core Linux from the core project will be
used to handle a given workload. The customized core VM will have:

(1) SSH: to access and be accessed by the physical servers securely.

(2) stress-ng: to create a realistic workload on the VMs.

(3) python and bash: as scripting language.

Regarding the workload that the VMs handle, it will be designed in three
ways. The first set will have a uniform workload distribution where as the
second and the third will be of varying load. The three workloads will be
designed as:

(1) Uniform Load: workload occupying full percentage of CPU utilization.

22

(2) Variable Load: workload occupying different percentages of CPU
utilization.

(3) Dynamic Load: workload that change percentages of CPU utilization
through time.

3.2.2 Algorithm Design

There will be two algorithm designs corresponding to the two approaches.
The first algorithm, as in the first approach, will be designed so that the
VMs will be feed temperature information from all servers in the cluster.
The second algorithm will be based on reinforcement learning and learning
automata concepts and involve VM’s partial knowledge of its environment
in relation to temperature readings at the physical servers.

The two algorithms will be named:

(1) Choose Coolest Server: Algorithm based on calculating average temper-
ature and choosing the "coolest" server.

(2) Learn to Balance: Algorithm based on learning automata concepts that
learn its environment so as to make the best response to it.

3.2.3 Temperature Information Exchange

In the case of the first approach, the servers will exchange and update
their temperatures regularly. Every server in the cluster will send its
temperature reading to all other servers. Hence, every running VM will
receive all the updated server temperatures form the server it is hosted on.
On the other hand, the second approach does not involve this. Since, VMs
only need the temperature information of the server they are hosted on,
they will only require the host server’s temperature.

3.2.4 Autonomous Migration

The VMs will be designed to make an autonomous choice of whether to
migrate and where to migrate based on temperature data from the physical
servers in decentralized approach. The Core VMs will be programmed to
execute a specific code that will keep making the decision of migration
based on the provided information. The VM management including the
migration will be handled using Libvirt VM managing solution explained
in the background chapter.

3.3 Implementation

The next phase coming after the completion of the design is implementa-
tion where all designed tasks will hit the ground and start functioning. The
implementation phase includes:

23

(i) Integrating the underlying tools and technologies.

(ii) Organizing set of deployment scripts.

(iii) Implementation of algorithms.

A short introduction will be given on each tasks of the Implementation
phase in the coming 3 consecutive sub sections.

3.3.1 Underlying Tools and Technologies

The tools and technologies used for implementation will be installed,
configured and tested during this phase. There will be number of installed
packages on the servers and VMs as well. Necessary packages that will
be installed on the physical machines includes; sensors, python, Libvirt,
and bokeh. On the other hand the VMs will be running SSH, stress-ng and
python.

3.3.2 Deployment Scripts

A number of python and bash scripts will be implemented to fulfill the
required functionality and to run successful tests. The deployment scripts
will be used in three places. The first set include server side scripts that
will run on the servers. The second set of deployment scripts are for the
client side and will be implemented on the VMs. The third are scripts
implemented on an external machines for the sake of monitoring the setup.
The monitoring will include temperature and power readings of the servers
in real time.

3.3.3 Algorithm Implementation

The designed algorithms will be implemented in python. This script will
be included when the core VMs are customized so that it runs in the
background at all times. There will be multiple Core ISO images based
on the two implemented algorithms and the workloads handled. When
VM provisioning happen the specific ISO image for the experiment will be
used accordingly.

3.4 Experimentation, Result and Analysis

This phase is where the setup would be tested and the results be presented
and analyzed. The two implemented approaches will also be compared
and the better solution will be selected in terms of maximum temperature
differences and convergence time. This phase includes:

(i) Set of conducted experiments.

(ii) Presentation of experiment results.

(iii) Analysis and comparison of results.

24

3.4.1 Experiments and Results

In order to achieve the best accurate solution, the temperature readings
will be calibrated at the beginning of all experiments. There will be a real
time temperature and power readings monitoring using tools Bokeh and
Kibana. Bokeh setup will be in place to visualize the VMs activities in a
number of aspects and Kibana for the power consumption. Although their
might be additional experiments or changes in the layouts the following
test run cases are planned to be included:

(i) case 1 - Uniform workload distribution with choose coolest server
algorithm.

(ii) case 2 - Variable workload distribution with choose coolest server
algorithm.

(iii) case 3 - Dynamic workload distribution with choose coolest server
algorithm.

(iv) case 4 - Uniform workload distribution with learn to balance al-
gorithm.

(v) case 5 - Variable workload distribution with learn to balance al-
gorithm.

(vi) case 6 - Dynamic workload distribution with learn to balance al-
gorithm.

3.4.2 Data Analysis and Comparison

Based on the results from the experimental tests conducted, the visualized
data will be organized for further analysis and statistical evaluations.
Different methods of data presentation will be used so that the results can
easily be understood by readers. In addition comparison to the methods
will be given and a discussion will be included to initiate further studies
based on the findings from this work.

25

26

Chapter 4

Design and Implementation

This chapter covers how the working environment will be designed and
configured based on the proposed tasks in chapter 3. It consists of environ-
mental setups and configurations on both the physical servers and the VMs
together with the algorithm design. There will be two design approaches
for the proposed solution, and will be presented in detail. Moreover, as part
of the implementation, steps undertaken will be presented and the neces-
sary tools and technologies integrated for implementation of the solution
will be described as well.

4.1 Environmental Setup

Designing the experimental environment requires physical servers that
provision Virtual Machines (VMs) with a given workload and VMs that
are able to make autonomous decision of whether to migrate and where to
migrate based on temperature readings of those physical servers, the goal
being thermal balance across the server cluster.

In the next consecutive sections; physical machine, VM and VM
workload configurations will be described. The design for autonomous
VM migration will also be included.

4.1.1 Physical Server Specification and Configuration

The experimental environment includes three physical servers located at
Oslo Metropolitan University (OsloMet). The servers that are used in this
thesis are homogeneous, hence all the three servers have the same specific-
ation as given in Table 4.1.

27

Architecture x86_64
Model name AMD OpteronTM Processor 6234

Operating System Ubuntu 16.04.3 LTS
CPU op-mode(s) 32-bit, 64-bit

CPUs 48
On-line CPU(s) list 0-47

NUMA node(s) 8

Table 4.1: Physical Server Specification

Advanced Micro Devices (AMD) is the world’s second largest manufac-
turer of x86 architecture processors. The AMD Opteron TM Processor 6234
lies within 6200 Series and it is characterized with large memory footprints
[3]. Regarding temperature, AMD machines report two types, Core Temper-
ature and CPU Temperature. The CPU Temperature is read by a sensor in
the socket of the motherboard. It is the physical temperature and is more
precise at low levels, whereas Core Temperature is a non physical arbitrary
scale designed to imitate a temperature sensor [4, 20].

Table 4.2 shows the Non Uniform Memory Access (NUMA) nodes and
CPUs found on a single physical server. The NUMA architecture has been
explained in the background chapter section 2.5. At every server, there are
eight NUMA nodes and at each NUMA node there are six CPUs and a
single temperature sensor. Thus, there will be 48 CPUs in total on a single
server. In this kind of setups with more than 12 CPUs, NUMA architecture
is the recommended way of organizing the processors because, it reduces
the number of CPUs competing for a shared memory bus.

In this thesis, the workload utilizing the CPUs will be generated using
the VMs running on the servers. The VM and workload configuration will
be explained on the next sub sections.

NUMA node0 CPU(s) 0,4,8,12,16,20
NUMA node1 CPU(s) 24,28,32,36,40,44
NUMA node2 CPU(s) 2,6,10,14,18,22
NUMA node3 CPU(s) 26,30,34,38,42,46
NUMA node4 CPU(s) 3,7,11,15,19,23
NUMA node5 CPU(s) 27,31,35,39,43,47
NUMA node6 CPU(s) 1,5,9,13,17,21
NUMA node7 CPU(s) 25,29,33,37,41,45

Table 4.2: List of NUMA Nodes and CPUs

4.1.2 Virtual Machine Configuration

The light weight variant of Tiny Core called Micro Core Linux (Core)
described in the background chapter section 2.7.1 will be used as a virtual

28

machine. It provides a small minimal Linux distribution that can be used
for any purpose with customized configurations. The customization will
be done using a tool called ezremaster. This tool provides a Graphical
User Interface (GUI) to specify what the custom ISO image is supposed
to include. The remastered Core VM for this thesis will be set to run
SSH server and Python will be installed as well. In addition, whenever
a VM is provisioned, it will implement a specific algorithm and a given
workload set to be handled. The base image of any Core VM is 11MB, after
remastering and including needed packages and scripts, the final image
occupied 226MB.

4.1.3 Workload Configuration on VMs

As a workload generator, stress-ng tool will be used on the VMs. The stress-
ng tool as explained in the background chapter section 2.7.5, loads and
stresses a server in various selected ways. The workload will be designed
with CPU stress method that provide a combination of memory, cache and
floating point operations. The workload will be designed in three ways.
The first set of workloads will occupy full percentage of CPUs and the
second will occupy either of the four percentages (25, 50, 75 and 100) of
CPU load. The last one will have dynamic workload distribution where,
all VMs start with the same percentage of workload and then alter to a
dissimilar percentage. In order to have a realistic workload distribution
among VMs, this three ways of workload generation will be used and
tested.

4.2 Design

There will be two designs proposed for implementation. Each design will
be described accordingly together with their corresponding algorithms in
subsequent sections.

4.2.1 Choose Coolest Server

In this design approach, every sever will exchange its total temperature
regularly, which will then be used by the VMs to decide whether to mi-
grate and where to migrate. In order to exchange this temperature readings
and other information needed for visualization, the communication will be
through a User Datagram Protocol (UDP), even though there is a working
SSH configuration between the servers and the VMs in place. The tem-
perature readings will be structured in a JavaScript Object Notation(JSON)
format. JSON formatting is an open source file formatting that consists
of attribute-value pairs and array data types. In addition to being human
readable text, it is also language independent [44].

29

VM provisioning will take place from all the servers, where provisioned
VMs will handle a given workload. In order to see the thermal effect, dif-
ferent number of VMs will be provisioned from each server, so that the
servers temperature will be different. The provisioned VMs will initiate a
UDP communication with the server they are hosted on, requesting tem-
perature of all servers in the cluster. Shortly after they receive the response
from the hosting server, VMs will implement the algorithm in place and
autonomously migrate if migration is decided else, they will request for
updated temperature readings. As soon as the VM decide to migrate and
select destination, server with the lowest temperature, it will send a UDP
packet to the server it is hosted on. This packet will include migration re-
questing message having the VM’s MAC address and the host name of the
server it intended to be migrated to. This way the migration of VMs hap-
pen. On the other hand, if a VM decides to stay there at the hosting server, it
will request for an updated temperature readings and it continues this way.

For this design to be implemented, two communications are needed.
The first will be communication between the physical servers and the
second between a physical server and the VMs. The next sub section
presents how this communications is designed.

4.2.1.1 Server-to-Server Communication Design

The three physical servers will be computing their own total temperature
gathered from the 8 temperature sensors at each NUMA node regularly.
The communication between the physical servers will have a mesh topo-
logy where every server is communicating with every other server in the
cluster. The UDP payload will be in JSON format. At the beginning of the
communication, the servers will send their own temperature to other serv-
ers in the cluster, so that all the servers have updated temperature readings
and then with consecutive communications, they will update their own
temperature value and send to the other servers in the cluster.

4.2.1.2 VM-to-Server Communication Design

Each provisioned VM will send a UDP datagram to the hosting server
regularly. First, requesting for the temperature of all the servers and
after receiving it, the VM will process the temperature readings using the
implemented algorithm and will make the smart decision of whether to
migrate and where to migrate autonomously. If a decision to migrate is
made, here goes the second message with request for migration. If not,
that means the VM decided to stay where it is and it will again send UDP
datagram requesting temperature again.

30

Server 1
Temperature

Server 2
Temperature

Server 3
Temperature

Server 2
Temperature

Server 1
Temperature

{
"Temperature" : ["server1_temp" ,
"server2_temp" , "server3_temp"]
}

SERVER 2

{
"Temperature" : ["server1_temp" ,
"server2_temp" , "server3_temp"]
}

SERVER 1

{
"Temperature" : ["server1_temp" ,
"server2_temp" , "server3_temp"]
}

SERVER 3

Server 3
Temperature

Figure 4.1: Server to Server Communication Design

Start

VM Decision

Rx

Tx

Migrate ?

SERVER

Tx

Rx

Migrate
VM

Rx

Request Servers
Temperature

Send Servers
Temperature

No

Request VM
Migration

Yes
2 3

4

5

7

1

MONITOR

Tx

6

Figure 4.2: VM to Server Communication Design

31

VM wakes randomly

hostTemp > avgTemp + ? (t) ?

YesNo

Start

Get Server's Temperature (T1,
T2, ...,Tn)

 Compute Average Temperature
avgTemp = (T1+T2 + ... + Tn)/n

Migrate VM

Figure 4.3: Algorithm Design: Choose Coolest Server

4.2.1.3 Algorithm Design: Choose Coolest Server Algorithm

This algorithm requires a VM to make decision by computing average tem-
perature of the servers by itself. After the average temperature is calcu-
lated, the VM will compare the value to the hosting server’s temperature.
If the hosting server’s temperature is above the calculated average temper-
ature, the VM will decide to migrate and choose the server with the lowest
temperature. On the contrary, if the hosting server’s temperature is below
the average, it means the server is not as heated as the other two servers.
Thus, VM decides to stay where it is. The algorithm design is given in 4.3.

Algorithm 1: Choose Coolest Server Algorithm

1 while true do
2 VM wakes up randomly between(20 and 120 secs);
3 Request temperatures of all the servers in the cluster;
4 Identify host temperature, hostTemp;
5 Compute average temperature of all servers, avgTemp;
6 if hostTemp > avgTemp + ∆(t) then
7 Migrate to the server with lowest temperature;
8 else
9 go to step 2

32

4.2.2 Learn to Balance

While the first design requires full information of temperature readings in
server cluster, what differs in this one is, the VMs will have partial inform-
ation. That is, the VM only have the temperature reading of the server it
is hosted on currently. This algorithm is based on reinforcement learning
techniques using learning automata. The learning automata concept was
adopted from the active probing and learning algorithm provided in [25].

Here is how it is designed. After VM provisioning take place, a VM
will initially take action and migrate to one of the physical servers based
on set of uniform probability values. Then the learning automata probab-
ility values will be updated. As the VMs migrate, the probability of the
destination server that a VM choose will be increased, based on a reward
function, and at the same time the probabilities of the other servers will be
decreased. The reward function is designed in such a way that, VMs mi-
grated to servers having lower temperature value will be rewarded greatly,
In the contrary they will be rewarded less. This way, a VM will keep on
learning the environment better and make the right decisions that will lead
to a balanced thermal state in the server cluster.

Different from the design approach presented in section 4.2.1, this
design requires only communication between the host server and a VM
running on it. This communication will be designed the same way as in the
VM to server communication in the choose coolest server design, as shown
in Figure 4.2.

4.2.2.1 Algorithm Design: Learn to Balance Algorithm

The designed algorithm for the above design involves reinforcement learn-
ing concepts and specifically, learning automata. Learning automata is ex-
plained in the background chapter section 2.6.2. Here in this context the
feedback will be the temperature value and high temperature is considered
as penalty whereas low temperature means a reward. The feedback is cal-
culated as seen in Algorithm 2. The sum of the probabilities of moving to
the three servers is one as in P1 + P2 + P3 = 1. Therefor, a VM is rewarded
for moving to a server means the probability value will increase for that
machine and the probability of the others will decrease as a result.

33

Initialize the learning
automata probabilities

t=0, p(0) = [p1, p2, ... pn]

Destination Server !=
Host Server ?

Start

Select destination server
randomly using the
learning automata
distribution, p(t)

Migrate VM

Update the learning automata
probabilities, t=t+1, p(t+1)

Yes

No

Figure 4.4: Algorithm Design: Learn to Balance

Algorithm 2: Learn to Balance Algorithm

1 Initialization: t=0 πij(0) = 1/m, where; j ∈
{1, ..., m} is the set o f servers and satis f ies ∑ πij(t) = 1, πij →
probability o f VMi to move to server j

2 Select destination server u according to distribution πi(t)
3 if i=u then
4 migrate VMi to server u
5 else
6 VMi stays on server j;

7 Compute the feedback function (reward strength) by

z(u, t) = 1− T(u, t)
Tmax

where, T(u,t) - measured temperature of server u and Tmax - pre
defined maximum temperature;

8 Update the learning automata probabilities maintained at the source
VMi i.e, probability of VMi to move to server j;

9 πij(t + 1) = πij(t) + G ∗ z(u, t) ∗ (δju − πij(t))

10 where G is the learning gain and δju =

{
1 if j = u
0, otherwise

}
11 t = t + 1

4.3 Implementation

This section provides the steps under taken to implement the two designs.

34

4.3.1 Customizing an ISO Image

This project requires autonomous VM migration. In order for this to hap-
pen, a custom Core ISO image was built on top of the official Core VM base
image. GUI tool called ezremaster introduced in section 2.7.2 was used for
doing the remastering. The result was a 226MB Core ISO image with SSH
Server and Python installed on it, with scripts for autonomous VM migra-
tion and workload based on stress-ng utility tool.

The ISO image was created from a running TinyCore instance. The
script attached on Appendix A.1 was used to take care of the installation
and configuration of the customized core ISO image. Once the script com-
pletes, the newly created ISO image can be downloaded from the TinyCore
instance using the Linux scp command.

4.3.2 Registering a script as a Linux systemd service

In order to keep the server script up and running at all times, it was
registered as systemd service. systemd, as explained in section 2.7.4
of the background chapter, it is an initialization (init) system for Linux
distributions. The systemd service guarantees the server script which does
most of the tasks is always up and running unless intentionally stopped.
This was achieved by registering the script as a service that will restart if
it fails. The service was placed at /lib/systemd/system/ as server.service. The
python code was named server.py and placed at /home.

The content of the file server.service is given below:

[Unit]
Description=VM manager
After=multi-user.target

[Service]
Type=idle
ExecStart=/usr/bin/python3 /home/server.py
Restart=always

[Install]
WantedBy=multi-user.target

4.3.3 Generating Workload on Running VMs

The workload the VMs handle was implemented in three ways with regard
to CPU load percentage using stress-ng tool. The first one aims to handle
uniform workload set to utilize 100% of a CPU. The second one is with
variable workload. The variable load was occupying 25, 50, 75 and 100
percentages of the CPU. The last one has dynamic workload distribution
where all VMs start with uniform load and then change to either of the
loads specified in the variable load.

35

The stress-ng tool was built and deployed in the VMs from source found
in [24] and the command used to generate the workloads is:

stress-ng --cpu N --cpu-method matrixprod --cpu-load P
--timeout T↪→

The switch –cpu specifies the number of CPUs to stress on a single
server and the switch –cpu-method in this command tells about a specific
CPU stress method selected among the many that exist [15]. In the
command what the selected matrixprod attribute does is, it will "matrix
product of two 128 × 128 matrices of double floats. Testing on 64 bit x86
hardware shows that this is provides a good mix of memory, cache and floating
point operations and is probably the best CPU method to use to make a CPU run
hot" [15] whereas the –cpu-load sets the percentage of the CPU to load and
stress. In addition a timeout can also be given by adding –timeout.

4.3.4 Deployment and Migration of Virtual Machines

The virtualization technique used in this project involves a number
of technologies and tools. The setup was implemented on a KVM
virtualization with Libvirt as VM managing solution. The core VM was
selected for its capability of customization and small size. The Core VMs
were deployed on a virtual network bridge on the subnet 192.168.122.1/24.
In order to avoid collision of MAC and IP addresses of the VMs in the
server cluster, the virtual bridge interfaces DHCP range has been assigned
accordingly using this script.

networkname=virsh net-list --all
virsh net-edit $networkname

virsh net-destroy $networkname
virsh net-start $networkname

ifconfig virbr0 down
ifconfig virbr0 up

The folllowing command was used to provision VMs:

virt-install --name=vm1 --cdrom=my.iso --virt-type=kvm
--os-type=linux --ram=256 --network bridge=virbr0 --nodisk
--graphics=none --noautoconsole

↪→

↪→

The result of the above command is:

Starting install...
Creating domain...

virsh list --all
Id Name State

--
1 vm1 running

36

The migration command the host server use to migrate a VM looks like
this:

virsh migrate --live vm1 qemu+ssh://targetserver/system
--undefinesource --persistent↪→

The switch –persistent makes the migration persistent and –undefinesource
lets for the VM guest definition on the source host to be deleted after a suc-
cessful migration.

4.3.5 Monitoring Configuration

Bokeh was used to visualize the temperature readings of the servers in real
time. Following the progress was a crucial part of the thesis, that is why
bokeh has been selected to give interactive and real time readings. The
plots were divide into four. The first plot shows the temperature readings
in the server cluster. The second one tracks the number of VMs running
at each server, whereas the third plot shows the workload distributions.
Lastly, for the learn to balance algorithm experiments, additional plot to
show the learning automata probability of a VM is provided.

Kibana setup was in place to visualize the power consumption readings
of the servers at Oslo Metropolitan University (OsloMet) beforehand, and
that was adapted to this thesis work and used to visualize how the
power consumption reading is responding to the implemented design
approaches.

37

38

Chapter 5

Results and Analysis

This chapter presents various experiments conducted in this thesis. Exper-
imental results will also be analyzed. In addition, comparison of results
from the implementation of choose coolest server and learn to balance al-
gorithms will be included.

As stated in chapter 4 section 4.2.1.3 the first implemented algorithm
was the choose coolest server algorithm. This section presents the prelim-
inary experiment and subsequent successful experiments. In addition, ana-
lysis based on the acquired results will be included.

Core VMs from the Core project were used for remastering custom
VMs, which handles different types of workloads; uniform, variable and
dynamic, using stress-ng utility tool. Uniform workload occupies full per-
centage of the CPU utilization and variable workload occupies a set of pre-
defined CPU utilization percentages, whereas dynamic workload changes
the CPU utilization percentages over time.

Three physical servers with specifications described in section 4.1.1
were used for the experiments. The physical servers has a NUMA archi-
tecture with 8 NUMA nodes, where there is one CPU temperature sensor
per node. This temperature readings were calibrated at the beginning of
the experiments in order to achieve the best possible accuracy.

The temperature, number of hosted VMs and workload distributions of
all servers were monitored using Bokeh web application, whereas power
consumption readings using Kibana web application in real time. The
default readings of both temperature and power are shown in Figure 5.1
and 5.2.

The experimental results will be presented in terms of:

(i) Workload distribution in CPU utilization percentage.

(ii) Number of VMs running.

(iii) Temperature readings relative to the calibrated temperature.

39

(iv) Power consumption readings in Watts.

Figure 5.1: Calibrated server temperature readings

Figure 5.2: Idle server power consumption readings

5.1 Experimental Results: Choose Coolest Server Al-
gorithm

The choose coolest server algorithm implementation was based on the
VMs ability to do an autonomous migration relying on the provided
temperature readings from all servers in the cluster. Experiments were
carried out by turning on and off the algorithm to present the obtained
thermal balance in a more clear way.

5.1.1 Preliminary Experiment

In this very first experiment, 45 VMs were provisioned with uniform work-
load on the three physical servers with load distribution shown in Figure
5.3. To have thermal imbalance among the servers, different number of
VMs where provisioned. This way it is quite clear to see the achievement

40

of the autonomous migration.

The results from this experiment are given in Figure 5.4, showing the
number of VMs running at the servers, Figure 5.5, showing the temperature
readings and Figure 5.6, showing the power consumption readings.

Figure 5.3: Initial uniform workload distribution

C
al

ib
ra

tio
n

Algorithm Off Algorithm On

Figure 5.4: Number of running VMs with uniform workload

C
al

ib
ra

tio
n

Algorithm Off Algorithm On

Figure 5.5: Temperature with uniform workload

41

Algorithm Off Algorithm OnId
le

 S
ta

te

Figure 5.6: Power consumption with uniform workload

As shown in the preliminary experiment, the ability to make autonom-
ous migration decisions was achieved, but there was no convergence that
looks like, equalizing the temperature to attain the expected thermal bal-
ance. The VMs were going back and forth, due to the temperature im-
balance among the servers. Naturally, server’s temperature takes time to
regulate, because they respond slowly to temperature variations before and
after change has occurred.

In the subsequent experiments this situation was avoided by applying
delta temperature value, where VMs will stop moving around after the
servers reach to a specific temperature difference.

5.1.2 Uniform Workload Results

The provisioned VMs has uniform workload with 100% CPU utilization.
After the VMs were provisioned, they wake up randomly and do the
autonomous migration. The initial workload distribution was set as shown
in Figure 5.3. The results are shown in Figures 5.9, 5.7, 5.8 and 5.10 in terms
of workload distribution after thermal balance, number of running VMs,
temperature and power readings respectively.

C
al

ib
ra

tio
n

Algorithm Off Algorithm On

Figure 5.7: Number of running VMs with uniform workload

42

Algorithm OnAlgorithm Off

C
al

ib
ra

tio
n

Figure 5.8: Uniform workload temperature readings

Figure 5.9: Uniform workload distribution after thermal balancing

Id
le

 S
ta

te

Algorithm Off Algorithm On

Figure 5.10: Uniform workload power consumption reading

5.1.3 Uniform Workload Analysis

The ping pong situation observed in the preliminary experiment was fixed
by introducing a time varying delta temperature value. Where, this time
varying delta value was set to start with ∆max and reach to ∆min progress-
ively. Afterwards the VMs were able to stop migration when ∆min temper-

43

ature difference was attained among the servers in the cluster.

The need for a time varying delta temperature was for the fact that serv-
ers heat up and cool down slowly, and the effect of the VMs movement
is reflected by the servers gradually. Thus having the time varying delta
temperature improved the decision making by catching relatively accurate
temperature changes when VMs come and leave.

The result with this experiment showed the VMs were able to do the
autonomous migration and maintain thermal balance among the servers.
As stated in Table 5.1 the convergence time taken for this algorithm was
fairly short as compared to the initial workload distributions variation
among the servers.

Choose Coolest Server Algorithms - Uniform Workload

Number of Running VMs 45

Convergence Time(mins) 50

Relative Temperature Diff. before thermal balance 16.6

Relative Temperature Diff. after thermal balance 3.8

Table 5.1: Analysis: Choose Coolest Server with Uniform Workload

As part of the analysis, box plot representation of the temperature
readings is presented in Figures 5.11 and 5.12 to indicate the variations
before and after thermal balancing.

Min: 4.02
Max: 43.23
1st Quartile: 35.45
3rd Quartile: 42.89

Min: 5.29
Max: 31.56
1st Quartile: 26.73
3rd Quartile: 31.28

Min: 4.12
Max: 28.02
1st Quartile: 22.12
3rd Quartile: 27.01

Figure 5.11: Box plot for uniform workload temperature readings before
thermal balance

44

Min: 31.89
Max: 33.95
1st Quartile: 32.82
3rd Quartile: 36.15

Min: 33.04
Max: 39.72
1st Quartile: 37.95
3rd Quartile: 39.09

Min: 32.21
Max: 40.26
1st Quartile: 34.52
3rd Quartile: 36.15

Figure 5.12: Box plot for uniform workload temperature readings after
thermal balance

5.1.4 Variable workload Results

This experiment aims to examine and evaluate the implementation results
for variable workloads. The workloads were adjusted to occupy either 25%,
50%, 75% or 100% of CPU utilization. The initial workload distribution on
the servers can be seen in Figure 5.14 and the results from Figures 5.15, 5.16,
5.17 and 5.13.

Id
le

 S
ta

te

Algorithm Off Algorithm On

Figure 5.13: Power consumption with variable workload

45

Figure 5.14: Initial variable workload distribution

C
al

ib
ra

tio
n

Algorithm Off Algorithm On

Figure 5.15: Number of running VMs with variable workload

C
al

ib
ra

tio
n

Algorithm Off Algorithm On

Figure 5.16: Temperature readings with variable workload

Figure 5.17: Variable workload distribution after thermal balancing

46

5.1.5 Variable workload Analysis

The experiment with variable workload was also a success with regard to
achieving thermal balance across servers by the implemented autonomous
VM migration. The experiment was conducted on 45 VMs as in the case
of uniform workload. The summary of the results in terms of convergence
time and maximum temperature difference is given in Table 5.2

Choose Coolest Server Algorithms - Variable Workload

Number of Running VMs 45

Convergence Time(mins) 45

Relative Temperature Diff. before thermal balance 17.5

Relative Temperature Diff. after thermal balance 4.2

Table 5.2: Analysis: Choose Coolest Server with Variable Workload

The same time varying delta temperature was in place as in the uniform
workload. The workload variations were chosen to reflect realistic work-
load distributions as much as possible.

In addition, a box plot representation of the temperature readings can
be found in Figures 5.18 and 5.19 representing the variations before and
after the attained thermal balance respectively.

Min: 22.36
Max: 29.41
1st Quartile: 25.24
3rd Quartile: 26.44

Min: 18.45
Max: 30.72
1st Quartile: 20.74
3rd Quartile: 27.08

Min: 29.7
Max: 39.63
1st Quartile: 34.86
3rd Quartile: 39.32

Figure 5.18: Box plot for variable workload temperature readings before
thermal balance

47

Min: 29.87
Max: 30.86
1st Quartile: 30.24
3rd Quartile: 30.5

Min: 31.25
Max: 33.13
1st Quartile: 32.35
3rd Quartile: 32.68

Min: 26.6
Max: 29.15
1st Quartile: 26.86
3rd Quartile: 27.63

Figure 5.19: Box plot for variable workload temperature readings after
thermal balance

5.1.6 Dynamic workload Results

The objective of this final experiment with the choose coolest server al-
gorithm was to prove that the implemented algorithm works as expected
when there is a dynamic workload variation.

The experiment was conducted using 45 VMs with dynamic workload
that started with uniform workload distribution that used 100% of CPU
utilization and changed to either 25%, 50% or 75% accordingly. The initial
workload distribution at the servers can be seen in Figure 5.21 and the res-
ults are presented in Figures 5.22, 5.23 and 5.20.

Algorithm Off Algorithm On

Load Change

 Algorithm Off Algorithm OnId
le

 S
ta

te

Figure 5.20: Power consumption with dynamic workload

48

Figure 5.21: Initial dynamic workload distribution

C
al

ib
ra

tio
n

Algorithm Off Algorithm On
Load Changes
Algorithm Off Algorithm On

Figure 5.22: Number of running VMs with dynamic workload

C
al

ib
ra

tio
n

Algorithm Off Algorithm On Load Changes
Algorithm Off

Algorithm On

Figure 5.23: Temperature readings with dynamic workload

Figure 5.24: Dynamic workload distribution after thermal balancing

49

5.1.7 Dynamic workload Analysis

The objective of this experiment was to test the VMs intelligence in coping
up with the environment whenever there is change and it worked well.

This experiment has employed dynamic workload and has achieved
thermal balance among the servers as expected. The experiment was con-
ducted on 45 VMs the same way as the previous experiments. The sum-
mary of the results in terms of convergence time and maximum temperat-
ure difference is provided in Table 5.3.

Choose Coolest Server Algorithms - Dynamic Workload

Number of Running VMs 45

Convergence Time(mins) 40

Relative Temperature Diff. before thermal balance 16.3

Relative Temperature Diff. after thermal balance 1.2

Table 5.3: Analysis: Choose Coolest Server with Dynamic Workload

5.2 Experimental Results: Learn to Balance Algorithm

The learn to balance algorithm was based on a reinforcement learning tech-
niques, where each VM locally runs an independent learning automata.
Thermal balancing between all servers in the cluster is learned using dis-
tributed learning automata.

Figure 5.25: Initial uniform workload distribution

5.2.1 Uniform Workload Results

This experiment was conducted on VMs with uniform workload.The initial
workload distribution is shown in Figure 5.25. The total number of VMs
used were 12. The results from this experiment are given in Figures 5.27,
5.28, 5.29 and 5.26 representing the number of running VMs, temperature
readings, final workload distribution and power consumption respectively.

50

Figure 5.26: Power consumption with uniform Workload

Figure 5.27: Number of running VMs with uniform workload

Figure 5.28: Temperature readings with uniform workload

51

Figure 5.29: Uniform workload distribution after thermal balancing

5.2.2 Uniform Workload Analysis

The results from the implemented learn to balance algorithm, was conduc-
ted with 12 VMs provisioned on single server. The VMs have handled
workloads that occupied 100% of CPU utilization. The implemented
autonomous VM migration has maintained the expected thermal balance
among all servers in around 6 hours.

The convergence time and the maximum temperature differences in the
server cluster is given in Table 5.5.

Figure 5.30 shows the learning automata probability of a single VM. The
VMs learned their environment by trial and error that brought the thermal
balance among servers.

Figure 5.30: Learning Automata Probabilities

Box plot representation is also included in Figures 5.31 and 5.32 to show
the temperature variation before and thermal balance attained after.

52

Min: 13.99
Max: 26.08
1st Quartile: 22.77
3rd Quartile: 24.91

Min: 15.18
Max: 25.09
1st Quartile: 18.43
3rd Quartile: 20.81

Min: 3.69
Max: 21.79
1st Quartile: 14.14
3rd Quartile: 16.81

Figure 5.31: Box plot for Temperature Difference with Uniform Workload

Min: 18.91
Max: 22.13
1st Quartile: 20.87
3rd Quartile: 21.17

Min: 18.53
Max: 20.73
1st Quartile: 19.3
3rd Quartile: 20.13

Min: 18.65
Max: 20.47
1st Quartile: 19.55
3rd Quartile: 19.81

Figure 5.32: Box plot for Temperature Difference with Uniform Workload

5.2.3 Variable Workload Results

The experiment was conducted on VMs with uniform workload provi-
sioned from the servers with a distribution of workloads shown in Figure
5.33. The total number of VMs was 12 as in the case for uniform workload.
The results from this experiment are provided in Figures 5.34, 5.35, 5.36 and
5.37 representing the number of running VMs, temperature readings, final
load distribution after thermal balance and power consumption readings
respectively.

53

Figure 5.33: Initial variable workload distribution

Figure 5.34: Number of running VMs with variable workload

Figure 5.35: Temperature readings with variable workload

Figure 5.36: Variable workload distribution after thermal balancing

54

Figure 5.37: Power consumption readings with variable Workload

5.2.4 Variable Workload Analysis

The results from implementation of the learn to balance algorithm showed
that, 5 hours were spent by the 12 VMs to learn their environment, by mak-
ing autonomous migration choices, that lead the servers to attain thermal
balance.

Table 5.5 presents the time taken to reach to the thermal balance and the
maximum temperature differences between the servers before and after the
thermal balance.

Figure 5.38 shows the learning automata probability of a single VM.
The VMs learned their environment by trial and error, and its convergence
is slow.

Figure 5.38: Learning Automata Probabilities

The box plot representation in Figures 5.39 and 5.40 shows the temper-
ature variations before and after the thermal balance.

55

Min: 4.23
Max: 23.64
1st Quartile: 18.64
3rd Quartile: 22.25

Min: 5.10
Max: 24.16
1st Quartile: 10.74
3rd Quartile: 16.00

Min: 1.42
Max: 18.91
1st Quartile: 7.25
3rd Quartile: 15.12

Figure 5.39: Box plot for Temperature Difference with Variable Workload

Min: 16.86
Max: 18.66
1st Quartile: 17.14
3rd Quartile: 17.62

Min: 14.20
Max: 16.21
1st Quartile: 15.12
3rd Quartile: 15.79

Min: 17.17
Max: 18.66
1st Quartile: 17.49
3rd Quartile: 18.07

Figure 5.40: Box plot for Temperature Difference with Variable Workload

5.3 Algorithms Comparison

Since the experiment with learn to balance algorithm was executed using
12 VMs, in order to compare the result with the choose coolest server al-
gorithm, there was additional experiment conducted. Appendix section C
subsections C.1 and C.2 presents the results from this additional experi-
ment using 12 VMs handling uniform and variable workload distributions
respectively.

This section provides a comparison between the two implemented al-
gorithms on the conducted experiments with 12 VMs. Table 5.4 and 5.5

56

shows the summary of time taken for attaining thermal balance and tem-
perature difference of the servers.

Choose Coolest Server Algorithms

Workload Type Uniform Variable

Number of Running VMs 12 12

Convergence Time(mins) 35 35

Relative Temperature Diff. before thermal balance 26.6 23.7

Relative Temperature Diff. after thermal balance 3.4 3.9

Table 5.4: Analysis: Choose Coolest Server with Uniform and Variable
Workloads

Same way as the previous experiments, the results showed the attained
thermal balance among the servers by the autonomous migration of VMs.

The experiment with choose coolest server algorithm took around 35
minutes to attain the thermal balance. Whereas, the learn to balance al-
gorithm took 360 minutes for the same experiment. When it comes to the
relative temperature differences, learn to balance algorithm achieved the
lowest values.

Learn to Balance Algorithms

Workload Type Uniform Variable

Number of Running VMs 12 12

Convergence Time(mins) 360 309

Relative Temperature Diff. before thermal balance 28.4 22.8

Relative Temperature Diff. after thermal balance 1.4 1.9

Table 5.5: Analysis: Learn to Balance with Uniform and Variable Workloads

Box plot representation of the variation in temperature before and after
the maintained thermal balance are shown in Figures 5.43 and 5.44 for
the variable workloads and 5.41 and 5.42 for the uniform workload using
choose coolest server algorithm.

57

Min: 13.01
Max: 18.48
1st Quartile: 17.96
3rd Quartile: 18.21

Min: 14.66
Max: 21.75
1st Quartile: 15.77
3rd Quartile: 18.07

Min: 15.68
Max: 24.51
1st Quartile: 22.87
3rd Quartile: 23.94

Figure 5.41: Box plot for Temperature Difference with Uniform Workload

Min: 18.15
Max: 19.13
1st Quartile: 18.25
3rd Quartile: 18.4

Min: 16.93
Max: 22.14
1st Quartile: 20.85
3rd Quartile: 21.8

Min: 20.11
Max: 23.08
1st Quartile: 20.31
3rd Quartile: 20.55

Figure 5.42: Box plot for for Temperature Difference with Uniform
Workload

Since the number of VMs used for the experiment were small, pro-
visioning was done from a single server. Thus, temperature imbalances
between the servers was created, besides it made the spread of VMs quite
noticeable.

58

Min: 6.74
Max: 15.87
1st Quartile: 11.35
3rd Quartile: 14.39

Min: 15.55
Max: 21.82
1st Quartile: 16.21
3rd Quartile: 18.97

Min: 6.81
Max: 15.45
1st Quartile: 10.63
3rd Quartile: 14.72

Figure 5.43: Box plot for Temperature Difference with Variable Workload

Min: 15.75
Max: 17.06
1st Quartile: 16.51
3rd Quartile: 16.87

Min: 12.41
Max: 15.53
1st Quartile: 14.38
3rd Quartile: 15.16

Min: 15.8
Max: 17.28
1st Quartile: 16.44
3rd Quartile: 17.16

Figure 5.44: Box plot for for Temperature Difference with Variable
Workload

Box plot representation of a data gives a summary of distributions in a
data set. The data set to be compared in this thesis is relative temperature
readings of servers. In the box plot, min and max values are the minimum
and maximum temperature readings that appeared in the experiment. Q1
shows 25% of the readings fall below it, whereas Q3 shows 75% of the read-
ings fall below it. Finally, the median is the mid point of the readings.

Tables 5.6 and 5.7 are compiled box plot presentations when the exper-
iments were carried out implementing the two algorithms with uniform
and variable workloads respectively.

59

Algorithms Q1 Min. Median Max. Q3

Choose Coolest Server 18.25 18.15 18.34 19.13 18.40

Learn to Balance 20.87 18.91 20.98 22.13 21.17

Table 5.6: Comparison of Algorithms: Box plot Analysis for Uniform
Workload

Algorithms Q1 Min. Median Max. Q3

Choose Coolest Server 16.51 15.75 16.70 17.06 16.87

Learn to Balance 17.14 16.86 17.29 18.66 17.62

Table 5.7: Comparison of Algorithms: Box plot Analysis for Variable
Workload

60

Part III

Conclusion

61

Chapter 6

Discussion and Conclusion

This chapter aims to give the full picture of the project. It is based on the
initial problem statement and how it was addressed and answered through
the whole process of the thesis work. Furthermore, the issues encountered
in accomplishing the work and what can be done in the future based on the
findings will be presented.

6.1 Background

Lots of researches have been studied and designs implemented to reduce
the heat disposal in data centers. This include infrastructure level solutions,
such as smart data center design [34], system level improvements, such as
temperature aware workload placement [30] and IT level solutions such as
virtualization.

Virtualization plays a huge role in improving data center power and
heat management with all the features it posses. In relation to workloads
servers handle, the existence of VMs ease hardware and maintenance cost
minimization. Furthermore, VMs can be used for services and applications
both in cloud and physical data centers.

In addition, virtualization provides a way to manage physical servers
based on the VMs they hosted by implementing a consolidation or migra-
tion of VMs from one server to another as intended. By doing so, a com-
plete shutdown on some of the physical servers is even possible, which
highly minimize the cooling cost and intern reduce the total power con-
sumption. This will enhance failure and emergency governance [30] and
also increases the reliability of the whole infrastructure.

The goal of this thesis was to attain a thermal balance in a server cluster,
using VMs that are configured to do an autonomous migration based on the
hosting servers temperature readings. Autonomous VM migration works
in decentralized approach, where the drawbacks of implementing central-
ized approach such as, single point of failure and resource competition can
be eliminated.

63

Standing out advantage of thermal balancing as a thermal management
technique is, its potential to balance temperature of servers by making sure
there is no overheated one among them. And good enough, it does this
without performance downsides and it can be applied on heterogeneous
environments even though this advantage has not been experimented in
this thesis.

In data centers, both load balancing and thermal balancing should go
hand in hand. Because, in most of the cases assuring a balanced workload
among servers might not necessarily create a thermal balance among them.
In a typical data center, servers temperature vary in relation to their phys-
ical placement. This is due to the fact that exhaust air temperatures of racks
at the end of a row are higher than the row’s middle rack [38].

Having the thesis goal in mind, a research has been done to look for
different approaches and two approaches were considered for further im-
plementation. The first approach aimed to test the VMs ability to make
the autonomous migration choices independently by selecting destination
server based on global information, whereas the second approach does this
by trial and error to learn the environment with only partial information
provided to it.

6.2 Problem Statement

The problem statement this project tried to address was "How to achieve
thermal balance on virtualized server cluster by autonomous migration of Virtual
Machines hosted on them, based on the servers temperature readings". The state
of the art in thermal balancing was revised, and two algorithms were de-
veloped to do an autonomous VM migration in order to attain a thermal
balance in a server cluster.

The introduction chapter have set questions that needed to be answered
through the process of this thesis. This section provides how they
were answered through the design and implementation of the proposed
solutions.

• How to remaster a custom VM based on light weight Linux distri-
bution with a given workload?

The question of doing an autonomous migration was one of the key
tasks of this thesis. The core VM from the core project described in
section 2.7.1 was selected to do the task for two reasons:

(i) Its ability to be customized.

(ii) Its small size.

64

After the Core VM was selected, the next task was to search for a vir-
tualization technology and VM management tool. KVM described in
section 2.3, for virtualization and Libvirt described in section 2.2, for
VM management has been found appealing for their handy features
and vast management utilities.

Afterwards, remastering of the custom Core VM has been accom-
plished using a remastering tool described in section 2.7.2, with all
the necessary packages stated in section 3.2.1 and scripts attached in
Appendix section B. The workloads were configured with multiple
CPU utilization percentages to show a realistic workload distribution
using the stress-ng tool, built from source code, described in section
4.3.3.

In order to provision VMs from different servers in the cluster, each
VMs had to be assigned unique MAC and IP address. This has been
accomplished by editing the VM virtual bridge interface’s DHCP
range of each server as stated in section 4.3.4. The requirement was
to only specify range of reserved IPs at the servers so that the given
IPs to the VMs by Libvirt does not clash when the VMs migrate.

• How to equip VMs with autonomous decision making capability?

Two approaches were implemented based on full and partial temper-
ature information of all servers in the cluster. By the implemented
autonomous VM migration, the VMs were supposed to make de-
cisions independently and without a centralized controller and the
implemented algorithms were able to give this intelligence to the
VMs.

The first algorithm implemented was choose coolest server, that had
used temperature readings of all servers in the cluster. Based on those
readings, the VMs compute average temperature independently and
migrates to the coolest server if it is hosted on a server with higher
temperature than the calculated average temperature, otherwise it
will stay were it was.

The second algorithm used a reinforcement learning technique,
where VMs learn their environment using a distributed learning
automata. The learning automata concept was adopted from the act-
ive probing and learning algorithm provided in [25].

At the beginning, the learning automata probabilities were initialized
uniformly. Then VMs migrate independently to chosen destination

65

server randomly, according to their learning automata probability.
The visited server’s temperature is then used to reinforce this chosen
server, by increasing the probability of choosing it again. Simultan-
eously, the probability of migrating to the rest of the servers in the
cluster will be decreased. The reinforcement technique allows the
servers with low temperature to be visited too often. Besides, since
all VMs runs independent learning automata locally, it is easily scal-
able.

• How to monitor and visualize VMs activities in server cluster in
real time?

In order to monitor and visualize the temperature readings, number
of running VMs and workload distributions, Bokeh tool was con-
figured and used as seen from the experimental results gathered in
chapter 5. The average temperature readings from the 8 sensors
placed inside NUMA nodes of the servers has been plotted. Above
all, the real time monitoring made it easy to track what has happened
in terms of the monitored parameters in the server cluster. The power
consumption visualizations, on the other hand, were collected from
Kibana web application that was already in place at Metropolitan
University (OsloMet).

6.3 Results and Analysis

The experimentation phase employed the above mentioned design and im-
plementation core concepts and took place in many distinct test runs. The
final results presented in the results and analysis chapter, chapter 5 are
outcomes of this diverse experiments. As the goal of this thesis requires
balancing temperatures of virtualized servers by doing autonomous VM
migration, the results will be evaluated with regard to achieving them.

The implemented approaches where tested on three physical servers
housed in a server room at OsloMet. These servers were placed on top
of each other in a rack with other servers. As part of the experiment, the
physical placement of the servers was swapped to see if that would have
an effect on the power consumption readings. When this thesis started,
there was a huge power consumption difference between the servers and
exchanging the placement helped in minimizing that difference. But still
the server at the top i.e, trident1 is the most consuming one compared to
the other two, even in an idle situation as seen in Figure 5.2.

When it comes to the VMs, the customized VMs in this thesis were able
to make autonomous migration decisions. In the real world, when choos-
ing cloud service providers, it is crucial to consider various aspects includ-
ing pricing and security. Whenever a customer is not satisfied with the ser-
vices provided by the service providers at data centers, it would be easier

66

to migrate services across different platforms if the ability to do autonom-
ous VM migration is applied.

Furthermore, three types of workloads were used, dynamic, variable
and uniform. Dynamic workloads used, as shown in section 5.1.6, were to
test if the implemented algorithms can function well with changing envir-
onments. In data centers, handled workloads by servers differ from one
another, in addition there is a varying workload based on time and service
that servers provide. For example, web servers are usually idle in the day
time and highly utilized during night. Therefore, experimenting with a dy-
namic workload distributions reflects the real deal at data centers.

Since the concern of this thesis is not load balancing, rather balancing
the temperatures, it was also necessary to test it with variable workloads
as well, as presented in Figure 5.14. This also reflects the diverse workload
that servers handle in data centers.

The uniform workload on the other hand was set to test the maximum
utilization of the servers with full percentage CPU utilization, which might
be the case occasionally even in data centers.

In addition, these workloads were distributed, by running different
number of VMs on the servers as seen in Figures 5.7, 5.15, 5.22, 5.27 and
5.34, so as to create a noticeable temperature imbalances on the servers
when the experiments were conducted.

The experimental results showed that the goal of attaining a thermal
balance in a server cluster using VMs capable of making autonomous mi-
gration was a success story from the conducted experiments.

This achievement can scale and be used in real data centers. The
autonomous VM migration can highly benefit and improve data centers
VM management. Regarding the thermal balance, since the temperat-
ure readings used in this thesis were physical temperatures, they do not
provide accurate temperature readings of the servers. Therefore, the same
approach can be used and tested with data from real temperature monitor-
ing tools in a data center.

When this thesis was started there was a hope that it would reduce
power consumption, but it turns out there was no significant promotion
or reduction in the power consumption. This was because the used CPU
temperatures were not able to relate to the monitored power consumption
readings, in addition there was a limit on the number of VMs used, that
prevented conducting experiments with higher than 45 VMs, as there was
unstable server in the cluster.

Nonetheless, the two algorithms have ensured thermal balancing by
autonomous VM migration. They both have got their own advantages and

67

disadvantages as well. The next section provides a comparison between
them.

6.4 Algorithm Comparison

The experimental results showed that choose coolest server algorithm con-
verges faster than the learn to balance algorithm. Appendix section C sub-
section C.8 and Figure 5.35 are evident for this. Since the choose coolest
server algorithm provide the VMs full knowledge of their environment, it
had been easier to make the right decisions and reach to a thermally bal-
anced state faster.

The learn to balance was an advanced algorithm based on reinforce-
ment learning technique. The partial information provided for the VMs
brought an issue when it comes to convergence, since the VMs were mov-
ing with trial and errors to learn their environment, in order to reach at a
balanced state.

Another parameter to compare the algorithms with is, the maximum
temperature difference between the servers after the attained thermal bal-
ance. With this regard, the results showed a bit higher temperature dif-
ferences among the servers compared to the learn to balance algorithm
as given in the box plot representation Figures 5.42 and 5.32 captured for
the uniform workload distribution with 12 VMs. keep in mind that, the
choose coolest server algorithm used time varying delta temperature value,
in which VMs stay where they are when a specific temperature difference
was reached and thermal balance was attained.

The temperature difference when the thermal balance was attained
and the convergence time taken for both algorithms can be seen from the
summary provided in Tables 5.4 and 5.5 for variable and uniform workload
distributions with 12 VMs respectively.

6.5 Future Work

Since data centers are increasing in number and size, with all the growing
server density and all the huge number of facilities they comprehend, there
is a huge demand for thermal management. On this thesis thermal balan-
cing by autonomous VM migration has been experimented.

Another thing to consider would be CPU utilization. Focusing only on
the CPU temperature readings was not good enough, because the thermal
effect stays unchanged even after some VMs has migrated already. As a
future work, if CPU utilization and Temperature readings would be con-
sidered together in the design of the autonomous migration, that will ad-
dress the issue experimented in this thesis from multiple perspectives.

68

In addition, the focus of this thesis was only on autonomous migration
of VMs in a server cluster and it doesn’t consider the option of scheduling
VMs on NUMA nodes of the server. This was left to the OS scheduler and
any future work might consider that.

6.6 Conclusion

The goal of this thesis was to attain a thermal balance in a virtualized server
cluster, by doing an autonomous migration of VMs, based on real time CPU
temperature readings of the servers.

This thesis has proposed two algorithms, choose coolest server and
learn to balance, in order to equip VMs with an intelligence to do autonom-
ous migration decisions to maintain a thermal balance in a server cluster.

Multiple experiments conducted have revealed the VMs ability to do
an autonomous migration to attain a thermal balance among servers in the
cluster. Among the two implemented algorithms, the choose coolest server
algorithm has been found better in terms of time it take to attain a thermal
balance. In contrary, the learn to balance algorithm has shown a better per-
formance with regard to thermal variation among servers in the cluster.

69

70

Bibliography

[1] Mariana Agache and B John Oommen. ‘Generalized pursuit learning
schemes: New families of continuous and discretized learning
automata’. In: IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 32.6 (2002), pp. 738–749.

[2] Kishwar Ahmed et al. ‘Online Resource Management for Carbon-
Neutral Cloud Computing’. In: Handbook on Data Centers. Springer,
2015, pp. 607–630.

[3] AMD Opteron™ 6000 Series Platform. URL: https://products.amd.com/
en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%
84%A2-6200-Series-Processor/6234/33 (visited on 11/02/2018).

[4] AMD Temp Information and Guide. URL: http ://www.overclock .net/
forum / 10 - amd - cpus / 1128821 - amd - temp - information - guide . html
(visited on 29/09/2011).

[5] Heni Ben Arab. ‘Virtual Machines Live Migration’. In: PDF document.
Available at (2017).

[6] Maria Avgerinou, Paolo Bertoldi and Luca Castellazzi. ‘Trends in
Data Centre Energy Consumption under the European Code of
Conduct for Data Centre Energy Efficiency’. In: Energies 10.10 (2017),
p. 1470.

[7] Jeff Beckham. Cloud Computing vs. Virtualization: The Differences and
Benefits. URL: https://blogs.cisco.com/smallbusiness/cloud-computing-
vs-virtualization-the-differences-and-benefits (visited on 04/02/2018).

[8] Jeffrey Kramer Ben Cutler Spencer Fowers and Eric Peterson. ‘Want
an Energy-Efficient Data Center? Build It Underwater’. In: (2017).

[9] Bokeh. User Guide to Bokeh. URL: https://bokeh.pydata.org/en/latest/
docs/user_guide.html (visited on 04/03/2018).

[10] Susanta Nanda Tzi-cker Chiueh and Stony Brook. ‘A survey on
virtualization technologies’. In: Rpe Report 142 (2005).

[11] Hyung Won Choi et al. ‘Autonomous learning for efficient resource
utilization of dynamic vm migration’. In: Proceedings of the 22nd
annual international conference on Supercomputing. ACM. 2008, pp. 185–
194.

71

https://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6234/33
https://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6234/33
https://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6234/33
http://www.overclock.net/forum/10-amd-cpus/1128821-amd-temp-information-guide.html
http://www.overclock.net/forum/10-amd-cpus/1128821-amd-temp-information-guide.html
https://blogs.cisco.com/smallbusiness/cloud-computing-vs-virtualization-the-differences-and-benefits
https://blogs.cisco.com/smallbusiness/cloud-computing-vs-virtualization-the-differences-and-benefits
https://bokeh.pydata.org/en/latest/docs/user_guide.html
https://bokeh.pydata.org/en/latest/docs/user_guide.html

[12] Hyung Won Choi et al. ‘Enabling Scalable Cloud Infrastructure Using
Autonomous VM Migration’. In: High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on. IEEE. 2012, pp. 1066–1073.

[13] Christopher Clark et al. ‘Live migration of virtual machines’. In:
Proceedings of the 2nd Conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2. USENIX Association. 2005,
pp. 273–286.

[14] Amos Waterland Colin King. How To Stress Test CPU and Memory
(VM) On a Linux and Unix With Stress-ng. URL: https://www.cyberciti.
biz / faq / stress - test - linux - unix - server - with - stress - ng/ (visited on
28/03/2018).

[15] Amos Waterland Colin King. stress-ng Manual. URL: http : //kernel .
ubuntu.com/~cking/stress-ng/stress-ng.pdf (visited on 28/03/2018).

[16] Martin Duggan et al. ‘An autonomous network aware vm migration
strategy in cloud data centres’. In: Cloud and Autonomic Computing
(ICCAC), 2016 International Conference on. IEEE. 2016, pp. 24–32.

[17] Richard Evans and Jim Gao. ‘DeepMind AI Reduces Google Data
Centre Cooling Bill by 40%’. In: (2016).

[18] Yong Fu, Chenyang Lu and Hongan Wang. ‘Robust control-theoretic
thermal balancing for server clusters’. In: Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on. IEEE. 2010,
pp. 1–11.

[19] Brice Goglin and Nathalie Furmento. ‘Enabling high-performance
memory migration for multithreaded applications on linux’. In:
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE. 2009, pp. 1–9.

[20] Whitson Gordon. How to Monitor Your Computer’s CPU Temperature.
URL: https://www.howtogeek.com/howto/windows-vista/ever-wonder-
what-temperature-your-cpu-is-running-at/ (visited on 21/02/2018).

[21] Martijn Groot. A Primer in Financial Data Management. Academic
Press, 2017.

[22] Chung-hsing Hsu and Wu-chun Feng. ‘A power-aware run-time
system for high-performance computing’. In: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. IEEE Computer Society.
2005, p. 1.

[23] Bernadette Johnson. How Data Centers Work. URL: https://computer.
howstuffworks.com/data-centers.htm.

[24] Colin King. Stress-ng. URL: http://kernel.ubuntu.com/git/cking/stress-
ng.git/ (visited on 28/03/2018).

72

https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/
https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/
http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf
http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf
https://www.howtogeek.com/howto/windows-vista/ever-wonder-what-temperature-your-cpu-is-running-at/
https://www.howtogeek.com/howto/windows-vista/ever-wonder-what-temperature-your-cpu-is-running-at/
https://computer.howstuffworks.com/data-centers.htm
https://computer.howstuffworks.com/data-centers.htm
http://kernel.ubuntu.com/git/cking/stress-ng.git/
http://kernel.ubuntu.com/git/cking/stress-ng.git/

[25] Hong Li, Lorne Mason and Michael Rabbat. ‘Learning minimum
delay paths in service overlay networks’. In: Network Computing and
Applications, 2008. NCA’08. Seventh IEEE International Symposium on.
IEEE. 2008, pp. 271–274.

[26] Vaishakhi Maheshwari and Mohit Patel. ‘Live Migration using
VM/TPM Protocol of Virtual Machine on Private Cloud’. In: (2017).

[27] Nakul Manchanda and Karan Anand. ‘Non-uniform memory access
(numa)’. In: New York University 4 (2010).

[28] Daniel A Menascé. ‘Virtualization: Concepts, applications, and per-
formance modeling’. In: Int. CMG Conference. 2005, pp. 407–414.

[29] Mayank Mishra et al. ‘Dynamic resource management using virtual
machine migrations’. In: IEEE Communications Magazine 50.9 (2012).

[30] Justin D Moore et al. ‘Making Scheduling" Cool": Temperature-
Aware Workload Placement in Data Centers.’ In: USENIX annual
technical conference, General Track. 2005, pp. 61–75.

[31] Justin Moore and Parthasarathy Ranganathan. Thermal management of
data centers. US Patent 7,620,613. Nov. 2009.

[32] Justin Moore et al. ‘Going beyond CPUs: The potential of temperature-
aware solutions for the data center’. In: Proc. 2004 First Workshop
Temperature-Aware Computer Systems (TACS-1) Held in Conjunction
with ISCA-31. 2004.

[33] Luca Parolini, Bruno Sinopoli and Bruce H Krogh. ‘Reducing data
center energy consumption via coordinated cooling and load man-
agement’. In: Proceedings of the 2008 conference on Power aware comput-
ing and systems, HotPower. Vol. 8. 2008, pp. 14–14.

[34] Chandrakant D Patel et al. ‘Smart cooling of data centers’. In:
ASME 2003 International Electronic Packaging Technical Conference and
Exhibition. American Society of Mechanical Engineers. 2003, pp. 129–
137.

[35] The Core Project. Ezremaster Overview. URL: http://wiki.tinycorelinux.
net/wiki:remastering_with_ezremaster (visited on 14/02/2018).

[36] The Core Project. Introduction to Core.

[37] Disha Sangar. ‘Will You Carry Me’. MA thesis. 2017.

[38] Ratnesh K Sharma et al. ‘Balance of power: Dynamic thermal
management for internet data centers’. In: IEEE Internet Computing
9.1 (2005), pp. 42–49.

[39] James E Smith and Ravi Nair. ‘The architecture of virtual machines’.
In: Computer 38.5 (2005), pp. 32–38.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. Vol. 1. 1. MIT press Cambridge, 1998.

[41] Richard S Sutton and Andrew G Barto. ‘Reinforcement learning: An
introduction’. In: (2017).

73

http://wiki.tinycorelinux.net/wiki:remastering_with_ezremaster
http://wiki.tinycorelinux.net/wiki:remastering_with_ezremaster

[42] Yuya Tarutani et al. ‘Reducing power consumption in data center
by predicting temperature distribution and air conditioner efficiency
with machine learning’. In: Cloud Engineering (IC2E), 2016 IEEE
International Conference on. IEEE. 2016, pp. 226–227.

[43] Morgan Tatchell-Evans et al. ‘An experimental and theoretical in-
vestigation of the effects of supply air conditions on computational
efficiency in data centers employing aisle containment’. In: Thermal
Measurement, Modeling & Management Symposium (SEMI-THERM),
2017 33rd. IEEE. 2017, pp. 100–107.

[44] The JSON Data Interchange Syntax. URL: http : / / www . ecma -
international.org/publications/files/ECMA-ST/ECMA-404.pdf (visited
on 12/2017).

[45] Mueen Uddin and Azizah Abdul Rahman. ‘Server consolidation: An
approach to make data centers energy efficient and green’. In: arXiv
preprint arXiv:1010.5037 (2010).

[46] Fredrik Meyn Ung. ‘Towards efficient and cost-effective live migra-
tions of virtual machines’. MA thesis. 2015.

[47] Anis Yazidi. ‘Intelligent learning automata-based strategies applied
to personalized service provisioning in pervasive environments’. In:
(2011).

[48] Jie Zheng et al. ‘Comma: Coordinating the migration of multi-tier
applications’. In: ACM SIGPLAN Notices. Vol. 49. 7. ACM. 2014,
pp. 153–164.

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Appendices

75

Appendix A

Environmental Setup

A.1 Creating the customized Core .iso

1 #!/bin/sh
2

3 # Install openssh and ezremaster
4 tce-load -iw openssh.tcz ezremaster.tcz python.tcz

python-numpy.tcz python3.4.tcz↪→

5

6 # Start the SSH server
7 sudo /usr/local/etc/init.d/openssh start
8

9 # wget the Core-current.iso file to /tmp
10 wget

http://distro.ibiblio.org/tinycorelinux/6.x/x86/release/Core-current.iso
-P /tmp

↪→

↪→

11

12 # ezremaster walkthrough
13 read -p "Open ezremaster. Click on the ezremaster icon (looks

like a CD with 'ez' on it) at the bottom of the screen."↪→

14 read -p "Use ISO Image, specifying the /tmp/Core-current.iso
file"↪→

15 read -p "Next, Next"
16 read -p "Click load under the 'Extract TCZ in to initrd'"
17 read -p "Remove everything except openssh.tcz"
18 read -p "Next until you can Create ISO (BUT DON'T CREATE ISO

YET)"↪→

19 read -p "Press Enter to continue..."
20

21 ###########################
22 # Modifying the new build #
23 ###########################
24

25 # Build stress-ng
26 sudo cp /tmp/stress-ng /tmp/ezremaster/extract/usr/bin/

77

27

28 # Edit the isolinux.cfg file to change the boot timeout from
300 (30 seconds) to 10 (1 second)↪→

29 sudo cp /tmp/ezremaster/image/boot/isolinux/isolinux.cfg
/tmp/ezremaster/image/boot/isolinux/isolinux.cfg.backup↪→

30 sudo sed -i 's/timeout 300/timeout 10/'
/tmp/ezremaster/image/boot/isolinux/isolinux.cfg↪→

31

32 # Add the SSH keys generated when TinyCore installed SSH. Not
required, but otherwise every reboot will generate new
keys.

↪→

↪→

33 sudo cp -f /usr/local/etc/ssh/ssh_host_*
/tmp/ezremaster/extract/usr/local/etc/ssh↪→

34

35 # Edit the SSH server configuration
36 sudo cp /tmp/ezremaster/extract/usr/local/etc/ssh/sshd_config

/tmp/ezremaster/extract/usr/local/etc/ssh/sshd_config.backup↪→

37 sudo sed -i 's/#PermitRootLogin/PermitRootLogin/'
/tmp/ezremaster/extract/usr/local/etc/ssh/sshd_config↪→

38 sudo sed -i 's/#GatewayPorts no/GatewayPorts yes/'
/tmp/ezremaster/extract/usr/local/etc/ssh/sshd_config↪→

39

40 # Ensure the correct file permissions for the SSH keys
41 sudo chown root

/tmp/ezremaster/extract/usr/local/etc/ssh/ssh_host*↪→

42 sudo chmod 644
/tmp/ezremaster/extract/usr/local/etc/ssh/ssh_host*pub↪→

43 sudo chmod 600
/tmp/ezremaster/extract/usr/local/etc/ssh/ssh_host*key↪→

44

45 # Start the SSH server on boot
46 sudo cp /tmp/ezremaster/extract/opt/bootlocal.sh

/tmp/ezremaster/extract/opt/bootlocal.sh.backup↪→

47 sudo echo "/usr/local/etc/init.d/openssh start" >>
/tmp/ezremaster/extract/opt/bootlocal.sh↪→

48

49 # Start custom workload on boot
50 sudo cp /tmp/workload.py /tmp/ezremaster/extract/opt/
51 sudo chmod +x /tmp/ezremaster/extract/opt/workload.py
52 sudo echo "/opt/workload.py &" >>

/tmp/ezremaster/extract/opt/bootlocal.sh↪→

53

54 sudo cp /tmp/client.py /tmp/ezremaster/extract/opt/
55 sudo chmod +x /tmp/ezremaster/extract/opt/client.py
56 sudo echo "/opt/client.py &" >>

/tmp/ezremaster/extract/opt/bootlocal.sh↪→

57

58 sudo cp /tmp/__init__.py /tmp/ezremaster/extract/opt/

78

59 sudo cp /tmp/rl.py /tmp/ezremaster/extract/opt/
60 sudo cp /tmp/utils.py /tmp/ezremaster/extract/opt/
61

62 # Put bootlocal in .filetool.lst
63 sudo echo "/opt/bootlocal.sh" >>

/tmp/ezremaster/extract/opt/.filetool.lst↪→

64

65 # Give the "tc" user a password
66 passwd tc
67

68 # Change root user password
69 sudo passwd root
70

71 # Copy the /etc/shadow & /etc/passwd files (which have the new
tc and root passwords) from the current TinyCore operating
system to the new Core build

↪→

↪→

72 sudo cp -f /etc/shadow /tmp/ezremaster/extract/etc/shadow
73 sudo cp -f /etc/passwd /tmp/ezremaster/extract/etc/passwd
74

75 read -p "Now click on Create ISO...script is done. File
location: /tmp/ezremaster/ezremaster.iso"↪→

79

80

Appendix B

Developed Scripts

B.1 client.py

1 #!/usr/local/bin/python
2 # -*- coding: utf-8 -*-
3

4 import socket
5 import json
6 import time
7 import random
8 from copy import deepcopy
9 from utils import *

10 from rl import RlAgent
11

12 ''' Client
13 '''
14 class Client(object):
15 def __init__(self):
16 self.rlAgent = RlAgent()
17 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
18 self.port = 10000
19 self.client_message = deepcopy(CLIENT_MESSAGE)
20 self.client_data = {
21 "hostName" : "",
22 "ip" : "",
23 "mac" : "",
24 "load" : 0
25 }
26

27 def run(self):
28 # Get Client data
29 self._getClientData()
30

31 # Wait 5 minutes
32 time.sleep(300)

81

33

34 while True:
35 # VM wakes randomly
36 rand_time = random.randint(60, 180)
37 print("Rand Time = {}".format(rand_time))
38 time.sleep(rand_time)
39

40 # Choose action
41 action = self.rlAgent.takeAction()
42 migrate = True if action != self.client_data["hostName"] else

False↪→

43 print("migrate? = {}, action = {}".format(migrate, action))
44

45 # Migrate
46 if(migrate):
47 self.client_message["request"]["login"] = False
48 self.client_message["request"]["migration"] = True
49 self.client_message["request"]["temperature"] = False
50 self.client_message["vm"]["mac"] =

self.client_data["mac"]↪→

51 self.client_message["vm"]["target"] = action
52 self.client_message["vm"]["load"] =

self.client_data["load"]↪→

53 self.client_message["prob"]["trident1.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident1"]↪→

54 self.client_message["prob"]["trident2.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident2"]↪→

55 self.client_message["prob"]["trident3.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident3"]↪→

56 self.sock.sendto(json.dumps(self.client_message).encode('utf-8'),
(self.client_data["ip"], self.port))↪→

57 print("sent: {} to {}".format(self.client_message,
action))↪→

58

59 # Sleep for 60 sec, for migration to complete
60 time.sleep(60)
61 else:
62 print("VM choose to stay")
63

64 try:
65 # Update Client status
66 self._getClientData()
67

68 # Request Temperature
69 self.client_message["request"]["login"] = False
70 self.client_message["request"]["temperature"] = True
71 self.client_message["request"]["migration"] = False

82

72 self.client_message["vm"]["mac"] =
self.client_data["mac"]↪→

73 self.client_message["vm"]["target"] =
self.client_data["hostName"]↪→

74 self.client_message["vm"]["load"] =
self.client_data["load"]↪→

75 self.client_message["prob"]["trident1.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident1"]↪→

76 self.client_message["prob"]["trident2.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident2"]↪→

77 self.client_message["prob"]["trident3.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident3"]↪→

78 self.sock.sendto(json.dumps(self.client_message).encode('utf-8'),
(self.client_data["ip"], self.port))↪→

79 print("sent: {}".format(self.client_message))
80

81 # Receive response
82 print("waiting to receive")
83 self.sock.settimeout(15.0)
84 data, server = self.sock.recvfrom(1024)
85 self.sock.settimeout(None)
86 server_message = json.loads(data.decode('utf-8'))
87 print("received: {} from {}".format(server_message,

server))↪→

88

89 # Learn
90 maxTemp = server_message["maxTemp"]
91 hostTemp = server_message["hostTemp"]
92 self.rlAgent.learn(action, maxTemp, hostTemp)
93 except:
94 print("Socket timeout")
95

96 def _getClientData(self):
97 # Send client data request
98 while True:
99 try:

100 # Get client data
101 self.client_data["hostName"] = getHostName()
102 self.client_data["ip"] =

getHostIp(self.client_data["hostName"])↪→

103 self.client_data["mac"] = getVmMac()
104 self.client_data["load"] = getLoad()
105 print('VM is at: {}, on

{}'.format(self.client_data["hostName"],
(self.client_data["ip"], self.port)))

↪→

↪→

106

107 # Send Request
108 self.client_message["request"]["login"] = True

83

109 self.client_message["request"]["temperature"] = False
110 self.client_message["request"]["migration"] = False
111 self.client_message["vm"]["mac"] =

self.client_data["mac"]↪→

112 self.client_message["vm"]["target"] =
self.client_data["hostName"]↪→

113 self.client_message["vm"]["load"] =
self.client_data["load"]↪→

114 self.client_message["prob"]["trident1.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident1"]↪→

115 self.client_message["prob"]["trident2.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident2"]↪→

116 self.client_message["prob"]["trident3.vlab.cs.hioa.no"]
= self.rlAgent.prob["trident3"]↪→

117 self.sock.sendto(json.dumps(self.client_message).encode('utf-8'),
(self.client_data["ip"], self.port))↪→

118 print("sent: {}".format(self.client_message))
119

120 # Receive response
121 print("waiting to receive login request")
122 self.sock.settimeout(15.0)
123 data, server = self.sock.recvfrom(1024)
124 self.sock.settimeout(None)
125 server_message = json.loads(data.decode('utf-8'))
126 print("received: {} from {}".format(server_message,

server))↪→

127 break
128 except:
129 print("Login Request Socket Timed out, Retrying ...")
130 time.sleep(30)
131

132 '''
133 Main
134 '''
135 if __name__ == "__main__":
136 Client().run()

B.2 server.py

1 #!/usr/bin/python3
2 # -*- coding: utf-8 -*-
3

4 import socket
5 import json
6 import threading
7 import time
8 import sys

84

9 import os
10 import signal
11 import logging
12 from copy import deepcopy
13

14 from utils import *
15 import calibrate
16

17 logging.basicConfig(filename="/var/tmp/server.log",
18 level=logging.DEBUG,
19 format="%(asctime)s:%(levelname)s:%(message)s")
20

21 ''' Server
22 '''
23 class Server(object):
24 def __init__(self, initialTemp, maxTemp):
25 # Calibration temperature
26 self.calibrationTemp = initialTemp
27

28 # Register Signal Handler
29 signal.signal(signal.SIGINT, self._signal_handler)
30

31 # Server message containing max and host temperature
32 self.server_message = deepcopy(SERVER_MESSAGE)
33 self.server_message["maxTemp"] = maxTemp
34

35 # List of VMs running on server with their corresponging load
36 self.vms = {}
37

38 # Python create mutex
39 self.my_mutex = threading.Lock()
40

41 # Create a UDP socket and bind the socket to the port
42 self.client_socket = socket.socket(socket.AF_INET,

socket.SOCK_DGRAM)↪→

43 self.plot_socket = socket.socket(socket.AF_INET,
socket.SOCK_DGRAM)↪→

44

45 # Ports
46 self.client_port = 10000
47 self.plot_port = 10002
48

49 self.client_socket.bind(("", self.client_port))
50 self.plot_socket.bind(("", self.plot_port))
51

52 def _signal_handler(self, signal, frame):
53 logging.info('Signal Interrupt Caught!')
54 self.client_socket.close()

85

55 self.plot_socket.close()
56 sys.exit(0)
57

58 def __del__(self):
59 logging.debug("Server Exited")
60

61 def run(self):
62 # Handle login
63 loginThread = threading.Thread(target=self._handleLogin)
64 loginThread.start()
65

66 # Handle plot
67 plotThread = threading.Thread(target=self._handlePlot)
68 plotThread.start()
69

70 # Handle client
71 clientThread = threading.Thread(target=self._handleClient)
72 clientThread.start()
73

74 clientThread.join()
75 plotThread.join()
76 loginThread.join()
77

78 def _handleLogin(self):
79 while True:
80 logging.debug("---------------------- handleLogin

---------------")↪→

81

82 # Delete VMs Loggedout
83 try:
84 vms = getVmsLoggedin()
85 self.my_mutex.acquire()
86 loggedoutVms = [vm for vm in self.vms if vm not in vms]
87 for vm in loggedoutVms:
88 logging.info("VM: {} Loggedout".format(vm))
89 del self.vms[vm]
90 self.my_mutex.release()
91 logging.debug("Logged in clients = {}".format(self.vms))
92 except:
93 logging.error("Exception in HandleLogin thread")
94 time.sleep(15)
95

96 def _handlePlot(self):
97 while True:
98 logging.debug("---------------------- handlePlot

---------------")↪→

99 logging.info("waiting to receive server plot data request")
100 data, address = self.plot_socket.recvfrom(4096)

86

101 logging.info("Received server plot data request")
102

103 # Server plot data
104 try:
105 plotData = deepcopy(SERVER_PLOT_DATA)
106 hostTemp = (getHostTemp() - self.calibrationTemp) /

getNumberOfNodes()↪→

107 plotData["hostTemp"] = hostTemp if hostTemp >= 0.0 else 0.0
108 plotData["numVms"] = getNumberOfVms()
109

110 self.my_mutex.acquire()
111 for vm, value in self.vms.items():
112 plotData["vmLoads"][str(value["load"])] += 1
113 plotData["vms"].append(self.vms[vm])
114 self.my_mutex.release()
115

116 sent =
self.plot_socket.sendto(json.dumps(plotData).encode('utf-8'),
address)

↪→

↪→

117 logging.info("Sent {} to {}".format(plotData, address))
118 except:
119 logging.error("Exception in HandlePlot thread")
120

121 def _handleClient(self):
122 while True:
123 logging.debug("---------------------- handleClient

---------------")↪→

124

125 # Get VM message
126 logging.debug("Waiting to receive client message")
127 data, address = self.client_socket.recvfrom(1024)
128 client_message = json.loads(data.decode('utf-8'))
129 logging.info("Received {} from {}".format(client_message,

address))↪→

130

131 try:
132 # Get VM Domain Name
133 vm = getVmName(client_message["vm"]["mac"])
134 vmLoad = client_message["vm"]["load"]
135

136 # Process Client Message
137 if vm != "":
138 if client_message["request"]["login"]:
139 # Register VM
140 if str(vmLoad) in SERVER_PLOT_DATA["vmLoads"]:
141 logging.info("Added VM: {} Load: {}".format(vm,

vmLoad))↪→

142 self.my_mutex.acquire()

87

143 self.vms[vm] = {
144 "vm" : vm,
145 "load" : vmLoad,
146 "prob" : client_message["prob"]
147 }
148 self.my_mutex.release()
149

150 # Send Response
151 sent =

self.client_socket.sendto(json.dumps(client_message).encode('utf-8'),
address)

↪→

↪→

152 logging.info("Sent {} back to
{}".format(client_message, address))↪→

153 else:
154 logging.error("VM Load not in SERVER_PLOT_DATA")
155 elif client_message["request"]["temperature"]:
156 # Send Response
157 hostTemp = getHostTemp() - self.calibrationTemp
158 self.server_message["hostTemp"] = hostTemp if hostTemp >= 0.0

else 0.0↪→

159 sent =
self.client_socket.sendto(json.dumps(self.server_message).encode('utf-8'),
address)

↪→

↪→

160 logging.info("Sent {} back to {}".format(self.server_message,
address))↪→

161

162 # Update VM Load
163 self.my_mutex.acquire()
164 if str(vmLoad) in SERVER_PLOT_DATA["vmLoads"]:
165 logging.info("Updated VM: {} Load: {}".format(vm,

vmLoad))↪→

166 self.vms[vm]["vm"] = vm
167 self.vms[vm]["load"] = vmLoad
168 self.vms[vm]["prob"] = client_message["prob"]
169 else:
170 logging.error("VM Load not in SERVER_PLOT_DATA")
171 self.my_mutex.release()
172 elif client_message["request"]["migration"]:
173 # MigrateVm
174 target = client_message["vm"]["target"]
175 migrationThread = threading.Thread(target=migrateVm, args=[vm,

target])↪→

176 migrationThread.setDaemon(True)
177 migrationThread.start()
178 migrationThread.join()
179 logging.debug("migrated {} to {}".format(vm, target))
180

181 # Delete VM Load

88

182 self.my_mutex.acquire()
183 if vm in self.vms:
184 logging.info("Deleted VM: {} Load: {}".format(vm,

self.vms[vm]["load"]))↪→

185 del self.vms[vm]
186 self.my_mutex.release()
187 else:
188 logging.error("Wrong VM Request Message")
189 else:
190 logging.error("VM Domain-Name did not deduced correctly")
191 except:
192 logging.error("Exception in HandleClient thread")
193

194 ''' Main
195 '''
196 if __name__ == "__main__":
197 # Clear Log Content
198 with open('/var/tmp/server.log','w'): pass
199

200 # Get calibration temperature
201 initialTemp = calibrate.Calibrate(600).getCalibrationTemp()
202 maxTemp = 250 # for 10 VMs @100% load
203 logging.info("Initial Average Host Temperature = {} and maxTemp

= {}".format(initialTemp, maxTemp))↪→

204

205 # Start Server
206 Server(initialTemp, maxTemp).run()

B.3 workload.py

1 #!/usr/local/bin/python
2 # -*- coding: utf-8 -*-
3

4 from collections import deque
5 from threading import Timer
6 from random import shuffle
7 import subprocess
8

9 class PeriodicTask():
10 def __init__(self, interval, callback, daemon=False,

**kwargs):↪→

11 self.interval = interval
12 self.callback = callback
13 self.daemon = daemon
14 self.kwargs = kwargs
15

16 # Initialize random load from list

89

17 loadList = [25, 50, 75, 100]
18 shuffle(loadList)
19 self.load = deque(loadList)
20

21 def run(self):
22 load = self.load.pop()
23 self.load.appendleft(load)
24 self.callback(load, self.interval,

**self.kwargs)↪→

25 t = Timer(self.interval, self.run)
26 t.daemon = self.daemon
27 t.start()
28

29 def job(load, timeout):
30 cmd = "stress-ng --cpu 1 --cpu-method matrixprod

--cpu-load %s --timeout %s &" % (load, timeout)↪→

31 output = subprocess.check_call(cmd, shell=True)
32 return output
33

34 '''
35 Main
36 '''
37 if __name__ == "__main__":
38 task = PeriodicTask(interval=1800, callback=job)
39 task.run()

B.4 utils.py

1 # -*- coding: utf-8 -*-
2

3 import subprocess
4

5 SERVERS = {
6 "trident1.vlab.cs.hioa.no" : "128.39.120.89",
7 "trident2.vlab.cs.hioa.no" : "128.39.120.90",
8 "trident3.vlab.cs.hioa.no" : "128.39.120.91"
9 }

10

11 SERVER_MESSAGE = {
12 "maxTemp" : 0.0,
13 "hostTemp" : 0.0
14 }
15

16 CLIENT_MESSAGE = {
17 "request" : {
18 "login" : False,
19 "temperature" : False,

90

20 "migration" : False
21 },
22 "vm" : {
23 "mac" : "",
24 "target" : "",
25 "load" : 0
26 },
27 "prob" : {
28 "trident1.vlab.cs.hioa.no" : 0.0,
29 "trident2.vlab.cs.hioa.no" : 0.0,
30 "trident3.vlab.cs.hioa.no" : 0.0
31 }
32 }
33

34 def getHostName():
35 hostName = ""
36 for key, value in SERVERS.items():
37 cmd = "sudo traceroute -n %s | tail -n+2 | awk

'{ print $2 }' | wc -l" % (value)↪→

38 try:
39 if(int(subprocess.check_output(cmd,

shell=True).decode('UTF-8').rstrip("\n"))
== 1):

↪→

↪→

40 hostName = key
41 break
42 except subprocess.CalledProcessError as e:
43 print("ERROR: :

{reason}".format(reason=e))↪→

44 return hostName
45

46 def getHostIp(hostName):
47 hostIp = ""
48 if hostName in SERVERS:
49 hostIp = SERVERS[hostName]
50 return hostIp
51

52 def getVmMac():
53 try:
54 mac = subprocess.check_output("sudo ifconfig |

grep 'HWaddr' | awk '{print $NF}'",
shell=True).decode('UTF-8').rstrip("\n")

↪→

↪→

55 return mac.lower()
56 except subprocess.CalledProcessError as e:
57 print("ERROR: : {reason}".format(reason=e))
58 return ""
59

60 def getLoad():
61 try:

91

62 load = subprocess.check_output("sudo ps | grep
stress-ng | head -1 | awk '{print $NF}'",
shell=True).decode('UTF-8').rstrip("\n")

↪→

↪→

63 return int(load)
64 except subprocess.CalledProcessError as e:
65 print("ERROR: : {reason}".format(reason=e))
66 return 0

92

Appendix C

Experimental Results

C.1 Choose Coolest Server Algorithm: Uniform
Workload with 12 VMs

Figure C.1: Variable workload distribution after thermal balancing

Figure C.2: Number of running VMs with uniform workload

93

Figure C.3: Temperature readings with uniform workload

Figure C.4: Uniform workload distribution after thermal balancing

Figure C.5: Power consumption reading with uniform workload

94

C.2 Choose Coolest Server Algorithm: Variable Work-
load with 12 VMs

Figure C.6: Initial Variable workload distribution

Figure C.7: Number of running VMs with variable workload

Figure C.8: Temperature readings with variable workload

95

Figure C.9: Variable workload distribution after thermal balancing

Figure C.10: Power consumption reading with variable workload

96

	I Introduction
	Introduction
	Motivation
	Problem Statement

	Background
	Virtualization
	Libvirt
	Kernel-based Virtual Machine
	Live Migration
	Live Migration Techniques

	Non-Uniform Memory Access Architecture
	Reinforcement Learning
	Elements of Reinforcement Learning
	Learning Automata

	Tools
	The Core Project
	ezremaster
	Bokeh
	systemd
	stress-ng

	Related Works
	Autonomous VM Migration
	Thermal Management in Data Centers
	Power Consumption Reduction in Data Centers

	II The project
	Approach
	Objectives
	Design
	Environmental Setup
	Algorithm Design
	Temperature Information Exchange
	Autonomous Migration

	Implementation
	Underlying Tools and Technologies
	Deployment Scripts
	Algorithm Implementation

	Experimentation, Result and Analysis
	Experiments and Results
	Data Analysis and Comparison

	Design and Implementation
	Environmental Setup
	Physical Server Specification and Configuration
	Virtual Machine Configuration
	Workload Configuration on VMs

	Design
	Choose Coolest Server
	Learn to Balance

	Implementation
	Customizing an ISO Image
	Registering a script as a Linux systemd service
	Generating Workload on Running VMs
	Deployment and Migration of Virtual Machines
	Monitoring Configuration

	Results and Analysis
	Experimental Results: Choose Coolest Server Algorithm
	Preliminary Experiment
	Uniform Workload Results
	Uniform Workload Analysis
	Variable workload Results
	Variable workload Analysis
	Dynamic workload Results
	Dynamic workload Analysis

	Experimental Results: Learn to Balance Algorithm
	Uniform Workload Results
	Uniform Workload Analysis
	Variable Workload Results
	Variable Workload Analysis

	Algorithms Comparison

	III Conclusion
	Discussion and Conclusion
	Background
	Problem Statement
	Results and Analysis
	Algorithm Comparison
	Future Work
	Conclusion

	Appendices
	Environmental Setup
	Creating the customized Core .iso

	Developed Scripts
	client.py
	server.py
	workload.py
	utils.py

	Experimental Results
	Choose Coolest Server Algorithm: Uniform Workload with 12 VMs
	Choose Coolest Server Algorithm: Variable Workload with 12 VMs

