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Abstract

In today’s digital world cloud computing is key and it is growing. At
the same time we are trying to maximize resource utilization. Running
big, old general-purpose operating systems on virtual machines in the
cloud is not a good way to do this. Using for instance Linux and
iptables for firewalling can very much limit throughput and latency on
a network. Using unikernels instead can revolutionize cloud computing,
saving a huge amount of resources while providing better performance and
security.

In this thesis, we look at unikernels for enhancing network performance
in router- and firewall-VMs, while greatly minimizing resource usage
compared to Linux’ and iptables, ipset, and the newer nftables. Using a
server running VMware’s ESXi hypervisor, we set up a network of VMs
consisting of a client and a target running Ubuntu and firewalls running
Ubuntu Server, IncludeOS and Alpine Linux. Iperf, Netperf and hping3
was used to measure network performance.

Using only a fraction of the resources of the Linux VMs, the IncludeOS
unikernel showed that it can manage large traffic volumes while blocking
thousands of ports or IPs without negatively affecting throughput. In
fact, our IncludeOS image of just over 3 MB in size managed 15 times
the throughput of Ubuntu Server (850 MB image size) when running an
iptables firewall with 50 000 blocked IP addresses. Nftables and ipset were
quite closely matched, but they are still slower than IncludeOS. Iptables
severely limits throughput when handling large sets of filter rules.

Using unikernels like the tiny but powerful IncludeOS can very much help
cut costs in data centers running thousands or more single-purpose VMs
like firewalls by providing better network performance and security while
imposing almost no overhead.
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Chapter 1

Introduction

Since the �rst computers went on sale, the price of computer hardware has
been decreasing rapidly, while the availability has been shooting towards
the skies. In the early days of computers people had to share large,
expensive servers and mainframes, but now most of us have our own
smartphones, tablets and laptops.

The majority of these devices are designed and used to perform many
different tasks for multiple users, like making phone calls, sending
messages, navigating and running a host of other applications and
programs. Thus the operating systems of such devices must be designed
to serve a wide set of users, programs and hardware, providing many
different underlying services. Take Linux as an example. This is an
operating system used on everything from low-power mobile devices to
personal computers to powerful servers running in huge data centers [1].
We call these types of OSs for general-purpose operating systems or GPOS
for short.

These general-purpose operating systems are �exible, supporting many
different standards, technologies, hardware, protocols, services etc., but
they also have some serious drawbacks. Having to support such a wide
array of platforms and uses, the operating systems tend to become big,
bloated and heavy to run. Windows 10, for instance, requires at least 2 GB
of RAM and 20 GB of available hard drive space for a base installation of
the 64-bit version [2]. Providing tons of different services also means that
general-purpose OSs have large attack surfaces – making it relatively easy
for an attacker to �nd vulnerabilities that can be exploited [3]. A number
of these exploits can quite easily be acquired on the dark web these days,
allowing even intermediately skilled hackers to perform advanced attacks
on existing platforms [4].

Many businesses rely on their applications to take care of time-sensitive
tasks. These tasks may include networking, �rewalling, running databases,
web servers, trading platforms and different military applications. One
thing all of these tasks have in common is that you want them to run
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as quickly and securely as possible, which is not exactly GPOS' strong
suits. The same is true for lots of different sensor and information
systems. Even simple information screens and ticket machines used in
public transportation relies on general-purpose operating systems, making
them open to a number of different types of attacks. This was the case when
public transport information screens fell victim to the big 'WannaCry'
attack in 2017.[5]

As more of our computing is shifting towards mobile devices, battery life
has also become a critical factor for many. With the rise of the Internet of
Things (IoT) we see a proliferation of typically smaller, battery powered
devices which could greatly bene�t from running a lightweight OS which
is not using power on a host of unnecessary features.

The same is true for virtual machines, which in most cases don't really
need to run these big, old GPOSs, since most VMs now are single-purpose,
meaning they only have a very speci�c task, like running a web server or a
database.

Utilizing up and coming unikernel technologies, many of these problems
probably can be remedied. A unikernel is designed speci�cally for running
one application, without loads of interfering processes and unnecessary
drivers, services and resulting context switches. The unikernel allows
applications to be deployed directly on a hypervisor or even run on bare
metal (hardware).

One area that may see big performance improvements with the use
of unikernels is networking. Using unikernels for handling web and
DNS servers, load balancing, �rewalls etc. can potentially bring huge
advantages when it comes to latency, throughput and security. In this
thesis, �rewall performance on IncludeOS' unikernel will be tested and
compared with the widely used Linux �rewall based on net�lter.

1.1 Problem de�nition

Since the introduction and commercialization of virtualization on a large
scale, the way we do computing has changed drastically. Where people
before had to buy their own infrastructure, including servers, network
equipment, etc. and operate and maintain this hardware, they can now
choose to rent only the resources they need from cloud providers such as
Google, Amazon and Microsoft – greatly improving cost ef�ciency. We can
now easily deploy, manage and migrate virtual machines based on current
needs, like latency, traf�c, temperature and power management.

While this is all well and good, there are aspects of cloud computing
that can be streamlined and improved upon. One big issue with today's
virtualization is that we are virtualizing software that was never meant
to operate in a virtual environment, whereof the operating systems
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themselves are probably one of the biggest drawbacks. "Old" general-
purpose operating systems were developed to accommodate multiple
users and support a wide range of hardware and services – which of course
was very important when companies had to buy millions of dollars worth
of equipment and try to utilize that for everything it was worth.

Today, a big portion of VMs are meant to be single-purpose appliances,
providing just one service; like a web server, load balancer, DNS server,
database, etc. Many of these services bene�t from being highly �exible,
relying for instance on instant spawning/booting of VMs as traf�c load
to a web service increases. Here also lies the problem: Spawning and
booting VMs that contain large operating systems with tons of unnecessary
features greatly reduce the bene�ts we should see from virtualizing. What
we should have is specialized images, designed to do only the job they are
meant to do, and nothing else.

According to several recent studies, articles, tech blogs and -websites, the
introduction of the relatively new unikernel technology has the possibility
to drastically improve performance in single-purpose appliances while
using only a fraction of hardware resources like CPU, memory and disk
space. Unikernels ditches all unnecessary software components and
integrates with an application to form a bootable image containing only
the bare minimum of code it takes to run the application.

The main goal of this thesis is to evaluate the network and �rewall
performance of the IncludeOS unikernel and to see how it compares to the
traditional and widely used Linux iptables. In addition to this, tests will be
performed on the newer nftables, and also on iptables with ipset.

3
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Chapter 2

Background

2.1 Technologies

2.1.1 General-purpose operating systems

An operating system is what lies between the applications/users and
the lower software and hardware layers. An OS incorporates drivers
that communicate with the underlying hardware, making it easier for
developers to write applications. It also usually provides a user interface
and some means for users to interact with the OS. For regular users, OSs
include graphical user interfaces (GUI) that make interaction easier than
with the more traditional command line.

A general-purpose operating system (GPOS) is an operating system
designed to be able to support multiple users, applications and services. To
do this, a GPOS needs to be able to support a wide range of applications,
services and hardware – often including thousands of different device
drivers for things like monitors, keyboards, mice, microphones, NICs,
webcams and other peripheral devices and integrated hardware.

The most common GPOSs for personal computers are Microsoft Windows,
macOS (previously OS X) and various Linux distributions, like Ubuntu,
Fedora, Red Hat, Debian etc. For mobile phones, Android and iOS are by
far the most common.

A GPOS is typically split in two: An operating system kernel that runs
in privilegedmode and a user space that runs in unprivilegedmode. The
main reason for building an OS this way is for security reasons, restricting
user processes from accessing the kernel, and therefore the hardware.
The drawback of this scheme is the speed/latency penalties it introduces.
The process of transferring data between the kernel and the user space is
expensive, wasting resources on context switches etc. A context switch
happens when the CPU switches from working on one process or thread
to another. This process involves saving the state of the previous process
so the CPU can continue working on that process from the same point later
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on, effectively "pausing" the process. Context switches can be invoked in
different ways, for instance when the CPU receives an interrupt or when
switching from user mode to kernel mode.

Most computing done today also does not require a multi-user environ-
ment. Usually new applications are not added to existing servers or VMs,
but rather deployed to new servers or new VMs, effectively making them
"single purpose".

2.1.2 Linux

Linux was initially just an operating system kernel but over time has
evolved to become a whole family of distributions (or distros) built
around the Linux kernel. The �rst Linux kernel was released by Linus
Torvalds on September 17, 1991. As opposed to Windows and MacOS,
Linux is essentially free and open-source, which has led to numerous
distributions from many different developers. Because of its open-source
and highly �exible nature, Linux has become extremely popular in a
wide range of devices and systems, and as of today it is ported to more
platforms than any other operating system – from TOP500 supercomuters
to desktop PCs, cellphones and embedded devices. Much because of the
Android OS, Linux is also the operating system installed on most devices
worldwide.

2.1.3 Net�lter

Net�lter is a framework implemented in the Linux kernel that provides
several different network components, including connection tracking,
packet �ltering, network address translation, port translation etc. Because
of net�lter being a part of the Linux kernel, it is widely used in networking
applications. All the components needed for building your own router or
�rewall is included with net�lter and for many or most uses, there is no
need to download additional packages.

Net�lter's user utilities consists of iptables, ip6tables, ebtables, arptables,
ipset and nftables.

2.1.4 Containers

A container is an executable package of software which includes all
components necessary to run it, including code, runtime, system tools,
system libraries and settings. Software inside a container will always
run the same way, no matter what platform the container runs on. The
container provide isolation between its running software and the software
layers below.
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Figure 2.1: Net�lter components [6]

Where virtual machines abstract physical hardware, containers provide
abstraction at the application layer, packaging code and dependencies
together. Multiple containers can run on the same host while for instance
running different Linux distros inside the containers, sharing a Linux
kernel but running as individual processes in user space. VMs on the other
hand include the whole software stack, from a guest OS to the top-level
applications.

2.1.5 Unikernels

A unikernel is a kind of a merge between an application and an operating
system into one image. This essentially makes the application bootable,
since it includes (only!) the necessary drivers and libraries for the
underlying hardware or hypervisor.

Unikernels have some native advantages when it comes to security. These
advantages come from the fact that a unikernel typically contains much
less code than a general-purpose operating system, including only the code
and libraries required to run the app it is built to run. This means that there
are no unnecessary drivers for Bluetooth, �oppy, CD-ROMs, NICs or the
thousands of other hardware devices out there. There is also no �le sharing,
shells or other protocols that could provide additional attack vectors. In
other words: The attack surface is much smaller in a unikernel than in a
traditional OS running the same application, though this of course does
not mitigate potential threats against the hypervisor it could be running
on.

Unikernels are also immutable, which means that the running code cannot
be altered. Updating a unikernel involves making your changes to the
code, building it into a new image, downloading the new image to the

7



Figure 2.2: Containers [7]

VM and replacing the old image with the new one. In IncludeOS with
LiveUpdate, this is done by pushing the new image to the IncludeOS
instance, where it is saved in memory. The state of the running application
is then stored in memory as well, including open sockets, �le descriptors
etc. After that, the new image is booted, the state is restored and the
application resumes execution. Replacing an image happens in a few
hundreds of a second, and can maintain active TCP connections in a router
or �rewall.

Figure 2.3: IncludeOS LiveUpdate [8]
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Because there are no system calls or context switches in unikernels – they
instead just switch to another part of the program – there is no need to �ush
caches and page tables etc., giving them a performance edge over GPOSs
[9].

Unikernels/libOS also allow applications to access hardware resources
"directly", without having to make privilege transitions for moving data
between a user and a kernel space, making them a potential great
choice for applications where performance and predictable performance
is essential.[1]

Since unikernels do not need to initialize and run lots of unnecessary
services, they can achieve incredibly fast boot times. Thanks to IBM
Research, IncludeOS is now able to run the Solo5 unikernel interface with
the ukvm back end, cutting the already low boot times of 300 ms down to
just 11 ms [10]. This in turn allows IncludeOS to be used in an even wider
set of applications an creates new possibilities in for instance handling web
traf�c. With boot times that fast, a web server could be booted as late as
when a DNS request for a web site comes in.

2.1.6 IncludeOS

Built on C++, IncludeOS is a "zero overhead", single address space library
operating system created by Alfred Bratterud et al. [11]. Already in use
with Basefarm for �rewall and load-balancing, IncludeOS shows great
promise in improving latency characteristics while requiring a fraction
of the resources used by other systems/OSs [12]. Networking is a key
aspect for the IncludeOS team, and at the time of writing, IncludeOS
is probably the only unikernel available which can (easily) be used as a
router/�rewall/load-balancer.

Features like the in-house developed LiveUpdate feature for quick-and-
easy IncludeOS updates and the NaCl con�guration language should make
IncludeOS a strong competitor in the quite new unikernel market.

A minimal version of IncludeOS including network stack can be as small as
700KB, with a memory footprint of no more than 16 MB for a simple web
API.

2.1.7 Con�guration as Code – VCL and NaCl

Varnish Software develops and delivers caching technology for some of the
world's most visited websites. One of the reasons why Varnish is so fast
is that their (domain speci�c) con�guration language Varnish Con�guration
Language (VCL)is based on C, which is then compiled – making it "lightning
fast"[13].

IncludeOS does the same ting with their unikernel con�guration language
NaCl. While originally creating a router, �rewall and load-balancer
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Figure 2.4: IncludeOS build-system overview

in C++, this was not deemed ideal for neither IncludeOS nor their
customers.[14]

Creating a new language for con�guration in a unikernel, some consider-
ations were needed. One of the fundamental characteristics of a uniker-
nel is that there is at runtime no distinction between code and con�gura-
tion. Each time a unikernel needs to be updated, the whole image needs
to be rebuilt and deployed – a process made easy in IncludeOS using
their LiveUpdate feature. This should then also be a feature of the con-
�guration language. Another motivation is that running the con�guration
through a compiler can optimize the code for that speci�c system, resulting
in a performance advantage over traditional systems using con�guration
�les.

The result was for IncldeOS to use the same principle as Varnish VCL: Let
users write con�guration in the (high-level) NaCl con�guration language,
transpile the con�g into C++, compile the resulting C++ and link it into the
binary.[15]

2.1.8 Virtual Machines

Virtual Machines (VMs) allow for much better resource utilization than
traditional servers provided strong algorithms for power management,
migration of VMs across physical hardware, cooling schemes, etc. Instead
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of companies running their own servers, wasting resources when those
are not being used or are underutilized, these companies can instead rent
hardware resources from cloud providers such as Amazon, Google and
Microsoft, making sure they only pay for the resources they need.

Typically, VMs contain "large" guest OSs like Windows or Linux, even
though a VM's purpose may only be to execute a simple task like hosting
a web server or database (single-purpose), wasting a lot of resources on
booting and running the OS itself. Additionally virtualizing introduces
an extra software layer that typically sits between the guest OS and the
hardware, taking up some resources in itself.

A key advantage of virtualizing is the possibility to spawn and tear down
VMs on demand. A company providing a web service can easily build
a load balancing system that automatically spawns new VMs as traf�c to
the service increases, and tear down VMs as traf�c decreases. This helps
free up resources and allows the company to ef�ciently run their service
without having to pay for resources they do not use.

In the above example, it is probably vital for the company providing the
service that VMs can be spawned quickly enough to manage the incoming
traf�c in real time. Spawning new VMs that themselves have to boot
GPOSs like Linux and Windows with all the necessary components in�icts
a huge time penalty, and may in some cases take too long for the service
to seamlessly handle �uctuations in traf�c. The result is often that the
company would need to run more VMs than necessary to be able to cope
with traf�c spikes – causing a wasteful resource usage.

Using unikernels instead of traditional OSs in VMs may prove to be a huge
advantage here, with boot times often in the order of milliseconds.

2.2 Securing virtual machines

Virtualization is an essential part of computing today but, as for physical
machines, VMs also have to be properly secured. In addition to the OS and
software running inside VMs, what lies beneath the VMs – the hypervisor
– also needs to be secured.

As opposed to earlier times when virtualization was done in software,
virtualization capabilities are now built into most CPUs. The hypervisor's
primary job is to provide a management interface to the hardware
primitives. The result of the isolation of CPU, memory and I/O being
done at the hardware level is a considerably smaller attack surface than
with previous techniques. Virtualization extensions in Intel (VT-x) and
AMD (AMD-V) CPUs don't enable VMs to run at Ring-0. Only the Virtual
Machine Monitor (VMM) runs at a hardware privilege level while guest
OSs run at a virtualized privilege level. When a privileged instruction is
executed in a guest OS, it is trapped and emulated by the VMM.[16]
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In addition to securing a server with a "physical" �rewall, traf�c between
VMs on the same server needs to be �ltered, to prevent malware on one VM
to spread horizontally to other VMs. Both antivirus software and �rewalls
can be implemented in software in the VMs, improving security inside the
server [17]. Another approach to inter-VM security is to deploy dedicated
�rewall-VMs. Using unikernels for this purpose could provide ultra fast
�rewalls with minimal overhead.

Several virtualization and security vendors provide security solutions
aimed towards hypervisors and virtual machines:

Check Point CloudGuardprotects against "lateral spread of threats within
virtualized environments and private cloud datacenters"[18].

Working with Amazon Web Services (AWS), Microsoft Azure and VMware
Cloud on AWS, Trend Micro has developed and optimized Deep Security,
that focuses speci�cally on datacenter and cloud security.[19]

McAfee, Citrix, VMware and others also have similar products securing
cloud infrastructure.

ESXi security

In the whitepaper titeled Security of the VMware vSphere Hypervisor,
VMware explains the security features of its vSphere software suite, in-
cluding the ESXi hypervisor. In the executive summary of the whitepaper,
they list the following features (citation)[16]:

• Secure isolation of virtual machines at the virtualization layer.
This includes secure instruction isolation, memory isolation, device
isolation, and managed resource usage and network isolation.

• Con�gurable secure management of the virtualized environment.
This includes secure communication between virtualization compo-
nents via SSL; host protection via lockdown mode; and least privilege
by a �ne-grained, role-based access-control mechanism.

• Secure deployment of the ESXi software on servers through use
of various platform-integrity mechanisms such as digitally signed
software packages and Intel Trusted Platform Module (TPM)–based
trusted boot.

• Rigorous secure software development life cycle that enables de-
velopers to create software using secure design and coding princi-
ples such as minimum attack surface, least privilege, and defense in
depth.
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Figure 2.5: VMware instruction isolation [16]

2.2.1 Next-Generation Firewalls

A Next-Generation Firewall (NGFW) is a network security system that
is able to enforce security policies on multiple levels of the OSI model,
protecting networks and devices against modern, sophisticated attacks.
Paloalto's NGFW for instance "classi�es all traf�c, including encrypted
traf�c, based on application, application function, user and content"[20].
That means Next-Generation �rewalls must be able to inspect traf�c all the
way up to the application level.

In Check Point's NGFW, administrators have the ability to look at users,
groups, applications, machines and connection types and assign permis-
sions based on these[21], giving a high degree of granularity. NGFW typ-
ically includes both intrusion prevention and intrusion detection systems
with deep packet inspection. Junpier's NGFW is available in both virtual
and physical form factors.[22]

2.2.2 Virtual �rewalls

Firewalls are typically sold as physical devices, but today, several virtual
�rewall products exist. Trend Micro has a system where a driver applies
security updates to a host. The host then applies these updates directly to
VMs without agents running on each VM, so automatic security updates
are instantly available when new VMs come online. This is a huge
advantage for virtualized systems, where VMs are frequently spawned and
teared down.
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VyOS

There are several approaches to virtual �rewalling. One of them – VyOS
– is a network operating system based on GNU/Linux that is built for
securing networks. According to the creators, VyOS can be installed
on physical hardware or it can be run in a VM, for instance in a cloud
environment[23]

2.3 Related works

2.3.1 iptables, nftables and ipset

A comparison between iptables and nftables in Red Hat Linux was
done by a developer in the Red Hat Developer Blog[24] to show the
differences in performance in the two �ltering tools under different
circumstances. Several different tests were run through several different
�rewalls comprised of address and port �lters. Scaling the number of rules
from zero to 1500, throughput tests were run at 20 different points, ex. at 75
rules, 150 rules, 225 rules etc., and used as points in a graph, showing the
performance as the rule count increased. The �lters used were iptables,
both with and without ipset, and nftables also both with and without
nftset.

With simple rules, �ltering on source IP addresses, iptables performed
somewhat better than nftables, with iptables increasing the lead as the rule
set grew larger.

In similar tests, �ltering on destination ports instead of IP addresses and
using multiport in iptables and set in nftables, iptables showed a linear
decrease in performance as the number of rules increased, while nftables
started out with a bit lower throughput than ipset, but maintained the same
performance all the way through the test.

2.3.2 Performance Evaluation of Net�lter

In the paper Performance Evaluation of Net�lterby Raik Niemann, Udo
P�ngst and Richard Göbel, the authors are evaluating the throughput
performance of net�lter under different conditions and using UDP, TCP
and SCTP. They built their own testing tool that resembles iPerf and
netperf, but their testing tool also incorporates a gateway in addition to
just a client and a server, to allow extended testing. The testing complies
with the guidelines in RFC3511

Testing is performed with 1: the router performing only forwarding, 2:
stateless iptables �lter with source, destination and protocol speci�ed, and
3: the same as 2 plus QoS marks.
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The results in this paper show that SCTP was in average 32 percent
slower than TCP, which itself was 8 percent slower than UDP across all
experiments. IPv6 was on average 9 percent slower than IPv4. The
overhead when running net�lter was minimal compared to when the
router host was idling; but the router host in this case used network
adapters with network processors that validate network data packets,
verify network headers and calculate checksums – tasks that would
otherwise be done by the operating system.

The main �ndings were that the throughput performance of net�lter was
independent of the transport protocol, frame size and address family with
simple net�lter rules, and that the decrease in throughput as the number
of simplenet�lter rules increase are roughly linear. The throughput loss
per simple net�lter rule was 0.05 percent for IPv4 and 0.03 percent for
IPv6.[25]

2.3.3 A Performance Evaluation of Unikernels

Ian Briggs, Matt Day, Yuankai Guo, Peter Marheine and Eric Eide, the
authors of A Performance Evaluation of Unikernels, looked at network
performance of two unikernels, namely MirageOS and OSv compared
with Ubuntu Linux. The tools they used were iPerf for bandwidth
measurements, queryperf for DNS response measurements and httperf for
http/server performance testing.

In the conclusion, the authors points out the immaturity of the unikernels
they tested, and that it is unreasonable to draw general conclusions about
unikernels, but that they still show some promising results.

OSv signi�cantly outperformed Linux in every test category, and it didn't
require much work to port the test tools to this unikernel. Due to OSv
being in alpha at the time of testing, the authors experienced some bugs,
but they conclude that the unikernel will probably be very attractive for
high-performance applications at a later stage [26].

2.3.4 Net�lter Performance Testing

Net�lter Performance Testingby József Kadlecsik and György Pásztor
is a study of the performance of net�lter performance compared to
several other "solutions", including nf-hipac, Compact Filter, iptables with
classi�ers and ipset. The tests looked at requests per second measured with
httperf and were performed both with and without conntrack (connection
tracking), NAT and �rewall �lters.

The tests in this paper show that on their test setup the maximal
performance were halved when using conntrack, compared to just using
plain routing. They also �nd little difference between tests where just
conntrack is enabled and where conntrack is enabled in addition to
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�ltering, when not using "excessive �ltering", meaning not too many �lter
rules. When running tests with NAT also enabled, in addition to conntrack
and �lter, the performance went down another 50 - 60 percent.

Looking at iptables scaling, the researchers show the "clearly non-scaling
behavior of iptables" caused by the way iptables processes rules. Iptables
processes rules linearly, meaning that increasing the number of rules
decreases both req/s and throughput dramatically. Testing of ipset and
nf-hipac shows virtually no decrease in performance even when the rule
sets get very big (16k+ rules).[27]

2.3.5 Unikernels: Library operating system for the cloud

Building on previous work with library operating systems, Madhavapeddy
et al. in Unikernels: Library operating system for the cloudcreated the Mirage
unikernel to address the lack of specialization in current VMs that are
meant to be single-purpose. Their main contributions are 1: the unikernel
approach for providing sealed, single-purpose appliances suitable for
cloud services, 2: evaluation of an implementation of the techniques using
OCaml, showing the performance bene�ts, and 3: libraries and language
extensions supporting systems programming in OCaml.

The authors unikernel architecture combines static type-safety with a single
address-space layout that can also be made immutable. With Mirage's
suite of type-safe protocol libraries, they demonstrate that running on a
hypervisor, they can overcome hardware compatibility issues that made
earlier library operating systems impractical to deploy.

Figure 2.6: Traditional VM vs unikernel approach [28]
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Evaluating their prototype unikernel with micro-benchmarks and appli-
cations that test DNS, OpenFlow and HTTP performance, the authors �nd
that sacri�cing backward compatibility allow them to increase performance
while also improving security of cloud services facing towards the Inter-
net. This is done using standard network protocols such as TCP/IP, and
the authors are able outperform standard Linux network tools while us-
ing much smaller VM images, both in regards to boot times, DNS per-
formance, httperf session create rate and throughput (connections per sec-
ond). [28]

2.3.6 Cloud Cyber Security: Finding an Effective Approach with
Unikernels

The goal of the study Cloud Cyber Security: Finding an Effective Approach
with Unikernelsby Bob Duncan, Andreas Happe and Alfred Bratterud is to
identify and tackle some of the privacy and security issues related to cloud
computing and the Internet of Things.

While security in IT is always improving, many IT users are not well
informed about information security, and people themselves are often
the biggest security vulnerability for companies. Not aware that they sit
behind a company �rewall, employees of the company may well export
data to clouds, where they may not be aware of security implications like
not being in control of who runs and has access to the cloud software
and underlying hardware. Complex security systems, documentation and
regulations may also well be a overwhelming for users not educated in IT,
making it easy to lose oversight.

With the rapid expansion of Internet of Things (IoT)-devices, security is
often overlooked in favor of pushing devices out as fast as possible. Take
for instance web cameras, where search engines exists for �nding and
accessing devices using that either uses default user names and passwords
or are completely open [29]. There have also been examples lately of IoT
devices being used in massive botnets, launching huge DDOS attacks on
Internet infrastructure [30] [31].

The researchers suggests an approach to addressing these problems by
using unikernel-based systems, reducing complexity, attack surface and
resource usage compared to traditional systems. The following de�nition
of a unikernel is used in the study:

• a minimal execution environment for a service

• providing resource isolation between those services

• offering no data manipulation on persistent state within the uniker-
nel, i.e. the unikernel image is immutable

• being the synthesis of an operating system and the user application
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• only offering a single execution �ow within the unikernels, i.e. no
multitasking is performed

With these advantages in security, including isolation, immutability etc.
and also the performance gains and energy ef�ciency compared to
traditional virtualization appliances, the team concludes with unikernels
being a smart approach to solving many of the current issues in cloud
computing.[32]
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Chapter 3

Approach

3.1 Hardware and network setup

3.1.1 Server and hypervisor

Considering available time and equipment, it was decided to set up a
virtual network on one of OsloMet's Intel servers. The IncludeOS team
has shown good results with the VMware ESXi hypervisor, and they
recommended it for the setup. VMware is also one of the hypervisors
currently supported by the IncludeOS unikernel. Having access to the
server, the latest version of ESXi was downloaded and installed on the
server. The server speci�cations are as follows:

• Dell PowerEdge R630

• 40 CPUs x Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

• 128 GB DDR4

• ESXi-6.5.0-20170104001-standard (VMware, Inc.)

Managing the server can be done either via an ESXi shell which provides
a browser GUI or a SSH shell. The ESXi shell is pretty straight-forward
to use, and didn't take a long time to understand, so that is what was
used for management, setting up the network and VMs, throughout the
project.

3.1.2 Network and VMs

The test network topology outline was proposed by Per Buer at IncludeOS,
and complies with the dual-homed setup in RFC 3511.

Networks can be set up in ESXi by creating virtual switches and port
groups, connecting VMs to port groups and port groups to switches.
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Figure 3.1: RFC 3511 Dual-Homed test setup [33]

Figure 3.2: Port group "Client" connected to vSw1

For the initial setup, �ve VMs were created, all using vmxnet3 virtual
NICs:

• One VM called Client

Running Ubuntu Desktop 16.04

Traf�c generator

• One VM called Target

Running Ubuntu Desktop 16.04

Server-side, receiving traf�c

• One VM called Fw1

Running Ubuntu Server 16.04

Acts as Firewall 1

• One VM called Fw2

Running IncludeOS v0.12.0-rc.2
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Table 3.1: Firewall-net

Host 1 Interface IP address Host 2 Interface IP address vSw
client ens160 10.0.0.2 -> FW1 ens192 10.0.0.1 1
FW1 ens256 10.0.1.1 -> Target ens160 10.0.1.2 2
client ens160:1 10.3.0.2 -> FW2 client 10.3.0.1 1
FW2 target 10.3.1.1 -> Target ens160:1 10.3.1.2 2
client ens160:2 10.4.0.2 -> FW3 eth1 10.4.1.1 1
Fw3 eth2 10.4.0.1 -> Target ens160:2 10.4.1.2 2

Includes network stack

Acts as Firewall 2

• One VM called Mothership

Running Ubuntu Desktop 16.04

Manages IncludeOS unikernel on Fw2

One additional VM was later created, called Fw3. This will serve as
a way to test other OSes, initially Alpine Linux. Alpine Linux is "a
security-oriented, lightweight Linux distribution based on musl libc and
busybox"[34]. The idea was to test if this could run a router/�rewall with
better performance than Ubuntu Server, which by default includes a lot
more functionality.

The client and the target both have one "physical" interface ens160 with
two subinterfaces; ens160:1 and ens160:2. The interfaces can be set up
with different IP addresses, providing an easy way to specify which
router/�rewall to send traf�c through. The ens160-interface should go
towards FW1-Ubuntu, subinterface ens160:1 towards Fw2-IncludeOS and
ens160:2 towards Fw3-Alpine.

To prevent unnecessary overhead, Fw1 Ubuntu Server was cleaned of
services with the following script:

1 # ! / b in / bash
2
3 s e r v i c e s =" cron atd rsys log acpid l i b v i r t � bin l i b v i r t � guests
4 apparmor eb tab les f r iend ly � recovery reso lvcon f ntp atop
5 pmlogger pmie pmcd pmproxy open � i s c s i openipmi l x c f s bind9
6 accounts� daemon apache2 met r icbeat red is� server c o l l e c t l "
7
8 for s e r v i c e in $ s e r v i c e s ; do
9 s e r v i c e $se rv i ce stop

10 done
11
12 apt purge snapd ubuntu � core� launcher squashfs� t o o l s
13 sys temct l mask accounts� daemon . s e r v i c e
14 apt remove po l i c yk i t � 1 � y �� purge

Listing 3.1: Clean-script
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3.1.3 VM management

For easy management of the VMs, SSH access was set up and the VMs
themselves reachable via three public IP addresses. The network interfaces
on the Linux VMs was con�gured using the /etc/network/interfaces
con�g �le on each VM.

IncludeOS con�guration can be done either with a GUI accessible via a
browser or via command line on the Mothership. Port forwarding to
the Mothership-VM with ssh -L 8080:localhost:8080 128.39.120.12was used
for remote management with the browser GUI. From there, multiple In-
cludeOS instances can be con�gured and updated. The IncludeOS has also
built an easy-to-use editor for their NaCl (network) con�guration.

Updating the IncludeOS instance in the Fw2 VM with new network
parameters involves writing or changing the con�guration in the NaCl tab
of the GUI, building a new image including the NaCl �le and deploying
the new image to the running VM. The update process, which includes
IncludeOS' LiveUpdate feature, is described in section 2.1.5. The actual
update of the VM, replacing an old image with a new one, takes only a
fraction of a second. This feature is extremely useful – the alternative would
be to edit the con�g, build an image, download the image locally, upload
the image to the server and boot the image in ESXi – a process which would
have taken many times as long to perform.

3.2 Tools

3.2.1 iPerf, TCP and UDP

iPerf is a network performance tool available for multiple operating
systems and platforms, including Windows, MacOS, Android, iOS, and
several Linux distros. Through the command line, iPerf can be run with
various parameters to test and log many different aspects of a network
connection, like timings, buffers and bandwidth, and it supports both TCP,
UDP, SCTP with IPv4 and IPv6.

iPerf's TCP test mode will be used to measure maximum throughput of
the different �rewall setups. As most of the traf�c on the Internet use the
TCP transport protocol, these tests will be the most important for most
people. UDP has traditionally been used for applications that require very
little overhead and where some packet loss is accepted, like in audio and
video streaming, but TCP has lately been the primary protocol for some of
these tasks as well, including for YouTube. The iPerf UDP mode creates a
constant bitrate UDP stream similar to voice communication, and measures
packet loss and jitter in addition to throughput.[35]
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Figure 3.3: Network setup model

3.2.2 hping3

Hping3 is used to check that the �rewall actually drops packets that match
the blocked ports and IP addresses. We also use hping3 to measure latency
in the TCP latency tests.

3.2.3 Net�lter

Net�lter is the main networking framework in Linux and performs all
network related tasks in the Linux routers/�rewalls. Userspace programs
like iptables and nftables will be used to create �rewall �lters that block
certain types of network traf�c between the client and target VMs.

3.2.4 ipset

ipset is a net�lter module that allows for quick and ef�cient processing of
large rule sets. Ipset may store IP addresses, networks, TCP and UDP port
numbers, MAC addresses, interface names or combinations of these. Ipset
uses either hashing or bitmaps to store and quickly look up information.
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Bitmaps were used for both ports (bitmap:port) and IPs (bitmap:ip) in this
project.

A bitmap set uses a memory range where each bit represents one IP, MAC
or port, depending on the chosen set type. A hash set uses hashes to store
IP addresses, CIDR netblocks, port numbers, interfaces or a combination of
these.

3.2.5 IncludeOS Starbase image

Starbase is a minimal IncludeOS image with network stack and drivers
for the VMXNET Generation 3 (vmxnet3) virtual network device from
VMware. This image is going to be con�gured with NaCl to assign
interfaces, network con�guration including routing and �rewall �lters. The
image size was only about 3 megabytes when compiled with interfaces and
routing con�g.

3.3 Testing methodology

3.3.1 RFC 3511

RFC 3511 "Benchmarking Methodology for Firewall Performance" from
2003 de�nes tests for �rewall performance testing. Important parts for this
thesis are:

• Dual-homed vs tri-homed

• NAT vs no NAT

• Testing SHOULD be performed using different size rule sets to
determine its impact on the performance of the DUT/SUT

• Rule sets MUST be con�gured in a manner which enables rules
associated with actual test traf�c to be con�gured at the end of the
rule set and not at the beginning.

• The same TCP parameters MUST be used on all �rewalls

• The duration of the test portion of each trial MUST be at least 30
seconds.

This will be a dual-homed test setup with NAT disabled. Different size
rule sets with different types of rules will be compared to observe both
how well the different technologies scale and to �nd out if some rule types
are heavier to process than others, ex. TCP destination port vs. source IP
address �ltering. UDP and TCP performance will be tested.
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3.3.2 Firewall veri�cation

Hping3 is used to verify that the �rewalls blocked the intended traf�c.
In addition, ipset, nftables and iptables were never used simultaneously,
except for the one rule in iptables that refers to the ipset set, when
running the ipset tests. Con�guration from one �lter were removed before
con�guring and testing a different �lter.

3.3.3 iptables setup

The �rewall �lters will be applied to the FORWARD chain, since traf�c
passes through the �rewall VM from one interface through another. The
policy will be to accept packets that do not match any rule in the chain.
Scripts are used for creating large rule sets quickly.

TCP destination port rules:

1 for z in { 3 0 0 0 . . 3 9 9 9 }
2 do
3 i p t a b l e s � A FORWARD � i ens192 � o ens256 � p tcp �� dport $z

� j DROP
4 done

Listing 3.2: iptables TCP dport script

Source address rules:

1 for x in { 0 . . 9 9 }
2 do
3 for y in { 1 . . 1 0 } ; do
4 i p t a b l e s � A FORWARD � i ens192 � o ens256 � s 1 0 . 0 . $x

. $y � j DROP
5 done
6 done

Listing 3.3: iptables sAddr script

Iptables will have to try to match each incoming packet against every rule.
Larger rule sets should therefore lead to more overhead and probably lower
throughput.

3.3.4 ipset setup

The set types bitmap:port will be used for destination port matching and
bitmap:ip for IP address matching.

Create set

1 i p s e t c re a t e por ts bitmap : por t range TCP:3000� 7999

Listing 3.4: ipset: create set

Add ports
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1 i p s e t add por ts 3000� 7999

Listing 3.5: ipset: add ports

After one or more sets are created in ipset, iptables is used to point to that
rule set. Example:

Add iptables rule that points to the set

1 i p t a b l e s � A FORWARD � i ens192 � o ens256 � m set �� match� se t por ts
dst � j DROP

Listing 3.6: iptables -> ipset

Structure

1 Name: por ts
2 Type : bitmap : por t
3 Revis ion : 3
4 Header : range 3000� 7999
5 Size in memory : 732
6 References : 0
7 Members :
8 3000
9 3001

10 3002
11 . . .

3.3.5 nftables setup

Nftables are the newest of the three Linux �rewall types used in this
thesis. As such, it took a little longer to �nd the best way of implementing
nftables rulesets. The following commands creates sets that is compiled
into bytecode by the nft command line tool. There are also other ways
of implementing the same rules in nftables, but using this setup should
provide fast lookup.

Create table:

1 n f t add t a b l e ip f i l t e r

Listing 3.7: nftables: Create table

Create chain:

1 n f t add chain ip f i l t e r forward { type f i l t e r hook forward
p r i o r i t y 0 \ ; po l i cy drop \ ; }

Listing 3.8: nftables: Create chain

Add rules:

1 sudo n f t add ru le ip f i l t e r forward ip pro toco l tcp tcp dport {
3000� 7999 } counter drop

Listing 3.9: nftables: Add multiport
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Structure:

1 t a b l e ip f i l t e r {
2 chain forward {
3 type f i l t e r hook forward p r i o r i t y 0 ; po l i cy accept

;
4 tcp dport { 3000 � 7999} counter packets 0 bytes 0

drop # hand le 4
5 }
6 }

Listing 3.10: nftables: Structure

NaCl setup

In IncludeOS' Mothership – which manages the IncludeOS instance –
one has the opportunity to use the command line to con�gure, build
and upload images. This would in theory make it easy to do a scripted
approach along the lines of what was done in the Linux VMs. Since
Mothership in this case resides in a Docker container, it required more work
to automate the "add 100 rules, run 30 tests times 180 seconds". The GUI
was therefore used to con�gure and update IncludeOS with new rulesets.
Both the CLI and the GUI approach makes use of IncludeOS' LiveUpdate
feature, which stores the running state in the VMs RAM, uploads the new
image, switches over to the new image and restores the state. NaCl con�g
examples are found in the appendix.

3.3.6 Sample size, testing length, scaling

To get a good sense of the throughput pattern of Fw1 Ubuntu Server with
iptables and to see if there was any clear drops in throughput as the number
of rules increased over a certain limit, a scaling test was scripted that runs
a throughput test for every new iptables rule created.

1 testNo=1
2
3 for z in { 1 . . 1 0 0 } ; do
4 for x in { 1 . . 1 0 } ; do
5 echo " Test $testNo " >> $log
6 i p t a b l e s � A FORWARD � i ens192 � o ens256 � p tcp � s 9 . 4 . $z . $x � j

DROP
7 ssh � i . ssh/master . key tobias@10 . 0 . 0 . 2 ' i p e r f � c 1 0 . 0 . 1 . 2 � t 30 '

>> $log
8 echo � e

'������������������������������������������������������������ \
n ' >> $log

9 ( ( testNo++ ) )
10 s leep 2
11 done
12 done

Listing 3.11: iptables: Test script: One test per rule
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To provide a more thorough comparison of Fw1 Ubuntu Server and Fw2
IncludeOS and provide cleaner graphs, we also need a test scheme that
provides solid source data without taking too long to run. For the Central
Limit Theorem to apply, we should have sample sizes of at least 30 for the
distribution of the sample means to be fairly normally distributed. Because
of time constraints, we used the minimum of 30 tests for each run, and each
throughput test is run for 30 seconds, which is the minimum testing time
speci�ed in RF 3511.

The script below will run an iPerf test for every 100th iptables rule
applied.

1 testNo=1
2 dport =3000
3
4 for x in { 3 0 0 0 . . 3 9 9 9 . . 1 0 0 } ;do
5 for z in { 1 . . 1 0 0 } ; do
6 i p t a b l e s � A FORWARD � i ens192 � o ens256 � p udp �� dport $x � j

DROP
7 done
8
9 for y in { 1 . . 3 0 } ; do

10 echo " Test $testNo " >> $log
11 ssh � i . ssh/master . key 1 0 . 0 . 0 . 2 " i p e r f � c � u � m 5000 1 0 . 3 . 1 . 2 � t

30 " >> $log
12 echo � e

'������������������������������������������������������������ \
n ' >> $log

13 ( ( testNo++ ) )
14 s leep 5
15 done
16 done

Listing 3.12: iptables: Test script: Test every 100th rule

3.3.7 Misc network settings

Maximum number of simulatious connections in conntrack:

1 tobias@Fw1� Userver :~ $ ca t /proc/sys/net/nf_conntrack_max
2 262144

Listing 3.13: Conntrack: Maximum connections

UDP connection timeout:

1 tobias@Fw1� Userver :~ $ ca t /proc/sys/net/ n e t f i l t e r /
nf_conntrack_udp_timeout

2 30

Listing 3.14: UDP connection timeout
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Chapter 4

Results

All test results are presented and brie�y discussed in this chapter. The
tests consists of bulk throughput, a transactions-per-second test and latency
tests. The throughput tests use iperf on both client and target and measure
both TCP and UDP performance. The transactions-per-second tests are
run with netperf and netserver and measures per-second request and
reply performance. Latency tests are performed with the ping and hping3
utilities.

• 4.1: Early tests with iptables only, using the scale-and-test script
presented in 3.3.3. The script runs an iPerf TCP throughput test for
each new iptables rule.

• 4.2: Baseline tests. Pure throughput, no �lter. iPerf TCP throughput.

• 4.3: IP address rules. Firewall rules that matches packets against
source addresses/IPs. iPerf TCP throughput.

• 4.4: Port rules. Firewall rules that matches packets against TCP
destination ports. iPerf TCP throughput.

• 4.5: Large rulesets. 10 000 and 50 000 blocked IPs. Source IP �lters,
iPerf TCP throughput.

• 4.6: Requests/transactions per second. Netperf used to measure
requests and replies per second.

• 4.7: Latency tests. Ping and hping3 used to test ICMP and TCP
latency.

• 4.8: UDP throughput. iPerf UDP throughput and CPU usage. 1 vs 4
vCPU on Fw1 Ubuntu Server.

The "Second run" sections contain tests that were done with an increased
test time of 180 seconds per test compared to the previous 30 seconds per
test. These tests were done to minimize variances and verify previous
�ndings, and are discussed in more detail later.
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