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Abstract

In today’s digital world cloud computing is key and it is growing. At
the same time we are trying to maximize resource utilization. Running
big, old general-purpose operating systems on virtual machines in the
cloud is not a good way to do this. Using for instance Linux and
iptables for firewalling can very much limit throughput and latency on
a network. Using unikernels instead can revolutionize cloud computing,
saving a huge amount of resources while providing better performance and
security.

In this thesis, we look at unikernels for enhancing network performance
in router- and firewall-VMs, while greatly minimizing resource usage
compared to Linux’ and iptables, ipset, and the newer nftables. Using a
server running VMware’s ESXi hypervisor, we set up a network of VMs
consisting of a client and a target running Ubuntu and firewalls running
Ubuntu Server, IncludeOS and Alpine Linux. Iperf, Netperf and hping3
was used to measure network performance.

Using only a fraction of the resources of the Linux VMs, the IncludeOS
unikernel showed that it can manage large traffic volumes while blocking
thousands of ports or IPs without negatively affecting throughput. In
fact, our IncludeOS image of just over 3 MB in size managed 15 times
the throughput of Ubuntu Server (850 MB image size) when running an
iptables firewall with 50 000 blocked IP addresses. Nftables and ipset were
quite closely matched, but they are still slower than IncludeOS. Iptables
severely limits throughput when handling large sets of filter rules.

Using unikernels like the tiny but powerful IncludeOS can very much help
cut costs in data centers running thousands or more single-purpose VMs
like firewalls by providing better network performance and security while
imposing almost no overhead.
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Chapter 1

Introduction

Since the first computers went on sale, the price of computer hardware has
been decreasing rapidly, while the availability has been shooting towards
the skies. In the early days of computers people had to share large,
expensive servers and mainframes, but now most of us have our own
smartphones, tablets and laptops.

The majority of these devices are designed and used to perform many
different tasks for multiple users, like making phone calls, sending
messages, navigating and running a host of other applications and
programs. Thus the operating systems of such devices must be designed
to serve a wide set of users, programs and hardware, providing many
different underlying services. Take Linux as an example. This is an
operating system used on everything from low-power mobile devices to
personal computers to powerful servers running in huge data centers [1].
We call these types of OSs for general-purpose operating systems or GPOS
for short.

These general-purpose operating systems are flexible, supporting many
different standards, technologies, hardware, protocols, services etc., but
they also have some serious drawbacks. Having to support such a wide
array of platforms and uses, the operating systems tend to become big,
bloated and heavy to run. Windows 10, for instance, requires at least 2 GB
of RAM and 20 GB of available hard drive space for a base installation of
the 64-bit version [2]. Providing tons of different services also means that
general-purpose OSs have large attack surfaces – making it relatively easy
for an attacker to find vulnerabilities that can be exploited [3]. A number
of these exploits can quite easily be acquired on the dark web these days,
allowing even intermediately skilled hackers to perform advanced attacks
on existing platforms [4].

Many businesses rely on their applications to take care of time-sensitive
tasks. These tasks may include networking, firewalling, running databases,
web servers, trading platforms and different military applications. One
thing all of these tasks have in common is that you want them to run
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as quickly and securely as possible, which is not exactly GPOS’ strong
suits. The same is true for lots of different sensor and information
systems. Even simple information screens and ticket machines used in
public transportation relies on general-purpose operating systems, making
them open to a number of different types of attacks. This was the case when
public transport information screens fell victim to the big ’WannaCry’
attack in 2017.[5]

As more of our computing is shifting towards mobile devices, battery life
has also become a critical factor for many. With the rise of the Internet of
Things (IoT) we see a proliferation of typically smaller, battery powered
devices which could greatly benefit from running a lightweight OS which
is not using power on a host of unnecessary features.

The same is true for virtual machines, which in most cases don’t really
need to run these big, old GPOSs, since most VMs now are single-purpose,
meaning they only have a very specific task, like running a web server or a
database.

Utilizing up and coming unikernel technologies, many of these problems
probably can be remedied. A unikernel is designed specifically for running
one application, without loads of interfering processes and unnecessary
drivers, services and resulting context switches. The unikernel allows
applications to be deployed directly on a hypervisor or even run on bare
metal (hardware).

One area that may see big performance improvements with the use
of unikernels is networking. Using unikernels for handling web and
DNS servers, load balancing, firewalls etc. can potentially bring huge
advantages when it comes to latency, throughput and security. In this
thesis, firewall performance on IncludeOS’ unikernel will be tested and
compared with the widely used Linux firewall based on netfilter.

1.1 Problem definition

Since the introduction and commercialization of virtualization on a large
scale, the way we do computing has changed drastically. Where people
before had to buy their own infrastructure, including servers, network
equipment, etc. and operate and maintain this hardware, they can now
choose to rent only the resources they need from cloud providers such as
Google, Amazon and Microsoft – greatly improving cost efficiency. We can
now easily deploy, manage and migrate virtual machines based on current
needs, like latency, traffic, temperature and power management.

While this is all well and good, there are aspects of cloud computing
that can be streamlined and improved upon. One big issue with today’s
virtualization is that we are virtualizing software that was never meant
to operate in a virtual environment, whereof the operating systems
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themselves are probably one of the biggest drawbacks. "Old" general-
purpose operating systems were developed to accommodate multiple
users and support a wide range of hardware and services – which of course
was very important when companies had to buy millions of dollars worth
of equipment and try to utilize that for everything it was worth.

Today, a big portion of VMs are meant to be single-purpose appliances,
providing just one service; like a web server, load balancer, DNS server,
database, etc. Many of these services benefit from being highly flexible,
relying for instance on instant spawning/booting of VMs as traffic load
to a web service increases. Here also lies the problem: Spawning and
booting VMs that contain large operating systems with tons of unnecessary
features greatly reduce the benefits we should see from virtualizing. What
we should have is specialized images, designed to do only the job they are
meant to do, and nothing else.

According to several recent studies, articles, tech blogs and -websites, the
introduction of the relatively new unikernel technology has the possibility
to drastically improve performance in single-purpose appliances while
using only a fraction of hardware resources like CPU, memory and disk
space. Unikernels ditches all unnecessary software components and
integrates with an application to form a bootable image containing only
the bare minimum of code it takes to run the application.

The main goal of this thesis is to evaluate the network and firewall
performance of the IncludeOS unikernel and to see how it compares to the
traditional and widely used Linux iptables. In addition to this, tests will be
performed on the newer nftables, and also on iptables with ipset.

3
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Chapter 2

Background

2.1 Technologies

2.1.1 General-purpose operating systems

An operating system is what lies between the applications/users and
the lower software and hardware layers. An OS incorporates drivers
that communicate with the underlying hardware, making it easier for
developers to write applications. It also usually provides a user interface
and some means for users to interact with the OS. For regular users, OSs
include graphical user interfaces (GUI) that make interaction easier than
with the more traditional command line.

A general-purpose operating system (GPOS) is an operating system
designed to be able to support multiple users, applications and services. To
do this, a GPOS needs to be able to support a wide range of applications,
services and hardware – often including thousands of different device
drivers for things like monitors, keyboards, mice, microphones, NICs,
webcams and other peripheral devices and integrated hardware.

The most common GPOSs for personal computers are Microsoft Windows,
macOS (previously OS X) and various Linux distributions, like Ubuntu,
Fedora, Red Hat, Debian etc. For mobile phones, Android and iOS are by
far the most common.

A GPOS is typically split in two: An operating system kernel that runs
in privileged mode and a user space that runs in unprivileged mode. The
main reason for building an OS this way is for security reasons, restricting
user processes from accessing the kernel, and therefore the hardware.
The drawback of this scheme is the speed/latency penalties it introduces.
The process of transferring data between the kernel and the user space is
expensive, wasting resources on context switches etc. A context switch
happens when the CPU switches from working on one process or thread
to another. This process involves saving the state of the previous process
so the CPU can continue working on that process from the same point later
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on, effectively "pausing" the process. Context switches can be invoked in
different ways, for instance when the CPU receives an interrupt or when
switching from user mode to kernel mode.

Most computing done today also does not require a multi-user environ-
ment. Usually new applications are not added to existing servers or VMs,
but rather deployed to new servers or new VMs, effectively making them
"single purpose".

2.1.2 Linux

Linux was initially just an operating system kernel but over time has
evolved to become a whole family of distributions (or distros) built
around the Linux kernel. The first Linux kernel was released by Linus
Torvalds on September 17, 1991. As opposed to Windows and MacOS,
Linux is essentially free and open-source, which has led to numerous
distributions from many different developers. Because of its open-source
and highly flexible nature, Linux has become extremely popular in a
wide range of devices and systems, and as of today it is ported to more
platforms than any other operating system – from TOP500 supercomuters
to desktop PCs, cellphones and embedded devices. Much because of the
Android OS, Linux is also the operating system installed on most devices
worldwide.

2.1.3 Netfilter

Netfilter is a framework implemented in the Linux kernel that provides
several different network components, including connection tracking,
packet filtering, network address translation, port translation etc. Because
of netfilter being a part of the Linux kernel, it is widely used in networking
applications. All the components needed for building your own router or
firewall is included with netfilter and for many or most uses, there is no
need to download additional packages.

Netfilter’s user utilities consists of iptables, ip6tables, ebtables, arptables,
ipset and nftables.

2.1.4 Containers

A container is an executable package of software which includes all
components necessary to run it, including code, runtime, system tools,
system libraries and settings. Software inside a container will always
run the same way, no matter what platform the container runs on. The
container provide isolation between its running software and the software
layers below.
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Figure 2.1: Netfilter components [6]

Where virtual machines abstract physical hardware, containers provide
abstraction at the application layer, packaging code and dependencies
together. Multiple containers can run on the same host while for instance
running different Linux distros inside the containers, sharing a Linux
kernel but running as individual processes in user space. VMs on the other
hand include the whole software stack, from a guest OS to the top-level
applications.

2.1.5 Unikernels

A unikernel is a kind of a merge between an application and an operating
system into one image. This essentially makes the application bootable,
since it includes (only!) the necessary drivers and libraries for the
underlying hardware or hypervisor.

Unikernels have some native advantages when it comes to security. These
advantages come from the fact that a unikernel typically contains much
less code than a general-purpose operating system, including only the code
and libraries required to run the app it is built to run. This means that there
are no unnecessary drivers for Bluetooth, floppy, CD-ROMs, NICs or the
thousands of other hardware devices out there. There is also no file sharing,
shells or other protocols that could provide additional attack vectors. In
other words: The attack surface is much smaller in a unikernel than in a
traditional OS running the same application, though this of course does
not mitigate potential threats against the hypervisor it could be running
on.

Unikernels are also immutable, which means that the running code cannot
be altered. Updating a unikernel involves making your changes to the
code, building it into a new image, downloading the new image to the
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Figure 2.2: Containers [7]

VM and replacing the old image with the new one. In IncludeOS with
LiveUpdate, this is done by pushing the new image to the IncludeOS
instance, where it is saved in memory. The state of the running application
is then stored in memory as well, including open sockets, file descriptors
etc. After that, the new image is booted, the state is restored and the
application resumes execution. Replacing an image happens in a few
hundreds of a second, and can maintain active TCP connections in a router
or firewall.

Figure 2.3: IncludeOS LiveUpdate [8]
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Because there are no system calls or context switches in unikernels – they
instead just switch to another part of the program – there is no need to flush
caches and page tables etc., giving them a performance edge over GPOSs
[9].

Unikernels/libOS also allow applications to access hardware resources
"directly", without having to make privilege transitions for moving data
between a user and a kernel space, making them a potential great
choice for applications where performance and predictable performance
is essential.[1]

Since unikernels do not need to initialize and run lots of unnecessary
services, they can achieve incredibly fast boot times. Thanks to IBM
Research, IncludeOS is now able to run the Solo5 unikernel interface with
the ukvm back end, cutting the already low boot times of 300 ms down to
just 11 ms [10]. This in turn allows IncludeOS to be used in an even wider
set of applications an creates new possibilities in for instance handling web
traffic. With boot times that fast, a web server could be booted as late as
when a DNS request for a web site comes in.

2.1.6 IncludeOS

Built on C++, IncludeOS is a "zero overhead", single address space library
operating system created by Alfred Bratterud et al. [11]. Already in use
with Basefarm for firewall and load-balancing, IncludeOS shows great
promise in improving latency characteristics while requiring a fraction
of the resources used by other systems/OSs [12]. Networking is a key
aspect for the IncludeOS team, and at the time of writing, IncludeOS
is probably the only unikernel available which can (easily) be used as a
router/firewall/load-balancer.

Features like the in-house developed LiveUpdate feature for quick-and-
easy IncludeOS updates and the NaCl configuration language should make
IncludeOS a strong competitor in the quite new unikernel market.

A minimal version of IncludeOS including network stack can be as small as
700KB, with a memory footprint of no more than 16 MB for a simple web
API.

2.1.7 Configuration as Code – VCL and NaCl

Varnish Software develops and delivers caching technology for some of the
world’s most visited websites. One of the reasons why Varnish is so fast
is that their (domain specific) configuration language Varnish Configuration
Language (VCL) is based on C, which is then compiled – making it "lightning
fast"[13].

IncludeOS does the same ting with their unikernel configuration language
NaCl. While originally creating a router, firewall and load-balancer
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Figure 2.4: IncludeOS build-system overview

in C++, this was not deemed ideal for neither IncludeOS nor their
customers.[14]

Creating a new language for configuration in a unikernel, some consider-
ations were needed. One of the fundamental characteristics of a uniker-
nel is that there is at runtime no distinction between code and configura-
tion. Each time a unikernel needs to be updated, the whole image needs
to be rebuilt and deployed – a process made easy in IncludeOS using
their LiveUpdate feature. This should then also be a feature of the con-
figuration language. Another motivation is that running the configuration
through a compiler can optimize the code for that specific system, resulting
in a performance advantage over traditional systems using configuration
files.

The result was for IncldeOS to use the same principle as Varnish VCL: Let
users write configuration in the (high-level) NaCl configuration language,
transpile the config into C++, compile the resulting C++ and link it into the
binary.[15]

2.1.8 Virtual Machines

Virtual Machines (VMs) allow for much better resource utilization than
traditional servers provided strong algorithms for power management,
migration of VMs across physical hardware, cooling schemes, etc. Instead
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of companies running their own servers, wasting resources when those
are not being used or are underutilized, these companies can instead rent
hardware resources from cloud providers such as Amazon, Google and
Microsoft, making sure they only pay for the resources they need.

Typically, VMs contain "large" guest OSs like Windows or Linux, even
though a VM’s purpose may only be to execute a simple task like hosting
a web server or database (single-purpose), wasting a lot of resources on
booting and running the OS itself. Additionally virtualizing introduces
an extra software layer that typically sits between the guest OS and the
hardware, taking up some resources in itself.

A key advantage of virtualizing is the possibility to spawn and tear down
VMs on demand. A company providing a web service can easily build
a load balancing system that automatically spawns new VMs as traffic to
the service increases, and tear down VMs as traffic decreases. This helps
free up resources and allows the company to efficiently run their service
without having to pay for resources they do not use.

In the above example, it is probably vital for the company providing the
service that VMs can be spawned quickly enough to manage the incoming
traffic in real time. Spawning new VMs that themselves have to boot
GPOSs like Linux and Windows with all the necessary components inflicts
a huge time penalty, and may in some cases take too long for the service
to seamlessly handle fluctuations in traffic. The result is often that the
company would need to run more VMs than necessary to be able to cope
with traffic spikes – causing a wasteful resource usage.

Using unikernels instead of traditional OSs in VMs may prove to be a huge
advantage here, with boot times often in the order of milliseconds.

2.2 Securing virtual machines

Virtualization is an essential part of computing today but, as for physical
machines, VMs also have to be properly secured. In addition to the OS and
software running inside VMs, what lies beneath the VMs – the hypervisor
– also needs to be secured.

As opposed to earlier times when virtualization was done in software,
virtualization capabilities are now built into most CPUs. The hypervisor’s
primary job is to provide a management interface to the hardware
primitives. The result of the isolation of CPU, memory and I/O being
done at the hardware level is a considerably smaller attack surface than
with previous techniques. Virtualization extensions in Intel (VT-x) and
AMD (AMD-V) CPUs don’t enable VMs to run at Ring-0. Only the Virtual
Machine Monitor (VMM) runs at a hardware privilege level while guest
OSs run at a virtualized privilege level. When a privileged instruction is
executed in a guest OS, it is trapped and emulated by the VMM.[16]
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In addition to securing a server with a "physical" firewall, traffic between
VMs on the same server needs to be filtered, to prevent malware on one VM
to spread horizontally to other VMs. Both antivirus software and firewalls
can be implemented in software in the VMs, improving security inside the
server [17]. Another approach to inter-VM security is to deploy dedicated
firewall-VMs. Using unikernels for this purpose could provide ultra fast
firewalls with minimal overhead.

Several virtualization and security vendors provide security solutions
aimed towards hypervisors and virtual machines:

Check Point CloudGuard protects against "lateral spread of threats within
virtualized environments and private cloud datacenters"[18].

Working with Amazon Web Services (AWS), Microsoft Azure and VMware
Cloud on AWS, Trend Micro has developed and optimized Deep Security,
that focuses specifically on datacenter and cloud security.[19]

McAfee, Citrix, VMware and others also have similar products securing
cloud infrastructure.

ESXi security

In the whitepaper titeled Security of the VMware vSphere Hypervisor,
VMware explains the security features of its vSphere software suite, in-
cluding the ESXi hypervisor. In the executive summary of the whitepaper,
they list the following features (citation)[16]:

• Secure isolation of virtual machines at the virtualization layer.
This includes secure instruction isolation, memory isolation, device
isolation, and managed resource usage and network isolation.

• Configurable secure management of the virtualized environment.
This includes secure communication between virtualization compo-
nents via SSL; host protection via lockdown mode; and least privilege
by a fine-grained, role-based access-control mechanism.

• Secure deployment of the ESXi software on servers through use
of various platform-integrity mechanisms such as digitally signed
software packages and Intel Trusted Platform Module (TPM)–based
trusted boot.

• Rigorous secure software development life cycle that enables de-
velopers to create software using secure design and coding princi-
ples such as minimum attack surface, least privilege, and defense in
depth.
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Figure 2.5: VMware instruction isolation [16]

2.2.1 Next-Generation Firewalls

A Next-Generation Firewall (NGFW) is a network security system that
is able to enforce security policies on multiple levels of the OSI model,
protecting networks and devices against modern, sophisticated attacks.
Paloalto’s NGFW for instance "classifies all traffic, including encrypted
traffic, based on application, application function, user and content"[20].
That means Next-Generation firewalls must be able to inspect traffic all the
way up to the application level.

In Check Point’s NGFW, administrators have the ability to look at users,
groups, applications, machines and connection types and assign permis-
sions based on these[21], giving a high degree of granularity. NGFW typ-
ically includes both intrusion prevention and intrusion detection systems
with deep packet inspection. Junpier’s NGFW is available in both virtual
and physical form factors.[22]

2.2.2 Virtual firewalls

Firewalls are typically sold as physical devices, but today, several virtual
firewall products exist. Trend Micro has a system where a driver applies
security updates to a host. The host then applies these updates directly to
VMs without agents running on each VM, so automatic security updates
are instantly available when new VMs come online. This is a huge
advantage for virtualized systems, where VMs are frequently spawned and
teared down.
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VyOS

There are several approaches to virtual firewalling. One of them – VyOS
– is a network operating system based on GNU/Linux that is built for
securing networks. According to the creators, VyOS can be installed
on physical hardware or it can be run in a VM, for instance in a cloud
environment[23]

2.3 Related works

2.3.1 iptables, nftables and ipset

A comparison between iptables and nftables in Red Hat Linux was
done by a developer in the Red Hat Developer Blog[24] to show the
differences in performance in the two filtering tools under different
circumstances. Several different tests were run through several different
firewalls comprised of address and port filters. Scaling the number of rules
from zero to 1500, throughput tests were run at 20 different points, ex. at 75
rules, 150 rules, 225 rules etc., and used as points in a graph, showing the
performance as the rule count increased. The filters used were iptables,
both with and without ipset, and nftables also both with and without
nftset.

With simple rules, filtering on source IP addresses, iptables performed
somewhat better than nftables, with iptables increasing the lead as the rule
set grew larger.

In similar tests, filtering on destination ports instead of IP addresses and
using multiport in iptables and set in nftables, iptables showed a linear
decrease in performance as the number of rules increased, while nftables
started out with a bit lower throughput than ipset, but maintained the same
performance all the way through the test.

2.3.2 Performance Evaluation of Netfilter

In the paper Performance Evaluation of Netfilter by Raik Niemann, Udo
Pfingst and Richard Göbel, the authors are evaluating the throughput
performance of netfilter under different conditions and using UDP, TCP
and SCTP. They built their own testing tool that resembles iPerf and
netperf, but their testing tool also incorporates a gateway in addition to
just a client and a server, to allow extended testing. The testing complies
with the guidelines in RFC3511

Testing is performed with 1: the router performing only forwarding, 2:
stateless iptables filter with source, destination and protocol specified, and
3: the same as 2 plus QoS marks.
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The results in this paper show that SCTP was in average 32 percent
slower than TCP, which itself was 8 percent slower than UDP across all
experiments. IPv6 was on average 9 percent slower than IPv4. The
overhead when running netfilter was minimal compared to when the
router host was idling; but the router host in this case used network
adapters with network processors that validate network data packets,
verify network headers and calculate checksums – tasks that would
otherwise be done by the operating system.

The main findings were that the throughput performance of netfilter was
independent of the transport protocol, frame size and address family with
simple netfilter rules, and that the decrease in throughput as the number
of simple netfilter rules increase are roughly linear. The throughput loss
per simple netfilter rule was 0.05 percent for IPv4 and 0.03 percent for
IPv6.[25]

2.3.3 A Performance Evaluation of Unikernels

Ian Briggs, Matt Day, Yuankai Guo, Peter Marheine and Eric Eide, the
authors of A Performance Evaluation of Unikernels, looked at network
performance of two unikernels, namely MirageOS and OSv compared
with Ubuntu Linux. The tools they used were iPerf for bandwidth
measurements, queryperf for DNS response measurements and httperf for
http/server performance testing.

In the conclusion, the authors points out the immaturity of the unikernels
they tested, and that it is unreasonable to draw general conclusions about
unikernels, but that they still show some promising results.

OSv significantly outperformed Linux in every test category, and it didn’t
require much work to port the test tools to this unikernel. Due to OSv
being in alpha at the time of testing, the authors experienced some bugs,
but they conclude that the unikernel will probably be very attractive for
high-performance applications at a later stage [26].

2.3.4 Netfilter Performance Testing

Netfilter Performance Testing by József Kadlecsik and György Pásztor
is a study of the performance of netfilter performance compared to
several other "solutions", including nf-hipac, Compact Filter, iptables with
classifiers and ipset. The tests looked at requests per second measured with
httperf and were performed both with and without conntrack (connection
tracking), NAT and firewall filters.

The tests in this paper show that on their test setup the maximal
performance were halved when using conntrack, compared to just using
plain routing. They also find little difference between tests where just
conntrack is enabled and where conntrack is enabled in addition to
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filtering, when not using "excessive filtering", meaning not too many filter
rules. When running tests with NAT also enabled, in addition to conntrack
and filter, the performance went down another 50 - 60 percent.

Looking at iptables scaling, the researchers show the "clearly non-scaling
behavior of iptables" caused by the way iptables processes rules. Iptables
processes rules linearly, meaning that increasing the number of rules
decreases both req/s and throughput dramatically. Testing of ipset and
nf-hipac shows virtually no decrease in performance even when the rule
sets get very big (16k+ rules).[27]

2.3.5 Unikernels: Library operating system for the cloud

Building on previous work with library operating systems, Madhavapeddy
et al. in Unikernels: Library operating system for the cloud created the Mirage
unikernel to address the lack of specialization in current VMs that are
meant to be single-purpose. Their main contributions are 1: the unikernel
approach for providing sealed, single-purpose appliances suitable for
cloud services, 2: evaluation of an implementation of the techniques using
OCaml, showing the performance benefits, and 3: libraries and language
extensions supporting systems programming in OCaml.

The authors unikernel architecture combines static type-safety with a single
address-space layout that can also be made immutable. With Mirage’s
suite of type-safe protocol libraries, they demonstrate that running on a
hypervisor, they can overcome hardware compatibility issues that made
earlier library operating systems impractical to deploy.

Figure 2.6: Traditional VM vs unikernel approach [28]
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Evaluating their prototype unikernel with micro-benchmarks and appli-
cations that test DNS, OpenFlow and HTTP performance, the authors find
that sacrificing backward compatibility allow them to increase performance
while also improving security of cloud services facing towards the Inter-
net. This is done using standard network protocols such as TCP/IP, and
the authors are able outperform standard Linux network tools while us-
ing much smaller VM images, both in regards to boot times, DNS per-
formance, httperf session create rate and throughput (connections per sec-
ond). [28]

2.3.6 Cloud Cyber Security: Finding an Effective Approach with
Unikernels

The goal of the study Cloud Cyber Security: Finding an Effective Approach
with Unikernels by Bob Duncan, Andreas Happe and Alfred Bratterud is to
identify and tackle some of the privacy and security issues related to cloud
computing and the Internet of Things.

While security in IT is always improving, many IT users are not well
informed about information security, and people themselves are often
the biggest security vulnerability for companies. Not aware that they sit
behind a company firewall, employees of the company may well export
data to clouds, where they may not be aware of security implications like
not being in control of who runs and has access to the cloud software
and underlying hardware. Complex security systems, documentation and
regulations may also well be a overwhelming for users not educated in IT,
making it easy to lose oversight.

With the rapid expansion of Internet of Things (IoT)-devices, security is
often overlooked in favor of pushing devices out as fast as possible. Take
for instance web cameras, where search engines exists for finding and
accessing devices using that either uses default user names and passwords
or are completely open [29]. There have also been examples lately of IoT
devices being used in massive botnets, launching huge DDOS attacks on
Internet infrastructure [30] [31].

The researchers suggests an approach to addressing these problems by
using unikernel-based systems, reducing complexity, attack surface and
resource usage compared to traditional systems. The following definition
of a unikernel is used in the study:

• a minimal execution environment for a service

• providing resource isolation between those services

• offering no data manipulation on persistent state within the uniker-
nel, i.e. the unikernel image is immutable

• being the synthesis of an operating system and the user application
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• only offering a single execution flow within the unikernels, i.e. no
multitasking is performed

With these advantages in security, including isolation, immutability etc.
and also the performance gains and energy efficiency compared to
traditional virtualization appliances, the team concludes with unikernels
being a smart approach to solving many of the current issues in cloud
computing.[32]
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Chapter 3

Approach

3.1 Hardware and network setup

3.1.1 Server and hypervisor

Considering available time and equipment, it was decided to set up a
virtual network on one of OsloMet’s Intel servers. The IncludeOS team
has shown good results with the VMware ESXi hypervisor, and they
recommended it for the setup. VMware is also one of the hypervisors
currently supported by the IncludeOS unikernel. Having access to the
server, the latest version of ESXi was downloaded and installed on the
server. The server specifications are as follows:

• Dell PowerEdge R630

• 40 CPUs x Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

• 128 GB DDR4

• ESXi-6.5.0-20170104001-standard (VMware, Inc.)

Managing the server can be done either via an ESXi shell which provides
a browser GUI or a SSH shell. The ESXi shell is pretty straight-forward
to use, and didn’t take a long time to understand, so that is what was
used for management, setting up the network and VMs, throughout the
project.

3.1.2 Network and VMs

The test network topology outline was proposed by Per Buer at IncludeOS,
and complies with the dual-homed setup in RFC 3511.

Networks can be set up in ESXi by creating virtual switches and port
groups, connecting VMs to port groups and port groups to switches.
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Figure 3.1: RFC 3511 Dual-Homed test setup [33]

Figure 3.2: Port group "Client" connected to vSw1

For the initial setup, five VMs were created, all using vmxnet3 virtual
NICs:

• One VM called Client

Running Ubuntu Desktop 16.04

Traffic generator

• One VM called Target

Running Ubuntu Desktop 16.04

Server-side, receiving traffic

• One VM called Fw1

Running Ubuntu Server 16.04

Acts as Firewall 1

• One VM called Fw2

Running IncludeOS v0.12.0-rc.2
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Table 3.1: Firewall-net

Host 1 Interface IP address Host 2 Interface IP address vSw
client ens160 10.0.0.2 -> FW1 ens192 10.0.0.1 1
FW1 ens256 10.0.1.1 -> Target ens160 10.0.1.2 2
client ens160:1 10.3.0.2 -> FW2 client 10.3.0.1 1
FW2 target 10.3.1.1 -> Target ens160:1 10.3.1.2 2
client ens160:2 10.4.0.2 -> FW3 eth1 10.4.1.1 1
Fw3 eth2 10.4.0.1 -> Target ens160:2 10.4.1.2 2

Includes network stack

Acts as Firewall 2

• One VM called Mothership

Running Ubuntu Desktop 16.04

Manages IncludeOS unikernel on Fw2

One additional VM was later created, called Fw3. This will serve as
a way to test other OSes, initially Alpine Linux. Alpine Linux is "a
security-oriented, lightweight Linux distribution based on musl libc and
busybox"[34]. The idea was to test if this could run a router/firewall with
better performance than Ubuntu Server, which by default includes a lot
more functionality.

The client and the target both have one "physical" interface ens160 with
two subinterfaces; ens160:1 and ens160:2. The interfaces can be set up
with different IP addresses, providing an easy way to specify which
router/firewall to send traffic through. The ens160-interface should go
towards FW1-Ubuntu, subinterface ens160:1 towards Fw2-IncludeOS and
ens160:2 towards Fw3-Alpine.

To prevent unnecessary overhead, Fw1 Ubuntu Server was cleaned of
services with the following script:

1 # ! / b in / bash
2
3 s e r v i c e s =" cron atd r s y s l o g acpid l i b v i r t −bin l i b v i r t −guests
4 apparmor e b t a b l e s f r i e n d l y−recovery r e s o l v c o n f ntp atop
5 pmlogger pmie pmcd pmproxy open−i s c s i openipmi l x c f s bind9
6 accounts−daemon apache2 metr icbeat redis−server c o l l e c t l "
7
8 for s e r v i c e in $ s e r v i c e s ; do
9 s e r v i c e $ s e r v i c e stop

10 done
11
12 apt purge snapd ubuntu−core−launcher squashfs−t o o l s
13 sys temct l mask accounts−daemon . s e r v i c e
14 apt remove p o l i c y k i t −1 −y −−purge

Listing 3.1: Clean-script
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3.1.3 VM management

For easy management of the VMs, SSH access was set up and the VMs
themselves reachable via three public IP addresses. The network interfaces
on the Linux VMs was configured using the /etc/network/interfaces
config file on each VM.

IncludeOS configuration can be done either with a GUI accessible via a
browser or via command line on the Mothership. Port forwarding to
the Mothership-VM with ssh -L 8080:localhost:8080 128.39.120.12 was used
for remote management with the browser GUI. From there, multiple In-
cludeOS instances can be configured and updated. The IncludeOS has also
built an easy-to-use editor for their NaCl (network) configuration.

Updating the IncludeOS instance in the Fw2 VM with new network
parameters involves writing or changing the configuration in the NaCl tab
of the GUI, building a new image including the NaCl file and deploying
the new image to the running VM. The update process, which includes
IncludeOS’ LiveUpdate feature, is described in section 2.1.5. The actual
update of the VM, replacing an old image with a new one, takes only a
fraction of a second. This feature is extremely useful – the alternative would
be to edit the config, build an image, download the image locally, upload
the image to the server and boot the image in ESXi – a process which would
have taken many times as long to perform.

3.2 Tools

3.2.1 iPerf, TCP and UDP

iPerf is a network performance tool available for multiple operating
systems and platforms, including Windows, MacOS, Android, iOS, and
several Linux distros. Through the command line, iPerf can be run with
various parameters to test and log many different aspects of a network
connection, like timings, buffers and bandwidth, and it supports both TCP,
UDP, SCTP with IPv4 and IPv6.

iPerf’s TCP test mode will be used to measure maximum throughput of
the different firewall setups. As most of the traffic on the Internet use the
TCP transport protocol, these tests will be the most important for most
people. UDP has traditionally been used for applications that require very
little overhead and where some packet loss is accepted, like in audio and
video streaming, but TCP has lately been the primary protocol for some of
these tasks as well, including for YouTube. The iPerf UDP mode creates a
constant bitrate UDP stream similar to voice communication, and measures
packet loss and jitter in addition to throughput.[35]
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Figure 3.3: Network setup model

3.2.2 hping3

Hping3 is used to check that the firewall actually drops packets that match
the blocked ports and IP addresses. We also use hping3 to measure latency
in the TCP latency tests.

3.2.3 Netfilter

Netfilter is the main networking framework in Linux and performs all
network related tasks in the Linux routers/firewalls. Userspace programs
like iptables and nftables will be used to create firewall filters that block
certain types of network traffic between the client and target VMs.

3.2.4 ipset

ipset is a netfilter module that allows for quick and efficient processing of
large rule sets. Ipset may store IP addresses, networks, TCP and UDP port
numbers, MAC addresses, interface names or combinations of these. Ipset
uses either hashing or bitmaps to store and quickly look up information.
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Bitmaps were used for both ports (bitmap:port) and IPs (bitmap:ip) in this
project.

A bitmap set uses a memory range where each bit represents one IP, MAC
or port, depending on the chosen set type. A hash set uses hashes to store
IP addresses, CIDR netblocks, port numbers, interfaces or a combination of
these.

3.2.5 IncludeOS Starbase image

Starbase is a minimal IncludeOS image with network stack and drivers
for the VMXNET Generation 3 (vmxnet3) virtual network device from
VMware. This image is going to be configured with NaCl to assign
interfaces, network configuration including routing and firewall filters. The
image size was only about 3 megabytes when compiled with interfaces and
routing config.

3.3 Testing methodology

3.3.1 RFC 3511

RFC 3511 "Benchmarking Methodology for Firewall Performance" from
2003 defines tests for firewall performance testing. Important parts for this
thesis are:

• Dual-homed vs tri-homed

• NAT vs no NAT

• Testing SHOULD be performed using different size rule sets to
determine its impact on the performance of the DUT/SUT

• Rule sets MUST be configured in a manner which enables rules
associated with actual test traffic to be configured at the end of the
rule set and not at the beginning.

• The same TCP parameters MUST be used on all firewalls

• The duration of the test portion of each trial MUST be at least 30
seconds.

This will be a dual-homed test setup with NAT disabled. Different size
rule sets with different types of rules will be compared to observe both
how well the different technologies scale and to find out if some rule types
are heavier to process than others, ex. TCP destination port vs. source IP
address filtering. UDP and TCP performance will be tested.
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3.3.2 Firewall verification

Hping3 is used to verify that the firewalls blocked the intended traffic.
In addition, ipset, nftables and iptables were never used simultaneously,
except for the one rule in iptables that refers to the ipset set, when
running the ipset tests. Configuration from one filter were removed before
configuring and testing a different filter.

3.3.3 iptables setup

The firewall filters will be applied to the FORWARD chain, since traffic
passes through the firewall VM from one interface through another. The
policy will be to accept packets that do not match any rule in the chain.
Scripts are used for creating large rule sets quickly.

TCP destination port rules:

1 for z in { 3 0 0 0 . . 3 9 9 9 }
2 do
3 i p t a b l e s −A FORWARD − i ens192 −o ens256 −p tcp −−dport $z

− j DROP
4 done

Listing 3.2: iptables TCP dport script

Source address rules:

1 for x in { 0 . . 9 9 }
2 do
3 for y in { 1 . . 1 0 } ; do
4 i p t a b l e s −A FORWARD − i ens192 −o ens256 −s 1 0 . 0 . $x

. $y − j DROP
5 done
6 done

Listing 3.3: iptables sAddr script

Iptables will have to try to match each incoming packet against every rule.
Larger rule sets should therefore lead to more overhead and probably lower
throughput.

3.3.4 ipset setup

The set types bitmap:port will be used for destination port matching and
bitmap:ip for IP address matching.

Create set

1 i p s e t c r e a t e ports bitmap : port range TCP:3000−7999

Listing 3.4: ipset: create set

Add ports
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1 i p s e t add ports 3000−7999

Listing 3.5: ipset: add ports

After one or more sets are created in ipset, iptables is used to point to that
rule set. Example:

Add iptables rule that points to the set

1 i p t a b l e s −A FORWARD − i ens192 −o ens256 −m s e t −−match−s e t ports
dst − j DROP

Listing 3.6: iptables -> ipset

Structure

1 Name: ports
2 Type : bitmap : port
3 Revision : 3
4 Header : range 3000−7999
5 S ize in memory : 732
6 References : 0
7 Members :
8 3000
9 3001

10 3002
11 . . .

3.3.5 nftables setup

Nftables are the newest of the three Linux firewall types used in this
thesis. As such, it took a little longer to find the best way of implementing
nftables rulesets. The following commands creates sets that is compiled
into bytecode by the nft command line tool. There are also other ways
of implementing the same rules in nftables, but using this setup should
provide fast lookup.

Create table:

1 n f t add t a b l e ip f i l t e r

Listing 3.7: nftables: Create table

Create chain:

1 n f t add chain ip f i l t e r forward { type f i l t e r hook forward
p r i o r i t y 0 \; po l i cy drop \; }

Listing 3.8: nftables: Create chain

Add rules:

1 sudo n f t add r u l e ip f i l t e r forward ip protoco l tcp tcp dport {
3000−7999 } counter drop

Listing 3.9: nftables: Add multiport
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Structure:

1 t a b l e ip f i l t e r {
2 chain forward {
3 type f i l t e r hook forward p r i o r i t y 0 ; po l i cy accept

;
4 tcp dport { 3000−7999} counter packets 0 bytes 0

drop # h a n d l e 4
5 }
6 }

Listing 3.10: nftables: Structure

NaCl setup

In IncludeOS’ Mothership – which manages the IncludeOS instance –
one has the opportunity to use the command line to configure, build
and upload images. This would in theory make it easy to do a scripted
approach along the lines of what was done in the Linux VMs. Since
Mothership in this case resides in a Docker container, it required more work
to automate the "add 100 rules, run 30 tests times 180 seconds". The GUI
was therefore used to configure and update IncludeOS with new rulesets.
Both the CLI and the GUI approach makes use of IncludeOS’ LiveUpdate
feature, which stores the running state in the VMs RAM, uploads the new
image, switches over to the new image and restores the state. NaCl config
examples are found in the appendix.

3.3.6 Sample size, testing length, scaling

To get a good sense of the throughput pattern of Fw1 Ubuntu Server with
iptables and to see if there was any clear drops in throughput as the number
of rules increased over a certain limit, a scaling test was scripted that runs
a throughput test for every new iptables rule created.

1 testNo =1
2
3 for z in { 1 . . 1 0 0 } ; do
4 for x in { 1 . . 1 0 } ; do
5 echo " Test $testNo " >> $log
6 i p t a b l e s −A FORWARD − i ens192 −o ens256 −p tcp −s 9 . 4 . $z . $x − j

DROP
7 ssh − i . ssh/master . key tobias@10 . 0 . 0 . 2 ’ i p e r f −c 1 0 . 0 . 1 . 2 −t 30 ’

>> $log
8 echo −e

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n ’ >> $log

9 ( ( testNo++ ) )
10 s leep 2
11 done
12 done

Listing 3.11: iptables: Test script: One test per rule
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To provide a more thorough comparison of Fw1 Ubuntu Server and Fw2
IncludeOS and provide cleaner graphs, we also need a test scheme that
provides solid source data without taking too long to run. For the Central
Limit Theorem to apply, we should have sample sizes of at least 30 for the
distribution of the sample means to be fairly normally distributed. Because
of time constraints, we used the minimum of 30 tests for each run, and each
throughput test is run for 30 seconds, which is the minimum testing time
specified in RF 3511.

The script below will run an iPerf test for every 100th iptables rule
applied.

1 testNo =1
2 dport =3000
3
4 for x in { 3 0 0 0 . . 3 9 9 9 . . 1 0 0 } ; do
5 for z in { 1 . . 1 0 0 } ; do
6 i p t a b l e s −A FORWARD − i ens192 −o ens256 −p udp −−dport $x − j

DROP
7 done
8
9 for y in { 1 . . 3 0 } ; do

10 echo " Test $testNo " >> $log
11 ssh − i . ssh/master . key 1 0 . 0 . 0 . 2 " i p e r f −c −u −m 5000 1 0 . 3 . 1 . 2 −t

30 " >> $log
12 echo −e

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n ’ >> $log

13 ( ( testNo++ ) )
14 s leep 5
15 done
16 done

Listing 3.12: iptables: Test script: Test every 100th rule

3.3.7 Misc network settings

Maximum number of simulatious connections in conntrack:

1 tobias@Fw1−Userver :~ $ c a t /proc/sys/net/nf_conntrack_max
2 262144

Listing 3.13: Conntrack: Maximum connections

UDP connection timeout:

1 tobias@Fw1−Userver :~ $ c a t /proc/sys/net/ n e t f i l t e r /
nf_conntrack_udp_timeout

2 30

Listing 3.14: UDP connection timeout
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Chapter 4

Results

All test results are presented and briefly discussed in this chapter. The
tests consists of bulk throughput, a transactions-per-second test and latency
tests. The throughput tests use iperf on both client and target and measure
both TCP and UDP performance. The transactions-per-second tests are
run with netperf and netserver and measures per-second request and
reply performance. Latency tests are performed with the ping and hping3
utilities.

• 4.1: Early tests with iptables only, using the scale-and-test script
presented in 3.3.3. The script runs an iPerf TCP throughput test for
each new iptables rule.

• 4.2: Baseline tests. Pure throughput, no filter. iPerf TCP throughput.

• 4.3: IP address rules. Firewall rules that matches packets against
source addresses/IPs. iPerf TCP throughput.

• 4.4: Port rules. Firewall rules that matches packets against TCP
destination ports. iPerf TCP throughput.

• 4.5: Large rulesets. 10 000 and 50 000 blocked IPs. Source IP filters,
iPerf TCP throughput.

• 4.6: Requests/transactions per second. Netperf used to measure
requests and replies per second.

• 4.7: Latency tests. Ping and hping3 used to test ICMP and TCP
latency.

• 4.8: UDP throughput. iPerf UDP throughput and CPU usage. 1 vs 4
vCPU on Fw1 Ubuntu Server.

The "Second run" sections contain tests that were done with an increased
test time of 180 seconds per test compared to the previous 30 seconds per
test. These tests were done to minimize variances and verify previous
findings, and are discussed in more detail later.
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4.1 Early iptables testing

These initial tests (figure 4.1 and 4.2) were run by a script that created
iptables rules one by one and ran an iPerf test for each new rule for a total
of 1000 tests. The resulting graphs were not as we expected as we were
hoping for a much "cleaner" graph. Still we can see a clear trend in that the
throughput decreases almost linearly with the number of rules, and we can
also see that TCP dport filtering restricts throughput more than running IP
address filtering only.

Figure 4.1: Fw1 iptables IP address filtering

Figure 4.2: Fw1 iptables TCP destination port filtering

4.2 Baseline tests

The pre-planned testing schemes were used for all testing to ensure that
they were performed in the exact same way and under the same conditions.
That means using a scripted approach which performs 30 tests that each
runs for 30 seconds. Some results are verified by running 180 seconds
(under the "Second run") sections. Iperf was run with default settings,
meaning a TCP window size of 85 kB at the client and 85.3 kB at the
target.
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4.2.1 TCP throughput

First run

Looking at the data from the baseline tests (figure 4.3), we see that Fw2
IncludeOS outperforms Fw1 Ubuntu Server and Fw3 Alpine Linux when
not running any firewall filter. Fw2 IncludeOS manages 9.29 Gbps, Fw1
Ubuntu Server manages 8.41 Gbps and Fw3 Alpine Linux manages 8.52
Gbps. In these tests all the VMs are acting as nothing more than forwarding
routers, with no filter applied.

Standard deviations are 0.388 for Fw1, 0.301 for Fw2 and 0.292 for
Fw3.

Figure 4.3: Baseline test results 1st run with 95 percent CI error bars

Second run

To verify previous findings, the previous "test groups" of (30 tests times 30
seconds) were run 10 times for a total of 10 groups times (30 tests times 30
seconds). E.g. Test group 1: (30 tests x 30s), test group 2: (30 tests x 30s), ...,
test group 10: (30 tests x 30s).

For the second round of tests (figure 4.4), we observe that the IncludeOS
VM still outperforms the Linux VM – though with a bit lower margin,
managing 9.67 Gbps versus Ubuntu’s 9.12 Gbps. It was not found exactly
why the results were higher in the second run, though possible reasons are
discussed later.

Standard deviations are 0.532 for Fw1 and 0.658 for Fw2, which means that
both throughput results are inside each others standard deviations.
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Figure 4.4: Baseline test results 2nd run with 95 percent CI error bars

4.3 Address rules

A common firewall scenario is to have a blacklist of IP-addresses and block
traffic from those addresses. OsloMet for instance has such a blacklist of
IP-addresses that is built from various traffic patterns and known threats.
Ranges of source IPs are therefore blocked in these tests.

4.3.1 First run

Figure 4.5 shows the results from doing source IP address filtering
exclusively. Looking at the line that represents Ubuntu Server, we can see
a close to linear decrease in throughput as the number of rules increases.
With 5000 source address rules, throughput is down almost 50 percent,
from 8.41 Gbps with no rules to 4.24 Gbps.

IncludeOS on the other hand shows practically no decrease in throughput,
pushing the same 9+ Gbps all the way to 5000 rules.

4.3.2 Second run

The second batch of tests (figure 4.6) resembles the first one, with Fw2
IncludeOS managing well over 9 Gbps throughout the test, while Fw1
Ubuntu Server with iptables see a close to linear drop in performance as
the number of rules increase. The difference in this run is that Fw1 Ubuntu
Server’s throughput does not drop as much after 3000 rules, and ends on
around 5 Gbps, while in the previous run, it ended at 4.3 Gbps with 5000
iptables rules in place.
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Figure 4.5: Source address filtering

Figure 4.6: Source address filtering - run 2

This time, nftables was also tested with up to 5000 blocked source IP
addresses. Fw1 shows no decrease in throughput as the number of
blocked IPs increases, and manages almost 9 Gbps at 5000 blocked IPs with
nftables.

4.4 Port rules

Going one layer further up the network stack and creating rules that check
for TCP destination port matches may impose a bigger overhead than rules
that only look at IP-addresses.

4.4.1 TCP throughput w/ destination port only rules

First run

Looking at the graph in figure 4.7, we can see that the assumption that
processing layer 4 rules takes a bigger toll than processing layer 3 rules is
indeed true – at least for the Ubuntu VMs running iptables. Where Ubuntu
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Server managed a throughput of 4.24 Gbps with 5000 IP source address
rules, it only manages a throughput of 2.78 Gbps when switching out -s
<IP> with -p tcp –dport <port>.

Figure 4.7: TCP dport filtering

While iptables on the Linux VMs takes a big hit when the rule sets starts to
grow, IncludeOS and ipset shows absolutely no drop in throughput – even
when running 5000 rules. Ipset is configured with the bitmap:port set type
for the TCP dport tests.

Looking at Fw1 Ubuntu Server only (figure 4.8), we can clearly see the
difference between the iptables, ipset and nftables, though ipset and
nftables are quite closely matched.

Figure 4.8: Fw1 TCP dport filtering

Second run

The second batch of tests (figure 4.9) confirm the findings in the first run.
Except from some variations up to 1400 rules, we can see a quite linear
decrease in the throughput as the number of iptables rules increase. At
5000 rules, the throughput is measured at approximately 3 Gbps.
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Figure 4.9: Fw1 TCP dport filtering - run 2

4.5 Large rulesets

Because of all the malicious traffic coming from and targeting specific
IP addresses, there is often a need for firewalls that block thousands of
different IPs. These tests show how the different firewalls perform with 10
000 and 50 000 rules respectively.

4.5.1 10k blocked IPs

Running filters that block 10 000 source IP addresses, we observe (figure
4.10) that Fw2 still outperforms the other firewall setups at 9 Gbps
throughput. Nftables and ipset follows with 8.7 and 8.5 Gbps respectively.
Iptables is the slowest, with 3.5 Gbps throughput at 10k rules.

Figure 4.10: 10k blocked IPs comparison
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The graph includes error bars that represent the 95 percent confidence
intervals. The CI is quite a lot bigger for Fw2 IncludeOS than the others,
which is probably caused by the network throughput in ESXi being maxed
out – introducing larger variations/noise in throughput than for the other
firewalls.

4.5.2 50k blocked IPs

Figure 4.11 shows throughput when running filters that block 50 000 IP
addresses. Fw2 IncludeOS manages 9.25 Gbps and outperforms Fw1 with
nftables at 8.40 Gbps.

Figure 4.11: 50k blocked IPs comparison

4.6 Requests per second

Netperf was used to test the number of TCP transactions per second each
of the firewalls were able to handle. A transaction is defined as a single
request and a single reply.

Running Netperf -H <server IP> -t TCP_RR gave the results seen in figure
4.12. The results are averages of 30 tests.

From the chart, we see that when not running any filters both Fw1 and Fw2
manage about the same transaction rate – 15400 and 15470 transactions/s
respectively.

Blocking 5000 source IP addresses Fw2 IncludeOS does not seem to restrict
performance, averaging 15750 transactions/s. Ipset and nftables are quite
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Figure 4.12: Transactions/s

closely matched, managing 14890 and 15050 transactions/s. Fw1 Ubuntu
Server with 5000 iptables rules sees the transaction rate more than halved
(7335 transactions/s).

4.7 Latency tests

Simple latency tests run with Linux’ built-in ping tool show that iptables
not only restricts throughput when large rule sets are applied, but also
latency increases. In these tests, ping was run with the following
command:

1 sudo ping − i 0 . 1 −c 1000 <IP address >

Listing 4.1: latency: Ping command

which sends 1000 pings with 0.1s intervals. The average of the 1000 pings
is then calculated, and is what you see in the graph (figure 4.13).

In this test, Fw2 IncludeOS starts out with a tiny bit higher latency than
Fw1 Ubuntu Server, which may just be due to internal noise and variations.
When applying 1000 and 5000 rules respectively, it becomes obvious that
iptables is (by far) the biggest loser, while the others are quite evenly
matched.

Marked on each bar is the standard deviation, calculated automatically by
the ping tool.

Not sure if the TCP port sets created in ipset and nftables actually comes
into play when sending ICMP traffic to the firewall, we decided to run the
tests again with hping3, sending TCP traffic instead.
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Figure 4.13: Latencies

Running the second batch of test – with TCP traffic – on Fw2 IncludeOS did
cause some headaches at first. When running

1 sudo hping3 −c 10000 − i u10000 1 0 . 3 . 1 . 2 −p 8000

Listing 4.2: latency: hping3 TCP

the client VM reported exactly 50 percent packet loss every time we tried to
send 10k packets. After some discussion with the IncludeOS team, trying
to figure out the cause of the packet loss (even blaming conntrack for a
while), it became apparent that the IncludeOS firewall actually blocked
packets in both directions. Hping3 sends all the packets to the specified
port, which in this case is TCP 8000, but the target host uses different ports
for each reply (TCP RST). What actually happened in this case was that the
return traffic from the target host was blocked when it entered the specified
port range (set to drop), which was of course meant to only block traffic
in one direction, namely from the "client" interface towards the "target"
interface.

In short, the filter blocked the specified port range in both directions on
Fw2, while on Fw1 Ubuntu Server, the iptables rules specify an input and
an output interface, i.e. the traffic direction.

To solve this, the filter was applied to the prerouting chain on the
incoming interface instead of the "gateway" block in the NaCl code (ref.
appendix).

The exact same problem was encountered when testing with nftables.
Setting up a port range in the forward chain, traffic in both directions was
blocked. This is what the setup looked like:

1 t a b l e ip f i l t e r {
2 chain forward {
3 type f i l t e r hook forward p r i o r i t y 0 ; po l i cy accept ;
4 tcp dport { 3000−7999} drop
5 }
6 }

Listing 4.3: nftables: Forward filter
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After some research, the following solution was found:
1 n f t add r u l e ip f i l t e r forward o i f ens192 ip protoco l tcp tcp

dport { 3000−7999 } drop

Listing 4.4: nftables: If port

specifying which interface the filter applies to.

Figure 4.14: TCP Latencies

The results from sending 10 000 TCP pings with hping3 can be seen in
figure 4.14. It certainly looks like iptables introduces a latency penalty, but
the ping results varies quite a lot on the ESXi network, and they probably
should not be trusted too much in this case.

4.8 UDP throughput

Even though TCP is the most used transport protocol, UDP is still very
much in use. These tests should show how the different firewalls handles
large volumes of UDP traffic, and what happens when reducing the
number of vCPUs on Fw1 Ubuntu Server from four to one.

4.8.1 UDP throughput tests (iPerf 2.0.5)

UDP throughput tests with iPerf 2.0.5 show that we for Fw1 Ubuntu server
can achieve a throughput of around 730 Mbps without packet loss when
there are no iptables rules set. Running the exact same tests after creating
1000 UDP rules with iptables in Fw1, we observe a packet loss of between
9 and 10 percent.

4.8.2 UDP throughput tests (iPerf 2.0.10)

After researching a bit, trying to find out why the UDP throughput was
so much lower than the TCP throughput, we found on source stating
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that the UDP performance in iPerf 2.0.5 is low "due to mutex contention
between the client thread and the reporter thread. The shared memory
between these two threads was increased to address the issue [in version
2.0.10]."

After upgrading to 2.0.10, these were the results on Fw1, when trying to
push 5 Gbps (figure 4.15):

Figure 4.15: Fw1 UDP throughput tests

The first block of tests is run through Fw1 without any iptables filter. We
can see that the throughput is close to 5 Gbps with little packet loss.

The second block of tests is run with 1000 UDP port rules on Fw1. The
throughput in these tests are reduced to around 660 Mbps.

The third block of tests is run with 1000 TCP port rules Fw1. Here we
can see that the throughput is a little bit higher than with the UDP rules,
averaging close to 1100 Mbps.

The fourth block of tests is run with 1000 rules, where the first 500 are TCP
rules and the second 500 are UDP rules. In regards to speed and packet
loss, these average lies between the pure UDP and TCP filter tests, with a
throughput of about 800 Mbps.

Looking at the packet loss chart (figure 4.16), we see a clear relationship
between throughput and packet loss. Fw1 with iptables struggles to cope
with the amount of UDP traffic, and the result is that most of the packets
are dropped whith only 1000 iptables rules. While dropping around 86
percent of the packets with only UDP dport rules, the packet loss decreases
to around 78 percent when running TCP dport rules instead.

ESXi reported a CPU usage on Fw1 of about 30 percent for each of the tests,
regardless of rules being applied or not and also what kind of rules were
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Figure 4.16: Fw1 UDP throughput tests - packet loss

applied (figure 4.17).

Figure 4.17: Fw1 UDP throughput tests CPU comparison 1

Also interesting is to see the difference in reported CPU usage when cutting
the number of vCPUs from 4 to 1. Looking at the CPU chart (figure 4.18),
it is very clear that Ubuntu Server is very CPU-bound when it comes to
handling network traffic – at least UDP traffic – and can utilize at least four
CPU cores.

Observing that the CPU hits 100 percent for the UDP 5 Gbps test when
limiting Ubuntu Server to one vCPU, another round of tests was run to see
if this had any impact on the throughput.
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Figure 4.18: Fw1 UDP CPU usage 4 vs 1 vCPU

Figure 4.19: Fw1 UDP throughput test 4 vs 1 vCPU

As we can see from figure 4.19, the throughput decreased with about 10
percent to 4̃.4 Gbps (from 4̃.9 Gbps) when limiting the number of vCPUs
to just one. The reason for this is the packet loss that occurred when
Ubuntu ran out of CPU resources. The packet loss amounted to about 10
percent.

Based on these results, our theory is that the packet loss would increase
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when pushing even more data through Fw1. With 5 Gbps and 4 vCPUs,
the reported total CPU usage was about 33 percent. Limiting the vCPUs
to just one, we saw an increase in CPU usage of around four times.
We can then assume that Fw1 Ubuntu Server (if not running out of
RAM) could handle quite a lot more throughput with the original four
vCPUs without experiencing heavy packet loss. Limited to one vCPU,
max UDP throughput with minimal packet loss lies somewhere under 5
Gbps. Pushing 5 Gbps UDP traffic through Fw2 gave some interesting
results.

Figure 4.20: Fw1 vs Fw2 UDP throughput

Comparing Fw1 and Fw2 (figure 4.20), we observe that Fw1 Ubuntu Server
actually experienced less packet loss than Fw2 IncludeOS in the first set of
tests – that is without any filter applied. As soon as we start adding iptables
rules to Fw1 and blocking the same UDP port range in NaCl, the results
show quite the opposite; Fw2 manages about the same throughput while
Fw1’s throughput decreases to just 13 percent of what it managed without
a filter.

We can also see a clear difference in Fw2 IncludeOS’ CPU usage when
pushing different amounts of UDP traffic. Figure 4.21 shows the ESXi’s
reported CPU usage ( 40-55 percent) when testing 1000+ TCP dport rules
on Fw1 with iPerf TCP throughput.
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Figure 4.21: Fw2 UDP throughput tests CPU comparison 2
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Chapter 5

Discussion

5.1 Testing methodology

There were more considerations to take into account than expected when
starting the project. Varying results in throughput and latency resulted the
decision of redoing some of the tests with increased run time (180s) for each
test (still 30 tests per data point) to provide better source data. A number
of factors come into play when performing these kinds of tests, even
when performing the tests inside a closed setup like the one used in this
project. The exact cause(s) of the inconsistencies were not pinpointed since
the large number of components makes it hard to troubleshoot. Causes
for the inconsistencies may include hardware, hypervisor (ESXi), virtual
NICs, resource distribution, virtual switches, protocols, TCP congestion
control, etc. Traffic shaping is disabled in both the vSwitches and the port
groups/links, so that should not limit the throughput.

5.1.1 ESXi network planning

VMware’s ESXi hypervisor is optimized for high-speed and cost-effective
networking between VMs[36] and should thus provide a solid platform for
the kind of testing done in this project.

5.1.2 Throughput

Testing primarily with iPerf should give a good idea of how the different
firewalls perform under pressure, since the firewalls have to match every
incoming packet with its specified rule set. VMware also use iPerf in
an example for troubleshooting network latency in ESXi[37], which may
imply that it is the right tool for the kind of testing done in this thesis.
The VMware Network Throughput in a Virtual Infrastructure white paper
states the importance of having sufficient CPU power for heavy network
workloads. Maxing CPU usage may result in TCP treating the condition
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as network congestion, applying it’s flow/congestion control mechanisms
to counter the issue. This should not be a problem here though, where
the main goal is to show differences in throughput between the different
firewalls and technologies – not to show exactly how much throughput
can be achieved with this exact system. Anyway, ESXi reported well under
100 percent CPU usage for most tests except for one UDP test run on
Ubuntu with one vCPU – which somewhat reduced the throughput, and
for IncludeOS while blocking 20 000 IP addresses.

5.2 Linux firewalls – Current situation

A front-end to the kernel-level netfilter hooks, iptables has been widely
adopted since its implementation in the 2.4.0 Linux kernel in 2001, and is
now the standard firewall in many or most Linux distros.

Assumed by many to be the successor to iptables, nftables was implemented
in the 3.13 kernel released early in 2014.

A third packet filter, BPF, was recently added by kernel developers,
overlapping some of the functionality in nftables.[38]

5.2.1 Iptables, drawbacks

The most serious drawback of iptables is the performance hit that comes
from its sequential processing of rules – easily seen from the graphs above.
Every incoming and outgoing packet has to be matched against all iptables-
rules, one by one, to determine what action to be taken on that specific
packet. This may not be an issue for individuals building a small firewall
at home, but for power users and businesses with higher security and
performance requirements, iptables is certainly not the best solution.

In addition to the performance drawbacks, there are also security issues
linked to the use of iptables.

5.2.2 Short term solution: ipset

Having the ability to create sets and store them in hash tables for fast
lookup, ipset is golden for iptables users. Huge performance gains can
result from cutting down on iptables rules and instead having just a few
rules pointing to IP sets.

Since the ipset tool has been around for a while, it is also well documented,
and it is not hard to find help in online guides and forums if needed.
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5.2.3 nftables – Successor to iptables?

At the time of writing, the Netfilter project are working on getting nftables
more widely adopted, trying to move people and companies over from
iptables. A wiki page on Netfilter’s nftables wiki contains a list over current
adopters of nftables, but that list is currently quite short.[39]

Because of nftables not being that widely used, it is also much harder to
find documentation and setup guides – in stark contrast to iptables, which
is very well documented, widely used and which many sysadmins know
well through many years.

Getting people to migrate from iptables to nftables are a priority for the
Netfilter project, and while they are trying to make the change as easy as
possible, many will probably still stick with iptables for years to come, at
least when getting reasonable performance with iptables extensions like
ipset.

Also with regards to security, nftables should in theory be a better choice
than iptables. People are hard to change though, tending to stick with what
works instead of pouring resources into something new and unfamiliar (if
it ain’t broke, don’t fix it).

5.2.4 The rise of eBPF

Berkeley Packet Filter (BPF) started out as a way to optimize packet
filtering by compiling expressions into optimal BPF bytecode, which is
then executed in a sandboxed in-kernel VM [40]. Tcpdump is one tool
that utilizes BPF, allowing it to for example return only packets specified
by a filter, avoiding unnecessary copying of packets from the kernel to the
process.

Several large service- and content providers are adopting (e)BPF [41]
and XDP[42], among them is: Facebook (load balancing and DDoS
mitigation)[43] and Cloudflare (DDoS mitigation)[44].

Advantages of eBPF:

• Just-in-time compilation

• Offloading of XDP-level programs to NIC, moving firewall process-
ing off the CPU

• Writing firewall rules in C

• Subject to BPF verifier, providing an extra layer of security

• Existing iptables rules can be translated into BPF programs – moving
entire configurations to BPF may be possible without sysadmins even
knowing
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Suggestions: Even though it is possible to implement the iptables API
with bpfilter, some people in the community suggests that bpfilter should
rather be implemented with the nftables API – encouraging and supporting
the shift from the old iptables with its "design mistakes" over to the
much newer nftables, which was built with iptables shortcomings in mind.
[38]

Projects are underway for frameworks that works on top of bpfilter that
translate nftables into BPF[45]

In a talk in FOSDEM 2018, the software engineer Quentin Monnet of
Netronome talks about the advantages of eBPF and XDP [46]. The main
idea is to have BPF programs talk with XDP in the kernel. XDP can
intercept packets and make decisions before the packets reach the network
stack, enabling faster packet processing for simple use cases. These use
cases may include load balancing, DDoS protection/mitigation, firewalls,
virtual switches, QoS and more.

An overview on XDP from 2016 by Alexei Starovoitov and Tom Herbert,
both Facebook employees, describes XDP as "A programmable, high per-
formance, specialized application, packet processor in the Linux network-
ing data path" [47]. Like Monnet, they also list DOS mitigation and load
balancing as use cases for the XDP packet processor, in addition to forward-
ing, flow sampling, monitoring and ULP processing. For packet drop, they
list a target of 20 million packets per second per CPU as a performance
goal, which will be important for DDoS mitigation.

DDoS

DDoS attacks have been more frequent and much bigger in "size" over the
past few years than ever before. To be able to investigate and understand
how these attacks work, the big service providers of the Internet has to be
able to "absorb" the attacks, not simply "black hole" them, as Cloudflare
writes in a blog post from 2016 [48]. In the first quarter of that year,
Cloudflare saw an increase of 15x in individual DoS events (large attacks
are registered as many separate events). Instead of using BGP blackholing
– a technique that involves routing the traffic to an IP address which has
no host attached to it – the scale and efficiency of Cloudflare’s network
allow them to monitor and analyze the traffic. Hitting peaks of 180 million
packets per second, Cloudflare still managed to sustain and log the attack.
With XDP and eBPF, (more) providers should get an even better chance
to mitigate these kinds of attacks. Unikernels may also be able to provide
low cost DDoS protection on the same level as more expensive systems, at
least when handling large traffic volumes as good as IncludeOS did in this
project.

One reason for the increase in DDoS frequency and size is the enormous
increase in (badly secured) IoT devices. Improving security in IoT
devices is therefore a hot topic these days, which Google’s new IoT
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OS[49] is a testimony of. Having limited system resources, IoT devices
often can’t run traditional operating systems, instead often relying on
proprietary firmware/software. Unikernels should have an advantage
in this regard, as some of their main traits are their minimal size, good
resource utilization, optimized/compiled code and immutability.

It is apparent that XDP is getting a lot of attention these days. A list of XDP
work and presentation can be found at https://www.iovisor.org/technology/
xdp.

5.3 Networking in IncludeOS

5.3.1 TCP/IP stack

Contrary to Linux, which has one network stack shared by all interfaces,
IncludeOS has one network stack for each interface, allowing tighter
control and enhancing security.

5.3.2 In development

IncludeOS is still a new product, and new versions are being released quite
quickly. The performance tested and shown in this thesis should give a
good impression of the performance characteristics of the unikernel, but
the results may vary in new versions.

5.4 Interrupts and throughput variations

After some experimenting, tweaking affinity and watching interrupts, we
found that:
1. The NIC has four interrupt queues
2. Interrupts when testing throughput with iPerf seems to end up in two
random interrupt queues. When the interrupts end up in two different
queues on the client/sender the throughput (when measuring on a second
to second basis) jumps up and down quite a lot:

1 $ t a s k s e t −c 3 i p e r f −c 1 0 . 0 . 1 . 2 −t 180 − i 1
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 C l i e n t connect ing to 1 0 . 0 . 1 . 2 , TCP port 5001
4 TCP window s i z e : 8 5 . 0 KByte ( d e f a u l t )
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 [ 3 ] l o c a l 1 0 . 0 . 0 . 2 port 47042 connected with 1 0 . 0 . 1 . 2 port 5001
7 [ ID ] I n t e r v a l Transfer Bandwidth
8 [ 3 ] 0.0− 1 . 0 sec 1 . 2 9 GBytes 1 1 . 0 Gbits/sec
9 [ 3 ] 1.0− 2 . 0 sec 877 MBytes 7 . 3 6 Gbits/sec

10 [ 3 ] 2.0− 3 . 0 sec 1 . 2 2 GBytes 1 0 . 5 Gbits/sec
11 [ 3 ] 3.0− 4 . 0 sec 834 MBytes 7 . 0 0 Gbits/sec
12 [ 3 ] 4.0− 5 . 0 sec 1 . 1 9 GBytes 1 0 . 2 Gbits/sec
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13 [ 3 ] 5.0− 6 . 0 sec 857 MBytes 7 . 1 9 Gbits/sec
14 [ 3 ] 6.0− 7 . 0 sec 1 . 3 3 GBytes 1 1 . 4 Gbits/sec
15 [ 3 ] 7.0− 8 . 0 sec 850 MBytes 7 . 1 3 Gbits/sec

Listing 5.1: Different interrupt queues

3. When the interrupts end up in the same queue, the traffic pattern is much
more stable:

1 $ t a s k s e t −c 3 i p e r f −c 1 0 . 0 . 1 . 2 −t 180 − i 1
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 C l i e n t connect ing to 1 0 . 0 . 1 . 2 , TCP port 5001
4 TCP window s i z e : 8 5 . 0 KByte ( d e f a u l t )
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 [ 3 ] l o c a l 1 0 . 0 . 0 . 2 port 47040 connected with 1 0 . 0 . 1 . 2 port 5001
7 [ ID ] I n t e r v a l Transfer Bandwidth
8 [ 3 ] 0.0− 1 . 0 sec 1 . 1 8 GBytes 1 0 . 1 Gbits/sec
9 [ 3 ] 1.0− 2 . 0 sec 1003 MBytes 8 . 4 1 Gbits/sec

10 [ 3 ] 2.0− 3 . 0 sec 1 . 0 3 GBytes 8 . 8 2 Gbits/sec
11 [ 3 ] 3.0− 4 . 0 sec 1020 MBytes 8 . 5 6 Gbits/sec
12 [ 3 ] 4.0− 5 . 0 sec 1 . 0 2 GBytes 8 . 7 5 Gbits/sec
13 [ 3 ] 5.0− 6 . 0 sec 1 . 0 0 GBytes 8 . 6 0 Gbits/sec
14 [ 3 ] 6.0− 7 . 0 sec 1 . 0 4 GBytes 8 . 9 1 Gbits/sec
15 [ 3 ] 7.0− 8 . 0 sec 1022 MBytes 8 . 5 7 Gbits/sec

Listing 5.2: One interrupt queue

This is what the interrupt queues look like for ens160 on the Client
VM:

1 grep ens160 /proc/ i n t e r r u p t s
2 5 6 : 24 349993252 541823462 296032049 PCI−MSI 1572864−edge

ens160−rxtx−0
3 5 7 : 12 129686885 1026923095 36998141 PCI−MSI 1572865−edge

ens160−rxtx−1
4 5 8 : 6 67101899 1083994287 3642212 PCI−MSI 1572866−edge

ens160−rxtx−2
5 5 9 : 1 89156482 253644912 870415523 PCI−MSI 1572867−edge

ens160−rxtx−3

Listing 5.3: Interrupt queues for NIC ens160

It should be possible to force the interrupts onto one queue with ethtool,
but this may be NIC or driver dependant, and was seemingly not possible
in this instance. We did try to set the irq affinities of the four interrupt
queues to one CPU and pass traffic with another CPU too look if that did
anything to the traffic pattern That did not help though, since the interrupts
could still ended up in different queues on the same CPU.

Setting interrupt CPU affinity for the ens160 NIC queues:

1 echo 2 > /proc/ i r q /56/ smp_af f in i ty
2 echo 2 > /proc/ i r q /57/ smp_af f in i ty
3 echo 2 > /proc/ i r q /58/ smp_af f in i ty
4 echo 2 > /proc/ i r q /59/ smp_af f in i ty

Listing 5.4: Set irq affinity
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Since we use standard vmxnet3 NICs, the same issue will probably apply
for others running their network on VMware ESXi. The following error
message was presented when trying to use flow steering to pin flows to
one queue:

1 $ sudo e t h t o o l −N ens160 flow−type tcp4 dst−ip 1 0 . 0 . 1 . 2 dst−port
2999 a c t i o n 1

2 r x c l a s s : Cannot get RX c l a s s r u l e count : Operation not supported
3 Cannot i n s e r t c l a s s i f i c a t i o n r u l e

Listing 5.5: Flow steering error

5.5 Future work

Figuring out how to pin traffic flows to one NIC queue and thereby
stabilizing traffic performance should be tested and verified. The NIC types
would probably have to be changed in this instance.

Knowing that IncludeOS can handle large amounts of traffic even when
compiled with large firewall filters, it should be possible to use the
unikernel for DDoS protection/mitigation as well. We propose a study
where IncludeOS is tested in a DDoS simulation with a whitelist of allowed
IP addresses while blocking all other traffic.

XDP and eBPF is definitely worth watching in the coming years, as it
may bring some serious competition to existing Linux-based firewalls and
network equipment, and maybe also to unikernels. As XDP/eBPF is in its
early stages, further research and development is needed.

Continued network performance testing on unikernels would also be
valuable. A study looking at HTTP, DNS and load balancing performance
could be an important contribution to the field. If more unikernels aimed
at networking tasks are developed, a performance comparison between the
unikernels would be interesting.

Next-generation firewalls with multi layer and deep packet inspection that
includes intrusion prevention and detection mechanisms could be suited
for unikernels. It would also be interesting to see if unikernels could
handle other security related tasks like running antivirus and anti malware
software.
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Chapter 6

Conclusion

The tests conducted in this thesis has shown that the IncludeOS unikernel
is more than capable of competing with existing firewall solutions available
for Linux at this time. Using a fraction of the resources of a standard
Ubuntu Server implementation, IncludeOS did not only match Ubuntu
Server in these tests, but exceeded it in every test, though often not by
much when compared to ipset and nftables.

The performance advantages observed with nftables and IncludeOS comes
from the configurations being compiled before it is processed. Having
configuration files that have to be checked while a program is running
is inefficient. IncludeOS’ NaCl configuration language is transpiled into
C++ and compiled for a high degree of optimization and efficiency.
Nftables is similar in that it uses the nft command line tool to compile a
ruleset into bytecode and pushes that into the kernel, explaining its good
performance.

Being immutable, unikernels have a security advantage over general-
purpose operating systems like Linux. After a unikernel image is built
(including all configuration) the image cannot be altered, but rather has
to be replaced completely. Another key advantage of unikernels over
traditional operating systems is their small size. Not having to include all
sorts of drivers and unnecessary code, unikernels can be as little as a few
kilobytes – compared to gigabytes for GPOSs.

For large cloud providers serving tens or hundreds of thousands of
customers with even more virtual machines, switching to a unikernel like
the one tested here could help save enormous amounts of resources and
consequently cost. We gave the IncludeOS VM 128 MB RAM, but did not
see it using more than a few megabytes, compared to Ubuntu’s usage of
over 1,3 gigabytes as reported by ESXi.

Building unikernels that incorporate other security related functions could
also be beneficial for cloud providers. These unikernels could possibly
address tasks like antivirus and anti malware, network offloading and load
balancing inside a cloud. Being quick to build and update, these could be

53



deployed when needed both in front of LAN and WAN interfaces of cloud
VMs.

Based on the results, we can safely say that iptables, which was introduced
all the way back in 2001, is ready for retirement when it comes to enterprise-
grade firewalls. Looking through filter rules one by one the way iptables
does is slow and does not scale: Throughput on our Ubuntu Server firewall
(Fw1) with iptables were down to 50% compared to having no rules applied
when running a set of 3000 firewall rules blocking different TCP destination
ports. At 10 000 rules/blocked IPs Fw1 Ubuntu Server managed only about
a third of the original throughput, and when running a filter blocking
50 000 IP addresses, throughput went down to around 0.6 Gbps, while
IncludeOS pushed 9.25 Gbps - 15 times more.

Iptables’ bad performance when dealing with large rulesets is nothing
new, and solutions that use sets have been available for a while. Ipset
showed much better results than iptables from just a couple of hundred
rules/blocked IPs/ports. Using the bitmap:port and ip:port set types, ipset
performance was not degraded even when implementing thousands of
ports or IPs.

The newer nftables, thought by some to replace iptables as the standard
Linux firewall, achieved the best throughput of the Linux firewalls. Not
as well documented as iptables and ipset, it can take a bit of Googling to
set up a firewall from scratch using nftables, but the performance may be
worth it; our nftables firewall was not at all affected by implementing up
to 10 000 IPs matching incoming packets, but it was slower than IncludeOS
at 50 000 blocked IP addresses.

The cloud and IaaS provider Basefarm has already been testing IncludeOS
in a production environment for over a year, and holds the unikernel in
high regard [50].
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Appendix A

Network setup and config

A.1 Network overview

A.1.1 Final network setup

Figure A.1: Network setup model
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A.2 Network config

Node network configuration (from /etc/network/interfaces)

A.2.1 Fw1 Ubuntu Server

1 # The l o o p b a c k network i n t e r f a c e
2 auto lo
3 i f a c e lo i n e t loopback
4
5 # The pr imary network i n t e r f a c e
6 auto ens160
7 i f a c e ens160 i n e t s t a t i c
8 address 1 2 8 . 3 9 . 1 2 0 . 1 9
9 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

10 network 1 2 8 . 3 9 . 1 2 0 . 0
11 broadcast 1 2 8 . 3 9 . 1 2 0 . 2 5 5
12 gateway 1 2 8 . 3 9 . 1 2 0 . 1
13 # dns−* o p t i o n s a r e impl emented by t h e r e s o l v c o n f package ,

i f i n s t a l l e d
14 dns−nameservers 8 . 8 . 8 . 8 8 . 8 . 4 . 4
15
16 # Towards C l i e n t
17 auto ens192
18 i f a c e ens192 i n e t s t a t i c
19 address 1 0 . 0 . 0 . 1
20 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
21 network 1 0 . 0 . 0 . 0
22 broadcast 1 0 . 0 . 0 . 2 5 5
23
24 # Towards T a r g e t
25 auto ens256
26 i f a c e ens256 i n e t s t a t i c
27 address 1 0 . 0 . 1 . 1
28 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
29 network 1 0 . 0 . 1 . 0
30 broadcast 1 0 . 0 . 1 . 2 5 5

Listing A.1: Fw1 Ubuntu Server nw config

A.2.2 Client

1 # i n t e r f a c e s ( 5 ) f i l e used by i f u p ( 8 ) and i fdown ( 8 )
2 auto lo
3 i f a c e lo i n e t loopback
4
5 # Towards Fw1−Ubuntu
6 auto ens160 ens160 : 1 ens160 : 2
7
8 i f a c e ens160 i n e t s t a t i c
9 address 1 0 . 0 . 0 . 2

10 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
11 network 1 0 . 0 . 0 . 0
12 broadcast 1 0 . 0 . 0 . 2 5 5
13
14 up ip route add 1 0 . 0 . 1 . 0 / 2 4 via 1 0 . 0 . 0 . 1
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15
16 # Towards Fw2−IncludeOS
17 i f a c e ens160 : 1 i n e t s t a t i c
18 address 1 0 . 3 . 0 . 2
19 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
20 network 1 0 . 3 . 0 . 0
21 broadcast 1 0 . 3 . 0 . 2 5 5
22
23 up ip route add 1 0 . 3 . 1 . 0 / 2 4 via 1 0 . 3 . 0 . 1
24
25 # Towards Fw3−Al p ine
26 i f a c e ens160 : 2 i n e t s t a t i c
27 address 1 0 . 4 . 0 . 2
28 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
29 network 1 0 . 4 . 0 . 0
30 broadcast 1 0 . 4 . 0 . 2 5 5
31
32 up ip route add 1 0 . 4 . 1 . 0 / 2 4 via 1 0 . 4 . 0 . 1

Listing A.2: Client nw config

A.2.3 Target

1 # i n t e r f a c e s ( 5 ) f i l e used by i f u p ( 8 ) and i fdown ( 8 )
2 auto lo
3 i f a c e lo i n e t loopback
4
5 # Towards FW1−Ubuntu
6 auto ens160 ens160 : 1 ens160 : 2
7
8 i f a c e ens160 i n e t s t a t i c
9 address 1 0 . 0 . 1 . 2

10 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
11 network 1 0 . 0 . 1 . 0
12 broadcast 1 0 . 0 . 1 . 2 5 5
13
14 up ip route add 1 0 . 0 . 0 . 0 / 2 4 via 1 0 . 0 . 1 . 1
15
16 # Towards FW2−IncludeOS
17 i f a c e ens160 : 1 i n e t s t a t i c
18 address 1 0 . 3 . 1 . 2
19 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
20 network 1 0 . 3 . 1 . 0
21 broadcast 1 0 . 3 . 1 . 2 5 5
22
23 up ip route add 1 0 . 3 . 0 . 0 / 2 4 via 1 0 . 3 . 1 . 1
24
25 # Towards FW2−Al p ine
26 i f a c e ens160 : 2 i n e t s t a t i c
27 address 1 0 . 4 . 1 . 2
28 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
29 network 1 0 . 4 . 1 . 0
30 broadcast 1 0 . 4 . 1 . 2 5 5
31
32 up ip route add 1 0 . 4 . 0 . 0 / 2 4 via 1 0 . 4 . 1 . 1

Listing A.3: Target nw config
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A.2.4 Fw2 IncludeOS

1 I f a c e mgmt {
2 index : 0 ,
3 address : 1 0 . 0 . 7 . 2 ,
4 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
5 gateway : 1 0 . 0 . 7 . 1
6 }
7
8 I f a c e c l i e n t {
9 index : 1 ,

10 address : 1 0 . 3 . 0 . 1 ,
11 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0
12 }
13
14 I f a c e t a r g e t {
15 index : 2 ,
16 address : 1 0 . 3 . 1 . 1 ,
17 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0
18 }
19
20 Gateway gw {
21 r1 : {
22 net : 1 0 . 3 . 0 . 0 ,
23 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
24 i f a c e : c l i e n t
25 } ,
26
27 r2 : {
28 net : 1 0 . 3 . 1 . 0 ,
29 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
30 i f a c e : t a r g e t
31 }
32 }

Listing A.4: Fw2 IncludeOS nw config

A.2.5 Fw2 IncludeOS w/prerouting filter

1 I f a c e mgmt {
2 index : 0 ,
3 address : 1 0 . 0 . 7 . 2 ,
4 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
5 gateway : 1 0 . 0 . 7 . 1
6 }
7
8 I f a c e c l i e n t {
9 index : 1 ,

10 address : 1 0 . 3 . 0 . 1 ,
11 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
12 prerout ing : i p f i l t e r
13 }
14
15 I f a c e t a r g e t {
16 index : 2 ,
17 address : 1 0 . 3 . 1 . 1 ,
18 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0
19 }
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20
21 Gateway gw {
22
23 # f o r w a r d : i p f i l t e r ,
24
25 r1 : {
26 net : 1 0 . 3 . 0 . 0 ,
27 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
28 i f a c e : c l i e n t
29 } ,
30
31 r2 : {
32 net : 1 0 . 3 . 1 . 0 ,
33 netmask : 2 5 5 . 2 5 5 . 2 5 5 . 0 ,
34 i f a c e : t a r g e t
35 }
36 }
37
38 my_ports : [
39 3000−7999
40 ]
41
42 F i l t e r : : TCP t c p f i l t e r {
43 i f ( tcp . dport in my_ports ) {
44 drop
45 }
46 }
47
48 f i l t e r : : IP i p f i l t e r {
49 t c p f i l t e r ( )
50 accept
51 }

Listing A.5: Fw2 IncludeOS prerouting filter

A.2.6 Mothership

1 # i n t e r f a c e s ( 5 ) f i l e used by i f u p ( 8 ) and i fdown ( 8 )
2 auto lo
3 i f a c e lo i n e t loopback
4
5 # Towards I n t e r n e t
6 auto ens160
7 i f a c e ens160 i n e t s t a t i c
8 address 1 2 8 . 3 9 . 1 2 0 . 1 2
9 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

10 network 1 2 8 . 3 9 . 1 2 0 . 0
11 broadcast 1 2 8 . 3 9 . 1 2 0 . 2 5 5
12 gateway 1 2 8 . 3 9 . 1 2 0 . 1
13
14 # Towards FW2
15 auto ens192
16 i f a c e ens192 i n e t s t a t i c
17 address 1 0 . 0 . 7 . 1
18 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
19 network 1 0 . 0 . 7 . 0
20 broadcast 1 0 . 0 . 7 . 2 5 5

Listing A.6: Mothership nw config

63



A.3 Testing scripts

A.3.1 ipset scale and iPerf tests

1 # ! / b i n / bash
2
3 i p t a b l e s −F FORWARD # Flush FORWARD t a b l e
4 i p s e t f l u s h ports # Flush i p s e t " p o r t s "
5
6 sudo i p t a b l e s −A FORWARD − i ens192 −o ens256 −m s e t −−match−s e t

ports dst − j DROP # Match i p s e t
7
8 t a r g e t = ’ 1 0 . 0 . 1 . 2 ’ # 1 0 . 0 . 1 . 2 f o r Fw1 || 1 0 . 3 . 1 . 2 f o r Fw2
9 port =8000 # i P e r f t a r g e t p o r t

10 #bw= ’2500m’ # UDP bandwidth
11
12 today = ‘ date +%Y−%m−%d.%H:%M:%S ‘ # Can be used f o r

l o g g i n g
13 log="/home/ t o b i a s /log/Fw1 . i p s e t . t e s t . log " # Log l o c a t i o n
14 touch $log # C r e a t e l o g f i l e
15
16 testNo =1 # Appears in t h e l o g
17 dport =4000 # S t a r t p o r t
18
19 for x in { 4 0 0 0 . . 4 9 9 9 . . 1 0 0 } ; do
20
21 echo " Test number : $testNo "
22 echo " dport value : $dport "
23
24 ( ( toPor t=dport +99 ) )
25
26 echo " toPor t value : $ toPor t "
27
28 i p s e t add ports TCP : $dport−$toPor t
29 ( ( dport=dport +100 ) )
30
31 for y in { 1 . . 3 0 } ; do
32 echo " Test $testNo " >> $log
33 ssh − i . ssh/master . key tobias@10 . 0 . 0 . 2 " i p e r f −c

$ t a r g e t −p $port −t 30 " >> $log
34 echo −e

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n ’ >> $log

35 ( ( testNo++ ) )
36 ( ( y++ ) )
37 s leep 2
38 done
39 done

Listing A.7: ipset scale and test script

A.3.2 iPerf TCP testing script

1 # ! / b in / bash
2
3 t a r g e t = ’ 1 0 . 0 . 1 . 2 ’
4 port =8000
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5
6 today = ‘ date +%Y−%m−%d_%H.%M.%S ‘
7 log="/home/ t o b i a s /log/Fw1 . sAddr . 1 0 k . log "
8 touch $log
9

10 testNo =1
11
12 for y in { 1 . . 3 0 } ; do
13 echo " Test $testNo " >> $log
14 i p e r f −c $ t a r g e t −p $port −t 30 >> $log
15 echo −e

’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
n ’ >> $log

16 ( ( testNo++ ) )
17 s leep 2
18 done

Listing A.8: iPerf TCP testing script

A.3.3 iPerf UDP testing script

1 # ! / b in / bash
2
3 t a r g e t =" 1 0 . 0 . 1 . 2 " # 1 0 . 0 . 1 . 2 f o r fw1 ( Ubuntu ) , 1 0 . 3 . 1 . 2 f o r

fw2 ( IncludeOS )
4 port =8000 #UDP p o r t number (5001 i s d e f a u l t )
5 noOfTests =30 #Number o f t e s t s
6 testNo =1 # T e s t number ( do not e d i t )
7 t imePerTest =30 #Time p e r t e s t in s e c o n d s
8 bandwidth=" 5000m" #Mbps pushed by c l i e n t
9

10 log="/home/ t o b i a s /log/Fw1 .UDP. noRules . t e s t . log "
11
12 while [ $noOfTests −gt 0 ]
13 do
14 #Run i p e r f t h r o u g h p u t t e s t
15 echo " Test $testNo $ t a r g e t ">> $log
16 i p e r f −c $ t a r g e t −p $port −t $t imePerTest −u −b $bandwidth

>> $log
17 echo "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
>> $log

18 echo " " >> $log
19 s leep 2
20 ( ( noOfTests−− ) )
21 ( ( testNo++ ) )
22 done

Listing A.9: iPerf UDP testing script
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