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Abstract

In this thesis I explore three different techniques for generating digital au-
dio using neural networks. All three techniques use different network
structures and architectures suitable for generating sequential data. Op-
erating at the sample level requires each technique to model dependencies
across large time lags in order to generate realistic audio. This is a hard task
for even the most sophisticated techniques.

To gain an understanding of how each technique works I have
implemented two neural networks of different structures based on the
same architecture, as well as familiarized myself with an implementation
of a network using an architecture not commonly used to model sequential
data.

To compare each technique I have trained each model on a dataset
containing a large number of classical piano pieces. Each model is
evaluated in terms of the audio quality and musicality of their generated
audio.

Results suggest that each model could be used in applications using
short amounts of digital audio. It is unclear, however, if these techniques
are able to generate arbitrary music with high level structures, while
containing the small details necessary to generate realistic sounds.
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Chapter 1

Introduction

Communication is an important part of every humans life and we rely on it
to share our thoughts and emotions with other humans. We communicate
with each other not only through advanced languages, but also through
music. Considering how important these forms of communication is to us,
it is not hard to imagine why speech and music have become popular fields
within computer science.

The latest advances in machine learning and artificial neural networks
have given rise to techniques that show great potential in speech and music
generation. These techniques tackles the problem at its lowest level, they
generate digital audio one sample at a time. This allows them to be used in
both speech and music generation and have made it possible for computers
to generate speech that sounds more human than with previous techniques,
as well as music that sounds highly realistic. But what are these techniques?

These techniques are inspired by techniques used in applications such
as text and image generation. Because there are many similarities between
text and audio generation, as well as image generation, it allows to use
these techniques without many modifications. Different architectures and
structures have shown great potential in many domains and it is natural to
wonder how these techniques would handle the difficult task of generating
audio sample by sample.

Natural sound consists of highly complex and irregular information
and even the most powerful neural network in the world, the human
brain, rely on a sophisticated auditory system that extracts this information
and converts it into a simpler format that is easier to process. Of course,
converting the sound information into a simpler format makes it easier
to understand specific sounds, but it makes it difficult to reproduce them.
This is probably why humans have a separate system for generating certain
sounds. It it possible to imaging a biological speaker, driven by well
coordinated muscles, being able to reproduce sound in the same way as
an electrical speaker. If so, the brain might have had to process sound on
similar low-level information as audio samples. But the fact that this has
not been evolved might suggest that this task is too difficult for even the
most powerful neural network.

Considering the difficulty of this task, how practical and useful are



these techniques for generating musical sound? Is a future where neural
networks generate expressive and creative music realistic, or do we rely on
a system more similar to how humans process and generate sound?

1.1 Sound

Sound is periodic variations in atmospheric pressure [23, p. 33] and we
refer to these variations as sound waves. These waves will propagate
through the atmosphere, from an initial sound source, and they will
eventually arrive at our ears. The human ear has evolved to convert these
sound waves into electrical signals which our brain can understand. Inside
the ear is the eardrum, a membrane which turns these sound waves into
mechanical vibrations. The vibrations are transferred to the inner ear, by
a set of tiny bones, where there are fluid-filled chambers with tiny hair
receptors and each hair responds to certain frequencies depending on their
position within the chamber [23, p. 56]. These hairs are converting the
mechanical vibrations into electrical impulses and they are the reason we
are able to perceive sound.

1.1.1 Characteristics

Waveforms are graphical representations of sound waves over time and
they allow us to see and understand sound waves in a more intuitive
way. All waveforms have fundamental characteristics which allows us to
distinguish one waveform from another and I will explain three common
characteristics.

Amplitude

The amplitude of a waveform describes the intensity of the sound wave.
Large variations in atmospheric pressure results in a high amplitude, which
we perceive as the loudness of the sound. There are multiple ways of
measuring the amplitude of a waveform, but the most simple way is to
measure the distance from the center line to the highest or lowest point
on the waveform. This is the measure I have used in figure 1.1a and 1.1b.
Another common measure is the root-mean-square (rms), which is a measure
that better represents the level perceived by our ears [23, p. 36].

Frequency

All sound waves have a frequency and its frequency tells us how many
cycles we have in one second, where a cycle is defined as going from one
positive peak to the next positive peak, (see figure 1.2a and 1.2b). The way
we perceive frequency is referred to as pitch and we often describe sound
as being high-pitch or low-pitch.
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Figure 1.1: Visualizing two waveform with different amplitudes. The zero
line represents normal atmospheric pressure. A waveform allows us to see
how the atmospheric pressure at a certain position in space changes over
time.

Harmonic Content

Although sine waves are useful for describing the characteristics of sound,
they usually never appear in everyday life. Instead, we are surrounded
by complex sound waves generated by for example acoustic musical
instruments, like the waveform in figure 1.3. These complex sound waves
are not only made of one specific frequency, but rather a whole spectrum of
frequencies we call overtones. These overtones are different from instrument
to instrument and are essentially what makes us able to differentiate
between musical instruments. The overtones and their relative intensities
are called the timbre of an musical instrument [23, p. 48].

The term timbre is used in various ways in music. Gounaropoulos [15]
defines two concepts of timbre, gross timbre and adjectival timbre. Gross
timbre describes the gross categories of sounds, e.g instrument types, the
sound of certain combinations of instruments and so on. Within each gross
category there are big differences in the distinctive sound qualities and the
changes in those qualities that can be produced. Grey [17] explains this as
an indication of some tonal quality of performance on a given instrumental
source. These differences is described by the adjectival timbre term.
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(b) A sine waveform with a frequency of 3 Hz.

Figure 1.2: Visualizing two waveform with different frequencies. The
frequency of a waveform tells us how fast the atmospheric pressure at a
certain position in space changes.

Timbre is not well understood compared to other aspects of music such
as thythm and pitch. There are several reasons for that, one of them is the
lack of theory and notation support [15]. Most of the research done in this
field consists of musicians listening to sound and verbally describing what
they hear. McAdams [32] used professional musicians, amateur musicians
and nonmusicians to map gross categories into a three dimensional timbre
space. He used the log-rise time, spectral centroid and and the degree
of spectral variation as his three dimensions. His results shows us that
different types of instruments occupy different parts of the timbre space.

Even though we have these gross categories which have their unique
timbre, there are big differences within each category. These differences is
the distinctive sound qualities and the changes in those qualities that can
be produced.

1.2 Digital Audio

In the same matter as the human brain, computers rely on converting
the sound waves into a different form. A microphone, often called mic,
is transducer that converts sound waves and into electrical signals [23,
p.- 115].  There exists many different types of mics, but one of the
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more common types are the dynamic mic. The dynamic mic is using
electromagnetic induction to generate an electrical signal. Inside the
dynamic mic is a diaphragm, much like the ear drum inside an ear, which
will vibrate with the incoming sound waves. Attached to this diaphragm
is a coil of electrical wire that are suspended in a magnetic field. When
the diaphragm is vibrating, the coil will move up and down within the
magnetic field, which will generate an electric current in the electrical wire.
The generated electrical signal will look the same as the audio waveform,
where the voltage level corresponds to the amplitude of the waveform. An
electrical audio signal might look like the waveform in figure 1.3.
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—0.08 -

0 50 100 150 200 250 300 350 400

Figure 1.3: Analogue sound wave

1.2.1 Sample Rate

Taking periodic samples of the analogue electrical signal allows us to
transform the analogue signal into a sequence of bytes which can be stored
in the computer. The sample rate is the number of measurements taken
of the analogue signal in one second. According to the Nyquist Theorem
[23, p. 219] the sample rate must be at least twice as high as the highest
frequency to be recorded. Because humans can only hear frequencies
between 20 Hz and 20 kHz, the standard sample rates for distributing
music and speech as digital audio are 44.1 kHz and 48 kHz.

Recording frequencies higher than the one-half of the sample rate can
cause unwanted frequencies to appear, which can make the audio sound
different when played back. Figure 1.4 shows discrete sampled versions
of the waveform shown in figure 1.3 and the effect of using a sample rate
which are too low. This makes it is hard to recreate the details of the original
sound wave.

1.2.2 Sample Resolution

The accuracy of each sample is determined by the sample resolution. Because
a binary number only has a finite number of steps, the accuracy will only
depend on how many bits used to measure the voltage. Quantization is
the process of taking a high resolution signal and transforming it into a
lower resolution signal, where an analogue signal in theory has an infinite
resolution. The most common sample resolutions for digital audio is 16
and 24 bits.
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Figure 1.4: Recording audio using a small sample rate can make it
impossible to recreate the original audio. Increasing the sample rate makes
the digital audio signal look more like the original analogue signal. The
vertical lines represent each sample.

In the same way as using a low sample rate can lead to unwanted
frequencies, using a low sample resolution could also lead to artifacts. This
effect is visualizes in figure 1.5.

1.3 Generating Music using Computers

There are many techniques for generating music using computers, every-
thing from hand written algorithms to complicated neural networks. Iannis
Xenakis was a pioneer in computer music and the ideas of an automated
score compositions was mentioned as early as 1957 [21]. In the following
sections I will give an overview over popular techniques used to generate
music.

1.3.1 Markov Processes

The Illiac Suite was the first music piece composed by a computer using
Markov chains and was created by Lejaren Hiller and Leonard Isaacs in
1957 [1]. Markov chains use transition tables to calculate the probability of
going from one state to the next. The transition tables could be composed
by humans or obtained through a musical source material. Hiller and
Baker used the composition Putnam’s Camp by Charles Ives to create their
transition probabilities used to compose the Computer Cotana [19] in 1963.
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Figure 1.5: Visualizing the importance of using enough bits to measure the
audio signal. Using only 2 bits will turn the original signal into a digital
signal that is unrecognizable. The horizontal lines represent quantization
steps.

While Hiller and Baker used pitch, note duration and velocity to discribe
each state, Xenakis used each sample when creating GENDYN [21]. His
goal was to use the computer throughout the entire compositional process,
from creating the melody and the dynamics to synthesizing the sound of
each instrument.

1.3.2 Evolutionary Computing

Evolutionary computing uses a variety of techniques and methods which
are inspired by natural evolution with the idea of efficiently searching
through a vast data space. Each point in the data space represents a
solution to a defined problem, which might be finding an optimal design
of a walking robot or composing music. The search uses the effectiveness
of natural selection, mutation and reproduction, where the idea is to use
the best candidates in the population to produce new offspring in hope of
getting a better candidate.

There are many examples of music composition using evolutionary
algorithms. Horner and Goldberg [10] used a genetic algorithm (GA) with
thematic bridging, which is a method of composing music by finding a
transformation, a bridge, of an initial musical pattern to a final pattern.
The initial and final pattern is defined and it is up to the GA to find the
bridge using a set of defined operations. Examples of these operations are
adding or deleting elements, or it could be to mutate or exchange elements.
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Magnus [29] uses genetic algorithms to evolve waveforms on sample
level where each sample represents a single gene within a chromosome.
The goal is not only to evolve waveforms that look similar to a real
waveform, but also to capture the entire evolution process.

Chan et al. [5] presented an automated genetic algorithm method that
determines discrete summation synthesis and hybrid sampling-wavetable
synthesis parameters to match any acoustic instrument tone.

1.3.3 Neural Networks

Mozer [34] was one of the first to use a neural network to generate musical
melodies. His network, called CONCERT, is a recurrent neural network
that predicts the next note in a sequence, not only its pitch, but also
its duration and harmonic chord accompaniment. He found that the
architecture and training did not scale well as the length of the melody
grows and as the higher-order structures increases, but this is due to the
limitations of regular RNNs which we will discuss in Chapter 2.

Bown and Lexer [4] proposed the use of CTRNNSs as an audio synthesis
algorithm which made it possible to generate audio at a lower level.
CTRNNSs are a type of artificial neural networks that uses differential
equations to generate an output. Depending on the configurations of
the network, they are able to produce oscillations which resemble audio
waveforms.

Martin and Torresen [31] used a mixture density RNN to model mu-
sical touchscreen performances. The model is connected to an interactive
touchscreen music app that allows users to create short musical improvisa-
tions. Training the model on a large collection of these performances have
enabled them to use the model as an agent for call-and-response style in-
teractions with the users. Given a users call performance, the model was
able to generate responses that are related in both movements and rhythm.
Human evaluation has shown that a call-and-response interaction with the
model has enhanced the user experience.

1.4 Contributions

In this thesis I have explored three techniques for digital audio generation
using artificial neural networks. Each technique is using a different
architecture commonly used to model sequential data. To gain a better
understanding of what these techniques are and the differences between
them, I have implemented two neural networks that are using recurrent
units to store information about previous events and familiarized myself
with the implementation of a convolutional neural network that is
using causal convolutions. Each neural network is implemented using
TensorFlow, which provides high-level functionality that makes some
implementations easier than others.

I have implemented two recurrent neural networks (RNNs) that are
using two different structures. The NaiveRNN are made using basic RNN



methods where only a single sample is fed to the network at each time
step. The limited input size means this network will have to use its
recurrent units to model the smallest details in the audio samples while
simultaneously collecting information about longer temporal structures.
SampleRNN [33] is using a more complex structure where the network
is made of modules operating at different clock rates. This allows the
network to separate different levels of temporal structures into each
module, making it easier for the network to model dependencies across
longer time lags.

WaveNet [38] is a convolutional neural network (CNN) that is using
dilated causal convolutions to model each audio sample. This allows the
network to capture dependencies thousands of samples apart while only
using a few layers. Using convolutional layers allow WaveNet to utilize
the parallel computational powers that the GPU is capable of. This means
that WaveNet is very efficient to train compared to the two RNNs, which
have a more sequential order of computations. However, while WaveNet
is limited to model dependencies within its receptive field, the two RNNs
are theoretically capable of modeling dependencies across arbitrary lengths
[16].

In order to understand how practical these techniques are for generat-
ing musical sound I have conducted a series of experiments where I trained
each model on a collection of classical piano music. Limiting the dataset to
a single instrument makes the audio easier to model and will help decrease
the training time. Each model is unconditional, meaning they will gener-
ate arbitrary piano music. When comparing the models I have focused on
their efficiency, how fast they are able to train, and the quality of their gen-
erated audio. The audio quality is based on the musicality, the high-level
musical structures such as melody and chord progressions, and timbre, the
low-level audio details.

Results show that each model have the potential to generate short
amounts of digital audio and could be applied to applications such as
instrument sampling or generation of impulse responses. Generating
arbitrary piano music was a much more difficult task and only SampleRNN
and WaveNet was able to generate audio that started to sound like piano
music. SampleRNN generated audio which were short, but contained
musical structures such as notes and chords, while WaveNet generated
audio which are longer and had a more accurate timbre. Both models could
have performed better if trained over a longer period of time, as well as
conditioning the input, which are proposed as possible future work.
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Chapter 2

Neural Networks

Artificial neural networks are data structures inspired by the human brain.
They are made of simple processing units called neurons or nodes, which
are linked together in a complex way. Every neuron will produce an
activation, which is a function of its inputs, and this activation is sent to
other neurons. Each link between two neurons are weighted, which is
how the network controls the flow of information through the network. By
adjusting these weights we can make the network solve difficult problems

[9].

2.1 Structure

There are many different groups of neural networks and each group
has different structures. These structures come together by constructing
networks to solve specific problems. Each group of networks share similar
traits and structure because of the learning algorithm they use. Even
though these networks might be different in structure, they are based on
the same principles which are inspired by nature. I am going to focus on
a big group of networks called feed-forward networks. The name of this
group comes from their structure which only allow data flow going in one
direction, from the input to the output of the network.

Input Layer

The first part of any neural network is the input to the network. We can
think of this being the eyes of our network, capturing the continues flow of
information from the outside. The input is represented by nodes and there
are usually as many input nodes as there are data points in the input data.
For example, a gray scale image of size 28 x 28 pixels would have 784 data
points, one for every pixel, and the network would have 784 input nodes.
We refer to these input nodes as the input layer of our network, which is
one of the traits in these feed-forward networks, we separate nodes into
sequential layers.

11



Output Layer

The last part of a feed-forward network is the output layer and this is where
we would get the result from our network. This could be the result of a
classification problem where the network would try to give the input data
a label or class, or it could be the result of a regression problem where the
network would try to find the a continuous function which fits the input
data the best. No matter which problem we are trying to solve, the network
will generate an output the exact same way, the only difference is how we
interpret the output. The output layer can contain any number of nodes
and each node is connected to every node in the input layer, see figure 2.1.
These connections are weighted which makes it possible to control which
input nodes can affect the different output nodes and how much they are
affected. This kind of network are referred to as single layer network.

Input
Layer

Output
Layer

Figure 2.1: A simple neural network with three inputs and one output. To
layers connected in this way, every node in one layer is connected to every
node in the other layer, is referred to as a fully connected layer. The arrows
represent weighted connections between nodes.

Hidden Layers

Single layer networks have been used in a variety of applications involving
mapping similar input patterns to similar output patterns [41], which
means that there have to be a linear relation between the input pattern and
the output pattern. More complicated input patters, however, usually have
non-linear relations with the output and this is when single layer networks
start to struggle. A good example of such a problem is the XOR problem,
table 2.1, which is a simple problem, but it is unsolvable for single layer
networks [41]. There are no single linear function that allow us to classify
the two inputs correctly.

There are a couple of solutions to this problem. One way is to add
a bias node, which is very common in all types of neural networks. A
bias node is a node which acts as an input with a constant value of 1.0.
It has its own weight associated with it and it does not have any input
connections. Nodes by and b; in figure 2.3 are bias nodes. The bias node
adds a third dimension to the XOR-input which makes it possible to create
a linear relation to the output.

12



Input 1 ‘ Input 2 ‘ Output
0 0 0

1 0 1
0 1 1
1 1 0

Table 2.1: The XOR problem. The non-linear relation between the inputs
and output makes this problem unsolvable for single layer networks.

Input Hidden Output
Layer Layer Layer

Figure 2.2: A simple multilayer network with two input node, two
hidden nodes and a output node. The hidden nodes creates internal
representations that allow the network to classify nonlinear patterns.

The second method is to add hidden nodes, which are nodes in between
the input and output nodes as shown in figure 2.2. Hidden nodes make
these networks very powerful because of the ability to make internal
representations that allow the network to make the necessary mappings
between its input and its output. This makes multilayer networks able
to solve more complicated problems than single layer networks, although
they are harder to train [9].

2.2 Training algorithms

Many methods have been developed for training neural networks over
the years, each having pros and cons. The learning algorithms are split
into two general areas, supervised and unsupervised learning. Although
unsupervised learning have performed beyond everyone’s expectations in
recent years [42], I am going to focus on supervised learning.

The idea behind supervised learning is that we use labeled training data
to teach our network the relationship between inputs and desired outputs
in hope of it being able to predict unseen data. This is easy with single
layer networks, but scientists would struggle for many years to find a
general algorithm to train multilayer networks. It wasn’t until year 1985
that Hinton [41] developed a more general algorithm based on the already
well known delta rule, which I will describe in a later section. We use the
same algorithm today, but with additional features that make the algorithm

13
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Figure 2.3: Multilayer network with two input nodes, one hidden node
and two output nodes. The two bias nodes acts as input to the hidden and
output layer. These nodes output a constant value of 1, but using their
weights the network can learn to make use of these nodes.

perform better than the original.

2.2.1 The Forward Pass

The first step in any training algorithm is to generate an output. In
feed forward networks we calculate the output of each layer sequentially.
The input layer will generally output the actual input data, but it is
common to process the data before it is fed into the network. Examples
of preprocessing are normalizing and centering.

The output of the hidden units are calculated using equation 2.1. It is
common to use nonlinear activation functions to achieve the advantages of
multilayer networks [9] and it allows the networks to classify nonlinear
input patterns. One of the more common activation functions are the
sigmoid function.

yj =Y xiWij+ b (2.1)
i=0

1

fiv)) = = T (2.2)
This activation function has a range of (0, 1). Another common activation
function is the tanh function. It is similar to the sigmoid function, but it has

a range of (-1, 1). The last activation function I am going to mention is the

14
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Figure 2.4: Plot of the sigmoid function

most used today. It is called the Rectified Linear Unit (ReLU).

0 ,y]SO

v >0 (2.3)

fitu) = {

The most important thing about activation functions is that they have
to be differentiable. This allows the derivative of the neural network to be
calculated so that it can be trained by gradient descent.

The output of the output neurons are calculated in the same way as the
hidden neurons, except that it is not necessary to use an activation function
at this point. The functions we use are determined by the problem itself
and will be discussed in the next section.

2.2.2 Loss function

We use output functions to make the output of our network useful in
different situations. In the case of classification, there are a couple of useful
functions. If we are only interested in two classes, let’s say cats and dogs,
we can use the sigmoid function, equation 2.2. In this case we would only
need one output neuron. We know the sigmoid function has a range from
0 to 1, where an output value below 0.5 could represent cats and a value
above 0.5 could represent dogs. If we are interested in more than two
classes we can use a function called softmax.

eYi

1) =5 (24)

Equation 2.4 is called the softmax function and it calculates the
probability distribution of the output, which tells us how likely it is that
the input belongs to the different classes.

In order to make our network learn anything we need to measure its
performance. Again, there are many ways to measure the performance,
but in supervised learning we usually compare the predicted output with
the desired output. Two of the most popular loss functions are the squared
error and cross entropy. In theory an ANN can be trained equally as well
by minimizing both error functions, but in practice cross entropy leads to
faster convergence and better results in terms of classification error rates

15



[12]. This has lead to cross entropy being the favorable loss function in
recent years.

E=3)(pi—v) (2.5)
]

Equation 2.5 is the squared error loss function where p; is the target
output, y; is the predicted output and 7 is the amount of output nodes,
i.e. the number of classes. Dividing by 2 makes the derivative easier to
calculate.

E=- ijlog(qj) (2.6)
]

Equation 2.6 is called the cross entropy loss function where p; is the
desired output and g; is the predicted probability calculated by the softmax
function.

2.2.3 Backpropagation

We can use some simple tricks to make a neural network learn. The only
thing we would have to do is to produce some output given a certain
input, observe how well the network performs, change one single weight
in the network, again produce on output with the same input and see
if the network performs better of worse. If it performs better we keep
the change, but if it performs worse we would change the weight in the
opposite direction. If we do this over and over again, the network would
eventually reach a state were it could make decent predictions, but it would
take an enormous amount of time to reach this point if the network contains
alarge number of parameters. This is basically what backpropagation does,
only we use mathematics to calculate how we need to change the weights
in the network for it to perform better and we change all the weights at
once.

Backpropagation was developed in 1985 [41] and is a more general
version of the delta rule. The learning algorithm used in the delta rule
is based on supervised learning where we compare some produced output
with a set of target outputs. If there is no difference in the outputs there
will be no learning, but if there is a difference, we can use that difference to
update the weights in the network. In a single layer network, the delta rule
is defined as:

Awij = ﬂ(p] — ]/]‘)Xl‘ = 7’](5]'3(?1‘ (2.7)

where p; is the jth element in the target output, y; is the jth element
in the produced output, x; is the ith element in the input and Aw;j is the
amount of change between input i and outputj.

It is worth noticing that this equation is negative proportional with the
derivative of the squared error with respect to the weights if we use a linear
activation function. This means that when we are using the delta rule, we
are actually doing a gradient descent on the squared error because we are
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changing the weights in the direction where the gradient is decreasing the
most. Calculating the derivative of equation 2.5.

SE;
(5wl-]-

= (iji (28)

where E; is the squared error of the jth output node and ¢; = p; — y;.

Hinton describes how we can use the chain rule of derivatives to
propagate the error back in the network, which means that we can calculate
how each weight in the network would affect the loss function. We can use
the chain rule to derive the delta rule from the squared error loss function.

OF; _ OFE; dy;
5@01‘]' (Sy]‘ 5wij

2.9)

We can use equation 2.5 to find the derivative of the squared error
function with respect to the output of the network.

OE;
Sy —(pj —vj) = =6 (2.10)

And then we can use equation 2.1 to find the derivative of the output
with respect to the weights of the network.

oy, )

]

= —(xjw;; + bj) = x; 2.11

éwij 5w11( 1 1]+ ]) 1 ( )
Using the derivative of the loss function and propagating it back

through the network using the chain rule, we can optimize any neural

network to minimize any loss function as long as the loss function and any

activation function is differentiable.

2.3 CNN

CNN s are a type of artificial neural networks which are more inspired by
the visual cortex in our brain. Hubel and Wiesel [22] measured neural
activity in the cat brain and discovered that the visual cortex where made
of simple and complex cells. Simple cells were activated by simple features
like lines or edges, and the complex cells were connected to multiple simple
cells making them activate by more complex shapes. Although CNN
architectures come in many variations, these findings lead to the use of
convolutional layers in neural networks.

2.3.1 Convolutions

In the same way that simple neurons in the visual cortex react to features
in an image, the convolutional layers serve as feature extractors. The input
to the layer is convolved with trainable weights, which acts as a filter, and
it will generate a feature map where each neuron represents the presence
of a feature at a certain position in the image. All the neurons in a feature
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map will share the same weights, but we can use multiple filters in a single
layer to create many of these feature maps. We can express this as

Yk = f(Wk * X )

where Y} is the output feature map, x is the input, Wy is the filter
weights, * represents the convolution operator and f is the activation
functions.

By stacking multiple convolutional layers after each other, we see that
the neurons respond to more and more abstract features the deeper we
go. As these convolutional layers can extract abstract features themselves,
CNNs can be directly applied to complex low-level data, such as images or
audio data, without developing specific feature extraction techniques.

2.3.2 Applications

Because of the resemblance with the visual cortex one of main applications
for CNNs are images, either classifying images or detecting objects within
an image. Since 2010, an annual competition called ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) has been held. The competition
uses a subset of the ImageNet dataset, which consists of roughly 1.2 million
images of 1000 classes. Alex Krizhevsky [26] scored a top-5 error rate of
17.0% in 2010 and since then networks like ResNet-152 [18] have reached
aa error rate of 3.57%, which is close to human accuracy.

Another popular field of research is image modelling, where instead
of classifying images you generate new images. Adron van den Oord
et al. made a network called PixelCNN [36] which uses autoregressive
connections to model images pixel by pixel. Generative adversarial
networks [7, 13] have also been used to model images. These generative
techniques can also be applied to audio data as we will discuss in Section
3.3.

24 RNN

Recurrent neural networks (RNNs) are a class of neural networks that is
used to predict or generate sequences in many domains. Music is already
mentioned, but text, speech and motion are other areas where RNNs
are widely used. These networks are able to store and update context
information from previous inputs to generate a desired output.

The following equations describes how we can use the simple RNN
structure in figure 2.5 to generate an output sequence y:

he = H(Wanxe + Wight—1 + by,) (2.12)

ye = Y (Wiyhe + by) (2.13)

where W represents the weight metrices, b is the bias term, H is the state

activation function and ) is the output function. We can see that the inputs
are conditioned on the previous state of the RNN.
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Figure 2.5: The folded representation of a RNN (left) and how the network
is unfolded to create the computational graph (right).

Training an RNN involves feeding an entire sequence X = {xy, x2, ..., X7}
to the network and the goal at each time step ¢ is to predict the next value
at time step t + 1 of the input sequence. When we use the RNN to generate
a sequence, however, we use predictions from previous time steps as input
to the network, see figure 2.6. Using backpropagation to train networks
where the output at time step t is depending on variables at earlier times is
referred to as backpropagation through time (BPTT) [44].

Y1 Yo Y3 Output

n \ h\ \ h\ \ Hidden

1 ', y ’, Kt’:y states
1 1 1

X Y1 Yo Input

Figure 2.6: Visualizing how the output at time step ¢t — 1 is used to predict
the next time step t during generation of a sequence. x; is usually a start
token to begin the generation of the sequence.

2.4.1 Structures

There are many ways of constructing a RNN. Graves at el. [16] was one of
the first to use a deep RNN. By stacking recurrent units on top of each
other, as visualized in figure 2.7a, one can achieve greater performance
in the same way as in a CNN or other multilayer networks. After this
point, there have been developed many different structures. Koutnik at
el. [25] constructed a RNN made of multiple modules where each module
operates at a different clock rate, see figure 2.7b, which means that each
module has a different input length or modules will skip steps of the input
sequence. Modules with longer input sequences, so called low frequency
modules, will therefore be more suited for long term dependencies and the
high frequency modules, modules with shorter input, will deal with more
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local, short term information. The implementation of the ClockworkRNN
is complex and will be discussed in a later section.

y
y Output
A
High Frequency Module
h, Low Frequency Module
X
(a) Deep RNN with N Inout
layers. The output of X e
each layer is both in- (b) Clockwork RNN. Modules in the network
put to itself and the next operates on different clock rates. Modules are
layer. conditioned on modules with lower rate.

Figure 2.7: Two different RNN structures.

2.4.2 RNN Architectures

RNNs have been used in many different tasks and each task requires its
own form of output. The different tasks and applications have given rise to
subgroups within the RNN genre.

Many to many

This type of RNN is common in many applications involving sequence
generation, whether it is text generation [16] or even image generation [35].
The networks in figure 2.5 and 2.6 are of this kind. The common traits of
these networks is that they will predict the next step in sequence. Given a
start token, these networks will generate a sequence one step at a time until
a stop token is reached, or a certain number of steps is generated. During
training, the networks will generate as many outputs as there are steps in
the input sequence.

Many to one

A number of tasks involve classifying sequences. Lei Ba et al. [2]
constructed a RNN which classifies objects in images by evaluating small
patches of the image step by step. The network is used in two ways, it will
at each step predict a new location in the image to evaluate and then it will

20



use the last state of the RNN to classify the object. As the name suggests,
these networks will create a representation of the input sequence which
will be used to classify the entire sequence, see figure 2.8.

y Output

( ) N Hidden
Pt-1 \rj‘y a1 states
Xt-1 Xt Xt41 XT Input

Figure 2.8: A many-to-one RNN network. This type of RNN will create a
final representation of the input sequence and use it to generate a single
output.

Sequence to sequence

The idea behind a sequence to sequence RNN is to first make a represen-
tation of the input sequence and then use this representation to generate a
new sequence, see figure 2.9. This kind of RNN is well-suited for machine
translation where the task is to generate the same sentence as the input only
in a different language [45]. These networks are usually split into two parts,
an encoder and a decoder. The encoder is used to make the representation
of the input and the decoder will then use this representation to generate a
new sequence one step at a time.

Yi-1 Yk Yi+1 Output
Sequence
Hidden
States
Input
X1 Xt X1 Xr Yk-1 Yk Sequence

Figure 2.9: A sequence to sequence RNN. This type of RNN creates a final
representation of the input sequence and then use it to generate a new
sequence. This structure is often used in machine translation.

243 LSTM

Recurrent networks are very powerful and they are in theory, with a
large enough network, able to generate sequences of arbitrary complexity,
but experiments show that they are hard to train in tasks involving long
term dependencies [3]. When training on long sequences, the gradients
tends to blow up or vanish when propagating the error back through the
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network. Alternative approaches like simulated annealing and discrete
error propagation have been tested and they do show that there might be
ways to make these networks perform better than with standard gradient
descent.

Hochreiter and Schmidhuber [20] created the Long Short-Term Memory
cell, which contains a self-connected linear unit called the Constant Error
Carousel (CEC) which solves the vanishing error problem by allowing
constant error flow. In addition to this unit, they added a multiplicative
input gate unit to protect the CEC from irrelevant inputs, and also a
multiplicative output gate unit to protect other CECs from irrelevant
output from itself. These gates will learn to open and close, allowing error
signals to pass through the CEC.

Figure 2.10 visualizes how the LSTM cell is constructed and the
following equations shows how the output is calculated.

Figure 2.10: Basic LSTM cell structure. The recurrent connection to the CEC
makes sure there is a constant error signal

ir = 0(Wyixt + Wyihi—1 + b;) (2.14)

¢t = ci_1 + igtanh(Wyexy + Wichy 1 + be) (2.15)
0t = 0(Wyoxt + Wiohi—1 + by) (2.16)

hy = ostanh(cy) (2.17)

where ¢ is the sigmoid function, i; is the input gate, o, is the output gate,
¢t is the cell activation and #; is the cell output.

Although these memory cells outperform regular RNNs across long
time lags, they do have some limitations. One weakness is that the
cell state, the activation of the CEC, often tend to grow linearly across
sequences. This will lead to saturation of the h-function and the output
gate will lose its function. The forget gate [11] was the solution to this
problem. The forget gate replaces the self-connections’ constant weight of
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1.0 with a multiplicative unit which gives the cell the ability to learn to reset
its memory when it is no longer useful. This is particularly important when
we are doing truncated backpropagation through time, which means that
we split a long sequence into small sections and then train on these small
sections. The final state from each section is carried into the next section.

AR 7Ty

Figure 2.11: LSTM cell with forget gate

The forget gate introduces a new equation and the cell state activation
is affected by this new variable f;.

fr = U'(foxt + thht_1 + bf) (2.18)
¢t = frcr—1 + itanh(Wyexr + Wychi—1 + be) (2.19)

2.5 Musical Applications

Artificial neural networks have long been used to compose or generate
music. One of the main challenges when generating music using
computers is evaluating the performance of the techniques. Many of these
techniques explore the creative aspect of music generation, but creativity is
hard to measure and results are often evaluated by human listeners.

Florian Colombo el al. [6] created the Deep Artificial Composer (DAC),
a recurrent neural network trained to generate monophonic melodies close
to tunes of a given musical style. One RNN is trained to model the
transition distribution of the note duration, which is used as an additional
input to a RNN that models the transition distribution of the note pitch.
This allows the network to learn the relation between a note duration and
its pitch, which is essential in learning different styles of music because
similar rhythmical patters are more frequent than similar melody patterns
in many musical styles. Their results show that the DAC is able to generate
melodies that are consistent in style, as well as scale and rhythm.

Iman Malik et al. [30] used recurrent neural networks to translate
sheet music into musical performances of different styles. The idea behind

23



this research is the fact that every musician has a unique interpretation of
the sheet description that will lead a variety of different performances.
The network consists of an interpretation layer that will convert the
musical input into its own representation, and a set of subnetworks called
GenreNets that will model the dynamics of the sheet music based on the
interpretation. Each GenreNet allows the model to learn a specific style
of music. The natural sounding performances this model produces is
indistinguishable from a human performance based on human evaluations.

Wavenet [38] is a deep convolutional neural network that generates
sound sample by sample. Using causal convolutions, Wavenet is able to
predict samples conditioned on all previous samples. When trained on
a music dataset, WaveNet is able to generate highly realistic sounding
music that closely resembles the dataset, even when produced by an
unconditional model. The problem with WaveNet is that it is essential
to have a big receptive field in order to generate music that sound
pleasing and the way to accomplish this is to use many layers. This
makes WaveNet use alot of memory during training which can affect the
performance when resources are limited. The architecture allows the use
of parallel computations and that makes WaveNet more efficient to train in
comparison to other models using the RNN architecture.

Engel et al. [8] argues that WaveNet rely on external conditioning to
capture long-term dependencies. To address this problem, Engel et al.
created a WaveNet Autoencoder that removes the need of this external
conditioning. Using a WaveNet-like encoder to produce embeddings
ditributed in time and a WaveNet decoder to effectively recreate the
original audio, they are able to control the generation and produce new
sounds that can be a mixture of instruments.

MidiNet [46] is generative adversarial network (GAN) [14] that gener-
ates symbolic music one bar at a time. It consists of two CNNs, a generator
and a discriminator. The generator uses random noise to generate a new
melody which is used as input to the discriminator, together with other
real melodies. The discriminator will predict whether the input melodies
are real or generated, which will inform the generator how to generate
more realistic melodies. To be able to generate melodies across multiple
bars, MidiNet uses a conditioning network that conditions the generation
of melodies on previous bars. This allows the network to keep track of pre-
vious events without using recurrent units. The results from MidiNet was
compared to Google’s MelodyRNN models [43] and the result shows that
MidiNet generates melodies which are as realistic and pleasant, yet more
interesting, than the MelodyRNN models.
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Chapter 3

Models

Work in data technology and music have usually been about using more
abstract methods to represent music or sound. Whether it is about using
MIDI data to compose music or adjusting parameters on a synthesizer to
achieve a certain timbre. As I have mentioned previously, people have
tried to develop new techniques for generation of sound at the sample
level by for example using evolutionary algorithms, but trying to use
backpropagation to train a neural network to generate sound, which is
suppose to sound realistic and authentic, is an extremely difficult task
which we have only started to experiment with in the last two years.

To discribe music or sound based on musical notation or specific
parameters is not a very difficult task. Of course, it would take a human a
few hundred or maybe thousand hours of training to be able to do this at a
certain level, but just imagine how hard it would be if we were to compose
music only by describing the position of a speaker element over time. This
gives you an idea of the complexity of the task we are trying to achieve.
A simple melody might contain eight separate notes in a sequence which
would make the last note only to be depended on seven steps of events.
Let us consider this melody lasting for five seconds, which would mean
that the last note would depend on maybe 176 400 previous samples if we
were using a standard sample rate of 44.1 kHz. Even if we are only using
a third of the amount of samples we are still talking about dependencies
stretching over thousands of samples. We can see from figure 3.1a that a
simple melody with only a few musical events can represent many seconds
of sound, compared to the sound wave in figure 3.1b which contains 100
samples which is adding up to a total of 6.8 ms of sound when using a
sample rate of 14.7 kHz.

The models which are able to do these calculations are enormous and
very complicated and it would take an extreme amount of calculations to
find the optimal connections in these networks. The only reason we are
able to train these networks is the rapid development of parallel computing
which the GPU is able to offer us.

In this section I will describe the architecture of three different model,
NaiveRNN, SampleRNN and WaveNet. I will in detail walk you through
the implementation of the baseline model NaiveRNN and the more
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Figure 3.1: Demonstrating the differences in high-level versus low-level
musical representation

complex model SampleRNN. The WaveNet implementation I have used is
inspired by the Fast WaveNet [40] and the source code is found on GitHub
[39].

3.1 NaiveRNN

The NaiveRNN is a deep RNN made of multiple LSTM layers with residual
connections between every layer, see figure 3.2. It is inspired by the basic
RNN structures which evaluates one sample at a time. It models the
probability of a sequence x = xy, ..., xT as the product of the probabilities of
each sample given all the previous samples.

T
p(x) =T p(xelxr, o xio1) (3.1)
t=1
The goal with this model was to make a simple RNN so that I had a
baseline comparison to the other more complex models. I also wanted
to get more familiar with Tensorflow, an open source machine learning
framework, and especially its RNN functionality.
The model is simple, or "naive", due to the fact that in every step of
the RNN there are only one sample fed to the network and there are only
sample coming out, see figure 3.3 for a visualization of the data flow. This is

26



y QOutput

LSTM Layer

LSTM Layer

X Input

Figure 3.2: Naive RNN architecture with two layers of LSTM cells. There
are residual connections between each layer.

equivalent to a RNN trying to learn how to read and write by only feeding
in one character at a time instead of entire words. The network itself has
to learn how to define a word and find the connections and correlation
between all the words, which makes it a more challenging task.

Output
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Figure 3.3: Visualizing the data flow in the NaiveRNN. Only one sample of
the input is used to predict the next sample.

3.1.1 Implementation

Creating a model in Tensorflow means that we are constructing a compu-
tation graph which specifies the mathematical operations

The whole model is made up of a number of layers of LSTM cells,
where there are residual connections between every layer, see figure
3.2. Tensorflow provides us with high-level functions which makes the
implementation of this model relatively simple.
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# Create one LSTM cell with restdual connections
def residual_cell(units):

cell = tf.contrib.rnn.LSTMCell (units)

return tf.contrib.rnn.ResidualWrapper(cell)

# Make an array of restidual LSTM cells

cells = [residual_cell(units) for i in range(layers)]
# Put all cells into a conventient cell

cell = tf.contrib.rnn.MultiRNNCell(cells)

where tf is the reference to the Tensorflow framework, units specifies
the number of units in each LSTM cell and layers specifies the number of
LSTM layers in the model.

The residual connections, often reffered to as skip connections, makes
sure the input to each LSTM cell is added to the output. These residual
connections might make it easier to train the network, especially if there
are many layers in the network, because they allow the error gradients to
flow easier through the network [18]. They don’t increase the amount of
parameters within the network or make the network more complex.

Because we want to add together the input and output of each LSTM
cell, we have to make sure the dimensions match. In this model, it is only
a problem in the first LSTM layer because of the shape of the input to the
network. To make the dimensions match we need to upsample the input.

# Input to the graph

self.inputs = tf.placeholder(tf.float32, [None, None],
< name='input')

# Shape = [batch_size, n_steps]

# Upsampling weights and bias

w = tf.get_variable('input-weights', [1, units],

— 1initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable('input-bias', [units],

< initializer=tf.zeros_initializer())

# Reshape input for matmul function
inputs = tf.reshape(self.inputs, [-1, 1]1)
# Shape = [batch_size * n_steps, 1]

# Upsample

inputs = tf.matmul (inputs, w) + b

# Shape = [batch_size * n_steps, units]

We reshape the input before the matmul function because we want to
apply the same weights to every step in the sequence.

We use the dynamic_rnn function in Tensorflow which allows us to train
on sequences of arbitrary lengths. This function expects an input with a
specific shape and that is why we reshape the inputs matrix to the correct
dimensions before sending it to the dynamic_rnn function.
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# Reshape to correct shape

inputs = tf.reshape(inputs, [batch_size, -1, units])

# Provide an initial state for RNN

self.initial_state = cell.zero_state(batch_size, tf.float32)

# Create the RNN

rnn_output, self.final_state = tf.nn.dynamic_rnn(cell, inputs,
<~ 1initial_state=self.initial_state)

I make a reference to the initial state so that we can provide a previous
state as input to the graph at a later point during training. This is
particularly useful when performing truncated BPTT, where the final state
of one training section will be the initial state of the next section.

The last part of the network is the softmax layer. This is where we
reduce the dimension space of the RNN output to match the number of
classes in our dataset, before applying the softmax function and calculating
the loss. To train the network I use the Adam optimizer [24] and it is
minimizing the cross entropy loss function.

# Prediction weights and bias

w = tf.get_variable('pred-weights', [units, CLASSES],
<~ 1initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable('pred-bias', [CLASSES],

< initializer=tf.zeros_initializer())

# Reshape RNN output for matmul function

rnn_output = tf.reshape(rnn_output, [-1, units])

# Shape = [batch_size * n_steps, units]

# Final layer

logits = tf.matmul (rnn_output, w) + b

# Shape = [batch_size * n_steps, CLASSES]

self.targets = tf.placeholder(tf.int32, [None, None],

<~ name='targets')

# Make sure targets match the logits

labels = tf.reshape(self.targets, [-1])

# Calculate loss

loss =

— tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,
~ logits=logits))

self .optimize =

— tf.train.AdamOptimizer(learning rate) .minimize(loss)

The Tensorflow framework allows us to implement standard RNNs
using only a few lines of code.

3.2 SampleRNN

SampleRNN [33] is a model inspired by the ClockworkRNN architecture
[25] where the network consists of modules operating at different clock
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rates, which are connected hierarchically from lower frequency modules
to higher frequency modules. SampleRNN consists of three modules, two
modules containing a RNN and one module with a multilayer network,
linked together as shown in figure 3.4. In this section I will describe the
architecture of SampleRNN, how I have implemented it using Tensorflow
and I will discuss how it is different from the implementation of the
NaiveRNN.

Y4 QOutput
M3 Prediction Module
M2 High Frequency Module

Low Frequency Module

X; Input

Figure 3.4: Visualizing the folded structure of SampleRNN. The modules
are connected hierarchically, meaning higher frequency modules are
conditioned on lower frequency modules. Modules M! and M? are deep
RNNs which can consist of multiple recurrent layers.

3.2.1 Modules with Different Clock Rates

The modules in figure 3.4 get their name from the frequency which their
input is fed into them. All modules will receive input from the same input
sequence, it is only the frame size of the input which are different, see
figure 3.5 for a visulization of the data flow. The low frequency module
(LFM) will receive m values from the input sequence at each time step and
the high frequency module (HFM) will receive n, where n < m. This will
lead to each RNN in the different modules having a different amount of
steps during each training step, the LFM will have less steps than the HFM.
The goal of using this architecture is to get the different modules to learn
dependencies across different time lags. It is easier to understand this by
looking at figure 3.6

Figure 3.6 shows how we can represent a complex wave form, figure
3.6c, with two simple sine waves, one with a low frequency and one with
i higher frequency, figure 3.6a and 3.6b respectively. This is what we want
to achieve with SampleRNN, each module breaking down the input into
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Figure 3.5: SampleRNN data flow. Dashed lines represent conditioning
vectors to the next module.

more simple structures so that the model can make better predictions.

Clockwork Implementation

I use the dynamic_rnn function in Tensorflow to make the computation
graph and the function expects an input of size [batch size, sequence length,
input size], where input size is the dimensions of the input at each step.
In order to make each module have a different clock rate, I change the
input size in each of the two RNNs by reshaping the input vector into non-
overlapping frames.

# Where we input the sequences

self.input = tf.placeholder(tf.float32, [None, None],

< name='input')

# Slice input, we don't need last frame

self .big_frames_input = self.input[:, :-BIG_FRAME_SIZE]
big_frames = tf.reshape(self.big_frames_input, [batch_size, -1,
<> BIG_FRAME_SIZE]) # Missing dim is number of steps

# Slice wnput, we don't need part of the beginning and end
self.frames_input = self.input[: BIG_FRAME_SIZE -

<+ FRAME_SIZE:-FRAME_SIZE]

frames = tf.reshape(self.frames_input, [batch_size, -1,

— FRAME_SIZE]) # Missing dim ts number of steps

where big_frames is the input to the LFM and frames is part of the input to
the HFM. The constants BIG_FRAME_SIZE and FRAME_SIZE corresponds
to the number of values from the input sequence we feed to the RNNs at
each step, where FRAME_SIZE is less than or equal to BIG_LFRAME_SIZE.
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Figure 3.6: Visualizing a complex wave function and how we would expect
a low frequency and a high frequency module to represent the original
wave function.

tf is a reference to the Tensorflow API. Everywhere I use the keyword self
are useful access points to the graph during generation of samples and
will be discussed later in this section. I slice the input because of how
the data flows through the network, see figure 3.5. This makes training
implementation easier.

The second part of the input to the HFM is the output of the LFM and
we get the output by running the dynamic_rnn function.

big_cell = tf.contrib.rnn.LSTMCell (units)

self .big_init_state = big_cell.zero_state(batch_size,
< tf.float32)

big_frame_out, self.big final_ state =

<~ tf.nn.dynamic_rnn(big_cell, big_frames,

<~ 1initial_state=self.big_init_state)

where big_final_state will be the next big_init_state and units is the number
of units in the LSTM cell. All the recurrent connections are handled within
the dynamic_rnn function.

The output space of the LFM, big_frame_out, doesn’t match up with the
input of the HFM, because of the different amounts of steps in each RNN.
This is why we need to upsample the output.

# Upsampling weights and biases
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w = tf.get_variable('big-frame-weight', [units, R * units],
— initializer=xavier())

b = tf.get_variable('big-frame-bias', [R * units],

< 1initializer=tf.zeros_initializer())

# Reshaping rnn's output for use with matmul function
big_frame_out = tf.reshape(big_frame_out, [-1, units])

# Upsample the rnn output

big_frame_out = tf.matmul (big_frame_out, w) + b

# Shape = [batch_size * n_steps, R * units]

# Getting the output ready for input to the next module
self .big_frame_out = tf.reshape(big_frame_out, [-1, units])
# Shape = [batch_size * n_steps * R, units]

where R is the ratio between the low and high frequency. What this code
does is to make one step of the output from the LFM into R steps of the
input to the HFM.

There is one more step we have to make in order to add the output of
the LFM with the input sequence to make the input of the HFM, we have
to upsample the input sequence as well. The first two dimensions, batch
size and number of steps, are matching, but the last dimension is different
and we need all dimensions to match in order to add them together.

# Upsampling weights for HFM input

w = tf.get_variable('frame-input-weights', [FRAME_SIZE, units],
- 1initializer=xavier())

b = tf.get_variable('frame-input-bias', [units],

< initializer=tf.zeros_initializer())

# Reshaping the frames for use with matmul function
frames = tf.reshape(frames, [-1, FRAME_SIZE])

# Shape = [batch_size * n_steps, FRAME_SIZE]

# Upsample tnput frames

frames = tf.matmul(frames, w) + b

# Shape = [batch_size * n_steps, units]

# Add LFM outputs

frames += self.big_frame_out

# Reshape into correct shape for dynamic_rnn function
frames = tf.reshape(frames, [batch_size, -1, units]) # Missing
< dim 1s number of steps

# Shape = [batch_size, n_steps, self.dim]

At this point, the frames are ready as input to the dynamic_rnn in the
HEFM.

cell = tf.contrib.rnn.LSTMCell (units)

self.init_state = cell.zero_state(batch_size, tf.float32)
frame_out, self.final_state = tf.nn.dynamic_rnn(cell, frames,
<y initial_state=self.init_state)
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We have to do the same procedure when going from the HFM to
the prediction module (PM) because also these two modules operates at
different clock rates. The procedure is to upsample the output of the HFM
and the input sequence, before adding them together.

# Upsampling weights and biases

w = tf.get_variable('frame-output-weight', [units, R_1 *
< units], initializer=xavier())

b = tf.get_variable('frame-output-bias', [R_1 * units],
< initializer=tf.zeros_initializer())

# Reshaping rnn's output for use with matmul function
frame_out = tf.reshape(frame_out, [-1, units])

# Shape = [batch_size * n_steps, units]

# Upsampling

frame_out = tf.matmul (frame_out, w) + b

# Shape = [batch_size * n_steps, R_1 * units]
self.frame_out = tf.reshape(frame_out, [-1, units])

# Shape = [batch_size * n_steps #* R_1, units]

where R_1 is the ration between the frequencies of the HFM and PM.

In the PM, we want to evaluate the very near dependencies between
samples, such near dependencies that we can use a standard multilayer
network instead of a RNN. This will speed of training time. I use the
sliding window approach to convert the input sequence into an array
of overlapping frames using the frame function in Tensorflow, before I
upsample every frame to match the output space of the HFM.

# Upsampling weights and bias

w = tf.get_variable('sample-weight', [FRAME_WIDTH, units],
< 1initializer=xavier())

b = tf.get_variable('sample-bias', [units],

<~ 1initializer=tf.zeros_initializer())

# Slice input to correct length

self.sample_input = self.input[:, BIG_FRAME_SIZE -

<, FRAME_WIDTH:-1]

# Turning the input into overlapping frames of size FRAME_WIDTH
pred_input = tf.contrib.signal.frame(self.input, FRAME_WIDTH,
5 o1)

# Reshape for matmul function

pred_input = tf.reshape(pred_input, [-1, FRAME_WIDTH])

# Upsample input sequence

pred_input = tf.matmul (pred_input, w) + b

# Add HFM output

pred_input += self.frame_out

where FRAME_WIDTH is the width of the overlapping frames and is less
than or equal to FRAME_SIZE.
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The last part is the PM, which consists of two fully connected ReLU
layers and a softmax layer at the end.

# Layer 1

w = tf.get_variable('pred-weight', [units, units],
< initializer=xavier())

b = tf.get_variable('pred-bias', [units],

< initializer=tf.zeros_initializer())

pred_out = tf.nn.relu(tf.matmul (pred_input, w) + b)
# Layer 2

w = tf.get_variable('pred-weight-1', [units, units],
< initializer=xavier())

b = tf.get_variable('pred-bias-1', [units],

< 1initializer=tf.zeros_initializer())

pred_out = tf.nn.relu(tf.matmul (pred_out, w) + b)

# Softmaz layer

w = tf.get_variable('pred-weight-2', [units, CLASSES],
< initializer=xavier())

b = tf.get_variable('pred-bias-2', [CLASSES],

< 1initializer=tf.zeros_initializer())

logits = tf.matmul(pred_out, w) + b

# Use the linear activation in the softmaxz function

self.targets = tf.placeholder(tf.int32, [None, None],
< name='targets')

# Slice targets to correct length

targets = self.targets[:, BIG_FRAME_SIZE:]

# Reshape targets to match logits dimension space
targets = tf.reshape(targets, [-1])

# Calculate loss using cross entropy

cost =

. tf.nn.sparse_softmax_cross_entropy_with_logits(logitszlogits,
— labels=self.targets)

self.loss = tf.reduce_mean(cost)

# Use AdamOptimizer to train the network
self.optimize =
<~ tf.train.AdamOptimizer(learning rate) .minimize(self.loss)

3.2.2 Training vs Generation Algorithm

Running a training step in the model is as easy as feeding the whole
training sequence , as well as the target sequence, to the graph and the
model will deal with slicing and shaping the input to each module.

# 1 = length of training sections
for i in range(inputs.shapel[1] // (1 - BIG_FRAME_SIZE)):
# Make sure mot to skip important samples
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start = i * (1 - BIG_FRAME_SIZE)
# Feeding 1 samples to the graph
feed = { self.input: inputs[:, start:start+l],
self.targets: targets[:, start:start+l] }
# Add states 1f we have one
if state is not None:
feed[self.init_state_tuple] = state

state = self.session.run([self.final_state_tuple,
— self.optimize], feed_dict=feed) [0]

where init_state_tuple is a tuple containing the initial states for both RNNs
and final_state_tuple allows us to get both of the RNNSs finale state. The run
function will execute and return the results of the specified nodes in the
graph and the session object contains the graph.

The generation algorithm is more complicated because we have to think
about the frequency of which a module is run. For every run of the LFM,
we will have multiple runs of the HFM. This is why it is useful to have all
the access points to the graph, it allows us to run specific sections of the
graph where the input data to those sections are already calculated.

# Generate a sample at time step t
# First frame of the sequence ts padding
for t in range(BIG_FRAME_SIZE, steps):
if t % BIG_FRAME_SIZE ==
big_frame_feed = { self.big_frame_input: samplel[:,
< t-BIG_FRAME_SIZE:t] }
# Add state 1f there is one
if big_frame_state is not None:
big_frame_feed[self.big_init_state] =
— big_frame_state
big_frame_out, big_frame_state =
- self.session.run([self.big_frame_out,
— self.big_final_state], feed_dict=big_frame_feed)
big_frame_out = np.reshape(big_frame_out, [batch_size,
< -1, units])

if t % FRAME_SIZE == O:
frame_feed = { self.frame_input: samplel[:,
< t-FRAME_SIZE:t], self .big_frame_out:
< big frame_out[:, t % R] }
# Add state 1f there is one
if frame_state is not None:
frame_feed[self.init_state] = frame_state
frame_out, frame_state =
— self.session.run([self.frame_out,
< self.final_state], feed_dict=frame_feed)
frame_out = np.reshape(frame_out, [batch_size, -1,
— units])
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sample_feed = { self.sample_input: samplel[:,

< t-FRAME_WIDTH:t], self.frame_out: frame_out[:, t % R_1]
-}

predictions = self.session.run(self.prediction,

- feed_dict=sample_feed)

sample[:, t] = bins[predictions]

We can use the modulo operator, %, to control when each module is run.
The frequency of each module depends on its input size and we will only
run a module when we have generated enough samples to fill its entire
input. We reshape the output of the LFM into a batch of sequences with
length R and make sure that the correct output is fed to the HFM. We do
the same with the output of the HFM.

3.3 WaveNet

WaveNet [38] is a model which is inspired by the PixelCNN [36] architec-
ture and has proven to be the state of the art when it comes to audio gener-
ation. While other models use recurrent connections to generate sequential
data, WaveNet uses causal convolutions. These are one dimensional convo-
lutions which makes the output at time step ¢ not dependant on any future
timesteps, see figure 3.7. This is possible by using filters with a width of
two.

Output
OO0 OO0 0O OO OO0 OO0 OO0 O Hidden Layer
O 0O OO OO0 OO 00O OO0 0 O Hidden Layer
O 0O OO OO0 OO OO0 OO0 OO0 O Hidden Layer
OO0 OO0 00O 0O 0 0 O0 Input

Figure 3.7: Causal convolutions used in WaveNet

The problem with using filters which are only two wide is that the
receptive field of the output nodes are not big enough, which is essential
when you think about how many samples one single time step might be
dependant on. By looking at figure 3.7, we can see that using these filters
gives us a receptive field in layer n equal to n + 1, which means that we
would have to use thousands of layers to get a receptive field big enough to
see the connection between relevant samples. Van den Oord used dialated
causal convolutions as a solution to this problem, see figure 3.8.

In this kind of convolutions we simply skip parts of the input. This
is equivalent to increasing the filter width and changing the value of the
inputs we are not interested in to zero. By increasing the filter width every
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Figure 3.8: Dialated causal convolutions used in WaveNet
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layer 1, we can achieve a receptive field equal to 2", which is a significantly
bigger number than n + 1. WaveNet is built using multiple blocks of these
dilated convolutional layers stacked on top of each other. This results in an
alternating pattern in the receptive field.

1,2,4,..,512,1,2,4,...,512,1,2,4, ...,512

The total receptive field can then be calculated as R = b2", where b is
number of blocks and n is the number of layers in each block. Using stacked
dilated convolutions in this manner enables WaveNet to have a very large
receptive field using only a small number of layers while still preserving
the input resolution throughout the network.

Even though we use dilated causal convolution, we are still interested
in using filter with a width of two. This is because the increased filter
width would increase the amount of unnecessary computations, when we
are only interested in a fraction of the input. In layer twelve, we would
have a filter width of 4096, but we are only actually interested in the first
and last value of the filter. We can shape the input matrix in a particular
way which allows us to use filters which are two wide. Given the two input
sequences presented below.

(3.2)

The first thing we have to do is to transpose the matrix, which would
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make it look like this

10
11
12
13
14
15
16
17
18
19

If we find our selves in layer one, we can see from figure 3.8 that we are
using a dialation of one, which means that are skipping every other value
in every convolutional operation. This is the same as splitting each of the
two sequences into two subsections. In our case, one of the subsequences
would contain the even numbers and the other would contain the odds.
We can achieve this by reshaping the matrix above so that each column of
the matrix will have the correct length as the subsequences. In our case, the
subsequences will have a length of 5. The matrix will now look like this

(3.3)

0| o] 3| o ] e o] o] 2| o

0l10]1]11
2(12[3]13
4014515 (3.4)
6116|717
818919

The only thing we have to do to make the matrix correct is to again
transpose it so that each row of the matrix contains each subsequence. Now
we can use this matrix with the convolution operator and we are able to use
a filter with a width of two. In our case, we have ended up with a set of
sequences which is twice as big, but each sequence within the set is half the
length of the original sequences.

0 |2 |4 |6 |8
10|12 |14 | 16 | 18
1 |3 |5 |7 |9
1111315117 |19

After we have done the convolutions on the new matrix we have to turn
each subsequence back into one sequence so that we get the correct input
shape into the next layer in the network. If we do all the steps presented
above in reverse order, we will turn the output of the convolutions into
sequences with the same length as the input.

(3.5)

3.4 Conclusion

Even though the NaiveRNN and SampleRNN use the same basic RNN
principles, their implementation is very different. Because there are no
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functions in the Tensorflow framework that makes it easy to implement
modules with different clock rates, the implementation will be longer and
more complicated than compared to the NaiveRNN. The main difference
is that in the NaiveRNN we can compute the output with one call of the
dynamic_rnn function, but in the SampleRNN we have to construct each
module as its own dynamic_rnn. This will lead to a difference in the order
of the computations. While the NaiveRNN will compute all the layers in
one step, a left to right approach, the SampleRNN will compute all the
steps in one module, a bottom to top approach. Despite the differences, I
don’t expect any of the two approaches to perform better than the other.
If we would have used a bottom to top approach in the NaiveRNN, the
unfolded graph would still be the same as with the left to right approach.

If we compare the data flow of all three models, it is clear that
SampleRNN has similarities between both the NaiveRNN and WaveNet.
We can see from figure 3.5 that the HFM and PM is closely related to the
causal convolutions we find in WaveNet.
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Chapter 4

Experiments

4.1 Data

Iuse a data set created by Bernd Krueger [27] that contains a large collection
of classical piano music. Although the data set contains more than a
hundred musical pieces, I have selected a smaller section of pieces that adds
up to about forty minutes of music. This is because these pieces are similar
in terms of audio quality, use of reverb and timbre, which might make it
easier to train the networks.

41.1 Preparing the data

The first step in preparing the data is to split each track of music into four-
seconds long sections on which we will perform truncated BPTT. In theory,
it is possible to train on entire pieces, but splitting each piece into smaller
sections where we reset the state of the RNN after each section, will lower
the risk of saturating the cell activation function.

I normalize all sections individually to make sure all data is ranging
from -1 to 1. This will lead to better use of the entire sample resolution,
however, we will loose the long term velocity changes present in the music.
This will help the network focus on how the piano sounds, but it might end
up generating music which is flat and not dynamic.

Each model outputs a discrete distribution with 256 possible quantized
values of x;. This corresponds to a sample resolution of 8 bits. When
generating samples, each predicted sample is used as input to the
next step and to make the input sequences correspond better to the
generated sequences, I quantize every input sequence to match the output
distribution of the models. I divide the range from -1 to 1 into 256 bins
and I use those bins to get the bin index of each sample. Those indices are
used as targets in every model and they are used to retrieve the quantized
floating point value of the bins.

The music is recorded with a sample rate of 44.1 kHz, but the small
sample resolution might result in having multiple proceeding samples
with the same value. This can lead to artifacts, and more importantly
unnecessary calculations, and it is the reason why we down sample the
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music to 14.7 kHz, which corresponds to every third sample of the original
track. Even though it will decrease the audio quality, 14.7 kHz is still a
sufficient sample rate to capture the fundamental frequencies of every note
on a piano, where the highest possible note is a high C, which corresponds
to frequency of 4.186 kHz.

Decreasing the sample resolution and rate can ease the learning
procedure while still generating audio with reasonable quality.

4.2 Overfitting

Before we start training the networks on a big data set it is important to find
the optimal hyper parameters for each network. These parameters varies
from network to network and from data set to data set. It is hard to know
what these parameters should be and the only way to find out is to train the
network with different values. If we train the networks on a small section
of the data set we are able to do many short runs and observe how these
parameters affect the training and then try the parameters which gave the
best result on a bigger data set.

Many networks share common parameters such as learning rate,
number of hidden layers and number of nodes in each layer, but some
networks might have less common parameters that are specific to their
architecture.

In this experiment I have trained all the models using a very small
section of the data set, a one-second long sequence of a single piece of
piano music. I have done multiple training runs of the NaiveRNN with
different parameter combinations to get a better understanding of how
each parameter affect the training of the network. For the other two
models, hyperparameters from other authors’ experiments have been used.
At the end of the experiment, I compare the best performing NaiveRNN
with the other two models.

All three models are trained using the Adam optimizer [24] with
parameters f; = 0.9, B = 0999 and € = 108 and an initial learning
rate of 0.001, which are the default values in Tensorflow.

4.2.1 Naive RNN

I started the overfitting with a base configuration where I used two LSTM
layers, each LSTM layer has 256 units and I performed truncated BPTT
on sequences with 256 steps. I have experimented with different amounts
of layers, hidden units and sequence lengths to try to find the optimal
combination of parameters. Table 4.1 displays the loss results after testing
six different combinations.

It turns out that the base configuration I chose was able to reproduce
the small data set, see appendix A, example 1. This suggests that the
NaiveRNN, with the 2-layer, 256-units, 256-steps configuration, is a good
baseline comparison against other configurations.
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Layers Units Length Steps Time Loss
256 256 44.83k  1:43:13 0.027
256 256 3293k 1:49:18 0.086
512 256 29.13k  1:21:57 0.049
256 512 23.24k  1:45:51 0.124
256 128 68.06k 1:18:20 0.007
512 128 42.24K 1:00:55 0.015

N INDNDNWDN

Table 4.1: Training loss and time for the NaiveRNN when overfitted on a
single example with different hyperparameters. I stopped the training if
a configuration used longer time to converge than the base configuration.
The network with 2 layers, 512 units and a sequence length of 128 was the
most efficient.

Adding LSTM layers

Some neural networks will benefit from having deeper structures and with
this in mind I wanted to see how the NaiveRNN performed with one more
LSTM cell.
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Figure 4.1: Training loss when overfitting the NaiveRNN with two and
three LSTM layers. The x axis is training steps. Y axis shows the
rolling average over 10 steps. Adding layers doesn’t improve the learning
efficiency of the network.

Figure 4.1 displays how the error value changes with the amount of
training steps. This allows us to compare the learning efficiency of the
two configurations. My definition of efficiency is the rate of change in loss
value with respect to training steps. Even though the rate of change is
not calculated directly, the graphs gives us a visual indication of how each
parameter affect the rate of change.

We can see that the two graphs behaves similarly, which means that
there are no substantial improvement by adding one more cell. If the extra
cell had been beneficial for the model, I would have expected the error
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value to decrease at a faster rate when compared to the base model. Since
this is not the case, I believe that there is no need to make any deeper
representation of the input. Compared to images, where objects might
be pieced together by many different and complex features, sound might
contain many of the same and simple features. This makes me think that
a wider network, where there might be more connections between lower
level features, would be beneficial at this specific task.

Adding more units

With the results I got from the previous test I wanted to see if my
assumptions was correct. I doubled the amount of units to a total of 512
within each LSTM cell and ran the test again.

4 —— 256 Units
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Figure 4.2: Training loss when overfitting the NaiveRNN with 256 and 512
units in each LSTM cell. Results show that the network with 512 units
needs less steps to reach the same loss value as compared to 256 units.

If we take a look at the graphs in figure 4.2, then it seems like the model
with twice as many units is indeed more efficient per training step than the
base configuration. This makes the model converge in a shorter amount of
time even though each training step takes a bit longer to calculate.

Changing the sequence length

AsThave explained earlier, there are dependencies between samples which
are thousands of steps apart when dealing with sample level audio and
because of this one might think that it would be better to perform BPTT on
longer sequences. I increased the sequence length to 512 steps to see how
this would impact the performance of the network.

It is hard to say if the longer sequences does improve how well the
network is able to learn the data set, figure 4.3. One thing that is clear,
however, is that increasing the sequence length will increase the training
time, it will actually increase linearly with the sequence length. This is due
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Figure 4.3: Training loss when overfitting the NaiveRNN with a sequence
length of 256 and 512 steps. Although the network training on 512 steps
might learn depencies across longer time lags, it doesn’t seem to increase
the efficiency per step.

to the architecture of RNNs and how the calculations are more sequential
than compared to CNNs, which might lead to not being able to take full
advantage of the computing capabilities of the GPU. In this case and in the
case of doubling the amount of units, the model is twice as big as the base
configuration, but the difference in training time between these two cases
are huge, doubling the amount of steps doubles the training time. This
significant increase may not translate into improved results.

The learning efficiency is more clear when decreasing the sequence
length. The graphs in figure 4.4 shows that it takes more training steps
to converge when performing BPTT on shorter sequences, but even though
it takes more steps, these steps are faster to calculate and the model does
converge at a shorter amount of time.

Increasing the sequence length to 512 steps might not be a big enough
increase to capture essential dependencies within one step of the training
algorithm, which is why I continued with shorter sequences.

Increasing the amount of units in each LSTM cell increased the
efficiency of each training step. Because of this finding I wanted to keep
the shorter sequence length and increase the amount of units to 512.

This configuration, with 2 layers, 512 units and a sequence length of 128,
performed close to the base configuration in terms of the amount of training
steps it took to converge, but it spent less time training. Even though it
used a relatively short sequence length, this configuration was still able to
reproduce the input data with great precision, see audio example 2.

Conclusion

This experiment shows that the NaiveRNN doesn’t benefit from having a
deep structure, the 2 layer configurations performs as well as the 3 layer
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Figure 4.4: Decreasing the sequence length.
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Figure 4.5: Decreasing the sequence length, increasing number of units.

configuration. Having a wider structure, 512 units instead of 256 units,
makes each training step more efficient and suggests that the network
benefits from having more lower-level feature extractions. The sequence
length has an effect on the training and longer sequences tend to be more
efficient per training step. But the network was able to learn dependencies
across the entire data set when using the shortest sequence length and it did
that in the shortest amount of time. As a result, I chose to use the 2-layer,
512-units, 128-steps configuration in the next experiments.

Even though some configurations of parameters perform better than
other on this small dataset doesn’t mean they are guaranteed to perform
better on the big dataset. This experiment only suggests that some
parameters might work better than others, however it has allowed us to
explore potential relationships between the structure of audio data and the
NaiveRNN network.
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4.2.2 SampleRNN

To get an understanding of how NaiveRNN compare against SampleRNN
I trained SampleRNN on the same data. This will provide an indication
of how the training time and efficiency compares between the two models.
Mehri et al. [33] conducted a hyper-parameter search and the SampleRNN
configuration used in this experiment is based on their findings with some
exceptions.

The structure of the network is the same as described in section 3.2.
The LFM is made of one LSTM layer with 512 units and an input size of
8. The HFM is made of one LSTM layer with 512 units and an input size
of 2. The PM contains three fully connected ReLU layers where the two
first layers contain 512 nodes and the last layer contains 256 nodes, equal
to the amount of classes in the dataset. The input size of the PM is also
2. To avoid gradients blowing up, all gradients are clipped to remain in
the [-1, 1] range. Merhi et al. used 1024 units in both LSTM layers and in
the two first layers of the PM, but because I used 512 units in each LSTM
layer in the NaiveRNN model I think the comparison between these two
models will be more clear when using 512 units in SampleRNN as well. I
performed truncated BPTT on sequences of length 512.
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Figure 4.6: Training loss when overfitting SampleRNN. The network
converged after about 28000 training steps, which corresponds to 1000
epochs. Y axis is the rolling average loss over 10 training steps.

As expected, also this network converges and is able to generate audio
that matches the dataset with good precision, see audio example 3. It took
about 28000 training steps for the network to converge, which corresponds
to 1000 epochs of the data. Figure 4.7 shows an overview of the original
audio in the dataset and the audio generated by SampleRNN. The two
waveforms are almost identical. Figure 4.8 shows a detailed view of the
same two waveforms, which makes the subtle difference more clear.
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Figure 4.7: Comparing the original audio used to overfit the models and
the generated audio by SampleRNN. The generated audio looks identical
to the original, although subtle differences makes the generated audio look
more smooth, especially at the 8000th sample mark.

4.2.3 WaveNet

In the same way as the two RNN models, I wanted to see how WaveNet
handled the small dataset. I tested two configurations with different
amount of blocks and layers.

The first configuration I tested was the same as the one described by
Mehri et al. [33], using four dilated blocks with ten layers each, giving the
model a receptive field of 4096 samples. This model, however, was not able
to learn the dataset. Changing the configuration to two blocks with twelve
layers would drastically change the networks ability to learn the dataset.
The reason for this could be that the configuration has a receptive field of
8192 samples. Both configurations are using 128 filters in each hidden layer
and 256 filters in the output layer to match number of classes.

It would appear that the four block, ten layer configuration contains
too many parameters and is not able to find the necessary weight updates
using this small amount of data. Increasing the dataset could allow this
configuration to use all the parameters and learn more details present in
the audio samples.

The two block, twelve layer configuration was able to converge after
about 2100 training steps, which corresponds to 2100 epochs. This is
because WaveNet is able to predict the entire output sample each training
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Figure 4.8: A detailed view of the original audio and the generated audio
by SampleRNN. It is hard to see any difference in the two waveform, except
at the 60th sample mark where there are subtle differences.

step and this makes WaveNet able to train quite quickly. The generated
audio is near identical to the original audio, see audio examples 4.

4.2.4 Overtfitting Results and Conclusion

To find the an optimal configuration of the NaiveRNN I conducted a search
for hyper-parameters where I tested six different configurations of the
number of layers, number of hidden units and the sequence length. In
order to see how this network performs compared to the other two models
I trained those models on the same data.

RNN Models

Both RNN models were able to learn the dataset and the two generated
audio tracks are of almost identical quality. Although there are noticeable
background noise in the generated audio, a subtle, but constant hiss, this
noise is most likely a result of down sampling the original data from 44.1
kHz to 14.7 kHz as well as decreasing the sample resolution.

The NaiveRNN converged after about 41000 training steps compared
to SampleRNN's 28000, but although more training steps, this corresponds
to about 360 epochs which is less than half the amount of epochs it
took SampleRNN to converge. The difference in the amount of training
steps is because the two models is trained on different sequence lengths,
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Figure 4.9: Training loss when overfitting WaveNet. Y axis is the rolling
average loss over 10 training steps. The network using two blocks with
twelve layers was able to converge after about 2100 training steps, although
the training process was not very smooth. The network using four blocks
with ten layers was not able to learn the dataset.

NaiveRNN was trained on sequences of length 128 while SampleRNN used
512, which makes NaiveRNN have more training steps per epoch. The ratio
between the training steps vs epochs suggests that NaiveRNN, the more
simple model of the two, responds better to the small dataset.

Increasing the sequence length has a big impact on convergence time.
Even though SampleRNN used a sequence length four times as long as
NaiveRNN, its convergence time was shorter. This is because RNNs are
slow to train. Despite the longer sequence length , the RNN modules in
SampleRNN will only have 4 and 256 steps because of the input sizes of
8 and 2 in the LFM and HFM respectively. Using a standard multilayer
network in the PM helps reduce the training time. This allows SampleRNN
to train on longer sequences, which results in a lower loss [33], while
keeping convergence time on par with NaiveRNN.

RNN vs CNN

Also WaveNet was able to learn the dataset and generate audio close to the
original track. There are no clear difference between the audio generated
by the RNNs and Wavenet.

The difference in architecture between the two RNN models and
WaveNet makes a big difference in convergence time. While the two RNN
models trained for about an hour each, WaveNet converged in only two
minutes time. The causal convolutions allow WaveNet to parallelize its
computations, while the sequential architecture of RNNs require a more
ordered set of computations. RNNs might not be able to utilize the entire
capacity of the GPU beacuse of this, which will result in slower training.
This problem is more apparent when training with a small batch size,
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Figure 4.10: Training loss when overfitting all three models. It is clear that
WaveNet is more efficient per training step and it allows it to converge
faster than the two RNN models.

because increasing the batch size will increase the amount of parallel
computations, which will help utilize more of the GPU capacity.

While the two RNN models performs truncated BPTT on small sections
of the entire input, WaveNet is able to do backpropagation on the entire
input sequence. This allows WaveNet to perform more efficient training
steps compared to the RNNs when using the same batch size. Each weight
update in a single convolutional layer is the average over the entire input
sequence, which might help WaveNet learn more general filters even when
the batch size is small. Figure 4.10 displays this effect, which enables
WaveNet to converge after only about 7300 training steps. To get the same
effect with the RNNs would require an increase in batch size, although it is
unlikely to achieve the same efficiency.

4.3 Training on longer sequences

Each model has proven itself able to generate audio as complex as a piano
note. The problem is that every network overfitted on its dataset is not
able to generate anything else than the original audio in the dataset. This
suggests that the networks might not have learned the building blocks
beneath the piano timbre and the changes in pitch, which is essential for
generating arbitrary piano music. To get a better understanding of the
models potential to create a representation of the piano timbre and how
it changes with the change in pitch, I train the models with a considerably
larger dataset than used to overfit the models.

The size of the dataset used in this experiment is relatively small
compared to the datasets used by Mebhri et al. [33] and van den Oord et
al. [38] in their experiments. Merhi et al. used a collection of Beethoven’s
piano sonatas adding up to 10 hours of piano music, while van den Oord
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et al. used the MagnaTagATune dataset, a total of 200 hours of music,
as well as about 60 hours of piano music obtained from YouTube videos.
Considering the task at hand, comparing three different techniques of
generating digital audio, I consider my dataset, containing forty minutes
of piano music , as a sufficient amount of data to explore the potential of
the different models.

Each model is trained for about 48 hours on a single GeForce GTX

1080Ti GPU. The dataset is split into mini batches of size 128 which are
shuffled after each epoch.

NaiveRNN

Looking at the training loss in figure 4.11 suggests that this task is too
difficult for the NaiveRNN. Although the training loss decreases over the
first 4¢° steps, the progression up to this point suggests that the network is
not able to learn any better representations.

Loss Value
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Figure 4.11: Training loss when training the NaiveRNN on the big dataset.
The loss value is decreasing up to around step 4e> when the optimiser made
a bad decision it could not recover from.

The audio generated by the network after about one million training
steps is not what I expected. After feeding the first sample from the
first piano piece in the dataset, all preceding predictions was -1.0, which
corresponds to class zero. This is unexpected because always predicting
class 127, which would be the average sample value over the entire dataset,
might have resulted in a lower average loss.

Even though the expectations of this model generating realistic piano
music was low, I would have expected it to generate some kind of noise or
converging towards the average sample value over the entire dataset.
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SampleRNN

Figure 4.12 show the training loss over the entire training session.
Although the training loss has a wave-like shape it never converges, which
suggests that the network still has more to learn. The training loss is at its
lowest at around step 100000.
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Figure 4.12: Training loss when training SampleRNN on the big dataset.

The audio generate by SampleRNN after 6.75¢> training steps is only
about 170 ms long before it converges, but it has a timbre which makes it
sound like a synthesizer, as well as sounding like it is produced by hitting
a key on a piano, see audio example 5. This suggests that the network is
starting learn representations of the piano timbre. The timbre is clearly
based around multiple frequencies, creating a chord consisting of even
frequencies that gives it a more pleasant sound.

Figure 4.13 shows that the generated audio converges towards a value
near 0.6. Although the dataset contains audio in the [-1, 1] range, the
predicted samples of SampleRNN are only in the [0, 1] range, the center line
has shifted. Together with noise created by the network, this might be the
reason why the generated audio dies out after only a couple of thousand
samples.

Comparing this audio example with the audio example generated at
step 5.75¢° (audio example 6), right before the last wave, gives us an
indication that the network is in fact still learning. The audio at these
two points has the same shape, converging after just a few thousand
samples, but the amount of details, timbre and present frequencies in the
last example, suggests that the network would benefit from more training.

When generating audio, we give the network eight samples as a start
token. Usually, these eight samples are equal to zero, but there is no reason
why these can not be collected from some other waveform. Using eight
samples from the dataset as a start token resulted in a generated audio
which were longer, had a more specific pitch and a timbre close to that of
a piano, audio examples 7. Although, this was inconsistent and most start
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Figure 4.13: Audio generated by SampleRNN. The audio signal dies out
after about 2500 generated samples. The zero line seems to have shifted
and that could be the cause of the signal dying.

token ended up generating audio similar to audio example 5.

WaveNet

The way WaveNet is constructed makes us have to reconsider the size of
each mini batch. The weights in each convolutional layer is updated with
the average over the entire input sequence, which means that longer input
sequences can result in more general weight updates in the same way as
increasing the batch size. The difference in increasing the sequence length,
as opposed to increasing the batch size, is that it can lead to weight updates
that are better for long term dependencies, which can be essential for
generating longer continuous music. Training on many longer sequences
at the same time, however, can lead to memory problems due to the size
of the input. It is therefor important to balance the length of each sequence
and the size of each mini batch to get a good result.

Using the two blocks, twelve layer configuration allows us to train the
network using a sequence length of one second and a batch size of 16.
Figure 4.14 shows the training loss when training this configuration of
WaveNet on the big dataset. Comparing two audio examples generated
at different times during training indicates that the network is struggling
to learn the necessary connections. Example 8 and 9 are 150k training steps
apart, but even though there are differences, the network has not learned
anything to generate music. The network has a wide receptive field, but
using only two blocks will not be a sufficient amount of parameters to
capture the details of the audio samples. The network is not able to
generate audio similar to the dataset, it is only generating noise.

The four blocks, ten layer configuration is a considerably larger model
than the two blocks, twelve layer configuration. The larger model and a
sequence length of one second, gave us only room for a batch size of 8,
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Figure 4.14: Training loss when training the two block, twelve layer
WaveNet configuration on the big dataset. Loss value is decreasing
throughout the training session, but the generated audio indicates that
this configuration is too small to capture the necessary details in the audio
samples.

which could be the reason why the learning is not as smooth as with the
previous configuration, as shown in figure 4.15. Because the receptive field
is only 4096 samples, the added parameters are focused more on short term
dependencies and will enable the network to capture more detailed audio
structures.

The audio generated by WaveNet is quite noisy and unpleasant, except
from the middle part of the example, audio example 10. Figure 4.16 shows
the generated audio and we can see there is a longer continuous section of
audio from about sample 21k to 37k. This part sounds like there is a person
hitting every key on the piano while pressing the sustain pedal. Although it
is not musically interesting, this proves that the network is starting to learn
what a piano sounds like. Unfortunately, the network made a mistake at
the end of the training session, but the audio example is generated at step
325k.

4.3.1 Results

Even though it appears as if the NaiveRNN performed better than
SampleRNN in the overfitting experiments, it is now clear that the task
of generating arbitrary piano music is too difficult for the NaiveRNN.
SampleRNN, on the other hand, seem to respond better in terms of the
ability to learn complex internal representations.

The two architectures generates audio which both sounds and behaves
quite different. The RNNs can only "see" one step of the sequence and
depends on a good flow of the hidden state from one step to the next. If the
state weights are not fully optimized, it appear that the generated audio
tends to die out. WaveNet, on the other hand, will always be able to look at
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Figure 4.15: Training loss when training WaveNet on the big dataset. The
optimiser appears to have made a bad decision at the end of the training
session.

a certain number of previously generated samples, and even though these
samples might not be similar to the dataset, the audio might not die out
in the same way. The problem with this, however, is that the network is
not able to evaluate longer dependencies than its receptive field. This can
lead to sudden changes in musical style and tonality, or in this case, sudden
changes in noise and piano-like sound.

The generation time of each model is also different. The NaiveRNN,
being the smallest network, uses the least amount of time generating audio.
It takes 16 seconds of GPU time to generate one second of audio on average,
compared to SampleRNNs 25 seconds and WaveNets 28 seconds. This
means that none of the models are useful in any task involving generating
real time audio.
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Figure 4.16: Four seconds of generated audio from WaveNet.
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Chapter 5

Conclusion

In this thesis I have explored three different techniques for digital audio
generation. These techniques are using neural networks of different
structure and architecture to generate audio on a sample level. In order
to understand how each technique works and what sets them apart from
each other I have implemented two RNN networks using Tensorflow and
familiarized myself with the implementation of a CNN network.

To gain an understand of how practical and useful these techniques
are for music generation, I have conducted experiments where I trained
all three neural networks on a dataset containing a large collection of solo
piano music and compared the audio generated by each network. It is
unclear how these techniques compare against each other and I have for
that reason arranged the experiments in such a way that the results from
each technique, especially the ones using the RNN architecture, are more
comparable.

When trained on a small dataset, all techniques show great potential,
although it is unclear if the networks are able to create internal representa-
tions that allow them to generate arbitrary piano music. With this idea in
mind, I conducted an experiment using a larger dataset which would force
each network to rely on their ability to create these internal representations
to minimize the cross entropy loss function. After training each network
for about 48 hours, none of the networks were able to produce audio simi-
lar to the dataset. This supports the initial thoughts about how difficult the
task of generating raw digital audio is.

While these results were disappointing, taken together, the experiments
show that these techniques could be practical for generating small amounts
of digital audio. There are many applications in music that use short audio
files as a tool and it is not unlikely that neural networks are going to be
used in these applications in the future. While all three models could be
successful at these tasks, WaveNet appears to be the most effective as I will
discuss in the next section.
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5.1 Model Discussion

While SampleRNN [33] and WaveNet [38] are both well documented
in their original papers, using basic RNN techniques to generate raw
digital audio is not as well documented. In order to find an optimal
configuration of hyper-parameters to compare against the other models,
I tested six different configurations to gain a better understanding of how
each hyper-parameter affects the performance of the NaiveRNN. Because
this network is not expected to perform as well as the two other models,
I configured the SampleRNN network in a way that would not show
its best potential, but rather to better compare against the NaiveRNN. I
measured the convergence time of the best NaiveRNN configuration and
then configured SampleRNN to match that convergence time.

Efficiency

The different architectures in the three models make them train and learn
at different rates. This is more clear in the overfitting experiments where
each model converges towards a loss value of zero. The amount of time
and training steps it takes for each model to converge might give us an
indication of the potential of each model, as well as their learning efficiency.

The structure of SampleRNN allows the network to process longer se-
quences while keeping the convergence time similar to the NaiveRNN.
This will enable SampleRNN to more easily find the long term dependen-
cies. However, the clockwork implementation is complex and time con-
suming compared to the NaiveRNN implementation.

In the overfitting experiment, WaveNet outperformed the two RNNS.
The WaveNet’s ability to utilize parallel computations, as well as the fact
that it can process the entire input sequence each training step, makes it
more efficient than the two RNNs. WaveNet is also easier to implement
compared to SampleRNN.

Audio Quality

The audio files generated in the overfitting experiment are, as far as I
can hear, identical in terms of audio quality. They all share the same
background noise. The audio generated after training for 48 hours are more
different. The NaiveRNN did not generate any audio, but SampleRNN
and WaveNet generate audio which sounds and behaves quite different.
SampleRNN generated audio which were short, but in my opinion it was
musically interesting. There are clearly frequencies that work well together,
meaning they do not sound harsh or unpleasant. The piano timbre,
however, is not quite fully developed. The note generated in example
7 sounds more like an electric piano, which are sounds inspired by the
piano, but made using a synthesizer. The WaveNet audio, example 10, was
different. It is not musically interesting in the same way as example 7, but
it does sound like someone is hitting every key on a piano.
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It is hard to say whether SampleRNN and WaveNet are any better then
the other in terms of audio quality. SampleRNN should in theory be able
to produce audio with longer dependencies due to the fact that WaveNet
is only able to produce dependencies as long as its receptive field. There
is no defined limit to how far the dependencies can be when using LSTM
cells, but the fact that they are hard to train can make them struggle to learn
longer dependencies than WaveNet.

Limitations

It is hard to measure the performance of these models. Only measuring the
performance by looking at how the loss value changes over time might not
be sufficient, because even though the loss value does not seem to decrease
in the case of the NaiveRNN and WaveNet, there might be other measures
that would better display the learning process. Two potential alternative
measures could be the absolute difference between the input and output or
one could use cross correlation.

Conditioning the input could have made it easier for the models to
generate audio that sounds like piano. The fact that each model have to
learn the piano timbre, how the timbre changes with pitch and the higher
musical structures makes this problem not solvable within two days of
training. Removing one of these variables by for example condition the
input on MIDI data would make each model not have to learn the higher
musical structures and use more resources on the timbre.

Generating audio using these three models are sequential processes and
is not well suited for real time use. While new research have proposed new
ways of speeding up audio generation using Parallel WaveNet [37], it is
hard to see any use for RNNs in tasks requiring real time audio generation.

The WaveNet's performance is limited by the memory capacity of the
GPU. The architecture requires a certain amount of layers to achieve a
receptive field big enough to capture long term dependencies, as well as
a certain amount of blocks to capture the details of the audio samples.
In order to capture long-term dependencies means the network has to
train on longer input sequences. Training on many longer sequences
simultaneously can lead to memory issues due to the necessary amount
of parameters to model audio data.

5.2 Future Work

5.2.1 Limitations
More Training

Considering that the networks struggled to generate audio similar to the
dataset suggests that they were not trained long enough to reach their full
potential. Of course, the NaiveRNN would probably not benefit from more
training because of the limitations of the model. It is hard to say how long
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it would take each model to reach a state where they are able to generate
realistic piano music, but there are ways to speed up the training process.

Tensorflow supports the use of multiple GPUs and implementing each
model to take advantage of this feature would speed up training. One way
of to implement this is to make two identical networks sharing the same
weights, placing them on separate GPUs and calculating the average loss
over the output of both networks when calculating the gradients. A second
way is to place each layer, or a number of layers, on a separate GPU. This
would enable us to calculate each layer in parallel.

Test More Configurations

The SampleRNN configuration is inspired by the results described in the
paper [33], but it could have been interesting to conduct my own hyper-
parameter search with SampleRNN in the same way as I did with the
NaiveRNN. Testing different input sizes of each module and testing the
effect of adding or removing modules are examples of different hyper-
parameters that could affect the generative performance of the model.

While the training progresses, the networks could be more sensitive to
every weight update. This might be the reason why the loss value will
sometimes jump and cause the network to not progress any further. To
prevent this from happening, one could lower the learning rate after a
period time to make each weight update more precise. The only problem is
that it is difficult to know when to lower the learning rate, lowering it too
soon could make the network fall into a local minima and stop the learning
process, but lowering it too late can make the network take a completely
different route which it is not able to recover from.

Data Preprocessing

There are audio processing techniques which could prevent artifacts from
appearing when down sampling the audio from 44.1 kHz to 14.7 kHz.
These artifacts can create noise and inconsistencies which might cause the
models to make bad decisions they cannot recover from. Applying a low
pass filter enables us to cut away unwanted frequencies, frequencies that
might be the cause of the noise and inconsistencies. Using a sample rate of
14.7 kHz will only allow us to accurately reproduce frequencies up to 7350
Hz, any frequencies above this point will only lower the audio quality.

Normalizing each four seconds long sequences separately causes the
center line to shift a small amount. Although it might be an inconsiderable
amount, shifting only a couple of quantization steps, having different
center lines throughout the dataset is something that could lead to learning
mistakes. Using a compressor or a limiter would make sure that highest
positive peak amplitude is only as loud as the lowest negative peak
amplitude. This would prevent the center line to shift and it would be
consistant throughout the entire datset.
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5.2.2 Applications

Using neural networks to generate digital audio on a sample level could be
applied to many of the musical applications discussed in this thesis. I have
selected a few applications I find interesting.

Audio Generation from MIDI Data

Conditioning the audio generation on MIDI data would enable us to train
a network to generate a unique performance in the same way as StyleRNN
[30]. Generating a performance on a sample level would not be limited
to model the dynamics of different musical styles, it would enable us to
capture and predict the playing style of specific musicians and as well as
the timbre of their instruments. For example, every guitarist have their own
unique way of playing a note on the guitar, using their fingers or a pick,
and all that information is present in the audio samples. This would make
it possible to generate a saxophone solo played with the style of guitarist
Jimi Hendrix.

Generation of Unique Sounds

These techniques can be used as a tool for musicians and music technicians
to generate sounds never heard before. This is a field of research already
being explored [8].

Impulse Responses

Impulse responses are audio files ranging from just a few milliseconds to
a few seconds. These audio files are often used to capture the reverb of
specific rooms or locations which are then applied, using convolution, to a
source audio track. This would give the impression of the source audio
actually being recorded at that location. Being audio waveforms, there
are no reason why these techniques can not be used to generate impulse
responses of different kinds. Because impulse responses are usually short
audio files, this could even be an application suitable for the NaiveRNN.

5.3 Final Remarks

Machine learning in music and audio generation is an interesting field of
science. Music is always changing and it is difficult to predict what kind
of music is going to be popular in the future. There might emerge new
genres where all music is composed and generated be artificial intelligence,
or musicians use it as a tool to express their creative ideas. We have already
seen WaveNet been used in Google Duplex [28], an Al system for booking
appointments using the phone. These are conversations made entirely
using machine learning and the conversations sound remarkably human.
It is exciting to see what machine learning and artificial intelligence will
bring in the future.
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I feel I have learned a lot about what it means to apply machine learning
to a difficult problem, the process of finding a dataset containing the kind
of data the problem is using and the long process of training each model for
days. The actual amount of training necessary to generate something other
than noise was surprising to me. This made me think it was something
wrong with the way I had implemented the models or the way I processed
the data. Writing this thesis have made me more aware of how to approach
a machine learning task of this complexity, I only wish the awareness had
come earlier in the process.
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Appendix A

List of Audio Examples

All audio files can be downloaded from https://doi.org/10.5281/zenodo.
1247475

1. NaiveRNN-2-256-256.wav
2. NaiveRNN-2-512-128.wav
SampleRNN-overfit.wav

WaveNet-2-12-overfit.wav

S

SampleRNN-675k. wav

6. SampleRNN-575k.wav

7. SampleRNN-575k-starttoken.wav
8. WaveNet-2-12-100k.wav

9. WaveNet-2-12-250k.wav

10. WaveNet-4-10.wav
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