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6 H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
7 Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden
8 Department of Physics, Stockholm University, 10691 Stockholm, Sweden
9 Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8, Canada

10 Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
11 NORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
12 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, 69230 Saint-Genis-Laval, France
13 Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
14 Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
15 LAPTh, Université de Savoie, CNRS, 9 chemin de Bellevue, B.P. 110, 74941 Annecy-le-Vieux, France
16 Department of Physics, Harvard University, Cambridge, MA 02138, USA
17 Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, The University of Sydney,

Sydney, NSW 2006, Australia
18 Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
19 GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Received: 22 May 2017 / Accepted: 4 September 2017 / Published online: 18 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract We study the seven-dimensional Minimal Super-
symmetric Standard Model (MSSM7) with the new GAM-
BIT software framework, with all parameters defined at
the weak scale. Our analysis significantly extends previ-
ous weak-scale, phenomenological MSSM fits, by adding
more and newer experimental analyses, improving the accu-
racy and detail of theoretical predictions, including dominant
uncertainties from the Standard Model, the Galactic dark
matter halo and the quark content of the nucleon, and employ-
ing novel and highly-efficient statistical sampling methods
to scan the parameter space. We find regions of the MSSM7
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that exhibit co-annihilation of neutralinos with charginos,
stops and sbottoms, as well as models that undergo resonant
annihilation via both light and heavy Higgs funnels. We find
high-likelihood models with light charginos, stops and sbot-
toms that have the potential to be within the future reach of
the LHC. Large parts of our preferred parameter regions will
also be accessible to the next generation of direct and indirect
dark matter searches, making prospects for discovery in the
near future rather good.
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1 Introduction

The most straightforward supersymmetric extension of the
Standard Model (SM) of elementary particles is the Minimal
Supersymmetric Standard Model (MSSM) [1]. The MSSM
can help deal with many of the theoretical and experimental
shortcomings of the SM. Most notably it stabilises the elec-
troweak scale [2–6] with respect to large corrections from
new physics at the Planck scale [7–11], allows the unifica-
tion of gauge couplings [12–15], provides a dark matter (DM)
candidate that can fit the observed relic abundance [16,17]
and predicts a light Higgs boson, in accordance with the 2012
discovery [18,19]. This has prompted a vast number of inves-
tigations of this model, with recent literature studying preci-
sion corrections to the Higgs mass [20–29] and other aspects
of Higgs physics [30–40], DM [41–78], the matter-antimatter
asymmetry of the Universe [79–81], vacuum stability [82],
cosmic inflation [83–90], and various measurements of pre-
cision [91–98] and flavour [99,100] observables. MSSM pre-
dictions for observations related to the above also yield the
most important constraints on the theory.

Indeed the MSSM is one of the best-studied extensions
to the SM to date. The latest literature covers topics ranging
from global fits to the MSSM with different choices for the
number of dimensions in the electroweak scale parameter-
isation [101–107], to studies of various aspects of its more
constrained versions defined at a high scale [108–118]. The-
oretical considerations, such as naturalness [119–130], and
gauge unification within the MSSM [131–135], have also
been a concern. Due to the steady stream of results from the
LHC, the implications of collider searches for the MSSM
have been a particularly active field of study [136–159].

The most general version of the MSSM has a very large
number of parameters. Assuming only CP conservation,
there are in total 63 free parameters, coming mostly from
soft supersymmetry-breaking terms. There are two distinct
ways to approach the exploration of the MSSM. The first
is to take inspiration from the apparent unification of the
gauge couplings at a high scale, defining a small set of uni-
fied parameters at that scale – a Grand Unified Theory (GUT)
– and then run them down to the electroweak scale in order

to compare with experiment. This is done for example in the
four-parameter constrained MSSM (CMSSM) with common
mass parameters for the scalar and fermion soft masses [160],
and various generalisations of the CMSSM, such as the
non-universal Higgs mass models 1 and 2 (NUHM1 and
NUHM2), which split the Higgs soft masses from the other
scalar masses [161–165]. We have carried out extensive
global fits to these GUT-motivated models in a companion
paper to this one [166].

The other approach is to remain agnostic about the high-
scale properties of the theory, and to define all the parame-
ters at an energy near the electroweak scale. This is the so-
called ‘phenomenological MSSM’ (pMSSM [167]). Given
the impracticality of studying the complete parameter space,
it is necessary to make some physically-motivated assump-
tions and simplifications in order to focus upon a relevant
and tractable lower-dimensional subspace of the full model.

In this paper, we perform the first global fit of the weak-
scale phenomenological MSSM to make use of the GAMBIT
global-fitting framework [168]. Our work improves upon pre-
vious pMSSM studies on the following fronts:

1. The larger number of observables in our composite likeli-
hood function, including: sparticle searches at LEP, Run
I and Run II of the LHC, observables and constraints on
the Higgs sector from LEP, the Tevatron and the LHC,
direct and indirect dark matter searches from a multi-
tude of experiments, and a large number of flavour and
precision observables.

2. Experimental likelihoods reconstructed from event rates,
where applicable, including: Monte Carlo simulation of
LHC observables, kinematical acceptance-based event
rates for LEP sparticle searches, indirect DM search like-
lihoods computed at the level of single events, and direct
DM search limits based on sophisticated simulation of
the relevant experiments.

3. The use of the GAMBIT hierarchical model database and
statistical framework, for an advanced treatment of uncer-
tainties from dominant SM nuisance parameters across
different observables, and a consistent theoretical and sta-
tistical treatment of all likelihoods.

4. The use of Diver [169], a new scanner based on differ-
ential evolution, which improves sampling performance
compared to techniques used previously, and allows us
to more accurately locate the high-likelihood regions.

5. The results in this paper are based on a public, open-
source software, which allows for the reproduction and
extension of our results by the interested reader.1

We begin in Sect. 2 by introducing the models, parameters
and nuisances over which we scan, followed by our adopted

1 http://gambit.hepforge.org.
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priors and sampling methodology. In Sect. 3, we then give
a brief summary of the observables and likelihoods that we
employ. We present our main results in Sect. 4 and their
implications for future searches for the MSSM in Sect. 5,
and conclude in Sect. 6.

All GAMBIT input files, generated likelihood samples
and best-fit benchmarks for this paper are publicly available
online through Zenodo [170].

2 Models and scanning framework

2.1 Model definitions and parameters

GAMBIT makes no fundamental distinction between param-
eters of BSM theories and nuisance parameters, scanning
over each on an equal footing. Here we sample simultane-
ously from four different models: a 7-parameter phenomeno-
logical MSSM, and three models describing constraints on
different areas of known physics relevant for calculating
observables in the MSSM. These nuisance models respec-
tively describe the SM, the Galactic DM halo, and nuclear
matrix elements for different light quark flavours (relevant
for direct detection of DM).

2.1.1 MSSM7

The most general formulation of the CP-conserving MSSM
is given by the GAMBIT model MSSM63atQ. Full details
of the Lagrangian can be found in Sec. 5.4.3 of Ref. [168].
This model has 63 free, continuous MSSM parameters: 3
gaugino masses M1, M2 and M3, 9 parameters each from the
trilinear coupling matrices Au,Ad and Ae, 6 real numbers
associated with each of the matrices of squared soft masses
m2

Q , m2
u , m2

d , m2
L and m2

e , and three additional parameters
describing the Higgs sector. We choose to work with the
explicit mass termsm2

Hu
andm2

Hd
for the two Higgs doublets.

By swapping the Higgs bilinear couplings b and μ for the
ratio of vacuum expectation values for the up-type and down-
type Higgs fields tan β ≡ vu/vd, and demanding that the
model successfully effect Electroweak Symmetry Breaking,
we can reduce the remaining continuous freedom to a single
parameter (tan β). This leaves only a free sign for μ, which
constitutes an additional (64th) discrete parameter. In this
definition, tan β is specified at the scale mZ , and all other
parameters are defined at some other generic scale Q, usually
taken to be near to the weak scale.

This parameter set is currently too large to explore in a
global fit, and in any case much of the phenomenology can
be captured in smaller models that incorporate simplifying
assumptions. In this first paper, we explore the MSSM7atQ,
a 7-parameter subspace of the MSSM63atQ. Inspired by
GUT theories, we set

Table 1 MSSM7 parameters, ranges and priors adopted in the scans of
this paper. For a parameter x of mass dimension n, the “hybrid” prior
is flat where |x | < (100 GeV)n , and logarithmic elsewhere. The “split
hybrid” prior for M2 refers to the fact that we carried out every scan
twice: once with a hybrid prior over 0 ≤ M2 ≤ 10 TeV, and again with
a hybrid prior over − 10 TeV ≤ M2 ≤ 0. In addition to the priors listed
here, we also carry out additional scans of fine-tuned regions associated
with specific relic density mechanisms, where we restrict models to
mass spectra that satisfy various conditions. See text for details

Parameter Minimum Maximum Priors

Au3 (Q) −10 TeV 10 TeV Flat, hybrid

Ad3 (Q) −10 TeV 10 TeV Flat, hybrid

M2
Hu

(Q) − (10 TeV)2 (10 TeV)2 Flat, hybrid

M2
Hd

(Q) − (10 TeV)2 (10 TeV)2 Flat, hybrid

m2
f̃
(Q) 0 (10 TeV)2 Flat, hybrid

M2(Q) −10 TeV 10 TeV Split; flat, hybrid

tan β(mZ ) 3 70 Flat

sgn(μ) + Fixed

Q 1 TeV Fixed

3

5
cos2 θWM1 = sin2 θWM2 = α

αs
M3, (1)

at the scale Q. We assume that all entries in Au,Ad and Ae

are zero except for (Au)33 = Au3 and (Ad)33 = Ad3 . We
take all of the off-diagonal entries in m2

Q , m2
u , m2

d , m2
L and

m2
e to be zero, so as to suppress flavour-changing neutral

currents. By setting all remaining mass matrix entries to a
universal squared sfermion mass m2

f̃
, we reduce the final list

of free parameters to M2, Au3 , Ad3 , m2
f̃
, m2

Hu
, m2

Hd
and tan β

(plus the input scale Q and the sign of μ). The MSSM7 has
been studied in significant work in the previous literature,
e.g. [171–176].

We assume that R-parity is conserved, making the lightest
supersymmetric particle (LSP) absolutely stable, and discard
all parameter combinations where the LSP is not a neutralino.
This choice is discussed in more detail in Sec. 2.1.1 of the
companion paper [166].

In Table 1, we give the parameter ranges over which we
scan the MSSM7 in this paper. We choose to define all param-
eters other than tan β at Q = 1 TeV, and investigate positive
μ (for a definition of μ please see the superpotential given in
Sec. 5.4.3 of Ref. [168].). We intend to return to the μ < 0
branch of this model in future work, where we compare with
less constrained subspaces of the MSSM63atQ.

2.1.2 Nuisance parameters

We make use of three different nuisance models in our
scans: the SM as defined in SLHA2 [168,177], a model
of the Galactic DM halo that follows a truncated Maxwell-
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Table 2 Standard Model, dark
matter halo and nuclear
nuisance parameters and ranges.
We vary each of the parameters
in the first section of the table
simultaneously with MSSM7
parameters in all of our scans,
employing flat priors on each.
The parameters listed in the
second section of the table are
constant in all scans. Further
details and references for the
chosen values can be found in
Sects. 2.1.2–2.1.4 of the
companion paper [166]

Parameter Value (± range)

Varied

Strong coupling αMS
s (mZ ) 0.1185 (18)

Top quark pole mass mt 173.34 (2.28)GeV

Local DM density ρ0 0.2–0.8 GeV cm−3

Nuclear matrix el. (strange) σs 43 (24)MeV

Nuclear matrix el. (up + down) σl 58 (27)MeV

Fixed

Electromagnetic coupling 1/αMS(mZ ) 127.940

Fermi coupling × 105 GF,5 1.1663787

Z pole mass mZ 91.1876 GeV

Bottom quark mass mMS
b (mb) 4.18 GeV

Charm quark mass mMS
c (mc) 1.275 GeV

Strange quark mass mMS
s (2 GeV) 95 MeV

Down quark mass mMS
d (2 GeV) 4.80 MeV

Up quark mass mMS
u (2 GeV) 2.30 MeV

τ pole mass mτ 1.77682 GeV

CKM Wolfenstein parameters λ 0.22537

A 0.814

ρ̄ 0.117

η̄ 0.353

Most probable halo speed v0 235 km s−1

Local disk circular velocity vrot 235 km s−1

Local escape velocity vesc 550 km s−1

Up contribution to proton spin 

(p)
u 0.842

Down contrib. to proton spin 

(p)
d − 0.427

Strange contrib. to proton spin 

(p)
s − 0.085

Boltzmann velocity distribution [168,178], and a model con-
taining nuclear matrix elements required for calculating DM-
nucleon couplings [168,178]. We vary a total of five param-
eters across these models: the strong coupling at scale mZ in
the MS scheme, the top pole mass, the local density of DM,
and the strange and up/down quark contents of the nucleon.
The treatment of these models and parameters here is identi-
cal to the treatment in the companion paper [166], where we
scan the nuisance parameters using flat priors, and impose
constraints on them within the likelihood function. We refer
the reader to Sects. 2.1.2–2.1.4 and Sect. 3.1 of Ref. [166]
for details. For ease of reference however, here we reproduce
in Table 2 the parameter ranges and values used in our scans.

2.2 Scanning methodology

Our scanning methodology is similar to that detailed in
Sect. 2.2 of the companion paper [166]; here we give only
a short summary, focussing in particular on any points of
difference.

We use a number of different priors, two different sam-
plers,2 and a range of different sampler configurations to
scan the parameter space of the MSSM7. We then combine
the results of all scans into a single set of likelihood samples,
and use it to generate profile likelihoods for the MSSM7
parameters and observables. Using multiple scanners, priors
and sampling settings allows for accurate determination of
both the highest-likelihood point and profile likelihood con-
tours. We do not consider Bayesian posteriors in the cur-
rent paper, as our preliminary investigations indicate that
Bayesian results in weak-scale MSSM models are dominated
by the choice of priors. This suggests that a careful choice of
prior (based on e.g. fine-tuning considerations) is needed for
later interpretation, which is beyond the scope of the current
paper.

We primarily rely on the differential evolution scanner
Diver 1.0.0 [169], but also perform some supplementary
scans with the nested sampler MultiNest 3.10 [179]. For

2 Here we use ‘sampler’ and ‘scanner’ synonymously.
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a performance comparison of Diver, MultiNest and other
modern scanning algorithms, please see Sec. 11 of Ref. [169].
Unlike in the companion paper, we repeat allDiver scans with
both self-adaptive jDE [180] and its λjDE variant [169]. The
λjDE algorithm is more aggressive in finding the maximum
likelihood, whereas jDE ensures a more thorough exploration
of large regions of degenerate likelihood. Carrying out jDE-
only scans (as opposed to retaining λjDE for all scans, as
in Ref. [166]) is more beneficial in the MSSM7 than in the
NUHM2 or its subspaces, as the additional freedom of the
MSSM7 means that individual regions satisfying the bound
set by the DM relic density, whilst more numerous, occupy a
more fragmented and isolated volume of the parameter space
than in ‘smaller’ models like the CMSSM.

We carry out scans with effectively logarithmic priors
using bothDiver andMultiNest, where all parameters except
tan β follow so-called “hybrid” priors. The hybrid prior we
use for parameter x of mass dimension n is flat in the region
|x | < (100 GeV)n , and logarithmic for larger |x |. We supple-
ment these scans with additional Diver runs using flat priors
on the parameters most sparsely sampled at large values in
log-prior scans (Au3 , Ad3 and M2

Hu
), and additional Multi-

Nest scans using flat priors on all dimensionful parameters.
To further improve the completeness of the sampling across
the parameter space, we also subdivide every run into sepa-
rate scans for M2 > 0 and M2 < 0.

As we show in Sect. 4, chargino co-annihilation is the
dominant mechanism for producing an acceptable DM abun-
dance in large parts of the allowed parameter space. To ensure
that we also explore the narrow parameter regions where
sfermion co-annihilation or resonant annihilation is respon-
sible for depleting the relic density to or below the observed
value, we perform four ‘directed’ scans with different addi-
tional conditions on the particle spectrum:

1. squark co-annihilation – a cut on the mass of the lightest
squark mq̃1 < 1.5mχ̃0

1
,

2. slepton co-annihilation – a cut on the mass of the lightest
slepton ml̃1

< 1.75mχ̃0
1
,

3. heavy Higgs funnel – a cut on the mass of the CP-odd
Higgs boson 1.8mχ̃0

1
< mA < 2.2mχ̃0

1
, and

4. light Higgs funnel – a cut on the lightest neutralino mass
25 < mχ̃0

1
/GeV < 85.

For all four scans, we also require that mχ̃±
1

> 1.05mχ̃0
1
, to

avoid parameter combinations where chargino co-annihilation
dominates. We carry out these scans exclusively with Diver,
using pure jDE. In these directed scans, we allow M2 to vary
freely over its full positive and negative range (Table 1).

The mass conditions effectively act as priors, allowing us
to obtain a starting population of points roughly in the right
area, before refining the fit to the best-fit likelihood region
corresponding to each mechanism for depleting the relic den-

sity. Note that the bounds that we use for this process are quite
generous compared to the actual definitions of these regions
that we use later in this paper, as they are only designed to
direct the scanner to the correct vicinity of parameter space
in which to look for good fits, not to act as cut for physical
interpretation. To generate an initial population of param-
eter points satisfying the cut in question, we simply draw
randomly from the overall parameter space, and assign zero
likelihood to all parameter combinations that do not satisfy
the cut. We then take the set of resulting points satisfying
the cut, and use them with Diver to discover new points with
higher likelihood values, continuing until the algorithm indi-
cates convergence (suggesting that the best fit has been found,
to within some tolerance). The looser mass cut on sleptons
compared to squarks ensures that we are able to generate an
initial population within the required cut in a reasonable time.

Taking into account all sampling configurations, priors
and parameter space partitionings, this leads to a total of 2
sgn(M2)× 2 priors × (1MultiNest+ 2Diver configurations)
+ 4 directed scans = 16 scans. Each of the 16 scans took
on the order of a few days to run on 2400 modern (Intel
Core i7) cores. In total, these scans resulted in 1.8 × 108

valid samples, of which 1.76×107 (1.37×107) were within
the 2D 95% (68%) CL region of the global best-fit point.
After the scans we ran all samples through a postprocessing
step, using thepostprocessor scanner of ScannerBit [169],
in order to correct for a bug in the flavour likelihood and
apply Run II LHC searches which had just recently become
available in ColliderBit [181]. Following this postprocessing
step 1.67×107 (2×105) of the original samples ended within
the 95% (68%) CL region of the global best-fit point.

For the main Diver scans, we set the population size NP

to 19 200, and the convergence threshold convthresh to
10−5; for the directed scans, we instead set NP = 6000 and
convthresh = 10−4. For MultiNest, we use nlive = 5000
live points and a stopping tolerance of tol = 0.1. These are
relatively loose choices, but this results from the fact that we
are only using MultiNest to bulk out the dominant likelihood
mode of each scan rather than to locate the best fit point with
high accuracy (the later is performed by Diver).

3 Observables and likelihoods

We compute a wide range of collider, flavour, DM and pre-
cision observables, and combine them with results from the
latest experimental searches to produce an extensive set of
likelihood components, which we then use to construct a
composite likelihood function for driving the samplers in
this paper. The composite likelihood includes

– the DM relic density measurement �ch2 = 0.1188 ±
0.0010 from Planck [182] (implemented as an upper
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limit, so as to permit an additional non-neutralino DM
component)

– Fermi-LAT Pass 8 dwarf limits on DM annihilation
[183],

– IceCube 79-string limits on DM annihilation in the Sun
[47,184],

– direct DM searches by LUX [185–187], Panda-X [188],
PICO [189,190], XENON100 [191], SuperCDMS [192]
and SIMPLE [193],

– the anomalous magnetic moment of the muon [194,195],
– MSSM contributions to the mass of the W boson,
– 59 different flavour observables measured by LHCb,

Babar and Belle,
– 13 different ATLAS and CMS analyses from Run I and

Run II (as in the companion paper [166], we apply the
Run II searches as a postprocessing step),

– Higgs limits, mass measurements and signal strengths
from LEP and the LHC, and

– limits from LEP on sparticle production and decay in 18
different channels.

– nuisance likelihoods associated the local density of DM
[178], the quark contents of the nucleon [178], the top
mass [196] and the strong coupling [196].

The theoretical treatments, experimental data and final like-
lihood functions for all these observables match those
described in Sec. 3 of the companion paper [166], so we
refer the reader to that paper, and theGAMBITmodule papers
[178,181,196,197], for details. The only exception is the DM
relic density calculation, which we perform for the MSSM7
with micrOMEGAs 3.6.9.2 [198] (with settings fast = 1,
Beps = 10−5), rather than DarkSUSY 5.1.3 [173], because
the former is faster for some highly degenerate sfermion co-
annihilation models.

The observables that we include draw on many other exter-
nal software packages:DDCalc 1.0.0 [178],FlexibleSUSY
1.5.13 [203], gamLike 1.0.0 [178], GM2Calc 1.3.0 [92],
HiggsBounds 4.3.1 [204–206], HiggsSignals 1.4 [207],
nulike 1.0.0 [47,175], Pythia8 8.212 [208], SuperIso 3.6
[209–211] and SUSY-HIT 1.5 [212–215].

4 Results

4.1 Best fits

In much of the parameter space of the MSSM7 (and indeed
the MSSM more generally), the annihilation cross-section
of heavy neutralino DM is so small that the thermal relic

3 FlexibleSUSY gets model-dependent information from SARAH
[199,200] and uses some numerical routines from SOFTSUSY [201,
202].

density greatly exceeds the value measured by Planck. Such
models are robustly ruled out. The only way for a model
to respect this upper limit is to exhibit one or more specific
mechanisms for depleting the thermal abundance, typically
associated with co-annihilation with another supersymmetric
species, or resonant annihilation via a neutral boson ‘funnel’.

Five such mechanisms play a role within the final 95%
confidence level (CL) regions of our scans. In the following
discussion, we classify samples and colour regions according
which mechanism(s) they display:

– chargino co-annihilation: χ̃0
1 ≥ 50% Higgsino,

– stop co-annihilation: mt̃1 ≤ 1.2mχ̃0
1
,

– sbottom co-annihilation: mb̃1
≤ 1.2mχ̃0

1
,

– A/H funnel: 1.6mχ̃0
1

≤ mheavy ≤ 2.4mχ̃0
1
,

– h/Z funnel: 1.6mχ̃0
1

≤ mlight ≤ 2.4mχ̃0
1
,

where ‘heavy’ may be H0 or A0, and ‘light’ may be h0 or
Z0, and a parameter combination qualifies as a member of a
region if either condition is satisfied. Indeed, this is the strat-
egy we adopt in general: if a model fulfils one of these condi-
tions, we include it in the region, even if it ends up becoming
a member of multiple regions, and even if some dominate
over others. For clarity, we do not make any attempt to iden-
tify hybrid regions, or determine which of the mechanisms
dominates (as to do so would require assumptions about rela-
tive temperature dependences and interferences between dif-
ferent partial annihilation rates). The union of these regions
contain the full set of models allowed at 95% CL.

In Table 3, we show the details of the best-fit point in each
of these five regions, breaking down the final log-likelihood
into contributions from the different observables included
in the fit. The overall best fit occurs in the chargino co-
annihilation region, where the lightest two neutralinos and
the lightest chargino are all dominantly Higgsino, and thus
highly degenerate in mass. All pairwise annihilations and
co-annihilations between any of these three species can thus
contribute significantly to the final relic density in this region.
In Fig. 1 we give a visual representation of the mass spec-
trum of this point, where one can see clearly that we have
some very light neutralinos and charginos in this model. The
masses are around 260 GeV, making them potentially inter-
esting targets for future LHC searches (Sect. 5.1).

We also define a so-called ‘ideal’ reference likelihood in
Table 3. This is the best likelihood that a model could real-
istically achieve were it to predict all observed quantities
precisely, and predict no additional contribution beyond the
expected background in searches that have produced only
limits. We compute this for most likelihood components by
assuming that the model prediction is either equal to the mea-
sured value or the background-only prediction. For some
highly composite observables, where many different chan-
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Table 3 Best-fit points in the A/H -funnel, b̃ co-annihilation, t̃ co-
annihilation, χ̃±

1 co-annihilation and Z/h funnel regions. For each
point, we show the individual likelihood contributions, parameter val-
ues (including nuisance parameters) and derived quantities crucial for

interpreting the mass spectrum. Other SM and astrophysical parameters
are set to the fixed values given in Table 2. SLHA1 and SLHA2 files for
the best-fit points can be found in the online data associated with this
paper [170]

Likelihood term Ideal A/H -funnel b̃ co-ann. t̃ co-ann. χ̃±
1 co-ann. Z/h-funnel 
 ln LBF

LHC sparticle searches 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LHC Higgs − 37.734 − 38.657 − 38.647 − 39.050 − 38.347 − 38.593 0.613

LEP Higgs 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ALEPH selectron 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ALEPH smuon 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ALEPH stau 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3 selectron 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3 smuon 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3 stau 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3 neutralino leptonic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3 chargino leptonic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OPAL chargino hadronic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OPAL chargino semi-leptonic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OPAL chargino leptonic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OPAL neutralino hadronic 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B(s) → μ+μ− 0.000 − 2.033 − 2.024 − 2.021 − 1.998 − 1.997 1.998

Tree-level B and D decays 0.000 − 15.318 − 15.284 − 15.287 − 15.315 − 15.333 15.315

B0 → K ∗0μ+μ− − 184.260 − 194.316 − 195.283 − 193.103 − 194.734 − 195.551 10.474

B → Xsγ 9.799 8.030 8.710 6.978 8.334 8.795 1.465

aμ 20.266 14.027 14.114 14.299 14.269 14.090 5.997

W mass 3.281 3.081 2.813 2.778 3.096 2.643 0.185

Relic density 5.989 5.989 5.989 5.989 5.989 5.989 0.000

PICO-2L − 1 − 1.000 − 1.000 − 1.000 − 1.000 − 1.000 0.000

PICO-60 F 0.000 0.000 0.000 0.000 0.000 − 0.001 0.000

SIMPLE 2014 − 2.972 − 2.972 − 2.972 − 2.972 − 2.972 − 2.972 0.000

LUX 2015 − 0.64 − 0.657 − 0.693 − 0.670 − 0.660 − 0.650 0.020

LUX 2016 − 1.467 − 1.501 − 1.574 − 1.527 − 1.506 − 1.487 0.039

PandaX 2016 − 1.886 − 1.909 − 1.960 − 1.927 − 1.912 − 1.899 0.026

SuperCDMS 2014 − 2.248 − 2.248 − 2.248 − 2.248 − 2.248 − 2.248 0.000

XENON100 2012 − 1.693 − 1.684 − 1.667 − 1.678 − 1.683 − 1.688 0.010

IceCube 79-string 0.000 − 0.032 0.000 0.000 − 0.069 0.000 0.069

γ rays (Fermi-LAT dwarfs) − 33.244 − 33.374 − 33.367 − 33.363 − 33.371 − 33.255 0.127

ρ0 1.142 1.139 1.115 1.138 1.142 1.141 0.000

σs and σl − 6.115 − 6.115 − 6.117 − 6.115 − 6.128 − 6.116 0.013

αs(mZ )(MS) 6.500 6.493 6.427 6.409 6.496 6.457 0.004

Top quark mass − 0.645 − 0.647 − 0.687 − 0.645 − 0.654 − 0.751 0.009

Total − 226.927 − 263.704 − 264.354 − 264.016 − 263.272 − 264.426 36.345

Quantity A/H -funnel b̃ co-ann. t̃ co-ann. χ̃±
1 co-ann. Z/h-funnel

Ad3 (1 TeV) 9582.567 9669.750 9706.338 9376.461 1639.611

Au3 (1 TeV) − 9389.783 2957.229 2197.287 2923.877 3660.585

M2 (1 TeV) 3768.368 2404.020 1498.770 2469.296 2032.136

tan β (mZ ) 7.133 11.862 12.743 46.632 19.058

m2
Hu

(1 TeV) − 1.271×107 − 2.490×106 − 9.757×105 − 7.830×105 − 6.077×105

m2
Hd

(1 TeV) 3.748×105 1.045×107 7.824×106 2.729×107 3.189×106
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Table 3 continued

Likelihood term A/H -funnel b̃ co-ann. t̃ co-ann. χ̃±
1 co-ann. Z/h-funnel

m2
f̃

(1 TeV) 9.680×107 9.229×106 3.006×106 1.352×107 9.574×106

mt 173.289 173.120 173.325 173.445 172.990

αs(mZ )(MS) 0.119 0.119 0.119 0.119 0.119

ρ0 0.409 0.372 0.390 0.399 0.406

σs 42.966 43.242 42.916 44.101 42.591

σl 57.987 57.442 58.265 58.773 58.095

M1(MSUSY) 2002.225 1242.861 767.869 1283.505 1053.133

μ(MSUSY) 367.156 1477.923 987.697 253.479 69.449

mt̃1 9012.999 1237.689 759.551 2440.084 2132.455

m τ̃1 9845.047 3034.359 1730.209 3698.869 3097.127

mA 793.380 3567.851 2956.071 5348.470 1804.886

mh 125.099 125.088 123.988 124.731 126.427

mχ̃0
1

379.116 1233.050 759.524 258.939 69.247

(%bino, %Higgsino) (0, 100) (98, 2) (98, 2) (0, 100) (0, 100)

mχ̃0
2

− 381.804 − 1491.708 994.456 − 262.754 − 73.665

(%bino, %Higgsino) (0, 100) (0, 100) (2, 97) (0, 100) (0, 100)

mχ̃±
1

380.734 1488.287 990.571 261.179 71.618

(%wino, %Higgsino) (0, 100) (1, 99) (2, 98) (0, 100) (0, 100)

mg̃ 12370.525 7920.520 5006.746 8104.365 6711.215

�h2 1.537×10−2 3.890×10−2 1.046×10−2 8.027×10−3 8.382×10−4

nels enter and the SM or background-only prediction can in
principle be improved upon by introducing a BSM contribu-
tion, we take the ideal case to be the best fit achievable in
a more general, effective phenomenological framework. The
two likelihoods that we apply this treatment to are those asso-
ciated with LHC measurements of Higgs properties, and the
angular observables of the B0 → K ∗0μ+μ− decay observed
by LHCb. In the former case, we take the ideal likelihood to
be the best fit obtainable by independently varying the mass,
width and branching fractions of a single Higgs in order to
fit the LHC data contained in HiggsSignals. For the latter,
we take the ideal likelihood from the best-fit point that we
found in a flavour EFT global fit, discussed in Sec. 6.2 of the
FlavBit paper [197].

The log-likelihood difference between the global best fit
and the ideal case is 
 lnLBF = 36.345. Compared to the
CMSSM (
 lnLBF = 36.820; 4 BSM parameters + 1 sign),
NUHM1 (
 lnLBF = 36.702; 5 BSM parameters + 1 sign)
and NUHM2 (
 lnLBF = 36.362; 6 BSM parameters + 1
sign) [166], we see a fairly mild improvement from mov-
ing to the MSSM7 (7 BSM parameters). It is possible to
use 
 lnLBF to estimate the overall goodness of fit, but this
requires knowledge of the effective number of degrees of
freedom (see Sec. 4.1 of Ref. [166] for details). Guessing
this to be between 30 and 50 (on the basis of the number

Fig. 1 Sparticle mass spectrum of the best-fit point

of active observables in the fit) would lead to a p value of
between 2 × 10−5 and 0.02. Comparing the specific case
of e.g. 37 degrees of freedom to the equivalent calculation
for the NUHM2, NUHM1 and CMSSM with 38, 39 and 40
degrees of freedom, respectively, the p value for the MSSM7
would be 5.9 × 10−4, compared to 5.9 × 10−4 (NUHM2),
7.1×10−4 (NUHM1) and 9.4×10−4 (CMSSM). This com-
parison is not entirely fair, given that we have allowed sgn(μ)

to vary in the other three theories but not in the MSSM7.
Nonetheless, it does suggest that the likelihood improve-
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ment in the MSSM7 is not sufficient to overcome the p value
penalty arising from the larger number of free parameters
compared to the three GUT-scale models.

As with the CMSSM, NUHM1 and NUHM2, the individ-
ual contributions to 
 lnLBF = 36.345 come almost entirely
from known anomalies unexplainable in either the SM or
MSSM7. In particular, these include the D and D∗ meson
decay ratios RD and RD∗ (contained in the tree-level B and
D decay likelihood; see Sec. 5.1 of Ref. [197]), the magnetic
moment of the muon (aμ; see Sec. 4.2.2 of Ref. [196]) and
the angular observables of the electroweak penguin decay
B0 → K ∗0μ+μ− (see Sec. 5.2 of Ref. [197]). We refer the
reader to Sects. 4.1–4.3 of the companion paper [166] for
further discussion.

The best fits possible by relic density mechanisms other
than chargino co-annihilation are not drastically worse than
the global best fit. The best models in the four other regions all
lie within 
 lnL < 1.2 of the global optimum. Compared
to the best fit with chargino co-annihilation, the best stop
co-annihilation model has the light stop (mt̃1 = 760 GeV)
needed to co-annihilate with the neutralino, and therefore
a light sfermion spectrum more generally, due to the uni-
versality of m f̃ at the weak scale. This point thus ends
up being penalised by both the LHC Higgs likelihood and
B → Xsγ , but advantaged by B0 → K ∗0μ+μ−. In con-
trast, the best-fit sbottom co-annihilation point has a heavier
spectrum, with all sfermions masses above 1 TeV, and hence
only suffers on B0 → K ∗0μ+μ− relative to the global best
fit. Both the light and heavy funnel best fits are hybrids with
chargino co-annihilation, showing light charginos and neu-
tralinos. The best-fit A/H funnel point is only marginally
worse than the global best, improving slightly on it in terms
of B0 → K ∗0μ+μ− but losing out due to slightly worse
fits to aμ, B → Xsγ and the LHC Higgs likelihood. The
spectrum of the best fit in the Z/h funnel region is split, with
heavy sfermions and gluinos, but light charginos and neu-
tralinos. The latter lead to significant SUSY loop corrections
to the W self energy. This model is also slightly worse than
the best fit in terms of B0 → K ∗0μ+μ− and aμ, but recovers
somewhat by making a smaller contribution to B → Xsγ .

4.2 Preferred regions

We begin by giving the 1D profile likelihoods for each of
our input parameters in Fig. 2. For simplicity, we refer to
m f̃ ≡ (m2

f̃
)1/2 rather than the input parameter m2

f̃
. We also

give 1D profile likelihoods for the derived parameters μ and
M1. The GUT-inspired relation (Eq. 1) means that M1 ≈
0.48M2 ≈ 0.18M3, while |μ| is determined from the EWSB
conditions. With M1 < M2 it follows that M1 and μ are
the main mass parameters controlling the composition of the
lightest neutralino. In our results we show M1 and μ at the

scale where the spectrum is calculated, Q = √mt̃1mt̃2 ≡
MSUSY. Due to the central role played by the μ parameter,
it is more instructive to discuss the results connected to the
Higgs sector in terms of μ and mA0 than m2

Hu
and m2

Hd
.

In Fig. 2 and throughout this paper, we show profile
likelihood regions coloured according to the different co-
annihilation and funnel mechanisms contributing to keeping
the neutralino relic density low enough to evade the Planck
bound. These are: chargino co-annihilation (yellow), stop co-
annihilation (red), sbottom co-annihilation (blue), the A/H
funnel (orange) and the h/Z funnel (purple); the definitions
of these classifications can be found in the previous subsec-
tion.

Figure 3 shows the 2D joint profile likelihood for M1 and
μ (top) and M2 and m f̃ (bottom). The edges of the coloured
regions here correspond to 95% CL relative to the best fit of
the entire sample, not relative to the best fits of each coloured
region. Here we see that the parameter space allowed at 95%
CL encompasses three distinct regions, each expressing a dif-
ferent composition for the lightest neutralino and chargino:

Region 1. μ < |M1|. χ̃0
1 and χ̃±

1 are mainly Higgsino.
Region 2. μ ≈ |M1|. χ̃0

1 is a Higgsino/bino mixture and
χ̃±

1 is dominantly Higgsino.
Region 3. μ > |M1|. χ̃0

1 is bino. As μ increases, χ̃±
1

remains Higgsino-dominated up to μ ≈ 2|M1| ≈ M2,
after which the wino component dominates.

Due to Eq. 1, a purely wino-dominated χ̃0
1 is not possible in

the MSSM7.
For Regions 1 and 2, the masses of the lightest chargino

and the two lightest neutralinos are nearly degenerate, and
all very close to μ. The neutralino relic density is therefore
depleted by all pairwise annihilations and co-annihilations
between the three species, which we collectively refer to
simply as ‘chargino co-annihilation’. In Region 1, where the
lightest neutralino is essentially a pure Higgsino, the relic
density constraint implies μ � 1.2 TeV. The A/H -funnel
also contributes across most of Regions 1 and 2, except in
the case of very low μ or μ 	 |M1|, where the dependence
of mA0 on |μ| makes it difficult to satisfy the funnel relation
mA0 ∼ 2mχ̃0

1
.

In Region 3, a small mass difference between the lightest
neutralino and chargino is no longer automatic. The domi-
nant relic density mechanisms in this parameter region are
stop and sbottom co-annihilation, supported by annihilation
through the A/H funnel. The tuning required in the former to
get the lightest neutralino and lightest squark nearly degen-
erate in mass shows up as strongly-correlated bands in the
M2–m f̃ plane (lower panels of Fig. 3). Because the MSSM7

employs a common sfermion soft-mass parameter m2
f̃

at the

input scale (Q = 1 TeV in our case), mass splittings among
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Fig. 2 1D profile likelihood ratio for the input parameters Ad3 , Au3 , M2, tan β, mHd , mHu and m f̃ , as well as the derived parameters M1 and μ

different sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE run-
ning from Q = 1 TeV to Q = MSUSY, which splits m2

f̃
into

individual soft masses, is generally subdominant.
In the tree-level stop mass matrix the off-diagonal element

is vyt (Au3 sin β − μ cos β), while it is vyb,τ (Ad3 cos β −
μ sin β) in the sbottom and stau mass matrices, where yt,b,τ
are the fermion Yukawa couplings and v ≈ 246 GeV.
Because increased left–right mixing reduces the mass of the
lighter of the two mass eigenstates, the large top Yukawa
ensures that t̃1 is the lightest sfermion across most of the
allowed parameter space (including for models that exhibit

sbottom co-annihilation). With 3 ≤ tan β ≤ 70 the terms
Au3 sin β (stop) and μ sin β (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space. The
dependence on large μ to obtain a sbottom mass signifi-
cantly lower than the mass set by the common m f̃ parameter
explains why the sbottom co-annihilation region does not
extend as far to small μ as the stop co-annihilation region
in Fig. 3. Also, since yb ≈ 2.5yτ , the lightest stau remains
heavier than the lightest sbottom in the regions of param-
eter space with large mixing for the down-type sfermions,
which explains the absence of any region dominated by stau
co-annihilation in our results.
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Fig. 3 Left: joint profile
likelihoods in the μ–M1 (top)
and M2–m f̃ planes (bottom).
Stars indicate the point of
highest likelihood in each plain,
and white contours correspond
to the 1σ and 2σ CL regions
with respect to the best-fit point.
Right: coloured regions
indicating in which parts of the
2σ best-fit region different
co-annihilation and funnel
mechanisms contribute to
keeping the relic density low.
The best-fit point in each region
is indicated by a star with the
corresponding colour

The requirement that all sfermions are heavier than the
lightest neutralino excludes large regions of parameter space
at m f̃ � 1.3|M2| ≈ 2.6|M1| in the bottom panels of Fig.
3. The steep slope of the exclusion boundary can broadly
be understood as a consequence of the μ-dependent mixing
in the sfermion sector. The region close to the boundary at
m f̃ ≈ 1.3|M2| is part of Regions 2 and 3 (μ � |M1|) in
the μ–M1 plane, so that increasing M2 in this region pushes
up both M1 and μ. To keep the lightest sfermion heavier
than the neutralino, m f̃ must therefore increase enough to
compensateboth the increase in neutralino mass from M1 and
the potential decrease in the light sfermion mass due to the μ-
dependent left–right mixing. We come back to this interplay
between the parameters of the neutralino and sfermion sector
when discussing the μ–tan β plane in Fig. 5.

The region of small |M1| in the upper row of Fig. 3
(and therefore also small |M2| in the lower row) is strongly
constrained by LHC limits. Direct LHC searches are also
strongly constraining at low m f̃ (lower panels). Gluino
searches are particularly effective, as Eq. (1) implies that
the gluino mass parameter is M3 ≈ 7M1 at a scale of 1 TeV.
Given that simplified gluino mass limits reach up to 1.9 TeV
[216], this disfavours bino masses in the MSSM7 of up to
∼ 300 GeV. Indeed, this is the main reason that we do not
find the same preference for very light binos observed in

Ref. [217], where each of the gaugino masses was allowed
to vary independently. The common sfermion mass parame-
ter means that, for light 3rd generation squarks, the 1st and
2nd generation squarks are not necessarily decoupled. Thus,
LHC searches for 1st and 2nd generation squarks also con-
strain how far down towards low neutralino masses (small
μ or |M1|; upper panels of Fig. 3) and low sfermion masses
(lower panels of Fig. 3) the stop and sbottom co-annihilation
regions extend. Measurements of the 125 GeV Higgs, limits
from DM direct detection experiments, flavour physics and
precision measurements of the W mass also contribute to
disfavouring low gaugino masses in our fits.

At low sfermion masses, we also see a weak preference for
positive M2, stemming from the (g−2)μ likelihood. Because
we assume μ > 0 for our model, having M2 (and thus M1)
positive ensures a positive SUSY contribution to (g − 2)μ.

In Fig. 4 we explore the impacts of the relic density con-
straint on the MSSM7 in more detail, investigating the profile
likelihood of �h2 andmA as a function of the mass of the neu-
tralino. The behaviour of Higgsino DM follows a relatively
well-known pattern, seen also in the CMSSM and NUHM
[166]: Higgsino DM co-annihilates steadily less efficiently as
the neutralino mass increases, passing through the observed
value of the relic density atmχ̃0

1
∼ 1.2 TeV. At higher masses,

exceeding the observed relic density can only be avoided
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Fig. 4 Left: joint profile
likelihoods in the mass of the
lightest neutralino and its relic
density �h2 (top), and in the
masses of the lightest neutralino
and the CP-odd Higgs A0

(bottom). Right: coloured
regions indicating in which parts
of the 2σ best-fit region
different co-annihilation and
funnel mechanisms contribute to
the relic density. The best-fit
point in each region is indicated
by a star with the corresponding
colour

by resorting (whether in full or in part) to the heavy Higgs
funnel or another co-annihilation mechanism – in this case,
stop and/or sbottom co-annihilation. This can be seen in the
lower-right panel of Fig. 4, where above mχ̃0

1
∼ 1.2 TeV, the

chargino co-annihilation region only exists along the funnel
line mA0 ∼ 2mχ̃0

1
.

At mχ̃0
1

� 1.2 TeV, the efficiency of Higgsino co-
annihilation makes for sub-dominant Higgsino DM, as seen
in the diagonal chargino co-annihilation region in the upper-
right panel of Fig. 4. This can be tempered by fine-tuning
the Higgsino–bino mixture, bringing up the relic density
to the observed value, but such combinations are now
very strongly constrained by direct detection, where mixed
gaugino–Higgsino DM maximises both the spin-dependent
and spin-independent neutralino–nucleon scattering cross-
sections.

At very low masses, the chargino co-annihilation region
reaches down far enough that resonant annihilation via the
SM Higgs further boosts the annihilation cross-section, lead-
ing to a region of hybrid chargino co-annihilation-h funnel
models with neutralino masses as low as 61 GeV.4 The best

4 For dedicated analyses of scenarios with a very light neutralino
in MSSM parameterisations without a GUT relation on the gaugino
masses, see for instance Refs. [218–222].

fit in this region (Table 3) has mχ̃0
1

= 69.2 GeV, mχ̃±
1

=
71.6 GeV and mχ̃0

2
= 73.7 GeV, while the other sparticles

are fairly heavy. This leads to considerable cross sections for
direct pair production of χ̃0

1 χ̃0
2 and χ̃+

1 χ̃−
1 at LEP. Indeed,

such masses would naively seem to be in contradiction with
published limits, e.g. mχ̃±

1
> 94 GeV [223,224]. However,

this particular limit assumes mχ̃±
1

−mχ̃0
1

> 3 GeV, and does
not strictly apply to our best fit. The GAMBIT implemen-
tation of LEP limits in ColliderBit, detailed in Sec. 2.2 of
Ref. [181], takes into account the mass-dependent signal
efficiency for the chargino and neutralino searches. These
are quite important for cases where the spectrum has some
degenerate masses, as in our best fit. In this case, the relevant
search is the one for leptonic decays of the chargino at L3,
with results shown in Fig. 2b of Ref. [225]. Our treatment is
a significant improvement on the hard lower limits that have
often been used in the past.

Figure 4 shows that the heavy Higgs funnel can work for
a wide range of neutralino masses in the MSSM7, from ∼
200 GeV up to many TeV. The lower limit here comes from
the lower limit on the mass of the CP-odd Higgs boson, seen
in the bottom-left corner of the mA0 –mχ̃0

1
plane (Fig. 4).

This arises due to penalties from the flavour physics likeli-
hoods and the LHC Higgs likelihood. Because A0 is close
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Fig. 5 Left: joint profile
likelihoods in μ–tan β (top) and
Au3 –Ad3 planes. Right:
coloured regions indicating in
which parts of the 2σ best-fit
region different co-annihilation
and funnel mechanisms
contribute to the relic density.
The best-fit point in each region
is indicated by a star with the
corresponding colour. In the
bottom right plot the yellow
chargino co-annihilation region
covers the entire plane and the
orange A/H funnel region
spans the entire plane below
Au3 ∼ 5 TeV

in mass to mH+ (m2
H+ = m2

A0 + m2
W at tree level), having

a light A0 causes tension with the BR(B → Xsγ ) likeli-
hood, which in isolation requires mH+ � 570 GeV at 95%
CL for type-II two Higgs doublet models such as the MSSM
[226]. For large tan β, the likelihoods for tree-level leptonic
and semi-leptonic B and D decays also penalise low A0

masses. The tension with these likelihoods at low masses
is to some extent compensated for by an improvement in
the fit to the electroweak penguin decay B0 → K ∗0μ+μ−,
but for m0

A � 400 GeV, the combined restrictions imposed
by flavour physics and measurements of the 125 GeV Higgs
push the likelihood below the 95% CL, as evident in Fig. 4.

In this paper we have allowed neutralinos to be a sub-
dominant component of DM. Were we to instead require that
they constitute all of DM, our fits would be concentrated in
the area around the horizontal line in the upper panels of Fig.
4. This would restrict the Higgsino-dominated DM models
of the chargino co-annihilation region to mχ̃0

1
� 1 TeV,

moving the best-fit point to the A/H funnel and a mass of
mχ̃0

1
= 416 GeV. In terms of the neutralino mass itself, this

would rule out mχ̃0
1

< 250 GeV at 95% CL (1D). As we
discuss later in this section, the absence of light charginos
would also degrade the (already poor) fit to aμ.

In Fig. 5, we show the preferred regions and relic den-
sity mechanisms active in the μ–tan β and Ad3 –Au3 planes.

The shape of the allowed region in the μ–tan β plane can be
understood as follows. For the scenario in Region 1 of the
upper panels of Fig. 3, μ 	 M1 and the lightest neutralino is
dominantly Higgsino. This leads to the relic density bound
μ � 1.2 TeV. In Region 2, where the lightest neutralino
is a mixture of bino and Higgsino, this upper bound on μ

increases to ∼ 2.5 TeV. This limit is where we see the edge
of the chargino co-annihilation and A/H -funnel regions at
intermediate and large tan β in the upper panels of Fig. 5.

In Region 3, μ > |M1| and the lightest neutralino is dom-
inantly bino, so there is no upper bound on μ from the relic
density. In this case, the viable relic density mechanisms are
stop/sbottom co-annihilation and the heavy Higgs funnel.
Stop/sbottom co-annihilation can only work if the bino mass
(M1) is similar to the mass of the lightest squark. At large
tan β, the left–right mixing in the sbottom mass matrix is pro-
portional to μ, meaning that to keep the sbottom from becom-
ing tachyonic, the diagonal entry (m2

f̃
) must be increased as

μ is increased. Pulling up m2
f̃

therefore pulls up the mass of

the lightest squark, which in turn requires pulling |M1| up
in order to stay in the stop/sbottom co-annihilation region.
This is a delicate game, as |M1| needs to be kept below μ

in order to remain in the bino LSP region (Region 3) at all.
Whether or not this is possible depends on small corrections
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from other parameters. At smaller values of tan β, the left–
right mixing picks up an additional contribution proportional
to Ad3 , and the adjustment can be pulled off with the help
of some additional tuning in Ad3 . The net result is that |M1|
remains less than μ, but not by more than a factor of a few.
Because the heavy Higgs bosons receive their dominant mass
contribution from |μ|, this sets their masses to be a factor of
a few times that of the lightest neutralino, making stop/sbot-
tom co-annihilation at higher μ in Region 3 appear mostly
as a hybrid with the A/H funnel.

At large μ and large tan β, models in Region 3 are also
impacted significantly by the Higgs likelihood. As discussed
in Refs. [227,228], the bottom Yukawa coupling receives
important SUSY corrections proportional to μ tan β, coming
from gluino–sbottom and charged Higgsino–stop loops. For
large μ and tan β, this increases the decay rate �(h0 → b̄b),
which reduces the signal strengths for all other Higgs chan-
nels. The gluino–sbottom contribution is generally dominant,
and for μ > 0 it is always positive. On the other hand, the
Higgsino–stop contribution is proportional to Au3 , so that for
large and negative Au3 it can compensate the gluino–sbottom
correction. Thus, the good-fit region extending out towards
large μ is dominantly associated with large, negative Au3 .

Large |Au3 | may cause the scalar potential of the MSSM
to develop a minimum that breaks gauge invariance. We
checked this in the same way as described in Sec. 4.1 of
the companion paper [166], finding even less impact in the
MSSM7 than in the CMSSM or NUHM: whilst a small num-
ber of individual points are potentially affected by colour- or
charge-breaking vacua, the overall preferred regions of the
model remain unaffected. We naively carried out the same
tests for |Ad3 | as well, swapping all up-type parameters for
their down-type equivalents. We found that a few more mod-
els were affected than in the up-type tests, in particular those
at large μ and small tan β discussed in the context of Fig.
5 above, where Ad3 helps to prevent the sbottoms becoming
tachyonic. However, the impact was still quite isolated and
had no impact on the overall inference.

In Fig. 6, we show the profile likelihood for the SUSY
contribution 
aμ to the magnetic moment of the muon,
compared with the experimental likelihood function for the
observed discrepancy aμ,obs−aμ,SM = (28.7±8.0)×10−10.
Chargino co-annihilation models give the largest SUSY con-
tributions, as they exhibit lighter charginos than other mod-
els. However, due to the relatively large values preferred for
m f̃ , which governs the masses of μ̃ and ν̃μ, it is essentially
impossible to fit aμ simultaneously with all other observables
even in the chargino co-annihilation region.

Compared to the MSSM10 results discussed in Ref. [217],
we see broadly similar and consistent phenomenology, up to
differences expected from the slightly different models being
scanned. Both studies find the light Higgs funnel, chargino
co-annihilation and stop/sbottom co-annihilation in essen-

Fig. 6 1D profile likelihood ratio for the SUSY contribution 
aμ to the
anomalous magnetic moment of the muon. In green we show a Gaussian
likelihood for the observed value aμ,obs−aμ,SM = (28.7±8.0)×10−10,
where we have combined the experimental and Standard Model (SM)
theoretical uncertainties in quadrature

tially the same areas. As already discussed, we find that
the MSSM7 does not permit stau co-annihilation, and we
see a preference for larger neutralino and sfermion masses
than Ref. [217], a consequence of the unified gaugino and
sfermion mass parameters in the MSSM7 and our inclusion of
constraints from Run II of the LHC. We also see stop/sbottom
co-annihilation extend to higher masses than in Ref. [217],
reflecting either a lower likelihood for such models relative to
the best fit in the MSSM10 than in the MSSM7, or improved
sampling in the current paper. Unlike in the MSSM10, we
find that it is not possible to consistently explain aμ in the
MSSM7.

5 Future prospects

5.1 LHC

In Fig. 7 we show the 1D profile likelihoods for the masses
of χ̃0

1 , χ̃±
1 , g̃, t̃1, b̃1 and τ̃1. The 2σ preferred region for the

gluino mass extends upwards from ∼ 2 TeV, which is on the
border of exclusion by current LHC searches for 0-lepton
final states, to ∼ 20 TeV, well beyond the reach of the LHC.
Similarly for m τ̃1 , where the small, weak production cross-
section ensures that the predicted mass range is currently
unobservable at the LHC.

More interesting are the χ̃0
1 and χ̃±

1 profile likelihoods,
which are both peaked at low values. Given that these are
naively within range of both LEP and the LHC Run I anal-
yses, it is worth examining the properties of these low mass
points in detail. Figure 8 shows our profile likelihood function
in the χ̃±

1 –χ̃0
1 mass plane, zoomed into the low-mass region,

123



Eur. Phys. J. C (2017) 77 :879 Page 15 of 27 879

Fig. 7 1D profile likelihood ratios for the masses mχ̃0
1
, mχ̃+

1
, mg̃ , mt̃1 , mb̃1

and m τ̃1 . We show separate distributions for each mechanism that allows
the models to obey the relic density constraint

Fig. 8 Left: profile likelihood in the χ̃±
1 − χ̃0

1 mass plane. Centre: sub-
regions within the 95% CL profile likelihood region, coloured accord-
ing to mechanisms by which the relic density constraint is satisfied. The
regions shown correspond to neutralino co-annihilation with charginos,
stops or sbottoms, and resonant annihilation through the light or heavy
Higgs funnels. Superimposed in red is the latest CMS Run II simpli-
fied model limit for χ̃±

1 χ̃0
1 production and decay with decoupled slep-

tons [229]. This limit should be interpreted with caution (see main text
for details). Right: the same information as the central plot, but zoomed
into the low-mass region. Note that, although the CMS limit appears
to have excluded part of the chargino co-annihilation region, this is a
binning effect. One should instead refer to the plot of the χ̃±

1 − χ̃0
1

mass difference in Fig. 7, which provides finer resolution on the mass
difference in this region

along with colour-coding indicating which mechanisms help
to satisfy the relic density constraint. For the part of our 2σ

region with mχ̃±
1

� 275 GeV, an acceptable relic density

is mostly generated via chargino co-annihilation, leading to
very degenerate χ̃±

1 and χ̃0
1 masses. This explains the lack of

exclusion by the LEP and LHC analyses included in our scan
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Fig. 9 1D profile likelihood ratios for the χ̃±
1 − χ̃0

1 mass difference
(top) and the t̃1 − χ̃0

1 mass difference (bottom). Left: separate distri-
butions for each mechanism allowing models to obey the relic density
constraint. The regions correspond to neutralino co-annihilation with

charginos, stops or sbottoms, and resonant annihilation through the light
or heavy Higgs funnels. Right: as per the left, but zoomed in to small
mass differences

(which lose sensitivity for compressed spectra). Notably, our
more careful treatment of the LEP limits than in previous
studies has allowed models within the naive LEP reach to
emerge unscathed.

One might wonder if other LHC analyses will soon (or
have already) probed this low-mass region. The most recent
EW gaugino limits are from CMS [231–234], using 36 fb−1

of 13 TeV data. A detailed study of the impact of these results
would require the addition of the relevant analyses to theCol-
liderBit module, and the calculation of a complete likelihood
similar to the equivalent Run I analyses already included in
ColliderBit. In the present case, however, we can already
obtain some insight from a more basic analysis of the sim-
plified model limits presented by the CMS Collaboration.
CMS interpreted their results for each final state in a range of

simplified models of chargino and neutralino production, in
which they set the branching fractions for specific decays to
100%, fixed the gaugino content, and set a 95% CL exclusion
limit in the χ̃±

1 –χ̃0
1 mass plane. Figure 7 demonstrates that

the sleptons are heavy across our entire preferred 2σ region,
which is a natural consequence of having a unified sfermion
mass in our parameterisation of the MSSM7. At least one stop
mass must be high to induce large radiative corrections to the
Higgs mass, which has the effect of dragging up the sfermion
mass scale. In addition, and as mentioned previously, the τ̃1

will typically be heavier than the t̃1 and b̃1 due to the smaller
Yukawa coupling. Thus, the relevant CMS simplified models
are those featuring decoupled sleptons [229]. We caution that
these limits do not apply in general, and do not directly trans-
late to limits on our model points without a detailed check
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Fig. 10 Left: The profile likelihood ratio in the b̃1 − χ̃0
1 mass plane.

Centre: Colour-coding shows mechanism(s) that allow models within
the 95% CL region to avoid exceeding the observed relic density of
DM. The regions shown correspond to neutralino co-annihilation with

charginos, stops or sbottoms, and resonant annihilation through the light
or heavy Higgs funnels.Right:The same information as the central plot,
zoomed into the low-mass region

that the neutralino and chargino mixing matrices and decay
branching fractions match the CMS assumptions. One can,
however, treat the CMS limits as the most optimistic possible
exclusion in the χ̃±

1 –χ̃0
1 plane, to obtain a rough guide to the

CMS sensitivity.
Proceeding in this spirit, we see that the current CMS

limits just barely touch our 2σ contour in regions where the
spectrum is not compressed (Fig. 8). Indeed, the highest like-
lihood region looks to be out of reach in the near future. Note
that if the GUT-inspired constraint on M2 is relaxed, more
solutions would fall within the CMS exclusion limit, so these
searches will be important for global fits with more parame-
ters. For compressed spectra, the details are less clear, as the
ability of the CMS soft dilepton search to exclude the lightest
models depends crucially on the precise χ̃±

1 –χ̃0
1 mass split-

ting. This is shown in the top of Fig. 9, where it is apparent
that the chargino co-anihilation points appear as a peak in the
likelihood at χ̃±

1 –χ̃0
1 mass differences of less than 10 GeV.

This is too small to be probed by the recent CMS results.
The chargino co-annihilation region remains free from LHC
exclusion, assuming prompt decays of the chargino. We note,
however, that for very small mass differences (approaching
the pion mass), long-lived particle searches might provide
additional constraints. We defer a detailed analysis of these
to future work.

We now look at whether it is possible to probe the squark
sector of the MSSM7 at the LHC in the near future. The light-
est squarks are the t̃1 and b̃1. Figure 7 shows that the peak of
the sbottom profile likelihood lies out of reach of the LHC
in the near future, and that masses below ∼ 800 GeV are dis-
favoured at the 2σ level. Figure 10 shows the b̃1 − χ̃0

1 mass
plane, revealing that the lower sbottom masses are associated
with a small b̃1−χ̃0

1 mass difference. This arises from the fact
that stop and/or sbottom co-annihilation often account for

the generation of an acceptable relic density in this low-mass
region. However, there are also low-mass regions in which
resonant A/H annihilation or chargino co-annihilation con-
tribute to DM annihilation, giving a wider range of mass
differences. As above, comparison with recent CMS simpli-
fied model limits provides some insights into the ability of
the LHC to probe these models in the near future. A variety of
CMS searches for sbottom production have been interpreted
in the context of a simplified model of sbottom pair produc-
tion and decay to a bottom quark and the lightest neutralino
[235–237]. We again treat these limits as a rough guide to
the most favourable possible LHC exclusion potential, and
compare our results to the CMS summary plot given in Ref-
erence [238]. The current analyses have potentially probed a
small region of Fig. 10 (with χ̃0

1 masses below 600 GeV and
b̃1 masses below ≈ 1 TeV). However, almost our entire 2σ

preferred region remains unconstrained. Directly ruling out
sbottom co-annihilation as a viable contributor to an accept-
able relic density would require probing compressed spectra
in sbottom decays up to a mass of ∼ 4 TeV, an impossible
task at the LHC. Nonetheless, the fact that current limits
are nearing the tip of the stop co-annihilation strip means
that discovery prospects even in the next run of the LHC are
quite promising (although more so for models that exhibit
only stop co-annihilation than those that display both stop
and sbottom co-annihilation).

The stop mass has a marginally higher likelihood at lower
masses (Fig. 7). Figure 11 shows the profile likelihood ratio in
the t̃1–χ̃0

1 mass plane, along with colour-coded regions illus-
trating the relevant relic density mechanisms. As for the sbot-
tom mass, points with a t̃1 mass below 1 TeV show a strong
mass correlation with the lightest neutralino, as they lie in the
stop co-annihilation region. Comparison with the most recent
CMS Run II simplified model results [236,237,242–244]
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Fig. 11 Left: the profile likelihood ratio in the t̃1 − χ̃0
1 mass plane.

Centre: colour-coding shows mechanism(s) that allow models within
the 95% CL region to avoid exceeding the observed relic density of
DM. The regions shown correspond to neutralino co-annihilation with

charginos, stops or sbottoms, and resonant annihilation through the light
or heavy Higgs funnels. Superimposed in red is the latest CMS Run II
simplified model limit for stop pair production [230]. Right: the same
information as the central plot, zoomed into the low-mass region

Fig. 12 Spin-independent neutralino-proton scattering cross-sections
in the MSSM7, rescaled by the fraction f of the observed relic den-
sity predicted by each model. Left: profile likelihood, showing 68 and
95% CL contours. Right: colour-coding shows mechanism(s) that allow
models within the 95% CL region of the profile likelihood to avoid
exceeding the observed relic density of DM, corresponding to neu-
tralino co-annihilation with charginos, stops or sbottoms, and resonant
annihilation through the light or heavy Higgs funnels. Overplotted are

90% CL constraints from LUX, [187], and projections for the reach of
XENON1T after two years of exposure, XENONnT/LZ, assuming 1–3
years of data and an exposure of 20 tonne-years [239], and DARWIN,
assuming 3–4 years of data and 200 tonne-years of exposure [240].
The dashed grey line indicates the “neutrino floor” where background
events from coherent neutrino scattering start to limit the experimental
sensitivity [241]. The exact placement of this limit is subject to several
caveats; see [241] for further details

reveals that the lowest-mass points in the stop co-annihilation
region remain unprobed, as do the chargino co-annihilation
and A/H -funnel points. The t̃1−χ̃0

1 mass difference is shown
in the bottom panels of Fig. 9. Although this is of course small
for the stop and sbottom co-annihilation region points, it is
not, contrary to the chargino case, sharply peaked at suffi-
ciently low values that decay products can be assumed to be
hard to reconstruct at the LHC. This offers hope that LHC
searches for compressed spectra (sensitive to smallish mass
differences) can eventually tackle these models.

5.2 Direct detection of dark matter

In this section, we examine the preferred spin-independent
(SI; Fig. 12) and spin-dependent (SD; Fig. 13) neutralino-
proton scattering cross-sections in the MSSM7. Here we
rescale the scattering cross-sections by the ratio f of the pre-
dicted to the observed relic density, so as to ease comparison
with various experimental limits and projections. Figure 12
shows that SI limits from direct detection are already highly
constraining, with many models with high likelihoods lying
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Fig. 13 Spin-dependent neutralino-proton scattering cross-sections in
the MSSM7, rescaled by the fraction f of the observed relic density
predicted by each model. Left: profile likelihood, showing 68 and 95%
CL contours. Right: mechanism(s) that allow models within the 95%
CL region of the profile likelihood to avoid exceeding the observed

relic density of DM. Overplotted are 90% CL constraints from Ice-
Cube [47,184], assuming that dark matter annihilates exclusively via
the b̄b or τ+τ− channel, PICO-60 [245], and projections for the reach
of PICO-250 [246]

just below the current sensitivity of LUX [187], and very soon
to be probed by XENON1T [239] and its successors. Even-
tually, DARWIN [240] looks set to probe the entirety of the
light Higgs funnel and the chargino co-annihilation region,
as well as large parts of the heavy funnel and stop/sbottom
co-annihilation regions.

In the SD sector, IceCube already constrains mixed
gaugino-Higgsino models in the MSSM, as noted in Refs.
[47,175,247]. PICO [245] is not yet competitive for MSSM
models, but its future upgrades appear set to make sig-
nificant inroads into both Higgs funnels and the chargino
co-annihilation region. However, it remains to be seen if
XENON1T will probe such models on a shorter timescale.
Future neutrino telescopes such as KM3NeT [248] and pro-
posed upgrades to IceCube [249,250] may also offer signifi-
cantly improved sensitivity to models in the MSSM7, but to
date the expected sensitivity to DM masses above 100 GeV
is not known. Whilst not particularly constraining in terms
of SD proton scattering, LUX [251] already provides con-
straints on the SD neutralino-neutron cross-section, which
are just beginning to touch on the allowed parameter space
of the MSSM7 (not shown, but included in our scans via
DDCalc [178]).

Although models exist down to SI and SD cross-sections
of 10−55 cm2 in the stop/sbottom co-annihilation and A/H
funnel regions of our fits, the large cancellations required to
produce such cross-sections may be spoilt by loop corrections
[254,255]. This raises hope that future direct detection exper-
iments will discover neutralino DM in the MSSM7 or a sim-
ilar model. However, specific investigations in the MSSM7
suggest that this is not necessarily expected for all parameter
combinations, so some parts of the parameter space should

still be expected to lie well below any future sensitivity, even
after applying higher-order corrections [172].

5.3 Indirect detection of dark matter

Let us finally address discovery prospects of the MSSM7
with indirect DM searches. To this end, we show in Fig. 14
the velocity-weighted annihilation cross section, σv, in the
limit of vanishing relative velocity of the annihilating DM
particles, as a function of the lightest neutralino mass. We
rescale this quantity by the square5 of the fraction f of the
calculated neutralino relic density to the observed DM abun-
dance, thereby accounting for the possibility of the lightest
neutralino making up only a fraction of DM. In the left panel,
we show the profile likelihood, while in the right panel we
indicate the mechanism(s) responsible for increasing the (co-
)annihilation rate in the early Universe, and hence decreasing
the present neutralino relic density to or below the observed
DM abundance. For comparison, we also indicate the same
current and projected future limits from selected indirect
detection experiments as in Fig. 21 of the companion paper
[166], namely present Fermi-LAT [183] limits for b̄b and
τ+τ− final states from observations of 15 dwarf galaxies,
projected Fermi-LAT limits for b̄b, and the projected sen-
sitivity of the Chrerenkov Telescope Array (CTA) for b̄b,
assuming 500 h of Galactic halo observations [253].

Across almost the entire neutralino mass range, we find
models within the 95% CL region of the profile likelihood
that exhibit present-day annihilation rates above the canon-

5 Here we assume that all DM clumps just like neutralinos; see Sec.
4.4.3 of Ref. [166] for further discussion.
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Fig. 14 Zero-velocity neutralino self-annihilation cross-sections in the
MSSM7, rescaled by the square of the fraction f of the observed relic
density predicted by each model. Left: profile likelihood, showing 68
and 95% CL contours. Right: mechanism(s) that allow models within
the 95% CL region of the profile likelihood to avoid exceeding the
observed relic density of DM. Overplotted are 95% CL constraints from
the search for dark matter annihilation in 15 dwarf spheroidal galaxies
by theFermi-LAT Collaboration [183]. These limits are based on 6 years

of Pass 8 data, and are given for two different assumed annihilation
final states (b̄b and τ+τ−). We also show the projected improvement
in the b̄b channel after 15 years, if the number of known dwarfs were
to quadruple in that time [252]. The final curve is the best-case pro-
jected sensitivity of the Cherenkov Telescope Array to annihilation in
the Galactic halo, computed assuming b̄b final states, neglecting sys-
tematic errors, and assuming 500 h of observation [253]

ical thermal value of 3 × 10−26 cm3 s−1. Those models are
a subset of the A/H funnel region, where the pseudoscalar
Higgs is almost exactly twice as heavy as the lightest neu-
tralino, mA � 2χ̃0

1 . This leads to resonant enhancement of
the annihilation rate as v → 0, as is the case today – but not in
the early Universe, where thermal effects mean that v �= 0 in
general. For some models in this part of the parameter space,
currentFermi limits are already quite constraining. Projected
Fermi limits, assuming 15 years of data on 60 dwarf galaxies
(vs. 6 years and 15 dwarfs for the current limits), will start to
cut into the (current) 68% CL region. For neutralino masses
above around 300 GeV, CTA will be even more sensitive than
this. Large parts of the MSSM7 parameter space, however,
will be impossible to probe with any planned indirect detec-
tion experiment; this includes, unfortunately, both the global
best fit point of the MSSM7 and the best-fit points of all of
the individual parameter regions corresponding to different
mechanisms of lowering the relic density.

We emphasise that even though the CTA limits shown
here are rather optimistic, in that they neglect the effect of
systematic uncertainties [256], the above discussion some-
what underestimates the prospects of indirect DM searches.
One reason is that we have neglected in our discussion other
detection channels than gamma-rays, in particular charged
cosmic rays. As discussed in some more detail in Sec. 4.4.3
of the companion paper [166], radiative corrections in par-
ticular, e.g. [257–259], as well as Sommerfeld enhancement
[73,260–262], are further effects that we have not taken into
account here. For parts of the parameter space this leads to
increased annihilation rates and/or distinct spectral features,
which are much easier to constrain or identify with experi-

ments than the featureless gamma-ray spectra from the final
states that we have considered here. A full discussion of these
effects, and their impact on indirect DM searches within the
MSSM7, is beyond the scope of this study, although we plan
to return to this in future work.

6 Conclusions

We have carried out an extensive global fit of the 7-parameter,
weak-scale phenomenological MSSM, using the newly-
released GAMBIT global fitting framework. Our fit takes
into account updated experimental data, improved theoretical
calculations and more advanced statistical sampling methods
than previous studies of similar models. We have also consid-
ered leading uncertainties from the Standard Model, the dark
matter halo of the Milky Way, and the quark content of the
nucleon, fully scanning over the relevant parameters and pro-
filing them out in the final fit. Finally, we have explored the
full range of experimentally-allowed parameters, by allowing
neutralinos to constitute any fraction of the observed cosmo-
logical dark matter.

The MSSM7 shows quite a rich selection of phenomenol-
ogy across its parameter space, ranging from Higgsino-
dominated dark matter annihilating through co-annihilations
with other Higgsinos in the early Universe, to resonant
annihilation via the light and heavy Higgs funnels, to co-
annihilation of neutralinos with both light stops and sbot-
toms. We find a preference for light, Higgsino-dominated
neutralinos, with mχ̃0

1
� 750 GeV at 68% CL and mχ̃0

1
�

2.5 TeV at 95% CL. We have shown that stop/sbottom co-
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annihilation models lie just out of reach of current LHC
searches, with stops and sbottoms as light at 500 GeV. This
makes the prospects for probing at least some such models at
the LHC in the near future quite promising. Both direct and
indirect searches for dark matter place significant constraints
on the allowed parameter ranges in the MSSM7, and the next
generation of these experiments will probe large parts of the
highest-likelihood areas of its parameter space.

The current study is essentially a starting point for
detailed, modular scans of supersymmetric models defined
at the weak scale with GAMBIT. GAMBIT’s hierarchical
model database already contains many generalisations of the
MSSM7, which would themselves make very interesting tar-
gets for global analyses similar to this one.

To ensure reproducibility and encourage further explo-
ration of our results, we provide a set of supplementary data
online through Zenodo [170]. This includes all GAMBIT
input files, generated likelihood samples and best-fit bench-
marks for this paper.
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