
3D Spatial Navigation in Octrees
with Reinforcement Learning

Using Sparse Rewards with Hindsight
Experience Replay

Matias Hermanrud Fjeld

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

3D Spatial Navigation in
Octrees with Reinforcement

Learning

Using Sparse Rewards with Hindsight
Experience Replay

Matias Hermanrud Fjeld

© 2018 Matias Hermanrud Fjeld

3D Spatial Navigation in Octrees with Reinforcement Learning

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

The recent surge in research towards general artificial intelligence
has produced a wealth of promising techniques, which when utilized
for traditional robotics tasks can give rise to new and interesting
algorithms.

This thesis proposes and implements a method of applying Rein-
forcement Learning (RL) to three-dimensional octree navigation. Oc-
trees are spatial models used in robotics for navigation and collision
avoidance. 3D navigation with octrees can be used in a variety of appli-
cations such as autonomous Search and Rescue quadcopter drones, or
any other robotics task involving movement in three dimensions.

Octree navigation traditionally uses man-made path finding algo-
rithms. In this work we present the first known application of Reinforce-
ment Learning to 3D navigation with octrees. The proposed method
uses sampling-based observations and continuous actions spaces, and
applies Hindsight Experience Replay (HER), a data augmentation tech-
nique, to increase sample efficiency.

Along with an implementation of the methods, we design and imple-
ment a handful of simulated environments for evaluating performance
on simple navigation tasks. From the experiments, we find that the
combination of sparse rewards and continuous observations are benefi-
cial over alternative setups.

Experiments show low success rates when trained and evaluated
on the navigation tasks, and further study is necessary to determine if
Reinforcement Learning is a viable approach to 3D octree navigation.
Regardless, this thesis can serve as baseline for future research and
shed light on a new potential application for machine learning.

Preface

They say any work of research is steeped in blood, toil, tears, and sweat.
Mine is no exception.

I would like to thank the countless people who have helped me on
my journey not just to write this thesis but who supported and cheered
me on towards this extraordinary milestone in my life. Your support
was crucial, and I will be forever grateful.

First, to my supervisors, Justas, Jim, (and Kai), thank you for
supporting me in every way you could, and for channeling my frustation
and dread into research and writing.

Thank you to my fellow students, for bringing me hope when I had
none. Particularly Guilherme for help with proofreading, and Bjørn-
Ivar and Eivind for providing advice and encouragement.

To all the members of the research group, who have provided a
tremendous environment for learning, having interesting discussions
and eating delicious birthday cakes, thank you.

I would also like to thank Bruno Castro da Silva at the Federal Uni-
versity of Rio Grande do Sul in Brazil for his suggestions, particularily
on the possible future work of a scale-invariant variety of this method.

Thank you to my big brother Jørgen who has been my mentor,
inspired me and spent countless hours answering my every question
about programming when I was a teenager. To my family, and my
grandparents in particular, thank you for supporting, worrying about
and questioning the big decisions in my life. Education turned out to be
a good idea, after all.

Most of all, to my girlfriend Tonje for her unwavering support.
Without you, I would have given up a hundred times over. Thank you.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 2
1.3 Related work . 3

2 Background 5
2.1 Voxels, octrees and OctoMap 5

2.1.1 Aggregation . 6
2.1.2 Data ingestion . 7
2.1.3 Compression . 7
2.1.4 Searching and iterating 8

2.2 Reinforcment Learning . 8
2.3 Hindsight Experience Replay 9

2.3.1 Environment . 11
2.3.2 Agent . 11

3 Methods 15
3.1 Actions . 16
3.2 Observations . 17

3.2.1 Goals . 19
3.3 Collisions . 19
3.4 Rewards . 19
3.5 Implementation . 20

3.5.1 Environments . 20
3.5.2 Agent . 22

4 Results 25
4.1 Training and testing . 25
4.2 Evaluation . 25

4.2.1 Metrics . 26
4.3 Parameters . 27
4.4 Tasks . 28

4.4.1 Random directions . 29
4.4.2 Empty corridor with deterministic positions 33
4.4.3 Empty room with randomized positions 35
4.4.4 Navigating around a wall from fixed positions . . . 36

v

5 Discussion 39
5.1 Reward and observation functions 39
5.2 Larger octree spaces . 40
5.3 General discussion . 40
5.4 Future work . 41

5.4.1 Experiments on network architecture and hyper-
parameters . 42

5.4.2 Scale-invariant navigation 42
5.4.3 Observing through raycasting 42
5.4.4 Application to a robot arm 43
5.4.5 Observability . 43

5.5 Conclusion . 43

Bibliography 45

A Code 47
A.1 Environments . 47

B Hyperparameters 55

vi

1 | Introduction

The age of robots is ostensibly upon us with the promise of automation
on a scale not seen since the industrial revolution. At the center is the
challenge of robot mobility, as we all have seen when clumsy humanoid
robots trip over seemingly benign obstacles. Their poor mobility falls
short when compared to that of humans. Mammals are incredibly adept
at moving around in unknown and complex environments. Research
into rats suggests that specific navigational neurons are hard-wired
into mammalian brains (Langston et al. 2010). In other words, we
were likely born with a priori spatial awareness, evolved over countless
generations.

Just as humans have specialized parts of our brain to model space,
robots need internal models of the world to navigate. The octree, which
we will describe in section 2.1, is a spatial model commonly used in
robotics. Robots can typically employ graph search algorithms to solve
the problem of planning 3D movement from octrees. These algorithms
formulate path planning as a graph problem and use traditional graph
traversal techniques to find optimal paths. Human-made algorithms,
while useful, are limited by humans’ ability to imagine and formulate
them. Algorithms created with machine learning, on the other hand,
can allow for more complex behavior at the expense of being elusive as
well as difficult to reason about and comprehend.

Reinforcement Learning, which we will describe in section 2.2, is a
fast-growing field of machine learning research devoted to learning by
trial and error. This thesis proposes a method for how Reinforcement
Learning can be combined with octrees to learn navigation in three-
dimensional space. Building upon Hindsight Experience Replay,
described in section 2.3, the method uses action spaces and sparse
rewards. We implement the method in a simulated environment and
run experiments on a handful of navigation tasks to see what a trained
agent is capable of, and under which conditions. The results of these
experiments are presented in chapter 4.

Finally, in chapter 5, we interpret the implications of our experi-
ments, suggest further work and conclude by summarizing our findings.

1

1.1. Motivation

1.1 Motivation

Figure 1.1: A concep-
tual overview of an RL-
based robot architec-
ture.

Before going into the technical detail, let’s
consider a use case to motivate this line of
research. Imagine we are designing an au-
tonomous flying quad-copter that will be used
for Search and Rescue (SAR) operations. The
SAR drone will search inside buildings for hu-
man beings, and has to map and navigate
its environment without human intervention.
The hypothetical drone will use the design il-
lustrated in figure 1.1. It will be equipped
with a lidar — a laser scanner that measures
the distance to obstacles near the drone, sim-
ilar to how a radar works. A lidar outputs
point cloud information, a set of points mea-
suring where the laser beams have collided
with objects while scanning the environment.
The point cloud is fed into an OctoMap, which
builds a 3D representation of the drones’ sur-
roundings. To make the drone move we need
two final components. Firstly we need a policy
that looks at the OctoMap and decides where
the drone should move. Secondly we need a
motor controller to make the motors move, ex-
ecuting the plan output by the policy. In this
thesis we focus on the policy, specifically how
this policy can be trained by using Reinforce-
ment Learning.

1.2 Goals
Reinforcement Learning has not yet been applied to 3D spatial
navigation with octrees. This thesis sets out to do so with the following
goals:

1. Design and implement a method and a set of simulated Reinforce-
ment Learning environments for navigating 3D spaces modeled by
octrees.

2. Assess the feasability and properties of this method experimen-
tally.

3. Explore how different environment design choices affect learning
outcomes.

2

1.3. Related work

1.3 Related work
Surprisingly, we find no existing research combining Reinforcement
Learning with octrees for navigation. This shortage of related works
might be because the problem is outside the boundaries of our current
technological capabilities, or simply that it has not been attempted
before.

3

2 | Background

This chapter provides the conceptual foundations for understanding
how Reinforcement Learning can be applied to octrees.

2.1 Voxels, octrees and OctoMap

Figure 2.1: An ar-
ray of voxels, with
a single occupied
voxel colored red
(Wikipedia:Vossman
2017).

Voxels are the 3D equivalent of pixels, i.e. they are
values in a three-dimensional array representing
some property of space within a region. When
robots map their surroundings, they are often
interested in occupancy — whether a region of space
is occupied or not. This can be represented with
binary voxels where each voxel holds a boolean. If
the voxel is true, it means that the corresponding
space is occupied, and vice versa. This is illustrated
in figure 2.1.

Describing large spaces with arrays of voxels is
inefficient both with regards to memory usage and
computational complexity. A voxel array describing
a 5 m X 5 m X 2 m room at 1 cm resolution would
require 50 million voxels. Using the array for motion planning would
require looking at the occupancy of individual 1 cm voxels, where most
adjacent voxels would have the same value.

Figure 2.2: Three octreees modeling
the same physical tree at different
resolutions (Hornung et al. 2013)

Octrees compress voxel ar-
rays by combining multiple, ad-
jacent, same-valued voxels into
fewer, larger voxels holding the
same value. In other words,
octrees implement a variable-
resolution, lossless encoding of
voxels which dramatically reduce
memory requirements. A square
metre of empty space could be described as a single node in an octree
instead of as a million 1 cm voxels in an array. Figure 2.2 illustrates
three renderings of an octree at different resolutions. The octree, some-
what humourously, depicts a physical tree.

Octrees recursively combine voxels in pairs along each dimension,
which in three dimensions combines eight ("octo" in latin) cubes into

5

2.1. Voxels, octrees and OctoMap

one larger. This relationship is reflected in the tree structure: A node in
an octree can have up to eight children. The relationship between nodes
and subdivisions of space is illustrated in figure 2.3.

Figure 2.3: An illustration of how child nodes in an octree relate to
subdivisions in space (Wikipedia:WhiteTimberwolf 2010)

OctoMap (Hornung et al. 2013) is an open source octree implemen-
tation written in C++. Octrees implemented with OctoMap are both
easy to update with additional information and do not require pre-
allocation — knowing the size of the environment beforehand.

The authors of OctoMap note that their framework combines three
important aspects: (1) The model integrates probabilistic measure-
ments in a robust way, i.e. it intregrates noisy sensor data. (2) It models
unmapped areas, where no sensor data is available. Thus a volume in
the OctoMap can be free, occupied or unknown. (3) It is also efficient,
both when considering access-time and especially memory consumption.

One important design decision in OctoMap is worth noting: Inner
nodes store aggregated occupancy values from their children. As
a consequence coarse resolution occupancy can be obtained quickly
without having to traverse deeply within the tree. This makes OctoMap
not just memory efficient, but also gives algorithmic speed-ups. This
property can be exploited to sample large areas of space quickly.

The following sections describe some key properties of the OctoMap.

2.1.1 Aggregation

The OctoMap tree structure allows for variable-resolution occupancy
querying by overlaying coarser-resolution voxels onto finer ones. Each
internal node in an OctoMap holds an aggregation of its child nodes,
and stores the maximum occupancy probability of all its children 1. This

1https://github.com/OctoMap/octomap/blob/v1.8.1/octomap/include/octomap/OcTreeNode.h#L83

6

2.1. Voxels, octrees and OctoMap

aggregation continues recursively from the leaf nodes all the way up to
the root node, which contains the maximum occupancy probability of all
the leaf nodes in the tree. As a consequence, the tree can be queried
at different depths to obtain occupancy readings at different resolutions
with O(logn) time complexity. Queries at shallow depths (near the top
of the tree) are faster because they iterate over fewer nodes, at the cost
of diminished accuracy.

2.1.2 Data ingestion

Internally, each node in an OctoMap stores a floating point number
measuring the collision probability for a ray passing through that voxel.
These probabilities are used in a sensor model that integrates rays from
a point cloud into voxels in the OctoMap. The probabilities are stored
as log odds 2 to speed up computations. Outliers are clamped to allow
nodes with high-confidence occupancy values to be combined, reducing
memory requirements.

OctoMaps are created from point clouds. A point cloud is a set of
vectors in octree space, that originate from the point of the sensor and
end when they hit a wall. Essentially, the sensor emits rays from its
position, measures the distances those rays travel, and then calculate
the positions where the rays collided. These ray vectors, along with
the sensor position, are fed into the OctoMap. Both are defined with
Euclidian coordinates in octree space.

Because real-world measurements introduce random noise, the Oc-
toMap sensor model was designed to handle probabilistic measure-
ments. As a consequence, noise can be introduced when integrating
simulated point clouds. A surface in an OctoMap can have seemingly
random protrusions and dents even through the point cloud did not re-
ally measure these. These are a consequence of the OctoMap sensor
model, in which the model trades away some accuracy for the benefit of
being able to integrate noisy sensor readings over multiple time steps.
We can see this effect on the octrees visualized in experiments.

2.1.3 Compression

One of the primary goals of the OctoMap data structure is compression.
Voxels in octree space can be compressed by combining them together
into larger voxels. In the octree, this is achieved by pruning child nodes
that are all leaf nodes and have the same occupancy value as their
parent. For example, a block of eight nodes indicating free space will
propagate their maximum occupancy value to their parent node, so the
parent node will also indicate that the space is free. Because the child
nodes now hold redundant information at a finer resolution, they are all
deleted and memory is saved.

2The logarithm of the odds p
1−p for a probability p

7

2.2. Reinforcment Learning

2.1.4 Searching and iterating

There are two ways of obtaining octree occupancy values: a) searching
for a specific node in the octree, or b) traversing all nodes and reading
values one at a time.

In the first case, we want to find the occupancy probability of a
specific point in space. To find the node corresponding to the voxel
containing the point we are looking for, the OctoMap library first
converts the position to a key. The key describes a distinct path
through the tree with left/right directions along each dimension when
descending downwards from the root through child nodes.

Using the second method of traversing leaf nodes can reduce time
complexity slightly, but adds significant design complexity. Nodes have
to be filtered and their octree keys translated to query positions position
that might not be aligned with voxel boundries. For this reason, we have
used searching instead of iteration in this thesis.

2.2 Reinforcment Learning

Figure 2.4: An illustration of how
an agent interacts with its environ-
ment in Reinforcement Learning.

Reinforcement Learning, abbre-
viated RL, is a field of machine
learning concerned with making
optimal decisions over time. Like
a dog learning to sit when repeat-
edly given a treat, an RL agent
determines what actions to take
based on expected rewards. RL
divides time into discrete time
steps t = 0,1, ..., each in which the
agent observes the state of its
environment, decides how to act
and receives a reward as a result.
Figure 2.4 illustrates this agent-
environment loop.

If our agent was a dog, heard us saying "sit", and chose to sit down,
its treat could be the reward +1. Rewards in RL are scalar values,
numbers, given by a reward function which is part of the environment.
The goal of the agent is to maximize total reward over time, but that
requires balancing short-term and long-term rewards. Rolling in the
grass right now might be pleasurable, but a little patience and some
sitting can produce the even bigger delight of a delicious treat. RL
models this trade-off with a weighted sum of expected future rewards
called a return.

Because the agent only observes rewards after it has acted, it has
to balance exploration for new experiences with the exploitation of the
experiences it already has. The first time our dog received a reward for
sitting, it might have done so randomly, and just happened to stumble
upon a rewarding action. If the dog then always sits, it might get a treat

8

2.3. Hindsight Experience Replay

for sitting but misses the second treat it could have obtained for giving
paw. There are numerous techniques for how to explore efficiently, but
a simple approach commonly used is epsilon-greedy exploration. In
this case, the agent has a random chance of ε ∈ [0,1] of exploring by
choosing a random action. Otherwise, the agent chooses the action with
the maximum expected future return.

By learning from past experiences, the agent forms a policy, a
function from states to actions. Usually, states in RL are vectors and
actions are vectors or scalars. In our case, with an agent navigating
a three-dimensional space, the state could contain the position of the
agent as well as information about obstacles. The action could be a
direction to travel in; either in the form of a discrete number indicating
a choice between discrete directions; or a vector with continuous values
indicating where and how far to go. The choice between continuous and
discrete state and action spaces has consequences for sample-efficiency
and choice of agent architecture.

When the agent observes the complete state of the environment at
each time step, we say that the environment is fully observable. What
happens if the agent receives only partial information? A partially
observable learning task is similar to how we humans perceive the
world, when we turn our head to see behind us while still remembering
what is in front of us. Partial observability adds complexity because
the agent has to extrapolate the state based on uncertain observations.
Techniques in RL exist for dealing with this problem, but the added
complexity can complicate experiments greatly.

Reinforcement Learning tasks can be episodic or continuous.
Episodic tasks are those that end after a finite number of time steps.
Once the agent reaches a terminal state, the task is completed, and the
environment resets. Actions taken in previous episodes do not affect
later ones except that the agent uses the gathered experience to im-
prove its policy. Thus the agent can go through a task over and over
again. The environment resets before each episode. Combined with a
computer-simulated environment, episodic tasks can allow an agent to
gather a great deal of experience in a relatively short amount of time.

An optimal policy is one that maximizes the future expected return
from initial states. There is a multitude of ways to create policies from
experiences, too many to detail here. Reinforcement Learning is a broad
and active field of research, and more than ten thousand papers relating
to RL have been published yearly since 2012 (Henderson et al. 2017).
The choice of specific technique depends on the learning task; whether
the environment is partially observable, has a continuous or discrete
action space, and several other factors.

2.3 Hindsight Experience Replay

Formulating a reward function is one of the major challenges in using
RL. Any reward function, which returns a scalar number after every

9

2.3. Hindsight Experience Replay

action the agent takes, exists on a spectrum anywhere from extremely
simple to exceedingly complex. The set of possible reward functions
is vast, and the choice of reward function can have surprising and
unintended side-effects.

Consider, for example, a reward function for an agent navigating a
maze. A complex reward function might return the distance to the goal,
possibly combined with the number of walls between itself and the goal.
The reward function attempts to combine what the agent should do,
get out of the maze, with how the agent should do it, by moving closer
to the exit. If the agent learns to always move in the direction of the
exit, it might get stuck in a dead end corridor and never find the exit at
all. Using complex reward functions can defeat the purpose of machine
learning, which is to specify an objective and let the machine learn how
to achieve it on its own. Reward functions that increase as the agent
moves closer to the ultimate goal are called dense or shaped rewards,
because they shape the agent’s behavior a little bit at a time.

On the other end of the spectrum, the simplest reward function
might return a binary number telling the agent if it reached the exit or
not. This is called a sparse reward. Such a specification is very precise,
and gives the agent a clear end-goal objective without restraining
how the agent goes about reaching that goal. The problem with this
approach is that the agent has to explore an exponentially large state
space before receiving any feedback on its performance. Wandering
the maze at random, the agent has to reach the exit by chance before
learning that reaching the exit is good. The agent is then left with the
incredibly difficult task of credit assignment — Figuring out which of
the many actions it took that actually led to the reward it received.

Hindsight Experience Replay (HER) is a recently published RL tech-
nique for sample-efficient learning from sparse rewards (Andrychowicz
et al. 2017). HER builds on Universal Value Function Approximators
(Schaul et al. 2015), an extension to RL that formulates policies as func-
tions of states and goals to actions. A goal can be any vector or scalar.
In the context of the maze example above, a goal could be a position in
Euclidian coordinates, a vector of two real numbers. Universal policies,
functions taking goals as input, allow an agent to generalize over goals
as well as states. By learning how to achieve small goals, the agent can
gradually acquire the required knowledge to accomplish more complex
ones. A simple goal might be to move down a corridor or around a wall.
A more complex goal can be to reach the exit. Progressing from simple
to complex goals requires a curriculum, and this is where HER comes
in.

HER requires RL environments to output goals alongside state
information. The agent is told at every time step what goal the
environment wants it to achieve, as well as what goal it actually
achieved with the action it last took. Before taking an action the agent
does not know what goal will be achieved with that action. In hindsight,
however, the agent will know what goal was actually achieved. This
fact can be exploited to pretend that the achieved goal was what it was

10

2.3. Hindsight Experience Replay

meant to do all along, and receive a reward as if it had achieved it. This
leads the agent to learn the relationship between actions, states and
goals much faster.

2.3.1 Environment

Figure 2.5: A flow chart of how
the environment exposes its reward
function.

We will now go into more detail
on how HER works, starting with
the environment. HER gives the
agent access to the reward func-
tion so that it can compute re-
wards in hindsight. We can see
this in figure 2.5. The figure de-
scribes an OpenAI Gym environ-
ment adapted to work with HER.
(1) The state of the environment
is reset at the beginning of an
episode, and the environment re-
turns an initial state. This state
contains a desired goal that the
environment wants the agent to
achieve. (2) The agent uses the
state received from the environment to choose an action, and sends this
to the environment’s step function. (3) The environment calculates the
next state as well as the reward. The reward function takes the desired
goal and the achieved goal as input. The state emitted by the step func-
tion includes the new desired goal as well as the last achieved goal. The
agent can use the achieved goal with the reward function to re-calculate
a reward in hindsight. Step 2 and 3 are repeated until the environment
signals that the episode is done.

2.3.2 Agent

Figure 2.6: A flowchart of how the agent is trained.

Andrychowicz et al. provided an open source implementation of their
agent as part of OpenAI Baselines, a repository of RL agents for others
to build their research on. HER can be combined with any offline RL
algorithm, but the authors of HER chose DDPG (Lillicrap et al. 2015).
DDPG, Deep Deterministic Policy Gradients is an actor-critic, model-
free RL algorithm for continuous action spaces. The details of DDPG are

11

2.3. Hindsight Experience Replay

not important to HER, except that DDPG improves a policy iteratively
by sampling from an experience buffer and altering the parameters
of the policy’s neural network approximator via backpropagation and
gradient descent.

Figure 2.6 shows the agent interacting with the environment and
learning by collecting experiences using the current policy, storing
them in the replay experience buffer, sampling random experiences and
calculating weight updates using DDPG + HER. Note that the figure
shows states from two subsequent time steps; The agent stores the state
before the action as well as after. The state before, action, state after,
as well as the reward are combined into a transition tuple and stored
into the experience replay buffer. The buffer stores a fixed number of
recent transitions, and these transitions are sampled to train the policy.
Colloquially, we call these transition tuples "experience". It is between
sampling and training that we find the core of the HER algorithm.

Figure 2.7: A flowchart of how Hindsight Experience Replay generates
artificial experience by substituting the desired goal for the achieved
goal in hindsight and re-calculating the reward.

When given sparse rewards, the agent initially fails to achieve the
goals set for it by the environment. For example, the environment might
want the agent to move right, but instead it moved left. It receives a
negative reward for this, but since it mostly receives negative rewards
anyway it doesn’t really learn much from this. It would be better for the
agent to learn what to do instead of what not to do. This is where HER
comes in.

HER takes transition tuples as input and creates new ones by
substituting the desired goal and re-calculating the reward. If the agent
moved left, HER can pretend that the agent was supposed to move left
all along. Since HER has access to the reward function it can reward
the agent for achieving its goal. HER substitutes the desired goal for
the achieved goal, something that is only possible in hindsight. Figure
2.7 illustrates how this works.

12

2.3. Hindsight Experience Replay

Andrychowicz et al. point out that HER provides a form of implicit
curriculum. By rewarding the agent for what it achieved even an agent
taking random actions will achieve something. As the agent learns more
about how to achieve goals, it will naturally progress to more difficult
ones. Another way at looking at HER is as a form of data-augmentation,
which increases the diversity of samples by modifying them.

Interestingly, the original experiments with HER showed better
performance with sparse rewards than with shaped ones. Andrychowicz
et al. argue that this might be due to how shaped rewards often
compromise on the metrics we care the most about.

13

3 | Methods

This chapter describes a novel method for applying Reinforcement
Learning to 3D navigation in octrees. The proposed method uses
continuous action spaces, sparse rewards and sampling based variable
resolution voxel observations. Before going into details, however, a
motivating comment on the complexities of RL research is necessary.

Reinforcement Learning-based research is often difficult to repro-
duce (Henderson et al. 2017), and involve many uncontrolled variables
like hyperparameters, network architecture as well as randomness from
weight initialization and in environments. Henderson et al. notes that
RL techniques inherently yields results that have high variance. This
has important implications for experiment design and reporting, partic-
ularily the need to reduce unnecessary complexity in experiments. For
example, entire research papers (Mahmood et al. 2018) deal with the
task of simply setting up a reproducible physical robot experiment.

To lessen the considerable variability inherent in RL, the experi-
ments in this thesis will be conducted in a simplified simulation involv-
ing positions but not time and forces. Velocities and torques will not be
modeled, avoiding the need for a physics simulator. Instead, the agent
will simply control the position of a point in three-dimensional space.

As mentioned in the background (chapter 2), the agent will receive
an observation of the state at each time step, choose an action and
receive a subsequent scalar reward. Part of the design process involves
deciding on observation and actions spaces. To aid the reader, we will
first consider a simplified, two-dimensional illustration of the proposed
setup before delving into and discussing each aspect of the full three-
dimensional problem.

Figure 3.1 shows an agent standing in front of an open passage in an
otherwise impenetrable wall. The green arrow symbolizes the agent’s
goal, but it cannot reach it with a single action because the wall blocks
its way. Instead, it has to first step through the passage to be able to
reach the goal with another action in the next time step.

The blue arrow shows the action taken, and the blue dot will be
the agent’s position at the next time step. The dashed blue and red
square indicates the action space, the set of actions the agent can take.
It centers on the agent’s current position, and all actions will be position
vectors relative to the current position. As a consequence, an action can
be scaled and added to the agent’s current position to obtain the position

15

3.1. Actions

Figure 3.1: A 2D illustration of the simulated 3D environment. To
reach the goal (green), the agent (red) has to step (blue arrow) through
an opening (white) in the wall (black) to avoid collision. Notice that
observation resolution decreases with distance from the agent.

at the next time step. In our case, the action space will be continuous
instead of discrete. We describe actions further in section 3.1.

The large, dashed red and blue square symbolizes both the action
space as well as the octree space observable by the agent. The
pattern of variable-sized white or black backgrounds represent voxels
corresponding to nodes in the octree. White indicates free space and
black occupied or unknown space. In section 3.2 we describe how we use
variable-resolution sampling to create observations from these voxels.

3.1 Actions
The action space used in this thesis is continuous, as the policy outputs
real numbers as opposed to integers. The choice of this setup has several
motivations.

The first is a desire for sample efficiency and larger step sizes.
Consider the discrete alternative, which is to let the agent move from
voxel to voxel by outputting one of six directions; Up, down, left, right,
forwards, backwards. In such a setup a path from the starting position
to the goal position consist of a series of transitions between voxels.
For each time step, the agent chooses one of the six directions, so the
number of possible paths the agent could take would be 6t for t time

16

3.2. Observations

steps. Moving for ten time steps would require exploring more than 60
million possible paths. This is obviously infeasable.

By instead choosing a continuous action domain, the agent can learn
to step over multiple voxels at a time. This should hopefully allow the
agent to both explore less before finding a path, and also generalize by
extrapolating new actions from a continuous space. In this thesis we use
a continuous action domain for this reason. Using a continuous action
domain would also be easier to apply to real world robots.

3.2 Observations

An observation holds the information upon which the agent can act. It
is what the agent "sees" at any given time step. We will now define
an observation function which takes an octree and the agents position
and returns a one-dimensional observation vector suitable for feeding
into a neural network. The observation space is the set of all possible
observations. The observable space is the region of octree space the
agent can observe through the observation function from its current
position.

Figure 3.2: A 2D illustration of the
proposed 3D sampling pattern with
a visual range parameter of three.

If we included the occupancy
values of all voxels in the oc-
tree, the size of the observation
vectors would be unmanageble,
and defeat the purpose of oc-
tree compression. Instead we use
variable-resolution sampling to
strike a balance between the size
of observable space and observa-
tion dimensionality. Figure 3.2
illustrates the three-dimensional
sampling pattern we are propos-
ing in two dimensions. The fig-
ure shows the agents position as
a small red circle. The obser-
vation function is parametrized
with a visual range parameter
which controls the number of lay-
ers in the sampling pattern. Figure 3.2 shows the sampling pattern in
the specific case when the visual range parameter is three. The size of
the boxes, which double in length for each layer, illustrate the voxels
are queried at lower and lower resolutions. Each layer in the pattern
halves the resolution, so the resolution decreses with distance from the
agent.

Notice that the sampling pattern we define does not align with voxel
boundries. This is a design choice which simplifies implementation of
the observation function greatly. To implement the observation pattern,
the observation function searches for the center positions of the voxel to

17

3.2. Observations

be queried with the depth given by the pattern. Positions are clamped
by OctoMap to the voxel center position grid before being converted into
query keys. This allows us to quickly sample voxels without having to
consider the octree voxel alignment.

Figure 3.3: A 2D illustration of
the inductive definition of the 3D
sampling pattern.

To define a general sampling
pattern across all possible visual
ranges, we use a inductive def-
inition 1. This is illustrated in
figure 3.3. We define a visual
range of zero as being "blind", in
which case the agent observes no
voxels at all and the observation
function returns an empty vector.
When the visual range is one the
agent sees a dense pattern of the voxels surrounding it, leaving out the
voxel the agent is currently in which will always be free. For each incre-
ment in visual range, an additional layer of voxel samples are added to
the pattern.

Each node in an octree stores the clamped log odds probability of its
voxel being occupied. When we extract features from voxels we can
obtain two values. Either we can convert the log odds into regular
probabilities in the range [0,1], which gives us a continuous measure
of occupancy. Otherwise we can use the octrees occupancy threshold,
which is usually 0.5, to determine a discrete binary occupancy value.
The voxel is occupied if the probability is above the threshold. These
two variations, between continuous and discrete occupancy values, will
be tested experimentally.

These “exteroceptive” 2 features resemble the random sampling used
in some previous robotics research, notably in Emergence of Locomotion
Behaviours in Rich Environments (Heess et al. 2017). One fundamental
difference, however, is that we are sampling from aggregated data by
decresing the tree depths the further away from the agent we sample.
OctoMaps inherently integrate lower-resolution occupancy values over
larger spaces. This aggregation is a key design feature that we
employ to reduce the dimensionality of the observation space while still
maintaining accuracy and observable range.

Figure 3.4 shows how visual range affects the size of the observable
space as well as the number of dimensions in observation vectors.
Because voxel sizes double for each additional layer, the observable
space grows exponentially. The number of voxels, however, increase
linearly with the number of layers. This is a useful property which
possibly could allow the agent to observe very large spaces.

1A recursive definition of a set through initial elements and a step function
2Perceptions from external senses

18

3.3. Collisions

Figure 3.4: The observable range and observation dimensionality
plotted as a function of the visual range parameter.

3.2.1 Goals

Hindsight Experience Replay requires observations to consist of three
parts: a) an observation vector, b) a desired goal and c) an achieved goal.

We define the desired goal as element-wise difference between the
goal position and the agents position. The achieved goal will similarly
be the element-wise difference between the agent new position and its
previous position.

3.3 Collisions

We want the agent to reach the goal but never collide, but this kind
of multi-objective Reinforcement Learning is not trivial to implement.
A naive approach of penalizing the agent for the rest of the episode
introduces history and violates the markov assumption underlying RL.
Instead we simply leave the agent in its current positions if it attempts
to move in a way that would cause a collision. This causes the achieved
goal to be zero, which we can handle as a special case when computing
rewards in hindsight.

3.4 Rewards

The reward type-parameter controls the reward function so it can either
return dense or sparse rewards. Because HER gives the agent access to

19

3.5. Implementation

the reward function, it cannot directly calculate rewards from the state
of the environment, but from achieved and desired goals as described
above.

At the beginning of an episode, initial and goal positions are chosen
within a given range. A goal is achieved when current position is equal
to goal position, within a small tolerance.

Dense rewards, also known as shaped rewards, increase as the agent
gets closer to the goal. They shape the agents behaviour towards the
goal. Sparse rewards, on the other hand, occur only when the agent
reaches the goal. They do not shape the agents behavior towards the
goal, but the agent has to complete the goal in its entirety before a
reward is given. We will experiment with both sparse and dense goals.

We define dense rewards as the negative distance between the
agents position and the goal. This reward definition increases as the
agent moves towards the goal, but does not consider obstacles and might
lead the agent into a local minima.

We define sparse rewards as zero if the agent has reached the goal,
-1 otherwise. When HER is used, the reward function can be called in
hindsight to calculate goals. In this case the achieved and desired goals
are identical, and the agent will always receive a rewards. There in one
exception; If the achieved goal is zero the agent could have collided, and
the reward will be -1 even though the desired and achieved goals are
identical.

3.5 Implementation
We will now go on to describe the implementation of simulated
navigation environments based on the method above.

3.5.1 Environments

OpenAI Gym Brockman et al. 2016, written in the Python programming
language, has emerged as the de facto framework for implementing
Reinforcement Learning tasks. We have implemented a handful of
environment classes following the Gym programming interface. Each
environment contains an octree with its three-dimensional Cartesian
coordinate system specified in meters. We will refer to this as octree
space. The state of the environment consists of two positions in octree
space; The current position of the agent, which changes every time step,
as well as a goal position that is constant throughout each episode. At
the beginning of each episode, the initial and goal positions are sampled
uniformly from experiment-specific regions of octree space.

Training consists of independent episodes each with a variable
number of time steps. An episode ends after a maximum number of
time steps, given as a parameter to each experiment, or when the agent
reaches the goal, whichever comes first. Reaching the goal is defined as
when the euclidian distance in octree space between the agent’s current
position and the goal position is lower than a configurable distance

20

3.5. Implementation

threshold. Once the episode ends, the environment resets, and another
episode begins.

Action space

Actions are three-dimensional vectors in actions space, a linear
transformation of octree space centered on the agent’s current position
and scaled into units of maximum step size. If the agent, for example,
chose the action [0.5, 0, 0], and the maximum step size was 10
centimeters, it would move in a straight line 5 centimeters along the X-
axis in octree space. The observant reader will notice that the maximum
step size defines a maximum along each independent axis in octree
space, not a maximum cartesian distance across all three axes.

The choice of action space might seem arbitrary, but has several
benefits; It can allow for scale-invariance and generalization so agents
can transfer policies from one environment to another. Additionally,
actions become more straightforward to interpret across different
scales. Goal space will be a superset of the action space, described below.

Goal spaces

The environment presents the agent with a goal at each time step
as part of the observation, and the agent then picks an action to try
to achieve that desired goal. Once the environment has moved into
the next state, the agent receives feedback on which goal the agent
achieved. This achieved goal can then be used to compute a reward
in hindsight which is stored as artificially generated experience in the
experience replay buffer to increase sample-efficiency.

Both desired and achieved goals are defined in a superspace of the
action space, meaning that they have the same scale (max step size) and
origin (relative to the current agent position). Desired goals based on
the distance between the agent position and the goal position in octree
space, but scaled by the maximum step size. Consider an example with
a maximum step size of 10 cm (0.1 meters), the goal position [1, 1, 1] in
octree space and the agent at position [0, 0, 1]. The distance in octree
space is [1, 1, 1] - [0, 0, 1] = [1, 1, 0], meaning that the agent has to
move one meter along the X and Y axes to reach the goal. We scale by
0.1 meters to get the desired goal of [10, 10, 0] in goal space. We can
immediately see that the agent requires at least ten steps to reach the
goal because the goal unit is the maximum step size.

We must also define achieved goals to allow Hindsight Experience
Replay to generate artificial experiences. Actual movement in octree
space is the basis for achieved goals. We take the offset and map it
to the same origin and scale as the desired goals, centering the space
on the agents previous position and using units of maximum step size
along each axis. An agent naturally cannot reach goals further away in
a single time step, so the achieved goal space is identical to the action
space. If an agent takes action [1, 0, 0] without colliding, it will have

21

3.5. Implementation

achieved the goal [1, 0, 0].

Collision detection

When an agent attempts to move, we check for collisions by raytracing
along a straight line from the original position to the target position. If
all voxels in the path of the line are free, including the final voxel, the
move is allowed. Otherwise the move would cause a collisions, and the
agent stays in its current position. In the case of a collision, the achieved
goal is set to zero, and the reward function will not reward such a move
even when HER applies goal substitution.

3.5.2 Agent

The agent, also utilizing the Gym interface, comes from OpenAI
Baselines Dhariwal et al. 2017. Baselines is an open source code
repository containing agent implementations from several papers by
OpenAI. The agent used in this thesis builds on Hindsight Experiment
Replay.

HER was initially used to control a robot arm for picking or pushing
objects in a simulator. The agent used a universal value function-based
policy outputting continuous position offsets as actions. Those robot
arm tasks were in some aspects similar to the ones we will experiment
on in this thesis, making the Baselines HER implementation an obvious
choice. A substantial benefit of using an existing implementation lies in
avoiding a vast number of potential implementation bugs. With tried
and tested code we can eliminate most, if not all, sources of error from
the agent implementation and instead focus on other aspects likely to
affect the experiments.

Parallelism

To be able to execute the experiments in a reasonable amount of time we
require parallelism. The implementation uses multiprocess parallelism
with OpenMPI, just as in the original HER experiments. Unlike the
original experiments which used 19 cores, these experiments ran with
12 hyper-threads on six physical cores. The number of cores affects the
training results because gradients average across all running cores, and
fewer cores can increase the magnitude of gradients. This effect from
the number of cores is significant for reproducing results, and thus all
experiments are run on the same number of cores/hyper-threads.

Hyperparameter tuning and Neural Network Architecture

The policy uses three hidden layers of 256 nodes per layer, just as in
the original HER experiments. We have used the same hyperparamers
for DDPG and HER as in the original HER experiments. These are
listed in appendix B. We have not performed hyperparameter tuning

22

3.5. Implementation

nor experimented with different architectures due to limited time and
computational resources.

23

4 | Results

This chapter describes some learning tasks and the experiments
performed on them. We use the implementation described in chapter ??
based on the methods described in chapter 3. The two overall goals of
these experiments are to a) provide a baseline of which tasks the method
can or cannot solve, and b) see how different parameters affect the
success rate on the same learning task. The learning tasks, parameters,
experiments, and results will be presented separately for each task in
section 4.4.

4.1 Training and testing
Each experiment is executed five times in sequence with different
random seeds to control for the effects of randomness and account
for variation when measuring success rates. Each experiment runs
for 100 epochs per seed, with one epoch consisting of 100 episodes
trained in parallel on each of 16 cores, for a total of 1600 training
episodes per epoch and 160000 training episodes per experiment
seed. Each core executes the experiment independently, with separate
random seeds, experience replay buffers, policy networks, seeds, and
environments. Policy weight gradients, however, are averaged across
cores to combine their shared experience. At the end of each epoch,
each core independently tests its current policy on 20 episodes, and the
average success rate across all cores and test episodes is recorded for
that epoch. Policy weights are randomly initialized for each core at the
beginning of the experiment.

4.2 Evaluation
Each episode succeeds if and only if the agent reaches the goal within
a small distance tolerance. Policies are evaluated at the end of each
epoch by running them without random exploration on 20 test episodes
per core, for a total of 120 test episodes per epoch. The average success
ratio is recorded as a measure of policy performance at that epoch,
and we can plot the success ratio as a function of epochs. Because
we are running five separate experiments with different random seeds,
we plot the mean average success rate across all five experiments as
well as the 95th percentile confidence interval. Re-running experiments

25

4.2. Evaluation

with multiple random seeds is in line with the recommendations by
Henderson et al. 2017, which suggest best practices for Reinforcement
Learning research.

4.2.1 Metrics

We will evaluate the policy using five metrics.

Success rate during training as a function of time. During train-
ing, the policy should improve. We can measure improvement
with the ratio of successful test episodes at the end of each epoch.
This metric also allows us to compare the rate of improvement
for different experimental setups, e.g. when comparing sparse and
dense rewards. We train the policy five time with different random
seeds, and plot the median success rate as a function of epochs, as
well as interquartile range as a measure of variation. Values are
smoothed over five time steps to reduce noise. Some experiments
have a zero success rate throughout training. The success rate
plots are omitted for those experiments.

Distance to goal at each time step. After training a policy, we can
evaluate it on one or more episodes.

Cosine similarity between action and desired goal. The policy takes
a vector with the relative position of the goal, and outputs an ac-
tion with a relative position to move to. If there are no obstacles,
the most efficient direction to move in is directly towards the goal.
The cosine similarity between the two vectors give us a measure of
how close their directions are, regardless of their magnitudes. Cal-
culating cosine similarity yields a number in the range [−1,1], with
1 meaning the directions of the vectors are the same, -1 meaning
they are opposite, and 0 that they are orthogonal.

Action magnitude relative to longest possible step in direction of goal.
While cosine similarity gives us a measure of direction, we’re also
interested in the magnitude of actions. To normalize across di-
rections we calculate the action vector magnitude divided by the
magnitude of the relative goal vector limited to the maximum step
size. This gives a ratio in the range (0,1], with 0 indicating no
movement, and 1 indicating an optimal step size if there are no
obstacles.

Cumulative number of collisions Measuring the cumulative num-
ber of collisions gives us a picture of when and how often policies
cause the agent to crash. As policies are deterministic when not
training, a crash indicates the end of an episode. The metric in
itself is not all that useful, but when displaying information from
multiple episodes with different seeds, can give and indication of
weather policies tend to cause collisions or not.

26

4.3. Parameters

Some learning environments are deterministic, and other random-
ized. Deterministic environments are those with fixed start and goal
positions. Randomized environments have either a randomized starting
position, a randomized goal position, or both. When evaluating policies
on deterministic environments, a single trial is ran. On ranomized envi-
ronments, however, multiple episodes can be run with different random
seeds. For randomized environments, we run 100 episodes and plot the
median values as well as the interquartile ranges.

In addition to the metrics above, we also visualize the octree and
movement of the agent in octree space. These plots show a 2D projection
along each axis of the 3D octre space. Each voxel, in red, indicate
average occupancy. The agents starting position is indicated with a
blue circle, and the goal position with a green circle. Movement at each
time step is indicated with a blue line ending in a cross. If the agent
collides, a larger, red cross is shown at the position where the colliding
movement was taken. The maximum step size is symbolized with a red
square centered on the agents position.

Because OctoMap uses probabilistic sensor measurements, some
voxels near walls are free or occupied even when point cloud data
suggeest that they should not be. This is reflected in octree plots
as white pixels outside walls, or colored pixels in the middle of an
otherwise empty room. Partially colored pixels do not mean that all
voxels are occupied, nor that occupied voxels float in empty space. They
simply indicate that some voxels are occupied along the aggregated
timension, usually outside or directly inside the walls.

4.3 Parameters
A handful of parameters control each experiment. Here we describe the
parameters and what part of the experiment they control. Note that
the parameters controlling programmatic octree scene creation are not
applicable to experiments run on pre-created octrees. These parameters
are the resolution as well as the room size and origin.

max episode steps The episode ends after this many steps, or when
the goal is reached, whichever comes first.

max step size The maximum distance of octree meters which the
agent can move along each of the three octree axes. The max step
distance effectively controls the scale of the action and goal spaces
with regards to the octree space.

visual range A parameter controlling the observable space and num-
ber of sampled voxels. Described in section 3.2.

resolution The length of a voxel measured in octree meters, only
applicable when generating octrees. If the resolution is one octree
meter, each voxel will occupy a 1 x 1 x 1 meter-sized region of
octree space.

27

4.4. Tasks

Room size and origin Applicable only when generating an octree
with an empty room inside four walls, floor, and ceiling. The
parameter gives the size in octree space meters between the walls,
and the origin tells where the center of the room is in octree space.
A room size of (10, 2, 2) centered on origin (5, 1, 1) will make a
corridor starting at (0, 0, 0).

Start range Two points in octree space which define the region from
which the initial position is uniformly sampled. If both points are
the same, the initial position is constant.

Goal range Two points in octree space defining the uniform goal
sampling region, similar to the start range.

Distance threshold A Euclidian distance in octree space. If the agent
moves closer to the goal than this distance, the episode ends
immediately and is considered a success.

Reward type Sparse or dense. If the reward is sparse, a binary 0
or -1 is given for being within the goal distance threshold or
not, respectively. If dense, the reward is the negative Euclidian
distance to the goal. Described in section ??.

Observation type Continuous or discrete. Discrete observations use
booleans 0 or 1 to indicate free or occupied voxels, respectively.
Continuous observations contain collision probabilities as modeled
by the octree. Described in section 3.2.

4.4 Tasks

The learning tasks were chosen to evaluate different aspects of
the model at increasing difficulties. Experiments are run with
different rewards types and observations, and success rates are plotted
individually. We’ll give an overview of each experiment here before
describing them in detail in individual sections.

Fixed start, random goal, no obstacles (section 4.4.1)
This first experiment places the agent in the center of a room
without obstacles. A goal is randomly sampled from within two
maximum step sizes from the agent, and the agent has to reach it
in two time steps. Different reward and observation functions are
used and compared against each other. The experiment provides
an initial indication of the feasability of the method used, as well
a comparison of reward and observation types.

Fixed start and goal positions, no obstacles (section 4.4.2)
The second experiment occurs over 100 time steps in a larger,
empty room. The start and goal positions are fixed at opposite
ends of the room, and there are no obstacles in between. The

28

4.4. Tasks

experiment gives an indication of how prone the method is to get
stuck in local minima, as well as the model’s ability to overfit.

Randomized start and goal positions, no obstacles (section 4.4.3)
The third experiment is similar to the second, but randomizes the
start and goal positions so they are opposite ends of the room.
There are no obstacles between them. The experiment is intended
to measures how well the model generalizes.

Fixed start and goal positions, with obstacle (section 4.4.4)
The fourth and final experiment is similar to the second, in that
start and goal positions are fixed at opposite ends of the room.
This time there is an obstacle, a floating wall with blocking the
center path. There are four openings through which the agent can
pass. This final experiment compares two different observation
and step sizes (near and far), unlike the earlier experiments. The
experiment measures if the model able to avoid collisions through
its observation.

The first experiment differs from the rest by having only two time
steps, a smaller room size, and also compares combinations of different
reward and observation functions.

The rest of the experiments are similar to each other and vary only
in starting and goal positions, the presence of absence of a wall in the
center of the room, as well as the step size (for the final experiment).
All use sparse rewards and continuous observations because they
performed favorably in the first experiment. The experiments also take
place in a larger room and gives the agent up to 100 time steps to
complete an episode.

4.4.1 Random directions

In this task, illustrated in figure 4.2, the agent starts at a fixed position
in the middle of a small, empty room. Goals are sampled randomly
from within the room so that goals can be in any direction from the
agent. With the goal sampling space being twice the size of the action
space, some goals will be reachable in one time-step and some in two
time-steps. The agent has two time-steps to complete the goal.

29

4.4. Tasks

Figure 4.1: A 2D illustration of the 3D random directions task. The
agent starts in the same position (red circle) every time. The goal
position is sampled from within the green square, which can give a goal
in any direction from the agent. The blue square indicates the action
space, and the red the observation space. Both are relative to the agents
position at any time step.

The task is intended to provide a baseline for how quickly (and if
at all) the policy network learns to match actions with goals. Because
there are no obstacles between the agent and the goal, the occupancy-
parts of the observation are irrelevant, and the agent can always move
towards the goal in a straight line. The experiment also compares
different reward and observation types. We run the experiment with
four different combinations of sparse and dense rewards, as well as
discrete and continuous observations.

Parameters

Parameter Value
max episode steps 2 timesteps
max step size 1 meter
resolution 1 meter
room size and origin 5 x 5 x 5 meters centered on (0, 0, 0)
start position (0, 0, 0)
goal range (-2, -2, -2) to (2, 2, 2)
distance threshold 0.5 meters
visual range 1
reward type sparse or dense
observation type continuous or discrete

30

4.4. Tasks

Outcome

Figure 4.2: Median success rate as a function of epoch on the random
directions task, with shaded area indicating interquartile range over
five trials with different random seeds. Values are smoothed over 5
epochs to decrease noise.

We trained four variations of policies with five different random seeds
each for 100 epochs on 32 cores, for a total of 6400000 episodes.
Figure 4.2 compares success rates for the four different variations. We
immediately notice that none of the trained policies achieve a higher
success rate than 20%. Also, the experiment with sparse rewards
and continuous occupancy observations achieve the highest success
rate with a small interquartile range. The lowest score is obtained
with dense rewards and discrete observations. In between lie the last
two observations at similar values. However the variation with dense
rewards and continuous observations have the highest variation, much
higher than the others.

Figures 4.3 and 4.4 visualises the final policy for the sparse,
continuous experiment. We can see from figure 4.4 that agents do not
collide, but that they also move away from the goal. The first step moves
towards the goal, but the second moves away. This is reflected in both
the goal distances as well as the cosine similarities.

31

4.4. Tasks

Figure 4.3: A visualization of an agent’s movement in a single episode
using a policy trained for 100 epochs.

Figure 4.4: Visualization of the octree and a trained policy on the sparse,
continuous random directions environment.

32

4.4. Tasks

4.4.2 Empty corridor with deterministic positions

This experiment places the agent in a corridor without obstacles. Both
the starting and goal positions are constant. This experiment tests if a
policy can overfit to an environment. Testing for overfitting will give us
an indication of the feasability of the proposed method, particularily for
using HER with continuous domains.

Parameters

Parameter Value
max episode steps 200 timesteps
max step size 3.5 meters
resolution 1 meter
room size and origin 20 x 10 x 10 meters centered on (0, 0, 0)
start position (-7.5, 0, 0)
goal position (7.5, 0, 0)
distance threshold 0.5 meters
visual range 1
reward type sparse
observation type continuous

Outcome

Training for 100 epochs yields a zero percent success rate, even with
five different random seeds. In figure 4.5 we can see the agent moving
straight into the wall. This is illustrated with a large red X that
represents a collision. We will discuss why this happens in chapter 5.

33

4.4. Tasks

Figure 4.5: Visualization of an episode after training in an empty
environment with fixed positions.

Figure 4.6: Evaluation metrics for one episode on a trained policy for
the empty, deterministic environment.

34

4.4. Tasks

4.4.3 Empty room with randomized positions

This experiment randomizes starting and goal positions to avoid
overfitting. The start area is in one end of the room, and the goal area
in the other. At the beginning of each episode a start and goal position
is uniformly sampled from the start and goal areas.

Parameters

We use the same parameters as in section 4.4.2, but with the following
changes.

Parameter Value
start range (-8, -4, -4) to (-7, 4, 4)
goal range (7, -4, -4) to (8, 4, 4)

Outcome

Figure 4.7 shows an agent failing to move from the start to the goal
position during a single episode. Instead, the agent collides with the
wall. Figure 4.8 shows us several things. For one, the policy collides
after a small number of time steps, never managing to complete the 200
time step episode. Secondly, distance to goal decreases for a few steps,
and then stops decreasing. The step direction is slightly in the direction
of the goal.

Figure 4.7: Example of policy trying and failing to move from a
randomly chosen position at one end of the room to a randomly chosen
goal position at the opposite end.

35

4.4. Tasks

Figure 4.8: Evaluation metrics on 100 episodes of the EmptyRandom-
ized task with a trained policy. Lines show median values, shaded areas
show interquartile ranges.

4.4.4 Navigating around a wall from fixed positions

In this experiment we use the same setup as in the empty room with
fixed positions, but insert a wall in the center. We test with two different
visual ranges and corresponding step sizes. The "near" visual range
is the same as in the previous experiments. The "far" visual range is
slightly larger than the octree space.

Parameters

We use the same parameters as in section 4.4.2, but with the following
modifications.

Parameter Value
wall range (-1, -4, -4) to (1, 4, 4)
visual range 1 or 3

Outcome

After training for 100 epochs, the success rate is zero.

36

4.4. Tasks

Figure 4.9: Visualization of a trained policy in a walled environment
with "near" observations.

Figure 4.10: Evaluation metrics on an episode of the "near" walled
environment with a trained policy

37

4.4. Tasks

Figure 4.11: Movement of a trained policy on the "far" walled
environment.

Figure 4.12: Evaluation metrics on an episode of the "far" walled
environment with a trained policy.

38

5 | Discussion

The goals of this thesis were to design and implement a method
of applying Reinforcement Learning to octree navigation, assess the
feasability and properties of the new method experimentally, and finally
explore how different environment properties affect learning outcomes.

Reinforcement Learning was applied in simulation with sampling-
based octree observations and continuous action spaces, as well as with
goals suitable for use with Hindsight Experience Replay. The resulting
Python implementation conformed to the OpenAI Gym interface.

The metod was tested experimentally using an off the shelf baseline
DDPG implementation, with and without HER, with sparse and shaped
rewards, on continuous and discrete occupancy observations, as well as
with different step and observations sizes.

Experiments followed two broad lines; The first line of experiments
compared four combinations of reward and observation functions on
very short episodes with randomized goal positions. The second line of
experiments used the best performing observation and reward functions
from the first, but we will get back to that in section 5.2 after discussing
the results of the first line of experiments.

5.1 Reward and observation functions

Figure 4.2 shows that sparse rewards combined with continuous
observations yielded the greatest success rates. This is in line with
the findings by Andrychowicz et al. which showed that sparse rewards
combined with HER outperformed shaped rewards without HER. The
improved succes rates might arise from three properties of HER: a) The
end goal is more clearly defined with sparse rewards than with dense,
b) HER introduces data-augmentation which increases both the number
and diversity of samples the neural networks trains on, and c) HER acts
as an implicit curriculum shaping the agents behaviour towards better
generalization over goals.

Dense rewards combined with discrete occupancy observations had
the lowest success rates. Why discrete observations has this effect is
unclear, but might arize from the fact that that neural networks are
unable to generalize well over what is effectively sparse and dissimilar
input.

Two combinations performed similarly: a) Dense rewards with con-

39

5.2. Larger octree spaces

tinuous observations, and b) sparse rewards with discrete observations.
The former has a much larger interquartile range, suggesting that re-
sults are highly affected by randomness. The latter has a slightly higher
and less variable success rate.

Even the best-performing combination of reward and observation
functions plateued at less than a 20% success rate. This low success
rate coninus in the remaining experiments. We will discuss the possible
causes in section 5.3.

5.2 Larger octree spaces

The other line of experiments used a larger octree space with and with-
out obstacles, with deterministic and randomized start and goal posi-
tions, as well as with different step sizes. All these experiments yielded
a zero percent success rate, meaning that the agent never reached the
goal, suggesting issues with methodology or implementation. To obtain
qualitative and quantitative measures of the training outcomes regard-
less, trained policies were visualized and evaluated on a handful of met-
rics described in section 4.2.1.

The looking at the metrics across all experiments seem to suggest
that the agent is unable to learn effective actions for accomplishing
even immediate goals. The step sizes are generally low, and the cosine
distances do not correlate with the direction of the goals.

The experiment with fixed positions and no obstacles, described in
section 4.4.2, is meant to test the models ability for rote learning. The
policy initially moves the agent closer to the goal, but then begins
moving orthogonally to the goal direction, decreases its step size and
finally collides with the wall.

5.3 General discussion

Essentially, as many RL researchers before us, we are left with a
fundamental problem of attribution. There are a vast number of factors
that can have contributed to the poor results in our experiments, and
the difficulty of figuring out which compounts when using RL and
neural networks. We will go into some of them here.

Randomness Reinforcement Learning is very susceptible to random-
ness, as pointed out by Henderson et al. 2017 in their research into
reproducability and methodology when working with RL.

Local minima Because model-free RL requires the agent to explore a
lot, and the state space is continuous, the agent might not be able
to explore enough to train a suitable policy. Instead, the policy
might get stuck in a local minima, finding a sub-optimal solution
and never improving to the optimal solution.

40

5.4. Future work

Collision handling When the agent attempts a move that would
cause a collision, it does not change position at all. This design
choice might even worsen the problem of local minima, because
some actions are essentially no-ops.

Choice of neural network architecture The neural networks used
in the agent have the same architectures as in the original HER
experiments. Changing the number of layers, number of hidden
nodes per layer, and the activation functions used, might result in
different outcomes. This has not been explored at all in this thesis,
and the poor experiment results might be caused by insuffucient
or overly complex model capacity.

Lack of hyperparameter tuning Hyperparameters have not been
tuned. Hyperparameters like learning rates, exploration rate,
and weight penalty (for regularization) can strongly affect the
outcome of RL experiments. There are several possible methods
for hyperparameter tuning, but a random search can yield good
results. This has not been done due to limited computation
resources.

The experiments overall do not indicate that RL applied to octree
navigation is a promising line of research. On the other hand, the
results also do not indicate that the method could not eventually
be feasable given further research. Because RL introduces many
confounding variables that are difficult to account for when designing
experiments, the results are inconclusive as to whether this approach is
promising or not.

The thesis did, however, succeed in formulating a novel RL
approach to 3D navigation with octrees, as well as provide a working
implementation in the form of an OpenAI Gym environment. The
experiments can serve as a baseline for further research, and might
point in a direction of research that can eventually bear fruit.

This thesis provides a novel research contribution by exploring a
new application of Reinforcement Learning that has not been published
before.

If we go back the SAR drone scenario described in chapter ??, the
methods proposed in this thesis would not be suitable due to reasons
mentioned above. A better solution with our current technology might
be traditional path planning algorithms.

5.4 Future work

This section contain ideas that have emerged in the late phases of the
thesis and that could potentially lead to further improvement.

41

5.4. Future work

5.4.1 Experiments on network architecture and hyperpa-
rameters

The method might be improved through different hypeparameter
settings or different network architectures. For hyperparameter tuning,
a random search might be applied. For network architecture different
activation function like ReLu could yield better results, as well as
deeper networks with more layers, weights per layer or both. Such a line
of research would simply require more time and computing resources.

5.4.2 Scale-invariant navigation

The method proposed in this thesis uses normalization to formulate
resolution-invariant action and goal spaces in units of maximum step
size. Instead of using a constant normalization factor throughout the
episode, the environment could variate the scale at every time step. This
would effectively change the depth at which observations are sampled,
scaling voxel sizes down or up along with step sizes. The resulting policy
would be scale-invariant without any modification to the agent. When
the agent traverses highly compressed areas of the octree space, with
shallow leaf nodes, the step size would naturally increase.

5.4.3 Observing through raycasting

An alternative kind of observation function could be implemented using
raycasting. The agent could observe its environment through a finite-
sized point cloud. We can imagine a bunch of rays shooting out from
the position of the agent, and each ray records the distance until it
reaches an obstacle. The observation would be the vector of these
distances. These observations would let the agent "sense" distance, but
because they stop at the first obstacle the agent would not be able to
receive information from beyond walls. Some nearby obstacles could
also escape observation if they fall just outside of the sampling rays.
These observations might be more time-costly to compute but provide
features could be easier to learn from for the agent. Raycasting could
possibly scale better and give the agent access to a larger observable
space.

42

5.5. Conclusion

5.4.4 Application to a robot arm

Figure 5.1: Illustration of a possible
experiment setup. The goal of the
agent would be to move the hand of
the robot arm to a target position
without colliding with the obstacle.

Some recent RL experiments train
robot arms in end-to-end policies
from camera input to joint angles
or torques. Octomaps could be
tested as a component in this kind
of setup. Such experiments could
set a robot arm at an initial posi-
tion, and train it to move towards
a fixed goal with some static ob-
stacles in between. Figure 5.1 il-
lustrates the experiment setup.

The method described in this
thesis could be (heavily) adapted
to this type of application.

5.4.5 Observability

The method in the thesis introduces partial observability by only letting
the agent observe the region of octree space near the agent. The thesis
does not deal with this partial observability, but could have done so. To
create general policies that could navigate any octree, the agent would
have to either use memory or observe the entire octree space.

Memory can be implemented with recurrent neural networks. This
would essentially require observations from multiple time steps to be
fed into the network before taking an action from the final time step.

We could give the agent full observation of the environment through
low-resolution observations of the entire octree space. The experiment
4.4.4 with a "far" visual range does this to some extent, but the effects
of this are not explored at all in this thesis.

5.5 Conclusion
In this thesis we designed a method for applying Reinforcement Learn-
ing to 3D octree navigation using Hindsight Experience Replay, and
implemented the method as OpenAi Gym environments. Experiments
were carried out and showed that the combination of sparse rewards
with continuous observations yielded higher success rates. Success
rates were low on simple tasks and zero on more complex ones. The
causes of the low success rates were not determined conclusively, and
the results do not allow us to conclude if applying RL to octree nav-
igation is feasable. Additional research is needed and might produce
positive results.

43

Bibliography

Andrychowicz, Marcin et al. (2017). “Hindsight Experience Replay.” In:
arXiv: 1707.01495.
http://arxiv.org/abs/1707.01495
(cit. on pp. 10, 11, 13, 39).

Brockman, Greg et al. (2016). “OpenAI Gym.” In: arXiv: 1606.01540.
http://arxiv.org/abs/1606.01540
(cit. on p. 20).

Dhariwal, Prafulla et al. (2017). OpenAI Baselines. \url{https://github.com/openai/baselines}
(cit. on p. 22).

Heess, Nicolas et al. (2017). “Emergence of Locomotion Behaviours in
Rich Environments.” In: arXiv: 1707.02286.
http://arxiv.org/abs/1707.02286
(cit. on p. 18).

Henderson, Peter et al. (2017). “Deep Reinforcement Learning that
Matters.” In: arXiv: 1709.06560.
http://arxiv.org/abs/1709.06560
(cit. on pp. 9, 15, 26, 40).

Hornung, Armin et al. (2013). “OctoMap: an efficient probabilistic 3D
mapping framework based on octrees.” In: Autonomous Robots 34.3,
pp. 189–206. ISSN: 0929-5593. DOI: 10.1007/s10514-012-9321-0.
http://link.springer.com/10.1007/s10514-012-9321-0
(cit. on pp. 5, 6).

Langston, Rosamund F et al. (2010). “Development of the spatial
representation system in the rat.” In: Science (New York, N.Y.)
328.5985, pp. 1576–80. ISSN: 1095-9203. DOI: 10 . 1126 / science .
1188210.
http://www.ncbi.nlm.nih.gov/pubmed/20558721
(cit. on p. 1).

Lillicrap, Timothy P. et al. (2015). “Continuous control with deep
reinforcement learning.” In: arXiv: 1509.02971.
http://arxiv.org/abs/1509.02971
(cit. on p. 11).

Mahmood, A. Rupam et al. (2018). “Setting up a Reinforcement
Learning Task with a Real-World Robot.” In: arXiv: 1803.07067.
http://arxiv.org/abs/1803.07067
(cit. on p. 15).

45

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1709.06560
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1126/science.1188210
https://doi.org/10.1126/science.1188210
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1803.07067

Bibliography

Schaul, Tom et al. (2015). “Universal Value Function Approximators.”
In: Proceedings of The 32nd International Conference on Machine
Learning, pp. 1312–1320. ISSN: 1938-7228.
http : / /machinelearning .wustl .edu /mlpapers /paper%7B%5C_%7Dfiles /
icml2015%7B%5C_%7Dschaul15 .pdf%20http : / / jmlr. org /proceedings /
papers/v37/schaul15.html
(cit. on p. 10).

Wikipedia:Vossman (2017). File:Voxels.svg - Wikipedia.
https://en.wikipedia.org/wiki/File:Voxels.svg
(visited on 05/15/2018) (cit. on p. 5).

Wikipedia:WhiteTimberwolf (2010). File:Octree2.svg - Wikipedia.
https://en.wikipedia.org/wiki/File:Octree2.svg
(visited on 05/15/2018) (cit. on p. 6).

46

A | Code

A.1 Environments

1 # This implementation builds on ideas and a few minor code snippets
2 # from the robotics environments in OpenAI Gym, particularily from
3 # https://github.com/openai/gym/blob/v0.10.3/gym/envs/robotics/fetch_env.py
4 # Gym is distributed under the MIT license. See LICENSING for details.
5
6 from itertools import product, starmap, repeat
7 import os
8 from pprint import pprint
9 from collections import OrderedDict

10 from collections import namedtuple
11 from functools import partial
12
13 import numpy as np
14 import gym
15 import gym.utils.seeding
16 import octomap
17 from baselines import logger
18
19 registry = gym.envs.registration.EnvRegistry()
20
21 # Create a helper function to load octree files from disk
22 data_path = partial(os.path.join, os.path.dirname(__file__), '..', 'data')
23
24 def euclidian_distance(a, b):
25 return np.linalg.norm(a - b, axis=-1).astype(np.float32)
26
27 class OctreeEnvironment(gym.GoalEnv):
28 def __init__(self, *, octree, start_range, goal_range, distance_threshold,
29 visual_range, reward_type, observation_type, max_step_size=None,
30 depth=None, end_on_collision=False):
31 self.end_on_collision = end_on_collision
32
33 if callable(octree): # Factory function
34 log_dir = logger.get_dir()
35 path = log_dir and os.path.join(log_dir, 'environment.bt')
36 if log_dir is None: # If we're running from py.test
37 octree = octree()
38 elif not os.path.exists(path): # First call during this experiment
39 octree = octree() # Actually create the octree
40 # Write the tree from file
41 logger.info(f"Writing octree to {path!r}...")
42 with open(path, 'wb') as f:
43 f.write(octree.writeBinary())
44 else: # The original tree was already created
45 octree = path # Read it below
46
47 if isinstance(octree, str): # Path to octree file
48 assert octree.endswith('.bt') or octree.endswith('.ot')
49 open(octree, 'rb').close() # Test that the file can be opened
50 octree = octomap.OcTree(octree.encode())

47

A.1. Environments

51
52 assert isinstance(octree, octomap.OcTree)
53 self.tree = octree
54
55 assert visual_range >= 0
56 self.visual_range = visual_range
57 self.depth = depth or self.tree.getTreeDepth()
58 assert 0 < self.depth <= self.tree.getTreeDepth()
59 self.resolution = (self.tree.getResolution()
60 * (2 ** (self.tree.getTreeDepth() - self.depth)))
61 assert max_step_size is None or max_step_size > 0
62 self.max_step_size \
63 = np.float32(max_step_size \
64 or (self.resolution * ((2 << visual_range) - 0.5)))
65
66 # Start and goal ranges can be either a single position (shape
67 # 3) or a range of positions (shape 2 x 3). Broadcasting to
68 # here will cover both cases correctly when sampling uniformly.
69 self.start_range = np.broadcast_to(start_range, (2, 3))
70 self.goal_range = np.broadcast_to(goal_range, (2, 3))
71 # TODO: Verify that goal and start ranges are free of obstacles
72 low, high = np.array((self.tree.getMetricMin(), self.tree.getMetricMax()))
73 assert ((low <= self.start_range) & (self.start_range <= high)).all()
74 assert ((low <= self.goal_range) & (self.goal_range <= high)).all()
75 self.distance_threshold = distance_threshold
76 assert reward_type in ('sparse', 'dense')
77 self.reward_type = reward_type
78 assert observation_type in ('discrete', 'continuous')
79 self.observation_type = observation_type
80
81 # Set up spaces and reward range
82 self.seed()
83 obs = self.reset()
84
85 # We'll scale goals by max_step_size
86 goal_space = np.array(self.tree.getMetricSize()) / self.max_step_size
87 self.observation_space = gym.spaces.Dict(dict(
88 desired_goal=gym.spaces.Box(low=-goal_space, high=+goal_space,
89 dtype=np.float32),
90 achieved_goal=gym.spaces.Box(low=-1, high=+1,
91 shape=goal_space.shape,
92 dtype=np.float32),
93 observation=gym.spaces.Box(low=0, high=1, # Booleans
94 shape=obs['observation'].shape,
95 dtype=obs['observation'].dtype)
96))
97 assert self.observation_space.contains(obs)
98
99 # The action space will be a continus, three-dimensional space

100 # of relative positions, but scaled so position + action *
101 # step_size gives a new position. We restrict the size of the
102 # action space so the agent can't move further than it can
103 # see.
104 self.action_space = gym.spaces.Box(low=-np.ones(3), high=np.ones(3),
105 dtype=np.float32)
106
107 self.reward_range = ((-1.0 if self.reward_type == 'sparse' else -np.inf), 0.0)
108
109
110 def seed(self, seed=None):
111 self.random, seed = gym.utils.seeding.np_random(seed)
112 return [seed]
113
114 def reset(self):
115 self.position = self.random.uniform(*self.start_range).astype(np.float32)
116 self.goal = self.random.uniform(*self.goal_range).astype(np.float32)
117 # TODO: Assert that goal and positions are empty
118 self.collisions = np.uint32(0) # Control the size to prevent overflows

48

A.1. Environments

119 self.last_achieved_goal = np.zeros(3, dtype=np.float32)
120 return self._get_obs()
121
122 def _is_occupied(self, position):
123 inside_bounds, key = self.tree.coordToKeyChecked(position.astype(float))
124 if not inside_bounds:
125 return True # Nodes outside bounds are considered occupied
126 node = self.tree.search(key)
127 try:
128 return self.tree.isNodeOccupied(node)
129 except octomap.NullPointerException:
130 # Sorry about this, but the octomap wrapper library has a strange API
131 return False # Missing key
132
133 def _get_obs(self):
134 """Return an observation for the current position"""
135
136 # Directions: (0, 0, -1), (0, 1, -1), etc.
137 directions = np.asarray(list(product(*repeat((0, -1, 1), 3)))[1:],
138 dtype=float)
139 observation = np.empty(len(directions) * self.visual_range, dtype=np.float32)
140 for i in range(self.visual_range):
141 resolution = self.resolution * (2 ** i)
142 depth = self.depth - i
143 magnitude = 1 if i == 0 else (resolution + 0.5)
144
145 for j, direction in enumerate(directions):
146 position = self.position + direction * magnitude
147 # Find the node, or a leaf node higher up in the tree
148 # covering the same area.
149 node = self.tree.search(position, depth)
150 try:
151 if self.observation_type == 'discrete':
152 occupancy = self.tree.isNodeOccupied(node)
153 else:
154 assert self.observation_type == 'continuous'
155 occupancy = node.getOccupancy()
156 except octomap.NullPointerException:
157 # Node does not exist, so the area is unmapped, i.e. unknown
158 occupancy = 1 # Assume unmapped areas are occupied
159 observation[i * len(directions) + j] = occupancy
160
161 # We use Hindsight Experience Replay (HER), so we need to
162 # output both the desired goal and the achieved goal
163 return {
164 'observation': observation,
165 'achieved_goal': self.last_achieved_goal, # Already scaled
166 'desired_goal': (self.goal - self.position) / self.max_step_size,
167 }
168
169 def _would_collide(self, offset):
170 # Now we need to check for collisions. Due to limitations in
171 # the octomap API, and to guard against implementation errors,
172 # this will be done in seven(!) steps:
173
174 target = self.position + offset
175
176 # 1. Is the current position within bounds? (it should be)
177 valid, key = self.tree.coordToKeyChecked(self.position.astype(float))
178 assert valid
179
180 # 2. Is the current position free? (it should be)
181 node = self.tree.search(key)
182 try:
183 occupied = self.tree.isNodeOccupied(node)
184 except octomap.NullPointerException: # Weird API, I know.
185 assert False # The node is unknown. This should never happen
186 else:

49

A.1. Environments

187 assert not occupied # The agent is standing inside a wall. Oh no!
188
189 # 3. Is the target position within bounds?
190 valid, new_key = self.tree.coordToKeyChecked(target.astype(float))
191 if not valid: # new position is out of bounds
192 return True # Would collide
193
194 # 4. Did the agent move at all?
195 if new_key == key:
196 return False # No collision because the agent is within the same voxel
197
198 # 5. Is the target position not free?
199 node = self.tree.search(new_key)
200 try:
201 occupied = self.tree.isNodeOccupied(node)
202 except octomap.NullPointerException: # Weird API, I know.
203 occupied = True # Treat unknown nodes as occupied
204 if occupied:
205 return True # Would collide
206
207 # 6. Is there occupied space between the two positions?
208 hit_position = np.full(3, np.inf, dtype=float)
209 hit = self.tree.castRay(origin=self.position.astype(float),
210 direction=target.astype(float),
211 end=hit_position, # Written to by castRay
212 maxRange=np.linalg.norm(offset))
213 # Description of castRay from octomap documentation: A ray is
214 # cast from 'origin' with a given direction, the first
215 # non-free cell is returned in 'end' (as center
216 # coordinate). This could also be the origin node if it is
217 # occupied or unknown. castRay() returns true if an occupied
218 # node was hit by the raycast. If the raycast returns false
219 # you can search() the node at 'end' and see whether it's
220 # unknown space.
221 if hit:
222 return True # Would collide
223
224 # 7. Is there unknown space between the two positions?
225 if not np.isinf(hit_position).all(): # Was hit_position written to?
226 node = self.tree.search(hit_position)
227 try:
228 occupied = self.tree.isNodeOccupied(node)
229 except octomap.NullPointerException: # Weird API, I know.
230 return True # Would collide with unknown node
231 else:
232 assert False # This should never happen
233
234 assert np.isinf(hit_position).all()
235
236 # Some final checks, just to be sure we never ever step outside the octree
237 low, high = np.array((self.tree.getMetricMin(), self.tree.getMetricMax()))
238 assert all(low <= target)
239 assert all(target <= high)
240
241 return False # No collision
242
243 def step(self, action):
244 assert self.action_space.contains(action)
245 scale = self.max_step_size
246 assert scale > 0
247
248 # Determine if the agent would collide
249 offset = action * scale
250 collision = self._would_collide(offset)
251
252 # Remember the previously desired goal, to make sure we
253 # calculate the correct reward later
254 desired_goal = (self.goal - self.position) / scale

50

A.1. Environments

255 achieved_goal = (action.copy() if not collision else np.zeros_like(action))
256
257 # Modify the state of the environment
258 if not collision:
259 self.position = self.position + offset
260 elif self.collisions < np.iinfo(type(self.collisions)).max:
261 # Protected against overflowing
262 self.collisions = self.collisions + 1
263 self.last_achieved_goal = achieved_goal
264
265 # Done?
266 distance = euclidian_distance(self.position, self.goal)
267 is_success = (distance <= self.distance_threshold)
268 done = is_success or (collision and self.end_on_collision)
269
270 # Reward
271 info = dict(is_success=is_success, collision=collision, scale=scale)
272 reward = self.compute_reward(achieved_goal, desired_goal, info)
273 assert self.reward_range[0] <= reward <= self.reward_range[1]
274
275 # Get new observation from octree
276 observation = self._get_obs()
277 assert self.observation_space.contains(observation)
278
279 return observation, reward, done, info
280
281 def compute_reward(self, achieved_goal, desired_goal, info):
282 # Compute the reward. In our case, the achieved goal is chosen
283 # in step() to be the action the agent actually took or zero
284 # if it would have collided. This function must work on both
285 # vectorized batches (when called from HER) and single samples
286 # (when called from step()). Note that desired goal might be a
287 # substituted goal if generating experiences in hindsight, in
288 # which case the achieved and desired goals will be the same.
289
290 # Both achieved and desired goals are in goal space, which has
291 # the same scale as the action space but can contain larger
292 # values. We need to scale the goals before comparing them
293 # with the distance threshold.
294 scale = self.max_step_size
295 assert scale > 0
296 distance = euclidian_distance(achieved_goal, desired_goal) * scale
297
298 if self.reward_type == 'sparse':
299 is_success = ((distance <= self.distance_threshold)
300 & (achieved_goal != 0).any(axis=-1))
301 # -1 if no goal was achieved (by collision or zero step size)
302 # 0 if near the goal (by goal_tolerance)
303 # -1 otherwise
304 return np.float32(is_success) - 1
305 else: # Shaped rewards
306 assert self.reward_type == 'dense'
307 return -distance
308
309 # Copied verbatim from https://stackoverflow.com/a/11146645
310 def cartesian_product(*arrays):
311 la = len(arrays)
312 dtype = np.result_type(*arrays)
313 arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
314 for i, a in enumerate(np.ix_(*arrays)):
315 arr[..., i] = a
316 return arr.reshape(-1, la)
317
318 def create_empty_octree(*, resolution, size, origin, lazy_eval=False):
319 assert isinstance(resolution, float)
320 assert np.isfinite(resolution)
321 assert resolution > 0
322

51

A.1. Environments

323 assert size.dtype == float
324 assert size.shape == (3,)
325 assert all(np.isfinite(size))
326 assert all(size > 0)
327
328 assert origin.dtype == float
329 assert origin.shape == (3,)
330 assert all(np.isfinite(origin))
331
332 # Create an empty room by inserting a point cloud where all
333 # rays start at the origin and end in ends in each voxel of
334 # the wall. This gives a good enough approximation with
335 # reasonable time and memory complexity.
336 octree = octomap.OcTree(resolution)
337 r = resolution # Shorthand for the line below
338 x, y, z = [np.mgrid[-s // 2 - r:np.ceil(s / 2) + r * 2:r] for s in size]
339 bounds = np.concatenate(list(starmap(cartesian_product,
340 (((x.min(), x.max()), y, z),
341 (x, (y.min(), y.max()), z),
342 (x, y, (z.min(), z.max()))))))
343
344 octree.insertPointCloud(origin + bounds, origin, lazy_eval=lazy_eval)
345 #for i in range(10):
346 # noise = np.random.uniform(-1, 1, 3) * (size // 2 - r)
347 # octree.insertPointCloud(origin + bounds, origin + noise, lazy_eval=lazy_eval)
348
349 #threshold = octree.getOccupancyThresLog()
350 #pmin, pmax = origin + (-size / 2, +size / 2)
351 #for node in octree.begin_leafs():
352 # p = node.getCoordinate()
353 # occupied = (node.getValue() >= threshold)
354 # inside = ((pmin <= p) & (p <= pmax)).all()
355 # if inside == occupied: # xand
356 # # Change value, but traverse node first
357 # octree.search(node.getKey()).setValue(float(not inside))
358 return octree
359
360 class EmptyEnvironment(OctreeEnvironment):
361 def __init__(self, *, resolution, size, origin, **kwargs):
362 resolution = float(resolution)
363 size = np.asarray(size, dtype=float)
364 origin = np.asarray(origin, dtype=float)
365 octree = partial(create_empty_octree, resolution=resolution,
366 size=size, origin=origin)
367 # Goals and start positions will be uniformly sampled from
368 # anywhere within the empty room, but not too close to any
369 # walls.
370 inside_bounds = origin[:, np.newaxis] \
371 + (size - resolution * 2)[:, np.newaxis] / (-2, 2)
372 kwargs.setdefault('goal_range', inside_bounds)
373 kwargs.setdefault('start_range', inside_bounds)
374
375 super(EmptyEnvironment, self).__init__(octree=octree, **kwargs)
376
377 class WallEnvironment(OctreeEnvironment):
378 @classmethod
379 def _create_octree(cls, resolution, size, origin, wall_range):
380 tree = create_empty_octree(resolution=resolution, size=size, origin=origin,
381 lazy_eval=True)
382
383 ranges = starmap(partial(np.arange, step=resolution), wall_range.T)
384 for point in cartesian_product(*ranges):
385 # Update the node
386 occupied = True
387 node = tree.updateNode(point, occupied, lazy_eval=True)
388 node.getValue() # Will raise octomap.NullPointerException on error
389
390 # Update occupancy of inner nodes to reflect their children's occupancy

52

A.1. Environments

391 tree.updateInnerOccupancy() # Because lazy_eval was True
392 return tree
393
394 def __init__(self, *, resolution, size, origin, wall_range, **kwargs):
395 resolution = float(resolution)
396 size = np.asarray(size, dtype=float)
397 origin = np.asarray(origin, dtype=float)
398 wall_range = np.asarray(wall_range, dtype=float)
399 assert wall_range.shape == (2, 3)
400 assert all(wall_range[1] - wall_range[0] >= resolution), \
401 "wall_range must be at least as large as resolution in all dims"
402
403 # Prepare the octree factory function
404 octree = partial(self._create_octree, resolution=resolution,
405 size=size, origin=origin, wall_range=wall_range)
406 super(WallEnvironment, self).__init__(octree=octree, **kwargs)
407
408
409 for reward_type, observation_type in product(('sparse', 'dense'),
410 ('discrete', 'continuous')):
411 registry.register(
412 id=f'RandomDirection{reward_type.title()}{observation_type.title()}-v0',
413 entry_point=f'{__name__}:EmptyEnvironment',
414 max_episode_steps=2,
415 reward_threshold=0.0,
416 trials=10,
417 kwargs=dict(
418 resolution=1,
419 max_step_size=1,
420 size=(5, 5, 5),
421 origin=(0, 0, 0),
422 start_range=(0, 0, 0),
423 goal_range=((-2, -2, -2), (2, 2, 2)),
424 distance_threshold=0.5,
425 visual_range=1,
426 reward_type=reward_type,
427 observation_type=observation_type,
428)
429)
430
431
432 common_params = dict(
433 max_episode_steps=200,
434 reward_threshold=0.0,
435 trials=10,
436)
437
438 common_kwargs = dict(
439 resolution=1,
440 size=(20, 10, 10), # room is empty in range ±(10, 5, 5)
441 origin=(0, 0, 0),
442 distance_threshold=0.5,
443 reward_type='sparse',
444 observation_type='continuous',
445)
446
447 start_range = ((-8, -4, -4), (-7, 4, 4))
448 goal_range = ((7, -4, -4), (8, 4, 4))
449
450 for label in 'deterministic', 'randomized':
451 registry.register(
452 id=f'Empty{label.title()}-v0',
453 entry_point=f'{__name__}:EmptyEnvironment',
454 kwargs=dict(common_kwargs,
455 visual_range=1,
456 start_range=(np.mean(start_range, axis=0)
457 if label == 'deterministic'
458 else start_range),

53

A.1. Environments

459 goal_range=(np.mean(goal_range, axis=0)
460 if label == 'deterministic'
461 else goal_range)),
462 **common_params
463)
464
465 for visual_range, name in ((0, 'Blind'), (1, 'Near'), (3, 'Far')):
466 registry.register(
467 id=f'Wall{name}-v0',
468 entry_point=f'{__name__}:WallEnvironment',
469 kwargs=dict(
470 common_kwargs,
471 # The wall will be in the center of the room along x-axis, but
472 # will have openings on all four sides. It's a floating wall,
473 # in other words.
474 wall_range=((-1, -4, -4), (1, 4, 4)),
475 visual_range=visual_range,
476 start_range=np.mean(start_range, axis=0),
477 goal_range=np.mean(goal_range, axis=0),
478),
479 **common_params
480)
481
482 registry.register(
483 id=f'Office-v0',
484 entry_point=f'{__name__}:OctreeEnvironment',
485 max_episode_steps=1000,
486 reward_threshold=0.0,
487 kwargs=dict(
488 octree = data_path('freiburg1_360.bt'),
489 start_range = (0.22633858, 0.90999599, 2.50860099),
490 goal_range = (-1.45583376, -3.41167727, 2.29596730),
491 distance_threshold=0.5,
492 visual_range=5,
493 depth = 9, # resulting in a resolution of 0.02 * (2 ** (16 - 9)) = 0.64
494 reward_type='sparse',
495 observation_type='continuous',
496)
497)

54

B | Hyperparameters

Hyperparameter Value
Actor learning rate 1e-3
Critic learning rate 1e-3
Experience replay buffer size 1e6
Polyak averaging coefficient 0.95
l2 weight penalty 1.0
observation clipping 200
relative goals False
n cycles 50
rollout batch size 2
n batches 40
batch size 256
n test rollouts 10
test with Polyak False
random eps 0.3
noise eps 0.2
replay strategy future
replay k 4
norm eps 0.01
norm clip 5

55

	Introduction
	Motivation
	Goals
	Related work

	Background
	Voxels, octrees and OctoMap
	Aggregation
	Data ingestion
	Compression
	Searching and iterating

	Reinforcment Learning
	Hindsight Experience Replay
	Environment
	Agent

	Methods
	Actions
	Observations
	Goals

	Collisions
	Rewards
	Implementation
	Environments
	Agent

	Results
	Training and testing
	Evaluation
	Metrics

	Parameters
	Tasks
	Random directions
	Empty corridor with deterministic positions
	Empty room with randomized positions
	Navigating around a wall from fixed positions

	Discussion
	Reward and observation functions
	Larger octree spaces
	General discussion
	Future work
	Experiments on network architecture and hyperparameters
	Scale-invariant navigation
	Observing through raycasting
	Application to a robot arm
	Observability

	Conclusion

	Bibliography
	Code
	Environments

	Hyperparameters

