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Abstract

Emerging infrastructure-less network architectures such as WSNs consist of devices
that perform packet processing in software. General-purpose network simulators
do currently not possess models to simulate the intra-node delay of such devices.
Consider a real TelosB mote that runs TinyOS which spends seven and fifteen ms
on processing packets of size 36 and 124 bytes. Failing to simulate that results in
inaccurate simulation of packet loss, jitter, and latency. In this thesis, we create a
communication software model of TelosB to include its temporal behavior for more
accurate WSN simulations in the ns-3 simulator. A challenge in doing so is to create
a tracing framework for TinyOS that can be used to accurately and reliably trace its
behavior. The evaluation of the model shows that it is accurate, scalable, and has a
significant impact when including it in a simulation.
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Chapter 1

Introduction

Network simulators are often used for testing different types of networks. Users
expect to simulate the most critical aspects of the network application they are testing,
which mainly include the protocol behavior (e.g., routing behavior) and the temporal
behavior of executing the protocols. The temporal behavior can be divided into two
groups: (1) transmission delay when packets are sent in between the nodes and (2)
intra-node delay when intermediate nodes process packets for forwarding. This thesis
explores the part of the intra-node delay that is caused by the communication software
(CSW). General-purpose network simulators differ from emulators and real testbeds
in that they are more scalable and suitable for extensions, but also less accurate by for
instance ignoring intra-node delay. Therefore, the focus of this thesis is to add such
delay in a CSW model to use with an existing extension in the ns-3 simulator.

The more significant the intra-node delay is, the less accurate are the network
simulators that only simulate transmission delay. An example of a network simulation
that illustrates this problem is structured as a linear chain topology consisting of three
nodes A, B, and C. Node A can only see B, but it wants to send a kilobyte packet to C.
Therefore, it sends it to B that forwards it to C. If the data-rate of the transceivers
is a kilobyte per second, the transmission delay in the simulation is two seconds.
Since the general-purpose network simulator can only simulate transmission delay,
the end-to-end delay is two seconds. In a real testbed scenario, however, the end-to-
end delay might be as much as ten seconds. Of those ten seconds, only two seconds is
transmission delay and eight seconds is the intra-node delay. In that case, the general-
purpose network simulator is inaccurate because it ignores a significant delay that is
observed in a real scenario.

While intra-node delay has been insignificant in many cases because the Internet
uses specialized routers for processing packets in hardware quickly, infrastructure-
less networks such as WSNs contain resource-constrained devices that often perform
packet processing in software. Sensor devices act as both routers and endpoints,
which means they forward packets amongst neighbor nodes in the network as well
as performing other tasks. The intra-node delay of such an intermediate node usually
includes the time it takes for the CSW to write a packet into RAM, send it to upper
layer protocols, check if a route exists to the destination, write packet into the radio
chip’s TX queue, and then send it. Simulating such behavior is complicated because it
requires knowledge about the devices and the CSW of the Operating System (OS) they
run.



1.1 Thesis statement

The task of this thesis is to evaluate the overall significance of the temporal behavior of
protocol handling in a TelosB mote running TinyOS that is used in WSNs and create a
CSW model it in ns-3. As the model is used in conjunction with an existing transceiver
model, both transmission delay and intra-node delay are added to the simulation.
More specifically, the part of the intra-node delay that is caused by CSW, intra-OS
delay, is added to the simulation. From now on, TinyOS/TelosB refers to a TelosB (MTM-
CMb5000MSP) mote executing TinyOS.

Using general-purpose network simulators to simulate forwarding nodes in
WSNs should be accompanied by CSW models for simulating the delay caused by
intermediate devices, because of the significant delay they add to the total end-to-
end delay. The focus of this thesis is to create such a model of a WSN device to be
used in ns-3. The data in Table 1.1 is used to back up that claim. It describes the
amount of time it takes for an intermediate mote to process packets of various sizes
before forwarding them when using a real mote, an emulated Cooja/MSPSim mote,
and an ns-3 mote without a CSW model. The results show that the intra-node delay
is substantial for two reasons. First, the delay is much higher for the real mote than
the transmission delay. Second, the variation in the delay is high when varying the
packet size. Since ns-3 ignores the intra-node delay, it is highly inaccurate in simulating
the temporal behavior. An emulated Cooja/MSPSim mote is not as accurate as a
real mote and the difference increases as the packet size increases. That indicates
either that Cooja/MSPSim fails to accurately simulate processing stages in which the
execution time is dependent on the packet size, or the hardware model that MSPSim
emulates is different from our MTM-CM5000MSP. While a transceiver model simulates
the transmission delay, a CSW model adds the intra-OS delay to a simulation, which
is the vast majority of the full intra-node delay of an intermediate node that processes
packets in software. Therefore, using a CSW model can provide an accurate simulation
of end-to-end delay.

| Packetsize | Send time | Cooja/MSPSim | Real mote | ns-3 |

36 bytes | 1334 us ~1.3 ms 5.65 ms 71ms | Oms
57 bytes 1980 us ~2 ms 6.9 ms 92ms | Oms
76 bytes | 2569 us ~2.5 ms 7.9 ms 10.7ms | Oms
120 bytes | 3964 us ~4 ms 10 ms 148 ms | Oms

Table 1.1: Comparison of intra-OS processing delays in a real mote, Cooja/MSPSim,
ns-3, and the radio transmission times

1.2 Communication software (CSW) model

In this thesis, the communication software model methodology (CSWMM) defined
in [Stel3] by Kristiansen et al. is used to create a CSW model for a device used in
WSNs called TelosB. The methodology defines a step-by-step approach to do this,
all of which are executed in this thesis. In short, the device to model is traced by
having an instrumented CSW forward packets in different contexts at a low packet
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rate. Afterward, the trace is used to create the CSW model. The primary challenge in
applying the methodology to TinyOS /TelosB is to acquire the traces from it because TelosB
is a resource-constrained device with only 10kB RAM in total. The CSWMM has been
used before, but not with anything similar to TelosB or TinyOS. Therefore, the first task
in this thesis is to create a tracing framework that enables us to understand TinyOS and
TelosB, and the second task is to use traces to generate a CSW model that can be used
in ns-3.

CSW is the part of the OS that processes packets in some way. That is usually
the code that represents the layers in the OSI reference model, displayed in Figure
1.1. The CSW model created in this thesis focuses only on the bottom three layers: the
physical layer, data-link layer, and the forwarding part of the network layer (excluding
the routing part). The reason for only modeling some of the layers is that the model is
of an intermediate node that forwards packets between nodes in the network by only
involving those three layers. The network layer includes routing and forwarding of
packets, and only the forwarding part is included since a route is assumed to exist.
In the future, the other layers can also be modeled for more accurate simulation. For
instance, if nodes use a routing protocol that requires the nodes to periodically refresh
routes to nodes, the temporal behavior of the protocols that calculate routes can be
modeled. Nevertheless, all the CSW related to forwarding of packets by intermediate
nodes is included in the current CSW model.

Application

Presentation

Session

Transport

Network

Data-link

Physical

Domain of the CSW model

Figure 1.1: OSI reference model and the domain of the CSW model

The CSW model enables accurate simulation of packet delay, packet loss, and jitter.
Packet delay is simulated because the CSW is split into several processing stages that
take time to execute. Packet loss occurs when queues are full, which happens when the
packet rate is too high for the CSW to process all incoming packets. Packets might be
dropped at different places in the CSW, and part of the task is to find which contexts it
happens. Jitter is the variable packet delay incurred by sending packets multiple times
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from the source node to the destination node. For instance, if packets are sent exactly
every two seconds, but are received by the destination every 1.9-2.1 seconds, the 0.2
seconds difference is due to jitter. We conduct experiments that compare the model’s
behavior with a real device to assess its accuracy.

The steps of the methodology to create a CSW model are:

1. instrumenting the CSW,
2. running the device in the most important contexts to generate traces,

3. human investigation of the traces and signatures that are generated from the
traces, and

4. creation of a final CSW model.

Step 1 requires an understanding of the chosen OS, which is TinyOS in our case.
As the CSWMM has previously been used to create three CSW models, Step 3 and 4
are relatively simple. The challenge is with Step 1 and 2 because TelosB offers little
storage capacity, which makes it hard to store traces on the device. When Step 1 and 2
are accomplished, the remaining steps are straightforward since they have performed
three times before. Step 3 is about verifying that the resulting trace or signatures are
correct. Step 4 is about the creation of the final CSW model.

1.3 Aim of thesis

This thesis aims to assess the significance of software execution delay in devices in
WSN, apply the CSWMM to create a CSW model of TinyOS /TelosB for a general-purpose
network simulator (ns-3), and evaluate it. Two separate tasks need to be accomplished
to do that: create a tracing framework be able to trace the CSW of TinyOS and create
the CSW model in ns-3 that uses the captured trace data. This thesis succeeds if the
resulting CSW model has similar packet forwarding behavior as a real TinyOS /TelosB. The
scalability and impact of the model are also evaluated to see if large-scale simulations
are possible and if the model is necessary in the first place. The impact is, however,
demonstrated throughout this thesis in various ways, including in Table 1.1 by looking
at how inaccurate a simulation is without simulating the intra-node delay.
Following is a list of the goals of this thesis:

* Demonstrate that CSW models are needed in general-purpose network simula-
tors such as ns-3 to simulate the temporal behavior of WSNs accurately.

* Create a reliable and efficient tracing framework for TinyOS /TelosB. That is explored
in Chapter 4 when the tracing framework is described and evaluated.

* Create a forwarding application in TinyOS and ns-3. The TinyOS application
is executed on the intermediate mote to generate traces. The ns-3 simulation
utilizes the CSW model. Traces from the TinyOS application are compared with
traces from the ns-3 simulation with the CSW model to evaluate it. The more
similar they are in packet delay and packet loss, the better.

¢ Create a CSW model that adds realistic temporal behavior of the TelosB mote. In
Chapter 6, we describe the creation of the CSW model, and it is later evaluated in
Chapter 7 by conducting experiments and analyzing the results.

12



Figure 1.2 illustrates the linear chain topology of the forwarding application used in
this thesis. Mote A can see Mote B, and Mote B can see Mote C. Mote A sends a packet
aimed at Mote C and sees Mote B as an intermediate mote. The CSW model simulates
the behavior of the intermediate Mote B by adding extra delay to the simulation,
which causes the end-to-end delay to increase and packet loss at high packet rates.
Throughout this thesis, Mote A, Mote B, and Mote C refer to the motes in that topology.

Radic connection between Mote A and B Radio connection between Mote B and C

Figure 1.2: Forwarding app topology

1.4 Outline

The thesis is structured as in Figure 1.3. In this chapter (Chapter 1), an introduction
is given to the problem statement, and in the next one (Chapter 2), the background
knowledge required to understand the thesis is provided. In Chapter 3, the
requirements we have to the tracing framework and CSW model are defined. In
Chapter 4, the design, and evaluation of the tracing framework are provided. In
Chapter 5, we explain the forwarding application, analyze the forwarding process of
TinyOS and describe the instrumentation of it. In Chapter 6, we describe how the CSW
model is created in ns-3 by using the captured traces, and in Chapter 7, the model is
evaluated. In Chapter 8, we summarize everything that is learned in this thesis.

13



Background

Contributions

Tracing framework
@d instrumentation of TinyOS

Model creation

Model evaluation

Figure 1.3: Outline of thesis
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Chapter 2

Background

In this chapter, all the necessary knowledge required to understand the contributions
of this thesis is explained. The main contribution is a CSW model of the WSN
device TinyOS /TelosB to provide realistic temporal behavior in the general-purpose network
simulator ns-3. Creating the CSW model requires a tracing framework to trace the
modeled device in the proper contexts. Section 2.1 starts the chapter with an
introduction to WSNs, TinyOS, and TelosB. Section 2.2 continues with explaining
what simulation is, different types of network simulators and the difference between
a real testbed, emulation, and general-purpose network simulation. It is useful to
understand that different types of simulation require different levels of effort. Section
2.3 explains the CSWMM which is used to create the CSW model, and is imperative
to understand. Section 2.4 discusses related works concerning the tracing framework
needed for the CSW model, and processing delay models, of which the CSWMM is
one methodology.

2.1 Wireless Sensor Network (WSN)

A WSN is a network that consists of wireless sensor nodes (motes) that collect useful
information for various applications [YMGOS8] [F. ] [HHKKO4]. Figure 2.1 illustrates an
example of a WSN. Motes are placed in abundance in an area to sense the environment.
They periodically send sensor data to a sink device which connects to a PC that handles
the data. The PC may also connect the WSN to the Internet. When motes send data
to the sink, they usually have to send the data via intermediate motes in the network,
unless they are close to the sink. Encapsulating the temporal behavior of the CSW of
such intermediate motes in a CSW model is the focus of this thesis.

The literature describes several application areas for the WSN that can be interest-
ing to simulate in ns-3. Examples of them include monitoring of the environment for
hazardous events [HMO6], health monitoring of patients [Stel7], military applications
[DTDM12], automated traffic control systems [Ras13], agricultural applications [PE0S],
medical applications [NFR08], motion tracking of people [ZHO08], and more. Many
useful application areas for WSN’s are yet to be deployed in real scenarios. Therefore,
high-level simulation in a general-purpose network simulator is a good first step in the
direction of deploying a WSN application. The temporal behavior must, however, be
simulated sufficiently accurately that the results are convincing.
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Intemet

Wireless Sensor Network

Sensor Nndew Target
User J

Figure 2.1: Illustration of WSN (http://vlabs.iitkgp.ernet.in/ant/8/theory/)

2.1.1 IEEE 802.15.4

IEEE 802.15.4 is a standard that defines the PHY and MAC sublayer of communication
between low-cost, low-power devices in Wireless Personal Area Networks (WPANSs)
[iee12]. Most WSN devices, including TelosB, are based on it. In contrast to WPANSs,
Wireless Local Area Networks (WLANSs) are usually based on IEEE 802.11 and are
the types of networks that include regular computers and smartphones. WPANs can
be as big as WLANSs but differ in that they have little or no infrastructure, which is
why the nodes in the network must forward packets for each other. Another thing
that distinguishes WPANs from WLANS is that the data-rate which WPAN devices
communicate with each other at ranges between 20-250kbit [iee12] and WLAN devices
can communicate at a thousand times that speed. The Maximum Transmission Unit
(MTU) is 127 bytes in IEEE 802.15.4, which is much less than the 1280 bytes MTU for
IPv6 [six14].

As a result of the low data-rate and MTU defined by IEEE 802.15.4, devices must
choose communication protocols accordingly. Despite the IPv6 MTU being much
bigger than the IEEE 802.15.4 MTU, IPv6 is still used in WPANSs, but with a twist.
Several solutions such as 6LOWPAN and Zigbee attempt ways at accommodating the
IEEE 802.15.4 requirements for WPAN’s to use existing communication protocols and
connect them to the Internet. 6LoWPAN, or IPv6 over Low-power Wireless Personal
Area Networks, introduces an adaptation layer that enables IPv6 packets to be sent
over WPAN networks [six14]. It fragments packets greater than the IEEE 802.15.4 MTU
and compresses IPv6 and UDP/TCP headers to consume less memory. 6LoWPAN is
excluded from the current CSW model because it has little effect on the forwarding
scenario: fragmentation of packets is discouraged [six14] and a variable packet header
size only means a few additional or fewer bytes to a packet. Integrating the CSW model
with 6LoWPAN can be considered in future work.
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2.1.2 Mote

Devices in WSNs are small sensor computers, also called motes, that are characterized
by their resource-constrained components. Throughout this thesis, the words device,
node, sensor computer, and mote are used interchangeably to describe devices in
WSNs. This thesis focuses on a mote called TelosB which runs a 4MHz CPU and has
10kB of Random Access Memory (RAM). On the other hand, a modern PC can have
4GHz CPU and 16GB of RAM, which means it runs a thousand times faster and can
save 1,600,000 more data in memory than TelosB. As a consequence of its little RAM
capacity, capturing the behavior of TelosB is a challenge.

A mote is usually a composition of multiple components that are placed on a
circuit board. Most of them consist of the same types of components. These include a
microcontroller unit (MCU) that runs the hardware instructions of the application and
OS. A mote also contains a radio chip, which defines the physical layer of the network
communication for the mote and performs the transmission and reception of packets.
Furthermore, they usually have a small amount of RAM available for volatile memory
storage, and a flash chip for non-volatile memory to be able to store data that cannot
tit in RAM. Serial communication is commonly used for message sending between PC
and sensor device, which is the case for TelosB. Motes often use AA batteries for power
supply or get it from the USB connection. The final and most essential components of
a mote are its sensors. A mote has a set of sensors and a way of converting the analog
signal to digital through an ADC (Analogue to Digital Converter).

TelosB (MTM-CM5000MSP)

We choose to work with TelosB in this thesis. The mote is also called Tmote Sky,
but the specific hardware number is MTM-CM5000MSP. It is an ultra-low-power
wireless sensor module developed at UC Berkeley [PSC05] [Mem]. The reason why
this device is chosen is that it is the only device that can be emulated with TinyOS
in Cooja/MSPSim. An alternative device is MICAz, which can be simulated with
TOSSIM. Since both ns-3 and TOSSIM perform discrete-event simulation, however,
hardware instruction simulation with Cooja/MSPSim is more interesting.

Specification The mote consists of a set of chips on top of a board, each of which
has its qualities and specifications. Figure 2.2 illustrates the components on TelosB.
Following is a list of the main components and specifications that are related to the
packet forwarding of the mote:

¢ MCU: MSP430, 4MHz effective CPU frequency, max baud rate of serial (UART -
RS232) communication: 115200.

* Radio chip: CC2420, max transmission bit-rate: 250kbit per second. It has an RX
and TX queue each with a capacity of 128 bytes. Has a CCA feature which avoids
sending packets when the channel is not clear.

e RAM: 10kB.
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Figure 2.2: TPR2420CA Block Diagram [Mem]

CC2420 radio chip

CC2420 is the radio chip used by TelosB and its driver in TinyOS is the most important
part of the CSW when working with CC2420. The chip has a 128-byte RX queue and
TX queue for receiving and transmitting packets. If the radio receives more than 128
bytes, an overflow occurs. When the radio is in an overflow state, no packets can be
received, and the RX queue must be flushed before new data can be received. That is
done within the CC2420 driver and is among the places we instrument. Other places
include when a new packet is being written into RAM, finished being written to RAM,
finished being written into the TX queue, and more places. All tracepoints we place in
the CC2420 driver and other places in TinyOS are discussed in detail in Chapter 5.

Clear channel assessment (CCA) TinyOS and CC2420 both offer a CCA feature for
preventing collisions and starvation. TinyOS implements it as a backoff timer that
causes the node to wait a random number of milliseconds before sending a packet.
The backoff is there to prevent collisions and too long occupation of the channel. One
backoff timer is used before the first time a packet is sent, a different one when the
channel is not clear. Both the TinyOS and CC2420 CCA features are enabled when the
variable ccaOn is set to true in the CC2420 driver. ccaOn is enabled by default, which
means that the CSW backs off for a random amount of milliseconds before it sends
each packet, even though there is no reason to believe there is network traffic. Since
it adds undesired random delay, the TinyOS CCA backoff feature is turned off in all
experiments when evaluating the CSW model.

On the other hand, the CCA feature in CC2420 is enabled for our experiments.
CC2420 implements CCA as a backoff when the channel is not clear [Davb]. Thus,
the radio only sends the packet when the channel is clear, a decision made based on
a configurable setting. In [Tex14], the different settings of CC2420 deciding when the
channel is clear are listed: (1) when the received signal strength is above a certain
threshold, (2) when not receiving valid IEEE 802.15.4 data, and (3) is both setting 1 and
2 combined. If the feature is kept enabled when the packet rate is high, it prevents
collisions from occurring. The CCA settings used for the experiments in Chapter 7 are

18



the default for TinyOS v2.1.2.1.

MSP430F1611 MCU

TelosB uses MSP430F1611, or just MSP430, a popular low-power MCU with a 16-
bit CPU. The CPU has a maximum speed of 8MHz, but TelosB only utilizes 4MHz.
Although the MSP430 driver is not instrumented, it is still a significant component in
regards to the temporal behavior of packet processing since it executes the CSW. The
low speed of the MCU (4MHz) makes it an appealing target for the CSWMM because
the impact of the model is likely to be more significant compared to fast clock rates.
Processing delays within the CSW model are defined in CPU cycles. As the CPU speed
and size of queues in the model are configurable, a way to use the CSW model is to
tweak those variables to see if the behavior improves, worsens or remains unchanged.
That way, developers might find that they can manage with IMHz CPUs instead of
4MHz, for instance. Changing the CPU frequency is not trivial to do when using an
emulator, and especially not on a real mote. If the CPU frequency is turned to a high
number, the CSW model will have little effect on the simulation, and it can be used to
test the limits of the simulated nodes. To sum up, MSP430 is a key component in the
CSW because it contains the CPU, but the MSP430 driver is not instrumented.

TinyOS uses the timers on the MCU to get software timers with a precision of
1MHz, 32KHz or 1KHz. Microsecond (1IMHz) precision is used for the timestamps
when performing tracing. An explicit CPU cycle counter would be a better alternative,
but MSP430 does not offer it. At microsecond precision, the clock operates at 1/4 of
the MSP430 CPU frequency, which means the microsecond clock is a good alternative
for capturing the CPU cycle counter. One thing to note about the microsecond timer
is that it is not completely accurate, and therefore we must be able to exclude traces
that seem to have inaccurate timestamps. Trace analysis tools are used for filtering out
inaccurate parts of traces.

Main memory As mentioned previously, TelosB has a total amount of just 10kB
RAM, which is a tiny amount compared to a modern computer or smartphone, which
often possesses more than 1GB RAM. 1GB is 100,000 times more than 10kB. That poses
a problem for the tracing step of the CSWMM since RAM is usually the storage option
that results in the least tracing delay, which is an essential non-functional requirement
for the tracing framework. Therefore, the memory consumption of the trace events
must be minimized.

2.1.3 TinyOS

TinyOS is one out of many OSs that are used in WSNs including in this thesis.
Other examples of OSs include MANTIS, Contiki OS, Nano-RK and LiteOS [FK11]
[RSM14]. TinyOS is minimalistic and can be executed on resource-constrained devices.
Furthermore, it is event-driven, has a RAM footprint of only 400 bytes, is single-
threaded, and there is no scheduler preemption [LMP105]. Additionally, heap
memory does not exist, which means all data is stored statically with no temporary
memory allocation. TinyOS 2.x is the OS we choose to model, and throughout this
thesis, TinyOS refers to TinyOS version 2.1.2.1 unless otherwise specified.
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TinyOS is compiled for one application at a time, and that application has full
access to all hardware resources. There is no user or supervisor mode and no
virtual memory either. No virtual memory means that all addresses point to physical
memory. As such, the OS is significantly different from Windows, Linux, and Mac
OS X since they offer multi-threading and support for multi-core CPUs. TinyOS does
offer a library called tosthreads that enables some high-level multi-threading features
described in [KLP*09], but it is not used in this thesis. The consequence of being single-
threaded is that concurrency in TinyOS is done in an event-driven way by designing
the application such that functions do not last for too long, which means it is the
responsibility of the application developer to make sure the OS and application work
smoothly.

The event-driven model in TinyOS makes it challenging to write applications, a
result of TinyOS being single-threaded. When the OS performs its routine operations
such as handling packets that are received and buttons being clicked, hardware
interrupt events are invoked. They often post longer lasting tasks to fulfill their
primary purpose. Since tasks cannot preempt each other and especially not hardware
interrupt events, the application developer must write short lasting hardware interrupt
events and tasks for the OS to work correctly. Thus, applications in TinyOS often use
timers to invoke events every x milliseconds, and they post finite lasting tasks. The
results is a reactive and event-driven execution model.

Timers in TinyOS are all displayed in binary time. That means one second
contains 1024 binary milliseconds, 32768 32kHz ticks, or 1,048,576 microseconds
[Corb]. Therefore, the binary time is sometimes used in this thesis instead of decimal.
The impact of this difference is small when the measured time is small, but since the
intra-OS delay of a mote ranges from 7500-15000 yus as in Table 1.1, the binary time
is 7680-15360, which is significantly different. It is mentioned in figures when the
displayed time is in binary instead of decimal.

nesC

nesC is the programming language that TinyOS and its applications are written in
[GLvB™03]. It is a subset of the C programming language with some extra features.
There are three new types of functions as compared to C: events, commands, and
tasks [Dava]. Events can be viewed as software/hardware interrupts or callback
functions, commands as regular functions and tasks as deferred procedure calls
(DPCs). Hardware interrupt events are the only functions that preempt in TinyOS.
Receiving a packet, turning on the mote and a timer going off result in events being
signaled. Otherwise, everything runs until completion. nesC code is compiled to C
code, which is compiled to binary code.

Tasks are DPCs that other commands, events or tasks post (defer), and are executed
sometime later by the task scheduler [Cora]. The task scheduler executes tasks from
a queue within an infinite loop. When the queue is empty, the mote goes to sleep to
preserve power. A task that is posted several times before addressed by the scheduler
is only executed once. If a task needs to be executed multiple times, it can post itself.
Since a task requires a scheduler to execute them and thus depends on TinyOS to work,
it differs from the other nesC language constructs that can technically be implemented
as an extension to the C programming language.

Events and commands are invoked through something called an interface that
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defines what program modules provide and use. If a module provides an interface, it
must implement all the commands that are defined in it. If a module uses an interface,
it must implement all the events in it. A typical use case for these types of functions
is that a command is called to perform some action, which posts a task to be executed
later, and an event is signaled when the task is finished executing. That is called split-
phase operation. In this example, the event functions as a callback function for the
command. Nevertheless, commands do not have to post tasks, and tasks do not have
to signal events; any of the three can signal events, call commands and post tasks.

Since the interface functions as an abstraction between components, an additional
component is needed to decide which events are signaled and commands are called.
Those components are called configurations, and wire other components such that the
correct functions are called when a command or event is invoked. For instance, calling
a command that another component provides results in the correct command to be
called. During the compilation process, it is verified that all interfaces are wired to
components that provide or use the right commands or events. Compilation fails if
some interface of a module is not wired to another module, or that module does not
implement the correct functions.

2.2 WSN simulators

There are three ways of testing a WSN network application: general-purpose network
simulation, emulation, and using a real testbed. We use the general-purpose network
simulator ns-3 that simulates the network-layer, similar to OMNET++, ns-2, and more.
General-purpose network simulation is an abstract way of running an application
that usually uses discrete-event simulation. Testbed includes real devices running
the application and is the most accurate way of testing a network scenario, but
also a cumbersome way due to scalability and repeatability issues. Emulation is
something in between testbed and general-purpose simulation in which some aspects
such as hardware instructions of a hardware device are executed, but other aspects are
simulated using discrete-event simulation.

Discrete-event simulation involves splitting tasks into several events that are
scheduled to execute at some point in the simulation. When an event is finished
executing, the simulator picks the next event that is to be executed at the earliest
time and runs it. Simulation time only advances when the scheduler executes the next
event, not during the execution of them. Each event has a timestamp attached to it. The
scheduler selects the event with the earliest timestamp, sets the current simulation time
to the timestamp and executes the event. Since discrete-event simulation is abstract
and high-level, it benefits from being efficient, scalable and repeatable.

The scalability of emulation is better than with a real testbed, but not as well as only
with discrete-event simulation. Discrete-event simulation and emulation can both be
used to repeat simulations. It might be more difficult, however, to repeat a simulation
with an emulator because the parameters that control the simulation flow are more
intricate. A significant benefit of using emulators is that it can be used for debugging
of applications, which general-purpose networks simulation cannot and is hard to do
with real devices because of scalability and repeatability reasons. Still, the question of
how scalable and accurate is a simulator depends on more than just whether it is an
emulator or discrete-event simulator.
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That is because many different simulators exist that are used to simulate WSNs.
They include ns-2, ns-3 [RH10], TOSSIM [LLWCO03], GLoMoSim [ZBG98], UWSim
[PPFS12], Avrora [TLP05], SENS, Cooja [ODE™ 06, Os06], Castalia, Shawn, Prowler,
EmStar, Opnet, MSPSim, OMNET++, ATEMU [PBM"04] and J-Sim [SCH"05]
[SKLD*11] [KSKT09] [MZ12]. Examples of emulators are Avrora, MSPSim, and
ATEMU, that execute the code of a corresponding MCU. ns-2, ns-3, and OMNET++
are general-purpose network simulators that only focus on simulating the network
communication as discrete-event simulators, and disregard the OS and hardware
instruction layers. TOSSIM is a discrete-event simulator that simulates the OS-layer
of TinyOS by splitting the code into events and executing them. In summary, there
are many different simulators because they simulate different layers, are suitable for
different application areas and have different levels of accuracy and scalability.

2.2.1 ns-3

ns-3 is a discrete-event general-purpose network simulator that we extend with a CSW
model. It is used mainly for educational and research purposes and is meant to be
an easily accessible and extensible platform for testing out network protocols. The
goal of ns-3 is to have a community of researchers that can contribute to extending
the simulator and adding models of whatever technologies that need to be simulated,
for instance, WiFi, WiMAX, and LTE. These are complex technologies that one does
not want to code the behavior of in every new project. The models provide realistic
protocol and temporal behaviors of the technologies they represent, but the existing
models only focus on the transmission delay.

Since Table 1.1 shows that the intra-node delay is significant, it is an indication
that intra-node or CSW models are needed. Furthermore, [KSKT09, Mic05] explain
that one of the problems with ns-2, and by extension ns-3, is that the simulator does
not simulate the application code execution delay. Our model simulates the most
important part of that delay in a networking scenario, which is the delay caused by
the CSW of TinyOS. Thus, the model created for this thesis is an example of a model
that can be added to ns-3.

2.2.2 Cooja

Cooja is a simulator designed for Contiki OS, but also runs the code of other OSs such
as TinyOS [ODE ™ 06] [Os06]. It simulates the network layer, OS layer, and uses Avrora
[TLPO5] or MSPSim [Joa] to simulate the hardware instruction layer to achieve cross-
layer simulation [ODE"06]. Where TOSSIM simulates the OS layer, ns-3 simulates the
network layer, and MSPSim simulates the hardware instructions of MSP430, Cooja can
do all three. That Cooja can simulate the network and hardware instruction layer at
once makes it the simulator that is closest to running on a real device and is the way
we use to debug and test the forwarding application described in this thesis.

In our case, Cooja executes the MSPSim emulator when running the forwarding
application in TinyOS. Therefore, when we write that data is collected from an
emulated Cooja/MSPSim mote, MSPSim is executing the hardware instructions. That
is relevant because results from preliminary experiments in Table 1.1 indicate that some
processing stages might take too little time to execute. Then it is highly likely that
MSPSim is causing that. We also discuss in Chapter 8 Section 8.3 the possibility that
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MSPSim emulates slightly different hardware, but with the same components as our
MTM-CM5000MSP / TelosB/ Tmote Sky mote.

Plugins in the simulator enable the user to control and monitor the simulation. By
using a built-in plugin, the user can place as many nodes as needed on a map and move
them around. As each mote has a TX/RX range that can be adjusted, we know for sure
whether a node is in range to receive packets or not. Arrows on the map indicate
which mote is receiving packets from where and the Radio Messages plugin can be
used to read their contents. We use the map to set up the topology for the forwarding
application, in which Mote A can see B but not C, and Mote C can see B but not A. The
Mote Output plugin outputs the serial communication from the motes, which we use
both when debugging the forwarding application and when tracing the intermediate
Mote B.

Cooja is similar to ns-3 in some ways. They both offer general-purpose simulation,
but this thesis focuses on the emulation part of Cooja. Both simulators can be used
to simulate WSNs, although Cooja is specially made for that purpose. They differ
in that Cooja can use emulators that simulate the CPU accurately, and ns-3 focuses
mainly on the network portion of the devices. As the CSW model we create adds
the temporal behavior of intermediate nodes in communication scenarios, it will be
fascinating to compare results from a real mote with an emulated Cooja/MSPSim
mote to see if results from running ns-3 with CSW models are more or less accurate
than Cooja/MSPSim. If the results are similarly accurate, it can make ns-3 a viable
alternative to the more complex emulation with Cooja/MSPSim.

2.2.3 TOSSIM

TOSSIM is the TinyOS simulator, an accurate and efficient discrete-event network
simulator that runs code of a TinyOS application by splitting it into events [LLWCO03].
TOSSIM is often used as a debugger for TinyOS software, but can currently only
be used to run software for the MICAz mote. What differs ns-3 from TOSSIM is
that ns-3 is primarily concerned with simulating network communication, whereas
TOSSIM focuses on the OS part. The CSW model we create for ns-3 adds the temporal
behavior of the simulated CSW, whereas TOSSIM runs the code and simulates at a
deeper level, but not as deep as with emulation. TOSSIM differs from emulation
with Cooja/MSPSim in the sense that it does not offer cycle-accurate simulation, but
rather uses discrete-event simulation to progress time for each simulation event that is
executed. There are, however, extensions that offer more accurate timing to simulation
in TOSSIM [Muh07] [HC09b] [LAWO08]. As a result of executing TinyOS code, but
with discrete-event simulation, TOSSIM provides an accurate and efficient way of
simulating WSNSs.

The simulator has previously had problems because it is tightly coupled with
TinyOS 1.x, which causes TOSSIM not to work so well with TinyOS 2.x as with TinyOS
1.x. [ZN11] describes how Mo Zhu et al. fixed the CC2420 support for TOSSIM
because of a new version of TinyOS broke the functionality. Additionally, the IP library
used in this thesis (BLIP) is currently not working well with TOSSIM. The simulator
currently only works with the MICAz platform, but the forwarding application used
in this thesis is designed for TelosB. Therefore, the forwarding application does not
work with TOSSIM. Making the forwarding application work with MICAz is not trivial
because it uses a different MCU and radio chip from TelosB, and therefore the drivers
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are different. Consequently, we cannot include results from running TOSSIM when
assessing the accuracy of the CSW model.

2.2.4 Discussion

Simulation with TOSSIM and emulation with Cooja/MSPSim results in accurate
simulation, but that accuracy makes TOSSIM more dependent on TinyOS and Cooja
more dependent on emulation software when compared to ns-3. If a new type of
MCU comes out, Cooja would have to use a new emulator specifically for that MCU
to be able to simulate applications compiled for it. If a new TinyOS version comes out,
TOSSIM is in the danger of not working correctly due to its tight coupling with TinyOS.
ns-3 will most likely not change much in the next few decades and does not depend
on any components to perform its simulation. Moreover, models from earlier versions
of ns- can be implemented in newer versions with less effort, as when the CC2420
transceiver model is implemented in ns-3 with an existing model in ns-2 as starting
point [IG]. Therefore, ns-3 being extensible and open source are points in favor of ns-3
over simulators that are less extensible or not at all.

2.3 Communication software model methodology (CSWMM)

The communication software model methodology (CSWMM) proposed in [Stel3]
by Kristiansen et al. describes all the steps required to make models of the CSW
of any given OS. CSW models are created by tracing the CSW of a real device to
capture its temporal behavior. Using traces from real executions, they add realistic
temporal behavior of intermediate nodes to a general-purpose network simulator. The
methodology consists of two parts which are performed only once by programmers
who know the system. The first part is to make models from the CSW of the device
one wants to simulate. The second part is to make an extension for the network
simulator one wants to use, which serves as the execution environment for the models.
The benefit of separating the tasks of creating CSW models and creating simulator
extensions is that the same CSW models work with different network simulators and
vice versa, with some need for porting. This thesis focuses on the first part: making a
CSW model of TinyOS /TelosB. When a network simulator is extended with such a model,
it should add approximately the same delay as the service it corresponds to on a real
device.

The six core concepts from [KPG13b] are briefly summarized to give the reader an
overview of the methodology:

¢ Physical Execution Unit (PEU). Specialized hardware units which run in parallel
with the CPU, such as Direct Memory Access chip (DMA) and Network Interface
Card (NIC).

* Logical Execution Unit (LEU). Construct for interrupts and threads to share the
CPU with their memory. These run separately with their memory space, but do
not run in parallel.

¢ Packet Handling Services (PHS). Functions which act as entry points to protocol
services. They use packet queues to decide which packet is currently in
processing.
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e Work Scheduling Services (WSS). Functions which deal with scheduling work
for services by using service queues. A WSS schedules services within an LEU
by running functions that are hard-coded in the WSS or by dequeuing functions
from a function queue.

¢ Services. PHSs and WSSs are types of services. While an OS has many different
types of services, only the CSW services that handle packets or deal with work
schedule matter in this context.

* Behavior, set of instructions executed in a service given a context. Different
contexts cause different behaviors, and we want to find out when and how often
certain behaviors occur.

e Context, set of state values for all state variables that affect the behavior of a
service. At this abstraction layer, not all sets of state values for state variables
in services are important, only the ones that have a direct effect on the temporal
behavior of the service. An example of a set of state values for a state variable
such as a queue is non-empty and empty.

We want to map the temporal behavior of each service in the CSW, in all the relevant
contexts we can find, to a signature. The first step is to instrument the CSW by marking
all the events in the services that are of importance to the temporal behavior of the
packet forwarding. Such events can be divided into six classes [KPG13b]:

e class 1: separating services,

¢ class 2: CPU processing delays,

¢ class 3: interactions with the task scheduler,
¢ class 4: work scheduling within LEU,

e class 5: parallel processing, and

¢ class 6: execution context.

These classes use the abstractions defined above to describe the domain for the
events they contain. A class 4 event can, for instance, describe starting a service within
a WSS. Class 6 events are where we capture context data for the service and thus have
a direct impact on the behavior of a service. A tracing framework is required to capture
these events when executing a CSW, and one of the main tasks in this thesis is to create
one. The tracing events must be defined such that the events can capture the CSW
behavior sufficiently.

The process of making the model is divided into four main steps. They are (1)
instrumentation of the code, (2) execution of the instrumented CSW and generation of
traces, (3) execution of automatic analysis on the trace to get the signatures, and (4)
create the final CSW model. All the following chapters are about these steps in one
way or another.
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2.3.1 Instrumentation

Instrumentation of the CSW first requires analysis of it to find all the services that
can be involved when doing packet forwarding. These services include context
switch functions, packet receive/send functions, context switch functions, and more.
Afterward, the code is instrumented by putting tracepoints in the places the events
defined above occur. Doing this requires a deep understanding of the services in the
CSW. After this step is finished, two things can force us to repeat it: either not enough
events are included of the event types that are already defined, or there is a new type
of event that needs to be included in the tracing framework.

2.3.2 Tracing

Tracing is the step where the device to model performs packet forwarding, and the
result is a trace that describes the temporal behavior. Before the OS is executed to
generate traces, however, the most important contexts must be found. Which contexts
are chosen depends on which state values affect the temporal behavior. In previous
models, the researchers used packet and queue sizes. When all the contexts have
been decided, we also need to find out how to store the traces afterward. Keeping
the traces in RAM during the run, and later storing them to file is the fastest. That is a
complicated issue as TinyOS is a resource-constrained device with only 10kB of RAM.
The tracing is performed by running the OS in all the decided contexts. The result is a
trace for each context which contains a sequence of events. We filter this data for each
service automatically using the analysis tool described next.

2.3.3 Automatic analysis

When all the traces have been generated, they need to be translated into signatures
that can be put together in a device file. Signatures are created automatically running
an analysis script. The input of the script is a trace file, and the output of it is a set of
signatures. For a given service, the tool locates all n invocations of it, which are called
cases. It collects all the cases with identical sequences of events and parameters into
a group. Each group represents one signature. We also want to capture the run times
in between each event for the signatures, to get an idea of how long the processing
stages take to execute. For each of these processing stages, we include one probability
function, which includes data on the run times for each case in the signature.

2.3.4 Human Investigation

When we have completed the analysis, the set of signatures has to pass two manual
tests to be considered valid. The first test requires that for each signature retrieved
from the analysis, there should be no more than one context of a service corresponding
to it. If there is more than one signature for one context, it means that the context is
lacking class 6 events because at least two different sequences of events must have
occurred in the same context. The second test requires that the temporal behavior of
each sequence be unimodal for each signature. If for instance, half of the cases have
execution times similar to each other, and the other half also have execution times that
are similar to each other but entirely different from the first half, it can indicate that two
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different behaviors are executed. If either test fails, it is a sign that the instrumentation
step must be done again.

2.3.5 Generating and evaluating the model

When the signatures are validated, all the signatures for one service be placed in a
device file and later turned into a Service Executable Model (SEM). This SEM can
then extend the network simulator one wants to use. When we run the SEM with
the simulator, it introduces the delay based on the observed temporal behavior of the
service during the tracing. It can still be the case that the SEM is incomplete, which is
why one should compare the behavior of the SEM with a real device to see if they have
similar behavior when run.

An SEM contains all the merged signatures. Conceptually, it has a tree structure
where each conditional event causes the branch to branch out to multiple paths. If the
service does not start with a class 6 event, which are the conditional events that cause
different instructions to run, the SEM starts with one branch. Later on, it continues
to branch out until the end, in which the number of branches equals the number of
contexts for the service. An SEM is either invoked by another SEM or from existing
protocol models, which are called Functional Service Models (FSMs). The execution
environment works in a way where FSMs first invoke SEMs, for instance when a
transceiver model receives a packet, and the SEM invokes another FSM through
triggers defined in the SEMs.

2.4 Related works

The related works to this thesis include previous work on tracing TinyOS and previous
work on simulation of software execution delay. The most important related work
includes the work on the CSWMM that the contribution of this thesis bases itself on,
described in [Ste13], [KPG13b] and [KPG13a]. The previous work done includes the
methodology [KPG13b] [Stel3] and two proofs of concept: one of the Google Nexus
One [KPG13a], and another of the multi-core Samsung Galaxy Nexus [Oys16]. In
contrast, this thesis focuses on the minimalistic single-core TelosB and single-threaded
TinyOS.

2.4.1 Tracing framework

Tracing the behavior of TinyOS is discussed several times in the literature. Although
the tracing framework we create must incur both a low tracing delay and memory
usage, none of the investigated papers have low tracing delay as a primary
requirement. Additionally, almost all papers focus on tracing the control-flow of the
application for debugging of applications. The control flow is the sequential order of
encountered events during the execution of the application. Since control flows do not
require timestamps, most frameworks leave it out due to its high memory cost. Our
tracing framework requires timestamps for the trace events to capture the length of
processing stages.

Several attempts are made to capture the control flow of the applications that run
on resource-constrained devices, but with no timestamps. In [DWDHO09], a toolkit
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is presented for visualizing the behavior of TinyOS applications. A call graph can be
generated for a given application so that the user gets an overview of the functions that
can be called. Then, the user can select the program actions to be traced (tracepoints).
When the program is finished executing, a sequence diagram can be constructed from
the resulting trace. In [DDHWO8], a way of visualizing the local runtime behavior
of TinyOS programs is presented. The result of tracing is a network-level snapshot
in the form of a sequence diagram of the invoked functions. In [SEZ(09], a tracing
method is introduced that captures the control flow of executing applications and
encodes the trace to reduce memory consumption. In [SEZ10], efficient and accurate
tracing of WSN applications is presented using a novel tracing encoding scheme and
a compression technique to reduce the memory consumption of traces. Since these
solutions do not describe the time it takes to execute the functions, they cannot be used
for our purposes.

In [HCO9b], a lightweight tracing framework that enables tracing of behavioral
and timing events. That includes timing information for each traced event, which
is what is needed for this thesis. The resulting trace can be used to find out which
functions were called and how long they lasted. In [HC09a], the same authors present
an improved tracing framework called LIMOW. The problem with LIMOW and with
most of the other papers is that the evaluation of their tracing frameworks only focuses
on reducing the storage capacity and not tracing delay. This thesis requires an efficient
tracing framework that incurs a low tracing delay for each trace event that does not
drastically change the behavior of the CSW when tracing. Regardless, LIMOW appears
to be the existing tracing framework that is closest to what is required in this thesis.

In [SSEM11], a generic and efficient logging framework called TinyLTS is presented
as an alternative to ad-hoc tracing frameworks. The primary evaluation criteria used
in the paper is flexibility and ease-of-use, which is not what is needed in this thesis.
Our tracing framework must be efficient, and for that, a specialized solution is more
suitable. Part of the motivation for creating a generic framework is that different
projects have different requirements; some need to trace motes that are connected to a
PC via serial communication and some need to trace motes that are not connected to a
PC. The problem that the authors attempt to solve is that developers often end up with
creating specialized solutions when tracing their resource-constrained applications.
Since our tracing framework is made only for one purpose and must incur minimal
overhead, we aim to develop a specialized solution.

2.4.2 Simulation of processing delays

Accurate simulation of intra-node behavior is a hot topic because general-purpose
network simulators such as ns-3 are good for repeatability and scalability, but they
do not usually have models that represent the intra-node behavior. Therefore, several
solutions are proposed in the literature to extend network simulators such as ns-3 to
add this behavior. The CSW model created for this thesis uses the CSWMM that is
previously used to create two proofs of concept, and is described in detail in Section
2.3. The following solutions attempt to solve similar problems to what the CSWMM
does.

In [BBB*10], a methodology to create high-level models of network devices is
presented. It differs from the CSWMM in that the models created with the CSWMM
are more deterministic and, thus, more accurate. In [SK15], a simulation model in ns-3
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is created that simulates the processing delay of nodes in a Vehicular Area Network
(VAN). A virtualization approach is chosen that assumes no detailed knowledge of
the modeled hardware, which can have a negative impact on the accuracy of the
simulated temporal behavior. That is an area that the CSWMM performs well at
because the creation of CSW models requires a deep understanding of the CSW, and
the processing delays defined in the model are based on traces from running it in
the desired contexts. In [HMM16], an ns-3 model is presented for adding realistic
processing delay when MSTAs (Mesh STAtions) forward packets in a Wireless Mesh
Network (WMN). Since the application area for the model is Voice over IP (VoIP),
processing delay is a critical element to simulate because VoIP requires low latency and
jitter [Goo02], and processing delays contribute to them. Their processing delay model
is a more simplified solution than the one that is created with the CSWMM, which
means less accuracy as well as lower modeling effort. In [BRE*15], the authors create
a model in ns-3 to accurately simulate the temporal behavior of packet processing
in the NIC driver of a Linux system. The model uses a constant offset value to
estimate the total intra-node latency, whereas the CSWMM simulates accurate timing
of intra-OS services based on traces from a real device. The model also does not
consider concurrent threads that might interfere with the simulation, whereas a model
of a multi-core device has been created by using the CSWMM and is described in
[Oys16]. In [RWR'14], a resource management extension for ns-3 is presented to
model multi-core software routers. It is used to run intra-node resource contention
models that provide realistic processing delays and packet loss for simulation of multi-
core software routers.

Since the focus of this thesis is on the CSWMM, none of the above solutions are
explored. To acknowledge existing solutions and work being done in the same field
is still important. Comparing the performance of some of the other solutions with the
CSW model created in this thesis might be an idea for future work.

2.5 Summary

The main contribution is the creation of a CSW model to be used in the general-purpose
network simulator ns-3 to provide accurate temporal behavior of the WSN device
TelosB that executes TinyOS. The creation of the model requires tracing the temporal
behavior of TinyOS /TelosB. This background chapter introduces all the concepts required
to understand that contribution. Now the foundation is laid to implement the CSW
model.
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Part 11

Contributions
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The contribution of this thesis is a CSW model of TinyOS/TelosB that can be run in an
execution environment in the ns-3 simulator. Creating it requires tracing the mote,
which means we must create an efficient tracing framework in TinyOS. Thus, two
things are created in this thesis: a tracing framework and the model itself. Both of
them have functional and non-functional requirements that are described in Chapter
3. The creation and evaluation of the tracing framework are described in Chapter 4.
The analysis and instrumentation of TinyOS and the drivers for TelosB are provided in
Chapter 5. The creation of the CSW model is described in Chapter 6 and the evaluation
of it described in Chapter 7. The evaluation of both the tracing framework and the CSW
model depends on the requirements described in Chapter 3.
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Chapter 3

Requirements

This chapter describes the requirements for the tracing framework and CSW model
that are created in this thesis. Requirements are defined for the accuracy and scalability
of the model. The creation of the model is done using the CSWMM, which is explained
in Section 2.3. The steps to create the model are instrumentation of the CSW, execute it
to generate traces, automatic analysis to create signatures, creating and finally evaluate
the model. Everything is in place to perform the automatic analysis and create the
model, but not the instrumentation, tracing, and evaluation steps. To be able to do
them a tracing framework is needed that enables accurate tracing the CSW of a real
mote. Despite the CSW model being the main contribution, the tracing framework is
equally important since the CSW model relies on the tracing framework.

3.1 Tracing framework

Since a tracing framework is required to trace the CSW of TinyOS /TelosB, we first need to
define what is a good and bad tracing framework. The biggest problem with TelosB
is that it only has 10kB RAM available. Since the RAM capacity is low, the memory
consumption must also be low. The time it takes to perform the tracing should also
be reduced to avoid affecting the normal behavior. Therefore, the non-functional
requirements for the tracing framework are to minimize memory consumption and the
tracing delay. The functional requirements include the ability to instrument anywhere
in the code, store traces in memory, and transmit traces to a connected PC. The
requirements defined in this chapter form the guidelines to follow when creating a
design in Chapter 4.

Figure 3.1 illustrates how the tracing framework can be used to create and evaluate
the CSW model. A model centered instrumentation generates traces that tell how
long each processing stage takes. Those traces can be used to generate signatures
which are used to assemble the complete model. A metric centered instrumentation
generates metrics that can be compared with simulation metrics generated by the
model to evaluate the accuracy of the model. This chapter defines requirements that
hold regardless of how the tracing framework is used.

3.1.1 Non-functional requirements

An ideal tracing framework should enable us to gather as much accurate information
as desired when the device is executing. Also, the normal behavior of the device should
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Figure 3.1: How the tracing framework is used

not change when it is traced. The problem with the ideal is that it does take time to
trace and trace events must usually be saved somewhere on the mote, which means
there are two limiting factors: tracing delay and memory consumption.

Memory consumption

The memory consumption of each trace event needs to be minimized. Therefore, the
different types of events and verbosity of the trace events must be reduced to the
extent it helps us reduce memory consumption. Contexts to trace in include various
packet rates and sizes, and so we must be able to trace the behavior sufficiently and
continuously while the device processes several packets at once. If only one packet can
be traced before the buffer is full, we miss out on the device’s behavior at high packet
rates, and cannot accurately capture packet loss and packet delay.

Tracing delay

Tracing delay is the additional time that tracing adds to the intra-OS delay, and the
requirement is to minimize it. The time it takes to trace is largely decided by the
method of tracing and the amount of data to trace. Knowing which tracing delay is
acceptable is not straightforward. The normal behavior of the device must be affected
minimally. That can depend on factors such as the CPU speed of the device such as
whether the CPU is single-core or multi-core and whether the OS is single-threaded or
multi-threaded. Since TelosB is single-core and TinyOS is single-threaded, the tracing
delay must be reduced. The reason is that when TelosB performs tracing, everything
else must be interrupted, whereas a multi-core device might perform tracing in parallel
with other tasks. As the CPU runs at 4MHz, however, some delay is acceptable because
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hardware instructions take more time to execute than faster devices. In summary, there
is no simple way of determining how much tracing delay is acceptable, but it should
be minimized as much as possible.

Accuracy

Traces are required to be sufficiently accurate. The trace events must be transmitted
and received in the right order with accurate timestamps. The need for an accurate
timestamp depends on the use-case. A use-case where we need accurate timestamps
is when tracing how long the processing stages take. Conversely, accurate timestamps
are not needed when gathering metrics used to find out the percentage of successfully
forwarded packets. In either case, the trace events must arrive in the same order they
are traced.

3.1.2 Functional requirements

There are three functional requirements for the tracing framework: (1) the user must be
able to place tracepoints anywhere in TinyOS, (2) the traces must be possible to save in
RAM, and (3) the traces must be possible to transmit to a connected PC while the device
is running. A tracepoint can be performed through a function call in TinyOS. Saving
traces in memory is needed because we do not necessarily want to transmit traces
immediately, but instead, store trace events in memory and defer the transmission.
The ability to transmit traces to a connected PC while the device is running is required
because the device has little RAM capacity, which can make it necessary to transmit
traces several times throughout the execution to collect enough trace events. These
functional requirements enable us to use the tracing framework to capture the CSW
behavior of TinyOS /TelosB.

3.2 CSW model

An ideal CSW model in ns-3 is one that has the same packet forwarding related
behavior as a real device in all possible ways, and the scalability of the model has
no limits. The aim is to reach both of these goals, but that ideal will not be reached
here either. The accuracy cannot be perfect because the model is still an abstraction of
the device where no instructions of the OS are executed. Infinite scalability cannot be
achieved either because it takes time to execute the model and the model consumes
memory. The goal is that even without that level of detail and some overhead, the
accuracy is reasonably high and the scalability of the model is good enough.

3.2.1 Non-functional requirements

We define two types of non-functional requirements: one for the accuracy of the CSW
model, and another for the scalability. The first type includes requirements for accurate
simulation of packet delay;, jitter, and forwarding rate. The other includes requirements
for scalable simulation when increasing the number of nodes to the simulation, the
number of processed packets and the number of simulated seconds.
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Accuracy of the CSW model

We require that the CSW model can accurately simulate the following list of behaviors:
¢ The end-to-end delay of sending a packet from Mote A to C via B.
¢ Jitter as a result of varying packet size and fill-level in OS packet queues.

¢ The forwarding rate when processing packets, relative to the packet size and
packet rate.

The above points describe the types of behaviors network administrators observe
every day when they evaluate the quality of their service. They see how long it takes
for a packet to get from Node A to C (end-to-end delay) from the data collected
from their networks. Furthermore, they see the variation in the end-to-end delay
when sending several packets (jitter), and how many packets are successfully sent
(forwarding rate). The CSW model should exhibit similar behavior as the real device
for all of these behaviors.

Scalability of the CSW model

WSNs can inhabit thousands of nodes, and it is therefore important that the time
added to the simulation execution time and the memory consumed be small. If it takes
weeks to simulate a regular scenario, the model is useless. The simulation execution
time when including the model should be low enough that users can simulate regular
WSN scenarios in a reasonable time. We are interested in how much time is added to
the simulation execution time and memory consumed when increasing the following
parameters:

* packets an active node processing packets (simulation execution time),

¢ seconds an inactive node spends not processing anything (simulation execution
time),

* active nodes processing packets (simulation execution time), and

¢ inactive nodes spend not processing anything (simulation execution time and
memory consumption).

We distinguish between the four cases above because the overhead added by
scaling them might differ. An active node processes x packets where an inactive node
spends y simulated seconds being idle. An active node that processes packets causes
more or less overhead than an inactive one being idle. Additionally, increasing the
number of nodes might not result in a linear increase in overhead. If the complexity
increases exponentially for any of the above scenarios, the scalability will probably be
poor.

3.2.2 Functional requirements

We define two functional requirements that are not fulfilled by default when creating
the CSW model. The first is integration with an existing transceiver model. An
example of such a transceiver model is the CC2420 transceiver model described in
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[IG]. Integrating with it means that we do not have to model the radio of the mote,
which is complex in an by itself. The second requirement is the ability to collect
simulation metrics such as packet delay, jitter, and forwarding rate of each device
during the simulation. That enables us to debug and evaluate the model by comparing
those metrics with a real mote, and it enables developers to measure the simulated
performance.

3.3 Summary

In this chapter, we present the requirements to the CSW model and the tracing
framework. The tracing framework is designed and evaluated in Chapter 4. The
evaluation of the CSW model is provided in Chapter 7. Table 3.1 contains a summary
of the requirements.

| For | Type | Requirement | Action |
TF NF | Memory consumption | Minimize
TF NF Tracing delay Minimize
TF NF Accuracy Maximize
TF F Trace anywhere Enable
TF F | Save traces in memory | Enable
TF F Transmit traces Enable
CSWM | NF Accuracy Maximize
CSWM | NF Scalability Maximize
CSWM | F | Transceiver integration | Enable
CSWM | F Log metrics Enable

Table 3.1: Functional (F) and non-functional (NF) requirements for the tracing
framework (TF) and CSW model (CSWM)
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Chapter 4

Tracing framework

In this chapter, a minimalistic tracing framework is designed and evaluated that can
capture the temporal behavior of the CSW of TinyOS/TelosB, illustrated as Mote B in
Figure 1.2. It is used to create and evaluate the CSW model. Traces collected at a
low packet rate from a real mote are converted to signatures that describe the temporal
behavior of the CSW services. Signatures are an integral part of the model since they
describe the captured CSW behavior. After it is created, the tracing framework is again
used to capture the behavior, but this time to assess the similarity of the model to a real
mote.

Instead of using one of the existing tracing solutions, we use a specialized solution.
Some of the existing solutions are presented in Subsection 2.4.1. The main reason
for not using any of them is that the tracing delay is not considered in most of the
papers that evaluate them. To us, however, reducing the tracing delay is an essential
non-functional requirement. The studied solutions do contain some insights that we
include, such as compression of traces on the mote to reduce memory consumption.
Therefore, we create a specialized solution that is inspired by existing solutions instead
of using them.

In Section 4.1, the design of the tracing framework is explained. In Section 4.2, it
is evaluated with respect to the requirements defined in Chapter 3. In Section 4.3, the
chapter is summarized.

4.1 Design

The design of the framework includes the format of trace events, the method of
transmitting them from the mote to the receiving PC and how the receiving PC handles
them. This section describes a design that addresses all the points, which is evaluated
in Section 4.2.

Resulting traces must be possible to translate to CSW events because they contain
the information required to create signatures. Previous proofs of concept [KPG13b,
Oys16] store CSW events in memory of the traced device, but that is not a realistic
option TelosB that only has 10kB of RAM. Instead, trace events are compressed on the
mote and decompressed to CSW events on the receiving PC to reduce the memory
consumption when tracing. The relationship between trace tuples and CSW events is
displayed in Figure 4.1; each trace tuple corresponds to one or more CSW events.

The tracing framework is used for three different purposes: (1) creating the
CSW model where accurate timestamps are needed, (2) evaluating it where accurate
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Figure 4.1: Relationship between trace tuples and CSW events

timestamps are needed and (3) evaluating it for prolonged periods where accurate
timestamps are not needed. Purpose 1 requires accurate timestamps because the
signatures must accurately describe the temporal behavior of the CSW. Purpose 2 also
requires accurate timestamps, but this time to evaluate the accuracy of the intra-OS
delay simulated by the CSW model. Purpose 3 does not require accurate timestamps
and is for measuring the forwarding rate of the real mote against the CSW model to
evaluate it. The tracing framework is designed for these purposes and accommodates
their specific requirements in addition to the general requirements in Chapter 3.

411 Methods of tracing

As a result of the different needs in Purpose 1-3, two methods of tracing are proposed
in this chapter: instant and buffered tracing. Buffered tracing is used for Purpose 1-
2 and includes storing the trace tuples in memory until the buffer is full, and then
transmit them all via serial communication to the connected PC. The trace events are
in the format <trace ID (one byte), timestamp (four bytes)>. During the time that the
mote transmits the trace tuples, the application is interrupted, and trace tuples that are
traced close to the interruption must be discarded afterward. That enables the user to
continue with the execution for indefinitely so long as the trace tuples affected by the
interruption are discarded.

On the other hand, instant tracing can be used entirely without interruption
because each trace event in the format <trace ID (one byte)> is sent immediately using
serial communication. As it can be used indefinitely without interruption, it is used for
Purpose 3. In contrast to buffered tracing, the timestamps are added by the receiving
PC to form the trace tuple <trace ID (one byte), timestamp (four bytes)>. Therefore,
the resulting trace tuple is in the same format as the top box in Figure 4.1 regardless of
whether buffered or instant tracing is used.

Both methods have their advantages and disadvantages. The benefit of using
instant tracing is that it is easy to trace an application without affecting the application
significantly over an extended period. The downside is that the timestamps cannot
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be trusted to be accurate. The benefit of using buffered tracing is that the timestamps
are accurate and the tracing delay is low. The downside is that when trace tuples are
transmitted, the application is interrupted. The tracing delay for each trace event is
low with both methods: 20 us (80 CPU cycles) for buffered and 40 us (160 CPU cycles)
for instant tracing.

Tracing

How tracing works depends on which method is used to trace and on which platform.
Depending on whether instant or buffered tracing is used and whether a real mote
or an emulated Cooja/MSPSim mote is traced, different things happen when tracing
and transmitting the trace events. The real mote is physically connected to a PC and
transmits the trace tuples using serial communication. The emulated Cooja/MSPSim
mote transmits data to the Mote Output plugin in Cooja, which can be downloaded to
a file after the execution. When instant tracing is used, trace IDs are sent immediately
and can be done indefinitely without interruption. With buffered tracing, the trace
event buffer fills up until it is full and the trace tuples are transmitted to the receiving
PC. In all cases, however, the instrumentation of the CSW is the same. Moreover, the
generated traces have the same format and are therefore handled the same way after
the tracing. Consequently, no effort is required when switching from one method or
platform to the other.

Real mote The process of tracing the real mote is illustrated in Figure 4.2. The traced
mote is connected to a PC which executes a program that listens for any data received
to the serial port. Depending on whether buffered or instant tracing is used, the
received trace events are five or one bytes in size. The tool used to listen for the data
received from the mote is a modified version of the sr program that resides in the serial
communication tools in the TinyOS repository. It is modified to listen for trace events
instead of packets. When the program finishes, it writes the trace to a file.

If buffered tracing is used, the trace tuples are stored in RAM of the traced mote
until the buffer is full. When it is full, the buffered trace tuples are transmitted using
serial communication. Each tuple contains five bytes which are sent with a waiting
time of 100-500 ps in between each byte. The reason for the waiting time is to avoid
characters being lost in transmission. The receiving PC stores the received bytes in a
trace tuple array.

On the other hand, if instant tracing is used, the trace IDs are transmitted
immediately from the mote to the PC. The receiving PC receives one byte at a time
and appends a timestamp (using the rdtsc x86 assembly instruction) to each trace ID
to create a trace tuple. The method is beneficial for its simplicity but suffers from poor
timestamp accuracy because it takes a variable amount of time to receive the trace ID.

Cooja When tracing in Cooja, instant tracing is the fastest and most accurate method
to trace. It is most accurate because the timestamp is retrieved from the internal
simulation time of Cooja and is the fastest because sending a byte using serial
communication takes less than 20 s with an emulated mote in Cooja (40 ys on a real
mote). Data transmitted using serial communication is outputted in the Mote Output
plugin as clear text with the simulation time, which is used as the timestamp of the
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Figure 4.2: Process of tracing a real mote

trace tuple. The low overhead is beneficial when debugging and testing because it
lowers the tracing delay, but also means that Cooja is less accurate than the real mote.

Minor modifications are made to the Mote Output plugin to accommodate for
tracing in Cooja. The simulation time that is printed out is by default in milliseconds,
which is not precise enough. Therefore, it is changed to display simulation time in
microseconds, which is the highest precision that Cooja offers and the same that the
real mote uses. Another modification is made to print out a new line for each character
that is sent using serial communication. The reason is that each new line character sent
using serial communication results in a new line of output in the Mote Output window,
which includes the trace ID and Cooja simulation time in microseconds. Without the
newline character, each trace event must be printed out with an explicit newline as
well. That doubles the tracing delay because the trace ID and a newline character must
be sent instead of just the trace ID. These are small changes, but at least the change in
timestamp precision must be made for the tracing to work and the additional newline
character change is optional.

4.1.2 Format

The design of trace events needs to fulfill the requirements defined in Chapter 3. Since
the primary requirements have to do with minimizing tracing delay and memory
consumption, the focus is on creating the most straightforward solution regardless of
how inflexible and specialized it is. To minimize memory consumption, we compress
the trace events on the mote and later decompress them on a PC. Even though instant
tracing transmits the trace events immediately and thus does not occupy memory, it
still requires compression of trace events because only one byte can be sent using serial
communication at a time. Consequently, the task here is to compress the CSW events
to the trace tuple containing a trace ID and timestamp.
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Compressing 32-byte CSW events to five-byte trace tuples is not trivial because
it requires knowledge about what data in CSW events is inferable. In TinyOS for
instance, we can infer the Process ID (PID) because the OS is single-threaded. We have
found that the only necessary data needed for each trace event in TinyOS is a one-
byte location/trace ID (0-255) and a four-byte timestamp. Therefore, the CSW event in
Listing 4.1a can be compressed and traced as the trace tuple displayed in Listing 4.1b.

(a) HIRQENTRY 0 1 427182894 1 0 0 <service> <location>
|

\

(b) 0 427182894

Trace ID = | Location ID |

Trace tuple = <Trace ID (1 byte), timestamp (4 bytes)>

Listing 4.1: Simple compression of CSW events

The example above only works when the context is simple, for instance, that only
one thread is executing. If two threads can execute and both threads run the same
instrumented code at different times, the trace IDs need to include information about
which thread is tracing which event, since the CSWMM also works for multi-threaded
and multi-core devices [KPG13a] [Oys16]. Listing 4.2a and 4.2b format the trace ID so
that it reflects whether PID 0 or 1 is tracing. Which thread is tracing is captured by
allocating the most significant bit in the trace ID byte to the PID of the tracing thread.
That means each thread can trace up to 128 different locations in the code, a reduction
from 256 locations when only one thread is executing. Since TinyOS only runs with
one thread, the example in Listing 4.1 works fine.

HIRQENTRY 0 0 427182894 0 0 0 <service> <location>

|
(2) |

0 427182894

HIRQENTRY 0 1 427182894 1 0 0 <service> <location>

|
(b) |

128 427182894

Trace ID = | PID | Location ID |

1 bit 7 bits

Trace tuple = <Trace ID (1 byte), timestamp (4 bytes)>

Listing 4.2: Compression of CSW events with two threads
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Listing 4.3a contains a trace ID format where the same tracepoint might be executed
from up to 256 different threads, and therefore the one-byte trace ID is not sufficient.
That is solved by increasing the size of the trace ID from one to two bytes and thus
only increasing the total trace tuple size by one byte. All the bits of the trace ID should
be used efficiently. If the possible PIDs in an OS are 142, 24 and 251, they should not
be stored in the trace ID and occupy a byte, but instead be mapped to 0, 1 and 2.

(2)

Trace ID = | PID | Location ID |
8 bits 8 bits

(b)

Trace ID = | Bool state | PID | Location ID |
1 bit 7 bits 8 bits

Trace tuple = <Trace ID (2 bytes), timestamp (4 bytes)>

Listing 4.3: (a) Compression of CSW events with many threads. (b) Compression of
CSW events with many threads and a boolean state variable.

The need to trace many different PIDs is just one example of a type of context
that might need to be included in the trace ID. Listing 4.3b shows an example of a
case where the developer wants to capture the value of a boolean state variable, and
thus allocates one bit for the value of that variable in the trace ID. These examples
demonstrate the flexibility of the compression method.

In the case of trace IDs that are larger than one-byte, the instant tracing method
does not work correctly in TinyOS because two bytes cannot be transmitted using serial
communication reliably without a waiting time in between each byte. Instant tracing
is mostly used when timestamps are not that important, so in those cases, the trace IDs
must instead be stored in RAM or flash memory without the timestamp. While instant
tracing is a suboptimal method, it is used to explore the application and understand it
in complicated contexts.

4.2 Evaluation

We evaluate the tracing framework against the criteria defined in Chapter 3. The
metrics used to evaluate the tracing framework are tracing delay and memory
consumption, and the most critical requirements regard minimizing them. The tracing
framework must be efficient and enable us to capture all the necessary information to
be able to use the CSWMM to create a sufficiently accurate CSW model. TinyOS/TelosB is
to be traced for three different purposes as mentioned earlier in the chapter. Purpose 1
requires accurate timestamps and is for creating the model. Purpose 2 requires accurate
timestamps and is for evaluating it. Purpose 3 does not require accurate timestamps
and is for indefinite tracing when evaluating the model. If the tracing framework can
tulfill the requirements while providing a way to use it for all three purposes, we have
succeeded.
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4.2.1 Memory consumption

The memory consumption of trace events depends on the method of tracing. Instant
tracing transmits the one-byte trace ID immediately, resulting in practically no memory
consumption. Buffered tracing stores the five-byte trace tuple in memory until the
buffer is full. With both methods, it is impossible to reduce the size of the trace event
further without removing necessary information. The one-byte trace event cannot be
reduced any further because at least one byte must be transmitted when using serial
communication. Since instant tracing enables indefinite tracing without interruption,
Purpose 3 of the tracing framework is possible. Purpose 1 and 2 are possible because
of the accurate timestamps added when using buffered tracing. Therefore, without
reducing the precision of the timestamp, it is impossible to reduce the size of the five-
byte event.

On the other hand, the size of the timestamp can be reduced from four to two bytes
if the buffered tracing method uses a timestamp to record the change in microseconds
since the last trace event instead of the number of microseconds that have passed since
the application started. It would require the change between current time and the
time of the previous trace event to be less than 2! us or 64 ms. Based on preliminary
experiments, it is clear that the difference between two traced events for a packet being
processed never exceeds 64 ms.

When the mote is traced for Purpose 1, the memory consumption can be reduced
even further. As Purpose 3 is about creating the CSW model, the trace is captured only
at a low packet rate. Therefore, the same sequence of trace IDs should be captured
every time. By knowing the trace ID sequence beforehand, only the timestamp has
to be transmitted, and the trace ID can be inferred afterward. Then the memory
consumption of a traced event can be reduced from five to two bytes, where only
the difference between the current and previous event is stored and transmitted. By
reducing the size of the trace event, it enables storing 3500/2=1750 events in RAM at
once. As the behavior is predictable at a low packet rate, however, it is not necessary
to trace the mote for prolonged periods. Moreover, it is possible to redo the tracing
several times if more trace data is needed. None of these ways of reducing the memory
consumption of trace events are prioritized in this thesis for two reasons: Purpose 1-3
are fulfilled even without the optimizations, and they require extra work for handling
special cases.

4.2.2 Tracing delay

Tracing delay, as mentioned in Chapter 3, is the additional time that tracing adds to
the intra-OS delay. How much time depends on whether buffered or instant tracing
is used. The delay caused by buffered tracing is bound by the time it takes to fetch
the current time in microseconds. Reading the current time for each trace event is
necessary because the event must contain an accurate timestamp. That delay is 20 us
(80 CPU cycles) when tracing a real mote, which is considered low.

The delay caused by instant tracing is bound by the time it takes to send a byte over
serial communication with printf. The amount of time it takes to transmit the byte to
the receiving PC is variable, but the time it takes to call printf with one byte is 40 us
(160 CPU cycles) when tracing a real mote. Although the delay is twice the amount as
buffered tracing incurs, it is still low. The main problem with instant tracing is that the
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timestamps are inaccurate because of the variable serial communication transmission
time.

4.3 Summary

This chapter presents the tracing framework used to capture the data from the TelosB
mote to create and evaluate a realistic CSW model in ns-3. The solution is implemented
in TinyOS as a component that uses TinyOS’ printf function to transmit trace events.
Trace events are compressed on the mote and decompressed later on a PC, which
results in trace events that are low in memory consumption. When using buffered
tracing, the events are stored in RAM until it is full before they are transmitted
using serial communication. When using instant tracing, the events are transmitted
immediately using serial communication. The result is a flexible way of tracing
in which the tracing delay and memory consumption are low with both methods.
Therefore, the requirements that are defined in Chapter 3 are satisfied.

| Tracing type | Delay | # events w/o interruption | Timestamp accuracy |

Buffered tracing | 20 us 700 High
Instant tracing | 40 us No limit Low

Table 4.1: Difference between buffered and instant tracing

Table 4.1 sums up the difference between buffered and instant tracing. With
buffered tracing, timestamp accuracy is high, the memory consumption is five bytes,
and it takes 20 ps to trace an event. Furthermore, the number of events the mote can
trace before having to transmit them is 700. With instant tracing, timestamp accuracy
is low, the memory consumption is one byte, and it takes 40 ys to trace an event. Since
the trace events are transmitted immediately using serial communication, there is no
limit to how many events can be traced without interruption.
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Chapter 5

Analysis and Instrumentation of
TinyOS

In this chapter, the packet forwarding part of TinyOS for TelosB is analyzed, and the
instrumentation of it is described. The instrumented CSW in TinyOS includes the
CC2420 driver and Berkeley Low-power IP (BLIP) library. BLIP contains the IPv6
and 6LoWPAN implementation. Two instrumentation configurations are defined: the
model centered instrumentation for creating the CSW model and the metric centered
instrumentation for evaluating it. Consequently, if the evaluation indicates that the
model is not accurate enough, it might be because of something missed in the analysis
and instrumentation.

In Section 5.1, the forwarding application used to create and evaluate the CSW
model is explained. In Section 5.2, the packet forwarding process in TinyOS is
described. In Section 5.3, the instrumentation configurations are explained.

5.1 Forwarding application

Our TinyOS forwarding application is executed to capture the CSW behavior in
different contexts. All three motes in the linear chain topology in Figure 1.2 run the
application. Mote A sends packets to Mote B, and Mote B has a hard-coded route to
Mote C. Mote B'’s application is instrumented and traced for the creation of the CSW
model. The application works for both a real and emulated Cooja/MSPSim mote,
which is beneficial because it is easier to debug the program with a simulator such
as Cooja/MSPSim instead of on a real mote. Additionally, it gives the opportunity to
compare the performance and differences between the real mote and Cooja/MSPSim.
The difference in what each mote does is decided through if statements that check if the
TOS_NODE_ID is 1, 2, or 3. For the real motes, the application is explicitly compiled
for Mote A, B or C. In Cooja/MSPSim, the TOS_NODE_ID is assigned automatically.
As such, all three motes run the same code where the TOS_NODE_ID is different.

5.1.1 Modifications to TinyOS

The application uses IPv6 which by default requires devices to send ICMPv6 packets
and the CC2420 driver by default requires acknowledgment of packets. Both ICMPv6
packets and acknowledgment packets are disabled because only a simple packet
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forwarding scenario is modeled. Clear Channel Assessment (CCA) is implemented
in two ways on the mote as mentioned in Chapter 2. The first is a backoff timer in
TinyOS that makes the mote wait a random amount of time before sending packets
to avoid collisions. The second is a feature that the CC2420 radio chip implements to
prevent packets from being sent if it senses that the medium is not clear. The radio
chip’s CCA functionality is kept enabled, but the backoff timer is disabled because
the random backoff time causes unwanted variation in intra-OS delay. Although a
backoff is usually necessary to avoid occupying the channel for too long and collision
when resending packets, that is not needed here. These two modifications are made to
simplify the forwarding process.

5.1.2 Network stack

Figure 5.1 contains an overview of the network stack of the application. Mote A
sends a packet using UDP for transport layer, IPv6 and 6LoWPAN for its network-
layer protocols, and IEEE 802.15.4 for MAC sublayer and PHY. The CSW model in this
thesis does not simulate 6LoWPAN fragmentation of packets, but it can be considered
in future work. Combined, the headers in the packets sent by Mote A have a size of
36 bytes, and 38 bytes when adding the two CRC bytes. Further in the thesis when
results are presented, figures distinguish between UDP payload size and packet size.
UDP payload size of zero bytes means a packet size of 36 bytes.

Mote A Mote C
Application Application
UDP UDP

Mote B
IPv6 IPvE IPvE
GLoWPAN GLoWPAN 6LoWPAN
IEEE B02.15.4 IEEE 802.15.4 IEEE B02.15.4
CC2420 transceiver CC2420 transceiver CC2420 transceiver

V\/

Figure 5.1: Forwarding app network stack
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5.2 TinyOS analysis

In this section, the packet forwarding process in TinyOS is analyzed. The CC2420 radio
chip driver and the BLIP (6LoWPAN and IPv6) library comprise the instrumented
CSW and the entire packet processing flow can be divided into a receiving and sending
part, as illustrated in Figure 5.2. In this case, receiving and sending mean the first and
second half of the CSW packet processing. The receiving part lasts from starting to
write a packet from the CC2420 RX queue into memory until enqueueing it into the IP
packet queue (IPAQ). The sending part lasts from taking a packet from the IPAQ, and
it is transmitted. Each part can handle only one packet at a time. Figure 5.3 illustrates
an overview of the functions that are called. In TinyOS, the same process executes the
drivers, the OS code, and applications. Therefore, when it is written that the driver, OS
or application does something, it is always the same process.

TelosB running TinyOS

8 | Receivi Sendi
| 11 ‘ ‘ 10 | ‘ 9 | {O'uc!:i?f:!::ggmc} 5 {O'mpi?c‘.la?agtimc} | 2 | ‘ 1 ‘

L7 ] |4 L8]
T A

CC2420 Rx queue IP packet queue (IPAQ)

Figure 5.2: Summary of CSW flow when packets are forwarded

CC2420 driver when receiving The OS is notified that a packet is being received
when the SFD pin on the CC2420 radio-chip invokes a hardware interrupt in the
OS. SFD stands for Start of Frame Delimiter, which means the mote has received the
tirst bytes of a new packet. When it is fully received, the hardware interrupt event
interruptFIFOP fired in the CC2420 driver is invoked, seen in the top box in Figure 5.3.
Only one packet can be written into RAM at a time, and deferred packets get processed
once the current one is finished with the receiving part.

If the driver is ready to process a new packet, it starts the three-step process of
writing the packet into memory. All three steps use the readDone hardware interrupt
event in box number two in Figure 5.3, where the state variable m_state has a different
value in each step. The steps are to read (1) the length byte, (2) the FCF bytes, and (3)
the payload of the packet. When the full packet is written into RAM, the driver checks
the last byte of it to see if the CRC check succeeded (a check performed by the CC2420
radio chip). If it fails, the mote drops the packet and starts reading the next one. If it
succeeds, the receiveDone_task task, box number three in Figure 5.3, is posted to run
later.

receiveDone_task’s job is to send the packet to the upper layer protocols and hand
it over so that the next packet can be processed. First, a duplication check drops
previously received packets. Next, the packet is sent to the layer handling 6LoOWPAN.
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Figure 5.3: Overview of CSW flow when packet is forwarded
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IP layer The 6LoWPAN adaptation layer decompresses the packet header before it
sends the packet to the code handling the forwarding of packets. As the IP layer finds
out that the packet is destined for another mote, it looks for a route which it finds
because we add a route between Mote B and C in the forwarding application. Next,
two things happen: the IP layer draws an entry from the send info pool (3 entries in
total), and the packet is a placed in a queue (max 12 packets). If either the send info pool
is empty or the packet queue is full, the packet is dropped. The entry from the send
info pool is not put back in the pool, and the packet is not removed from the packet
queue until the packet is transmitted. Since the packet queue has twelve entries, and
the pool only has three entries, the bottleneck is the pool. If the pool and queue have
the capacity for another packet, sendTask is posted to be executed later, which is the
last thing receiveDone_task does. At this point, the receiving part ends and first now
can the next packet be written to memory, unless the packet is dropped earlier due to
failed CRC check.

sendTask starts the sending part, and its job is to prepare a packet enqueued into
the IPAQ to be sent to its destination, which is Mote C in this case. The IP layer has
a boolean state variable called radioBusy, which is used to enforce the rule that only
one packet is allowed to be attempted sent from the IP layer at a time. If radioBusy
is true when entering sendTask, sendTask returns and is reposted when the current
packet is finished being transmitted. Otherwise, radioBusy is set to true, and the packet
proceeds with being sent. The headers for the packet are set, and it is sent to the lower
layers.

CC2420 driver when sending The sending part of the CC2420 driver continues the
forwarding by writing the packet to the TX queue of CC2420. When the packet is
written to the TX queue, a hardware interrupt event is invoked, and it is time to finally
attempt to send the packet by calling the attemptSend function that is the second last
box in Figure 5.3. In this application, the backoff timer is disabled. If it were enabled,
the callback function to the backoff timer would invoke attemptSend, as can be seen in
Figure 5.3. Instead, attemptSend is invoked right after the packet is written to the TX
queue. When the radio has finished sending the packet, a hardware interrupt is called
which signals a sendDone event in the IP layer. There, the send info entry is placed
into the pool and the packet dequeued from the packet queue. In the CSW model, this
is the place where the packet is dequeued from the IPAQ. The sending part also ends
at this point, and the next packet can be sent.

Task scheduler All tasks that are posted are executed by a scheduler that runs within
an infinite loop. When there is no task to be executed, the MCU goes to sleep for a
while. Tasks cannot preempt each other or events, which means that they must be
relatively short lasting. For instance, receiveDone_task must finish before sendTask
can be executed. If receiveDone_task runs forever, sendTask will never end, and the
packet will never be forwarded.

Modeling the CSW As mentioned above, the CSW can be split into two parts,
receiving and sending, with a byte queue before the receiving part (CC2420 Rx queue)
and a packet queue in between the receiving and sending parts (IPAQ). For the
modeling to be realistic, however, it should be more finely grained than just two
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processing stages. The CSWMM enables that by splitting the captured CSW process
into separate services each with their processing stages.

The CSW model simulates the services as either Packet Handling Services (PHSs)
or Work Scheduling Services (WHSs) in the CSWMM, which are presented in Section
2.3. In Figure 5.3, InterruptFIFOP.fired, readDone, receiveDone_task, sendTask,
BackoffTimer.fired, sendDone and sendDone_task are all considered PHSs. PHSs are
executed within a WSS, and the CSW model uses two of them: one for executing
hardware interrupts and another for posted/deferred tasks. The tasks are executed
by the task scheduler that executes within an infinite loop with some delay in between
each iteration. Hardware interrupts, on the other hand, are executed as soon as they
occur.

The send info entry in the IP layer can be viewed as a ticket that is used to make
sure that only three packets can wait to be sent at once. Since the send info pool
is a bottleneck, it is modeled in the CSW model, but as a packet queue instead of a
pool. Throughout this thesis, it is referred to as the IP packet queue (IPAQ), also in the
experiments with a real TinyOS/TelosB. The packet queue with twelve entries is ignored
because it is not expected to be a bottleneck.

5.3 Instrumentation

In this section, the instrumented locations in the CSW of TinyOS are presented. A
distinction is made between instrumentation used to generate model- and metric-
traces. Model-traces are used to create the CSW model, and metric-traces to compare
the performance of it with a real mote. Figure 5.4, an extension of Figure 5.3, contains
an overview of the functions called in the CSW and the tracepoints used for the
two instrumentation configurations. The following subsections explain them in more
detail.

5.3.1 Model

The model centered instrumentation is a configuration of tracepoints where the focus
is on gathering data to create signatures. A model-trace captures which services are
called, how long they take to execute and events within the services that are important
to know exactly when they occur. In our case, those events are when packets are
enqueued into the IPAQ and when the radio chip is ready to attempt to transmit a
packet.

Aside from two tracepoints, all model-tracepoints in Figure 5.4 are at the beginning
and end of functions. The CSW model must include more than just the beginning and
end of services, but all of the required CSW events can be inferred from the tracepoints
in the figure. What all the tracepoints have in common is that it is necessary to know
when each time they are executed to create the CSW model. All the tracepoints placed
at the beginning and end of functions are needed because the signatures must describe
how long time it takes to execute each function, and also the time in between the
services.

The two remaining tracepoints are placed where the CSW attempts to enqueue
a packet to the IPAQ and when the radio is ready to transmit. The enqueueing of
a packet is necessary to capture because the CSW model simulates enqueueing and
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Figure 5.4: Overview of instrumentation in CSW
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dequeuing of packets and needs to know the time within a service that packets are
enqueued. When the radio chip is ready to attempt to transmit the packet must be
captured because the radio chip can start to send it while the CSW is executing.

5.3.2 Metric

For the metric centered instrumentation, the focus is on measuring the intra-OS
delay and packet forwarding rate. We care about when packets are received, sent
and dropped. That is done by instrumenting five places, though the number varies
depending on what data needs to be traced.

Figure 5.4 shows the locations in the CSW that belong to the metric instrumentation
configuration, which make it possible to calculate the intra-OS delay of processing a
packet and if it is successfully sent or dropped. The tracepoints placed where the OS
has just received a packet and attempting to send a packet are used to measure the
intra-OS delay. Only the trace event for the first attempt is used to calculate the intra-
OS delay for a packet because multiple attempts only occur when the radio chip backs
off due to the channel not being clear. In those cases, extra delay is added to the packet
delay, but that delay is due to the transceiver delaying the transmission. When using
the CSW model, that delay should be handled by a separate CC2420 transceiver model.
Three tracepoints are used to measure the percentage of forwarded packets: when
dropping packets due to failed CRC check or the IPAQ is full, and when a packet is
finished transmitting. The size of the packet is necessary to trace in case the size of
received packets changes from packet to packet. The experiments in Chapter 7 use
these tracepoints to measure the accuracy of the CSW model.

Not all the above tracepoints are active, however, when conducting the experiments
to evaluate the accuracy of the CSW model. Experiment 1 and 2 measure the intra-OS
delay of packets being processed and Experiment 3 measures the packet forwarding
rate. Additionally, Experiment 2 and one of the runs in Experiment 1 require tracing
the packet size of received packets so that the ns-3 simulation program can replicate
the packet sequence that occurs in the real mote.

54 Summary

In this chapter, the forwarding application used for the experiments and the modeled
CSW are described and analyzed. The CC2420 driver and the BLIP library are
instrumented, as well as the task scheduler. Additionally, the instrumentation of the
CSW is explained.
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Chapter 6

Model creation

In this chapter, the creation of the CSW model is described. Traces gathered from
running Mote B at a low packet rate are used to create signatures, and finally a device
file. The model is implemented in ns-3 as a C++ class that invokes SEMs in the device
file to add the temporal behavior of the CSW to the simulation. After having collected
traces, the remaining steps of the CSWMM to create the CSW model are:

¢ Verify that the trace is accurate through analysis.
* Decompress the model-trace to CSW events.

* Run the automatic analysis script with the CSW events as input to generate
signatures.

* Create a CSW model in ns-3 that uses the signatures to simulate the packet
forwarding.

* Create a simulation program in ns-3 that uses the model to forward packets.

Figure 6.1 shows the relationship between traces, CSW events, signatures, SEMs
and the CSW model. A trace tuple refers to one or more CSW events. Several CSW
events can describe several signatures. An SEM is made from one or more signatures,
and one or more SEMs is used in a CSW model.

Section 6.1 presents ways to analyze a trace to mend errors and decompressing the
model-trace to a list of CSW events, Section 6.2 explains in detail how the CSW model
of TinyOS /TelosB works, and Section 6.3 summarizes the chapter.

6.1 Analysis of trace

A trace from Mote B might be inaccurate and contain inconsistencies that require
analysis to find. Trace tuples only contain a trace ID (one byte) and a timestamp (four
bytes), as seen in Listing 6.1 and 6.2. Therefore, they are easy to analyze. Each trace
tuple represents one or more CSW events. This section describes how a trace can be
shown to be accurate, and if not, mend it.

The trace used to create the CSW model is collected at a low packet rate, and so
the same outcome is expected in the forwarding application every time a packet is
processed. Even if the packet rate is high, the processing stages in TinyOS take around
the same amount of time each time they are executed. In a more complex CPU, on the
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Trace tuple (5 bytes)

Trace 1D (1 byte)
Timestamp (4 bytes)

M

1

Relation

{» 1.n

CSW event (32 bytes)
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1 W

CSW model

Figure 6.1: Relationship between trace ID, CSW events, signatures, SEMs and the CSW
model

<timestamp 1> <trace id 1>

<timestamp 2> <trace id 2>
<timestamp 3> <trace id 3>

Listing 6.1: Format of trace tuples
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321451 5
321455 2
321462 1

Listing 6.2: Example of trace tuples

100 1 100 1
104 2 104 2
106 3 106 3
111 1 111 1
114 2 —fix—> 114 2
116 3 116 3
121 1
x118 2
126 3

* Timestamp too early

Listing 6.3: Example of trace with a timestamp error

other hand, the frequency can increase when more things are happening, and a more
complex OS can optimize the packet processing if multiple packets are waiting in a
queue. As such, the processing times for the processing stages should be similar when
tracing. If they are not, it might be because of an error with the tracing.

Analyzing the trace can reveal errors that can be fixed manually. As an example
of a trace error, consider the timestamp error on the left-hand side of Listing 6.3 in the
second last trace tuple. The timestamp is three time-units in the past as compared to the
previous trace tuple. Since it looks like the trace tuples are cyclic with the trace IDs 1-3
occurring over and over, a solution is to remove the last cycle, as is done on the right-
hand side. The tool used to identify this kind of error and related tracing errors outputs
the maximum, average, median and minimum time differences between two trace IDs,
and all the various time differences sorted by the number of occurrences. An example
of some output from the analysis program can be seen in Listing 6.4. Consequently,
using the analysis program is one way of finding outliers and errors.

The model-trace generated by Mote B is decompressed to CSW events by a script
that maps trace IDs to CSW events. The script parses the trace file tuple by tuple and
injects the timestamp for each CSW event. An example of this is in Listing 6.5. The
resulting list of CSW events is written to an output file, which is used as input to the
automatic analysis script.

Max: 14453 microseconds, min: 5911 microseconds
Avg: 7562.1 microseconds, median: 6726 microseconds
Number packets forwarded: 279

First time: 15,916,307 microseconds — last time: 21,675,163 microseconds
Forwarded on avg every 20641 microseconds
Number packets received: 413 — on average every 13943 microseconds

Listing 6.4: Some output from trace analysis
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321451 5
321455 2
321462 1

v
SRVENTRY 0 0 321451 0 O O service name 0
QUEUECOND 0 0 321455 0 0 O service _name notempty
PKTQUEUE 0 0 321455 0 0 O service _name 0
SRVEXIT 0 0 321462 0 0 0 service _name 0

Listing 6.5: Example of decompressing trace to CSW events

The automatic analysis script takes the CSW events as input and generates the
signatures for the CSW model as output, as displayed in Listing 6.6. The signatures
themselves are similar to function definitions and can invoke each other as long as
the invoked signature is defined above the caller, as in the C programming language.
A file is created for each signature or signature, and each SEM consists of one or
more signatures, depending on the presence of queue or state conditions. A queue
condition such as the one in Listing 6.6 causes two different signatures to be defined.
The execution environment parses the signature to create a single SEM with branching
points in the places where the conditionals are found. Therefore, the conditionals must
appear in the same place in the signatures so that the branching point is in the same
place. The upper signature is called if packet_queue is not empty and the lower one if
it is. When all the signatures are generated, the most significant part of the CSW model
is created.

6.2 CSW model

The CSW model is currently implemented as a simple C++ class, which is instantiated
with a node object as an argument to the constructor. Figure 6.2 describes a set-by-step
process on how the CSW model is executed in ns-3. It starts with the ns-3 simulation
(1) setting up the execution environment that executes the CSW model. The execution
environment (2) then parses the device file and sets up all events in C++ that represent
the CSW. Afterward, the ns-3 simulation (3) invokes FSMs that (4) invoke SEMs set
up by the execution environment. As the simulation goes on, (5) triggers in the SEMs
invoke callbacks to FSMs in C++. SEMs trigger FSMs and FSMs trigger SEMs until the
packet forwarding is finished. Consequently, the execution of the CSW model depends
on the protocol models in C++ to invoke SEMs to provide the temporal behavior.
Since the model itself only simulates the temporal behavior of the CSW, it must
be integrated with existing ns-3 models for simulation of other behaviors. Currently,
only integration with the CC2420 transceiver model described in [IG] is done. With
the transceiver model installed under the CSW model, the reception and transmission
of packets happen by using existing models, and we satisfy one of the requirements
for the CSW model that are defined in Chapter 3. The transceiver model is made
to simulate the behavior of the CC2420 radio chip, which is the radio chip of the
TelosB mote. When the transceiver model receives a packet, a callback function is
invoked that signals the CSW model to start processing the packet. When it is finished
processing the packet, it forwards it by using the CC2420 transceiver model’s send
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SRVENTRY 0 0 100000 O 0 O service name x

QUEUECOND 0 O 100004 packet queue packet queue 0 service name notempty
PKTQUEUE 0 0 100004 packet queue packet queue O service name x
SRVEXIT 0 0 100011 0 O O service name X

SRVENTRY 0 0 200000 O 0 O service _name x
QUEUECOND 0 0 200004 packet queue packet queue 0 service name empty
SRVEXIT 0 0 200011 0 O O service name Xx

|

v
SIGSTART

NAME service name

PEU cpu

RESOURCES cycles normal
FRACTION 100% 1940 1940

START

PROCESS 40
QUEUECOND packet queue packet queue notempty
DEQUEUE PKTQUEUE 0 packet queue
PROCESS 7 0
STOP

O X X X X O

SIGEND

SIGSTART

NAME service name

PEU cpu

RESOURCES cycles normal
FRACTION 100% 1940 1940

0 START

X PROCESS 40
x QUEUECOND packet queue packet queue empty

x PROCESS 7 0

0 STOP

SIGEND

Listing 6.6: CSW events to signatures conversion

1: Set up execution environment

4: Invoke SEM

-

3: Invoke FSM Execution

Device file
FSMs < ]
SEMs 2: Parse device file, set up events environment

h 4

ns-3 simulation

5: Invoke callback FSM during execution of a SEM

Figure 6.2: ns-3 simulation
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packet functionality. Further integration with other models that provide, for instance,
IPv6 and 6LoWPAN functionality will be considered in future work.

6.2.1 Device file

The device file is a big part of the CSW model. Most importantly, it contains signatures
that represent the temporal behavior of the traced CSW services. It also contains
settings such as the number of cores and the speed they operate at, threads, packet
and service queues and the capacity of them. Lastly, callback triggers defined in the
device file result in functions being called in C++ during simulation. They can be
triggered by, e.g., dequeuing packets from a queue or when executing a location in an
SEM. Since the device file contains many settings, it is complicated to create it. Aside
from the signatures, every setting must be defined manually. In our case, we define a
PEU at 4MHz to represent the CPU of TelosB, a thread to represent the task scheduler,
and more. Even the signatures are not trivial to add to the device file because they
must currently be placed above whichever signatures that invoke them, like functions
in the C programming language. Considering all the things that must be defined in the
device file, it is the second big part of the CSW model to complete after generating the
signatures.

Our TinyOS /TelosB device file includes settings such as a byte queue, a packet queue,
one thread, one service queue, a PEU (CPU) and several callback triggers. The byte
queue represents the RX queue of the radio chip, which has a limit of 128 bytes. The
packet queue is analogous to the IPAQ and has a capacity of three packets. If the
queue is full and the model attempts to enqueue a packet, the packet is dropped. As
mentioned above, the CPU is represented as a PEU running at 4MHz. The thread is
analogous to the scheduler in TinyOS and executes services from the service queue.
The TX byte queue of the radio chip does not need to be modeled because it is never
overflowed. All these settings are manually configured and are based on the analysis
of the CSW of TinyOS in Chapter 5.

Three boolean state variables are defined in the C++ part of the model that can
currently not be implemented in the device file. One is used as RX queue overflow
indicator. RX queue overflow is currently modeled by the CSW model and not
the CC2420 transceiver model because overflow cannot happen unless the temporal
behavior is simulated. Without the temporal behavior, the packet is immediately
written into memory and thus overflow never happens. The two remaining boolean
state variables indicate whether packets are being processed in the receiving and
sending part of the CSW. These variables are modeled because only one packet can
be processed in the receiving and sending parts at a time. While it would be best if
these variables were included in the device file instead of C++, it functions just as well
either way.

6.2.2 Forwarding process

The final task in creating the CSW model is to write the C++ FSMs and integrate the
model with other models. In our case, the CC2420 transceiver model is wired to the
CSW model such that the transceiver sends packets to the CSW model on reception
and the CSW model sends packets to the transceiver model on transmission. On
reception of a packet, the transceiver model calls the ReceivePacket() FSM in the CSW
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model, which can be seen as the entry-point to it. At that point, the scheduler thread
in the device file is woken up unless it is already awake. ReceivePacket() starts the
receiving part of the CSW which can only be done with one packet at a time. That
includes the hardware interrupts for writing the packet into memory (HIRQ-1, HIRQ-
2, HIRQ-3, HIRQ-4) and receiveDone_task that sends it to the upper layer protocols.
receiveDone_task is enqueued into the service queue by HIRQ-4 and is executed by
the task scheduler thread. receiveDone_task enqueues the packet to the IPAQ, which
has a capacity of three packets. If there is no room, the packet is dropped.

When the packet is enqueued into the IPAQ, the receiving part ends, and the
sending part starts. As with the receiving part, only one packet can be processed at
a time. The sending part includes the sendTask task, HIRQ-5 (triggers AttemptSend()
FSM), HIRQ-6 and the sendDone_task task. In the AttemptSend() FSM, the transceiver
model’s Send function is invoked to transmit the packet to Mote C. When the packet is
finished transmitting, the sendDone_task SEM triggers Finished Transmitting() where
the packet is removed from the IPAQ, the sending part ends, and the next packet can
be sent. If no packet is to be sent or received, the scheduler thread is put to sleep.

Packets can be dropped in three different locations when being processed by the
CSW model. First place is due to RX queue overflow which causes the radio chip
to receive no data. Second is in HIRQ-4 when having written the entire packet into
memory and it has a bad CRC checksum. Third is in receiveDone_task when the IPAQ
is full. The first two are unlikely to occur in the real mote when the CC2420 CCA
feature is enabled. Then it is usually due to the IPAQ being full. Consequently, we
focus mainly on the IPAQ fill-level when evaluating the accuracy of the model.

6.3 Summary

In this chapter, the creation of the CSW model is described. Collected traces are used
to create signatures that contain the temporal behavior of the CSW. They are put
together in a device file along with other settings that define the core of the model.
The knowledge gained from the analysis of the CSW in Chapter 5 is used to configure
the device file and write the FSMs. The CC2420 transceiver model is integrated with
the CSW model. When it receives packets, an FSM is triggered that invokes SEMs
via the execution environment. SEMs add the temporal behavior of the model. The
accuracy, scalability, and impact of the CSW model are evaluated in the next chapter.
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Chapter 7

Model evaluation

In this chapter, the accuracy, scalability, and impact of the CSW model are evaluated.
In Section 7.1, the accuracy is assessed by comparing the performance of it with
a real mote. In Section 7.2, the scalability is measured by varying the simulation
parameters: number of packets an active node processes, number of seconds a node is
idle, and number of active and inactive nodes. In Section 7.3, the impact is assessed
by replicating a previously conducted throughput experiment with and without the
model. The higher the accuracy, scalability, and impact, the better the model is.

Figure 7.1 puts the metrics used to evaluate the accuracy and scalability of the
CSW model in the context of the packet forwarding process. The metrics can be
divided into two groups: metrics for the accuracy and scalability of the model, which
are explained in detail in Subsection 7.1.2 and 7.2.2, respectively. We do not make
specific measurements to evaluate the impact of the CSW model. Instead, the impact
is evaluated in all the experiments; the accuracy can reveal how significant the delay is
added and the scalability can reveal how useful the model is in large-scale simulations.
In Section 7.3, however, the impact is evaluated as a previously conducted throughput
experiment is replicated with and without the CSW model to put the model in the
context of existing literature.

Listing 7.1 helps explain Figure 7.1 and what intra-OS delay is in the device we
model. In an ns-3 simulation where transmission of packets is only performed with the
C(C2420 transceiver model, the full end-to-end delay only consists of the transmission
delay and perhaps some processing delay done by the transceiver. Cooja/MSPSim
shows that it takes approximately 98 us after CC2420 has received a packet before the
tirst hardware interrupt is invoked. We suspect it might be because of the CRC check.
That additional delay is currently not added by the CC2420 transceiver model, but it
can be added in the future. That minor delay plus the intra-OS delay constitute the full
processing delay, also called intra-node delay. Therefore, most of the end-to-end delay
is simulated by adding the CSW model to a simulation.

7.1 Accuracy of CSW model

Evaluation of the accuracy of the model requires three experiments: one for the
variation in intra-OS delay due to packet size, variation in intra-OS delay due to
IPAQ fill-level, and finally, forwarding rate relative to packet size and packet rate.
Subsection 7.1.1 describes the parameters that are used in the experiments, Subsection
7.1.2 explains the metrics used to determine the accuracy of the model, Subsection 7.1.3
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Figure 7.1: Metrics used to evaluate the CSW model and their place in the packet
forwarding process.

dirans = transmission delay, decided by packet size.
dpreproc = the delay before the OS is notified of received packet, which is caused

by CC2420 doing some preprocessing. According to Cooja/MSPSim, this delay is 98 pus.
djps = intra—0S delay

intra—node delay: dj; = dpreproc + djps, delay that intermediate nodes add
Packets are sent from Mote A to C via B. Therefore, transmission delay occurs twice.
ns—3 end—to—end delay with TRx model, without CSW model: dians + dpreproc + dirans
ns—3 end—to—end delay with TRx model, with CSW model: dyans + diy + dians

Listing 7.1: Equations explaining Figure 7.1
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describes the experiments conducted, and Subsection 7.1.4 presents and explains the
results.

7.1.1 Parameters

The parameters that have been found to affect the performance when the real mote
processes a packet are the packet size, IPAQ fill-level, and incoming packet rate. Packet
size affects intra-OS delay because some processing stages include copying the packet,
which means bigger packets have longer processing times. The IPAQ fill-level affects
intra-OS delay because packets that have to wait in the queue have increased intra-OS
delay as a result. Incoming packet rate is a parameter that somewhat overlaps with the
IPAQ fill-level, but provides a different perspective. As the packet rate increases, more
packets are received and must be processed, which results in a higher IPAQ fill-level
and eventually packet loss.

All three parameters are used in one experiment each to provoke change in
temporal behavior to assess the accuracy of the CSW model. The packet size is the
primary parameter used for Experiment 1, which measures how the intra-OS delay
increases with the packet size. The IPAQ fill-level is the primary parameter used for
Experiment 2, which measures how the intra-OS delay changes by varying the IPAQ
fill-level. Experiment 3 uses packet rate as its central parameter and measures how the
forwarding rate decreases as the packet rate and packet size increase. Consequently,
the most significant parameters found to affect the performance of the forwarding
behavior are investigated thoroughly.

7.1.2 Metrics

The TinyOS /TelosB CSW model needs to prove itself accurate in several ways to represent
the packet forwarding behavior of a real TelosB mote. We measure its accuracy in
simulating intra-OS delay and relative forwarding rate. If the experiments show that
the model has a similar intra-OS delay and relative forwarding rate as the real mote
when changing the parameters mentioned before, the model is considered accurate.

The intra-OS delay represents the most critical metric. For instance, it determines
other metrics such as packet loss and jitter. As an example, consider Figure 7.1. It
shows four packets being sent from Mote A to the intermediate Mote B that forwards
them to Mote C. The packets are enqueued into the IPAQ which can contain up to three
packets at a time. To be removed from the queue, the packets have to be successfully
forwarded. Packets 1, 2 and 3 arrive first and fill up the queue. Packet 4 arrives before
any of the other packets have been sent, and there is no room in the queue. As a
result, packet loss occurs. When packets 1, 2 and 3 finally are forwarded, some jitter
can be seen by the variable space between them, which is due to variable packet size
and waiting time in the IPAQ. The intra-OS delay is measured from when the CSW
starts writing a packet into RAM to the moment the radio chip attempts to transmit
the packet for the first time. If CCA is enabled (which it is here) and the channel is
clear, the radio starts to transmit the packet.

Aside from being a metric, the intra-OS delay is also the main feature of the CSW
model, and along with transmission delay constitute most of the per-hop packet delay
for TinyOS /TelosB. The CSW model simulates intra-OS delay by scheduling simulation
events in the future according to processing stages that are based on traces from a
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real mote. Without it, the forwarding mote receives a packet and then immediately
forwards it. Two parameters affect intra-OS delay in the CSW model and real mote:
variation in the fill-level of the IPAQ and the packet size. The former is naturally
simulated because packets waiting in the queue take longer to process. The latter is
simulated by varying the delay for some processing stages by the size of the processed
packet. As preliminary experiments have shown that intra-OS delay only varies due to
packet size and IPAQ fill-level, we believe these experiments are sufficient to evaluate
the CSW model’s accuracy in simulating intra-OS delay.

The relative forwarding rate is the percentage of successfully forwarded packets,
relative to the packet rate and the packet size. As the packet rate increases, the IPAQ
is enqueued more often. When the IPAQ is full, all subsequent packets are dropped
until there is free space again in the queue as shown in Figure 7.1. An example where
packets will be dropped due to intra-OS delay is when the parameters are <packet
rate=every 5 ms, packet size=120>. The intra-OS delay of processing a packet of 124
bytes is 14.8 ms (from Table 1.1). Receiving a packet every five ms means that the IPAQ
will eventually be filled up and subsequent packets are dropped. If the intra-OS delay
and concurrency are modeled correctly, packet loss should be correctly simulated.
Concurrency is an issue because only one packet can be processed in both the receiving
and sending part at a time. Moreover, the issue of whether the mote is busy processing
something or waiting for a component to finish processing is relevant here as well.
If the real mote is busy processing in a processing stage, but the CSW model is not,
increasing the packet rate might cause the real mote to drop packets where the CSW
model will not. Therefore, this metric affects many aspects of the forwarding behavior.

7.1.3 Experiments

Three experiments evaluate the performance of the model as compared to a real mote
when varying different parameters. In Experiment 1, we study how the packet size
affects the intra-OS delay. In Experiment 2, we explore how the IPAQ fill-level and
packet size affect the intra-OS delay. In Experiment 3, we examine how the packet rate
and packet size affect the packet drop rate.

The variable packet header size as a result of 6(LOWPAN packet header compression
affects the packet flow in the experiments. Since the UDP and IPv6 headers are
compressed according to the 6LOWPAN protocol [six14], and as a result of the default
behavior of setting the hop limit to 1, Mote B increases the packet size by one byte.
Therefore, when it is specified in the experiments that Mote A sends a packet to Mote
B of the size 36, 80 or 124 bytes, the packet forwarded by Mote B to Mote C has a size
of 37, 81 or 125 bytes. Since the difference is only one byte, the effect is small and not
expected to affect the results negatively.

All three experiments share some settings. Only two motes are included in them;
Mote A sends a packet to Mote B, and Mote B processes the packet to forward it to
a conceptual Mote C. Mote C is not necessary to include because the packets that are
sent do not require acknowledgment packets. Furthermore, Mote B does not transmit
the packets in any of the experiments, aside from Perspective 3 in Experiment 1. The
most important reason for that is that the scope of these experiments is to assess the
accuracy of the intra-OS behavior of the CSW model, not the transceiver model. Since
Mote B cancels the transmission when the radio is ready to transmit, the accuracy of
the simulation of intra-OS delay and fill-level of IPAQ are assessed. A final thing about
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the experiments is that the tracing framework is used to measure the performance of
the real mote in all of them. Since the tracing delay is low and few events need to be
traced, the tracing delay is not expected to affect the behavior adversely. In summary,
only Mote A and B are included, Mote B does not transmit packets, and the tracing
framework is used to capture the behavior of the real mote.

Buffered tracing is used in Experiment 1-2 and instant tracing is used in Experiment
3. These tracing methods are described in Chapter 4. Purpose 2 of the tracing
framework is to evaluate the CSW model when accurate timestamps are needed, which
is the case for Experiment 1 and 2. Buffered tracing provides accurate timestamps, but
the sample size is limited because the buffer can only contain 700 trace events. Purpose
3 is also to evaluate the model, but where accurate timestamps are not needed, which
is the case for Experiment 3. The reason why Experiment 3 uses instant tracing is that
there is no buffer or limitation to the number of trace events in a run, which is required
when the packet forwarding rate is measured since many packets must be processed
in many contexts.

Experiment 1

In Experiment 1, we measure how accurately the model simulates intra-OS delay with
variation in the size of the processed packets. The variation in packet size is presented
in three ways, called Perspective 1, 2 and 3. In Perspective 1, we compare the intra-
OS delay when a real and simulated ns-3 Mote B forwards a sequence of packets
when varying packet sizes. We expect the intra-OS delay to vary with the packet size,
and the accuracy of the CSW model can be evaluated by assessing its similarity to
the real mote on a per-packet basis. In Perspective 2, the intra-OS delay of the CSW
model is compared to a real mote and an emulated Cooja/MSPSim mote with steadily
increasing packet size. We study how the delay increases along with the packet size
and how the delay of the model and real mote compare when contrasted with the
Cooja/MSPSim mote. Finally, in Perspective 3, we look at the end-to-end delay that
is added to the simulation by the CSW model, a real mote, Cooja/MSPSim and the
CC2420 transceiver model in ns-3. The end-to-end delay from a real mote compared
with only the transceiver model illustrates the need for CSW models; if the difference
is significant, the need is accordingly.

Mote B in the experiment is traced to capture the intra-OS delay when it processes
packets before forwarding it. That requires three tracepoints: (t1) when having
received the packet, (t2) the packet size, and (t3) when ready to transmit it. The intra-
OS delay is calculated by t;,s = timestamp(t3) — timestamp(t1), and the packet size is
captured to categorize the various delays to be able to replicate the sequence of packets
inns-3. As such, only the necessary information is traced to minimize the tracing delay.

The simulation recreates the real testbed runs by using the traces from it. It does so
by scheduling the simulated Mote A to send packets to Mote B each time the real mote
received one in the testbed experiment, which is possible because each trace tuple is
accompanied by a timestamp that describes the number of microseconds that passed
since the experiment started. Thus, the intervals between packet reception are the same
in the CSW model and the real mote.
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Experiment 2

In Experiment 2, we investigate how much the fill-level of the IPAQ affects intra-OS
delay. The queue has a maximum capacity of three packets, and packets are enqueued
into it a bit more than halfway through the forwarding process. The variation in intra-
OS delay of the real mote is compared with the CSW model by artificially enqueueing
the same packet three times in the IPAQ instead of once. Then it becomes apparent
how much longer it takes for a packet to be processed when it has to wait until other
packets are processed before it. Additionally, we observe how long the receiving and
sending part of the CSW are, as discussed in Chapter 5. The same three tracepoints
as in Experiment 1 are used to measure the intra-OS delay, and it is calculated in the
same way. Additionally, the ns-3 simulation reproduces the simulation in the same
way as in Experiment 1 by using the trace from the real mote, except that now packets
are enqueued three times. The intra-OS delay of the CSW model and real mote can be
compared for the different IPAQ fill-level 0-2 to assess the accuracy of the CSW model.

Experiment 3

In Experiment 3, we compare the packet forwarding rate of the CSW model with a
real mote in high packet rate scenarios. Packets can drop or not received in the first
place because of three reasons: (1) the CC2420 RX queue is overflowed which causes
packets not to be received, (2) packets dropped because of bad CRC checksum, and
(3) full IPAQ and subsequent packets are dropped. Number 3 is expected to be the
reason why packets drop in a real mote when CCA is enabled, which is the case with
us. When CCA is disabled, collision causes packets to be damaged and fail the CRC
check. CC2420 RX queue overflow can happen in any case, but at a higher rate when
CCA is disabled. If the forwarding rate of the CSW model and real mote are similar,
this experiment is a success.

Tracing the forwarding rate requires three tracepoints: when (t1) starting to write
a packet to RAM, (t2) bad CRC checksum, (t3) flushing the RX queue of the radio and
(t4) when ready to transmit the packet. The reason why the RX queue being flushed
is traced is that it happening means the RX queue has had an overflow, and there
might be some packets that are not received. That is less likely to happen since CCA
is enabled, but the tracepoint is there in case it happens. Thus, all tracepoints needed
to calculate the forwarding rate are included. The following equation calculates the
forwarding rate.

count(t4)

fwrﬂte = (W . 100) /O

As Mote A’s application and the ns-3 simulation send packets at various sizes and
rates, the forwarding rate during a wide range of parameter combinations is measured.
In contrast to Experiment 1 and 2, the simulated Mote A does not use a real trace to
send packets at the same time as the real experiment. Instead, Mote A sends packets
at the specified packet rates, which results in a much more consistent packet rate than
the real mote can achieve. The packet rates that are used are 40-130 packets per second
and the application decreases the interval between packet transmissions by 250 us for
every 256 packets that are sent until 130 packets per second is reached. That process
is performed for each of the UDP payload sizes 24, 40 and 80 bytes. The result is 72
different packet rates for each packet size, which is 216 parameter combinations and
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55296 packets in total. The final trace contains the sub-traces for all combinations,
and since there is a two-second break in between them during the experiment, we can
create a trace file for each of the combinations afterward. The percentage of forwarded
packets in each combination becomes a point on the resulting graph. If the actual
packet rate is significantly lower than the attempted packet rate, the data is omitted
from the results. To sum up this complex experiment, many different contexts are
executed to assess the CSW model’s accuracy in simulating packet loss.

The relative forwarding rate of a real mote and the CSW model are compared
by plotting the percentage of successfully forwarded packets in different <packet
size, packet rate> parameter combinations. The expectations for the accuracy of the
forwarding rate are not high since the experiment is conducted at high packet rates
and the behavior becomes increasingly non-deterministic. Nevertheless, the packet
forwarding rate is expected to start decreasing at around the same packet rates for the
CSW model and the real mote.

7.1.4 Results

In this section, the results from running the experiments that measure the accuracy of
the CSW model are presented.

The traces collected from Mote B have timestamps from a binary timer, which is
how TinyOS works as mentioned in Chapter 2. That means the microsecond clock
used to trace the mote has 1,048,576 cycles per second instead of 1,000,000. For the
most part, the difference is negligible. As the number of cycles increases, however,
the difference becomes more prominent. Table 1.1 shows that it takes around 15
milliseconds to process a packet of size 124 bytes. If that number is gathered from
the microsecond clock, that is not 15 milliseconds, but 14.3 milliseconds. While the
difference is significant, it has little impact on the big picture. Results from Perspective
1 in Experiment 1 (Figure 7.2) and Experiment 2 (Figure 7.4) have binary time instead
of decimal, and the rest have decimal time.

Experiment 1

Figure 7.2 displays Perspective 1 of how the packet size affects the intra-OS delay of
packet forwarding. The CSW model and a real mote process ~250 packets the UDP
payload sizes [0,8,16...80,88] bytes. As the real mote traces the packet size, the ns-3
simulation replicates that same packet sequence. These results show that the mote and
CSW model have an almost identical intra-OS delay when varying the packet size.
The delay varies from 7.4 to 15.7 binary ms, and one can see twelve different intervals
between points along the y-axis that are directly related to the UDP payload sizes.
Figure 7.3a shows results from Perspective 2. We see how the intra-OS delay (y-
axis) increases linearly with the packet size (x-axis) for a real mote, the CSW model,
and an emulated Cooja/MSPSim mote. Both the real mote and CSW model are
represented by the blue graph because their data is indistinguishable. Furthermore,
one can see how different an emulated Cooja/MSPSim node behaves compared to a
real mote and the CSW model. The Cooja/MSPSim graph starts at <x=0, y=6.1ms>
and the graph combining the real mote and CSW model starts at <x=0, y=7.1ms>. The
Cooja/MSPSim graph ends at <x=88, y=10.6ms> and graph combining the real mote
and CSW model ends at <x=88, y=15.1>. Thus, Cooja/MSPSim starts at 14% and ends
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Figure 7.2: Intra-OS delay comparison between real mote and ns-3 with the CSW
model at 40 pps. The intra-OS delay is in binary ms.
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at 30% less intra-OS delay than the real mote and CSW model.

Figure 7.3b shows Perspective 3 of measuring how the intra-OS delay increases
with the packet size. The packet size (x-axis) affects the total end-to-end delay
(y-axis) for a real mote, CSW model, CC2420 transceiver model and an emulated
Cooja/MSPSim node. All the graphs increase linearly with the packet size. We contrast
the intra-OS delay with the CC2420 transceiver model’s transmission delay to see
how significant the intra-OS delay is. The transmission delay includes the time it
takes for Mote A to send to Mote B, and for Mote B to send to Mote C. The CC2420
transceiver model graph starts at <x=0, y=2.3ms> and ends at <x=88, y=7.9ms>.
The Cooja/MSPSim graph starts at <x=0, y=8.3ms> and ends at <x=88, y=19.5ms>.
The real mote and CSW model graph starts at <x=0, y=9.46ms> and ends at <x=88,
y=23ms>.

Experiment 2

Figure 7.4 compares the variation in intra-OS delay due to IPAQ fill-level for a real
mote with the CSW model. The intermediate Mote B receives 25 packets of variable
sizes at a low packet rate with each their sequence number (x-axis). Since the packets
are enqueued three times into the IPAQ, the total intra-OS delay is measured for the
packets when the IPAQ contains zero, one and two packets. One can distinguish
between the delay before enqueueing the packet into the IPAQ (receiving part) and
afterward (sending part), which are discussed in Chapter 5.

Listing 7.2 helps to make sense of the gaps between the graphs for understanding
which delay belongs to which part. The intra-OS delay for a packet that is placed in an
empty IPAQ only consists of the processing delay caused by executing the receiving
and sending parts once; the same receiving and sending parts as can be seen in Figure
5.2. When a packet has to wait in the IPAQ for one packet, the intra-OS delay is the
same as when the IPAQ is empty plus the processing delay of sending the enqueued
packet. When the IPAQ fill-level is two, the intra-OS delay consists of the processing
delay when the IPAQ is empty plus the intra-OS delay of sending two enqueued
packets.

Experiment 3

Figure 7.5 compares the relative packet forwarding rate of the CSW model with a
real mote when sending packets of three different sizes at different rates. The x-axis
represents the packet rate and y-axis the percentage of successfully forwarded packets.
In both the case of the real mote and CSW model, the percentage of successfully
forwarded packets decreases as the packet rate increases beyond a certain point,
depending on the packet size. It depends on the packet size because the larger the
size is, the lower the maximum packet rate is. The behavior of the CSW model mirrors
the most significant parts of the real mote. Although the real mote starts dropping
packets a bit earlier in all three cases compared to the CSW model, the trends of both
graphs are the same.
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Figure 7.4: Variation in the IPAQ fill-level affecting the intra-OS delay. The intra-OS
delay is in binary ms.

The following equations are true when packets being enqueued have the same size:

t = intra—0S delay of processing a packet when IPAQ is empty
tipuqO =t= treceiving + tsending

tipagt = tipago + tsending

tipagz = tipagql + tsending

tsending = tipag2 — tipaq

treceiving = Tipago — tsending

Listing 7.2: Equations explaining Figure 7.4
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7.2 Scalability of CSW model

Scalability of the CSW model is measured by increasing the number of nodes that
execute it, the number of packets it processes and the number of seconds it simulates.
Simulation overhead includes the memory consumption of nodes and the added
execution time of the simulation when adjusting parameters. The model must be
scalable because WSNs may contain up to several thousand nodes.

7.2.1 Parameters

Four parameters are used for Experiment 4 and 5, as discussed in Chapter 3. First
is the number of packets that a node forwards. Second is the number of simulated
seconds that a node is inactive. The third is the number of active nodes each processing
one packet. Fourth is the number of inactive nodes each being idle for ten million
seconds. By separating these groups and varying different parameters, we find out
if a large-scale simulation is feasible. Experiment 4 uses the first and second group
for its parameters, and Experiment 5 uses the third and fourth group. Therefore, every
parameter that can affect the scalability of the CSW model is addressed in the following
experiments.

7.2.2 Metrics

The metrics we use to evaluate the scalability of the model include the time added to
the simulation execution time because of nodes that execute the CSW model and their
memory consumption. For all four groups mentioned above, the execution time added
to the simulation by varying the parameters are measured. Only for group four is the
memory consumption measured.

Time added to the simulation execution time should be low. The importance of
reducing the time depends on what is causing it. If the added time is because of a
node that processes packets, it is less important than the time added by a node being
idle. The reason is that WSNs can contain thousands of nodes and they are idle most
of the time, which means even a small amount of delay added per simulated second
can be devastating for scalability. An inactive node should in principle not process
anything at all and only start processing when a hardware interrupt wakes it up and
starts processing. When the node has finished processing the packet, the threads in its
CSW model should be put to sleep. On the other hand, it must not take too long for a
node to process a packet, or else the CSW model cannot be used for anything.

As the number of nodes that execute the CSW model increases, the time they add
to the simulation execution time and memory consumed by them are also expected to
increase. The time does not necessarily increase linearly. If the total node computation
accumulates with the number of nodes, a small per-node simulation overhead can
make large-scale exponential in complexity, and thus, infeasible. That is one of the
things to investigate, and therefore, we make a distinction between the time added
by a single node and several nodes. The memory consumption of the CSW model
is quantified by using the htop Linux program to count the MBs that the simulation
allocates as the number of inactive nodes increases. It must be possible to simulate up
to a few thousand nodes on a non-super computer because that is an expected number
of nodes in a WSN.
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7.2.3 Experiments

In Experiment 4 and 5, we assess the scalability of the CSW model. Experiment 4 is
designed to measure the execution time added when an active node and inactive node
execute the CSW model. In Experiment 5, execution time and memory consumption
are measured when varying the number of nodes. Both of the experiments are executed
on a Linux 14.04 LTS PC with 16 GB RAM and 4.2GHz CPU frequency.

Experiment 4

Experiment 4 is designed to measure the execution time added by a single active and
inactive node. An active node processes packets and an inactive node is idle. The
execution time added by an active node is measured on a per-packet basis, and an
inactive node per simulated second it is idle. The time added by an inactive node
is measured by running the inactive node for many simulated seconds. The active
node sends ten packets per simulated second for several simulated seconds to see how
the simulation execution time increases as more packets are processed, and afterward,
the time added during the inactive periods is subtracted from the time to find out
how much time is added because of packet processing. In addition to plotting the
results from running an inactive node in ns-3, we compare the execution time when
simulating the CSW model with an emulated Cooja/MSPSim node and a real mote.

Experiment 5

In Experiment 5, we measure the execution time added when varying the number of
nodes to observe how the time added to the simulation execution time and memory
consumption increase with the number of nodes that execute the CSW model. The
main point of the experiment is to see if the complexity concerning simulation
execution time and memory consumption is linear or exponential as the number of
nodes increases. As the number of active nodes increases, it is expected that the
execution time increases almost the same as in Experiment 4 when increasing the
number of packets that a single node processes. When increasing the number of
inactive nodes, we expect the simulation execution time to increase almost the same
way as in Experiment 4 when increasing the number of seconds that a single node is
idle.

We also measure memory consumption of inactive nodes. That can be used
to estimate how many nodes can execute with the CSW model on an average PC.
The additional memory consumption of nodes when they are active and perform
packet processing is expected to be relatively low, but it is currently not possible to
reliably measure because of memory leak bugs that cause the memory consumption to
accumulate when it should remain static.

7.2.4 Results

In this section, the results from Experiment 4 and 5 are presented and explained.
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Experiment 4

Figure 7.6a illustrates a linear increase in the time (y-axis) added to the simulation
execution time as the number of packets that are processed (x-axis) increases. The
idle time has been subtracted from the numbers, so the additional execution time is
only caused by the packet processing. Since the CSW model only uses a single thread
that is asleep when no service is executing, the simulation execution time is the same
regardless of the packet size. At x=10k, the execution time is approximately 4 seconds.

Figure 7.6b illustrates a linear increase in the simulation execution time (y-axis) as
the number of simulated seconds (x-axis) an inactive node spends increases. The graph
starts at <x=0, y=0> and ends at <x=6B, y=1 sec>, which means that 6 billion simulated
seconds for an inactive node that executes the CSW model in ns-3 takes one second of
real time to simulate.

| Real mote | Cooja/MSPSim | CSW model |

1+e6 sec 263 sec 22.5 ms
1+e7 sec 2630 sec 24.5 ms
1+e8 sec 26300 sec 39.8 ms
1+e9 sec 263000 sec 178 ms
6+€e9 sec 1578000 sec 1 sec

Table 7.1: Comparison of execution time when comparing a real mote, an emulated
Cooja/MSPSim mote (extrapolated data) and the CSW model in ns-3.

Table 7.1 illustrates the execution time of running inactive nodes for x simulat-
ed/executed seconds and comparing a real mote, an emulated Cooja/MSPSim node
and the CSW model in ns-3. A real mote takes x seconds to execute x seconds being
idle. The emulated Cooja/MSPSim mote takes 3—4 orders of magnitude less amount of
time to simulate/execute than a real mote. The reason why it takes much less amount
of time is that Cooja/MSPSim processes an application as fast as possible and speeds
up time, whereas the real mote cannot do that and must process the entire time. The
data from the Cooja/MSPSim mote is extrapolated from a 263-second long simula-
tion. The ns-3 CSW model takes approximately six orders of magnitude less amount
of real-time to simulate x seconds than an idle emulated Cooja/MSPSim mote when
the simulation time is more than one billion seconds. ns-3 takes much less amount
of time than the real mote because it processes the application as fast as possible and
speeds up the time. It is also much faster than an emulated mote in Cooja/MSPSim
because ns-3 is much simpler than the MSPSim emulator, which is the software that
emulates the TelosB/Sky mote in Cooja.

Experiment 5

Figure 7.7a,7.7b, and 7.7c illustrate how the simulation execution time and RAM usage
(y-axis) increase linearly as the number of nodes (x-axis) increases. Figure 7.7a shows
the simulation execution time when a number of CSW nodes process one packet each.
The graph start at <x=0, y=0>, and ends at <x=20k, y=12M>. Figure 7.7b illustrates a
linear increase in simulation execution time as the number of nodes being idle for ten
million simulated seconds increases. The graph starts at <x=10k, y=25M>, and ends at
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Simulation execution time added by a number of packets being forwarded
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<x=100k y=310M>. Figure 7.7c shows how the memory consumption increases linearly
as the number of installed nodes increases. The graph starts at <x=10k, y=1GB> and
ends at <x=100k, y=11.6GB>.

7.3 Impact of CSW model

One of the thesis aims is to evaluate the impact the CSW model has on a regular
simulation scenario, and we do that by conducting Experiment 6 that replicates an
experiment described in the literature [IG] that evaluates a CC2420 transceiver model
in ns-3. Experiment 6 measures the throughput of the model when transmitting
packets at various packet rates. By introducing the CSW model, the capacity of the
intermediate mote is expected to decrease. If the throughput decreases significantly, it
is a confirmation that the CSW model has a significant impact.

7.3.1 Experiment 6

Igel et al. [IG] present results from experiments that evaluate the CC2420 transceiver
module. In the original experiment, Igel et al. measure the capacity of the transceiver
by adjusting the size of the packets and the rate at which they are sent. Three
simulations are executed in the original experiment: (1) data-rate and packet size are
OK, (2) data-rate too high but packet size OK and (3) data-rate OK but packet size
too big. The results demonstrate that when data-rate is too high, not all packets are
successfully transmitted, and when packet size is too big, no packets are successfully
transmitted.

Experiment 6, which we conduct, uses a three-node topology instead of the
two-node topology that the original experiment has. The reason is that the CSW
model simulates the intra-OS behavior of the intermediate mote that performs packet
forwarding. As a result of this change, the data-rate must be lowered significantly
because Mote A and Mote B both send packets in turn, whereas if only Mote A is
sending, it can send data all the time at 250kbps. The highest data-rate possible where
both Mote A and B can send packets interchangeably is 100kbit per second, which
is a bit less than the half of the max data-rate at which the transceiver can transmit
(250kbit per second). Where the authors in [IG] refer to application data-rate as the data-
rate without UDD, IP and IEEE 802.15.4 MAC headers and relative to the application
payload size, we refer to data-rate as the rate at which the transceiver sends data.

Experiment 6 runs three times for packets of 124 bytes. Run 1 is without the CSW
model, Run 2 with the CSW model at the same rate as Run 1 and Run 3 is the lowest rate
at which packets drop. Listing 7.3 contains the final 6-7 output lines from executing
Experiment 6. In Run 1, Mote A sends packets at 100kbps, and all the packets are
forwarded successfully by Mote B to Mote C. That is evident since the final total RX
and total TX are equal. In Run 2, Mote A sends packets again at 100kbps, although this
time with the CSW model. Last total RX in the run is 28024, and last total TX is 49848,
which means the forwarding rate is only 56%. In Run 3, Mote A sends packets at only
65kbps and with the CSW model. Since the last total RX is less than total TX, it means
there is still packet loss. Last total RX is 28148 bytes, and total TX is 32364 bytes, which
means the forwarding rate is 87%. If the data-rate is 64kbps, all packets are successfully
received by Mote C. Since 100kbps is the highest data-rate that the application without
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Simulation execution time added by a number of CSW nodes each forwarding one packet
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the CSW model can run at, the throughput is reduced to 64% when the CSW model is
added.

Run 1 (100kbps, 124 bytes packet size, without CSW model, 100% packets received by Mote C)

.973s Mote A sent 124 bytes total TX 49600 bytes
.97691s Mote C received 124 bytes total RX 49476 bytes
.98292s Mote A sent 124 bytes total TX 49724 bytes
.99183s Mote C received 124 bytes total RX 49600 bytes
.99284s Mote A sent 124 bytes total TX 49848 bytes
.99675s Mote C received 124 bytes total RX 49724 bytes
.00917s Mote C received 124 bytes total RX 49848 bytes

0~ N~~~

Run 2 (100kbps, 124 bytes packet size, with CSW model, 56% packets received by Mote C)

7.978s Mote A sent 124 bytes total TX 49600 bytes
7.97873s Mote C received 124 bytes total RX 27776 bytes
7.98792s Mote A sent 124 bytes total TX 49724 bytes
7.99168s Mote C received 124 bytes total RX 27900 bytes
7.99784s Mote A sent 124 bytes total TX 49848 bytes
8.00913s Mote C received 124 bytes total RX 28024 bytes

Run 3 (65kbps, 124 bytes packet size, with CSW model, 87% packets received by Mote C)

7.95274s Mote A sent 124 bytes total TX 32116 bytes
7.96301s Mote C received 124 bytes total RX 27900 bytes
7.968s Mote A sent 124 bytes total TX 32240 bytes
7.97711s Mote C received 124 bytes total RX 28024 bytes
7.98326s Mote A sent 124 bytes total TX 32364 bytes
7.99756s Mote C received 124 bytes total RX 28148 bytes

Listing 7.3: Output from Experiment 6 simulation runs

7.4 Analysis

In this section, the results from the CSW model accuracy, scalability and impact
experiments are analyzed. Subsection 7.4.1 analyzes and discusses the results that
relate to the accuracy. Subsection 7.4.2 analyzes the results that relate to the scalability.
Finally, Subsection 7.4.3 analyzes the replication experiment to assess the impact.

7.4.1 Accuracy of CSW model

The results of running the accuracy experiments prove that the CSW model accurately
simulates intra-OS delay, how it varies with the packet size and IPAQ fill-level, and
packet loss due to high incoming packet rates. This section provides an analysis of the
results.

Packet size affecting intra-OS delay

The results of Experiment 1 demonstrate the drastic effect that the packet size has
on the intra-OS delay. UDP packets can have a packet size ranging from 36 to 124
bytes, which results in intra-OS delay from 7.4 binary ms to 15.7 binary ms. Figure
7.3a also illustrates how different the intra-OS delay of an emulated Cooja/MSPSim
mote is from a real mote and the CSW model. Investigation and analysis of traces
from Cooja/MSPSim and a real mote confirm that the most deviating simulated delays
are when writing a packet from the CC2420 RX queue to RAM and writing a packet
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from RAM to the CC2420 TX queue. That explains how the gap between the emulated
Cooja/MSPSim mote and real mote/CSW model increases as the packet size increases;
that the per-byte delay in packet delay is lower in the emulated Cooja/MSPSim mote
than in a real mote.

Figure 7.3b illustrates how significant the intra-OS delay is compared to the full
end-to-end delay. CC2420 can send packets at 250kbit per second, so packets with
size 36 and 124 bytes are sent in 1.2 and 4 ms. The end-to-end delay involves the
packets being sent twice, once from Mote A to B and the other from Mote B to C.
Therefore, the end-to-end transmission delays range from 2.5 to 8 ms. The intra-OS
delay is much higher than the transmission delays and ranges from 7.1 ms to 15.1
ms. By not simulating the intra-OS delay, a significant part of the end-to-end delay is
missing.

To sum up, the results from Experiment 1 are significant because of two things.
First, the variation in packet size causes such a significant variation in intra-OS
delay. Second, the CSW model is accurate when compared to a real mote. The
high variation in intra-OS delay due to variation in packet size means that some
processing stages must vary their delays by the size of the processed packet, and the
CSW model enables that. As emulation in Cooja/MSPSim is unable to simulate those
processing stages accurately, it is not better to emulate the temporal behavior of CSW
with Cooja/MSPSim than to use the simpler CSW model in ns-3. As we discuss in
Section 8.3, we do not know precisely why Cooja/MSPSim exhibits a slightly different
temporal behavior than a real mote.

IPAQ fill-level affecting intra-OS delay

The results of Experiment 2 demonstrate the effect the IPAQ fill-level has on the intra-
OS delay. In this experiment, the same packet is enqueued three times to the IPAQ
instead of once, and thus, sending the same packet three times. To make sure that
the data only shows the intra-OS delay that is added as a consequence of waiting, the
packets are never transmitted across the medium to the next hop, since this would
impose additional waiting time not related to packet processing in the OS. Packets that
have to wait for other packets have increased intra-OS delay, which can be seen in
Figure 7.4. The CSW model accurately simulates the variation in IPAQ fill-level, as is
evident by the points overlapping with those for the real mote.

Listing 7.4 extrapolates the equations from Listing 7.2. The latter listing explains
Figure 7.4 The incoming delay means that the packet has to wait in the IPAQ for
another packet to be received and placed in the IPAQ before it is sent. When a packet
must wait for two packets ahead in the IPAQ to be sent and also wait for two packets to
be received and placed in the IPAQ, that is the maximum amount of time that a packet
must wait in the IPAQ when packets are not dropped and applications are not actively
processing. That delay is the same as performing the receiving and sending parts of
the CSW three times each. In summary, the equations in Listing 7.4 describe what is
almost the worst-case intra-OS delay.

To sum up, the results of Experiment 2 are significant because (1) the high variation
in intra-OS delay when varying the IPAQ fill-level and (2) the CSW model accurately
simulates it. As a continuation from Experiment 1, the first point further illustrates
the need for a CSW model because the variation in delay is not trivial to simulate.
The second point means that the CSW model accurately simulates intra-OS delay
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The following equations are true when packets being enqueued have the same size:

t = intra—0S delay of processing a packet when IPAQ is empty
tipagincomingd = tipagl + tsending

tipﬂquncomingl = tipanincomingO + treceiving

tipanincomingZ = tipanincomingl + treceiving

Listing 7.4: Projected intra-OS delay if packets that are ahead in the IPAQ must wait

for new packets to be placed in it. Continuation of equations in Listing 7.2

when varying both the IPAQ fill-level and packet size. The reason why the CSW
model can simulate the variation correctly is that the CSW model breaks the CSW
into smaller parts. If the CSW model is too simple and only provides a constant delay,
as some related processing delay models do, this variation is not simulated accurately.
Therefore, this experiment illustrates not just the need for processing delay models,
but also models that are as detailed as our CSW model.

Relative forwarding rate

Results from conducting Experiment 3 illustrate a decrease in the percentage of
successfully forwarded packets as the packet rate reaches beyond a certain point,
depending on the packet size. The graphs of the CSW model and real mote in Figure
7.5 show declines in the same contexts also when changing the packet size. That is
proof that the model accurately simulates packet loss. The real mote starts to drop
some packets a bit earlier than the CSW model, but the big dip where the packet drop
rate increases consistently with the packet rate is accurate.

Although the experiment is conducted with only a single mote sending packets,
packets start to drop in Mote B because it cannot handle processing packets fast
enough. That means if an application needs to send several packets from Mote A to
C via B, and it sends them as fast as it can, it is likely that packets will drop in Mote
B as a result. The reason why this does not normally happen in TinyOS is that a CCA
feature is enabled by default that causes the mote to back off a random number of
milliseconds before each packet is sent. That does, however, not entirely explain why
Mote B prevents packet loss, because the random backoff is used for it as well.

To understand why the random backoff prevents packets being dropped in Mote
B, we go back to the analysis of the CSW in Chapter 5. The CSW consists of two parts,
the receiving and sending parts. Each part can process one packet at a time. The
sending part includes the radio transmission, and if backoff is enabled, the waiting
period before transmission as well. In both the radio transmission and backoff periods,
the mote is free to process a packet in the receiving part. Table 1.1 illustrates how
insignificant the transmission delay is compared to the intra-OS delay. As the receiving
part takes a bit more than half of the full intra-OS delay (excluding transmission delay),
a packet cannot be fully processed in the receiving part before the transmission of one
is finished. By adding the random backoff, however, it appears that the mote can
perform the receiving part of the CSW in the backoff waiting and transmission time
and thus avoids packet loss.

The results from Experiment 1 and 3 can be compared to give some insight. To
process packets of UDP payload sizes 80, 40 and 24 bytes, takes 14.9 ms (67 pps), 10.3
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ms (97 pps) and 9.6 ms (104 pps). The results from Experiment 3 illustrate that, indeed,
the big drop in packet forwarding rate starts in both the CSW model and real mote
when the packet rate increases above 67 pps, 97 pps and 104 pps when the size of the
UDP payload is 80, 40 and 24 bytes. It indicates that if the CSW receives more packets
than the number it can forward, the IPAQ will fill up which eventually leads to packet
loss.

To sum up, the results of Experiment 3 are significant because the CSW model starts
to drop packets at the same combination of packet size and packet rate. The CSWMM
focuses mainly on intra-OS delay and only packet loss as a consequence of it. The
reason why this is not expected to be realistically simulated is that the behavior of
devices becomes non-deterministic at high packet rates. To our benefit, the model
accurately simulates packet loss.

7.4.2 Scalability of CSW model

The point with the scalability experiments is to push the capacity of a regular PC
to its limits to demonstrate potential bottlenecks in the CSW model. Results from
Experiment 4 illustrate a linear increase in simulation execution time both when
increasing (1) the number of packets that an active node processes and (2) the number
of simulated seconds that an inactive node is idle. Results from Experiment 5 show
how the simulation execution time and memory consumption increases linearly as the
number of nodes that are idle or send packets increases. As such, the experiments
prove that the model is scalable even for large-scale simulations.

Figure 7.6a and 7.7a illustrate the simulation execution times when processing
packets. The size of the packets does not matter because the same number of events
execute, just that three processing stages vary their processing times by the packet
size. A larger packet size causes a higher intra-OS delay, but a discrete-event simulator
such as ns-3 is not affected by time, only the number of events executed. In [KPG13a],
the results indicate a difference in execution time because of the packet size. That is
likely to be because their CSW model is multi-threaded and requires a scheduler that
gives each thread a time quantum, which results in simulation events to be scheduled
consistently as the simulation proceeds. Therefore, the time added to the simulation
execution time is the same regardless of the packet size in our CSW model.

Table 7.1 compares the time it takes to run a real idle mote with an emulated inactive
node in Cooja/MSPSim and an inactive node in ns-3 that runs the CSW model. The
results indicate, unsurprisingly, that there is a sharp distinction between the execution
time by them. Although emulation with Cooja/MSPSim takes much shorter to execute
than a real mote, it is still resource intensive to execute. If scalability is an issue, the
best alternative is ns-3 with or without the CSW model. An emulated Cooja/MSPSim
mote takes longer to execute than a node in ns-3 with the CSW model because it runs
the actual hardware instructions of the compiled OS whereas the ns-3 CSW model only
provides the temporal behavior aspect of it.

To sum up, the results from Experiment 4 are significant because (1) the time added
to the simulation execution time is tiny per processed packet and per simulated second
with idle nodes and (2) that the simulation execution time increases linearly with
the number of packets and simulated seconds. The results from Experiment 5 are
significant for two reasons. First, the time added to the simulation execution time, and
memory consumption per node is low enough that 100,000 nodes can be instantiated
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and the simulation only occupies 11.6GB of RAM. Second, the simulation execution
time and memory consumption increase linearly with the number of nodes. Since the
simulation execution time is small and increases linearly, the CSW model can be used
for large-scale simulations.

7.4.3 Impact of CSW model

The purpose of Experiment 6 is to assess the impact the CSW model has when
introducing it to simulations by replicating an experiment conducted previously
without the model. We measure the possible as 124 bytes packets are sent with and
without the CSW model. Three runs are executed, one without the CSW model and
two with it. The first two runs are at the same data-rate, 100kbps. When not including
the CSW model, all packets arrive at Mote C. When including it, however, almost half
of all packets do not arrive at Mote C. That is an indication that the CSW model does
impact a typical simulation. The final run decreases the data-rate to 65kbps with the
CSW model to show that even then, not all packets arrive at Mote C. The data-rate
must be reduced to 64kbps before all packets arrive at Mote C when including the
CSW model. That means including the CSW model reduces the throughput to 64% of
what is possible when not including it. In conclusion, the CSW model has a discernable
impact when it is added to a WSN simulation.

While Experiment 6 has the task of determining the impact of the CSW model,
all the other experiments and results contribute to it. Preliminary results in Table 1.1
at the beginning of the thesis describe how the intra-node delay is an essential part
of the temporal behavior of intermediate nodes in WSNs. The accuracy experiments
(Experiment 1-3) indicate how accurate the model is and show how significant the
delay added is. The following scalability experiments (Experiment 4-5) show how
the CSW model can be used in large-scale WSN applications on regular PCs. Finally,
Experiment 6 replicates a previously conducted experiment to put the model in the
context of existing literature.

To sum up, the results are significant because they question the correctness of
similar results in the published literature. By introducing the CSW model, the
throughput reduces to 64% of what is possible without it. As the forwarding scenario
in the experiment is a typical one, adding the CSW model to the simulation in ns-3 is
bound to affect the performance in most scenarios. Thus, if throughput is important
for a WSN application to function correctly, including the CSW model will have a
significant impact.

7.5 Summary

This chapter presents the evaluation of the CSW model, which is done by assessing its
accuracy, scalability, and impact. The results indicate that the behavior of the model is
similar to a real mote, the scalability is high, and the impact of adding it to a simulation
is significant.
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Part 111

Conclusions

89






This thesis aims to discover the significance of CSW models for WSN and create
one that adds realistic software execution delay to ns-3. We believe that we have
successfully reached that goal, and showed that in Chapter 7.
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Chapter 8

Conclusion

In this thesis, we set out to with the aim to create a CSW model of TinyOS/TelosB that
adds realistic temporal behavior when doing packet forwarding in ns-3. As part of
the process of creating the model, a tracing framework is created and used to capture
the temporal behavior of the CSW both for creating and evaluating the model. This
chapter summarizes the contributions: the tracing framework and CSW model. Section
8.1 discusses the final CSW model and Section 8.2 discusses the tracing framework.
Section 8.3 describes some of the limitations of our methods. Section 8.4 explains some
of the tasks that are not accomplished in this thesis that can be worked on in the future.

8.1 CSW model

In Chapter 1, the claim is made that CSW models are needed to simulate the temporal
behavior of WSN devices accurately in ns-3, with Table 1.1 as motivation. After
having conducted the experiments that measure the accuracy of the CSW model in
Chapter 7, we suggest that Figure 7.3 supports the claim because of how significant
the full end-to-end delay with the real mote is when compared with only the CC2420
transceiver model. Furthermore, Experiment 6 replicates a throughput experiment
initially conducted in [IG], and the throughput reduces by 46% when including the
CSW model. The significant reduction is a sign that the intra-OS delay is non-
negligible. Therefore, we have much evidence to suggest the need for CSW models.

This CSW model is more impactful than the previous models because the modeled
device is simple and slow. TelosB is a single-core device and TinyOS a single-threaded
OS. Furthermore, TelosB does not use a cache for faster memory access, the CPU speed
of TelosB is constant at 4MHz, and TinyOS does not use optimization techniques in the
instrumented drivers that can cause variable temporal behavior either. On the other
hand, the Google Nexus One device with a CPU frequency of 245MHz — 1GHz that
runs a multi-threaded OS, is modeled in [KPG13b]. In [Oys16], the dual-core Galaxy
Nexus with a CPU frequency of 1.2GHz is modeled. These are much more complex
devices compared to TelosB, which makes it easier to demonstrate the impact of this
model.

The accuracy of the CSW model is high. There is almost no difference between the
CSW model and real mote in the tested scenarios. Several aspects of the device are
modeled and assessed in experiments: (1) intra-OS delay, (2) variation in delay due to
packet size, (3) variation in delay due to IPAQ fill-level, and (4) packet loss. Experiment
1 focuses on Point 1-2, Experiment 2 focuses on Point 1 and 3, and Experiment 3
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focuses on Point 4. Point 1 is implemented since the intra-OS delay is the main
feature of the CSW model. Point 2 is implemented in the CSW model because of
three processing stages which vary their processing times by the packet size. Point
3 is included in the model because packets that wait in the IPAQ for other packets take
longer to be sent. Point 4 occurs as a result of all other elements of the CSW model
being implemented correctly. That includes the points above plus the restriction that
only one packet can be processed in the receiving and sending part of the CSW at a
time. Therefore, we show that the model is accurate in multiple ways.

These experiments do more than prove that the model is correct. They also help
us adjust and correct the model by revealing errors. The relative forwarding rate
experiment revealed such an error. When a packet is being written into RAM or the
TX queue of CC2420, it can look like some of the processing stages are non-blocking
I/O events. Meaning, it takes time to write a packet into RAM and the TX queue, but
the mote can perform other tasks in the meantime. That is untrue, however, and the
experiment revealed that because the CSW model managed a much higher packet rate
compared to the real mote. Therefore, we adjusted the model by converting all the
non-blocking I/O processing stages to regular processing stages in which the mote is
busy processing all the time. The result is that the CSW model drops packets in the
same contexts as the real mote. That is one example of how the experiments helped us
adjust the model.

Experiment 3 in Chapter 7 illustrates that if Mote A sends packets at a high rate
to C via B, Mote B drops packets when the IPAQ is full. The noteworthy thing is that
only Mote A sends packets to B, which means that a mote that needs to send many
packets must deliberately slow down to avoid packet loss in the intermediate mote.
That does not happen when using unmodified TinyOS because it includes an initial
backoff feature that causes a random waiting time before sending each packet. With
initial backoff enabled, packets do not drop. Figure 8.1 shows the intra-OS delay for
124 bytes packets that are sent from Mote A to C as fast as possible with initial backoff
enabled. As a result of the backoff, no packets are dropped, and the intra-OS delay is
higher than it would if the initial backoff were disabled.

The scalability of the CSW model proves to be high for any typical WSN scenario.
We evaluate the significance of the scalability by comparing our results with the
previous proofs of concepts in [KPG13a, Oysl6]. Although the devices run at
completely different CPU speeds (245MHz - 1GHz, 1.2GHz, 4MHz), that does not
affect the simulation execution time because ns-3 is a discrete-event simulator in which
the simulation execution time only depends on the number of events that are executed
and their complexity. That means the scalability of a CSW model depends on how
complex the model is. In the first proof of concept [KPG13a], a CSW model processing
10,000 packets takes almost 10 seconds both when the packet size is 50 and 1450
bytes. As the number of packets increases, the difference in execution time between
the packet sizes increases. In [Oys16], it takes 6 seconds to simulate 10,000 packets of
162 bytes, which is less than [KPG13a]. Our CSW model takes around 4 seconds for
one CSW node to process 10,000 packets, regardless of the packet size. The reason why
the packet size does not matter and that the execution time is lower than the other
models is that TinyOS is a single-threaded OS, which means no scheduler is needed to
make sure that all threads get to run once in a while. In essence, all three CSW models
are scalable when increasing the number of packets processed, considering the low
simulation execution times.
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Intra-0sdelay with initial backoff enabled, UDP payload size 124 bytes
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Figure 8.1: 124-byte packets sent as fast as possible with initial backoff in TinyOS
enabled, no packets are dropped.

In addition to scalability on a per-packet basis, we also assess the scalability on a
per-simulated-second and per-node basis. The simulation execution time increases
linearly with all the parameters, which means it is scalable. In addition to the
simulation execution time, memory consumption is also measured when increasing
the number of inactive nodes. The result is that 100,000 nodes can be executed in the
simulation at the expense of 11.6 GB RAM, which we consider scalable. Essentially,
when increasing any parameters, whether it is the number of packets processed, the
number of simulated seconds being idle, or the number of nodes, the simulation scales
adequately.

We have discovered some issues when we emulated with Cooja/MSPSim. We
discovered two bugs and inaccurate execution times of two processing stages. The
tirst bug is that the microsecond clock on TelosB displays approximately four times
larger value than it should when compared to both the millisecond clock and the Cooja
simulation clock, seen in Figure 8.2. The microsecond time does not correspond with
the millisecond time nor the Cooja/MSPSim simulation time. The second bug is that
the CC2420 CCA feature does not work. When the channel is not clear, packets are
still sent, which causes collisions to occur. The inaccurate execution times are when
writing a packet from CC2420 RX queue to RAM and from RAM to CC2420 TX queue.
These processing stages are too short compared to a real mote, which is the main reason
why the Cooja/MSPSim intra-OS delays in Figure 7.3 are different from the real mote
and CSW model. In Section 8.3, we discuss how the processing stage times might
not be inaccurate, but that MSPSim emulates a different mote with same components.
These kind of inaccuracies and bugs are not uncommon for complex software such
as the MSP430 emulator MSPSim. One problem might be that the more complex a
simulator is, the more error prone it is as well. Therefore, general-purpose network
simulation with either Cooja (not emulation) or ns-3 can be better for a more light-
weight, transparent and maintainable simulator.

While we have created a CSW model to accurately simulate the temporal behavior
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(+] Mote output
File Edit View

Time ys | Mote | Message

5009708 ID:2  ms 665 - microseconds 2730644
5013292 ID:2 ms 659 - microseconds 2745640
5016871 ID:2 ms 673 - microseconds 2760690
5020451 ID:2  ms 676 - microseconds 2775717
5024022 ID:2 ms 680 - microseconds 2790749
5027620 ID:2 ms 684 - microseconds 2805745
5031191 ID:2 ms 687 - microseconds 2828855
5034763 ID:2 ms 691 - microseconds 2835851
5038349 ID:2 ms 695 - microseconds 2850871
5041937 ID:2 ms 698 - microseconds 2865909
5045521 ID:2 ms 702 - microseconds 2880977
5049090 ID:2 ms 786 - microseconds 2895027
5052675 ID:2 ms 709 - microseconds 2911011
5056261 ID:2 ms 713 - microseconds 2926068
5059863 ID:2  ms 717 - microseconds 2941124
5063443 ID:2 ms 720 - microseconds 2956252
5067014 ID:2 ms 724 - microseconds 2971285
5070590 ID:2 ms 728 - microseconds 2985281
5074188 ID:2 ms 731 - microseconds 3001295
5077763 ID:2  ms 735 - microseconds 3016405
5081353 ID:2 ms 739 - microseconds 3031437
5024928 ID:2  ms 742 - microseconds 3046493
5088519 ID:2  ms 746 - microseconds 3061507
5092115 ID:2 ms 750 - microseconds 3075587
5095695 ID:2 ms 753 - microseconds 3091685
5099280 ID:2 ms 757 - microseconds 3105723
5102863 ID:2 ms 761 - microseconds 3121773
5106457 ID:2 ms 784 - microseconds 3135817
5110051 ID:2  ms 768 - microseconds 3151910
5113642 ID:2 ms 772 - microseconds 3167002
5117226 ID:2 ms 776 - microseconds 2182082
5120834 ID:2  ms 779 - microseconds 3197132
5124414 ID:2 ms 783 - microseconds 3212284
5127993 ID:2  ms 787 - microseconds 3227316
5131575 ID:2 ms 790 - microseconds 3242348
5135161 ID:2  ms 794 - microseconds 3257386
5138764 ID:2 ms 798 - microseconds 3272448
5142331 ID:2 ms 801 - microseconds 3287576
5145895 ID:2 ms 805 - microseconds 3302554
5140473 ID:2 ms B39 - microseconds 3317526

Filter: |1D:2

Figure 8.2: Timer issue when emulating in Cooja/MSPSim.

of a WSN device in ns-3, it does not mean that everyone should start using ns-3 for
simulation of WSNs. When to choose ns-3, emulation with Cooja/MSPSim or a real
testbed to run a WSN depends on the requirements for it. Table 8.1 illustrates some
of the suitable application areas for each platform. If it must be large-scale, ns-3 is the
best option, Cooja/MSPSim the second best and a real testbed the third best. If the
temporal behavior must be accurate, a real testbed is best, CSW model is arguably the
second best, and Cooja/MSPSim the third best. The CSW model is second best because
the results in Chapter 7 show it. When needing to debug a network application,
Cooja/MSPSim is the best, real testbed the second best and ns-3 with the CSW model
is not an option because it cannot execute OS code unless extended with an emulator
such as TOSSIM [ROM10]. As such, different requirements for an application need
different platforms.

| Application area | CSW model | Cooja/MSPSim | Real testbed |

Debug application in TinyOS Low High Medium
Forwarding on a large scale High Medium Low

Table 8.1: Comparing use cases for the CSW model in ns-3, an emulated Cooja/MSP-
Sim mote and a real testbed.
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8.2 Tracing framework

The tracing framework is used to capture the CSW behavior of TinyOS /TelosB and proves
to be flexible, efficient with low tracing delay and memory consumption for each trace
event. It is flexible because of the two methods of tracing called buffered and instant
tracing. The former enables saving trace events with accurate timestamps in RAM until
it is full and the latter enables indefinite tracing, albeit with inaccurate timestamps. If
someone attempts to model another WSN device in the future, the same design can be
reused.

The difference between the tracing framework in this thesis and the ones used in
the three previously created CSW models is that the TelosB mote requires compression
of traces because it only has 10kB RAM in total with approximately 3.5kB available
when the OS and forwarding application are installed. When the traces are collected,
they are decompressed to CSW events. Two benefits of this way of tracing are that
(1) we can focus entirely on tracing efficiently without worrying about the meaning of
the traces and (2) a single trace tuple can be converted to several CSW events, which
means even less tracing delay and memory consumption.

As far as the CSWMM is concerned, the compression of traces adds a small step in
between the tracing and automatic analysis steps. The step includes decompressing
the trace to a list of CSW events that can be used as input to the automatic analysis
script. Additionally, the compressed trace can be analyzed more easily, which can
reveal errors that occur during execution.

8.3 Research limitations

A problem about the CSW model is that both the creation and evaluation of it rely
on the tracing framework that is also created in this thesis. The alternative to using
the tracing framework to evaluate the model is to eavesdrop on the packets sent to
and from the mote. Tracing the intra-OS delay when listening from the outside is
not possible because the captured delay also includes delay caused by the CC2420
radio transceiver. The potential problem about the creation and evaluation being done
using the tracing framework is that if the tracing turns out to be inaccurate, it could
invalidate the positive evaluation of the CSW model. Nevertheless, it is a simple
tracing framework and has proven to be consistent, aside from the timestamp errors
that we use a trace analysis tool to mend.

All the experiments are performed without a Faraday cage for two reasons. The
tirst one is that it is expensive and takes extra work setting up the experiments. The
second reason is that it is not strictly needed to measure the accuracy of the CSW model
because the data-rate is only 250kbit and the packet rate is never over 130 packets per
second in the relative forwarding rate experiment in Chapter 7. WLANSs [80216] do,
however, operate on the same 2.4GHz spectrum as the CC2420 transceiver [Tex14],
which means interference from WiFi networks is possible during experiments.

The results from Table 1.1 and Figure 7.3a and Figure 7.3b might unrightfully put
the accuracy of the emulator MSPSim that Cooja uses to emulate Tmote Sky/TelosB in
a bad light. We do not know the reason why the results are different. We model MTM-
CM5000MSP / TelosB/ Tmote Sky, which might be a different hardware model from the
Tmote Sky emulated in MSPSim. As such, it is hard to tell what causes the difference
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in intra-OS delay, and we do not have enough evidence to suggest it is because of an
inaccuracy in MSPSim.

If the model turns out to be different, creating a similar CSW model where some of
the processing times are slightly different from the model we created is easy to do. The
benefit of the CSW model is that it can be modified with low effort to reflect differences
between hardware models. Therefore, it might not be necessary to create an entirely
new model of TinyOS/mICAz in the future, but rather slightly modify the TinyOS/TelosB
CSW model.

8.4 Future work

While the CSW model is accurate and can be useful in many cases, one thing that
remains is to create a module for it that has the same format as other ns-3 modules.
Currently, the model is specialized for a specific simulation program. Creating a
module would enable others to use it and contribute to the framework. The CSW
model currently does not support 6LoWPAN fragmentation. In the future, it should be
added since 6LoWPAN is used in TinyOS and there is a 6LoWPAN protocol library in
ns-3.

We have only compared it to the other models created with the CSWMM and not
the solutions mentioned in Section 2.4. That is because it requires extensive research
to make a proper comparison between this solution and existing solutions. For future
work, however, it might be interesting to investigate how this CSW model holds up to
other models that also attempt to add a more realistic simulation of processing delays.

Creating a model of Contiki/TelosB by using a tracing framework with the same design
as ours can be interesting. It is likely to demand less effort since the hardware is the
same. The services defined in the CSW model will be different since the OS is different.
Furthermore, the processing stages will take longer or shorter compared to TinyOS,
and the packet queue(s) within the OS will be different from the IPAQ in TinyOS.

The tracing framework can be improved to compress the buffered trace tuples
further from five to three bytes and in some cases two bytes, as explained in Section
4.2. That results in the ability to trace more events. It is, however, not prioritized in this
thesis because it only helps to minimize the memory consumption, which is already
sufficiently low for our purposes with the current solution. If it decreased the tracing
delay significantly, it might have been prioritized more.
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