
An Algorithmic
Differentiation Tool for
FEniCS
Sebastian Kenji Mitusch
Master’s Thesis, Spring 2018

This master’s thesis is submitted under the master’s programme Computational
Science and Engineering, with programme option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Acknowledgements
Firstly, I would like to thank my supervisor Simon Wolfgang Funke, for

giving me the opportunity to work on this project. Your valuable input and
positive attitude made this project possible. I would also like to thank my
secondary supervisor Kent-Andre Mardal, I am especially grateful for your
feedback during the end of this project.

Furthermore, I would like to thank David Ham and Lawrence Mitchell for
the collaboration on developing support for Firedrake. Particularly, thank
you David for your comments on Dirichlet boudary controls. Also, thank you
to everyone who contributed to the pyadjoint repository. Thank you, Jørgen
Dokken for providing helpful comments and tips for the thesis.

I would like to thank Lars Magnus Valnes, Geir Ringstad, and Per Kristian
Eide for providing me with data for the brain diffusion model. Thank you to
my friends and family, who supported me throughout.

Contents

Contents 3

1 Introduction 5
1.1 Structure . 8
1.2 Notation and assumptions . 8

2 Background 9
2.1 Where are gradients useful? . 9
2.2 Algorithmic Differentiation . 10
2.3 Finite Element Method . 15
2.4 The adjoint equations . 18

3 A generic AD framework 23
3.1 Implementation . 23
3.2 User interface . 28
3.3 Limitations . 30
3.4 Summary . 30

4 Applying pyadjoint to FEniCS 31
4.1 Brief introduction to FEniCS 31
4.2 Annotation . 32
4.3 Deriving the discrete tangent linear and adjoint equations . . . 33
4.4 Dirichlet boundary condition control 34
4.5 Parallel support . 35
4.6 Limitations . 35
4.7 Summary . 36

5 Examples 37
5.1 Dirichlet boundary condition control 37
5.2 Brain diffusion inverse problem 40
5.3 Summary . 48

6 Outlook: Mixed-models with Tensorflow 51
6.1 Tensorflow and neural networks 51
6.2 Mixed model approaches . 53
6.3 Implementing a FEniCS model in TensorFlow 53
6.4 Verification . 53
6.5 Summary & Discussion . 54

3

7 Summary & future work 57
7.1 Future work . 57

Bibliography 59

4

Chapter 1

Introduction

Optimization problems seek to find the input that minimizes (or maximizes)
a function from a set of available inputs. These kinds of problems can occur
in many different fields. In science and engineering, optimization problems
frequently appear in combination with partial differential equations (PDEs),
as these equations can be used to describe physical processes. These problems
can be formulated as

min
m∈M,u∈U

J(u,m)

subject to F (u,m) = 0,
(1.1)

where J(u,m) ∈ R is some objective functional, U and M are suitable Banach
spaces, and F (u,m) = 0 is one or multiple PDEs parametrized by m with
solution u. Problems of the type (1.1) are called PDE-constrained optimization
problems. Algorithms for solving these types of problems can be divided into
two classes: gradient-free algorithms and gradient-based algorithms. Although
gradient-free algorithms can be very useful, they tend to scale poorly with
the dimension of the parameter space M [44]. Therefore our focus will be
on gradient-based algorithms. In the context of gradient-based optimization
algorithms, a particular challenge is efficiently computing derivatives of J .

Since there is an implicit relationship between u and m given by the PDE
constraint, it can be useful to reformulate (1.1). Assuming that any m ∈ M
yields a unique u ∈ U , one can define the reduced functional as Ĵ(m) =
J(u(m),m). Then the problem becomes minm∈M Ĵ(m). To solve this us-
ing gradient-based optimization algorithms, we need to find the derivative of
Ĵ(m) = J(u(m),m) with respect to m.

A common numerical method for computing derivatives is the finite differ-
ence method. However, a tricky part of this method is the choice of a step
size. If the step size is too big, the approximations will be poor because of
large truncation errors. On the other hand, if the step size is too small the
result can be dominated by numerical imprecision [22]. Even without worrying
about step size, computing finite differences can be computationally expensive.
Gradient-based optimization algorithms need a full gradient of Ĵ , but a single
finite difference computation only gives a directional derivative. Thus, for each
iteration of a gradient-based algorithm, we need to perform dim(M) + 1 PDE
solves. Combining the fact that problems of this type often have a parameter
space with dim(M)� 1 and that solving the PDE comes at a significant com-

5

putational cost, finite differences is typically an infeasible option for practical
problems of type (1.1).

Another option is finding the derivative of Ĵ(m) by the tangent linear ap-
proach. This involves the solution of a linearised version of the constraint PDE
to obtain the directional derivative. There is no need for any step size, and
we do not get any truncation errors either. As the tangent linear model is
not an approximation, the source of error stems only from discretization and
numerical precision. However, the tangent linear method still does not solve
the problem of the high computational expense. We must still compute the
tangent linear model for each basis function in the parameter space, resulting
in dim(M) linear PDE solves to obtain the gradient.

For most PDE-constrained optimization problems, the adjoint method is
the most efficient choice. From a single evaluation of a linear PDE, the adjoint
equation, whose computational cost is comparable to the original model, the
full gradient is determined. The adjoint method has a higher memory cost, but
in comparison to the tangent linear and finite difference methods, the adjoint
method is the superior choice when the dimensions of the parameter space
is larger than 2. For this reason the adjoint approach is commonly used in
engineering. Jameson pioneered the use of adjoint methods in aeronautical
engineering in [23]. Here he considered how to optimize the shape of a aerofoil,
using the inviscid Euler equations for compressible flow as governing equations.
In recent years, a discrete adjoint approach based on algorithmic differentiation
was developed for Reynolds-averaged Navier-Stokes equations [33]. Gradient-
based optimization using this to obtain gradients was shown to have a high
level of efficiency and robustness for aerodynamic problems relating to optimal
design of aerofoils [34]. The adjoint of Reynolds-averaged Navier-Stokes equa-
tions can also be used for optimal positioning of wind turbines in wind farms
[26]. We call these problems design problems, as they try to find parameters
which optimize a design.

The adjoint model has two main implementation approaches. The imple-
mentation of the continuous adjoint, and the implementation of the discrete
adjoint. In the continuous approach the adjoint equations are derived from
the continuous model, prior to discretization. After this, the adjoint PDE can
be discretized and implemented using any suitable technique. In addition, the
physical meaning of the boundary condition is more clear in the continuous
approach [13]. On the other hand, with a continuous method the derivation
and discretization of the adjoint model must be completed manually.

The discrete adjoint approach, instead derives the adjoint model from the
discretized model. This is illustarted in figure 1.1. The discrete approach
yields an exact gradient of the discrete objective functional [13]. That is, the
computed gradient is consistent with the discrete implementation of the for-
ward PDE. Given that the forward PDE has been discretized and implemented,
one can use algorithmic differentiation (AD) to obtain an adjoint model au-
tomatically. AD works by decomposing the implementation into elementary
instructions (like plus, minus, multiplication) and differentiating by applying
the chain rule. More details on AD is presented in section 2.2. Although AD
is in principal a straightforward method, difficulty arises when applying it to
existing simulation software. In order to efficiently integrate AD implementa-
tions, expert understanding of the software and model is required [38, page xii].
This stems from the fact that a basic AD tool cannot separate implementation

6

Forward PDE Discrete forward PDE

Adjoint PDE Discrete adjoint PDE

discretize

discretize

derive continuous adjoint derive discrete adjoint

Figure 1.1: The two different approaches for deriving the adjoint model. The
discrete approach performs the discretize step before deriving the discrete ad-
joint PDE. Note that the two approaches for deriving adjoints do not necessarily
commute.

details and mathematics. Instead, black-box AD tools have to deal with low-
level implementation details such as parallel communication and I/O. Despite
this, low-level AD has been successfully applied to large simulation software
such as OpenFOAM [42] and MITgcm [18].

To maintain more of a high level mathematical abstraction, the software
package dolfin-adjoint [10] is implemented as an AD tool exploiting the high
level representation of the discrete model in the domain-specific language UFL
[3]. In UFL the discrete variational formulation of a PDE can be implemented
with near mathematical notation. The variational formulations written in UFL
are represented symbolically, which enables efficient manipulation of the model.
In particular, one can efficiently differentiate these representations with respect
to parameters. This approach has proven to be very efficient [10] and dolfin-
adjoint has become a popular package for deriving discrete adjoint models.
However, there are currently some limitations in the dolfin-adjoint implemen-
tation. Because the package was implemented with high level AD in mind,
it assumes that such a high level abstraction is available. This limits the
scope of the AD tool to only certain environments. A particular problem that
has arisen from this limitation is that objective functionals are restricted to
the classes of functionals that dolfin-adjoint is familiar with. Furthermore,
dolfin-adjoint does not support strong Dirichlet boundary conditions as con-
trols, and instead relies on weakly imposing these boundary conditions through
the Nitsche method [5].

In this thesis we will focus on implementing a generic AD python pack-
age and apply it to the finite element framework FEniCS [2]. The resulting
implementation will then derive the discrete adjoint models and serve as a
successor to dolfin-adjoint. The aim is to support both strong implementa-
tions of Dirichlet boundary condition controls, in addition to enabling AD for
arithmetic operations where a high level abstraction is not available.

AD is not exclusively used in programs aimed at solving PDEs. It has
also been widely adopted for machine learning, and especially neural networks.
Torch [8] and TensorFlow [1] are examples of machine learning software em-
ploying AD. The new implementation of dolfin-adjoint could allow for experi-
mentation on mixing PDE and machine learning.

At the time of writing, some results from this thesis has been presented
at conferences. The dolfin-adjoint framework was presented as a poster at the
FEniCS’17 conference, receiving an award for the best poster. Some of the

7

work presented in chapter 6 was part of a talk by Simon W. Funke during the
FEniCS’18 conference.

1.1 Structure

The thesis is structured as follows. In chapter 2 we present necessary and use-
ful background on topics that will be extensively used in the thesis. Chapter 3
introduces a generic AD software, and describes how it is implemented. Next,
chapter 4 details how we apply this generic AD tool to a finite-element frame-
work. Examples of applying the resulting AD software is presented in chapter
5, demonstrating the properties and features of the software implemented in
chapter 4. Chapter 6 briefly touches upon a way this AD tool can be extended
to and integrated with an AD machine-learning library. Illustrating potential
mixing of the finite-element and machine-learning models. Finally, chapter 7
summarizes the results and provides a small discussion on future work.

1.2 Notation and assumptions

Because derivatives are a recurrent theme throughout this thesis, it is useful
to clarify some notation. Let f : Rn → Rm be differentiable at a point x ∈ Rn,
then we define the Jacobian matrix as the m× n matrix with entries

(Jf,x)i,j =
∂fi(x)

∂xj
,

for each i = 1, 2, ...,m and j = 1, 2, ..., n. Where fi(x) is the i-th component
of the output vector f(x), and xj is the j-th component of the input vector x.
Sometimes Jf,x will denote the linear transformation induced by the Jacobian
matrix at x.

Furthermore, throughout this thesis it is assumed that the discretized func-
tional J(u,m) ∈ R and the discretized PDE operator F (u,m) are continuously
differentiable. And that the discrete PDE operator F (u,m) yields a unique
u ∈ U for each m ∈M for some suitable Banach spaces U and M .

8

Chapter 2

Background

In this chapter we will present necessary background for the following chapters.
First, in section 2.1 we give a brief review of different applications of gradients
in science and engineering. Then, in section 2.2 we introduce AD as a way to
obtain these gradients, and develop the necessary mathematical tools that aims
to ease the transition to code. Then, in section 2.3 we give a brief introduc-
tion to the finite element method for discretizing partial differential equations.
Finally, in section 2.4 we derive the adjoint equations and then show how AD
will be applied to obtain these equations.

2.1 Where are gradients useful?

Before we get into the technical details of deriving gradients, it can be useful
to take a step back and ask why we even need them. This section aims to
give a brief background on different ways gradients are used in science and
engineering.

2.1.1 PDE constrained optimization

As mentioned in the introduction, gradients can be used for solving PDE-
constrained optimization problems. We mentioned design problems, in which
optimization is used to find parameters that optimize the design for certain
properties. However, other kinds of problems can also be formulated as PDE-
constrained optimization problems.

Inverse problems and variational data assimilation are other types of PDE-
constrained optimization problems. These problems aim to find parameters
which fit the simulation to observations. A classical example is that of a me-
teorologist who wishes to predict the weather tomorrow. Weather forecasting
can be considered an initial-value problem, for which we start at an initial
atmospheric state, and use physical models to simulate the state forwards in
time. Of course, it is not an easy task to obtain a complete initial global at-
mospheric state. The observations are instead just partially complete as they
are obtained from weather stations. Because of this, variational data assimi-
lation can be used to find an initial state that best fits the observations. The
objective functional J is then chosen to be a measure for the misfit between
the simulation and the observations, while m is the unknown initial condition.

9

Since the initial condition typically consists of more than 106 degrees of free-
dom, the adjoint method becomes the only feasible approach for gradient-based
optimization [41]. In section 5.2 we will explore an inverse problem identifying
apparent diffusion coefficients in a diffusion equation modelling the spreading
of contrast agents in patient magnetic resonance imaging (MRI) brain scans.

2.1.2 Sensitivity Analysis

Sometimes the values of the gradient can be of interest. In sensitivity analysis
the aim is to analyse which parameters the functional is most sensitive to. This
can be used to estimate uncertainty and identify parameters which matter the
least and the most for an accurate model. The parameters that have little
effect on the output can be removed prior to doing optimization, or parameters
that have the most effect on the output can give indication that they must
be measured more accurately. For example, the bottom topography of the
Drake passage is not fully and accurately mapped. By using the Navier-Stokes
equations and with J measuring the net transport through the Drake passage,
the gradient can reveal where the transport is most sensitive to the topography
[31].

2.1.3 Machine learning

Optimization problems in general, not just with a PDE-constraint, are prob-
lems where gradients can be useful. Machine learning algorithms often aim at
minimizing a loss function, for which gradient-based optimization algorithms
are effective. For example, in deep neural networks gradients are used to op-
timize the weights (parameters) of the network so that it minimizes the error
between predicted outputs and desired outputs. Stochastic gradient descent
has been proven very proficient in tuning the parameters of these deep neural
networks, such as in the image classifier ImageNet [28].

2.2 Algorithmic Differentiation

Now that the importance of gradients has been established, a technique for
computing them is necessary. Algorithmic differentiation is a technique for
automatically computing derivatives of computer programs. This involves de-
composing the program into a sequence of elementary functions, like sin, exp,
addition, or multiplication, for which the symbolic derivative is known, and by
automatically applying the chain rule to obtain the derivative of the function.
In other words, consider a differentiable function f : Rn → Rm that can be
decomposed as

f(x) = gk ◦ gk−1 ◦ · · · ◦ g2 ◦ g1(x) (2.1)

with gi : Rni → Rni+1 for i = 1, 2, ..., k and n1 = n and nk+1 = m. Then
differentiating this with respect to x yields, by the chain rule

df(x)

dx
=
∂gk(wk)

∂wk

∂gk−1(wk−1)

∂wk−1
· · · ∂g2(w2)

∂w2

∂g1(x)

∂x
(2.2)

10

where we have the intermediate solutions

wi(x) = gi−1 ◦ gi−2 ◦ · · · ◦ g2 ◦ g1(x), i = 2, 3, ..., k

w1(x) = x

The right hand side of (2.2) is just a series of Jacobian matrix multiplica-
tions. Thus, to compute the derivative of f with respect to x, we only need
to know the symbolic derivative of each function gi with respect to its direct
input. Algorithmic differentiation is effective because even for computing com-
plex models a program essentially performs simple elementary operations in a
specific order. There are two main methods of evaluating the right hand side of
(2.2). Either by tangent linear mode, or more widely known as forward mode,
or by adjoint mode, also known as reverse mode.

2.2.1 Tangent linear mode

In the tangent linear mode (TLM) we evaluate the right hand side of equation
(2.2) in the same order as (2.1), i.e from right to left. First one chooses a
seed direction δx ∈ Rn, then multiplying equation (2.2) from the right with
this seed yields the tangent linear model. Let Jf,x ∈ L(Rn,Rm) be the linear
transformation defined by the Jacobian matrix of f at x. Then, if for each
i = 1, 2, ..., k we assume that gi : Rni → Rni+1 is continuously differentiable
at wi, then its Jacobian matrix induces the linear transformation Jgi,wi ∈
L(Rni ,Rni+1). And so the TLM computes

Jf,x(δx) = Jgk,wk
◦ Jgk−1,wk−1

◦ · · · ◦ Jg2,w2
◦ Jg1,x(δx) (2.3)

Thus, if δx is a unit vector, and m = 1, then TLM equates to computing
the scalar directional derivative at x:

Jf,x(δx) = ∇f · δx (2.4)

Furthermore, if δx is a unit vector along one of the axes, we obtain the scalar
partial derivative along that axis. Similarly for m > 1, the resulting computa-
tion is a vector Jf,x(δx) ∈ Rm with each entry being the directional derivative
of the corresponding component of f along the unit vector δx.

To obtain the full Jacobian matrix in the TLM, one would need to run the
computations n times with the directional seed as each Cartesian basis vector
for Rn. In other words, it would require n sweeps over the tangent linear
model. In comparison, as we will see later, the adjoint mode requires m sweeps
over the adjoint model to obtain the full Jacobian. This means that TLM is
a preferable method when m � n, while the adjoint mode is preferable when
m� n.

2.2.2 TLM Example

As an example, consider the function f : R2 → R defined by

f(x1, x2) = sin(x1x2)

The Jacobian matrix of this function is

Jf,(x1,x2) =
(
x2 cos(x1x2) x1 cos(x1x2)

)
11

Given a seed direction δx = (δx1, δx2)T ∈ R2 and a point x ∈ R2, a TLM
sweep computes

Jf,(x1,x2)(δx1, δx2) =
(
x2 cos(x1x2) x1 cos(x1x2)

)(δx1

δx2

)
The function f can be decomposed into two functions

f(x1, x2) = g2(g1(x1, x2))

where g1(x1, x2) = x1x2 and g2(w2) = sin(w2). For this example, we choose
δx = (0, 1) and wish to evaluate the derivative of f at some given point
x = (x1, x2). When the function f is evaluated, the intermediate values are
computed.

w2 = x1x2

w3 = sin(w2)

f = w3

The TLM computations are as follows

δw2 = Jg1,x(δx) =
(
x2 x1

)(0
1

)
= x1

δw3 = Jg2,w2
(δw2) = cos(w2)δw2 = cos(x1x2)x1

Jf,x(δx) = δw3 = x1 cos(x1x2)

Note that the values computed are all numerical. Thus, one sweep only com-
putes the directional derivative at a single point. For this example, if x =
(1, 0)T then the TLM computations would result in δw3 = 1.

2.2.3 Adjoint mode

With the adjoint mode one instead chooses a seed δy in the codomain of f ,
δy ∈ Rm. Multiplying (2.2) from the left with δyT , i.e the transpose of the
seed, and computing from left to right, equates to the computations done in
the adjoint mode. Specifically, if Jf,x is the Jacobian matrix of f at point x,
then this would mean the computation of

δyTJf,x ∈ R1×n (2.5)

Choosing δy as a Cartesian basis vector for Rm would result in the corre-
sponding row in the Jacobian matrix Jf,x. This highlights the main difference
between the TLM and the adjoint mode: the adjoint mode extracts rows while
the TLM extracts columns of the Jacobian matrix Jf,x. Of course in reality, it
is a weighted sum of the rows or columns.

We will however be a little bit more precise. The product in (2.5) is a
row vector, but we are actually interested in producing column vectors because
we view the input x as column vectors. Thus the operator we are actually
employing is the transpose (or adjoint) of the Jacobian matrix.

12

Definition 2.2.1 The adjoint of the linear operator Jf,x : Rn → Rm is defined
as J∗f,x : Rm → Rn such that for each δx ∈ Rn and each δy ∈ Rm

〈Jf,x(δx), δy〉Rm =
〈
δx, J∗f,x(δy)

〉
Rn

where 〈·, ·〉Rm and 〈·, ·〉Rn are the dot products in Rm and Rn respectively.

It can be shown that the transpose of the Jacobian matrix JTf,x induces the
adjoint operator J∗f,x, see for example [38, Sect 2.2]. It follows that the adjoint
operator can be decomposed to

J∗f,x(δy) = J∗g1,x ◦ J
∗
g2,w2

◦ · · · ◦ J∗gk−1,wk−1
◦ J∗gk,wk

(δy)

If m = 1, choosing δy = 1 results in J∗f,x(δy) = ∇f . Thus, no matter how
big n is, we only need to do one sweep of the adjoint mode to get the full
gradient. In general the result of the adjoint computations is the gradient of a
weighted sum of the components of f

J∗f,x(δy) = ∇(δyT f(x)) =

m∑
i=1

δyi∇fi(x)

2.2.4 Adjoint example

Again we consider the function f : R2 → R defined by

f(x1, x2) = sin(x1x2)

Recall that the Jacobian matrix of this function is

Jf,(x1,x2) =
(
x2 cos(x1x2) x1 cos(x1x2)

)
and consequently, given a seed δy ∈ R and a point x ∈ R2 one adjoint sweep
computes

J∗f,(x1,x2)(δy) =

(
x2 cos(x1x2)
x1 cos(x1x2)

)
δy

The intermediate values are computed as before. We choose δy = 1 for this
example, then the adjoint computations are

δg2 = J∗g2,w2
(δy) = cos(w2)δy = cos(x1x2)

δg1 = J∗g1,w1
(δg2) =

(
x2

x1

)
δg2 =

(
x2 cos(x1x2)
x1 cos(x1x2)

)
J∗f,x(δy) = δg1 = ∇f

Notice that the computation starts with the last operation and propagates
backwards in comparison to the forward computation of f .

13

Figure 2.1: A computational graph of the function from the examples. TLM
AD compute in the same direction as the graph, while the adjoint mode tra-
verses the operations backwards starting from the output f .

2.2.5 The program structure

In TLM there was no need for remembering or storing any program structure
because everything could be computed together with the computation of f .
However, with adjoint mode there is a need for a structured way of tracking
operations performed and storing intermediate variables. This leads to the
introduction of a computational graph. This can be interpreted as a directed
acyclic graph (DAG) of the operations performed in the forward computations.
Figure 2.1 shows a DAG for the function f from the examples above. The
adjoint mode can be thought of as initializing one of the leaf nodes (i.e. nodes
which have no outgoing edges) and propagating computed values backwards in
the graph.

The data structure comprising of the operations and intermediate variables
is called a tape. Annotating the tape is the process of tracking and storing the
computed operations in the tape.

As will be explained in the next section, the implementation of AD can
be done in several ways. However, common for all techniques is that each
operation which can make up an AD-compatible composite function of f must
be augmented to compute derivatives. This augmentation can be regarded
as follows. Let g : Rn → Rm be a function that we wish to augment with a
derivative function. The tangent linear model of g is a function g(1) : R2n → Rm
defined as

g(1)(w, δw) = Jg,w(δw)

The value δw ∈ Rn is the tangent linear input to the function g. If g is the
i-th function in (2.1), i.e. gi for i = 2, 3, ..., k, then δw ∈ Rn is the result of

δw = Jgi−1,wi−1
(δx)

for some δx ∈ Rn.
Similarly, we define the adjoint model of g as the function g(1) : Rn+m → Rm

g(1)(w, δg) = J∗g,w(δg) (2.6)

The value δg ∈ Rm is the adjoint input to the function g. Again, if g is the
i-th function in (2.1) for i = 1, 2, ..., k − 1, then δg ∈ Rm is computed as

δg = J∗gi+1,wi+1
(δy)

14

for some δy ∈ Rm.
Note that the dimensions of the vectors δx and δy above stem from f in

(2.1) and not g. The implementation of the tangent linear and adjoint model
of g is entirely independent of f .

2.2.6 Main implementation approaches

There are two ways algorithmic differentiation is implemented. Either by
source code transformation or by operator overloading. As the name suggests,
the source code transformation approach involves transforming the program’s
source code, adding algorithmic differentiation routines for every addition, mul-
tiplication, as well as every call to functions like sin and exp. This approach
can lend greater runtime efficiency, as the compiler is able to do code opti-
mizations. However, it can be a challenge to implement a tool that actually
performs these source code transformations automatically.

Operator overloading instead works by overloading operators like addition
(+) and multiplication (*), adding a routine for computing the tangent linear
or adjoint model to the overloaded version. This is also done in general for
other basic functions like cos and log. Typically, one implements a new data
type overloading operators on it so that they also produce the same data type.
This means that if x is an AD data type, y = x * x is also an AD data type.
This way, you can just send an AD floating point number into a function that
does arithmetic operations on floats and, without any changes to the function
itself, get back an AD data type providing the derivative. Thus this method
can lead to some very simple implementations that work for a wide range of
functions. However, not every programming language actually supports oper-
ator overloading. For instance, Java does not offer this feature. Furthermore,
the program can not make use of compiler optimizations, and will generally be
slower than a source code transformation equivalent.

2.2.7 Higher order derivatives

Algorithmic differentiation can be generalized to higher order derivatives by
performing AD on the tangent linear or adjoint model. A detailed description
of this process is provided in [38, Chap 3].

2.3 Finite Element Method

Because gradients are often useful in problems involving PDEs, such as PDE-
constrained optimization, we now look at how PDEs can be solved numerically.
Specifically, we will be introducing the Galerkin finite element method.

The finite element method (FEM) is a way of solving PDEs by approximat-
ing functions over a domain. Let V be the target function space of functions
over the domain for which we wish to use the finite element method. The
general idea is to define a finite dimensional vector space, called a finite ele-
ment space, Vh = span{φ1(x), φ2(x), ..., φk(x)} such that any uh ∈ Vh can be

15

represented as a linear combination

uh(x) =

k∑
i=1

Uiφi(x)

After defining the space, it would just remain to find the best approximation
uh ∈ Vh of u ∈ V . In finite element spaces the domain is divided into a
collection of subdomains, or cells, with each basis function φi being defined
locally as a polynomial on one or more of these cells. In other words, the basis
functions {φi}ki=1 have compact support. On each cell we place nodes, and
some nodes will be vertices between multiple cells. In total there should be k
nodes, each corresponding to one basis function φi. This means that for node
numbered i located at the coordinates xi, φi(xi) = 1 and φj(xi) = 0 for j 6= i.

Let Ω ⊂ Rn be open and bounded, with boundary ∂Ω. As an example, we
consider the poisson equation

−∆u = f, in Ω

∇u · ν = gN , on ∂ΩN

u = gD, on ∂ΩD

where f : Ω → R, gN : ∂ΩN → R and gD : ∂ΩD → R are given functions and
u : Ω→ R is the unknown solution. With ∂Ω = ∂ΩD∪∂ΩN and ∂ΩD∩∂ΩN =
∅. ∂ΩD is the Dirichlet boundary and ∂ΩN is the Neumann boundary. ν is the
outward pointing normal vector on ∂Ω.

As it is not always easy or even possible to find a u ∈ C2(Ω) solution to
this PDE, we may wish to find a solution in a wider space V . To this end we
choose a suitable test space V ′ and trial space V , and multiply the equation
with a test function v ∈ V ′, and integrate over the domain. Then we apply
integration by parts

−
∫

Ω

∆uv dx =

∫
Ω

fv dx

=⇒
∫

Ω

∇u · ∇v dx−
∫
∂Ω

∇u · νv dS =

∫
Ω

fv dx

Thus, the problem becomes: find a u ∈ V such that∫
Ω

∇u · ∇v dx−
∫
∂Ω

∇u · νv dS =

∫
Ω

fv dx, ∀v ∈ V ′

This is called the weak or variational formulation of the problem. A natural
choice for V and V ′ is the Sobolev space

H1 = {v : Ω→ R | v ∈ L2(Ω),
∂v

∂xi
∈ L2(Ω) ∀i = 1, 2, .., n}

where ∂v
∂xi

for each i = 1, 2, ..., n is the weak partial derivatives of v. For more
on Sobolev spaces and weak derivatives, see the book by Evans [9, Chap 5].
Furthermore, to strongly enforce the Dirichlet boundary conditions we choose
the function spaces

V = H1
g = {u ∈ H1(Ω) |u = g on ∂ΩD}

V ′ = H1
0 = {v ∈ H1(Ω) | v = 0 on ∂ΩD}

16

Then our problem becomes: find u ∈ H1
g such that∫

Ω

∇u · ∇v dx−
∫
∂ΩN

gNv dS =

∫
Ω

fv dx, ∀v ∈ H1
0 (2.7)

However, solving (2.7) numerically when the trial space and test space are
infinite dimensional is infeasible. Instead we introduce a finite element approx-
imation. Let V0,h ⊂ H1

0 be a finite element space of dimension k ∈ N, spanned
as before by the basis functions {φ1(x), φ2(x), ..., φk(x)}. For the trial space,
we additionally must enforce the Dirichlet boundary condition gD. We define
an additional set of basis functions {φk+1(x), φk+2(x), ..., φk+kd(x)} for which
we interpolate the Dirichlet boundary condition gD. Then the discretized trial
space Vg,h is spanned by the basis functions {φ1(x), ..., φk(x), φk+1(x), ..., φk+kd(x)}
and any solution in uh ∈ Vg,h can be represented as

uh(x) =

k∑
i=1

Uiφi(x) +

k+kd∑
i=k+1

gh,iφi(x) (2.8)

Because the coefficient gh,i is determined by just interpolating gD at the
node of φi for i = k+1, k+2, ..., k+kd, we only need to determine the coefficient
uj for j = 1, 2, ..., k. We say that the problem has k degrees of freedom. By
reformulating (2.7) with the spatially discretized function spaces, we obtain
the discrete variational formulation: find uh ∈ Vg,h such that∫

Ω

∇uh · ∇vh dx−
∫
∂ΩN

gNvh dS =

∫
Ω

fvh dx, ∀vh ∈ V0,h (2.9)

Or more explicitly equation (2.9) is equivalent to

k+kd∑
j=1

Uj
∫

Ω

∇φj · ∇φi dx =

∫
Ω

fφi dx+

∫
∂ΩN

gNφi dS, ∀i = 1, 2, ..., k (2.10)

The Dirichlet boundary condition is enforced with the kd additional equations

Uj = gh,j , ∀j = k + 1, k + 2, ..., k + kd (2.11)

From (2.10) and (2.11) we obtain the linear system

AU = b

where U = (U1,U2, ...,Uk,Uk+1, ...,Uk+kd)T , and b ∈ Rk+kd with

bi =

∫
Ω

fφi dx+

∫
∂ΩN

gNφi dS, ∀i = 1, 2, ..., k

bi = gh,i, ∀i = k + 1, k + 2, ..., k + kd

The matrix A is defined in block matrix form as

A =

(
A00 Ag

0 I

)

17

with A00
ij =

∫
Ω
∇φj · ∇φi dx for i, j = 1, 2, ..., k. Agij =

∫
Ω
∇φj · ∇φi dx for

i = 1, 2, ..., k and j = 1, 2, kd. While I is the kd × kd identity matrix.
If it was not for the Dirichlet boundary condition equations (2.11), the

matrix A would have been symmetric, i.e A00 is symmetric. To maintain
symmetry of the linear system, one could alternatively reduce the system to
only A00 by only considering U = (U1,U2, ...,Uk)T and consequently reducing
the system to

A00U = b−Agg

where b is reduced to only the first k entries and g = (gh,k+1, gh,k+2, ..., gh,k+kd).

2.4 The adjoint equations

In order to obtain the gradient of a reduced functional in PDE-constrained
optimization, the derivative of the PDE solution with respect to the parameters
must be computed. This leads to the derivation of the adjoint equation, which
are presented in this section.

Consider a PDE on the form

F (u,m) = 0 (2.12)

where m ∈M is a parameter of F and u ∈ U is the solution, for some Banach
spaces M and U . We assume F is continuously Fréchet differentiable, and has
a unique solution u(m) ∈ U for each m ∈ M . Furthermore we assume that
the linearisation ∂F (u(m),m)/∂u of the PDE operator is invertible. Then by
the implicit function theorem u : M → U , m 7→ u(m) is continuously Fréchet
differentiable [19, Sect 1.4.2].

Additionally, we are interested in the derivative of a functional

J(u(m),m) ∈ R

with respect to m, when (2.12) is satisfied. Again assuming that J is continu-
ously Fréchet differentiable. Using the chain rule, observe that

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
(2.13)

As J is usually explicitly defined through an analytical formula, deriving ∂J/∂u
and ∂J/∂m is typically not a problem. But how to compute du/dm is not
immediately obvious.

However, u is implicitly defined throughm by the relationship F (u(m),m) =
0. We thus use implicit differentiation with respect to m to obtain

∂F (u(m),m)

∂u

du

dm
+
∂F (u(m),m)

∂m
= 0

=⇒ ∂F (u(m),m)

∂u

du

dm
= −∂F (u(m),m)

∂m
(2.14)

This yields a linear equation for du/dm, and is called the tangent linear equa-
tion. Because F (u,m) is always going to be explicitly given, we should always
be able to obtain the terms ∂F (u(m),m)/∂u and ∂F (u(m),m)/∂m.

18

µ

∂J
∂u

∂F
∂u

−1 ∂F
∂m

∂J
∂m

λ∗

Figure 2.2: The finite dimensional composition of (2.15). With the tangent
linear equation, finding µ involves solving n linear systems. The adjoint equa-
tion only requires solving one linear system as long as the codomain of J is
one-dimensional.

∂F (u(m),m)/∂u is assumed invertible, thus we write

du

dm
= −∂F (u(m),m)

∂u

−1
∂F (u(m),m)

∂m

Inserting this into (2.13) leads to

dJ

dm
= −∂J

∂u

∂F (u(m),m)

∂u

−1
∂F (u(m),m)

∂m
+
∂J

∂m
(2.15)

Now we consider the hermitian adjoint of this linear operator

dJ

dm

∗
= −∂F (u(m),m)

∂m

∗
∂F (u(m),m)

∂u

−∗
∂J

∂u

∗
+
∂J

∂m

∗

And define

λ =
∂F (u(m),m)

∂u

−∗
∂J

∂u

∗

=⇒ ∂F (u(m),m)

∂u

∗
λ =

∂J

∂u

∗
(2.16)

Equation (2.16) is called the adjoint equation. The solution λ is called the
adjoint solution. For notational convenience we will from now on denote the
solution of the tangent linear equation as µ = du/dm.

For a more thorough discussion on adjoints, see [19, Sect 1.6].

2.4.1 Comparing the tangent linear and adjoint equation

To compare the two methods we will be considering a finite dimensional case.
Let U = Rk and M = Rn for some k, n ∈ N. Then we have u : Rn → Rk,
m 7→ u(m). In figure 2.2 below we illustrate how the right hand side of (2.15)
is composed.

Observe that to find µ ∈ Rk×n requires solving n linear systems. While
λ ∈ Rk×1 only requires solving one linear system, where 1 is caused by the
assumption that J(u(m),m) ∈ R. If instead J(u(m),m) ∈ Rl, then λ would
be a k× l matrix, requiring solving l linear systems. This is comparable to the
tangent linear mode and adjoint mode AD described in section 2.2.

19

2.4.2 Applying AD to PDE

We now try to fit the above equations into an AD perspective. Consider a
computer program that involves solving a PDE F (u,m) with the same assump-
tions as above. Further, assume that both m and u(m) can be represented as
finite dimensional real vectors. More specifically, assume that m ∈ Rn and
u(m) ∈ Rk. Given that this PDE has to be solved numerically, this is a rea-
sonable assumption. We can now consider a general function f : Rq → Rp,
decomposed as

f(x) = g ◦ u ◦m(x)

where we letm : Rq → Rn and g : Rk → Rp be some functions for which we can
apply normal AD. As before, using the chain rule, the derivative is expressed
as

df(x)

dx
=
∂g(w3)

∂w3

∂u(w2)

∂w2

∂m(x)

∂x

with intermediate solutions w3 = u ◦ m(x), w2 = m(x). As described in
section 2.2, applying tangent linear mode AD to f would involve choosing a
seed direction δx ∈ Rq and computing

Jf,x(δx) = Jg,w3
◦ Ju,w2

◦ Jm,x(δx)

As both Jm,x and Jg,w3 can be implemented directly through AD techniques
described before, we take a closer look only at Ju,w2

.
By definition, Ju,w2

should be a linear transformation defined by the Jaco-
bian matrix of u. That is just du/dm, i.e. the solution of the tangent linear
equation. However, notice that we do not actually need the whole du/dm
matrix for each tangent linear AD run. Instead

∂u(w2)

∂w2
= −∂F (u(w2), w2)

∂u

−1
∂F (u(w2), w2)

∂w2

=⇒ Jf,x(δx) = Jg,w3
◦ ∂F (u(w2), w2)

∂u

−1(
−∂F (u(w2), w2)

∂w2
Jm,x(δx)

)
Hence, with m denoting m(x) for ease of notation, the AD tangent linear
equation can be written as

∂F (u(m),m)

∂u
µδm = −∂F (u(m),m)

∂m
δm (2.17)

where

δm = Jm,x(δx)

µδm =
du

dm
δm = Ju,w2

◦ Jm,x(δx)

Here δm ∈ Rn, thus the right hand side of (2.17) is a vector in Rk. This means
that we now only solve one linear system for one tangent linear mode AD run.
However, we still only compute the directional derivative of du/dm, hence we

20

need to run the tangent linear mode AD n times (and by that solve n linear
systems) to assemble the whole Jacobian Jf,x = df/dx.

Similarly, for the adjoint mode AD we choose a seed δy ∈ Rp and compute

J∗f,x(δy) = J∗m,x ◦ J∗u,w2
◦ J∗g,w3

(δy)

Again we only need to treat J∗u,w2
in a special manner. As already established,

Ju,w2
= du/dm, thus J∗u,w2

= (du/dm)∗.

du

dm

∗
= −∂F (u(w2), w2)

∂w2

∗
∂F (u(w2), w2)

∂u

−∗

=⇒ J∗f,x(δy) = J∗m,x ◦
(
−∂F (u(w2), w2)

∂w2

∗)
∂F (u(w2), w2)

∂u

−∗
J∗g,w3

(δy)

Hence we end up with the AD adjoint equation

∂F (u(m),m)

∂u

∗
λδu = δu∗ (2.18)

where

δu∗ = J∗g,w3
(δy)

To obtain λδu we only need to solve one linear system as δu∗ ∈ Rk. However,
to actually compute the action of Ju,w2

on δu∗ we additionally need to do a
matrix-vector multiplication. Hence we end up with

J∗u,w2
(δu) = −∂F (u(w2), w2)

∂w2

∗
λδu (2.19)

Finally, note that any explicitly given function y = f(x), with f : Rn → Rm,
can be represented on the form F (y, x) = y − f(x) = 0. Then the terms are
∂yF = ∂yF

∗ = I, ∂xF = Jf,x and ∂xF
∗ = J∗f,x. Hence, the theory derived

here is entirely analogous with tangent linear/forwards and adjoint/reverse
mode AD.

2.4.3 Applying Dirichlet boundary conditions

Often the PDE F (u,m) is prescribed some Dirichlet boundary conditions g.
We will now discuss how to apply these in the resulting linear systems for the
tangent linear and adjoint equations. Assume that F (u,m) has been discretized
and assembled into a possibly non-linear system

A(u,m)u = b(u,m)

where u is the coefficients ui of the discrete solution of the PDE, A(u,m)
is the system matrix and b(u,m) the source term vector. Also assume that
Dirichlet boundary conditions have been prescribed to this system through
the equations ui = gi for suitable i as described in 2.3. Defining F (u,m) =
A(u,m)u− b(u,m), the resulting tangent linear equation (2.14) is

(A(u,m) + C(m,u)−B(m,u))µ = − ∂F
∂m

(2.20)

21

where C = ∂A
∂u u and B = ∂b

∂u . Given that g does not depend on m, we have
that the boundary equations reduce to µi = 0. Let G = A + C − B be the
tangent linear equation matrix, and D = ∂F/∂m the matrix on the right hand
side of (2.20). The matrix can be considered on block form

G =

(
G00 G0g

0 I

)
resulting in equation 2.20 being on the form(

G00 G0g

0 I

)(
µ0

µg

)
= −

(
D0 D01

0 0

)
Moving on to the adjoint equation (2.16), the system matrix is

G∗ =

(
(G00)∗ 0
(G0g)∗ I

)
and the adjoint equation takes the form(

(G00)∗ 0
(G0g)∗ I

)(
λ0

λg

)
=

(
(δu0)∗

(δug)∗

)
(2.21)

The values of λg do not matter for the interior adjoint solution λ0. Thus, by
modifying the system as if it was prescribed homogeneous boundary conditions
yield (

(G00)∗ 0
0 I

)(
λ0

λg

)
=

(
(δu0)∗

0

)
Often λ0 is enough because, as seen above, ∂F∂m

∗
= D∗ =

(
(D0)∗ 0

)
and so

∂F

∂m

∗
λ =

(
(D0)∗ 0

)(λ0

λg

)
= (D0)∗λ0

If m = g, i.e m is the prescribed Dirichlet boundary condition, then the bound-
ary equations reduce to µi = 1 and so the lower block matrix of D is not all
zero, requiring λg. When λ0 has been obtained, one can find λg by computing

λg = (δug)∗ − (G0g)∗λ0

22

Chapter 3

A generic AD framework

In this chapter we implement a generic AD framework that works by overload-
ing. These implementations form the python package pyadjoint. This software
is open source and available at https://bitbucket.org/dolfin-adjoint/
pyadjoint, and still in active development.

Because pyadjoint is a generic framework, we differentiate between two in-
terfaces: implementation interface and user interface. Implementation is the
step of applying the framework to another python package. This requires a de-
veloper with knowledge of both the workings of pyadjoint and the software for
which pyadjoint should be applied. In section 3.1 we go through the implemen-
tation details of the framework. Once pyadjoint has been applied to a software
package, the end user has access to the pyadjoint user interface together with
the target software package. This is the user interface, and is described in
section 3.2. Then, in section 3.3 limitations of the current pyadjoint implemen-
tation is discussed. Lastly, section 3.4 summarises the work presented in this
chapter.

3.1 Implementation

The choice programming language falls naturally on Python. It is the main (or
most used) programming interface for the FEM framework FEniCS [29], which
is our primary target for AD application.

Our AD implementation builds on-top of the software package it is applied
to. This means that it enhances a package by augmenting functions and types
with extra functionality such as AD. We call the augmented function/type an
overloaded function/type. Because the framework is generic, it provides very
little value without some work. Specifically, it is intended to be applied to
Python modules that can provide some higher level of abstraction for the most
intensive computations. By itself, pyadjoint only overloads the type float. A
more detailed discussion on the limitations of pyadjoint is presented in section
3.3.

3.1.1 The core annotation classes

Here we present the core classes for keeping track of the forward computa-
tions. If we consider the computational graph illustration in figure 2.1 then it

23

https://bitbucket.org/dolfin-adjoint/pyadjoint
https://bitbucket.org/dolfin-adjoint/pyadjoint

becomes apparent that we need to represent three key concepts in our code:
inputs/outputs, functions, and the tape. We start off by going through the
implementation of these core concepts.

First of all we need an object that can store the tape. For this purpose,
we define the class Tape. It holds onto a simple python list, and also provides
methods for performing operations on the list. One example of such a method
is evaluate_adj, which initiates the reverse mode AD.

The functions/operations are represented on the tape as Block objects.
These objects are instances of Block subclasses. Since the abstract1 class
Block only provides the interface needed for other components of pyadjoint
to work, the subclasses contain the actual implementation details needed to
differentiate the function.

1 class Block(object):
2 """ Base class for all Tape Block types.
3
4 Each instance of a Block type represents an elementary

operation in the
5 forward model.
6
7 Abstract methods
8 evaluate_adj
9 recompute

10
11 """
12 def evaluate_adj(self):
13 """ This method must be overridden.
14
15 The method should implement a routine for evaluating the

adjoint model of the
block.

16
17 """
18 raise NotImplementedError
19
20 def recompute(self):
21 """ This method must be overridden.
22
23 The method should implement a routine for recomputing the

block in the forward
computations.

24
25 """
26 raise NotImplementedError

Hence, each function needs its own block subclass, and that class must imple-
ment methods like evaluate_adj and recompute seen in the abstract Block
class above. Before we delve into how such a subclass can be implemented, we
first introduce the remaining core types in pyadjoint.

We now consider something to represent the input and output of the blocks.
To perform adjoint mode AD, we are dependent on being able to determine
the inputs and outputs of every relevant function call. At first glance this may
seem trivial. If a function takes in a float and produces some output, say
3 * x, then the output is a new float and we can store references to these

1The Block class is not precisely abstract. Indeed you can skip implementing certain
methods, and pyadjoint will only crash when you use a functionality that depends on that
method.

24

objects as the values of the block’s input and output. However, this only works
when the objects being handled are immutable2, and so they only have one
version. Imagine a case where x is a mutable object, and it is used as input in
a function f that mutates x instead of producing a new object. We say that
the version changes when the values of a mutable object change. This could
for example happen if we use a Python list as input x = [1.0, 2.0], then
x [0] += 2.0 changes the object x. Here storing the memory address of x
does not distinguish between x prior to the computation of f and the version
of x afterwards.

The logical answer is to create a copy before the input is handled by
the function, and so we define the class BlockVariable. Each instance of
a BlockVariable contains at most one copy of the corresponding object, and
acts as a unique identifier for a specific version of an object. Conveniently, this
introduction gives us a natural place to store temporary AD values in addition
to the intermediate solutions from the forward computations. In figure 3.1 the
connection between blocks and block variables is illustrated.

Figure 3.1: An illustration of how the types are connected on the tape. Block
variables flow into the block as input, and are also produced by blocks as
output. The arrows point in the direction data is flowing in the forward com-
putations. The block variables do not know which blocks they relate to.

Each block keeps track of their inputs, called dependencies, and outputs.
This is implemented as two lists of block variables stored in the block objects.
Now we need some way of connecting a version of an object with its corre-
sponding block variable object. After all, we are not going to feed the forward
computations with block variables, but only with the original objects them-
selves. Thus we make all valid AD data types carry a reference to their current
block variable, changing it whenever they become a new version.

To attach this reference, we introduce the OverloadedType class. Simi-
larly to the Block this is also an abstract class, for which we subclass any
valid AD data type. Using the multiple inheritance in Python, a subclass
of OverloadedType should also be defined as a subclass of the original data
type. That is, if overloading a class named Vector, we typically define a new
overloaded class as

1 backend_Vector = Vector
2 class Vector(OverloadedType , backend_Vector):
3 def __init__(self , *args , ** kwargs):
4 # Call the OverloadedType constructor
5 OverloadedType.__init__(self , *args , ** kwargs)
6 # Call the original type constructor
7 backend_Vector.__init__(self , *args , ** kwargs)
8 ...

2Immutable means you can’t change its value after instantiation.

25

Class Description
Tape Stores the Block instances and represents the com-

putational graph.
Block Stores BlockVariable instances as inputs/outputs.

And provides methods for recomputing and differ-
entiating.

BlockVariable Represents a version of an object, uniquely identi-
fies an intermediate solution or input/ouput variable,
and stores a copy of it.

OverloadedType Represents an AD data type. Stores a reference to
the current BlockVariable that identifies it. Imple-
ments functions that are required for certain AD op-
erations.

Table 3.1: An overview of the core classes presented here.

Notice that we store a reference to the original type through backend_Vector.
This enables us to call methods of the original type, such as the constructor.

The OverloadedType constructor initializes a BlockVariable object and
stores a reference to it. A subclass of OverloadedType is only meant to enhance
the original class with features that are useful for the AD library, and thus
should still provide all features of the original class. A method for creating a
copy of the object (input/ouput) is an example of one abstract method that
the OverloadedType class defines. Basically all type specific methods that
are needed for parts of the AD framework are defined as abstract methods
in OverloadedType. In general, very few methods need to be overloaded for
a specific type to work with AD. Most of the extra abstract methods can be
categorized as API specific and only needed if you wish to use extra included
pyadjoint functions beyond simple AD. Examples of such functions will be
shown later.

3.1.2 Annotating the forward computations

Now that the core types have been introduced, we consider how the Blocks
should be populated with information and how they are put on the tape. This
is achieved by creating new functions with the same name and added pyadjoint
specific code. For instance, consider the case where we wish to provide anno-
tation for the function target_function, then the overloaded version would
look like this:

1 backend_target_function = target_function
2 def target_function(*args , ** kwargs):
3 annotate = annotate_tape(kwargs)
4 if annotate:
5 tape = get_working_tape ()
6 block = TargetFunctionBlock(*args , ** kwargs)
7 tape.add_block(block)
8
9 with stop_annotating ():

10 output = backend_target_function(*args , ** kwargs)

26

11 output = create_overloaded_object(output)
12
13 if annotate:
14 block.add_output(output.create_block_variable ())
15
16 return output

On the first line we store a reference to the original (backend) function. Then
we define a new function with the same name which will overwrite the origi-
nal function in the current namespace. Inside the overloaded version we first
check if the tape should be annotated. If the dictionary kwargs has the key
"annotate" set to False, or if annotation is somehow globally disabled at the
moment, the overloaded function should behave almost exactly as the orig-
inal. If however, annotate_tape(kwargs) return True, then we initialise a
corresponding Block instance and add it to the tape in lines 5-7. We then
use a context manager to temporarily disable annotation while we execute the
original function. Assuming target_function returns a single output vari-
able, we must transform this into a corresponding OverloadedType instance
to ensure that the data types exposed to the user have AD support, even if
we were not currently annotating the call itself. This is done through the call
to create_overloaded_object on line 11. Apart from this initialisation, the
annotation-disabled function behaves exactly the same as the original. If an-
notation is enabled, we also have to assign a new version (BlockVariable) to
the output object, and store this in the block instance as an output.

This simple example covers almost every function which returns one vari-
able. If the function returned multiple variables, the create_overloaded_object
calls and block.add_output would have to be called on every single output.

3.1.3 Example block implementation

As an example consider a function euclidean_norm that takes in an n-dimensional
vector and computes the Euclidean norm:

1 def euclidean_norm(x):
2 s = 0.0
3 for x_i in x:
4 s += x_i ** 2
5 return sqrt(s)

In traditional low level operator-overloading AD one typically overloads the
__add__, __pow__, and sqrt methods. This is also possible with pyadjoint.
However in cases where we know how to symbolically compute the derivative
of an operation, the recommended way to implement an overloaded version
is to use this expression directly. This ensures that the tape does not grow
unnecessarily large, which could cause performance problems as we will discuss
in section 3.3.

Because this function returns only a single input, the above overloaded func-
tion code works perfectly with target_function replaced by euclidean_norm,
and TargetFunctionBlock replaced by EuclideanNormBlock. Now it remains
to implement the TargetFunctionBlock class. The main task of the block
constructor is to store dependencies and save the necessary information needed
for its adjoint model implementation. As seen above, the overloaded function
handles the saving of the block output to the block instance.

27

1 class EuclideanNormBlock(Block):
2 def __init__(self , x):
3 Block.__init__(self)
4 # Store the block variable as a dependency
5 self.add_dependency(x.block_variable)

The attribute block_variable of the OverloadedType instance x stores the
current block variable. If x was not an overloaded type, but instead a list-like
structure of overloaded floats, then one would need to iterate over each entry
of x and call self.add_dependency on each entry’s block variable. For this
example however, we assume that x is an OverloadedType.

In the case of euclidean_norm (denoted f in the following) the gradient
consists of the expressions

∂f(x)

∂xi
=

xi

(
∑n
j=1 x

2
j)

1
2

(3.1)

for each i = 1, 2, ..., n. These partial derivatives are continuous for x 6= 0.
Hence, the adjoint model of f as defined in 2.6 is

J∗f,x(δy) =
xδy

|x|

where x ∈ Rn\{0} and δy ∈ R.
This leads to the following implementation of the evaluate_adj method

1 def evaluate_adj(self):
2 # Adjoint input
3 delta_y = self.get_outputs ()[0].adj_value
4 # Forward output
5 y = self.get_outputs ()[0].saved_output
6 # Forward input
7 x = self.get_dependencies ()[0].saved_output
8
9 output = x/y * delta_y

10
11 # Write the adjoint output
12 self.get_dependencies ()[0].add_adj_output(output)

The saved_output property of the block variables give access to the copy of
the variable at the time of input/output. Note that the input x and the adjoint
input δy are the only necessary inputs to the adjoint model. However, due to
the structure of the block variables being both inputs and outputs of different
blocks, the forward output is readily available and should be used for efficiency
when needed.

3.2 User interface

We now present the key functions of the user interface. If pyadjoint has been
correctly and fully applied to any python package, then the user should have
access to all of the features below using the data types of the package for which
we applied pyadjoint.

28

3.2.1 Computing gradients

The user interface includes several key functions and classes. To be able to
compute any derivatives at all, one must initialise Control instances with vari-
ables. If x is an overloaded type and the derivative of a function with respect
to x is the desired output, then one must define control = Control(a). The
need for a control class originates from the problem of multiple versions. If x
is mutable and several versions of it is used in the forward computations, then
saying that one wants the derivative with respect to x is ambiguous. Because
pyadjoint itself has a unique way to identify versions through block variables,
the control class is a very simple wrapper that only needs to store the relevant
block variable.

Once one or several control instances have been initialised, computing a
gradient can be done by a call to compute_gradient(y, [x_1, x_2]), where
x_1 and x_2 must be control instances and y is the output for which we wish to
compute the gradient. Another way of computing derivatives are through the
ReducedFunctional class. This class takes in an overloaded float type, to-
gether with a list of one or more control instances. After a ReducedFunctional
instance has been initialised, it provides methods such as computing gradients
and recomputing the functional with new input values. In addition, a method
provides a way to reduce the tape to only contain the necessary blocks for
recomputing and differentiating the reduced functional. Lastly, the reduced
functional interface is the main interface for using the optimization framework
that is packaged with pyadjoint (see section 3.2.3).

3.2.2 Verification

An important part of developing software is testing. To test AD implementa-
tions one could implement analytical derivatives and test against them. How-
ever, this limits the range of problems to those where you have an analytical
derivative and can be cumbersome. In particular, it can be very useful to ver-
ify that the model is correct before initiating a gradient-based optimization
algorithm.

In pyadjoint the main tool for verifying that an implementation is correct
is the taylor_test function. This is a test that verifies the convergence of the
first order Taylor expansions remainder. Let f : Rn → R be a continuously
differentiable function. Given some initial point x ∈ Rn and some perturbation
direction δx ∈ Rn then

|f(x+ εδx)− f(x)| = O(|ε|), as ε→ 0

and

|f(x+ εδx)− f(x)− ε∇f · δx| = O(|ε|2), as ε→ 0

This allows for rigorous and efficient verification of the computed gradients.

3.2.3 Optimization

Because gradient-based optimization is a common application for AD generated
derivatives, pyadjoint provides an optimisation framework that can be used

29

directly with the ReducedFunctional. The framework is essentially the exact
same as was found in previous iterations of dolfin-adjoint [10] [12]. In essence
it provides a wrapper for scipy [25] optimization functions. The author did
minimal changes to the implementation of the optimization framework found in
dolfin-adjoint. Most of the changes done stem from the need to move DOLFIN-
specific [30] code outside of pyadjoint. This resulted in quite a few type specific
abstract methods in the OverloadedType class. Which are then necessary
to implement for the type to be compatible with the packaged optimization
framework.

3.3 Limitations

As mentioned earlier, pyadjoint does not provide much value out of the box.
The only included overloaded type is the overloaded float. Importing modules
that enable more mathematical functions such as numpy [39] and the standard
python library math, and using these imported functions on the overloaded
float is often not going to work. In general, functions that use C implementa-
tions go outside the scope of what can be annotated automatically by pyadjoint.
The Python interface for these C implementations must be overloaded and an
adjoint model implemented for the whole underlying C computations.

Furthermore, although Python is an easy to use and highly flexible lan-
guage, it can be painfully slow at performing mathematical operations. This
is why most scientific computing python packages use some form of C/C++
implementation for the computationally expensive algorithms. Examples in-
clude numpy [39] and TensorFlow [1], as well as the emergence of tools such as
Cython [6] that enables the compilation of (modified) Python code to C, which
can be imported in a Python environment. Because of this, pyadjoint is not
suitable for performing AD on large computational graphs. Instead, pyadjoint
is most useful when the problems take a higher level of abstraction so that
most of the computations are covered by a few number of blocks on the tape.

In relation to this, pyadjoint has to work with higher level data types such
as vectors to be effective. Vector data types are most often mutable, and so
pyadjoint requires a copy of them to work. Additionally, pyadjoint is by default
quite aggressive in its copying. Every block variable has a unique copy of its
OverloadedType instance. For large scale problems this can lead to issues with
too high memory demands. This can be mitigated by using a checkpointing
scheme in which only some copies are stored and others are recomputed once
needed, starting from the last copy [15]. These algorithms aim to find the
optimal balance between computational and memory expenses.

3.4 Summary

In this chapter we have presented a generic AD framework which can be applied
to python software packages. The framework comes packed with tools that are
often useful when working with derivatives, such as the optimization framework
and verification methods. There are still room for improvement considering the
current limitations of the framework.

30

Chapter 4

Applying pyadjoint to FEniCS

The aim of this chapter is to discuss how we apply pyadjoint to FEniCS [29].
The resulting implementation is named dolfin-adjoint. dolfin-adjoint is open
source and available on bitbucket https://bitbucket.org/dolfin-adjoint/
pyadjoint/src, or from the website www.dolfin-adjoint.org.

4.1 Brief introduction to FEniCS

FEniCS is a collection of software that enables automatic solving of partial dif-
ferential equations using the finite element method [29]. DOLFIN [30] provides
the main programming interface of FEniCS. The user defines the model prob-
lem as discrete variational forms through the domain-specific language UFL [3].
Both variational forms and functionals can be programmed in a notation sim-
ilar to mathematical notation. These UFL forms are then compiled by a form
compiler such as FFC [27], generating optimised low-level code for evaluating
the variational forms on local elements. This code is then used by DOLFIN to
assemble and solve the global system, making use of third-party libraries for
the linear algebra functionality.

To better understand how we use UFL it can be useful to introduce some of
the mathematical concepts behind UFL forms. Given a set {Vi}ρi=1 of function
spaces, we call the map

a : V1 × V2 × · · · × Vρ → R
(v1, v2,, vρ) 7→ a(v1, v2, ..., vρ)

a multilinear form, given that a is linear in each vi for all i = 1, 2, ..., ρ. We
call the {vi}ρi=1 the arguments of a. The amount of arguments, ρ, is called
the arity of a. For ρ equal to 0, 1, or 2 we call a a functional, linear form, or
bilinear form respectively.

Additionally, we view a as parameterized by a set of coefficients {wi}ki=1.
Let {Wi}ki=1 be the coefficient function spaces, i.e. wi ∈ Wi for every i =
1, 2, ..., k. Then we may view a as a mapping from the product of the coefficient
function spaces and argument function spaces

a : W1 ×W2 × · · · ×Wk × V1 × V2 × · · · × Vρ → R
(w1, w2, ..., wk, v1, v2, ..., vρ) 7→ a(w1, w2, ..., wk; v1, v2, ..., vρ)

31

https://bitbucket.org/dolfin-adjoint/pyadjoint/src
https://bitbucket.org/dolfin-adjoint/pyadjoint/src
www.dolfin-adjoint.org

In contrast to the arguments, the coefficients can be nonlinear in a. In gen-
eral, a UFL form is defined by integrand*dx, where dx is the integration
measure, signifying that the integrand is to be integrated. This UFL form
then represents the multilinear form that has been parameterized by the coef-
ficients appearing in the integrand. In other words, a = integrand*dx can
be thought of as some multilinear form a(w1, w2, ..., wk; ·).

4.2 Annotation

As pyadjoint lets one freely decide at which level of abstraction to implement
the AD types, we must first identify which operations and which data types
should be overloaded and annotated. We consider that any model problem
defined in FEniCS involves two main ingredients: partial differential equations
and functionals. It is therefore reasonable to first implement pyadjoint annota-
tion for the functions directly related to these operations. solve is a DOLFIN
function that solves a variational problem or a linear system. While assemble
can be used to evaluate a functional. Both of these functions accept UFL forms,
and as we will see, the UFL forms and the algorithms provided for them, will
be the key to an efficient implementation. Thus, we overload these functions
and aim to store the UFL forms in their respective blocks. As usual we use the
same overloading signature for these functions as described in section 3.1.2.

4.2.1 DOLFIN overloaded types

UFL forms consist of what is called coefficients. In DOLFIN the coefficients are
implemented as the types Function, Constant, and Expression. A Function
is defined on a finite element space, with its underlying data type being a
k-length vector, where k is the number of basis functions spanning the finite
element vector space, uniquely representing the function in the finite element
space. The Constant is considered a constant-valued function. It can be scalar,
vecor-valued or a tensor-valued function. Thus, the underlying vector is just in
the codomain of the constant-valued function. In contrast, an Expression can
not be represented as a vector before it has been evaluated. In our implemen-
tation we regard expressions as generic functions that can take on whatever
suitable function space when needed. This is done by interpolation of the
expression into the target function space.

We create overloaded types for Function, and Constant. Because Expression
and DirichletBC, which is used for applying boundary conditions to systems
and vectors, do not have an underlying data type, neither can be used as a
control variable directly. However, they can be parameterized by functions or
constants which in turn can be used as controls. Thus, Expressions and Dirich-
let boundary conditions should still be annotated, and are therefore overloaded.

4.2.2 DOLFIN overloaded functions

Apart from the already presented solve and assemble, there are a few other
important functions that need overloading. For example one can project an
expression onto a finite element function space using the function project
. This is essentially just solving a linear variational problem. Thus, we can
regard this as a special solve call, and use the same block for project. The

32

interpolate function is also overloaded, but is not annotated. The purpose of
overloading the interpolation function is to ensure that the returned function
is an overloaded type instance. Hence, the most essential blocks to implement
are the blocks for solve and assemble. There are other blocks, but they will
not be mentioned in this thesis.

4.3 Deriving the discrete tangent linear and adjoint
equations

In order to implement the block representing a solve, we first must be able
to derive the equations described in section 2.4.2. UFL provides powerful
form operators that allows the user to produce new forms from existing forms.
This is implemented through efficient algorithms exploiting the symbolic rep-
resentation of the UFL forms. For deriving the discrete tangent linear and
adjoint equations, the most important form operators are action, adjoint,
derivative, and replace. Their usage is summarised in Table 4.1. The per-
haps most powerful of these is the derivative function. It differentiates a
form with respect to any coefficient. This can either be in a certain direction,
introducing a new coefficient, or it can be done in an arbitrary direction, in-
troducing a new argument and resulting in a new form with one greater arity.
Hence, if we have the linear form F (u,m; v) representing our PDE, we can
obtain the terms in the tangent linear equation (2.17). The left hand side of
in the tangent linear equation (2.17) is the derivative in the direction µδm. In
other words, this direction is the unknown. Thus, it makes sense to differen-
tiate F with respect to u in an arbitrary direction µδm. For ∂F/∂m on the
other hand, the direction is given as δm. Thus we end up with the problem of
finding µδm such that

∂uF (u,m;µδm, v) = ∂mF (u,m, δm; v), ∀v ∈ V ′h

which is just the discrete variational formulation of a linear PDE.
One can obtain the left hand side of the adjoint equation (2.18) in almost

the exact same way. The arbitrary direction is now instead thought of as the
test function v, as we will later apply the adjoint form operator. Thus the argu-
ments can be thought of as in reverse order, F (u,m;λδu) 7→ ∂uF (u,m; v, λδu).
When applying the adjoint form operator the result is ∂uF ∗(u,m;λδu, v) =
∂uF (u,m; v, λδu), the arguments just swaps places in the form. The right hand
side of (2.18) is δu∗, which is the adjoint input. Finally, we apply boundary
conditions as described in section 2.4.3, assuming that m does not parameter-
ize the Dirichlet boundary condition. The tangent linear equation and adjoint
equations can be derived and solved in DOLFIN as follows.

1 # Homogenize bcs
2 bcs = [bc.homogenize () for bc in bcs]
3
4 # Tangent linear equation
5 mu = TrialFunction(u.function_space ())
6 dF_u = derivative(F, u, mu)
7 dF_m = derivative(F, m, delta_m)
8 solve(dF_u == dF_m , mu_sol , bcs)
9

10 # Adjoint equation

33

Mathematical notation UFL notation Description

a 7→ a∗ a_star = adjoint(a) Derive adjoint form of bilinear form a
F (f ; ·) 7→ F (g; ·) G = replace(F, {f:g}) Replace coefficient f with g in F
F (; ·) 7→ F (f ; ·) M = action(F, f) Replace argument function 1 in F by f
F (f ; ·) 7→ ∂fF (f ; ·)[v] dF = derivative(F, f, v) Differentiate F w.r.t f in direction v

Table 4.1: The primarily used UFL form operators in dolfin-adjoint. For a
multilinear form F of arbitrary arity. Extracted from Table XII on page 16 in
[3]

11 v = TrialFunction(u.function_space ())
12 dF_u = derivative(F, u, v)
13 dF_u_adj = adjoint(dF_u)
14 solve(dF_u_adj == adj_input , lmbd , bcs)

4.4 Dirichlet boundary condition control

Given a PDE defined through the linear UFL form F (u,m; v) the derivative
and adjoint functions can be used to derive the left hand side of the adjoint
equation. However, prior to assembly the Dirichlet boundary conditions can-
not be applied. This means that we have two options to obtain the system in
equation (2.21). The first option is to perform adjoint, assemble and then zero
out the relevant columns leaving 1 on the diagonal element of those columns.
While the second option is to assemble, then apply boundary conditions and
lastly transpose the matrix. Both of these methods go outside of the DOLFIN
interface, and we wish to avoid them. Thus, we apply the homogeneous Dirich-
let boundary conditions on the adjoint assembled system, restricting the solve
to only finding the interior adjoint solution such as in section 2.4.3.

Using the notation from 2.4.3, the adjoint system assembled from the UFL
forms is

G∗λ = δu∗(
(G00)∗ (Gg0)∗

(G0g)∗ (Ggg)∗

)(
λ0

λg

)
=

(
(δu0)∗

(δug)∗

)
where λg is the adjoint solution at the boundary where Dirichlet boundary
conditions apply. Applying homogeneous Dirichlet boundary conditions yields
the same system as (3.1) because λg = 0 which in turn makes (Gg0)∗λg = 0.

To enable strong boundary condition controls, the adjoint solution at the
boundary λg is necessary. Following the description in section 2.4.3, λg is found
by

λbdy =

(
c
λg

)
=

(
(δu0)∗

(δug)∗

)
−
(

(G00)∗ (Gg0)∗

(G0g)∗ (Ggg)∗

)(
λ0

0

)
where c represents what is computed for the interior, but is otherwise ignored.
Even though we are only interested in computing the lower half of λbdy, there

34

is no practical way of extracting only the relevant block matrices in DOLFIN.
Regardless, the actual implementation is rather compact as illustrated below.

1 # Compute on boundary ,
2 # adj_input must be copied to avoid bc.apply.
3 adj_bdy = adj_input_copy - assemble(action(dF_u_adj , lmbd))

The second ingredient for implementing Dirichlet boundary condition con-
trol is the computation of ∂F/∂m when the Dirichlet boundary condition is
parameterized by m. Because the strong boundary condition does not appear
as a coefficient in F , it is not possible to use derivative to automatically de-
rive the correct values. Instead, the implementation is based on the realization
that ∂F/∂m is a matrix with entries 1 on the diagonal entries of rows cor-
responding to the Dirichlet boundary condition and with entries 0 elsewhere.
This can be seen by noticing that the Dirichlet boundary function m = g only
modifies the right hand side of the system

A(u)u = b(u,m)

and that

F (u,m) = A(u)u− b(u,m) =⇒ ∂F

∂m
= − ∂b

∂m
= −

(
0 0
0 I

)
Finally, using (2.19) one can compute the adjoint model with respect to the
Dirichlet boundary condition as

Ju,m(δu) = − ∂F
∂m

∗
λδu =

(
0 0
0 I

)(
λ0
δu

λgδu

)
=

(
0
λgδu

)

4.5 Parallel support

dolfin-adjoint inherits its parallel support from FEniCS. When running a FEn-
iCS model in parallel, the underlying vectors and system matrices are auto-
matically distributed among the parallel processes. Because dolfin-adjoint uses
the high level abstraction present in the UFL forms to derive the adjoint equa-
tions, the resulting adjoint equations are perfectly valid UFL forms that can
be solved using the DOLFIN interface. Thus, the assembly and solving of
the adjoint equations are automatically run in parallel given that the forward
computations are run in parallel.

4.6 Limitations

The most glaring limitation of the dolfin-adjoint implementation is that access
to the underlying vectors of a Function is limited. If a function’s vector is
modified by direct access to the memory location, the current implementation
does not annotate this operation. This can possibly lead to the adjoint compu-
tations being incorrect. A possible solution to this problem is to overload the
access and modification functions such that they are annotated. This would
work by overloading GenericVector.__setitem__, and annotating a modifi-
cation as a vector assignment to another vector. From this one could even
explore annotating the extraction of single vector entries as an operation going

35

from a vector to a scalar, where the scalar would be an overloaded float as
included in pyadjoint. However, annotating direct vector access like this can
easily become problematic. Imagine the case where a user iterates through
a large vector to assign values pointwise. Then the result would be k extra
blocks on the tape, where k is the length of the vector. Because pyadjoint can
be inefficient for very large tapes, the benefit of implementing such a solution
might not outweigh the drawback of the possible additional overhead.

4.7 Summary

In this chapter we presented the application of pyadjoint to FEniCS. This
resulted in the new iteration of dolfin-adjoint, which derives the adjoint equa-
tions through the high level of abstraction present in UFL forms. This results
in equations that are perfectly valid FEniCS code and can utilize the assembly
and solving interface of FEniCS. This leads to the natural support for solv-
ing the adjoint equations in parallel. Furthermore, the adjoint solution on the
boundary is computed by using back substitution after having computed the
adjoint solution on the interior. This was then used to implement support for
strong Dirichlet boundary conditions controls.

36

Chapter 5

Examples

In this chapter we provide examples of using the library developed in the previ-
ous chapter. Specifically, we show the use of strong boundary condition controls
in section 5.1, verifying that the gradient is correct by Taylor remainders tests.
We also provide a benchmark of the problem to test runtime performance.
In section 5.2 we use test dolfin-adjoint with an inverse problem, using the
pyadjoint-included optimization functions in parallel with 2 CPU cores. This
illustrates that the optimization user interface is working in parallel.

5.1 Dirichlet boundary condition control

In this example we consider Stokes equations with Dirichlet boundary condi-
tions, and wish to compute the sensitivity of a functional with respect to the
boundary condition on a sub-boundary. The aim is to illustrate that gradi-
ents with Dirichlet boundary condition control can be computed and that the
computations are correct as verified by the Taylor remainders test. Lastly, we
benchmark the computational time of the gradient computations, and compare
it to the forward computations.

5.1.1 Problem definition

We consider the domain Ω as illustrated in figure 5.1 below. This is a rectangle
with a cut-out circle in the interior. The long edges of the rectangle are defined
as the boundaries ∂Ωwalls, while the left edge and the right edge of the rect-
angle are the inflow boundary ∂Ωin and outflow boundary ∂Ωout respectively.
The boundary on the circle is denoted ∂Ωcircle, and is where we prescribe our
Dirichlet boundary condition control.

Consider the Stokes equations with Dirichlet boundary conditions,

−ν∆u+∇p = 0, in Ω

∇ · u = 0, in Ω

u = 0, on ∂Ωwalls

u = f, on ∂Ωin

u = g, on ∂Ωcircle

p = 0, on ∂Ωout

37

Figure 5.1: The domain Ω on which we will be solving the Stokes equations.

where u : Ω→ R2 is the unknown velocity, p : Ω→ R is the unknown pressure,
ν ∈ R is the viscosity. Where f and g are given Dirichlet boundary functions.
The problem is to compute the sensitivity of the functional

J(u,m) =

∫
Ω

∇u · ∇u dx

with respect to the boundary function g.
The variational formulation of this problem is: find u ∈ H1

bcs(Ω) and p ∈
L2(Ω) such that

a(u, p, v, q) = L(u, p, v, q), ∀v ∈ H1
0 , q ∈ L2(Ω)

where

a(u, p, v, q) = ν

∫
Ω

∇u : ∇v −
∫

Ω

p∇ · v dx−
∫

Ω

q∇ · u dx

L(u, p, v, q) = 0

Lastly, for the code below we will define the reduced functional Ĵ(g) =
J(u(g)), and compute the gradient ∇Ĵ(g).

5.1.2 Implementation

We illustrate the minimalistic change of code needed to apply AD by showing
a simplified code snippet of the implementation. Only three lines are needed
for the adjoint specific code, one import statement and two lines to define the
reduced functional and compute its derivative.

0 from dolfin import *
1 from dolfin_adjoint import *
2
3 bc = DirichletBC(W.sub(0), g)
4
5 a = (nu*inner(grad(u), grad(v))*dx
6 - inner(p, div(v))*dx
7 - inner(q, div(u))*dx
8)
9 L = inner(Constant([0, 0]), v)*dx

10

38

ε Residual Order Gradient Residual Gradient order

1 · 10−2 7.3960 3.2891 · 10−1

5 · 10−3 3.7800 1.0 8.2499 · 10−2 2.0
2.5 · 10−3 1.9106 1.0 2.0667 · 10−2 2.0
1.25 · 10−3 9.6044 · 10−1 1.0 5.1723 · 10−3 2.0

Table 5.1: The Taylor remainders without gradient information and with gra-
dient information. The computed convergence orders are as expected.

11 A, b = assemble_system(a, L, bcs)
12 solve(A, s.vector (), b)
13
14 u, p = split(s)
15 J = assemble(inner(grad(u), grad(u))** 2*dx)
16
17 # dolfin -adjoint specific code
18 Jhat = ReducedFunctional(J, Control(g))
19 dJdm = Jhat.derivative ()

5.1.3 Verification

The implementation is verified using the taylor test as described in 3.2.2.
The perturbation direction is randomly generated with uniform distribution
[−0.5, 0.5). The results are summarised in table 5.1. All the computed values
are as expected, which indicates that the implementation is correct.

5.1.4 Benchmarking

We end the example with a benchmark of the implementation. Because the
PDE is linear, computing the gradient involves solving the same amount of
PDEs as in the forward computations. If a PDE solve is where the main
computational expense originates from, then it makes sense that the compu-
tational time for the gradient computations is also dominated by the adjoint
PDE solves. Because solving the forward PDEs and the adjoint PDEs both in-
volve solving linear systems of the same size, the optimal ratio between forward
computations and gradient computations should be close to 1. In the following
benchmark we ran the forward and adjoint computations 5 times and produced
an average runtime for both that is summarised in table 5.2. The results show
a close to optimal performance in this example. However, it should be noted
that the example essentially only involves three blocks, one for solve, one for
assemble, and one for DirichletBC. Thus, the overhead caused by the inner
workings of the AD framework is minimal.

39

Forward runtime (s) 17.1
Adjoint runtime (s) 18.0
Adjoint/Forward ratio 1.05

Table 5.2: The benchmarks of 5 runs of the forward and adjoint computations.
The ratio is close to the optimal 1.0.

5.2 Brain diffusion inverse problem

We demonstrate the application of our implementations on a real world prob-
lem. The problem at hand is an inverse problem of identifying diffusion co-
efficients for the diffusion of contrast agents in the brain. Section 5.2.1 tries
to give a brief background on the relevancy of this problem. We will not be
handling the full problem, but instead will be going through some of the steps
that are relevant for testing that the problem is correctly implemented and can
be solved. This includes testing parallel functionality, correct convergence of
the optimization from generated observations (with and without noise), and
identification of regularisation parameters.

5.2.1 Background

Understanding of how substances are delivered and cleared from and to the
central nervous system (CNS) is an important research topic. The blood brain
barrier is a big hurdle for delivering therapeutic drugs to the CNS as only
lipophilic drugs are able to diffuse and pass into the brain [43]. For this rea-
son, drugs administered intrathecally have been a topic of interest, with some
showing promising results [11]. However, the mechanisms behind transport of
these substances are not fully understood. The brain lacks lymphatic vessels
in the parenchyma, but is dependent on clearance of waste substances such
as Amyloid β. Indeed, a lack of clearing such substances is correlated with
diseases such as Alzheimer’s and multiple sclerosis [32].

In 2012 a study suggested a new brain-wide pathway for the clearance of
these substances [21]. This hypothesised a clearance process driven by convec-
tive bulk flow of cerebral spinal fluid (CSF) through the interstitial space, which
was termed the glympathic system. However, later modelling studies suggests
that the transport of substances through the interstitial space cannot be ex-
plained by bulk flow alone [20] [24]. Instead, these simulation studies suggest
that diffusion plays a more significant role in the transportation process.

In a current study it has been shown enrichments of CSF tracer in deeper
brain white matter using the magnetic resonance imaging (MRI) contrast agent
gadobutrol. Using data of contrast concentration from these MRI images, it is
of interest to fit a model for diffusion to these observations to estimate apparent
diffusion coefficients. Although we will be employing a diffusion model for CSF
spaces, convection is a primary driver for the spreading of contrast agent in
CSF [17]. Thus, we emphasize that we are not actually computing diffusion
coefficient for CSF, but rather apparent diffusion coefficient.

40

5.2.2 Problem definition

The spatial domain Ω is a 3-dimensional region of a human brain. As seen in
figure 5.2a this subset is a part of the left side of the brain. The mesh we will
be working with is rather coarse, with only 22057 vertices. For comparison
the mesh used for experimentation on real patient-specific data has around
half a million vertices. Ω is divided into 3 subdomains, one for CSF, one
for grey matter and one for white matter. The three subdomains are shown
in different colours in figure 5.2b. The boundary Γ is defined as the outer
boundary of the CSF subdomain. In other words, if ∂Ω is the boundary of the
whole spatial domain and ∂ΩCSF the boundary of the CSF subdomain, then
Γ = ∂Ω ∩ ∂ΩCSF . This is indicated by the blue area in figure 5.2b.

(a) (b)

Figure 5.2: (a) shows an illustration of the subset of the brain we are using
as domain. While (b) shows the different subdomains. The blue area in figure
(b) is the CSF, the grey area is the grey matter, and the red area is the white
matter. We will impose Dirichlet boundary conditions to all of the blue area
on the outside of figure (b).

As mentioned, we use the diffusion equation as a model for the contrast.

∂u

∂t
−∇ ·D∇u = 0, in Ω× (0, T), (5.1)

u = g, on Γ× (0, T) (5.2)
u = u0, in Ω× {0} (5.3)

where u : Ω × (0, T) → R is the solution yielding the concentration of the
contrast agent in the spatial and temporal domain. D is the diffusion coeffi-
cient, which is a different scalar constant for each subdomain. Furthermore,
g : Γ× (0, T)→ R is the Dirichlet boundary conditions and u0 : Ω→ R is the
known initial condition. We are interested in finding the diffusion coefficients
D and boundary conditions g that best fit the observations {di}kdi=1, where kd
is the amount of observations. In addition to the PDE-constraint above, we

41

also impose bounds on the controls

0 ≤ g ≤Mg

0 ≤ D ≤MD

for some given positive values Mg,MD ∈ R.
The temporal domain will be uniformly discretized using a Backward Euler

scheme, with step size ∆t and k time steps:

∆t =
T

k
,

ti = i∆t, for i = 0, 1, ..., k

As our observations are not so neatly divided in time, having more frequent
observations early on and less later on, we define a set Id of the time indices
which fall closest to an observation. With s : Id → N mapping these time
indices to the corresponding observation indices. Thus our functional of interest
becomes

J(u) =
∑
i∈Id

∥∥u(·, ti)− ds(i)(·)
∥∥2

L2(Ω)

Even if the forward problem yields a unique solution for each set of param-
eters D and g, the inverse problem is usually not unique. If the problem has
no solution, or multiple solutions we call it ill-posed. To mitigate this we add
regularisation terms which should ensure that the problem is well-posed and
that the boundary solution has some amount of smoothness in time.

R(g) =
α

2

∫ T

0

‖g‖2L2(Γ) dt+
β

2

∫ T

0

‖ġ‖2L2(Γ) dt

with ġ = ∂g/∂t, for some constant regularisation parameters α and β. The
problem then becomes

min
u,D,g

J(u) +R(g) subject to (5.1)− (5.3)

To employ the finite element method, we derive the variational form. After
discretizing in time by a Backward Euler scheme, our problem formulation
becomes: for i = 1, 2, ..., k find ui ∈ Vg such that

a(D;ui, v) = L(ui−1; v), ∀v ∈ V0 (5.4)

with

a(D;ui, v) =

∫
Ω

uiv dx+ ∆t

∫
Ω

D∇ui · ∇v dx (5.5)

L(ui−1; v) =

∫
Ω

ui−1v dx (5.6)

where ui denotes u(·, ti). We will be using first-degree Lagrange elements in
the finite element discretization.

42

5.2.3 Implementing the model

We will now implement the model by defining a function that evaluates J(u)+
R(g) given someD and g. After the mesh has been loaded, both the subdomains
and boundaries have been marked, and the function space V has been defined,
we can define the function forward_problem. forward_problem takes three
arguments: the diffusion coefficient D, the list of boundary functions g_list
and the observation time points tau. Because we want to stop after the last
observation has been used, we choose the last observation time point as T .
Furthermore, we have one boundary condition function for every time step, i.e.
{gi}ki=1 with gi(x) = g(x, ti), so we determine ∆t from the last element of tau
and the length of the list g_list.

1 def forward_problem(D, g_list , tau , alpha=0.0, beta=0.0):
2 """ Compute the forward problem and return J + R.
3
4 Args:
5 D (dict or list): dict or list of diffusion coefficients ,
6 with keys/index being subdomain id corresponding to

that coefficient.
7 g_list (list): list of all boundary conditions.
8 Length determines amount of timesteps
9 tau (list): list of all observation time points.

10 Last time point determines stop time (T) for
simulation.

11 alpha (float , optional): Regularisation parameter of
boundary condition g

12 beta (float , optional): Regularisation parameter of time
derivative of g

13
14 Returns:
15 float: the resulting objective functional with

regularisation: J + R.
16
17 """

As our diffusion coefficient is defined as a constant on each subdomain, we
split the second integral in (5.5) into 3 integrals, one for each subdomain. The
subdomains are marked as 1, 2, and 3, for CSF, grey matter, and white matter
respectively. From this we express the bilinear and linear form (5.5)-(5.6) as
UFL forms,

1 a = u * v * dx + sum([dt * D[j] * inner(grad(v), grad(u)) * dx(j)
for j in range(1, 4)])

2 L = U_prev * v * dx

Then after pre-assembling the matrix for the bilinear form a, we must con-
struct a loop for solving the problem forwards in time. Inside we both solve
the problem and construct the functional with regularisation. The loop stops
once every observation has been used, which should coincide with k. The time
integrals are computed using the trapezoidal rule, and the time derivative of g
is computed by finite difference. A simplified snippet showing the construction
of the functional can be seen below. In the code J denotes the sum J(u)+R(g).

1 J = 0
2 while next_tau < len(tau):
3 # Advance in time , assign to U_prev
4 # prescribe boundary conditions for this timestep ,

43

5 # set g_prev to g,
6 # solve the problem
7 ...
8
9 if abs(t - tau[next_tau]) < abs(t + dt - tau[next_tau]):

10 d = ... # Read observation
11 J += assemble ((U - d) ** 2 * dx)
12 next_tau += 1 # Move on to next observation
13
14 # Choose time integral weights
15 if t <= dt or next_tau >= len(tau):
16 # If endpoints use 0.5 weight
17 weight = 0.5
18 else:
19 # Otherwise 1.0 weight
20 weight = 1.0
21
22 # Add regularisation
23 J += alpha/2*weight*dt*assemble(g**2*ds(1))
24 if current_g_index > 1:
25 J += beta/2*weight*dt*assemble (((g - g_prev)/dt)** 2*ds(1))
26
27 return J

Finally, we can compute our forward problem by something similar to the
following.

1 D = {1: Constant(1000.0), 2: Constant(1.0), 3: Constant(2.0)}
2 k = 20 # Time steps
3 g = [Function(V) for i in range(k)]
4 tau = [0.1, 0.3, 0.7, 1.3, 2.0] # Observation time points
5 J = forward_problem(D, g, tau)

To run the optimization, we add the pyadjoint specific code. The optimiza-
tion will be run in parallel.

1 # Define the control variables
2 controls = ([Control(D[i]) for i in range(1, 4)]
3 + [Control(g_i) for g_i in g])
4 # Define the reduced functional
5 Jhat = ReducedFunctional(J, controls)
6
7 # Define the bounds
8 # For the diffusion coefficients
9 lb = [0, 0, 0]

10 ub = [M_D , M_D , M_D]
11
12 # For the boundary functions
13 for i in range(3, len(ctrls)):
14 lb.append(0.0)
15 ub.append(M_g)
16
17 # Run the optimization
18 optimal_controls = minimize(Jhat , bounds = (lb, ub))

5.2.4 Generating observations

We generate observations by choosing some diffusion coefficients and boundary
conditions and computing the forward problem. The chosen diffusion coeffi-
cients are 1000.0, 2.0, and 1.0 for CSF, grey matter, and white matter respec-

44

ε Residual Order Gradient Residual Gradient order

1 · 10−2 3.7254 1.3999 · 10−2

5 · 10−3 1.8592 1.0 3.4877 · 10−3 2.0
2.5 · 10−3 9.2873 · 10−1 1.0 8.6584 · 10−4 2.0
1.25 · 10−3 4.6414 · 10−1 1.0 2.1342 · 10−4 2.0

Table 5.3: The Taylor remainders without gradient information and with gra-
dient information. The computed convergence orders are as expected. See
section 3.2.2 for more information on Taylor remainders tests.

tively. The model is ran with k = 20 time steps with T = 2.0, making ∆t = 0.1.
Out of these 20 solutions, kd = 5 are used as observations with increasing gaps
to mimic the sparsity of real data. Specifically, the chosen observation time
points are Id = {0.1, 0.3, 0.7, 1.3, 2.0}. The Dirichlet boundary function g were
chosen to be g(x, t) = (2− t)t+ 0.5, reaching its peak at t = 1.0.

5.2.5 Verification

After importing dolfin_adjoint, we wish to verify that our model is correctly
implemented and compatible with our adjoint software. This will be achieved
by Taylor remainders tests of the forward problem and gradient, as described
in section 3.2.2. All initial control values and the perturbation directions are
randomly chosen using pointwise uniform distribution with values deviating by
up to 50% from the exact solution. Regularisation is enabled with α = β =
10−4. The results of the taylor tests are summarised in table 5.3. The tests
give expected orders of convergence both for serial and parallel, which indicate
that the model have been correctly implemented.

5.2.6 Finding regularisation parameters

Now the aim is to find suitable regularisation parameters α and β. To this
end, we test different parameter values and compare how fast the optimiza-
tion algorithm converges and if the converged control values are close to the
actual optimal values. For this we employ the quasi-newton optimization algo-
rithm Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [7] im-
plemented in scipy [25]. The stopping criteria is

fk − fk−1

max(|fk|, |fk−1|, 1)
≤ 10−6

where fk is the value of objective functional J+R at iteration k. Additionally,
the optimization will stop after 100 iterations if 5.2.6 is not satisfied.

We performed the optimization with regularisation parameters at 10−4,
10−2, and 1. The initial guess was 350, 0.8, and 0.8 for the diffusion coefficients
at CSF, grey matter and white matter respectively, with the initial boundary
condition guess at zero. To measure the error of the resulting optimal solution

45

α
β

1 10−2 10−4

1 (547.895, 2.149, 0.984) (519.838, 2.357, 0.964) (535.911, 2.508, 0.955)
10−2 (550.550, 2.044, 0.963) (448.721, 1.883, 0.953) (436.600, 1.887, 0.993)
10−4 (525.742, 2.103, 0.967) (456.131, 1.868, 0.984) (453.746, 1.846, 0.999)

Table 5.4: The approximated diffusion coefficients for (CSF, grey matter, white
matter). The correct values are (1000.0, 2.0, 1.0), and we see relatively close
approximations for both grey matter and white matter, while the diffusion
coefficient for CSF converges much more slowly.

we use the relative error norm

E =
‖u− utrue‖L2(Ω×(0,T])

‖utrue‖L2(Ω×(0,T])

where utrue(x, t) is the generated solution from which the observations are taken
and u is the solution after optimization. The results are summarized in figure
5.3. None of the optimization runs reached the stopping criteria within 100
iterations, and thus the approximations are rather poor when compared to the
true solution. Notice that for β < 1 we get oscillations in the norm ‖u‖L2(Ω).
This is caused by the boundary conditions oscillating in time, which stems from
a too relaxed temporal smoothness parameter β. It is therefore reasonable to
choose β = 1 and vary α. Tests reveal that α = 10−2 is the best candidate out
of the four, yielding relative error E = 10% after 100 iterations.

Table 5.4 shows the diffusion coefficients resulting from 100 iterations for
each pair of regularisation parameters. The diffusion coefficients for the grey
and white matter subdomains converge relatively fast. Meanwhile the CSF
coefficient coupled with the boundary conditions make the optimization go
really slow.

We test the use of a second optimization algorithm, namely a truncated
Newton algorithm (TNC) [37] available in scipy. Interestingly, using this op-
timization algorithm on the results from the 100 iterations of L-BFGS, yields
much more accurate CSF diffusion coefficients. For α = 10−2 and β = 1, at
a maximum of 100 functional evaluations the estimated diffusion coefficients
are (995.245, 2.102, 1.012). By comparison, another 100 iterations of L-BFGS,
which roughly equals 120 functional evaluations, the estimated diffusion coef-
ficients are (657.606, 2.113, 1.013). The results are summarised in figure 5.4.
Observe that only using TNC results in a very poor convergence, but starting
with L-BFGS and then using TNC gives the optimal results. It looks like TNC
requires the boundary condition to not be so far from the optimum for it to
converge. Furthermore, notice that the difference between CSF coefficient of
657.606 and 999.043 does not reflect much in the relative error.

5.2.7 Adding noise

We finish by testing the optimization with noise. To this end, we add pointwise
Gaussian noise to the observations. The optimization is tested on Gaussian
noise with standard deviation (SD) σ = 0.1 and σ = 0.3. We only test the

46

α = β = 10−4

Iterations: 100
α = β = 10−2

Iterations: 100
α = β = 1

Iterations: 100

O
b
se
rv
at
io
n

A
p
p
ro
xi
m
at
io
n

C
on

ce
nt
ra
ti
on

no
rm

E = 28% E = 18% E = 13%

Figure 5.3: Results of different regularisation parameters. The top two rows
feature cross-section snapshots at t = 1.0.

47

noise against the mix of 100 L-BFGS iterations followed by 100 TNC functional
evaluations, with α = 10−2 and β = 1. The results are summarised in figure
5.5. Noise does not seem to matter extremely much, although for σ = 0.3 we did
observe quite a large discrepancy in the approximate white matter coefficient
and the true coefficient. Because the optimizations were all stopped before
a convergence criteria was met, it is hard to predict if this discrepancy was
caused by slower convergence or if the noise leads to a wrong optimal solution
all together.

5.3 Summary

We presented two examples that illustrated the application of dolfin-adjoint.
Through the Stokes example in section 5.1, the gradient of a reduced functional
with respect to a Dirichlet boundary condition control was computed with
minor modifications to the code. The computed gradients were then verified,
indicating that AD with Dirichlet boundary condition controls are correctly
implemented. The example was also benchmarked, showing close to optimal
runtime for the adjoint computations. However, benchmarks have not been
performed on more complex and large-scale problems, so it can not be assumed
that the implementation has optimal performance in general.

In section 5.2 the use of the ReducedFunctional with the optimization
framework was illustrated on an inverse problem with generated observations.
The optimization was run in parallel and showed ability to get close to an
optimal solution. However, due to time constraints, the program was not able
to reach a convergence criterion. Moreover, the example verified the use of
multiple control values consisting of both time dependent Dirichlet boundary
conditions and constant-valued functions.

48

100 L-BFGS iterations
+ 100 L-BFGS iterations

100 L-BFGS iterations
+ 100 TNC f-evals

100 TNC f-evals
+ 100 TNC f-evals

O
b
se
rv
at
io
n

A
p
p
ro
xi
m
at
io
n

C
on

ce
nt
ra
ti
on

no
rm

E = 9%
(657.606, 2.113, 1.013)

E = 7%
(999.043, 2.126, 1.094)

E = 80%
(1617.633, 8.353, 2.672)

Figure 5.4: Results of different combinations of optimization algorithms. All
three cases are run with α = 10−2 and β = 1. At the bottom we also include the
estimated diffusion coefficients in the order (CSF, grey matter, white matter).
The top two rows feature cross-section snapshots at t = 1.0.

49

No noise Noise SD: σ = 0.1 Noise SD: σ = 0.3

O
b
se
rv
at
io
n

A
p
p
ro
xi
m
at
io
n

C
on

ce
nt
ra
ti
on

no
rm

E = 7%
(999.043, 2.126, 1.094)

E = 7%
(1000.759, 2.127, 1.096)

E = 10%
(890.242, 2.200, 1.895)

Figure 5.5: Results with different levels of pointwise Gaussian noise added to
the observations. The standard deviation (SD) is written at the top. The top
two rows feature cross-section snapshots at t = 1.0.

50

Chapter 6

Outlook: Mixed-models with
Tensorflow

In this chapter we apply the generic AD framework implemented in chapter 3
to the open source software library TensorFlow [1]. TensorFlow is a machine
learning library for python that implements reverse mode AD to compute gra-
dients. For our purposes we will only consider TensorFlow as implementing
neural networks, even though it can be used for other things. The chapter pro-
vides a brief outlook on the combination of neural networks and PDEs, which
will be called mixed models.

6.1 Tensorflow and neural networks

Neural networks consists of an input layer and an output layer, together with
zero or more hidden layers. Each layer consists of one or more nodes (or
neurons), all of which take in some input and produces some output. This
structure can be though of as a graph like illustrated in figure 6.1.

Input
layer

Hidden
layer

Output
layer

Figure 6.1: An illustration of a neural network with one hidden layer. Because
each neuron takes input from every neuron in the previous layer, the neural
network is called fully-connected.

51

Using figure 6.1 as reference, we illustrate the operations that could make
up this neural network. The network takes three inputs, and all neurons in the
hidden layer receive all these inputs multiplied by some weights. The weights
can be thought of as applied along the edges. Thus, each neuron in the hidden
layer results in some linear transformation with these weights wi ∈ R3 on the
input x ∈ R3.

ai(x) = xTwi + bi

The number bi ∈ R is called the bias, where i denotes the index of the neuron
in the hidden layer. In addition, a hidden layer neuron introduces a non-linear
activation function on the output of the neuron. This activation function can
for example be h(a) = tanh(a) or rectified linear unit (ReLU) h(a) = max(0, a).
Thus the output from each neuron in the hidden layer can be summarised as
zi = h(ai(x)). Reformulated, the hidden layer performs

z(x) = h(a(x)) = h(Wx+ b)

whereW ∈ R4×3, b ∈ R4 and h(a) applies the activation function element-wise.
This is then used as input to the output layer where it is multiplied by another
set of weights along the edges. Sometimes a non-linear function is also applied
at the output layer, typically to restrict the output to a certain range of values.
This is for example useful if the output should be probabilities.

As the input is usually a set of training data, x is thought of as an input
matrix containing all the n examples x ∈ Rn×3. Then the model can be
summarised as a mapping from the inputs x ∈ Rn×3 to the outputs y ∈ Rn×2

by

a1 = xW1 + b1

z1 = tanh(a1)

a2 = z1W2 + b2

y = z2 = a2

where we did not use any non-linear function for the output layer. This can be
implemented in Tensorflow by

1 import tensorflow as tf
2
3 x = tf.placeholder (...)
4
5 W1 = tf.Variable (...)
6 b1 = tf.Variable (...)
7 a1 = tf.matmul(x, W1) + b1
8 z1 = tf.tanh(a1)
9

10 W2 = tf.Variable (...)
11 b2 = tf.Variable (...)
12 z2 = tf.matmul(z1 , W2) + b2
13 y = z2

where the arguments to tf.Variable specify some initial value and thereby
the shape and data type.

The training of this neural network can be formulated as a minimization
problem. Given some inputs and corresponding outputs, we seek to minimize

52

some difference between computed outputs and training outputs d ∈ Rn×2:

min
W1,W2,b1,b2

L(y, d)

where L(y, d) is a loss function that measures the error, this could for example
be a function for the mean squared error. What loss function is appropriate
depends on the problem.

6.2 Mixed model approaches

In theory there are two ways one can combine two AD frameworks. Either we
embed TensorFlow in pyadjont, or we embed pyadjoint in TensorFlow. Both
ways involve implementing a function that represents a model from the other
software package. This function works as a black box, both in the forward
problem and in the adjoint problem. The only glaring difficulty is that the two
models must be able to communicate. The black box function must accept
input and give output that are valid in the driving software.

Another difficulty of mixing two AD frameworks is that they might not
implement AD in the same way. For example, in TensorFlow the user builds
the computational graph by using symbols and not values. Thus, the model
is not run before it is initialized in a TensorFlow session with some values.
This differs from pyadjoint, where the tape is built while the forward problem
is computed. Our main focus will be on embedding pyadjoint in TensorFlow.
It should be mentioned that TensorFlow offers an eager mode for debugging
purposes, in which operations are executed immediately.

6.3 Implementing a FEniCS model in TensorFlow

For registering a custom function in TensorFlow we employ py_func(func,
inp, Tout, name=None, grad=None) taken from [4]. This function wraps the
function func as a TensorFlow operation with a gradient operation grad, taking
the tensors inp as input and returning data types Tout. The gradient operation
also needs to be a TensorFlow operation, thus we use tf.py_func [40], which
is essentially the same as py_func just without gradient information. The
inputs and outputs of Tensorflow operations are numpy arrays. Thus, certain
helper functions are implemented to convert numpy arrays to and from FEniCS
data types. These helper functions are in turn annotated to properly connect
outputs and controls.

6.4 Verification

To test our implementations, a Taylor remainders test is constructed. Because
dolfin-adjoint is now embedded in TensorFlow, the Taylor test must be imple-
mented in Tensorflow. For this verification we employ a neural network with
one hidden layer with 20 neurons. After the output layer of the neural network,
a PDE is placed. Thus the output layer of the neural network produces some
input for the FEniCS model. The PDE is the Poisson problem over a unit
interval mesh, with the source term being the output of the neural network

53

ε Residual Order Gradient Residual Gradient order

1 · 10−2 1.6405 · 10−1 8.2500 · 10−3

5 · 10−3 8.4086 · 10−2 1.0 2.0625 · 10−3 2.0
2.5 · 10−3 4.2559 · 10−2 1.0 5.1571 · 10−4 2.0
1.25 · 10−3 2.1408 · 10−2 1.0 1.2893 · 10−4 2.0

Table 6.1: The Taylor remainders without gradient information and with gradi-
ent information for a mixed model problem. The computed convergence orders
are as expected.

and with prescribed 0 on the boundary. The implementation of the FEniCS
model is shown below.

0 def fenics_model(x):
1 y = x.copy()
2 for i in range(len(x)):
3 x_ = x[i]
4 U = Function(V)
5
6 # Convert input to FEniCS function
7 tensorflow_to_fenics(f, x_)
8
9 a = inner(grad(u), grad(v))*dx

10 L = f*v*dx
11 bc = DirichletBC(V, 0, "on_boundary")
12 solve(a == L, U, bc)
13 y[i] = fenics_to_tensorflow(U)
14 return y

The loop over the input is because typically all training examples are given as
input. The mean squared error is chosen as the loss function

L(y, d) =
1

k

k∑
i=1

(yi − di)2

where yi are the coefficients of the computed solution of the Poisson PDE with
the neural network source term, k is the amount of coefficients in the Poisson
solution, and di is the training outputs for each i = 1, 2, ..., k. For this di was
set to 1 for each i. Using random perturbation direction the Taylor remainders
are shown in table 6.1. The computed convergence rates are as expected, which
indicates that the mixed models have been implemented correctly.

6.5 Summary & Discussion

Neural networks have proven to be very efficient at image recognition [28] and
speech recognition [36], and have become widely popular in recent years. How-
ever, little research has been done on combining physical models through PDEs
with neural networks. As stated by Gary Marcus, a professor of psychology at
New York University and founder of the machine learning start-up Geometric
Intelligence, "[...] researchers in deep learning appear to have a very strong

54

bias against including prior knowledge even when (as in the case of physics)
that prior knowledge is well known." [35]. This gives rise to an interesting
research topic. However, because of the lack of research, it is difficult to say
what benefit these mixed models could have.

We presented a proof of concept for combining PDEs solved with FEniCS
and neural networks defined in Tensorflow. The robustness of the implementa-
tion with respect to more complex models has yet to be determined. There is
a lot of work to be done to get a framework that can seamlessly combine PDEs
in FEniCS and Tensorflow. However, with the implementation of a flexible
and easy to use interface, it could spark research interest on the topic of mixed
models.

55

Chapter 7

Summary & future work

In this thesis we have implemented a generic AD Python framework providing
a common interface for packages it is applied to, providing features such as
optimization and verification. This framework was then applied to the Python
interface of the FEM framework FEniCS [29]. This resulted in an AD pack-
age that can automatically derive and solve the adjoint equations. Examples
and tests were shown, verifying that the AD package is correctly implemented,
and illustrating that minimal changes needed to original code. Additionally,
benchmarks of the implementation suggested that the computational costs of
automatically deriving and solving the adjoint equations are near optimal, how-
ever with limited data on the scalability to even larger problems. The AD
package was also implemented with support for strong Dirichlet boundary con-
dition controls. This was implemented through the computation of the adjoint
solution at the boundary. Lastly, we briefly touched upon the combination
of PDEs and neural networks, illustrating that the AD package can be used
together with TensorFlow. This opens up room for future development and
experiments with these mixed-models.

7.1 Future work

For future work, the generic AD framework pyadjoint can be packed with
additional features such as checkpointing [16]. The checkpointing would help
remedy memory limitations for large-scale problems.

The primary target for pyadjoint application was FEniCS, thus the pyad-
joint implementation is heavily influenced by the needs that arose when apply-
ing pyadjoint to FEniCS. It could be interesting to test the pyadjoint design
principles on a different Python package, such as numpy [39]. This could reveal
flaws and limitations of pyadjoint as a generic AD framework. Additionally,
having support for numpy in pyadjoint could also help remedy the limitations
of large low level computational graphs by the use of vectorisation. Providing
AD to numpy has been previously done in a purely Python implementation
with autograd [14], and it could be informative to see how pyadjoint compares.

Only some of the main interface of DOLFIN [30] has been overloaded in
dolfin-adjoint. At the time of writing, dolfin-adjoint does for example not
annotate assignment of linear combinations to functions. Another example
is that some specialised solver classes such as KrylovSolver has not been

57

overloaded. Work must be done to have dolfin-adjoint work out of the box
for almost any program that is restricted to the standard DOLFIN Python
interface.

Lastly, more work can be done on combining dolfin-adjoint and machine
learning. The outlook in 6 provides a base for experimentation. In particular,
there is a need for comparing convergence rate to an optimum of problems
with and without physical models. Additionally there is a need for attaining
information on when mixed models can be useful, which can be gleaned from
experimentation.

58

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, and et al.
Matthieu Devin. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. Software available from tensorflow.org.

[2] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin
Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie Rognes,
and Garth Wells. The fenics project version 1.5. Archive of Numerical
Software, 3(100), 2015.

[3] Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes,
and Garth N. Wells. Unified form language: A domain-specific language
for weak formulations of partial differential equations. ACM Trans. Math.
Softw., 40(2):9:1–9:37, March 2014.

[4] Heikki Arponen. Tensorflow custom function with gradient. https://
gist.github.com/harpone/3453185b41d8d985356cbe5e57d67342, Ac-
cessed 09/05/2018.

[5] Yuri Bazilevs and Thomas JR Hughes. Weak imposition of dirichlet
boundary conditions in fluid mechanics. Computers & Fluids, 36(1):12–26,
2007.

[6] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science Engineering,
13(2):31 –39, 2011.

[7] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal on
Scientific Computing, 16(5):1190–1208, 1995.

[8] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS work-
shop, number EPFL-CONF-192376, 2011.

[9] Lawrence C Evans. Partial Differential Equations. American Math Soci-
ety, 2nd edition, 2010.

[10] Patrick E Farrell, David A Ham, Simon W Funke, and Marie E Rognes.
Automated derivation of the adjoint of high-level transient finite element
programs. SIAM Journal on Scientific Computing, 35(4):C369–C393,
2013.

59

https://gist.github.com/harpone/3453185b41d8d985356cbe5e57d67342
https://gist.github.com/harpone/3453185b41d8d985356cbe5e57d67342

[11] Richard S Finkel, Claudia A Chiriboga, Jiri Vajsar, John W Day, Jacque-
line Montes, Darryl C De Vivo, Mason Yamashita, Frank Rigo, Gene
Hung, and Eugene et al. Schneider. Treatment of infantile-onset spinal
muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation
study. The Lancet, 388(10063):3017–3026, 2016.

[12] Simon W Funke and Patrick E Farrell. A framework for automated pde-
constrained optimisation. arXiv preprint arXiv:1302.3894, 2013.

[13] Michael B Giles and Niles A Pierce. An introduction to the adjoint ap-
proach to design. Flow, turbulence and combustion, 65(3-4):393–415, 2000.

[14] Github. Autograd. https://github.com/HIPS/autograd, Accessed
09/05/2018.

[15] Andreas Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods and
software, 1(1):35–54, 1992.

[16] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an im-
plementation of checkpointing for the reverse or adjoint mode of com-
putational differentiation. ACM Transactions on Mathematical Software
(TOMS), 26(1):19–45, 2000.

[17] Per Thomas Haga, Giulia Pizzichelli, Mikael Mortensen, Miroslav Kuchta,
Soroush Heidari Pahlavian, Edoardo Sinibaldi, Bryn A Martin, and Kent-
Andre Mardal. A numerical investigation of intrathecal isobaric drug dis-
persion within the cervical subarachnoid space. PloS one, 12(3):e0173680,
2017.

[18] Patrick Heimbach, Chris Hill, and Ralf Giering. An efficient exact adjoint
of the parallel mit general circulation model, generated via automatic
differentiation. Future Generation Computer Systems, 21(8):1356–1371,
2005.

[19] Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Opti-
mization with PDE constraints, vol. 23 of Mathematical Modelling: Theory
and Applications. Springer, New York, 2009.

[20] Karl Erik Holter, Benjamin Kehlet, Anna Devor, Terrence J Sejnowski,
Anders M Dale, Stig W Omholt, Ole Petter Ottersen, Erlend Arnulf Nagel-
hus, Kent-André Mardal, and Klas H Pettersen. Interstitial solute trans-
port in 3d reconstructed neuropil occurs by diffusion rather than bulk flow.
Proceedings of the National Academy of Sciences, page 201706942, 2017.

[21] Jeffrey J Iliff, Minghuan Wang, Yonghong Liao, Benjamin A Plogg,
Weiguo Peng, Georg A Gundersen, Helene Benveniste, G Edward Vates,
Rashid Deane, and Steven A et al. Goldman. A paravascular pathway
facilitates csf flow through the brain parenchyma and the clearance of
interstitial solutes, including amyloid β. Science translational medicine,
4(147):147ra111–147ra111, 2012.

[22] Jocelyn Iott, Raphael T Haftka, and Howard M Adelman. Selecting step
sizes in sensitivity analysis by finite differences. 1985.

60

https://github.com/HIPS/autograd

[23] Antony Jameson. Aerodynamic design via control theory. Journal of
scientific computing, 3(3):233–260, 1988.

[24] Byung-Ju Jin, Alex J Smith, and Alan S Verkman. Spatial model of
convective solute transport in brain extracellular space does not support a
“glymphatic” mechanism. The Journal of general physiology, 148(6):489–
501, 2016.

[25] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed <today>].

[26] R. N. King, K. Dykes, P. Graf, and P. E. Hamlington. Optimization
of wind plant layouts using an adjoint approach. Wind Energy Science,
2(1):115–131, 2017.

[27] Robert C. Kirby and Anders Logg. A compiler for variational forms. ACM
Trans. Math. Softw., 32(3):417–444, September 2006.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[29] Anders Logg, Kent-Andre Mardal, and Garth N. Wells et al. Automated
Solution of Differential Equations by the Finite Element Method. Springer,
2012.

[30] Anders Logg and Garth N. Wells. Dolfin: Automated finite element com-
puting. ACM Trans. Math. Softw., 37(2):20:1–20:28, April 2010.

[31] Martin Losch and Patrick Heimbach. Adjoint sensitivity of an ocean gen-
eral circulation model to bottom topography. Journal of Physical Oceanog-
raphy, 37(2):377–393, 2007.

[32] Antoine Louveau, Sandro Da Mesquita, and Jonathan Kipnis. Lymphatics
in neurological disorders: a neuro-lympho-vascular component of multiple
sclerosis and alzheimer’s disease? Neuron, 91(5):957–973, 2016.

[33] Zhoujie Lyu, Gaetan K Kenway, Cody Paige, and Joaquim Martins. Auto-
matic differentiation adjoint of the reynolds-averaged navier-stokes equa-
tions with a turbulence model. In 21st AIAA Computational Fluid Dy-
namics Conference, page 2581, 2013.

[34] Zhoujie Lyu, Gaetan KW Kenway, and Joaquim RRA Martins. Aerody-
namic shape optimization investigations of the common research model
wing benchmark. AIAA Journal, 53(4):968–985, 2014.

[35] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631, 2018.

[36] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Čer-
nockỳ. Strategies for training large scale neural network language models.
In Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE
Workshop on, pages 196–201. IEEE, 2011.

61

[37] Stephen G Nash. Newton-type minimization via the lanczos method.
SIAM Journal on Numerical Analysis, 21(4):770–788, 1984.

[38] Uwe Naumann. The art of differentiating computer programs: an intro-
duction to algorithmic differentiation, volume 24. Siam, 2012.

[39] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[40] TensorFlow API r1.8. tf.py_func. https://www.tensorflow.org/api_
docs/python/tf/py_func, Accessed 09/05/2018.

[41] Olivier Talagrand. Assimilation of observations, an introduction. Journal
of the Meteorological Society of Japan. Ser. II, 75(1B):191–209, 1997.

[42] Markus Towara and Uwe Naumann. A discrete adjoint model for open-
foam. Procedia Computer Science, 18:429–438, 2013.

[43] Daniel J Wolak and Robert G Thorne. Diffusion of macromolecules
in the brain: implications for drug delivery. Molecular pharmaceutics,
10(5):1492–1504, 2013.

[44] David W Zingg, Marian Nemec, and Thomas H Pulliam. A comparative
evaluation of genetic and gradient-based algorithms applied to aerody-
namic optimization. European Journal of Computational Mechanics/Re-
vue Européenne de Mécanique Numérique, 17(1-2):103–126, 2008.

62

https://www.tensorflow.org/api_docs/python/tf/py_func
https://www.tensorflow.org/api_docs/python/tf/py_func

	Contents
	Introduction
	Structure
	Notation and assumptions

	Background
	Where are gradients useful?
	Algorithmic Differentiation
	Finite Element Method
	The adjoint equations

	A generic AD framework
	Implementation
	User interface
	Limitations
	Summary

	Applying pyadjoint to FEniCS
	Brief introduction to FEniCS
	Annotation
	Deriving the discrete tangent linear and adjoint equations
	Dirichlet boundary condition control
	Parallel support
	Limitations
	Summary

	Examples
	Dirichlet boundary condition control
	Brain diffusion inverse problem
	Summary

	Outlook: Mixed-models with Tensorflow
	Tensorflow and neural networks
	Mixed model approaches
	Implementing a FEniCS model in TensorFlow
	Verification
	Summary & Discussion

	Summary & future work
	Future work

	Bibliography

