ICS

iversity of Oslo
omparison oft the
Shrinkage Effects Between
Boosting and

Un

e
©
S
O
=
©
=
Y
o
[=
O
E
S
©
Q.
Q
o
Q
-

kage

In

Post-Selection Shr

Techniques

T
4

This master’s thesis is submitted under the master’s programme Modelling
and Data Analysis, with programme option Statistics and Data Analysis, at
the Department of Mathematics, University of Oslo. The scope of the thesis
is 30 credits.

The front page depicts a section of the root system of the exceptional
Lie group Ejg, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842-1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Acknowledgments

First and foremost, I would like to thank my supervisor Professor Riccardo De Bin for intro-
ducing me to this interesting project, and his enthusiastic guidance and patient supervision
throughout the duration of this thesis work.

I would also like to thank my fellow students for our fruitful discussions during the course
work.

And last but not least I am very appreciative to the extensive support provided by my family
and friends in Norway and China.

Wanjuan Ren
Oslo, Norway
May, 2018

Abstract

Regression analysis is a commonly used approach to modelling the relationships between
dependent and independent variables. When estimating the coefficients of a regression model,
the least squares estimator is often used, as it has the least variance among the unbiased
estimators. When the goal is to make a prediction, nevertheless, one may accept some bias in
order to reduce the variance, which may further minimize the prediction error (bias-variance
tradeoff). A series of shrinkage methods have therefore been developed to reach the goal.
This thesis aims to contrast the shrinkage effects of a selection of methods, such as three
post-selection shrinkage methods (global, parameterwise and joint shrinkage), Lasso and
boosting. The prediction performances of these methods are compared in the case of only
linear effects (case study 1), or a combination of linear and nonlinear effects (case study 2).

In case 1, a simulation study is conducted to compare the prediction performances of
different methods under four scenarios. The analysis shows that when the data contains
less information (small sample size and large unexplainable variability), the mean squared
prediction errors (MSPEs) of the model fitted by Lasso and boosting are smaller than that
fitted by the least squares method. The model with parameterwise shrinkage factors (PSF)
predicts slightly better than that with global shrinkage factors (GSF). The boosting method
with a certain number of iterations calculated by cross-validation produces a model with
many variables, whereas with fewer iterations it tends to select only the relevant variables.
In case 2, the effects of independent variables are modelled by the fractional polynomial
(FP) functions and the prediction performances of different methods, such as multivariable
model-building with FP (MFP), FP with shrinkage factors, boosting with FP base-learners,
a combination of MFP and Lasso (referred to as MFP-Lasso), and a combination of MFP
and boosting (referred to as MFP-boosting), are compared using an artificial (ART) dataset.
Small differences in MSPE are found when comparing GSF, PSF and joint shrinkage factors
(JSF). Similar results are obtained from the two novel approaches (MFP-boosting and MFP-
Lasso). Boosting with the FP base-learners implemented in the R-package mboost has worse
prediction performance compared to other methods.

Contents

1 Introduction

2 Methods

2.1 Preliminary and notation Lo

2.2 Post-selection shrinkage

2.2.1 Global post-selection shrinkage
2.2.2 Parameterwise post-selection shrinkage
2.2.3 Joint post-selection shrinkage

2.3 DBoosting
24 Lasso.

2.5 Fractional polynomials

2.5.1 Univariable fractional polynomial models
2.5.2 Multivariable fractional polynomial models
2.6 Fractional polynomials with shrinkage
2.7 Fractional polynomials and boosting
2.7.1 Fractional polynomials as base-learners
2.7.2 Boosting on a fractional polynomials model

2.8 MFP and Lasso

3 Small simulation study

3.1 Design of the simulation data

3.2 Model fitting
3.3 Results and discussions

3.3.1 Prediction performance
3.3.2 Variable selection oo

4 Artificial data example
4.1 Artificial data
4.2 Model fitting

4.3 Results and discussions

5 Conclusions

21
21
23
24
24
29

32
32
33
33

36

Bibliography

A R scripts
A.1 R codes for the small simulation study
A.2 R codes for the artificial data example

Chapter 1

Introduction

Regression analysis is a widely used approach to modelling the relationship(s) between a
dependent variable and a (set of) independent variable(s). In a linear regression analysis,
where the effect of the independent variables is a linear combination of them weighted by
the corresponding regression coefficients, the least squares method is often used to estimate
the coefficients of a model fitted on a training/learning dataset. The Gauss-Markov theorem
shows that in a linear regression model, the least squares estimator is unbiased and optimal
in terms of the mean squared error among all unbiased estimators. However, a model with
low bias (e.g., linear regression model by least squares) usually has high variance and pro-
duces a complex model with a high number of predictors. It tends to fit the training data too
well (overfitting) such that the mean squared prediction error (MSPE) of the model fitted
on a different dataset is relatively large. A model with extremely large bias and low variance
usually produces a simpler model which underfits the data and does not represent the under-
lying mechanism of data generation. If the objective of an analysis is to make predictions,
a balance between these two situations (bias-variance tradeoff) needs to be identified. The
variance of the model may be reduced by introducing a low level of bias, thus reducing the
expected MSPE. This can be achieved by shrinking the estimates of coefficients towards zero
(i.e., shrinkage methods) and/or by forcing some of the coefficients to zero (i.e., variable
selection).

In addition, a model with a large number of predictors (e.g., > 10) is difficult to interpret.
Hence, identification of a subset of candidate variables which has the strongest effect on the
outcome is a commonly used approach. This approach produces a simple model in which
the relationships between the response and covariates can be easily interpreted. A simple
model can help the researchers to reduce time and costs for collecting the empirical data
of interest. For example, in medical research, a relatively accurate prediction model with
least covariates can be used to predict the risk of having a certain disease in an unknown
patient, thus better utilizing the existing data and reducing the needs for collecting detailed
empirical data from every individual.

To shrink the coefficients of a model, a number of techniques have been developed over
the past decades. In particular, van Houwelingen and Le Cessie |13] have suggested a simple
method which adds a global shrinkage factor (GSF) to the least squares estimates based on

cross-validation. Since not all regression coefficient estimates need to be shrunk towards zero
by the same factor, Sauerbrei [16] has further proposed the idea of parameterwise shrinkage
factors (PSF), in which a separate shrinkage factor is added to each predictor. The amount
of shrinkage is close to zero for predictors with strong effects, whereas the shrinkage can
be large for predictors with weak effects. In the cases of dummy variables which represent
a category, variables related to combined nonlinear effects, or for variables that are highly
correlated, the GSF and PSF may not be good choices, as the effects of such variables should
be considered and interpreted jointly. To address these issues, Dunkler and coworkers [0]
have proposed a solution of using a common shrinkage factor (joint shrinkage factor/JSF)
for the predictors belonging to the same group and associated with each other.

Furthermore, a study by Sauerbrei [16] has suggested that it is not meaningful to apply
the shrinkage factor to a full model. On the basis of these advances, van Houwelingen
and Sauerbrei [12] have further developed the post-selection shrinkage method which first
selects relevant variables using a stepwise selection method (e.g., backward elimination/BE)
and then applies the shrinkage factors estimated by cross-validation to the least squares
estimates computed on the reduced model. They claimed that the post-selection shrinkage
method is equally competitive in prediction and production of sparse models compared to
Lasso [12]. To investigate this claim in the present study, the GSF and PSF approaches are
contrasted to Lasso and boosting, two of the most popular methods for prediction, in a simple
simulation study to evaluate their abilities of prediction, and selection of right variables.

The GSF, PSF and JSF methods are further compared in a complex setting, with the
presence of non-linear effects, and their prediction performances are contrasted with that of
Lasso and boosting. The choice of modelling non-linear effects through fractional polynomials
(FP) allows the assessment of the performance of this specific technique as a base learner in
a boosting algorithm. Although this option is implemented in the R-package mboost, to the
author’s knowledge, no study has investigated its performance. A new approach to using
the FP within Lasso (MFP-Lasso) and an alternative application of FP within boosting
(MFP-boosting) is also proposed.

Chapter 2
Methods

2.1 Preliminary and notation

A classical linear Gaussian regression model is designed as
Y = Bo + pro1 + oo + -+ - + Bprp + €,

where € is assumed to be independent and to have Gaussian distribution with mean 0 and
variance 2. The quantities zy,...,xp are referred to as predictors (or covariates or inde-
pendent variables). The quantities g, 81, ..., Sp are the coefficients to be estimated on a
sample. The random variable Y is called a dependent variable (or response). A regression
model can also be written in matrix form Y = &8 + ¢, or as f(x,3) + ¢, where x is defined
asx = (1,2z1,...,zp) and B = (Bo, b1, ..., 0p)".

With a given sample (y;, 21, T, ..., Tip), © = 1,...,n, astandard approach to estimating
the coefficients 3 is the ordinary least squares (OLS) method, which minimizes the average
squared error

- . (yi — x:B)7,
=1
where @; = (1,21, ...,2;p). In a matrix form, if the matrix X has full rank, the solution to
the problem is X
B = (XTX) 1 XTy. (2.1)

The least squares method is widely used as it provides an unbiased estimator for the coef-
ficients 8. However, the variance of least squares estimates may be large and may become
deficient when the dimension of X is large. Although the least squares method fits the train-
ing data well, the prediction performance of the fitted model may be bad on a test dataset.
In addition, when the number of variables is larger than 10, the final model given by least
squares contains a large number of covariates. As a result, the final model is complicated and
difficult to interpret. When building a model, it is often preferred to select covariates which
have strong effects on the response of interest [15]. When the goal is to make a prediction,
the prediction error can be reduced by introducing some bias in order to reduce the variance.

For a squared loss function, indeed, the prediction error is the sum of the variance of a ran-
dom error €, the squared bias and the variance [10]. In practice, the prediction error may be
reduced by shrinking the regression coefficient estimates towards zero, and/or setting some
of them equal to zero. In the rest of the chapter, several methods which deal with variable
selection and shrinkage are presented.

2.2 Post-selection shrinkage

One of the methods to improve the prediction accuracy of a model is post-selection shrinkage
[12], which mainly consists of two steps. The first step is to choose the covariates to be
included in the final model from a large set of candidate variables, for example via BE.
Backward elimination is an automated process for sequentially removing the variables which
do not have statistical significances to the fit for the final model. Let P denote the total
number of candidate covariates (while p is used to denote the number of covariates in the
final model). Backward elimination starts with a linear regression model with all covariates
and removes the covariates with large p-values until all covariates in the model have p-values
smaller than a pre-selected statistical significance level . Backward elimination can only
be applied when the total number of observations is larger than that of the covariates in the
full model (i.e., n > P > p). The regression coefficients of the reduced model are usually
estimated via OLS.

The second step is to apply a shrinkage factor ¢ (estimated by cross-validation) to the
least squares estimates to reduce the variance. In the literature, three types of shrinkage
factors have been proposed: global [13], parameterwise [106] and joint shrinkage [6], which
have been implemented in the present study and are described in detail in the following
sections.

2.2.1 Global post-selection shrinkage

The basic principle of global post-selection shrinkage is to add a GSF ¢ to the regression
coefficients of the final model (except 3y) [13, 5|. The global post-selection shrinkage method
yields the prediction of y

p

P, AOLS

Yi = +CE Ty 577,
j=1

where § = %Z?:l y; and ¢ € [0,1]. The estimates B]QLS,j = 1,...,p are the least squares
estimates for the model without a shrinkage factor. The GSF c¢ is usually estimated by K-fold
cross-validation. The K-fold cross-validation approach randomly divides a dataset into K
folds, and utilizes K-1 fold to train the model, and the remaining fold as a test set for model
evaluation. When K = n, the procedure is referred to as leave-one-out cross-validation. In
the present study, the leave-one-out cross-validation method is used to compute ¢ ([0]):

1. For i = 1,...,n, compute the least squares estimates of regression coefficients 4~ on
the data leaving x; and y; out, where z; denotes the i-th row vector of the covariate

matrix X and y; denotes the i-th element of the vector y. The estimator is 4~ =
(XfiX_i)*lXTiy_i, where X _; is the covariate matrix without the i-th row vector
and y_; is the vector of response without the i-th element.

2. For i = 1,...,n, compute the cross-validated linear predictors n; = z; - 4~°

3. Compute the least squares estimate of the coefficient of the model with independent
variables 1; and dependent variables y;. The least squares estimate is the global shrink-
age estimate. For example, for a linear regression y; = Am;, ¢ = 1,...,n, the global
shrinkage estimate ¢ = (n7n)'nTy.

2.2.2 Parameterwise post-selection shrinkage

In most cases, the effect of each predictor on the response can be dissimilar. Therefore,
Sauerbrei [16] has suggested to add a different shrinkage factor to the regression coefficient
of each predictor. The prediction of the dependent variable, ¢;, is then defined as

p
L A .. AOLS
Yi =Y+ E Cixii By,
Jj=1

where ¢; € [0,1] for j = 1,...,p. The PSF are estimated by the means of leave-one-out
cross-validation as described above, with some modifications. The estimation procedure is
performed as previously described [0]:

1. For ¢ = 1,...,n, compute the least squares estimate of regression coeflicients A7 =
(A", A,)" for the linear model y_; = X_;v~" + ¢, i.e., on the data leaving x; and
y; out.

2. Fori=1,...,n and j = 1,...,p, compute the cross-validated linear predictors 7;; =
.Z'ij:)/;l.

3. Compute the least squares estimate of the coefficients in the same regression model with

M1 M2 . Mip
21 T2 .. T2
a covariate matrix H = 77, 77') 77.p and dependent variables y = (y1, v, . - -, yn)T

i MTh2 -+ Mnp
The corresponding least squares estimates (¢q,...,¢,) are the estimates for cross-

validation PSF. For example, for a linear regression model y = H¢, the PSF are
¢=(e1,...,¢)7".

2.2.3 Joint post-selection shrinkage

Applying a GSF or PSF to some predictors belonging to the same group (e.g., dummy
variables or multiple transformations of one predictor) may lead to interpretation problems.

The idea of using joint post-selection shrinkage has been proposed by Dunkler, Sauerbrei and
Heinze [6]. Assuming that the set of indices of independent variables is 1,2,...,p and that
Jg, g = 1,..., h represents the joined indices that belong to the same group. For example,
consider the model with three explanatory variables x1, x5, r3, where two of them x5 and w3
belong to the same category, i.e., J; = {1} and Jo = {2,3}. The prediction of dependent

variables is
h

Yi=y+ Zég Z$ijB]OLS-

g=1]EJg

The JSF are estimated by the following procedures |0]:

1. For i = 1,...,n, compute the least squares estimate of regression coefficients 4~ for
the linear model y_; = X_;4v~* + €, i.e., on the data leaving x; and y; out.

2. Fori=1,...,n, compute 1;, = Zjejq xiﬁj_i, g=1,...,h. This yields a cross-validated

M1 M2 .- Ma

.) M1 T2 .- Thn
predictors matrix H = | |]) .

M1 Mh2 --- Tnh

3. Compute the least squares estimate of the coefficients in the same regression model
with independent variables H and dependent variables y = (y1,%2,...,9n)7. The
corresponding least squares estimates ¢ = (éy,...,¢,)T are the estimates for the cross-
validation PSF. The shrunk coefficients are égﬁj‘?LS for j € J,. For the example shown

above, the shrunk coefficients are obtained as ¢;5L5, 6,955 and ¢,8915.

2.3 Boosting

Boosting is a widely used algorithm combining a set of results produced by weak learners to
a strong learner for improved prediction accuracy. A weak learner is defined as a procedure
that predicts slightly better than a random guessing (e.g., coin tossing), whereas a strong
learner produces prediction with sufficiently high accuracy. On the basis of these principles,
a general algorithm, functional gradient descent (FGD), has been developed by Friedman,
Hastie and Tibshirani [3|[7] to estimate a real-valued function describing the relationship
between an outcome of interest Y and set of predictors X which satisfies

fr= arg/{ninE[p(Y, f(XD)],

where p(-,-) is a loss function assumed to be differentiable with respect to f and convex.
Given a training sample of n observations, {(y1,1),..., (yn, ,)}, boosting estimates the
optimal function by minimizing the average sum of the empirical risk %Z?Zl p(yi, fx;)).
Later, Buhlmann and Yu [4] have investigated the algorithm focusing on the specific loss

10

1

function 3(y — f)?. The algorithm is referred to as Ly boosting. The Ly boosting method

can be applied to estimate the coefficients of a linear regression model as shown in the box
below [3].

L, boosting algorithm

1. Initialize the function estimate f [with offset values. The default choice is

where g = 1 3" ;.
2. Form=1,...,Mgpep :

(a) Compute the negative gradient vector
U= (ub 0oo aun)T = (yl — f[m_1]<$1)7 <oy Yn — fA[m_”(wn))T-

(b) Fit a base-learner g(-) (e.g., linear regression) to the negative gradient vector
and obtain the estimates §I"l(-) (e.g., ¢™ = X(XTX)' XTU).

(c) Update the function estimates
FIrl) = frle) 4 gtml e,

where v € (0,1] is a tuning parameter.

In step 2(b), a base-learner with all dimensions of X (predictors) is fitted and added to
the update of the function estimates. Therefore, the final model includes all predictors. In
order to extend the procedure to high-dimensional data, where the number of predictors is
higher than the observations (P > n), and to perform an automated variable selection in
the fitting process, a component-wise version of the gradient boosting has been proposed
[1, 2, 8, 7]. The detailed algorithm is illustrated in the box below. The component-wise Lo
boosting fits a (or a set of) base-learner(s) of each predictor (e.g., g1(-), ..., g,(-)) separately
to the negative gradient vector in step 2(b) and selects the best fit with least sum of squared
residuals in each iteration. The type of base-learner determines the way of entering into the
final model for each variable. For example, the base-learners of a linear regression model
f(x) = Bo+Srx1+- - -+ Bpxp are a series of linear functions gy (1) = fiz1, ..., gp(xp) = Bprp.
The coefficients are estimated by the least squares method. In each iteration, the base-
learners are fitted separately to the negative gradient vector for each dimension of X and
the best-performance base-learner (that reduces most of the loss function) is selected and
added to update the function estimate. Therefore, predictors with strong effects on the
outcome are likely selected in the function estimate in the first iterations. Those with weak
or none effects are excluded if the algorithm stops early enough. For mgy,, — 0o, the final
model with boosting converges to the least squares model in the case of n < P.

11

Component-wise L, boosting algorithm

1. Initialize the function estimate f1 with offset values. The default choice is

where § = £ 3" ;.

2. Specify a set of base-learners g;(-), ..., g;(-) with respect to the covariates x.; =
(‘lea'-wxnj)T,] = 1,...,P.

3. Form=1,..., Msep :

(a) Compute the negative gradient vector
U= (uh 200 7un)T = (yl - f[m_1]<m1)7 <o Yn — f[m_l}(wn>>T'

(b) Fit base-learner of each predictor to the negative gradient vector U. The
corresponding estimates are g}m](m.j), j=1,..., P

(c) Select the best-performance base-learner §;-(-) with least sum of squared
residuals where

J7 = min > (i = g @)
i=1
(d) Update the function estimates

ey = fmi0) +v - g7,

In the boosting algorithm, the number of iterations mg,, and the step size v are tuning
parameters. If v is close to 1, the total effects of base-learners are included in the function
estimate of each iteration and boosting estimates converge to the least squares estimates
with very few steps (making it unlikely to find the right amount of shrinkage). When mg,
is too large and v is small, the results of both classical Ly boosting and its component-wise
version tend to fit the training data too well and to converge to the least squares estimates
(overfitting). With small values of mg,, and v, Ly boosting tends to underestimate the
coefficients for covariates and component-wise boosting tends to produce a sparse model
which may not contain all relevant variables (underfitting). This results in not only bad
estimation but also poor prediction performance. Therefore, a common approach in practice
is to fix v small (e.g., v = 0.1, see |3|) and find the optimal value of my,, which generates a
best-performance model according to the purpose of analysis (e.g., prediction). The prevalent
methods to estimate mg,, are information criteria (e.g., AIC) and resampling approaches
(e.g., cross-validation). In this study, a 10-fold cross-validation is used to select the tuning
parameter mg,,. Cross-validation divides the data into training and test sets and chooses

12

the optimal value of mg,, to minimize the average empirical loss of the out-of-sample test
data. The loss function in the cross-validation procedure needs to be consistent with that
applied in the boosting algorithm. For example, the optimal mg,, by cross-validation for L,
boosting minimizes the sum of squared error of the test data.

2.4 Lasso

Lasso is a shrinkage method mainly used for prediction. This method fits a regression model
with L; regularization, which performs shrinkage and variable selection. Basically, Lasso
adds a penalty term (L; penalty) to the squared loss to prevent overfitting.

Consider a linear regression model

P
f(z) = Bo+ ijﬁja

j=1
the least squares estimates are given by minimizing the sum of squared residuals

n

P
Z(% —Bo— injﬂj>2'
j=1

=1

The Lasso method introduces a penalty term and minimizes the penalized sum of squared

residuals
n

P P
D W= Bo— > B+ A 1B, (2.2)
i=1 j=1 j=1
where A needs to be nonnegative and controls the amount of shrinkage. With A\ = 0 (no
shrinkage at all), the Lasso estimates are equal to the least squares estimates. When A
increases, the level of shrinkage also increases accordingly, and the Lasso estimates get closer
to zero. Some of these with the weakest effects are forced to be exactly zero (variable
selection). The term Zle |3, is the L; norm, therefore it is referred to as L; penalty. The
penalized sum of squared residuals of Lasso can also be written as following:

n

P
Z(?Jz —Bo — ZIz’jﬁj)Qa
j=1

=1

P
subject toz 18| < t, (2.3)

Jj=1

where t is the parameter that controls the amount of shrinkage. The parameter A and t are
in one-to-one relationship. The level of shrinkage depends on ¢ (smaller ¢, more shrinkage).
When t is sufficiently small, the Lasso estimates for some covariates are shrunk to zero.
Therefore, the choice of ¢ can influence the number of independent variables in the final
model.

13

There is currently no closed form solution to this problem and the estimates of the
regression coefficients need to be computed numerically. Clever algorithms, for example
coordinate descent [9], have been implemented.

The K-fold cross-validation method is typically used to select the optimal value of the
tuning parameter ¢ or \. The number of folds is normally 5 or 10. The computing time
increases with the number of folds. The procedure of K-fold cross-validation for choosing
the optimal tuning parameter \ is described in details below. The procedure for the choice
of ¢ is similar to that for the choice of A.

K-fold Cross-validation for Lasso

1. Randomly divide the dataset (x;,v;), = 1,...,n into K folds Fj,k=1,..., K
with approximately equal size. K =5 or 10 is a common choice.

2. Determine a discrete set A = {\,..., Ay} containing possible values for the
tuning parameter \.

3. Fork=1,... . K:

(a) use (z;,y;),1 € I}, for test data and (x;,y;),7 ¢ F}, for training data,

(b) standardize the training data such that each column has mean 0 and vari-
ance 1,

(c) form=1,...,M:

1. compute the Lasso estimates on the training data for each value in A
and predict the outcome in the (standardized) test data f/\’n]f (x;),1 € Fy,

ii. compute the sum of squared test error for each value in A
F—k
ex(Am) =) (e = Fri(e)).
i€ Fy
4. For each value of A in the set A, compute the average test error over all folds

CV(A) = % S e\ = % DO (i — k@)

k=1 k=1 i€ F},

=

5. Choose the A which minimizes C'V ().

2.5 Fractional polynomials

The relationship between an independent variable x and a response y is often complex and
nonlinear. In this case, it is inappropriate to apply a linear regression to the modelling.

14

For example, when nonlinearity is not taken into account, a predictor with nonlinear effect
is likely excluded in the process of model building when using one of the variable selection
methods [11]. For this reason, the FP method has first been introduced by Royston and
Altman [11] and further modified by Sauerbrei and Royston [17] for modelling complicated
relationships including linear and nonlinear effects. In this section, a brief introduction to FP

for single covariate and multiple covariates is given. An algorithm for building a multivariable
FP model is also described.

2.5.1 Univariable fractional polynomial models

An FP model of degree 1 (an FP1 model) for a positive continuous variable is defined as

f(z) = Bo+ Big(z, q),

where g(x, q) = 29 and power ¢ is selected from a predefined set S = {—2,—-1,—-0.5,0,0.5, 1, 2, 3}.
The function g(z,q) = x7 is referred to as an FP function of degree 1. With ¢ = 0, 2 is
defined to be log(z) by convention. When ¢ = 1, the FP1 model corresponds to a linear
model f(z) = fy + fix.

To model more irregular relationships between y and x, a polynomial of degree 1 may
be insufficient. Accordingly, Royston and Altman [11]| have also proposed an FP model of
degree 2 (FP2) which is

f(x) = Bo+ Big(z, q1) + Bag(w, q2),

where ¢ € S and ¢ € §. When ¢1 = ¢, g(z,¢q1) = =% and g(z,¢2) = log(x)x?. When
G # @, g(x,q1) = x? and g(x,q) = . For example, an FP2 model with powers (2, 2)
(e, 1 = g = 2) is f(x) = By + B12? + PBalog(x)z®. An FP2 model with powers (-1, 0)
is f(z) = Bo + Bra~t + Bylog(x). The family of FP2 provides 36 various combinations of
powers ¢; and ¢y including 28 of case q; # ¢ and 8 of case ¢; = ¢o. Therefore an FP2 model
provides more varieties of functional forms than an FP1 model which only contains 8 types
of functions.
In general, a d-degree FP function (model) is defined as

d
f(ilf) = BO + Zﬂjg<x7 Qj)a
j=1

where d denotes the degree of the FP function and ¢; € §. The degree of an FP function
is possible to be larger than two, but the flexibility of an FP2 function is in fact enough for
most cases [15]. In addition, a model with an FP function of degree larger than two may be
too complicated to interpret and the fitted model may overfit the training data. Therefore,
in the following analysis, the maximal permitted degree of 2 is considered for a FP function.

The FP function can be applied to regression models with Gaussian random error, gen-
eralized linear models, generalized additive models and survival models. In this study, only
the Gaussian errors are considered. In addition, the coefficients of the model are estimated
by maximizing the log-likelihood function with respect to each coefficient.

15

2.5.2 Multivariable fractional polynomial models

Analysis of real-life datasets involves modelling the effect of multiple covariates on an out-
come. The idea of the FP function described above is extended to multiple covariates. For
completeness, the presence of categorical covariates is also considered in the model. Although
the maximal permitted degree for FP can be more than two as previously introduced, only
two is considered in the present work. Let h be the number of continuous variables and r be
the number of binary variables. An FP model is defined as

h dj h+r
Fla)=B0+ > Buglzs) + Y Bixy,
=1 k=1 j=h+1

where d; € {1,2} denotes the degree of a multivariable FP function for covariate x; and all
powers belong to the set S. When d; = 2,

q;2

9(75,q51) = iﬂ;l-ﬂ and g(z;, ¢j2) = w?” log(z) if g1 = gjo,
9(wj,q51) = l‘?]l and g(z;, ¢j2) = L if gj1 # gjo-

For example, a multivariable FP model with two continuous variables and one binary vari-
ables is f(z) = fo + Z?Zl ZZ; Bikg(z;,qk) + Paxs. If dy = 1 and dy = 2, it becomes
f(x) = Bo+ Brig(x, q11) + Bag(x, ga1) + Paog(z, ga2) + Pszs.

When building a multivariable FP model for a given training dataset, it is crucial to
choose the FP forms and select the covariates with influences on the outcome. Sauerbrei
and Royston [17] have introduced an algorithm which is referred to as multivariable model-
building with FP (MFP). The MFP algorithm runs for several cycles. In each cycle, a variable
selection method, BE, is applied to choose continuous variables and binary variables which
are significant to the outcome Y at the level ;. To determine the optimal FP transformation
for each continuous variable, MFP first picks out the best-performance functions for both
degree 1 and degree 2 (best FP1 and best FP2), which have the largest log-likelihood among
all possible functions. Next, it finds the best function for the variable by the log-likelihood
ratio (x?) test at a significance level ay. The test statistic is minus twice the difference in
the log-likelihood. A typical choice for the significance levels is ay = @y = 0.05. Normally,
the algorithm converges after 2-4 cycles [17]. The MFP algorithm is described as following

[15]:

1. Choose the significance level oy for BE and as for the log-likelihood ratio test.

2. Choose the maximum permitted degree d for the FP functions. The default choice is
d=2.

3. Fit the full linear model, which is f(z) = Gy + Z?:I Bjx;. Initialize the final model
Myina = Bo + E?i{ Bjx;.

4. Order the variables increasingly according to their p-values. The variables are now
T(1), T(2); - - - » L(htry and the final model is Myina = Bo + Z’-ﬁr Bz (j)-

j=1

16

5. Initialize the cycle ¢ = 0.

6. Forj=1,....h+71r:

RN ’ lenls X

(a) If z(;y is binary, performs a log-likelihood ratio test at the significance level a; of
Minq against the same model without x(;). If x(;) is significant, keep it in the
model My;pq. Otherwise, remove it.

(b) If x(;) is continuous:

i.

ii.

iil.

1v.

vi.

Define Mgna and My: Mg = M + Bjx(j), where M; contains all the
covariates in Mg except x(;. If the variable ;) is omitted from My, in
the last cycle, 8; = 0.

Search for the best FP1: compute the log-likelihood of 8 models M; +
Bjx%, where ¢g; € S and choose the best-performance FP1 model with the
largest log-likelihood (best FP1 for z(;)).

Search for the best FP2: compute the log-likelihood of 36 models M; +
Bi19(x (), 41) + Bi29((), gj2), where g;1,q;2 € S and choose the FP2 model
with the largest log-likelihood (best FP2 for z;)).

Test best FP2 vs M;: perform a y? test of the best FP2 against the model
M, (i.e., z(j) excluded) at the significance level . If the test is significant,
continue. Otherwise, update My;nq = M.

Test FP2 vs linear: perform a x? test of the best 2-degree FP model against
M, + B;x(;) at the significance level ay. If the test is significant, continue.
Otherwise, update the Mo = M + B;x().

Test FP2 vs FP1: perform a x? test of the best 2-degree FP model against
the best FP1 model at the significance level as. If the test is significant,
update Myinq as the best FP2 model. Otherwise, update My;nq as the best
FP1 model.

7. Update the cycle counter ¢ = ¢ + 1. If the model M,y in cycle ¢ — 1 is the same
as in cycle ¢, the algorithm converges. Stop the procedure and return the fitted FP
model. If ¢ > ¢4 Where ¢4, is the maximum permitted cycles, stop the procedure
and return that the algorithm failed to converge in ¢,,,, cycles.

2.6 Fractional polynomials with shrinkage

The MFP algorithm utilizes a stepwise variable selection method which either includes or
omits a covariate in each step until all covariates in the model are significant at level ;. To
improve the prediction ability of the model given by MFP, it is possible to exploit the idea of
the post-selection shrinkage methods. Briefly, the MFP algorithm is run on a set of training
data for variable selection and for identification of the FP function. The resulting model by
MEFEP is referred to as Myiuq. Afterwards, it introduces a shrinkage factor(s), which may be

17

GSF, PSF or JSF, to the model M¢;,,. For example, if the final model identified by the
MFP algorithm is f(z) = By + B122? + o125 + Porx? + P33,

1. the model with a GSF is
F(@) = Bo + chra? + cBorxy " + Bt + cBsus.
2. the model with PSF is
f(x) = Bo + ClBlw% + C2B21£50'5 + 033221’3 + 4By,
3. the model with JSF is

flx) = Bo + C1Bl$% + 02521372_0'5 + 02522963 + 0353%-

The shrinkage factor is estimated by cross-validation as described in Section 2.2. The pre-
dictive power of the methods is investigated with an artificial dataset created by simulation
from a real data study in Chapter 4.

2.7 Fractional polynomials and boosting

2.7.1 Fractional polynomials as base-learners

As described in Section 2.3, component-wise boosting performs variable selection in the
fitting process and produces shrunk estimates of the regression coefficients. A set of base-
learners are fitted on the negative gradient to iteratively improve the model. One possible
choice for the base-learners is a class of FP1 and FP2. Implementation of this approach
using the R-package mboost |1 1] is presented herein. For each positive continuous variable
x, there are sixteen base-learners which are By+81272, Bo+5iz Y, ..., Bo+Pix2, Bo+ P2, Bo+
Brx~2log(x),. .., By + Bix®log(x). A base-learner for a binary variable z is 8y + Siz. In the
case of a model with two continuous variables x1, x5 and one binary variable x3, there are
sixteen base-learners for z, sixteen for x5 and one for z3 in the boosting algorithm. Each of
them is fitted to the negative gradient vector (see the component-wise Ly boosting algorithm
in Section 2.3) and the one with the least mean squared error is selected and added to update
the function estimate. This procedure is repeated at each boosting iteration.

The final model given by boosting is different from the FP model defined in Section 2.5
as the structure of each continuous variable in the final model is an additive combination
of functions selected from sixteen base-learners. At each iteration, indeed, a different form
of FP may be selected, and the resulting function is often a mixture of these. For example,
in the case of a regression analysis with only one covariate, boosting with FP can produce
a final model after M iterations, f(z) = By + f1x72 + foz ™ + Bza?log(x) + B4log(z)?.
Component boosting with FP transformation provides more varieties of functional forms
compared to the FP2 model. However, with many steps, boosting may yield an extremely

18

complicated model and result in overfitting. It is therefore crucial to stop the algorithm
before convergence and keep the step size v small (e.g., v = 0.1). The number of step for
stopping the procedure mg,, may also be estimated by AIC and the resampling method. In
the R-package mboost, cross-validation is served as a default choice. This method will be
investigated in Chapter 4 by fitting a set of data simulated from a real-life study.

2.7.2 Boosting on a fractional polynomials model

As the method introduced in the previous section produces a model which does not have
the same form as the FP model as described in Section 2.5, an alternative approach is here
proposed, which uses the MFP algorithm to determine the FP functional form of continuous
variables and the component-wise Ly boosting to fit the model and perform variable selection.
In essence, the procedure contains two steps. In the first step, the MFP algorithm is applied
to select the FP function for continuous variables. In the second step, boosting is performed
with the linear base-learners for the binary variables and the continuous variables which
are not selected by MFP and the fixed base-learners selected by MFP for the variables
with nonlinear effect. For example, in the case of three candidate variables xq,xs, x3, of
which z; and x, are continuous and x3 is binary. The MFP algorithm selects the FP
function log(x) for x1. The rest of the variables are not selected by MEFP. The base-learners
for the component-wise Lo boosting is therefore filog(x1), faxs and Bzxs. The prediction
performance of this method is evaluated based on MSPE on a set of test data in later analysis.

2.8 MFP and Lasso

The coefficients of variable in the MFP algorithm is estimated by least squares. Instead
of introducing shrinkage factors to the model given by the MFP algorithm as described in
Section 2.6, a novel method which combines MFP with Lasso (MFP-Lasso) is proposed. The
idea is to take the advantages of Lasso (shrinkage, variable selection) once the effect of the
predictors are modelled by FP. A two-step algorithm is proposed: (i) the MFP algorithm
is applied to select the FP function for each continuous covariate, (ii) Lasso is applied to
estimate the coefficients and perform variable selection. The covariates which are eliminated
by MFP enter into the model in linear forms in Lasso. The procedure is described as
following;:

1. Run the MFP algorithm on a training dataset and obtain the model M f;5q;.

2. Build a model M, which contains all terms in model My;,o; and the linear terms of the
covariates omitted by MFP.

3. Standardize the transformed predictors in the training dataset.

4. Run K-fold cross-validation for Lasso (see Section 2.4) to achieve the optimal value of
tuning parameter.

19

5. Fit the final model M, using Lasso with the optimal value for the tuning parameter
based on cross-validation.

20

Chapter 3

Small simulation study

In this chapter, a set of training data and test data is simulated according to the method
suggested by van Houwelingen and Sauerbrei [12]. A linear regression model with Gaussian
distribution is fitted using the following methods: least squares, post-selection shrinkage, Lo
boosting and Lasso. The fitted models are evaluated for the prediction performances based
on the MSPEs. One of the main goals is to add boosting to the comparison.

3.1 Design of the simulation data

In the simulation data, fifteen covariates x1,..., 215 are generated (i.e., P=15). The co-
variates have multivariate normal distribution with mean g = (0,...,0)” and covariance
matrix
1 0 0 O 07 0 O 0 0 05 0 0 0 0 O
0 1 0 O 0 05 0 0 o 0o o0 0 0 0 O
0 0 1 0 0 0 0 0 o 0 0 0 0 0 0
0O 0 0 1 o o0 o0 -07v 0 O O 0 0 0 O
07 0 0 O 1 0 O 0 o 0 o o 0 0 0
0 05 0 O 0 1 0 0 o 0 o0 o0 0 0 0
0O 0 0 O 0o 0 1 0 o 0 0 0 0 050
=10 0 0 -07 0 0 03 1 o 0 0 0 0 0 0
0 0 0 O 0 0 0 0 1 0 0 0 05 0 O
05 0 0 O 0 0 0 0 o 1 0 0O 0 0 O
0 0 0 O 0 0 0 0 o 0 1 07 0 0 O
0 0 0 O 0O 0 0 0 o 0 07 1 0 0 O
0 0 0 O 0o 0 0 0O 05 0 0 O 1 0 O
0 0 0 O 0 0 0 0 o o0 0 0 0 1 0
0 0 0 O 0 0 0 0 o 0 0 0 0 0 1

The regression coefficients for generating the response y are

B =(0,0,0,-0.5,0.5,0.5,0.5,1,1,1.5,0,0,0,0,0)".

21

The coefficients of variables x4, ..., z1o are nonzero, indicating that they are included in the
model. Most of the variables are correlated with each other (Figure 3.1). The correlation
between the variables are pg, .. = 0.7, 02,210 = 0.5, P22 = 0.5, 2,25 = —0.7, prgzr =
0.3, Parzrs = 0.5, Prg 215 = 0.5, pzyy 21, = 0.7. The variables x5 and x5 are independent which
are not correlated with any other variables. The response y is generated by adding a random

p=-0.7
X4 — X8

| p=0.3

=0.5
X10 £ X7

N N __ Relevant variables

p=0.5 p=0.5 @ Redundant variables
X6 X9
- N 4

o @ 00 Y,

Figure 3.1: An illustration of the relationships between different variables. Variables in
yellow are relevant for the true model; Variables in pink are redundant for the true model.
p denotes the correlation value.

error € with Gaussian distribution with mean 0 and variance o2. That is

y=x0B+e¢,

where = (z1,...,715) and € ~ N(0,02). In the study of van Houwelingen and Sauerbrei
[12], four scenarios are constructed with combinations of two sample sizes n and two variances
of random error € as illustrated in Table 3.1. In this study N = 2,000 samples are generated,
meaning that the whole fitting process using different methods is repeated 2,000 times. In
addition to the training data, the test data is also generated using the same procedure to
compute the MSPE.

Table 3.1: Sample sizes and random errors of each scenario

Scenario number Sample size n Random error €
1 100 e ~ N(0,6.25)
2 100 e ~ N(0,2.5)
3 400 e~ N(0,6.25)
4 400 e~ N(0,2.5)

22

3.2 Model fitting

A linear regression model is built using the training data. Consider a regression model

15
Yy = Zl’jﬁj + €,
j=1

where € ~ N(0,0?) and ¢ is unknown. For each scenario, the model is fitted via the following

methods:

Full:

Full with GSF:
BE(0.01):

BE(0.01) with GSF:
BE(0.01) with PSF:
BE(0.05):

BE(0.05) with GSF:
BE(0.05) with PSF:
BE(0.157):

BE(0.157) with GSF:
BE(0.157) with PSF:

Lasso:

Boosting:

a full model estimated by least squares with all variables.
a full model with a GSF (based on cross-validation).

BE with the significance level a = 0.01.

BE with GSF with the significance level a = 0.01.

BE with PSF with the significance level a = 0.01.

BE with the significance level o = 0.05.

BE with GSF with the significance level a = 0.05.

BE with PSF with the significance level o = 0.05.

BE with the significance level o = 0.157 (corresponding to AIC

[15).
BE with GSF with the significance level o = 0.157.

BE with PSF with the significance level @ = 0.157.

Lasso with the tuning parameter A based on the 10-fold cross-
validation (see Section 2.4).

Lo component-wise boosting with the linear base-learner Sz for
each covariate (see Section 2.3) and the maximum number of
iterations 500.

The whole procedure is described in detail as following:

1. For scenario 1,...,4:

2. Fori=1,... N:

(a) Data generation: generate n number of training observations and n number of
test observations according to the setting in Section 3.1.

23

(b) Model fitting: fit the model by the methods described above and 13 fit of model
are obtained.

(c) Prediction: compute the prediction of the 13 fitted models on test data gy, . . ., Uy.
(d) Prediction error: compute the MSPE, MSPE; = 3" (y, — 4x)?.

3. Compute the average MSPE over N = 2,000 repetitions which is % Zf\; MSPE;.

3.3 Results and discussions

3.3.1 Prediction performance

Table 3.2 illustrates the average of the MSPEs of the models fitted by the methods described
above over 2,000 repetitions under each scenario. The results are in agreement with the
previous findings by van Houwelingen and Sauerbrei |12], thus verifying the soundness of the
present approach.

It is apparent that the average MSPE under scenario 3 and 4 are smaller than that under
scenario 1 and 2, respectively, clearly indicating that the learning methods normally have
better prediction performance when the sample size is larger.

Boosting yields similar results as that produced by Lasso. The average MSPE is much
smaller than least squares under scenario 1 and 2, whereas the prediction performance of
boosting is close to least squares under scenario 3 and 4. Boosting and Lasso have reason-
able performances in the case of small sample size. For scenario 1 and 2, these methods
have smaller average MSPE than least squares. However, when the sample size increases,
both methods tend to have performances similar to the full model with the least squares
estimators. For all four scenarios, boosting and Lasso yield prediction models slightly better
than the full model. It may be concluded that for the purpose of prediction, boosting and
Lasso are both reasonable choices.

The averaged MSPEs of the post-selection shrinkage methods are smaller than that of
the BE method with the same significance level. It is likely that applying the shrinkage
factors to the models selected by BE may influence the prediction performances. The choice
of the significance level also has influence on the prediction performance. In the case of the
significance level a = 0.57 and o = 0.05, the resulting models under all scenarios predict
better than least squares. In the case of @ = 0.01, however, the prediction performance tends
to vary dramatically. With a small sample size (n = 100), the resulting models by BE and
post-selection shrinkage are worse than the full model in terms of prediction accuracy. When
the sample size is relatively large (n = 400), BE and post-selection shrinkage tend to have
similar performances as other methods. Under scenario 4, BE with GSF at the significance
level o = 0.01 yields the best prediction among all methods.

Figure 3.2-3.5 illustrates the distribution of the MSPEs of the fitted models over 2,000
repetitions under each scenario. Figure 3.6-3.9 illustrates the differences in MSPE between
all fitted and full models with least squares estimators under each scenario, in which the
MSPE of the full model is used as a baseline. While Table 3.2 confirms the results of

24

van Houwelingen and Sauerbrei [12], which shows a slightly better performance of the PSF
than GSF or Lasso when MSPEs are averaged, Figure 3.2-3.5 and 3.6-3.9 show a noticeable
variability (not shown in the original study) among the 2,000 repetitions, which reveals that
the differences in the performance of the methods are rather minimal.

Table 3.2: The average of the mean squared prediction errors (MSPEs) of the models fitted by
different methods over 2,000 repetitions. Full: least squares; GSF: global shrinkage factors;
BE: backward elimination; PSF: parameterwise shrinkage factors.

Method (significance level) Scenario 1 Scenario 2 Scenario 3 Scenario 4
Full 7.360 2.944 6.502 2.599
Full with GSF 7.230 2.922 6.495 2.598
BE (0.01) 7.459 3.034 6.498 2.556
BE (0.01) with GSF 7.419 3.024 6.496 2.555
BE (0.01) with PSF 7.414 3.019 6.496 2.557
BE (0.05) 7.316 2.922 6.455 2.563
BE (0.05) with GSF 7.259 2911 6.452 2.562
BE (0.05) with PSF 7.227 2.898 6.450 2.561
BE (0.157) 7.308 2.907 6.466 2.577
BE (0.157) with GSF 7.222 2.892 6.462 2.577
BE (0.157) with PSF 7.130 2.856 6.444 2.566
Lasso 7.159 2.893 6.477 2.589
Boosting 7.154 2.900 6.486 2.600

Scenario 1: n =100, o° = 6.25

15 |
14 |
13

s o
5 12 . g 8 g o 8
§ g j g o 8 ° o g g
O R N S i S N A E S T I
s | : ! | BB
T 94 3 : ‘ : |
z ot 1 : LIl] T s B Y
38 I N s N N N e s v e s e |
2 6 1 3 ! !
51 | i
. i e S S
= w = w w o w w ~ w w o j=2)
£ 8 g 8 g & 8 g2 & 8 ¢ & 3
£ o £ £ prg £ £ e £ £ - s
E @ E £ @ E s g 3 s @
2 s 3 g g E &
S = =1 =1 S s
@ & @ @ o g

Figure 3.2: Boxplots of mean squared prediction error (MSPE) of different methods on a set
of test data under scenario 1 (n = 100, 02 = 6.25).

25

Scenario 2: n =100, o> = 2.5

(- Bupsoog

| osseq

F 4Sd uum (2G1°0)38

- 4S9 uum (261°0)39

+(2610)39

I 4Sd uum (50°0)38

I 4S9 uim (50°0)3g

+(s0°0)38

I 45d um (10°0)3g

I 459 uim (10°0)38

- (100)3g

- 4SO Wming

- ind

< ~) ™ N
Jous uonjoipaid pasenbs uespy

400, 6° = 6.25

Scenario 3: n

oo

oo

- Bunsoog

| osseq

F 4Sd uim (261°0)3g

4S9 wm (261039

+ (251039

I 4Sd uim (G0°0)39

I 4S9 wm (50'0)3d

+ (so°0)3g

+ 4Sd wim (L0'0)39

I 459 wm (10'0)3g

+ (10°0)3g

F 4SO WM |ing

rind

Figure 3.3: Boxplots of mean squared prediction error (MSPE) of different methods on a set

of test data under scenario 2 (n = 100, 0? = 2.5).

~ ~
10118 UoNO|

1
i
t T T
0 < ©
© o w
paid pasenbs uesy

6.25).
26

Figure 3.4: Boxplots of mean squared prediction error (MSPE) of different methods on a set

of test data under scenario 3 (n = 400, o2

e I [S T o |- Bugsoog

4006°=25

Scenario4: n

- Bunsoog

H

““““““ foo o | ossen | osse

o
o
1 i :
ol g il il mhi

T
°

oom 8+ * oco | 49d yum (2G1°0)3g 0o ol: ..Toa I 4Sd uim (2G1°0)38
A
I
5o §+ ““““““““““““ T s | 489 uIm (251°0)3g ° i @ Tu o I 4S9 uim (251°0)3g
L
,
|
e |l ——— Jooo | (zs10)38 o oo {[= e L (z510)38
I
[l
|
|

““““““ ATE L 48d yim (g0'0)3g F---- TBO I 4Sd um (50°0)3g

“““ | T@ I 489 uim (50°0)39

o E.+ Tg I (s0°0)3g
o ® comma - ﬁ “““ fow oo |- d5d UM (L0'0)38
. o o comnf - ﬁ f= oo 459 UM (10'0)38

““““““ Ta I 459 uim (50°0)3g

““““““ Te I (0°0)3g

Scenario 1: n =100, o> = 6.25
0

““““““ foo | d5d WM (L0'0)38

............ Ta 459 uim (1L0°0)3g

—
i
e 1 Jeo (100138 o o covmom - ﬁ “““ o @ | (10'0)38
i
i
“““““““““““““ * oo | 499 yum [ing -1 ITO I 4S9 yum jind
! i
““““““““““““ + o - IIn4 _ - 1nd
i
! i
T T T ,_ T T T T T t T
N o © © ¥ 9~ o © ~ ~ ° o
o« o~

) o o o o

Jouis uonoipaid palenbs ueapy JdSIN Ul 9dusIBlIq

Figure 3.5: Boxplots of mean squared prediction error (MSPE) of different methods on a set

of test data under scenario 4 (n = 400, 0? = 2.5).
i
— -
]
Figure 3.6: Boxplots of the differences in mean squared prediction error (MSPE) of different

methods and least squares on a set of test data under scenario 1 (n = 100, 0% = 6.25).

27

Scenario 2: n =100, 6> = 2.5

e ---

i

===} F===}
[

=

o wamo-

8
TR
b1
E_m-ﬁ-ﬁ-p-i--\-;——--—k
B

o

;
i
]
il

- Bupsoog

| osseq

b 4Sd um (£61°0)38

F 4S9 uum (261°0)39

+(261°0)39

F 4Sd um (G0 0)39

I 4S9 uIm (50'0)3g

+ (50°0)38

+ 45d ym (L0'0)3g

I 459 um (1L0°0)38

+ (L00)38

F 4SO Wwm|ing

- ind

T T T
0 < ©
- - o 5}

SN U1 BoUBISYIa

5

T
<

Figure 3.7: Boxplots of the differences in mean squared prediction error (MSPE) of different

methods and least squares on a set of test data under scenario 2 (n = 100, 0% = 2.5).

400, 6% = 6.25

Scenario 3: n

_____r__‘__‘_r__‘__l_
[

.
e

=+

- Bunsoog

| osse

I 4Sd uim (2G1°0)38

4S9 wm (261039

(51039

I 4Sd um (G0°0)3g

I 459 wm(s0'0)3g

- (s0°0)3g

F 4Sd wim (10°0)38

I 459 wm(10'0)39

+(10°0)3g

4SO umiing

- ind

<
o

T
©
o

T
<
o

T
N
o o -

ddSIN Ul SdusIapIg

|
1
1
|
y
t
<

T
N
o

-0.4 4

-0.6 -

Figure 3.8: Boxplots of the differences in mean squared prediction error (MSPE) of different

methods and least squares on a set of test data under scenario 3 (n = 400, 0% = 6.25).

28

Scenario 4: n = 400 % = 2.5

0.2+
.

90 Oo o o
I B : S |

0.1 g O a
SRR S S T S g 4

T e Eae e
Pt

I?ifference in MSPE

-0.2

Full

BE(0.01) with GSF - oo

BE(0.01) with PSF | ©

BE(0.05) |

BE(0.05) with GSF -|
BE(0.05) with PSF -|

BE(0.157)

BE(0.157) with GSF

BE(0.157) with PSF

Lasso

Boosting |

Figure 3.9: Boxplots of the differences in mean squared prediction error (MSPE) of different
methods and least squares on a set of test data under scenario 4 (n = 400, 0% = 2.5).

3.3.2 Variable selection

Figure 3.10 shows the number of inclusion frequency of the covariates selected by different
methods (i.e., BE with @ = 0.01,0.05,0.157, Lasso, Ly boosting) under different scenarios.
When the sample size is relatively small and variability is large (i.e., scenario 1), Lasso and
boosting tend to produce models with a large number of covariates, including both relevant
and redundant variables. On the contrary, BE tends to produce sparser models and the
inclusion of the redundant variables is close to the nominal value (i.e., Type I error, here «).

When the sample size increases and the variability decreases (i.e., scenario 4), BE with
three significance levels outperforms Lasso and boosting in terms of variable selection. Back-
ward elimination produces models with almost all relevant variables. Lasso and boosting se-
lect all relevant variables, however, many redundant variables as well. In several repetitions,
boosting selects the redundant variable x; which is correlated with the relevant variables xs
and x19 with value 0.7 and 0.5, respectively. It may be concluded that boosting is not able to
exclude from the final model redundant variables which are highly correlated to the relevant
variables.

The present results also show that the BE method is sensitive to the sample size and
variability. When comparing scenario 1 and 4, BE includes all relevant variables and reduces
the frequency of including redundant variables. In contrast, the size and variability of the
sample seems to have less impact on variable selection.

29

Scenario 1

BE(0.01) BE(0.05) BE(0.157) Lasso Boosting
- 2000 - 2000 2000 < 2000 - 2000
] g & 3 §
21500 21500 21500 21600 31600
H H H H H
5 1000 5 1000 5 1000 3 1000 5 1000
HEY) |:| £ s DI:IHU £ 50 U HEY) |:| U H HEY) H |:|H
EN EI.:._DD D eeca- 2, 0Ea poale ¢ DDDDD CN 2,
cyoyLorRROrNOTY cupTooNBOOC DT cNeYOerOoOCan TG caetuorTgOrAnTY cyoTooLoaOrNDE D
RERRRRRRNTLIING ERE R R R *ERRRRRRRECII LT RRRRRERERETIINT RERERRRNRRTLIINT
variables variables variables variables variables
Scenario 2
BE(0.01) BE(0.05) BE(0.157) Lasso Boosting
L 200 . 2000 . 200 2000 L 200
g g é 3 g
3 1500 21500 21500 31800 31500
]] T 3 il
£ £ £ £ £
5 1000 51000 1000 51000 51000
3] k 3 3
£ 500 [I E 500 E 500 D DDDD £ 500 E 500
R | = 2, meslle ¢, ba B :) z o,
RYRRRERRRECOTIC RRERRRECTOIT RERLTReNERSCIDID RERERERRUS IO FERRARNRRECIEEE
KRR RRR RERRRRK XRERRE XREREX KRRk %
variables variables variables variables variables
Scenario 3
BE(0.01) BE(0.05) BE(0.157) Lasso Boosting
200 2000 2000 2000 200
g g g 3 g
31500 21500 21500 21500 21500
£ £ g H g
3 1000 510 5 1000 3 1000 1000
E 500 E 500 E 500 E 500 g 500
E E £ H E
: 10 = L (= o P g, Hﬂl_”_”-l L L
RURERERERECECLL FURERERRRE-oEIL RETRRGRRRECLDIL REGRREREIECIDIE RURERRRERECNCLC
XX xR %X X %% R % XR%R XX XEX X %X %%k kR %
variables variables variables variables variables
Scenario 4
BE(0.01) BE(0.05) BE(0.157) Lasso Boosting

- 2000
-}

2000 2000 2000 3000
H §
L a0 2150 1500 ERED) EREN)
i 3
g 2 2
3 100 5100 1000 1000 1000
§ s 50 0 HE HE
: f— S ooo I0oo :
vy o vn cuo cam
14 H 1% PR R

IR KRR R K IR EERR EREERT] IR

number of inclusion
number of indusion

variables variabies variables variables variables

Figure 3.10: The number of inclusion for each candidate variable in 2,000 repetitions. The
x-axis is the variables x1 — x15 and the y-axis is the number of inclusion of variables in 2,000
repetitions.

Earlier stop in boosting

Figure 3.11 illustrates the inclusion of variables in the models fitted by boosting with a
smaller m0p. The maximal number of iterations is set to 100 which is the default setting in
the R-package mboost. Under each scenario, boosting tends to select only relevant variables
and fewer redundant variables, whereas x; which is correlated to two relevant variables x5
and x1g is included in several repetitions. In general, boosting identifies the relevant variables
in the first iteration, while also tends to include redundant predictors in later steps. If the
goal is to select correct variables for the model, an alternative way to select the best stopping
criterion (msg,,) must be used instead of cross-validation.

30

Scenario 1: n = 100, o° = 6.25 Scenario 2: n =100, o° = 2.5

2000_ I III
- o - @ o
x 8§ % X % % % % & € ¢ ¢ ¢ T 2
x x x x x x

2000

1500 1500 -
&
&
1000 o 2_1000-
w
500 4 II 500
o |
%% %2 2R 2R QD¢
> > > > > >

uency

Freq

o

Variables Variables
Scenario 3: n = 400, 0> = 6.25 Scenario 4: n = 400, o> = 2.5
2000 2000
1500 - 1500
g)
c c
S1000 4 $1000
o o
& o
w w
500 -| l 500
. I. ..I I o) Hlm ===
%% % % % ®T ROR % ECOYLOToE %R % 'R OETRERETYDOToE
X X % %X % X T X % % % %

Variables Variables

Figure 3.11: The number of inclusions for the variables in the model fitted by boosting with
maximum iterations of 100.

31

Chapter 4

Artificial data example

In this chapter, the effects of independent variables are modelled by the FP functions. The
corresponding model is fitted by the methods described in Chapter 2 on a set of simulated
data [15]. The artificial (ART) dataset is simulated according to the characteristics of a real
dataset from a breast cancer study [15]. This dataset is used as it contains the following
characteristics which are useful for the present study: (i) the covariates have nonlinear effects;
(ii) there is a sufficient number of observations; (iii) the outcome has a Gaussian distribution.
The MSPE is used to evaluate the performances of different methods as described in Chapter
3.

4.1 Artificial data

The ART dataset contains 5,000 observations. Each observation has a continuous response
variable y and 10 covariates z1,...,z19 which consist of continuous (x1, z3, x5, ¢, T7, T10),
binary (z2 and xg) and categorical variables (z4 and z9). To avoid zero, the value of one
is added to the predictor x¢ and x; for later FP analysis. Variables x4 and x9 have three
levels (category 1, 2, 3), with x4 being ordinal and x¢ being unordered (e.g., the risk of an
individual to default a mortgage which can be categorized by high, moderate and low is
considered as an ordinal variable, whereas the gender of an individual is considered as an
unordered variable). Variable z4 are coded into two dummy variables, x4, (category 1 and
2) and x4, (category 3). For xg, category 2 and 3 are combined when coding into dummy
variables, as category 3 is sparse.

Table 4.1 shows the distribution of continuous variables in the ART data. The response
y, covariates x; and x19 are approximately normally distributed as the values of kurtosis
and skewness are close to 3 which is the kurtosis of a normal distribution. The kurtosis
and skewness of variables x3, x5, 16 and x; are large, indicating that they have nonnormal
distribution. The maximal values of x5, r¢ and x; are much larger than the corresponding
mean, indicating possible presence of influential data points.

32

Table 4.1: Distribution of continuous variables in the artificial (ART) dataset

Variable Mean SD Min. Max. Skewness Kurtosis ~ Missing

Y 12.1 1.0 7.3 15.5 -0.1 3.1 0

T 54.5 10.0 20.0 88.0 0.0 3.0 0

T3 214 9.1 5.0 82.0 1.2 5.9 0

Ts 6.8 32.4 0.2 1370.9 32.3 1221.7 0

T 146.7 221.1 1.0 3397.0 5.1 46.8 0

T 112.2 172.8 1.0 2441.0 5.0 43.5 0
T10 16.8 8.2 0.1 64.9 0.8 4.1 0

4.2 Model fitting

The ART data is by random repeatedly divided to two sets, a training dataset containing
500 observations (a typical sample size as suggested by Royston and Sauerbrei [15]) and a
test dataset containing 4,500 observations (the remaining observations from the dataset).
The training data is used to fit the model with different methods. The test data is used to
compute the MSPEs of the fitted models for evaluating the model performance.

In the fitting process, the MFP algorithm with the significance levels a; = 0.05 and
as = 0.05 is run for selecting the variables and choosing the FP transformation for continuous
variables x1, x3, x5, xg, 7 and x19. The resulting model fitted by MFP is further modified
with GSF, PSF and JSF, respectively. The Ly boosting algorithm with FP base-learners
(see Section 2.7) is applied to fit the training data. As the influential data points in x5 have
dominating effects on the resulting model, the base-learner for variable x5 is fixed as x5 °”°
which is suggested by the robust analysis performed by Royston and Sauerbrei [15]. Two
novel approaches which combine the MFP algorithm for the selection of FP functions with
Lasso (MFP-Lasso) and with boosting (MFP-boosting) are also used to fit the model on
the training data. The MSPEs of the fitted models are computed based on the test data.
The fitting process is repeated 1,000 times. In each repetition, the training data with 500
observations is randomly chosen from the ART data. The true model for simulating the data
is

f(z) =B+ 511$(1)'5 + Biaw1 + B33 + BagTaq + 55905_0'2 + Belog(xe) + Psxs + BioT1o-

4.3 Results and discussions

Figure 4.1 illustrates the distribution of the MSPEs of the fitted models over 1,000 repeti-
tions. The MSPEs of the models fitted by a series of methods (MFP, MFP-shrinkage factors,
MFP-Lasso, MFP-boosting) are close to zero, indicating reasonable prediction performances.
Figure 4.2 shows that the differences in MSPE among the methods are quite small, except
for boosting with FP base-learners, as most of the medians are close to zero. The effects of
GSF and PSF on the models fitted by MFP are fairly similar. Table 4.2 shows the average

33

and standard deviation of the MSPE of 1,000 repetitions. The mean of the model with
JSF is slightly smaller than that of the MFP model. The results reveal the effects of JSF
on improving the prediction accuracy of the MFP model. The fitted models produced by
MFP-Lasso and MFP-boosting tend to have MSPEs similar to MFP.

A relevant number of values for the MSPE of the models fitted by boosting with FP base-
learners (right plot of Figure 4.1) are large, resulting in a large average and large standard
deviation in Table 4.2. The prediction performance of this implementation of L, boosting
is worse and unstable compared to other models. When evaluating the prediction error
on the training data, boosting with the FP base-learners has the smallest averaged mean
squared residuals over 1,000 repetitions (data not shown), which may indicate overfitting.
However, this is probably not the most serious problem of this method. As the number of
base-learners for each variable is large (16 base-learners), boosting chooses a lot of different
functional forms. As a result, at least one function is often incorrectly chosen, which tends to
lead to a bad prediction performance of this method. The highest value of MSPE obtained
by the other methods (not only those displayed in the left plot in Figure 4.1, but especially
some more excluded from the plot for displaying reason) corresponds to iterations in which
MFP selects the wrong FP, meaning that selecting the wrong FP leads to a bad prediction
performance.

0.8 1 ° 5

e
~
]

o
o
I

0 O
Mean squared prediction error
w
1
-—-—-—-—}:nxm ®OOWOC O GO BAUOD

Mean squared prediction error
o
D
1

0.4

MFP

MFP with Global
MFP with PSF |
MFP with JSF
MFP-Lasso
MFP-Boosting -
Boosting with FP —

Figure 4.1: Boxplots displaying the mean squared prediction errors (MSPESs) of fitted models
on the test data. The few largest values on the figures are not included.

34

0.05 . 10 - g
Qo
. 8
8 o 8
g 1 l 8 l 8
5 : 5 g
S l N 2 g
s - P | s g
| . w . ° 8
50.00 - i 7 5]
3 L e *E | 3 6 :
o o 8 o
9 T e
[N ° =) [s %
he] o 3 o o
8 ° 8
E : 5 4 l
o o
20,05 - ° ?
c c
(]]
2 B 1
o o i
o
0.10 ot —
T T T T T T T
o ® ™ L o) =] o
.) [77) a £ .
= 5§ ¢ - &8 3 £
- 0 =
e 3 3 § o o
= o = o <
[w [=
g = = = g
= o

Figure 4.2: Boxplots displaying the differences in mean squared prediction errors (MSPESs)
between fitted models and multivariable model-building with fractional polynomials (MFP).

Table 4.2: Mean squared prediction errors (MSPEs) and standard deviations of the fitted
models over 1,000 repetitions. MFP: multivariable model-building with fractional poly-
nomials; GSF': global shrinkage factors; PSFE: parameterwise shrinkage factors; JSF': joint
shrinkage factors; FP: fractional polynomials; MSPE: mean squared prediction error.

Method MSPE Standard deviation
MFP 0.542 0.312

MFP with GSF 0.539 0.233

MFP with PSF 0.547 0.361

MFP with JSF 0.541 0.229
Boosting with FP base-learners 12.952 105.464
MFP-Lasso 0.543 0.308
MFP-Boosting 0.542 0.214

35

Chapter 5

Conclusions

In this thesis, the prediction performances of a series of methods, namely shrinkage factors
(global, parameterwise and joint shrinkage), Lasso and boosting (with and without FP) are
evaluated and compared. The performances of these methods are contrasted in two case
studies, in which different types of effects, linear and a combination of linear and nonlinear
effects are present. The MSPE computed on an independent test set is used as an evaluation
criterion.

In the case of only linear effects, the results show that post-selection shrinkage factors
may improve the prediction performance of the least squares method when the data contains
a lot of information and does not have much unexplainable variability. When the sample
size is small and the variability is large, boosting and Lasso can improve the prediction per-
formance of the least squares method. The significance level has an impact on the prediction
performance of the post-selection shrinkage methods. All in all, the present study suggests
that a combination of BE with the significance level a = 0.157 (AIC) and PSF may in
general yield the best prediction result.

In the case of a combination of linear and nonlinear effects of independent variables, the
results show that L, with FP base-learners has a bad performance in terms of prediction. For
each variable, it selects a number of functions which may lead to poor prediction accuracy.
For building an FP model, Ly boosting with the FP base-learners implemented in the R-
package mboost is thus not recommended. When contacting the developer of the method (T.
Hothorn) for an opinion, he confirmed that using FP within the boosting algorithm is "a bad
idea". Other methods, such as MFP with shrinkage factors, MFP-boosting and MFP-Lasso,
have similar prediction performances as the MFP algorithm, but show some potential.

The latter two methods, in particular, are novel and it may be worth performing further
investigations in the future. For example, a better way to select the functional forms without
the need to implement the MFP algorithm, may be developed. Future extensions of the
present study may consider other approaches, such as boosting with splines as the base-
learners which is currently widely used in practice in contrast to the less-studied boosting
with FP approach.

36

Bibliography

1]
2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

L. Breiman. Arcing classifier. The Annals of Statistics, 26:801-849, 1998.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493—
1517, 1999.

P. Biihlmann and T. Hothorn. Boosting algorithms: regularization, prediction and
model fitting. Statistical Science, 22:477-505, 2007.

P. Bithlmann and B. Yu. Boosting with the l5 loss. Journal of the American Statistical
Association, 98:324-339, 2003.

J. B. Copas. Regression, prediction and shrinkage. Journal of the Royal Statistical
Society. Series B (Methodological), 45:311-354, 1983.

D. Dunkler, W. Sauerbrei, and G. Heinze. Global, parameterwise and joint shrinkage
factor estimation. Journal of Statistical Software, 69:1-19, 2016.

J. Friedman. Greedy function approximation: a gradient boosting machine. The Annals
of Statistics, 29:1189-1232, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. The Annals of Statistics, 28:337-407, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33:1-22, 2010.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer,
2009.

B. Hofner, A. Mayr, N. Robinzonov, and M. Schmid. Model-based boosting in r: a
hands-on tutorial using the r package mboost. Computational Statistics, 29:3-35, 2014.

H. V. Houwelingen and W. Sauerbrei. Cross-validation, shrinkage and variable selection
in linear regression revisited. Open Journal of Statistics, 3:79-102, 2013.

J. C. V. Houwelingen and S. L. Cessie. Predictive value of statistical models. Statistics
i Medicine, 9:1303-1325, 1990.

37

[14]

[15]

[16]

[17]

18]

P. Royston and D. G. Altman. Regression using fractional polynomials of continuous
covariates: parsimonious parametric modelling. Journal of the Royal Statistical Society.
Series C' (Applied Statistics), 43:429-467, 1994.

P. Royston and W. Sauerbrei. Multivariable model-building: a pragmatic approach to
regression anaylsis based on fractional polynomials for modelling continuous variables.
John Wiley & Sons, 2008.

W. Sauerbrei. The use of resampling methods to simplify regression models in medical
statistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 48:313—
329, 1999.

W. Sauerbrei and P. Royston. Building multivariable prognostic and diagnostic models:
transformation of the predictors by using fractional polynomials. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 162:71-94, 1999.

M. Schumacher, G. Basert, H. Bojar, K. Huebner, M. Olschewski, W. Sauerbrei,
C. Schmoor, C. Beyerle, R. Neumann, and H. Rauschecker. Randomized 2 x 2 trial eval-
uating hormonal treatment and the duration of chemotherapy in node-positive breast
cancer patients. Journal of Clinical Oncology, 12:2086-2093, 1994.

38

W ~NO O WN -

WNNNDNDDMDNDNNNDDMNDNNDNE PP P2 222
O WO NOOU P WNEFE, O OWOWONOOPDd WN - O O

Appendix A

R scripts

All the R codes used for the case studies in this thesis are listed as the following.

A.1 R codes for the small simulation study

Import necessary packages
library (MASS)

library (glmnet)

library (shrink)

library (mboost)

Define the necessary variables
N = 2000

n = c(100, 400)

sigma = c(sqrt (6.25), sqrt(2.5))
mu = rep (0, 15)

true.beta = Oxseq (1, 15)

true.beta[4] = —0.5
true.beta[5:7] = 0.5
true.beta[8:9] =1

true.beta[10] = 1.5

Sigma = diag(x = 1, nrow = 15, ncol = 15)

Sigma[l,5] = Sigma[5,1] = Sigma[l1l,12] = Sigma[12,11] = 0.7
Sigma[7,14] = Sigma[14,7] = Sigma|[l,10] = Sigma[10,1] =
Sigma[2,6] = Sigma[6,2] = Sigma|9, 13] = Sigma[l13,9] = 0.5

Sigma|[4,8] = Sigma|[8,4] = —0.7

Sigma[7,8] = Sigma[8,7] = 0.3

mspe = matrix (0, nrow = N, ncol = 52)

mse = matrix (0,nrow = N, ncol = 52)
varinclusion .BE = matrix (0,nrow = 15,ncol = 12)
varinclusion . boosting = matrix (0,nrow = 15,ncol = 4)
varinclusion.lasso = matrix (0,nrow = 15,ncol = 4)

alpha = ¢(0.01,0.05,0.157)

Fitting process
for (i in 1:2){

39

31
32
33
34
35
36
37
38
39
40

41
42

43
44
45

46

47
48
49

50
51
52
53
54
55
56

57

58
59

60
61
62
63
64
65
66
67

68

print (paste0("n = ",n[i]))
for (j in 1:2){
print (paste0 ("sigma =
for (k in 1:N){

n

;sigmal[j]))

X.train = mvrnorm(n[i] ,mu, Sigma)

y.train = x.train%+%true . betat+trnorm(n[i|,0,sigmalj])

x.test = mvrnorm(n|i],mu,Sigma)

y.test = x.test%«%true . betatrnorm(n[i],0,sigmalj])

Full model via OLS

Ir. full = lm(y.train~.—1, data = as.data.frame(x.train),x = TRUE,y =
TRUE)

mse [k, (1—-1)%26+(j —1)*x13+1] = mean(1lr.full$residuals ~2)

mspe [k, (1—1)%26+(j—1)*x13+1] = mean((y.test—predict (lr.full ,newdata = as.
data.frame(x.test),type = "response"))"~2)

Full model with a global shrinkage factor

full.global = shrink (1lr.full , type = "global", method = "jackknife")

mse [k, (1—1)%26+(j —1)%x13+2] = mean((y.train—predict (full.global ,newdata =

as.data.frame(x.train) ,type = "response"))"2)
mspe [k, (1—1)*%26+(j —1)*13+2] = mean((y.test—predict (full.global ,newdata =
as.data.frame(x.test) ,type = "response"))"2)

BE with shrinkage
for (h in 1:3){

Ir . variable.selection = as.data.frame(dropl(lr.full, test = "Chisq"))
[_17]
new.model = Ir. full
while (max(1r . variable.selection [, "Pr(>Chi)"])>alpha[h]){
most . insig.row = which.max(1r.variable.selection[, "Pr(>Chi)"])
most . insig.var = rownames(lr.variable.selection)|[most.insig.row|
old . formula = formula (new.model)
new . formula = update(old.formula,paste(".”. =", most.insig.var))
new.model = lm(formula = new.formula,data = as.data.frame(x.train),
x = TRUE, y = TRUE)
Ir . variable.selection = as.data.frame(dropl(new.model, test = "Chisq
"))[_1a]
for (m in as.numeric(gsub(".*?([0—9]+).*3" "\\1" ,rownames(as.data.

frame (new.model$ coefficients))))){
varinclusion .BE[m, (i —1)*6+(j —1)*3+h] = varinclusion .BE[m, (i —1)*6-+(]

—1)*3+h]+1
BE
mse [k, (1—-1)%26+(j —1)*13+3+(h—1)*3] = mean((y.train—predict (new.model,
newdata = as.data.frame(x.train) ,type = "response"))"2)
mspe [k, (1 —1)*26+(j —1)*13+3+(h—1)*3] = mean((y.test—predict (new.model,
newdata = as.data.frame(x.test),type = "response"))"2)

BE with GSF
BE. global = shrink (new.model, type = "global", method = "jackknife")
mse |k, (1—1)%26+(j —1)*13+4+(h—1)*3] = mean((y.train—predict (BE. global ,

newdata = as.data.frame(x.train) ,type = "response"))"2)
mspe [k, (1—1)%26+(j —1)*13+4+(h—1)*3] = mean((y.test—predict (BE. global ,
newdata = as.data.frame(x.test),type = "response"))"2)

40

69
70

71

72

73
74
75
76
7

78
79
80
81

82

83
84

85

86
87

88

89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

BE with PSF

BE.pw = shrink (new.model, type = "parameterwise", method = "jackknife"
)
mse [k, (1—-1)%26-+(j —1)*13+5+(h—1)*3] = mean((y.train—predict (BE.pw,
newdata = as.data.frame(x.train) ,type = "response"))~2)
mspe [k, (1—1)%26+(j —1)*13+5+(h—1)* 3] = mean((y.test—predict (BE.pw,
newdata = as.data.frame(x.test),type = "response"))"2)
}
Lasso
cv.fit = cv.glmnet(x = x.train, y = y.train, nfolds = 10, alpha = 1)
lambda.hat = cv. fit $lambda.min
lasso. fit = glmnet(x = x.train, y = y.train, alpha = 1, lambda = lambda.
hat, family = "gaussian")
for (m in which(lasso.fit$beta! = 0)){
varinclusion.lasso [m,(i—1)*24+j] = varinclusion.lasso [m,(i—1)*2+j]+1
mse [k, (1—1)%26+(j —1)*x13+12] = mean((y.train—predict(lasso.fit ,newx = x.
train ,s = lambda.hat,type = "response"))"2)
mspe [k, (1—1)%26+(j —1)*x13+12] = mean((y.test—predict(lasso.fit ,newx = x.
test ,s = lambda.hat,type = "response")) ~2)
Boosting
boosting . fit = glmboost(y = as.vector(y.train), x = x.train, family =
Gaussian (), control = boost_control (mstop = 500))
cvm=cvrisk (boosting. fit , folds = cv(model.weights(boosting.fit), type =
"kfold", B = 10))
boosting . fit [mstop (cvm) |
for (m in as.numeric(gsub(".*?([0—9]+).%$" ,"\\1" ,names(coef(boosting. fit
[mstop (cvn) |))))) 1
varinclusion . boosting [m,(i—1)*2+j] = varinclusion.boosting [m, (i—1)*2+]
]+1
mse [k, (1—1)%26+(j —1)*x13+13] = mean(boosting. fit [mstop(cvm)]|$resid () ~2)
mspe [k, (1—1)%26+(j —1)*x13+13] = mean((y.test—predict (boosting. fit [mstop (
cvmm) | ,newdata = x.test ,type = "response'"))"2)
}
}
}
Average of the mean squared prediction error
avg.mse — apply (mse,2 ,mean)
avg.mspe = apply (mspe,2 ,mean)
Boosting with the maximal iterations in 100

varinclusion . boosting . early = matrix (0,nrow = 15,ncol = 4)
mspe. early = matrix (0,nrow = N, ncol = 4)
istop = matrix (0,nrow = N, ncol = 4)
for (i in 1:2){
print (paste0("n = " ,n[i]))
for (j in 1:2){
print (paste0 ("sigma = " ,sigmalj]))
for (k in 1:N){
X.train = mvrnorm(n[i],mu, Sigma)

41

109
110
111
112

113

114
115
116

117

118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152

y.train = x.train%%true . betat+rnorm(n[i|,0,sigmalj])
x.test = mvrnorm(n[i] ,mu,Sigma)
y.test = x.test%«%true.betatrnorm(n[i],0,sigmalj])
boosting.early.fit = glmboost(y = as.vector(y.train), x = x.train,
family = Gaussian())
cvim = cvrisk (boosting.early.fit , folds = cv(model.weights(boosting.early
.fit), type = "kfold", B = 10))
boosting . early. fit [mstop (cvm) |
istop [k,(i—1)%2+j] = mstop (cvm)
for (m in as.numeric(gsub(".*?([0—9]+).%3" ,"\\1" ,names(coef(boosting.
early . fit [mstop(cvm)]))))){
varinclusion . boosting.early [m,(i—1)%2+j]| = varinclusion.boosting.early
[m, (1—1)%2+j]+1
mspe. early [k,(1i—1)%2+j] = mean((y.test—predict (boosting.early. fit [mstop(
cvm) | ,newdata = x.test ,type = "response"))"2)
}
}
}
Boxplots of MSPE

par(oma = ¢(6.5,0,0,0) ,las = 2,cex.axis = 1.4,cex.lab = 1.4,cex.main = 1.6)
Scenario 1
boxplot (mspe|,1:13],xaxt = "n" ,yaxt = "n")
abline (h = median(mspe[,1]) ,1ty = 2,lwd = 2,col = "red")
axis (2,at = seq(4.0,15.0,by = 1))
axis(l,at = 1:13,
labels = c¢("Full","Full with GSF",

n

"BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",
"BE(0.05)","BE(0.05) with GSF",("BE(0.05) with PSF",
"BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",
"Lasso" ,"Boosting"))

title (main = expression (bold(paste("Scenario 1: n = 100, ", sigma~2, " = 6.25"

)))
ylab = "Mean squared prediction error")
Scenario 2

boxplot (mspe|,14:26],xaxt = "n")
abline (h = median(mspe[,14]) ,1ty = 2,lwd = 2,col = "red")
axis(l,at = 1:13,

labels = c¢("Full","Full with GSF",
"BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",
"BE(0.05)" ,"BE(0.05) with GSF","BE(0.05) with PSF",
"BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",
"Lasso" ,"Boosting"))
title (main = expression (bold(paste("Scenario 2: n = 100, ", sigma~2, " = 2.5")
))7
ylab = "Mean squared prediction error")
Scenario 3

boxplot (mspe|,27:39],xaxt = "n")
abline (b = median (mspe|,27]) ,lty = 2,lwd = 2,col = "red")
axis(l,at = 1:13,

42

153 labels = c¢("Full" ,"Full with GSF",

154 "BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",

155 "BE(0.05)" ,"BE(0.05) with GSF","BE(0.05) with PSF",

156 "BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",

157 "Lasso" ,"Boosting"))

158 title (main = expression (bold(paste("Scenario 3: n = 400, ", sigma~2, " = 6.25"
))) >

159 ylab = "Mean squared prediction error")

160 # Scenario 4

161 boxplot (mspe[,40:52] ,xaxt = "n")

162 abline (h = median(mspe[,40]) ,1ty = 2,lwd = 2,col = "red")

163 axis(l,at = 1:13,

164 labels = c¢("Full" ,"Full with GSF",

165 "BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",

166 "BE(0.05)","BE(0.05) with GSF","BE(0.05) with PSF",

167 "BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",

168 "Lasso" ,"Boosting"))

169 title (main = expression(bold(paste("Scenario 4: n = 400 ", sigma~2, " = 2.5"))
),

170 ylab = "Mean squared prediction error")

171

172 # Boxplots of the differences in MSPE between all methods and full
173 par(oma = ¢(6.5,0,0,0),las = 2,cex.axis = 1.4,cex.lab = 1.4,cex.main = 1.6)
174 # Scenario 1

175 boxplot (mspe[,1:13] —mspe[,1],xaxt = "n")

176 abline (h = 0,lty = 2,col = "red",lwd = 2)

177 axis (1l,at = 1:13,

178 labels = c¢("Full","Full with GSF",

179 "BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",

180 "BE(0.05)","BE(0.05) with GSF",("BE(0.05) with PSF",

181 "BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",

182 "Lasso" ,"Boosting"))

183 title (main = expression (bold(paste("Scenario 1: n = 100, ", sigma~2, " = 6.25"
)))

184 ylab = "Difference in MSPE")

185 # Scenario 2

186 boxplot (mspe[,14:26] —mspe[,14],xaxt = "n")

187 abline (h = 0,lty = 2,col = "red",lwd = 2)
188 axis(l,at = 1:13,

189 labels = c¢("Full","Full with GSF",

190 "BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",

191 "BE(0.05)" ,"BE(0.05) with GSF","BE(0.05) with PSF",

192 "BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",

193 "Lasso" ,"Boosting"))

194 title (main = expression(bold(paste("Scenario 2: n = 100, ", sigma~2, " = 2.5")
))7

195 ylab = "Difference in MSPE")

196 # Scenario 3

197 boxplot (mspe[,27:39] —mspe[,27],xaxt = "n")
198 abline (h = 0,lty = 2,col = "red",lwd = 2)
199 axis(l,at = 1:13,

43

200
201
202
203
204
205

206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

title

))

labels = c¢("Full" ,"Full with GSF",
"BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",
"BE(0.05)" ,"BE(0.05) with GSF","BE(0.05) with PSF",
"BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",

"Lasso" ,"Boosting"))
n

(main = expression (bold (paste("Scenario 3: n = 400, ", sigma~2, " = 6.25"

)
ylab = "Difference in MSPE")

Scenaro 4

boxplot (mspe[,40:52] —mspe[,40] ,xaxt = "n")
abline(h = 0,1ty = 2,col = "red",lwd = 2)
axis(l,at = 1:13,

title

)

labels = c¢("Full" ,"Full with GSF",
"BE(0.01)","BE(0.01) with GSF","BE(0.01) with PSF",
"BE(0.05)","BE(0.05) with GSF","BE(0.05) with PSF",
"BE(0.157)","BE(0.157) with GSF","BE(0.157) with PSF",
"Lasso" ,"Boosting"))

(main = expression(bold(paste("Scenario 4: n = 400 ", sigma~2, "

ylab = "Difference in MSPE")

Inclusion frequency

par (mfrow = c¢(4,5) ,oma = ¢(0,0,2,0) ,las = 2)
Scenario 1

barplot (varinclusion .BE[,1],ylim = ¢(0,2000),

mtext

namesarg — C(”Xl” "X2” ”X3ll "X4" ”X5ll "X6" ”X7ll "X8”
HX9" ||X10H !lxllll ||X12|| IIX13" ||X14ll "X15")
xlab = "Variables",ylab = "Frequency" ,main = "BE(0.01)")
("Scenario 1",side = 3,las = 0,outer = TRUE, font = 2)

barplot (varinclusion .BE[,2]

,ylim = ¢(0,2000)

7names'arg — C("Xl"7"X2","X3"7"X4","X5"7"X6","X7"7"X8",
"X9","X].O","Xl].","X].2","X].3","X14","X].E)")
,xlab = "Variables" ,ylab = "Frequency"

,main = "BE(0.05)")

barplot (varinclusion .BE[,3]

,ylim = ¢(0,2000)

,names.arg = c("x1","x2" "x3" "x4" "x5" "x6" "x7" "x8",
||X9ll ,“X].O” 7ll)(l]_" ,”X].?” 7")(13" ’"X].4" ,"X].5")
,xlab = "Variables" ,ylab = "Frequency"

,main = "BE(0.157)"

~—

barplot (varinclusion.lasso[,1]

,ylim = ¢(0,2000)

,names. arg — C("Xl" ,”XZ” ,”X?)" ,"X4" ,”X5" ,"X6" ,”X?” ,"X8" ,
||X9" 7")(10" 7ll){ll" 7ll}(l2” 7")(1:_))" ,"X].4" 7"}(15’)")

,xlab = "Variables" ,ylab = "Frequency"

,main = "Lasso")

barplot (varinclusion . boosting[,1]

,ylim = ¢(0,2000)
,names.arg = C(”X].","X2",”X3","X4”,”X5","X6",”X7"7"X8",
”X9"7"X10"7”X11","X12”7"X13","X14"7"X15")

44

249 ,xlab = "Variables" ,ylab = "Frequency"
250 ,main = "Boosting")

251

262 # Scenario 2

253 barplot (varinclusion .BE[,4]

254 ,ylim = ¢(0,2000)

255 ,names. arg = C(”X]." ,"X2" ,”X3" ,"X4" ,”X5" ,"X6" ,”X?“ 7"}(8" ,
256 HX9H7HX10H7HX11H7HX12H7"X13H’HX14"7HX15H)
257 ,xlab = "Variables" ,ylab = "Frequency"

258 ,main = "BE(0.01)")

259 mtext ("Scenario 2" ,side = 3,line = —18,outer = TRUE, las = 0,font = 2)
260 barplot(varinclusion .BE[,5]

261 ,ylim = ¢(0,2000)

262 ,names arg — C(”Xl" 7"){2” 7”X3" 7"}{4:” 7”X5" 7"}{6|| 7”X7" 7"}{8” ,
263 HX9H7HX10H’HX11H7HX12H7HX13H’HX14"7HX15H)
264 ,xlab = "Variables" ,ylab = "Frequency"

265 ,main = "BE(0.05)")

266 barplot(varinclusion .BE[,6]

267 ,ylim = ¢(0,2000)

268 ,names arg — C(”Xl“ 7"X2" ’”X3" 7"){4:” ’”X5" 7"){6|| ’”X7" 7"){SH ,
269 HX9H7HX10H’HX11H7HX12H7HX13H’HX14"7HX15H)
270 ,xlab = "Variables" ,ylab = "Frequency"

271 ,main = "BE(0.157)")

272 barplot (varinclusion.lasso [,2]

273 ,ylim = ¢(0,2000)

274 7names arg = C(”Xl“ 7"}(2" ’”XS" 7")(4:" ’”X5" 7")(6H ’”X7" 7"}(8H ,
275 "Xgu7HX10H’NX11H,HX12N’"X13H’HX14H’HX15H)
276 ,xlab = "Variables" ,ylab = "Frequency"

277 ,main = "Lasso")

278 barplot (varinclusion .boosting|[,2]

279 ,ylim = ¢(0,2000)

280 7names' arg — C("Xl" 7")(QH ’"XS" 7ll)(é‘:ll ’"X5" 7")(6" ’"X7" 7")(8" ,
281 "X9","XlO","Xll","X12","X13","X14","X15")
282 ,xlab = "Variables" ,ylab = "Frequency"

283 ,main = "Boosting")

284

285 # Scenario 3
286 barplot (varinclusion .BE[,7]

287 ,ylim = ¢(0,2000)

288 ,names.arg — C("Xl","X2","X3"7"X4","X5"7"X6","X7"7"X8",
289 HX9H7HX10H’HX11H,HX12H7HX13H7HX14"7HX15H)
290 ,xlab = "Variables" ,ylab = "Frequency"

291 ,main = "BE(0.01)")

292 mtext ("Scenario 3" ,side = 3,line = —35,las = 0,outer = TRUE, font = 2)
293 barplot (varinclusion .BE[,8]

294 ,ylim = ¢(0,2000)

295 ,names. arg — C("Xl","XZ","X3","X4","X5","X6","X7","X8",
206 "x9" "x10","x11","x12","x13" ,"x14" "x15")
297 ,xlab = "Variables" ,ylab = "Frequency"

298 ,main = "BE(0.05)")

299 barplot (varinclusion .BE[,9]

45

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

,ylim = ¢(0,2000)

,names. arg = C(”X]." ,"X2" ’||X3" 7"}(4H 7ll)(l{")" ,"X6" 7”)(7" 7"}(SH ,
uX9u7nX10n7uX11n,nX12u7uX13n’nX14u7nX15n)
,xlab = "Variables" ,ylab = "Frequency"
,main = "BE(0.157)")
barplot (varinclusion .lasso [,3]
,ylim = ¢(0,2000)
,names.arg — C("Xl"7"X2","X3"7"X4","X5"7"X6","X7","X8",
HX9H7HX10H’HX11H,HX12H7HX13H7HX14"7HX15H)
,xlab = "Variables" ,ylab = "Frequency"
,main = "Lasso")
barplot (varinclusion . boosting |, 3]
,ylim = ¢(0,2000)
,names. arg — C("Xl","XQ","X3","X4","X5","X6","X7","X8",
HX9H7HX10H’HX11H7HX12H7HX13H’HX14"7HX15H)
,xlab = "Variables" ,ylab = "Frequency"
,main = "Boosting")
Scenario 4
barplot (varinclusion .BE[,10]
,ylim = ¢(0,2000)
,names.arg = c("x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8",
||X9" ,“X].O” ’lelll ,“X].?” 7")(13" ’"X].4" 7")(15||)
,xlab = "Variables" ,ylab = "Frequency"
,main = "BE(0.01)")
mtext (" Scenario 4" ,side = 3,line = —51,las = 0,outer = TRUE, font
barplot (varinclusion .BE[,11]
,ylim = ¢(0,2000)
,names. arg = C(”X]." ,"X2" 7ll)('?)" 7"}(4H 7ll)({,")" 7"}(6H 7”)(7" 7"}(8H ,
HX9U7HX10H’HX11H,HX12H7"X13H7HX14"7HX15H>
,xlab = "Variables" ,ylab = "Frequency"
,main = "BE(0.05)")
barplot (varinclusion .BE[,12]
,ylim = ¢(0,2000)
,names.arg — C(”Xl"7"X2”7”X3"7"X4”7”X5"7"X6"7”X7"7"X8"7
HX9H7HX10H’HX11H,HX12H7HX13H7HX14"7HX15H)
,xlab = "Variables" ,ylab = "Frequency"
,main = "BE(0.157)")
barplot (varinclusion .lasso [,4]
,ylim = ¢(0,2000)
,names.arg — C("Xl","XQ","X3","X4","X5","X6","X7","X8",
HX9H7HX10H’HX11H7HX12H7HX13H’HX14"7HX15H)
,xlab = "Variables" ,ylab = "Frequency"
,main = "Lasso")
barplot (varinclusion . boosting [,4]
,ylim = ¢(0,2000)
,names. arg — C("Xl","XZ","X3","X4","X5","X6","X7","X8",
"x9" "x10","x11","x12","x13" ,"x14" "x15")
,xlab = "Variables" ,ylab = "Frequency"
,main = "Boosting")

46

351 # Inclusion frequency of boosting with 100 iterations

352
353

par (mfrow =
Scenario 1

c(2,2),las = 2,cex.lab = 1.4,cex.main = 1.6,cex.axis = 1.4)

354 barplot (varinclusion.boosting.early[,1],ylim = ¢(0,2000)
,names.arg = c(expression ("x"[1]) ,expression ("x"[2]) ,expression ("x"

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381
382

[

title (main =

)))
xlab =
Scenario 2
barplot (vari

31)

expression ("x"[4]) ,expression ("x"[5]) ,expression ("x"

[61)

expression ("x"[7]) ,expression ("x"[8]) ,expression ("x"
[91)

expression ("x"[10]) ,expression ("x"[11]) ,expression ("x"
[121),

expression ("x"[13]) ,expression ("x"[14]) ,expression ("x"
[15])))
expression (bold (paste("Scenario 1: n = 100, ", sigma~2, " = 6.25"

"Variables" ,ylab = "Frequency")

nclusion . boosting.early[,2],ylim = ¢(0,2000)

,names. arg = c(expression ("x"[1]) ,expression("x"[2]) ,expression ("x"

[

title (main =
))

xlab =

Scenario 3

barplot (vari

3])’

expression ("x"[4]) ,expression ("x"[5]) ,expression ("x"

[61)

expression ("x"[7]) ,expression ("x"[8]) ,expression ("x"
[91)

expression ("x"[10]) ,expression ("x"[11]) ,expression ("x"
[12]),

expression ("x"[13]) ,expression ("x"[14]) ,expression ("x"
[15])))
expression (bold (paste("Scenario 2: n = 100, ", sigma"~2, " = 2.5")
"Variables" ,ylab = "Frequency")

nclusion . boosting.early[,3],ylim = ¢(0,2000)

,names.arg = c(expression ("x"[1]) ,expression("x"[2]) ,expression ("x"

[

title (main =

)))
xlab =
Scenario 4
barplot (vari

31)

expression ("x"[4]) ,expression ("x"[5]) ,expression ("x"

[61)

expression ("x"[7]) ,expression ("x"[8]) ,expression ("x"
[91)

expression("x"[10]) ,expression("x"[11]) ,expression ("x"
[12]),

expression ("x"[13]) ,expression ("x"[14]) ,expression ("x"

[15])))
expression (bold (paste (" Scenario 3: n = 400, ", sigma~2, " = 6.25"
"Variables" ,ylab = "Frequency")

nclusion . boosting.early [,4],ylim = ¢(0,2000)

,names.arg = c(expression ("x"[1]) ,expression("x"[2]) ,expression ("x"

[

31)

47

383

384

385

386

387
388

389

0 ~NO O WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

expression ("x"[4]) ,expression ("x"[5]) ,expression ("x"
[61) .

expression ("x"[7]) ,expression ("x"[8]) ,expression ("x"
[91)

expression ("x"[10]) ,expression ("x"[11]) ,expression ("x"
[12]),

expression ("x"[13]) ,expression("x"[14]) ,expression ("x"
[15]))

)
title (main = expression (bold (paste("Scenario 4: n = 400, ", sigma~2, " = 2.5")
)
xlab = "Variables" ,ylab = "Frequency")

A.2 R codes for the artificial data example

Import necessary packages
library (mfp)
library (shrink)
library (mboost)
library (glmnet)
ART data analysis
art=read.csv(file=""ART/artl/artl.csv")
art .mod:art [C("X]." ,"X2" 7")(3" ,"X4" 7")(5" ,"X6" 7")(7" ,"X8" 7")(9" ,”X].O” 7"X4a" ,"X4b” 7"
x9a" ,"x9b" ’uyu)]
art .mod$x6=art .mod$x6+1
art .mod$x7=art .mod$x7+1
m=1000
test.error=as.data.frame(matrix (0,nrow=m, ncol = 7))
sq.residual=as.data.frame (matrix (0,nrow=m, ncol=7))
colnames (test.error)=c("No","Global" ,"Parameterwise" ,"Join", "Boosting",
"Lasso" ,"Modified boosting")
Fitting process
for (j in 1:m){
print (j)
list join=list ()
set.seed (j)
train .index=sample (1:nrow(art.mod) ,size=>500)
train=art .mod[train .index ,|
test=art .mod[—train .index ,|
fit1=mfp (y~ fp (x1)+x2+fp (x3)+xdat+xdb+fp (x5, df=2)+fp (x6)+fp (x7)+x8+x9a+x9Ib+fp (
x10) ,
data = train ,family = gaussian ,select=0.05,alpha = 0.05, x=TRUE)
fit2=shrink (fitl ,type="global", method = "jackknife")
fit3=shrink (fitl , type = "parameterwise", method = "jackknife")
if (!is.na(fitlSpowers|["x4a" ,1])&&!is .na(fitl$powers|["x4b" ,1])){
list join=append(list join,list (c("x4a.1","x4b.1")))

}

if (!is.na(fitl3powers["x9a" ,1]|)&&!is.na(fitl$powers["x9b" 1])){
list join=append(list join,list (c("x9a.1","x9b.1")))

}

48

35
36
37
38
39
40
41
42
43

44
45
46
47

48
49

50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
7
78
79
80

for (i in C("Xl","X3"7"X5","X6"7"X7","X].O”)){
if (lis.na(fitlS$powers|[i,2])){
list join=append(list join ,list (c(pasteO(i,".1"), paste0(i,".2"))))

}

}
if (length(list join)==0){
fitd=fit3
} else{
fitd=shrink (fitl , type = "parameterwise", join=list join , method = "

jackknife")
}
Boosting with FP
fit5=glmboost (y FP(x1,scaling = FALSE)+x2+FP(x3,scaling = FALSE){x4a+x4b+
FP(x5,p=—-0.5, scaling = FALSE)+FP(x6, scaling = FALSE)+FP(x7
, scaling = FALSE)+
x8+x9a+x9b+FP(x10, scaling = FALSE),
data = train ,family=Gaussian () ,control = boost_ control (mstop
~2000))
cvml=cvrisk (fit5 , folds = cv(model.weights(fit5), type = "kfold", B = 10))
fit5 [mstop (cvml) |
MFP-Lasso
Train data in matrix
x.lasso=fit1$x
Create test data in matrix according to final model
test.lasso=matrix (1,nrow=dim(test)[1])
Adding the variables included in fitl and transform those in
corresponding FP forms.

for (i in row.names(fitl$powers)){

pl=fitl1$powers[i, 1]

p2=fitl$powers[i, 2]

c=fitl$scale[i, 2]

if (!is.na(pl)&&!is.na(p2)){

if (pl—p2){
if (pl==0){
test .lasso=cbind (test .lasso ,log(test[i]/c) ,(log(test[i]/c))"2)

1 else{

test .lasso=cbind (test.lasso, (test[i]/c) pl,(test[i]/c) plxlog(test |

il/c))
}

telse{
if (pl==0){
test.lasso=cbind (test.lasso ,log(test[i]/c),(test[i]/c) p2)
telse if (p2==0){
test .lasso=cbind (test.lasso ,(test[i]/c) pl,log(test[i]/c))
telse{
test.lasso=cbind (test.lasso ,(test[i]/c)"pl,(test[i]/c) p2)
}
}
} else if (!is.na(pl)){
if (p1==0){
test.lasso=cbind (test .lasso ,log(test[i]/c))

49

81 telse{

82 test.lasso=cbind (test.lasso, (test[i]/c) pl)
83 }

84 }

85 }

86 for (i in row.names(fitl$powers)){

87 if (is.na(fitl$powers[i,1])){

88 x.lasso=cbind (x.lasso , train[i])

89 test.lasso=cbind (test.lasso ,test[i])

90 }

91 }

92 x.lasso=as.matrix (x.lasso)
93 y.lasso=as.matrix(train["y"])

94 cv.lasso=cv.glmnet (x=x.lasso ,y=y.lasso ,nfolds = 10, alpha = 1)
95 fit6=glmnet (x=x.lasso ,y=y.lasso ,lambda = cv.lasso$lambda.min, alpha = 1,
family = "gaussian")

96 ## MFP-boosting
97 formula7<—as.formula(paste0 (as.character (fitl$formula)[2],as.character (fit1$
formula) [1],

98 as.character (fitl$formula)[3], '+,

99 paste0 (rownames (fitl1S$trafo)[is.na(fitl$trafo)],
collapse = '+7)))

100 fit7=glmboost (formula7, data=train, family = Gaussian(), control = boost_

control (mstop = 2000))

101 cvm2=cvrisk (fit7 , folds = cv(model.weights(fit7), type = "kfold", B = 10))

102 fit7 [mstop (cvm2) |

103 ## Compute MSPE and MSE

104 test.error[j,l|=mean((test$y—predict (fitl , newdata = test, type = "response"
))~2)

105 sq.residual [j,1]=mean((train$y—predict (fitl ,newdata = train, type="response"
))~2)

106 test.error[j,2]=mean((test$y—predict (fit2 , newdata = test, type = "response"
))~2)

107 sq.residual[j,2]=mean((train$y—predict (fit2 ,newdata=train ,type="response"))

108 test.error[j,3]=mean((test$y—predict (fit3 , newdata = test, type = "response"
))~2)

109 sq.residual[j,3]=mean((train$y—predict (fit3 ,newdata=train ,type="response"))

110 test.error[j,4]=mean((test$y—predict (fit4 , newdata = test, type = "response"
) ~2)

111 sq.residual [j,4]=mean((train$y—predict (fit4 ,newdata=train ,type="response"))

112 test.error[j,5]|=mean((test$y—predict (fith5 [mstop(cvml)|, newdata = test, type
= "response"))"~2)

113 sq.residual[j,5]=mean((train$y—predict (fit5 [mstop (cvml)],newdata = train
type="response")) ~2)

114 test.error[j,6]=mean((test$y—predict (fit6 , newx = as.matrix(test.lasso) type
="response")) ~2)

115 sq.residual[j,6]=mean((train$y—predict (fit6 ,newx= x.lasso ,type="response"))

20

116

117

118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136

137
138
139
140

test.error|[j,7|=mean((test$y—predict (fit7 , newdata = test, type ="response")
) "2)
sq.residual [j,7]=mean((train$y—predict (fit7 ,newdata = train, type ="response
")) "2)
}
Boxplots of MSPE

par (mfrow=c (1,2) ,oma=c(5,0,0,0) ,cex.lab=1.4,cex.axis=1.4,las=2)
boxplot (test.error|,—5],ylim=c(0.4,0.8) ,xaxt="n")
title (ylab = "Mean squared prediction error")
axis(1l,at=1:6,
label=c ("MFP" ,"MFP with Global" ,"MFP with PSF" "MFP with JSF" 6 "MFP-Lasso"
,"MFP-Boosting"))
boxplot (test.error|[,5],ylim=c(0.4,5))
axis(1l,at=1,label="Boosting with FP")
title (ylab = "Mean squared prediction error")

Boxplots of difference in MSPE
par (mfrow=c (1,2) ,oma=c(5,0,0,0) ,cex.lab=1.4,cex.axis=1.4,las=2)
boxplot (test.error[,—5]—test.error[,1],ylim=c(—0.1,0.05) ,xaxt="n")
title (ylab = "Mean squared prediction error")
abline (h=0,lty=2,col="red")
axis(1,at=1:6,
label=c ("MFP" ,"MFP with Global","MFP with PSF","MFP with JSF", "MFP-Lasso"
,"MFP-Boosting"))
boxplot (test.error[,5] —test.error|,1],ylim=c(0,10))
title (ylab = "Mean squared prediction error")
abline (h=0,1ty=2,col="red")
axis(1,at=1,label="Boosting with FP")

o1

	Introduction
	Methods
	Preliminary and notation
	Post-selection shrinkage
	Global post-selection shrinkage
	Parameterwise post-selection shrinkage
	Joint post-selection shrinkage

	Boosting
	Lasso
	Fractional polynomials
	Univariable fractional polynomial models
	Multivariable fractional polynomial models

	Fractional polynomials with shrinkage
	Fractional polynomials and boosting
	Fractional polynomials as base-learners
	Boosting on a fractional polynomials model

	MFP and Lasso

	Small simulation study
	Design of the simulation data
	Model fitting
	Results and discussions
	Prediction performance
	Variable selection

	Artificial data example
	Artificial data
	Model fitting
	Results and discussions

	Conclusions
	Bibliography
	R scripts
	R codes for the small simulation study
	R codes for the artificial data example

