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Abstract

Computational fluid dynamics, with the software OpenFOAM, has ben used to investi-
gate the dead water phenomenon. Investigation was done by simulating a barge moving
in stratified waters. Comparison of the turbulence models k − ε and k − ω SST has been
conducted, resulting in a better performance in estimating drag by the k−ω SST model.
Simulations of the barge moving in stratified fluid is shown to generate internal gravity
waves below and in the wake of the barge. The internal gravity waves cause the barge to
experience an increase in drag for subcritical densimetric Froude numbers (Frh). Max-
imum drag is shown to appear in regions of 0.6 ≤ Frh ≤ 0.7. Internal gravity waves
restrict the passage area causing an acceleration of the flow downstream of the barge,
resulting in thinning of boundary layer and in drop of pressure.
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Chapter 1

Introduction

Dead water is the phenomenon where internal gravity waves are causing boats or vessels
moving along the surface of a stratified fluid, to experience increased drag force. A strati-
fied fluid can be observed in the ocean where layers have different salinity, or temperature
jumps, causing a difference in density. Rapidly melting glaciers can produce a layer of
fresh water on top of denser ocean salt water, or a layer of warmer ocean currents can
be lying on top of colder currents. The internal gravity waves occur where the maximum
vertical density gradient exist, called the pycnocline.

The Norwegian scientist and explorer Fridtjof Nansen was the first to describe the phe-
nomenon [1]. During the FRAM expidition while passing north of Sibira, his boat FRAM
experienced a reduction in speed to about a fifth, even though the engine was working
on full power. As the speed was reduced, F. Nansen observed internal waves accross
the wake, arising sometimes as far as almost midships. Ekman later conducted the first
experimental study on the phenomenon[2], by using a towing tank with stratified water
conditions. The study concluded that the model experienced an increase in drag force
due to the internal waves.

Figure 1.1: Internal wave below a barge
Visualization of an internal wave below and in the wake of a barge made by simulating
with Computational fluid dynamics. The internal waves occur at the pycnocline located

at 0.2 m below the surface.
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This project is mainly motivated by the recently published work of J. Grue [5], Gou
et al. [3] and Esmaeilpour et al. [4].
J. Grue investigated the dead water resistance on the Polar ship FRAM by using two
methods. The first is empirical, using F. Nansens own observations, and the other is a
strongly non linear interfacial method in three dimensions.
Gou et al. investigated drag force on a barge in two layer fluid. The investigation was
done by conducting three dimensional experiments in a towing tank.
Esmaeilpour et al. studied dead water resistance on a vessel by simulating the phe-
nomenon using computational fluid dynamics.

The Navier-Stokes equation is the fundamental equation describing viscous fliud flow,
including the dead water phenomenon. In this project, the dead water phenomenon is
studied by using computational fluid dynamics. In order to fully resolve the 3-dimensional
Navier-Stokes equation, computer simulation and discretization is needed as no explicit
solution exists. Simulations of experiments on a barge moving in stratified water is done
by using the free open sorce software OpenFOAM.

The main focus of the project is to study the drag force and the increase in drag due
to stratified water. Non-stratified and stratified fluid simulations are conducted for qual-
itative understanding and comparison. Three different pycnocline depths are simulated
for the stratified fluid experiments. Simulations are done with different speeds in order
to obtain densimetric Froude numbers in regions 0.35 ≤ Frh ≤ 1.35.

Increase in drag is presented for each pycnocline depth. Peak drag is shown to occur
within a range of densimetric Froude number of 0.6 < Frh < 0.7. The position of the
internal gravity wave and its location below the barge is shown to have significant effect
on the drag. Depending on the location of the internal gravity waves, velocity profiles
below the stern of the barge are shown to be significantly effected

As the barge is moving through the stratified water, the flow is turbulent. To fully
obtain details of the rapidly fluctuating flow is impossible, as it reqiures a huge amount of
computational power. Various techniques of modelling turbulent flow are presented. This
project is using Reynolds avaraged Navier-Stokes (RANS) equations, a method focusing
on the mean fliud flow.Two RANS turbulence models are presented, tested and compared
to find the most suitable model for simulating dead water.

Stratified fluid simulations deal with fresh and salt water with different densities. Open-
FOAM has several multi phase solvers implemented. This project is using the solver
twoLiquidMixingFoam which solves the multi phase problem using the volume of fluid-
method, and is applicable for two miscible fluids.

OpenFOAM is using the finite volume method, a numerical technique to discretize the
equations. Brief motivation for applying the method is presented, along with a differential
scheme. A computational domain has been made that consitst of a mesh grid in which the
discretized equations can be solved. The computational domain needs to be well defined
at the boundaries in order to get meaningfull results. Initial and boundary conditions are
defined for all the variables in the equations.
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Quality of the mesh is essential in order to get reliable results. Convergence tests of
three systematically refined grids are conducted to make sure that the mesh used in the
simulations are stable, and at the same time is computational efficient.

In the following chapters, theory, introduction to OpenFOAM, simulation design, re-
sults and finally a conclusion is presented.

The first chapter contains introduction to the governing equations of the thesis. It further
gives a brief description of physical concepts of turbulence, boundary layer theory and
computer modelling of turbulence. The theory behind the volume of fluid-method is pre-
sented, and finally an outline of the finite volume-method used to discretize the equations
is presented.

The following chapter introduces the open software OpenFOAM, and its structure used
in the solving procedure.

The simulation design chapter describes the numerical experiment, with domain geome-
try and physical setup. It further presents Initial and boundary conditions before mesh
quality and convergence tests are presented.

The rusults are shown and discussd. A conclusion is reached and further recomenda-
tions are presented.
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Chapter 2

Theory: Governing equations,
Turbulence, and Numerical methods.

2.1 Governing equations
The study of viscous flow reaches back to ancient times. Humans figured out, with
clever intuision, trial and error, the importance of viscous friction. Long before any real
theoretical understanding of fluid flow, streamlined weapons and boats have been made
to overcome the effects of viscosity. In more recent years the understanding has taken
huge leaps. Today we have tools to master viscous flow with the help from theory. The
fundamental equation describing viscous flow is called Navier-Stokes equation[7]. With
the following assumptions: incompressible, newtonian fluids. Density and viscosity may
be different, but for one fluid it is constant. This gives the following equations:

∇ · u = 0 (2.1)
∂ρu

∂t
+∇ ·

(
ρuu

)
= ∇p+ µ∇2u + ρg + fst (2.2)

where (2.1) is the conservation of mass and (2.2) is the conservation of momentum. u is
the velocity, p is the pressure, density is given by ρ(x, t), the dynamic viscosity is given
by µ, g and fst is the gravity and surface tension respectively. There are four independent
variables, the spatial x, y and z coordinates, and the time t.

The equations are a set of coupled differential equations. In practice, these equations are
too difficult to solve analytically, but solutions for some simple geometries and bound-
ary conditions can be found. More complex cases, as almost all flows of engineering
significance, needs to bee approximated with numerical techniques. Computational fluid
dynamics has become the most viable tool to represent the complex Navier-Stokes equa-
tions. Some CFD models will be briefly introduced later in this chapter.

Using Navier-Stokes (2.1 and 2.2), the goal would be to investigate the forces in most
industrial and academic applications. Finding solutions to the equations, either analyti-
cal or approximate, makes it possible to calculate the force vector by using:

F =

∫
surface

(
ν
(
∇u + (∇u)T

)
− pI

)
· nds. (2.3)

n is the unit vector normal to the surface, I is the unit matrix and ν is the kinematic
viscosity.
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Having obtained the force vector, it is common to quantify the drag force or resistance
by introducing the drag coefficient, a dimensionless quantity given by

Cd =
Fd

1
2
ρSu2

. (2.4)

Here Fd is the drag force, ρ is density, u is the freestream velocity and S is the surface area.

Viscous flows can be divided into several regimes, and the primary controlling param-
eter is the dimensionless Reynolds number[7].

Re =
u0l0
ν

(2.5)

where u is a velocity scale, l0 is a characteristic geometric size and ν is the kinematic
viscosity. Re represents the ratio of inertial forces to viscous forces within a fluid flow.
Fluid properties can cause dramatic changes to the flow patterns. It is usual to divide
flows into three distinct regimes.

• Low Re flow:
Viscous forces dominate and the flow is smooth or in a laminar regime.

• Intermidiate Re flow:
Flow is in a transitional region where it is partly fluctuating and partly in a laminar
regime.

• High Re flow:
Inertial forces dominate and the flow is fluctuating or in a turbulent regime.

Objects advancing through fluids such as water generate free surface waves. At the same
time, if an object is advancing through stratified fluids, it generates internal waves. While
free surface waves depend on the Froude number:

Fr =
U0√
gL0

, (2.6)

internal waves depend on the densimetric Froude number:

Frh =
U0

c∗
. (2.7)

U0 is the ship speed, g is gravity and L0 is the ship length at water level. c∗ represents
the celerity of the longest internal waves. For an infinitely deep stratified fluid, c∗ is given
as:

c∗ =

√
gh

∆ρ

ρ0
(2.8)

where h is the distance from the free surface to the pycnocline, ∆ρ is the difference beetwen
the density of the stratified fluid.
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2.2 Turbulence

2.2.1 Physical concepts of turbulence
Turbulence is the phenomenon where a fluid flow appears to be chaotic and random.
Unlike laminar flow, where the fluid flows in an orderly fashion, turbulent flow is rapidly
fluctuating in all spatial dimensions. Structures of the flow is varying from large scales
comparable to the dimensions of the physical boundaries to small scales.

The main characteristics of turbulence is the transfer of energy from larger spatial scales
into smaller, happening in a three dimensional space and time.

To discuss the main characteristics of turbulence, a useful concept is that of an "eddy".
An eddy can be thought of as typical turbulence pattern of small- and large- scales all
co-existing in the same fluid. The eddies consist of vortexes intertwined in a chaotic man-
ner, beeing streched by the mean flow and pulled in random directions by one another.
This mechanism ultimately leads to braking of the eddies into smaller ones, leading to an
"energy cascade"[12].

The kinetic energy of the mean flow is extracted by the largest scale eddies. Energy
from the largest eddies is further extracted to smaller scales, and the kinetic energy is
finally dissipated into thermal energy by the small scale eddies [12].

The turbulent kinetic energy is defined by the units ∼ [m2/s2] ∼ u20. As turbulence
is dissipative, the dissipation rate has the units [m2/s3]. The dissipation rate of kinetic
energy scales as ε ∝ u30/l0 [10], where u0 and l0 is the characteristic velocity and length
of the flow.

The dissipation rate of kinetic energy is one of the most important results of turbu-
lence theory, and is reffered to as the Kolmogorov relation [10]. A turbulent eddy with
kinetic energy u20 either looses its energy or breaks up into smaller eddies in one time scale
or period T ∼ l0/u0.

As Reynolds number is very large for turbulent flow, i.e u0l0
ν
� 1, the large scale

eddies are independent of the viscosity. To see how viscosity is effecting the turbulent
flow, "Kolmogorov micro-scales" can be constructed. Using kinematic viscosity ν and the
dissipation rate ε, small scale for velocity, length and time can be written out as:

η =
(ν3
ε

)1/4
, (2.9)

v =
(
νε
)1/4

, (2.10)

τ =
(ν
ε

)1/2
, (2.11)

where η is the micro length-scale, v is the velocity and τ is the time scale. Reynolds
number in the "micro-scale" is given by vη

ν
= 1, hence the viscosity is of big importance

at theese scales. We have that the "micro-scale" eddies is dominated by friction, and
small-scale turbulence is almost independent of large scale turbulence for large enough
reynolds number.
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2.2.2 Boundary layer
Using Reynolds number (2.5) it is easily shown that, for a thin shear layer flow over a flat
plate, inertial forces dominate. A Reynolds number based on U = 1ms−1, l0 = 0.1m and
ν = 10−6 m2s−1 would be Rel0 = 105, and inertial forces are much larger than viscous
forces.

If Reynolds number is based on a length scale y that is decreasing towards 0, Rey would
eventually be O(1). The viscous forces are then either equal or bigger than the inertial
forces.

This close to the wall, the mean velocity depends on the distance y, fluid density ρ,
viscosity ν and the wall shear stress τw, and is usually called the turbulent boundary
layer [12].

By using dimensinal analysis, flow behaviur can be expressed by means of dimension-
less groups u+ and y+.

The dimensionless groups are given by [12]

u+ =
U

u∗
(2.12)

y+ =
yu∗
ν

(2.13)

u∗ =

√
τw
ρ

(2.14)

u∗ is the friction velocity.

Turbulent boundary layer consists of two regions:

• Inner region, consists of three layers:

– where viscous stresses dominate,
– where turbulent stresses dominate,
– where viscous and turbulent stresses are of similar magnitude.

• outer region

– inertia dominated flow far from the wall.

The layer where viscous stresses dominate is called the viscous sub-layer. It is a linear
relationship between the velocity and distance to the wall and is given as [12]

u+ = y+ (2.15)

The layer is extremely thin, and lies at y+ < 5 [12].

At the layer where turbulent stresses dominate, called the log-layer, the velocity and
distance to the wall have a logarithmic relationship. It is given as [12]

u+ =
1

κ
ln(y+) +B (2.16)
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The constants κ = 0.41 and B = 5.5 is found by doing measurements. The log-layer lies
outside the viscous sub-layer, at 30 < y+ < 300 [12].

Between the viscous sub-layer and the log-layer lies the buffer layer, where the viscous
and turbulent stresses are of similar magnitude.

Equations for the viscous sub-layer and log-layer (2.15 and 2.16) are usually called law of
the wall and are of great importance in approximating and simulating turbulent boundary
layers.

Figure 2.1 is showing a plot containing the viscous sub-layer and the log-layer

Figure 2.1: Law of the wall
law of the wall; Viscous sub-layer in blue in the range y+ < 5 and log-layer given in

green in the range 30 ≤ y+ ≤ 300. Inbetween the viscous sub-layer and log-layer lies the
buffer layer. Outer region lies where y+ > 300

2.2.3 Computer modelling of turbulence
The modelling of turbulent fluid flows and the Navier-Stokes equations has seen huge
advancements as computer speed increases. The number of applications of fluid flow pre-
dictions has grown and computerized analysis has become a crucial part in the field of
fluid mechanics.

There are three main methods for numerically solving Navier-Stokes equations:

• Reynolds Averaged Navier Stokes(RANS)

• Large Eddy Simulations(LES)

• Direct Numerical Simulations(DNS)

LES and DNS is introduced rather briefly, while RANS will be introduced in a litle bit
more detail.
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RANS

For many enginering purposes, the focus is on the mean effect of turbulence, and it is
unnecessary to resolve the details on all scales.

A key part of RANS is investigating the effects of fluctuations on the mean flow using
Reynolds de-composition. The velocity and pressure are decomposed as:

u = U + u′ (2.17)
p = P + p′, (2.18)

where u is the instantaneous flow field, U is the mean flow field and u′ is the fluctuating
part. The same goes for the pressure, where P is mean and p’ is the fluctuating part.

Substituting the de-composed velocity and pressure (2.17, 2.18) into Navier-Stokes equa-
tions (2.1, 2.2) and taking the time-mean, the following continuity and momentum equa-
tions using suffix notation are derived:

∂Ui
∂xj

= 0 (2.19)

∂Ui
∂t

+
∂

∂xj
(UiUj) = −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

− ∂

∂xj
(u′iu

′
j). (2.20)

Here Ui is the mean velocity, P is the mean pressure and u′i is the mean fluctuating velocity.

In the momentum equation (2.20), the new term ∂
∂xj

(u′iu
′
j) is the derivative of the Reynolds

stress-tensor [15]. It appears from the convective part u · ∇u of Navier-Stokes equations
(2.2), and are not really stresses. The physical meaning of the term is the averaged effect
of turbulent advection on the mean flow field [15].

With the new term, the RANS equation is unclosed, with 6 more unknowns appearing
from the Reynolds stress-tensor. The four equations have in total 10 unknowns (pressure,
three velocity components and six "stresses"). In order to close the problem, enough
equations must be found to solve for all the unknowns. In many models, such as one-
equation and two-equations models (see [13] chapter 4), the Boussinesq eddy-viscosity
approximation [12] is assumed to be valid. The Reynolds stresses are modelled as follows:

τij = u′iu
′
j =

2

3
kδij − νt

(∂Ui
∂xj

+
∂Uj
∂xi

)
(2.21)

k =
1

2
u′iu
′
i =

1

2

(
u

′2
1 + u

′2
2 + u

′2
3

)
(2.22)

where k is the turbulent kinetic energy per unit mass, νt is the turbulent or eddy viscosity
and δij is the Kronecker delta.

Adding the Boussinesq eddy-viscosity approximation (2.21) into the RANS momentum
equation (2.20) leads to:

∂Ui
∂t

+
∂

∂xj
(UiUj) = −1

ρ

∂P ′

∂xi
+

∂

∂xj

[(
ν + νt

)∂Ui
∂xj

]
. (2.23)
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where P ′ =
(
P + 2k

3
δij
)
, called the modified pressure[14].

To complete the closure of the RANS equations, the eddy viscosity term νt needs to
be modelled. Dimensional analysis dictates that νt needs to be proportinal to the product
of a characteristic velocity and a characteristic length scale [6, 13]

This paper is using two turbulence models for comparison, namely the two-equation mod-
els k-ε and the shear stress transport model k − ω SST.

k − ε model

The standard k− ε model equations are found in a lot of litterature such as [12] and [15].

The k − ε model is perhaps the most widely used, giving good results in classical shear
flows. It does however have shortcomings in accurately predicting adverse pressure gra-
dients and boundary layers. despite its shortcomings, the model is recommended in cases
involving multiphase problems by som sources, i.e [6].

The model equations are specified as follows:

Kinematic eddy viscosity equation:

µt = ρCµ
k2

ε
(2.24)

Turbulent kinetic energy equation:

∂ρk

∂t
+ Uj

∂ρk

∂xj
=

∂

∂xj

[(µ+ µt
)

σk

∂k

∂xj

]
− ρε+ ρτij

∂Ui
∂xj

(2.25)

Turbulence dissipation rate equation:

∂ρε

∂t
+ Uj

∂ρε

∂xj
=

∂

∂xj

[(µ+ µt
)

σε

∂ε

∂xj

]
+ ρCε1

ε

k
τij
∂Ui
∂xj
− ρCε2

ε2

k
(2.26)

The model equations use the Boussinesq assumption given in equation (2.21) and contains
five adjustable constants: Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44 and Cε2 = 1.92

k − ω SST

k − ω model is made by Menter [23] and is found in littarture and such as [12] and [13].

The k−ω SST turbulence model is a more advanced model which combines k−ε and k−ω
models. The k − ε model has its shortcomings, as stated above. The k − ω model was
made to better predict adverse pressure gradients and boundary layers, but preformed
poorer at free streams. Menter [8] proposed a new model which combined the k − ε and
the k − ω models. In litterature like [12] it is stated that k − ω SST model is superior in
approximating adverse pressure gradients and boundary layers.

Turbulence resources such as [9] gives thurough desrcription of the model equations. The
two-equation model is specified as follows:
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Kinematic eddy viscosity equation:

µt =
ρa1k

max
(
a1ω,ΩF2

) (2.27)

Turbulent kinetic energy equation:

∂ρk

∂t
+ Uj

∂ρk

∂xj
=

∂

∂xj

[(
µ+ σkµt

) ∂k
∂xj

]
+ ρP − β∗ρωk (2.28)

Turbulent specific dissipation rate equation:

∂ρω

∂t
+ Uj

∂ρω

∂xj
=

∂

∂xj

[(
µ+ σω1µt

) ∂k
∂xj

]
+
γ

νt
ρP − βρω2 + 2

(
1− F1

)ρσω2
ω

∂k

∂xj

∂ω

∂xj
(2.29)

Here P = τij
∂Ui

∂xj
, and τij is the Boussinesq assumption (2.21). The model constants are

given by: σk = 0.85, β∗ = 0.09, σω1 = 0.5, γ = 0.56, β = 0.083 and σω2 = 0.856.

The additional function F1 is given by:

F1 = tanh
(
arg41

)
(2.30)

and arg1 is given by:

arg1 = min
[
max

( √k
β∗ωd

,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
(2.31)

CDkω is given by:

CDkω = max
(

2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(2.32)

Here d is the distance from the field point to the nearest wall and ρ is density.

LES

While RANS have the main focus on the mean flow, LES is resolving large scale turbu-
lence. While the effects of large eddies on the flow are resolved, the effect of the small
scale eddies are included by a sub-grid scale models [12].

In LES modeling, a spatial filter is used to separate small sclaes from large scales. The
method is started off with a filtering function and a "cutoff" witdh, where all scales greater
than the "cutoff" width is resolved.

A filtering operation of the filter function is done in the following manner [12]:

φ(x, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x,x′∆)φ(x′, t)dx′1dx
′
2dx

′
3, (2.33)

where G(x,x′∆) is the filtering function, φ(x, t) is the filtered function, φ(x′, t) is the
original unfiltered function and ∆ is the "cutoff" witdh. The overbar indicates spatial
filtering and not time averaging as with RANS.
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Filtering the Navier-stokes equations (2.1 and 2.2) gives the LES continuity and mo-
mentum equations as follows:

∂ui
∂xj

= 0 (2.34)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

. (2.35)

Here the overline denotes filtered flow variable, and τij are the sub-grid scale stresses. The
sub-grid scale stresses are part of the unresolved sub-grid scales.

For further introduction of the LES model, Books such as [12] and [11] and papers such
as [6] is recomended.

DNS

DNS involves numerical solution of the full Navier-Stokes equations. The method resolves
all scales, including the kolmogorov scales (2.9, 2.11 and 2.10). It takes the closed form of
the four equations and four unknowns and solves it on a sufficiently fine mesh and small
enough time step. For flows with small enough Reynolds number (2.5), DNS can serve as
a benchmark for the other turbulence models [6].

Using "Kolmogorov’s micro- scales" (2.9 and 2.11), ratio’s of the largest and smallest
scales can be obtained. The ratio of the largest and the smallest scales are proportional
to Re3/4 and the ratio of the largest and smallest time scale is proportional to Re1/2.
Re = 104 requires a spatial resolution of O(103) in each direction, and the simulation
must run for atleast 100 time steps. Computing meshes with 109 grid points with 100
time steps is very demanding, even with a modest Reynolds number. Computing indus-
trial flows with higher Reynolds number is impossible with current technology [6, 12].

2.3 Volume of fluid
When there are multiple fluids in a computation, there is need for an interface tracking
or interface capturing. To handle multiple-fluid interactions, the volume of fluid-method
is used.

For each fluid component, a volume fraction is introduced. If V is a volume of a cell
in a computaional domain, and α(x, t) is the volume fraction, the volume fraction for two
fluids are defined as [17]

α(x, t) =

{
1, x ∈ Ωl

0, else
(2.36)

where Ωl is the part of the domain covered by one fliud l.

On each grid cell, the integral of the color function is approximated. The discrete volume
fraction is written as [17]

αi =
1

V

∫
V

α(x, t)dV (2.37)

where the subscript i denotes the i’th fluid in a system.
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For miscible fluids the volume fractions are governed by the advection-diffusion equa-
tion given as [16]

∂αi
∂t

+∇ · (αu) = Dab∇2α, (2.38)

Where Dab denotes diffusivity between miscible fluids. The following constraint must be
satisfied due to mass conservation:

Σn
i=1αi = 1 (2.39)

Desity and viscosity are defined as:

ρ = Σiρiαi (2.40)
µ = Σiµiαi (2.41)

2.4 Numerical discretization
Numerical discretization is the prosses of transferring differential equations, such as the
Navier- Stokes equations (2.1 and 2.2), into descrete counterparts. A discretization
method is needed in order to evaluate the equations on computers.

There are three discretisation methods generally used when approximating equations.
Finite difference-method, finite element-method and finite volume-method.

As in most commercial well-established CFD codes, this thesis is using the finite vol-
ume method. Fvm is one of the most versitaile discretization techniques used in cfd [12].

An outline for the disctretization procedure can be presented with the following steps:

• Integration of the governing equations of fluid flow all over the finite control volumes
of the domain.

• Conversion of the resulting integral equations into a system of algebraic equations.

A steady convection-diffusion equation of a property φ without a source term is given as:

∇ · (ρuφ) = ∇ · (Γ∇φ), (2.42)

where ρ is the density, u is a known velocity and Γ is diffusivity.

Integrating convection-diffusion equation (2.42) over a control volume (CV) gives:∫
CV

∇ · (ρuφ)dV =

∫
CV

∇ · (Γ∇φ)dV

⇒
∫
A

n · (ρuφ)dA =

∫
A

n · (Γ∇φ)dA. (2.43)

Gauss integration, i.e. Gauss theorem [12] is applied to change the integration over a
control volume to an integration over an area.
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Figure 2.2: Control Volume around a cell center P

In one dimension, and using the control volume shown in figure 2.2, the integration of
the convection-diffusion equation (2.43) gives:

(
ρuAφ

)
e
−
(
ρuAφ

)
w

=
(

ΓA
dφ

dx

)
e
−
(

ΓA
dφ

dx

)
w
. (2.44)

In order to convert the resulting equation (2.44) into a system of algebraic equations,
differencing schemes is used.

Using central differencing on dφ/dx at the faces e and w and rewriting the property
φ at the same faces as:

φw =
φW + φP

2
(2.45)

φe =
φP + φE

2
(2.46)

Substitution of (2.45) and (2.46) into the resulting equation (2.44) yields the central
difference expression:

ρueAe
2

(φP + φE)− ρuwAw
2

(φW + φP ) = ΓAe
(φE − φP )

∆xPE
− ΓAw

(φP − φW )

∆xWP

(2.47)

Rewriting the central difference expression (2.47), and solving for φP gives:[
(
ρue
2
− Γ

∆xPE
)Ae − (

ρuw
2
− Γ

∆xWP

)Aw

]
φP =[

(−ρue
2

+
Γ

∆xPE
)Ae

]
φE +

(ρuw
2

+
Γ

∆xWP

)Aw

]
φW (2.48)

With well defined by boundary conditions, the above equation (2.48) can be solved as a
system of linear equations i.e.:

Ax = b (2.49)

Where A is a m×n matrix, x is a column vector with n entries and b is a column vector
with m entries.

Using the finite volume-method, the discretizations is carried directly in the physical do-
main. There is no need for any transformation between the physical and computational
coordinate, making the finite volume-method flexible and popular method for computa-
tional fluid dynamics [20].
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Chapter 3

OpenFOAM

All computanial fluid dynamics are structured around numerical algorithms that tackles
fliud flow problems. Classical solvers are implemented in well-established CFD codes such
as CFX/ANSYS, FLUENT and OpenFOAM. The software used in this thesis is Open-
FOAM.

As in all well-established CFD codes, the work flow consists of three main elements:

• pre-processor

• solver

• post-processor

Pre-processing consists of input of a flow problem, in order to make it well-defined before
the solving process begins.

The solver is solving the flow problem, by implemented numerical methods and algo-
rithms suitable for the specific problem.

Post-processing consists of verification and validation of the solutions given by the solver.
It essential to investigate data output and visualize. The complexity of fluid flows demands
thurough investigation by e.g. comparing with existing experiments, either numerical or
experimental.

3.1 Introduction to OpenFoam
This paper is using the free, open sorce software OpenFOAM (Field Operation and Ma-
nipulation). It is a C++ library of source code for solvers and utilities.

Figure 3.1 illustrates an initial state of an OpenFOAM case. Three directories are lo-
cated in the case folder: 0, constant and system.

The 0 directory contains files for the different variables essential for the problem. Each
file defines initial values and boundary conditions for the numerical experiment.
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The constant directory contains, as the name suggests, all the constants of the case.
Constant properties such as gravitation g, density ρ and viscosity ν are put in files g and
transportProperties. Turbulence specifications are set in the file turbulenceProperties. The
subdirectory polyMesh contains the specifics of the mesh geometry.

The system directory contains information about meshing of the numerical experiment,
how to discretize and solve the equations. The file controlDict controls which solver is
used, timecontrols and data output controls. As the names suggests, fvSchemes and
fvSolution contains information about discretization schemes and solution algorithms re-
spectively.

caseDir

0

u

p_rgh

k

nut

omega

alpha.water

constant

polyMesh

g

transportProperties

turbulenceProperties

system

blockMeshDict

controlDict

fvSchemes

fvSolution

setFields

Figure 3.1: Example of case directory structure in openFOAM.
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3.2 TwoLiquidMixingFoam
OpenFOAM has solvers for a wide range of applications. As mentioned in the section
Introduction to OpenFOAM (3.1), the file controlDict found in figure 3.1 defines which
solver to use.

Many multiphase solvers can be found, both miscible and immiscible. This thesis is
using the incompressible multiphase solver twoLiquidMixingFoam, where the liquids are
miscible.

Three equations are beeing solved. The first equation is the alpha diffusion equation,
given by [22]

∂α1

∂t
+∇ · (Uα1) = ∇ ·

((
Dab +

νt
SC

)
∇α1

)
(3.1)

where

• α1 is the volume fraction.

• α2 = 1− α1

• ρ = α1ρ1 + α2ρ2 = α1ρ1 + (1− α1)ρ2.

• Dab is the molecular diffusivity.

• νt is the turbulent eddy viscosity.

• sc is the turbulent Schmidt number, given as µ/(ρD).

The continuity and momentum equation is given, respectively, as:

∇ ·U = 0 (3.2)
∂ρU

∂t
+∇ · (ρUU) = −∇(prgh)− gh∇ρ+∇ · (ρτ ) (3.3)

where

• τ = −2
3
µeff∇ ·UI + µeff∇U + µeff

(
∇U

)T .
• µeff = α1(µeff )1 + α2(µeff )2.

• (µeff )i = (µ− µt)i. Subscript i denotes either fluid 1 or 2.

The term ∇(prgh) and gh∇ρ is obtained by using P = prgh + ρgh. The Solver is using
the Boussinesq eddy-viscosity approximation ( refeqn:bossinesq), and p is the modified
pressure and containes the kinetic energy per unit mass 2

3
kδij.

3.3 Turbulence models
This paper is using the RANS method to estimate turbulence. In order to close the
RANS equations, turbulence models are beeing used. Two different two-equation models
are used for comparison of applicability in solving the dead water phenomenon.
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The turbulence models used in this project are the k − ω SST and the k − ε turbu-
lence model. In section Introduction to openFOAM 3.1, the constant directory shown in
figure 3.1 contains the file turbulenceProperties. Here it is defined what simulation type
that is beeing used, i.e. RANS. It also specifies which turbulence model to use.

3.4 Numerical schemes
Having defined the equations to be solved in in section TwoLiquidMixingFoam (3.2), the
way in which to discretize the equations are defined in the file fvSchemes found in fig-
ure 3.1. The file consists of sub-dictionaries with name corresponding to terms within
the equations given in section TwoLiquidMixingFoam (3.2). For each term a numerical
scheme must be specified.

Time derivative term ∂/∂t are discretized by using an Euler scheme, a first order im-
plicit difference scheme and is given in the sub-dictionary ddtSchemes. The time steps
are adjusted during the simulation. That means the time steps used is set during the
simulation according to the courant number, given as:

C =
u∆t

∆x
(3.4)

Where u is the velocity. The time steps are adjusted according to a maximum courant
number set to 1.0.

The other terms are discretized using finite volume method. As explained in section
Numerical discretization 2.4, the fvm discretization procedure is done by using gaussian
integration and converting the resulting terms into algebraic equations using differencing
schemes.

Gradient terms ∇ are set in the sub-dictionary gradSchemes. The terms are discretized
by using Gauss linear, where the Gauss entry denotes Gaussian integration and the linear
entry denotes a central differencing scheme.

Divergence terms ∇· are set in the sub-dictionary divSchemes. There are several di-
vergence terms needing discretization, and specified as:

• div(rhoPhi,U) Gauss linearUpwind grad(U)

• div(phi,alpha) Gauss vanLeer

• div(phirb,alpha) Gauss linear

• div(phi,k) Gauss upwind

• div(phi,omega) Gauss upwind

• div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear

The phi entry in the div(phi,...) is the volumetric flux of velocity. Gauss entry is the
Gaussian integration and last entry is the differencing scheme.

Laplacian terms ∇2 are set in the sub-dictionary laplacianSchemes, and are discretized
as Gauss linear with the Gaussian integration and a linear differencing scheme.
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3.5 Solution algorithms
There are several solution algorithms implemented in openFOAM. Solution procedures
are needed in order to obtain solutions to pressure and momentum. In multiphase mod-
elling, additional solution procedures are needed in order to obtain solution to the phase
fraction and the volume of fluid method.

There is three different algorithms implemented in OpenFOAM for solving the Navier-
Stokes equations (2.2) and (2.1):

• Semi-implicit method for pressure-linked equations SIMPLE algorithm.

• pressure-implicit split-operator PISO algorithm.

• Pressure-implicit method for pressure-linked equations PIMPLE algorithm.

Numerical techniques are required for coupling the pressure and momentum quantities.
All algorithms are iterative procedures for coupling momentum and pressure [25]. SIM-
PLE is a steady state algorithm, PISO is a transient algorithm and PIMPLE is a semi
transient algorithm [25].

The twoLiquidMixingFoam solver is using the PIMPLE algorithm for coupling the pres-
sure and momentum. Since it is a multiphase solver, a multi-dimensionsal limiter for
explicit solution i.e MULES algorithm [26] is used for solving the phase fraction alpha.
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Chapter 4

Simulation Design

Wether a numerical experiment is successful depends largely on the pre-processing. A
computational domain has to be made well suited to handle the flow problem. Many
factors have to be considered in order to have a good numerical experiment, with mesh
quality and and boundary conditions as the key factors.

4.1 Simulation geometry
The geometry of the numerical experiment is dependent on computational demands. Ide-
ally the geometry of the domain would include the entire barge and a farfield consisting
of air, fresh and salt water. A domain including all aspects of the fluid problem would
bee much more suitable as the case would bee more physical.

With a three dimensional problem such as the dead-water phenomenon, the computa-
tional costs constrains the experiment to only include some parts of the flow problem.
This and the scope of this thesis, which is limited to five months, makes it necessary to
make comprimise between physics and assumptions. The experiment becomes less phys-
ical, but the idea is to isolate certain aspects of the problem to investigate, namely the
effects of the internal wave.

The geometry of the computational domain consists of a vessel i.e. the barge draft and
a farfield. Farfield includes inlet, outlet, atmosphere, atmosphereFrontOfBarge, bottom,
front and back in order to have a closed domain. Since only the draft of the barge is
included, the top of the domain located at the free-surface.

Figure 4.1 is showing simulation geometry with with name tags of the patches atmo-
sphere, front, inlet and outlet included. The Barge is colored red. The dimensions of
the barge is taken from [3] and 0.6 m long (x-dir), 0.45 m wide (y-dir) and 0.35 m wide
(z-dir). The geometry has a symmetry plane at the middle of the barge in the y-direction,
halving the computational domain. As it only includes what is below the free surface i.e.
the draft of the barge, the dimensions of the barge becomes 0.6m long, 0.225m wide. The
drraft is to 0.1m for all the experiments.

Farfield boundaries are located sufficiently far away to minimize its effects on the so-
lution. International Towing Tank Conference has a practical guidelines for ship CFD
applications which states that inlet, outlet and "exterior boundary" should be located
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1 − 2 × length of draft [18]. This experiment is not modelling the free surface as it is
a boundary. It does however model an internal wave and in combination with highly
unstreamlined draft geometry, the resulting farfield dimensons are:

• inlet located 10.0 m upstream in front of barge.

• outlet located −15.0 m downstream of barge.

• bottom located at −4.0 m below barge.

• back is located 3.0 m at the width side of barge.

Figure 4.1: Geometry.
Geometry used in the computational experiment. Draft of barge is colored red at X = 0

while farfield with patches inlet, outlet, front and atmosphere included.

4.2 Simulation set-up
Simulations are done with a constant draft D = 0.1 m. The different experiments are
conducted by varying the densimetric Froude number in the range 0.3 ≤ Frh ≤ 1.35. The
densimetric Froude number is varied by changing speeds at constant pycnocline depths
giving h/D = 1, 1.5 and 2.

Figure 4.2 is showing a schematic overview of the numerical experiment.

The experiments are done with a moving reference frame, rather than having the barge
moving, in order to be able to run simulations sufficiently long and not complicating the
mesh too much.

The densities of the fluids are set to 997 kg m−3 for fresh water and 1024 kg m−3 for
salt water. Kinematic viscosity is set to ν = 1.79 · 10−6m2s−1 corresponding to waters at
0◦C as done by J. Grue in [5]. Molecular diffusivity and turbulent Schmidt number are
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set to respectively 2.0 · 10−5 and 1.25 as done in the reaserch [22]. The speed varies as
0.08 ≤ U ≤ 0.22 corresponding to Reynolds number (2.5) 26815 ≤ Re ≤ 73743.

Pycnoclineρ0

ρ1

h

U
g

D

Pycnocline

Barge draft

Free surface

Figure 4.2: Simulation set-up.
Simulations are done by varying speeds U at constant h/D = 1, 1.5 and 2. Densities ρ0
and ρ1 are that of fresh and salt water respectively in stratified fluid simulations. For

non-stratified fluid simulations, ρ0 = ρ1.

4.3 Boundary and Initial conditions
Before simulating and solving the numerical experiments, the momentum and continuity
equations (2.2 2.1) must have appropriate initial and boundary conditions.

Boundary conditions are required component of the mathematical model that directs
the motion of the flow. It specifies the fluxes such as mass and momentum, into and out
of the computational domain.

OpenFOAM is representing boundaries as patches consisting of faces, and all inital and
and boundary conditions are assigned to the patches. Table 4.1 is showing an overview of
all initial and boundary conditions for simulations using the turbulence model k-omega
SST .

All descriptions of the boundary conditions are obtain from the source code of Open-
FOAM, where usage of the boundary conditions are described. If other wise, it is stated.
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Boundary
Variable U p_rgh alpha.saltWater k omega nut

Inlet Type fixedValue fixedFluxPressure fixedValue fixedValue fixedValue fixedValue
Value internalField internalField internalField internalField internalField internalField

Outlet Type O.P.M.V. zeroGradient V.H.F.R. inletOutlet inletOutlet zeroGradient
Value internalField - internalField internalField internalField -

Barge Type M.W.V. F.F.P. zeroGradient kqrW.F. omegaW.F. nutUSpaldinW.F.
Value (0 0 0) internalField - internalField internalField internalField

atmosphere Type slip fixedValue zeroGradient zeroGradient zeroGradient zeroGradient
Value - internalField - - - -

atmosphereFrontOfBarge Type inletOutlet fixedValue zeroGradient zeroGradient zeroGradient zeroGradient
Value internalField internalField - - - -

Front Type symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane
Value - - - - - -

Back Type symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane
Value - - - - - -

Bottom Type symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane symmetryPlane
Value - - - - - -

Table 4.1: Boundary and initial conditions twoLiquidMixing with k-omega SST turbulence model.
O.P.M.V. = OutletPhaseMeanVelocity, V.H.F.R. = variableHightFlowRate, M.W.V. = movingWallVelocity, F.F.P. = fixedFluxPressure,

kqrW.F. = kqrWallFunction, omegaW.F. = omegaWallFunction, nutUSpaldingW.F. = nutUSpaldingWallFunction
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4.3.1 U
For velocity U, typical dirichlet boundary condition is a applid at the inlet and on the
barge. At the inlet it is set a fixedValue while a no-slip condition is set at the barge. The
no-slip condition is a of a special kind, namely movingWallVelocity, which is applied for
"moving" walls when it is a moving reference frame.

At outlet there is an outletPhaseMeanVelocity. This boundary condition adjusts the
velocity for the given phase to achieve the specified mean, thus causing the phase-fraction
to adjust according to the mass flow rate.

Boundary conditions at the free surface

The free surface waves that is generated when a barge moves at velocities used in these
experiments should bee of very small wave length and height, due to low Froude numbers
(2.6). The Froude number Fr ≤ 0.09 for all simulations.

Esmaeilpour et al. [4] conducted a study within the same range of densimetric froude
numbers as done in this project. They used a domain containing air, fresh and salt water
i.e. the free surface was included. They reported very small waves due to low Froude
numbers Fr ≤ 0.05. For non-stratified flow it was reported that the free surface was flat.
For stratified water, the free surface did see a small effected by the internal gravity waves.

Due to the reporting of Esmaeilpour et al. and computational limitations, the free surface
is excluded in this investigation.

Since the simulations only includes what happens below the water surface, and the main
focus is on the internal gravity waves, it has been rather tricky to decide boundaries for
the free surface.

An approach has been to apply a Neumann boundary condition of zero gradient at the
top. With a zero gradient at the top, the bow of the barge would have been well ap-
proximated as the fluid hits the bow and it would allow outflow. At the stern however,
the lower pressure would allow inflow. This would have been a good approximation, if
the inflow had been consisting of air. The problem is that the inflow at the stern would
consists of water, causing the interface at the stern to mix and loosing of the stratification.

Another approach as been to use a slip condition, which is a mix of Dirichlet and Neu-
mann condition. The flow would then be allowed to flow freely in x- and y direction, but
be set to zero in z-direction not allowing for in- and outflow. With the low Froude number
and the goal of the invistigation beeing the internal wave, this could have been a good
approximation. But the slip condition caused an numerical artifact at one cell on the bow
of the barge with conflicting boundary conditions. This one cell was located where the
front and the top intersects on the bow of the barge. The symmetryPlane condition at
the front of the domain allows for outflow in z-direction. This caused a huge increase of
velocity in z-direction at this particular cell.
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A comprimise has been done, with the top of the domain beeing split into two patches,
namely atmosphere and atmosphereFrontOfBarge. The atmosphere patch having a slip
boundary condition and the atmosphereFrontOfBarge having an inletOutlet condition.
The inletOutlet condition is working as a mix of Dirichlet and Neumann condition, with
the specification of inflow, in case there is any.

These boundary conditions have a very engineering approach to them, and is not very
physical. But as stated earlier in this report, the main focus is the effect of the internal
wave. With the air excluded completely from the simulations, and the low Froude num-
bers, the final boundary conditions allows for a qualitative reaserch of the dead water
phenomenon.

4.3.2 alpha.saltWater
The phase fraction alpha.saltWater is set in the file setFieldsDict where the initial state
of the two fluids are set.

For the inlet, Dirichlet condition of a fixed value of either 1 or 0 are set, where 1 is
salt water and 0 is fresh water. At the outlet, a variableHightFlowRate condition is used.
It is a phase fraction condition based upon the flow conditions. Values of alpha.water is
constrained to lay between specified values of upper and lower bounds of 1 and 0, i.e.

• If alpha.water > 1:

– apply a fixed value, with a uniform level 1.

• If 0 ≤ alpha.saltWater ≤ 1:

– apply a zeroGradient condition.

• If alpha.water < 0:

– apply a fixed value, with a uniform level 0.

At the barge, a Neumann condition of zeroGradient is applied. The same goes for atmo-
sphere and atmosphereFrontOfBarge.

4.3.3 p_rgh
For pressure, a fixedFluxPressure is used at the inlet and on the barge. The pressure is
not known at inlet. The fixedFluxPressure is a Neumann condition that is accounting for
the flux specified by the velocity set at the boundary.

Since the velocity is set to 0 by the noSlip boundary condition on the barge, the Neumann
condition becomes a zeroGradient in reality.

At the athmospere and atmosphereFrontOfBarge patches there is Dirichlet boundary of
fixedValue 0. At the outlet there is a Neumann boundary condition of zeroGradient.
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4.3.4 Turbulence properties k, nut, omega and epsilon
All of the turbulence properties nut, k, omega and epsilon are set with a Neumann con-
dition of zeroGradient at atmosphere and atmosphereFrontOfBarge.

At the inlet, Dirichlet boundaries are set as a fixed value, calculated from equations
for setting farfield turbulence conditions.

Farfield turbulent kinetic energy is set as recommended in [19]by using:

k =
3

2
(UI)2, (4.1)

where U is the freestrem speed and I is the turbulence intensity, usually set below 1% for
cases similar to this experiment.

Farfield omega conditions is set by using [27]

ω =

√
k

C
1/4
µ lt

(4.2)

where Cµ = 0.09 and lt is the turbulent length scale, set to l/100 where l is the length of
the barge.

Turbulent dissipation rate epsilon is set as recommended in [19] by using:

ε =
c
3/4
µ k3/2

lt
(4.3)

The turbulent viscosity for k − ω SST is set by using:

νt =
k

ω
(4.4)

Finally, the turbulent viscosity for k − ε is set by using:

νt = Cµ
k2

ε
(4.5)

Wall functions

Wall funtions are used to avoid resolving all scales in the boundary layer. The wall func-
tions use the dimensional analysis of the boundary layer and law of the wall presented in
section 2.2.2 to estimate values near the wall.

Wall functions are applied as boundary conditions for all the turbulence properties at
the barge.

Turbulent viscosity nut is using the wall function nutUSpaldingWallFunction. The func-
tion is using a special curve fit of the law of the wall, in order to be applicable in the
whole boundary layer [21].
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For turbulent kinetic energy k, the wall function kqrWallFunction has been used. It
uses the log-law layer (2.16) to estimate values for the boundary. Using this wallFunction
would require a distance of the first cell adjecent to the barge to be y+ > 30.

This has not been fulfilled with the meshes used in this report, but brief test runs with
a wall function applicable for smaller values of y+, has been conducted after the mistake
was discovered. kLowReWallFunction did not make any signifacant effects on the calcu-
lated drag in these test runs. A comparison of the wall functions with pycnocline depth
h/D = 1.5 and Frh = 0.69 showed that kqrWallFunction had a difference of 0.007% in
calculated drag compared to kLowReWallFunction

For omega and epsilon, the wall functions omegaWallFunction and epsilonWallFunction
has been used. Both wall functions are applicable for a wide range og y+ values.

4.4 Mesh and mesh convergence
The outcome of a numerical experiment is highly dependent on the mesh quality. A
multiphase simulation investigating drag and internal waves needs a mesh suitable to
capture the phenomenon. At the same time the mesh has to account for computational
cost, as the computational resources available is rather limited for the scope of this thesis.

4.4.1 Meshing procedure
The base mesh is made by defining a blockMeshDict file that generates a mesh as the one
shown in figure 4.3. The base mesh is made to be uniform in the spatial x- and y-direction,
except for z-direction, where it is refined to better capture the pycnocline in the entire
computational domain. Number of cells in the base mesh is 12668. In order to increase
mesh quality, refinement is needed.
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Figure 4.3: Base mesh generated by blockMesh
The base mesh made in blockMeshDict and generated by blockMesh consists of 12668
cells. It has uniform spatially distribution in x- and y- direction, while z-direction is

refined in the area where pycnocline is located.

To refine the mesh further, topoSetDict and refineMeshDict files has been used. In
a topoSetDict, an area within the mesh is defined in which it is desirable to refine the
mesh. The refineMeshDict refines the mesh in the specified area in the desired direction.
RefineMeshDict refines the mesh by splitting every cell in two within the specified area
and in the specified direction.

By using topoSetDict and refineMeshDict it is easy to refine the mesh in the impor-
tant areas within the domain i.e. boundary layer and below the barge at the pycnocline.
It is further a useful tool in the means of maintaining cell aspect ratios, which is the ratio
of the longest to the shortest side of the cell. Cell aspect ratio can have significant effect
on waves in openFOAM [24]. The areas of the domain which almost is un-disturbed can
be left out from refining, making the mesh less computational demanding.

Figure 4.4 is showing the mesh after refinenemt which consists of 744794 cells.
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Figure 4.4: Mesh after refinement
The mesh after beeing refined consists of 744794 cells. Max aspect ratio = 32.7

4.4.2 Convergence tests
Three mesh grids have been systematically refined to evaluate grid convergence. It is done
by using a grid refinement ratio of 2 on the base mesh. The resulting course, medium
and fine grids have 4.2 × 105, 7.4 × 105 and 1.3 × 106 cells respectively. The reason for
not having a refinement ratio of 2 on the resulting grids is that the same topoSetDict and
refineMeshDict files are used. The resulting grids do not necessarily get the same refine-
ment ratio, as the refinement procedure using topoSetDict and refineMeshDict depends
on the base mesh.

Two speeds at two different pycnocline depths are used to check for convergence, re-
sulting in four tests. For each pycnocline depth, two velocities giv densimetric Froude
number corresponding to near-peak drag coefficient and densimetric Froude number close
to super critical.

Figure 4.5 and 4.6 are showing test runs with pycnocline located at 0.1m (h/D = 1)
below the barge and with Frh = 0.86 and Frh = 1.35 respectively. Turbulence model
used in the tests are the k − ω SST. The tests show that there is not much difference
between the medium and fine grids, while the corse grid is oscillating.

Table 4.2 shows the avarage y+ values obtained from the convergence tests. The y+ values
lie all within the buffer layer. The y+ values increase when simulations are conducted with
higher velocity. The idea is to make the mesh and have wall-functions applicable for all
the range of y+ values in the experiments.
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Mesh
Frh 0.86 1.35

Coarse 11.14 13.10
Medium 8.39 11.33
Fine 6.8 8.95

Table 4.2: Average y+ values for pycnocline at 0.1m
Average y+ value obtained from running convergence tests.

All y+ values lies within the buffer layer, with the finest mesh tending towards viscous
sub-layer

Figure 4.5: Cd as a function of time.
Grid convergence test run with three
different grids; coarse, medium and

fine. Pycnocline located at 0.2 m below
the barge, and Frh = 0.61. The medium
and fine grids are converging towards
the same drag coefficient, while the
coarse grid is occilating around the

medium and fine grids

Figure 4.6: Cd as a function of time.
Grid convergence test run with three
different grids; coarse, medium and

fine. Pycnocline located at 0.2 m below
the barge, and Frh = 0.61. The medium
and fine grids are converging towards
the same drag coefficient, while the
coarse grid is occilating around the

medium and fine grids

Figure 4.7 and 4.8 are showing test runs with pycnocline located at 0.2m (h/D = 2)
below the barge with Frh = 0.61 and Frh = 0.95 respectively. This test is also conducted
with the turbulence model k − ω SST. The tests show the same trends as the tests done
with pycnocline located 0.1m below the barge.

Table 4.3 shows the avarage y+ values obtained from the convergence tests with pyc-
nocline located at 0.2m below the barge. The y+ values lies all within the buffer layer.
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Mesh
Frh 0.61 0.95

Coarse 11.89 14.50
Medium 9.74 11.53
Fine 7.73 9.51

Table 4.3: Average y+ values for pycnocline at 0.2m
Average Y + value obtained from running convergence tests.

All Y + values lies within the buffer layer, with the finest mesh tending towards viscous
sub-layer

Figure 4.7: Cd as a function of time.
Grid convergence test run with three
different grids; coarse, medium and

fine. Pycnocline located at 0.2 m below
the barge, and Frh = 0.61. The medium
and fine grids are converging towards
the same drag coefficient, while the
coarse grid is occilating around the

medium and fine grids

Figure 4.8: Cd as a function of time.
Grid convergence test run with three
different grids; coarse, medium and

fine. Pycnocline located at 0.2 m below
the barge, and Frh = 0.61. The medium
and fine grids are converging towards
the same drag coefficient, while the
coarse grid is occilating around the

medium and fine grids

From the convergence tests it is clear that it is not much to gain convergence wise by
using a finer mesh. The resulting Cd’s are very similar comparing the medium and fine
grids. By using the medium mesh, computational time is saved and many more simula-
tions can be done within the time frame of this thesis.
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Chapter 5

Results

5.1 Comparison of turbulence models
Comparison of the turbulence models were done by running numerical experiments with
the exact same mesh. Pycnocline depth was set to 0.2m below the barge. Two cases are
presented, the first with a densimetric Froude number Frh = 0.69 and the second with
Frh = 0.95. The first test lies whithin the range where Frh should give peak Cd and the
second test where Frh should give a lower Cd that tend towards a non-stratified fluid case.

The comparison is done by checking convergence of Cd for the two cases. The moti-
vation for comparing the Cd and not any other parameters is that of the main scope of
this project, investigating the increase in Cd in sub critical densimetric Froude number
experiments. It is essential to have a turbulence model that best approximate the Cd

The first test is shown in figure 5.1. From the figure it is shown that the turbulence model
k − ω SST gives a good convergence of the Cd. The model k − ε on the other hand sees
a rise in Cd throughout the entire expriment and get even more unstable as time increases.

The second test is shown in figure 5.2, and the same trend is seen as in the first test.
k−ω SST gives a good convergence, while k− ε get a rise in Cd as time increases. In the
second test, k − ε even starts to oscillate as the time increases.

From the tests it is concluded that k − ω SST model is the most reliable in terms of
investigating the "dead water" phenomenon going further.

Even though the theory states that the k − ω turbulence model yields better results
when simulating adverse pressure gradients and boundary layer [12], it serves a purpose
to compare with other models. As stated in theory, the k − ε model can get reliable re-
sults when simulating multiphase fluids. The comparison of the models only confirms the
theory that the k − ω SST model is superior in estimating boundary layers and adverse
pressure gradients.
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Figure 5.1: Cd as a function of time.
Simulations done with a pycnocline at

0.2m and Frh = 0.69. k − ε Turbulence
model yields a higher Cd than the k − ω
SST model. While the k − ω SST model
converges, k − ε model has a steady
increase of Cd and gets more unstable

as time passes

Figure 5.2: Cd as a function of time.
Simulations done with a pycnocline at

0.2m and Frh = 0.95. k − ε Turbulence
model yields a higher Cd than the k − ω
SST model. While the k − ω SST model
converges, k − ε model has a steady

increase of Cd and starts to oscillate as
time passes

5.2 Drag

5.2.1 Non-stratified fluid
Non-stratified fluid simulations were conducted by simulating with a density correspond-
ing to fresh water, and with barge draft D = 0.1m at speeds 0.06ms−1 ≤ U ≤ 0.24ms−1.

Gou et.al conducted the same experiment in a towing tank [3], with a barge that has
the same dimensions as used in this thesis. Their results showed that drag force is di-
rectly proportianal to the square of the towing speed, which means that the Cd is constant.

Results of the non-stratified fluid simulations are shown along with the results obtained
by Gou et.al. [3] in figure 5.3. This thesis is getting similar results to the results reported
by Gou et al. as both experiments obtained a linear curve.

The current study underpredicts the drag force obtained by Gou et.al. by ≈ 20%. There
may be sevaral reasons for the under-prediction of drag. Reason one beeing that the Gou
et.al study did experiments in a shallow and narrow water tank, while this simulation
domain is much larger. Another reason is the approach of not including what is above
water line and excluding the free surface.
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Figure 5.3: Drag force as function of velocity squared.
Drag force in non-stratified fluid with draft = 0.1. Simulations is in good agreement with
experimental data obtained on an identical barge done by Gou et. al. [3] with a deviance
of ≈ 20 %. Drag force is directly proportianal to the square of the towing speed, which

means that the Cd is constant.

5.2.2 Stratified fluids
Study of the behaviour of resistance in a stratified fluid is conducted by simulating with
barge draft D = 0.1 and pycnocline depths h/D = 1, 1.5 and 2. All three set ups are then
simulated with speeds corresponding to densimetric Froude numbers (2.7) in the range of
0.35 ≤ Frh ≤ 1.35

The drag coefficients shown in figure 5.4 offers a lot of information. A clear pattern
of increasing Cd are shown for all three pycnocline depths. All Cd peaks are found within
the range of 0.6 ≤ Frh ≤ 0.7, with pycnocline depth h/D = 1 giving the largest Cd. All
three set-ups have the same pattern of increasing Cd until Frh reaches peak region, then
decrasing and tending towards non-stratified fluid flow.

Similar trends are presented in the study done by Esmaeilpour et. al. [4] who are doing
computational fluid dynamics study on a ship moving in stratified water. Esmaeilpour
et. al. reported peaks in a higher region than obtained in the thesis, with densimetric
Froude numbers between Frh = 0.83 and Frh = 0.91.
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Figure 5.4: Drag coefficient as function of Frh
Drag coefficients (Cd) obtained by running simulations with pycnocline depth h/D = 1,
1.5 and 2. Cd peaks within a range of Frh = 0.6 and 0.8. Cd tends towards simulations

of non-stratified fluid for all pycnocline locations when Frh ≤ 0.6 and Frh ≥ 0.8.

Esmaeilpour et.al. is also reporting a much more significant increase in Cd than is
obtained in this thesis. The peak Cd for a pycnocline depth of h/D = 1 has an increace
of 600%.

Percentage increace of Cd in a stratified fluid compared to a non-stratified fluid is pre-
sented in figure 5.5. Pycnocline depth h/D = 1 have a percentage increase of 21%, much
smaller than Esmaeilpour. Pycnocline depth h/D = 1.5 have an increase of 13.5%, while
Esmaeilpour et.al has an increase of 450% with the same pycnocline depth.

Looking into the large difference in the increase of Cd, the question arises of the exclusion
of the free-surface. The effects of the free-surface might be to significant in stratified
waters to leave out the free surface. Another key difference in the approach done by Es-
maeilpour et.al. is the number of grids. The study was conducted with a grid consisting
of 21.9× 106 cells, to properly resolve boundary layer and internal wave appearing at the
pycnocline.

Despite of the small amount of increase in Cd obtained from the simulations, the ef-
fect of the stratified fluid is clearly apparent. The increase in drag appears in the same
manner presented in Gou et.al. [3]. It is also in accordance with the findings in the study
of FRAM’s dead water resistance conducted by Grue [5]. Grue

35



Figure 5.5: Percentage difference as function Frh.
Percentage difference between stratified and non-stratified fliud. Pycnocline depth of
h/D = 2 gives a peak increase of 8.5%. h/D = 15m gives peak increase of 13.5% and

h/D = 1 gives peak increase of 21%

5.3 Internal wave and its effect
Any kind of vessel or boat moving in stratified fluid experience increase in drag compared
to non-stratified fluid. As the barge propagates in the stratified fluid, internal gravity
waves appear below and in the wake of the barge. The numerical experiments is clearly
cathing this phenomenon.

Figure 5.6 is a visualization of the internal gravity waves below the barge. It is showing a
contour of the interface tracking volume fraction alpha.saltWater for a pycnocline depth
h/D = 2, and velocity located at the symmetry plane. The figure is showing a clear wave
pattern below and in the wake, and is a useful tool for visualizing the phenomenon to
gain qualitative understanding.

36



Figure 5.6: Velocity and internal gravity wave.
Contour of the value fraction α with pycnocline depth h/D = 2. An internal gravity
wave appears below the barge. The non dimensional velocity Ux/U0x is shown in the

symmetryplane of the domain.

5.3.1 Internal waves and effect on velocity
The densimetric Froude number (2.7) is a ratio of the velocity of the barge and the celerity
of the longest internal waves. As Frh increase, the largest crest of the internal waves are
going to be located at further back towards the stern of the barge, and eventually in the
wake.

Figure 5.7 is showing the location of the pycnocline as a function of it position below
the barge. The three cases shown in the figure corresponds to Frh where Cd starts to
increase, Frh at peak Cd and Frh where Cd has decreased and almost reached a Cd ob-
tained by non-stratified simulations.

The location of the internal waves corresponding to peak Cd are located in the wake
and almost right below the stern of the barge. The internal waves are causing restriction
of passage area, and the flow is accelerated. Acceleration of the fluid flow is thinning the
boundary layer and causing a drop in pressure.

Figure 5.8, is showing non-dimensional velocity profiles scaled by the far field velocity.
The velocity profile corresponding to the internal wave located below the stern of the
barge shows increase in velocity as it approches the stern. This in turn makes the pres-
sure dop and a thinning of the boundary layer, causing an increase in Cd.

Pycnocline depth h/D = 1.5 is telling the same story as for pycnocline depth h/D = 2.
Looking at figure 5.9 and figure 5.10, the internal wave located below the stern of the
barge corresponding to peak Cd is causing the increase in velocity.
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Figure 5.7: Pycnocline as a function of
x-position.

Initial pycnocline depth h/D = 2. As
Frh increases, wave amplitude increase

and the crest located further back.
Location of crest has significant effect
on flow field as shown in figure 5.8.

The internal wave restricts the passage
area, causing a significant increase in

speed.

Figure 5.8: velocity profiles Ux/U0 as
function of z-position.

Dimensionlesss velocity profiles Ux/U0

below barge at x = 0.0m with pycnocline
at 0.2m. The velocity profile with

Frh = 0.69 has a signifiant increase in
speed and greater gradient, resulting in

the peak drag coefficient.

Figure 5.9: Pycnocline as a function of
x-position.

Initial pycnocline depth h/D = 2. As
Frh increases, wave amplitude increase

and the crest located further back.
Location of crest has significant effect
on flow field as shown in figure 5.10.
The internal wave restricts the passage
area, causing a significant increase in

speed.

Figure 5.10: velocity profiles Ux/U0 as
function of z-position.

Dimensionlesss velocity profiles Ux/U0

below barge at x = 0.0m with pycnocline
at 0.2m. The velocity profile with

Frh = 0.69 has a signifiant increase in
speed and greater gradient, resulting in

the peak drag coefficient.
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Looking at velocity profiles midships at x = 0.30m in figur 5.12 and 5.12, it is clearly
an acceleration of the flow caused by the wave also located midships. Since the wave is
located midships, it is not effecting Cd as much as the one located at the stern. A pressure
drop midship below the barge is not as significant as one located at the stern.

Figure 5.11: velocity profiles Ux/U0 as
function of z-position.

Dimensionlesss velocity profiles Ux/U0

below barge at x = 0.3m with pycnocline
at 0.2m. The velocity profile with

Frh = 0.35 has a signifiant increase in
speed and greater gradient, as the
amplitude of the internal wave is
located near the same location.

Figure 5.12: velocity profiles Ux/U0 as
function of z-position.

Dimensionlesss velocity profiles Ux/U0

below barge at x = 0.3m with pycnocline
at 0.15m. The velocity profile with

Frh = 0.40 has a signifiant increase in
speed and greater gradient, as the
amplitude of the internal wave is
located near the same location.
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Chapter 6

Conclusions and further
recommendations

6.1 Conclusions
Computational fluid dynamics have been used to investigate drag resistance on a barge in
stratified and non-stratified waters. The free open source software OpenFOAM has been
used to get a qualitative understanding of the dead water phenomenon.

A comparison of the RANS turbulence models k−ε and k−ω SST has been conducted to
determine which model is most applicable for the investigation. The comparison consists
of convergence tests of the drag coefficients Cd on the barge with draft D = 0.1m and
a pycnocline depth h/D = 2. k − ω SST model was suspected to give the best results,
which was shown. The k − ω SST model converged and gave stable results. The k − ε
model was found to be unstable, not converging and even oscillating for simulations with
densimetric Froude number Frh = 0.95.

Simulations of a non-stratified fluid showed similar behaviour as obtained by Gou et
al. [3]. The non stratified fluid simulations were shown to have a constant Cd, and to
have a drag force directly proportional to the square of the simulation speed. Simulations
yielded rusults with a deviance of ≈ 20% compared to results from gou et al.

Simulations of stratified fluid mostly agree with results obtained by Gou et al [3], J. Grue
[5] and Esmaeilpour [4]. Increase in Cd is shown in all simulations with densimetric Froude
number in regions of 0.35 ≤ Frh ≤ 0.6. Peak Cd was found in regions 0.6 ≤ Frh ≤ 0.7
and decrease for frh > 0.7 with Cd tending towards non-stratified simulations as Frh
increased. The same trend was shown for all pycnocline depths h/D = 1, 1.5 and 2. Gou
et al. reported peak in regions 0.5 ≤ Frh ≤ 0.6, while Esmaeilour et al. reported peaks
in regions 0.83 ≤ Frh ≤ 0.93.

The increase in drag of stratified fluid was found to be much smaller than reported by
Gou et at. and Esmaeilpour et al., with a maximum increase of 21% in Cd compared to
a non-stratified fluid. Esmaeilpour reported a maximum increase in Cd of 600%. Even
though their study was conducted on a completely different vessel, their reported increase
is suggesting under-estimation in this report. The reason for the under-estimation of Cd
may be the exclusion of the free surface. It is also likely to be due to insufficient number

40



of grid points. Esmaeilpour had around 20 times more grid points compared to this study,
with around 20 million cells.

The internal gravity waves and their location below the barge were found to have sig-
nificant effect on the flow field. The speed is accelerated by the restriction of passage
area by the internal wave. The waves corresponding to the peak Cd caused a significant
increase in the velocity at the stern, causing a drop of pressure.

6.2 Further recommendations
Further recommendations regarding investigations on the dead water phenomenon, a lot
of improvements and approaches can be advised.

As this project only focused on the internal wave, and leaving out the free surface waves,
it would be of great interest to include the free surface waves in the investigation. A
better resolved mesh is advised, especially around the pycnocline. Simulations with pyc-
nocline depths h/D ≤ 1 should be studied to see for which pycnocline depth a maximum
resistance is obtained, and for which depth the effect decreases again.

Comparison of other turbulence models e.g. Spalart-Allmaras model is advised, as it
is said to have good preformance for flows with adverse pressure gradients and boundary
layers [12]. A study of sensitivity to numerical discretization schemes may be conducted,
in order to obtain higher order of accuracy and stability. Also conducting a comparison
of large eddy simulations with RANS simulations is of interest.

Experiments in a towing tank, allowing for measuring of resistance in combinations with
tools to investigate velocity profiles such as particle mage velocimetry (PIV) should be
conducted. A combination of both experiments and CFD could lead to an even better
qualitative understanding of the phenomenon.
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