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During amelogenesis the extracellular enamel matrix protein AMBN is quickly processed

into 17 kDa (N-terminus) and 23 kDa (C-terminus) fragments. In particular, alternatively

spliced regions derived by exon 5/6 within the N-terminus region are known to be

critical in biomineralization. Human mesenchymal stem cells (hMSC) also express and

secrete AMBN, but it is unclear if this expression has effects on the hMSC themselves.

If, as suggested from previous findings, AMBN act as a signaling molecule, such effects

could influence hMSC growth and differentiation, as well as promoting the secretion of

other signaling proteins like cytokines and chemokines. If AMBN is found to modulate

stem cell behavior and fate, it will impact our understanding on how extracellular matrix

molecules can have multiple roles during development ontogenesis, mineralization and

healing of mesenchymal tissues. Here we show that synthetic peptides representing exon

5 promote hMSC proliferation. Interestingly, this effect is inhibited by the application of a

15 aa peptide representing the alternatively spliced start of exon 6. Both peptides also

influence gene expression of RUNX2 and osteocalcin, and promote calcium deposition

in cultures, indicating a positive influence on the osteogenic capacity of hMSC. We also

show that the full-length AMBN-WT and N-terminus region enhance the secretion of

RANTES, IP-10, and IL-8. In contrast, the AMBN C-terminus fragment and the exon 5

deleted AMBN (DelEx5) have no detectable effects on any of the parameters investigated.

These findings suggest the signaling effect of AMBN is conveyed by processed products,

whereas the effect on proliferation is differentially modulated through alternative splicing

during gene expression.

Keywords: ameloblastin, biomineralization, bone growth, exon 5, human mesenchymal stem cells, osteogenesis,

proliferation

INTRODUCTION

Ameloblastin (AMBN) is an extracellular matrix protein expressed in mesenchymal and epithelial
cells (Fong et al., 1998). Epithelial-mesenchymal interactions initiate tooth development and has
been shown to induce the expression of AMBN (Takahashi et al., 2012). AMBN is also involved in
biomineralization in other tissues than teeth, and is expressed and secreted from cultured human
mesenchymal stem cells (hMSC) and osteoblasts (Tamburstuen et al., 2011). Expression of AMBN
(Spahr et al., 2006; Tamburstuen et al., 2010) in cells bordering bone defects suggest a role for
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AMBN in the recruitment, growth and differentiation of hMSC,
and is a potential target for clinical interventions for bone
healing.

AMBN is known to modulate proliferation and differentiation
of ameloblasts, periodontal ligament cells (PDL), pulp cells
(Nakamura et al., 2006) and hMSC; (Fukumoto et al., 2004;
Sonoda et al., 2009; Tamburstuen et al., 2010; Zhang et al., 2011).
AMBN splice variants are widely distributed in time and location,
and have several roles during dental biomineralization. During
early tooth development in mice, the predominant splice variant
is 15 aa shorter than the splice variant expressed in later stages.
These 15 aa (Q9NP70) derive from the start of exon 6 (Cerný
et al., 1996; Fong et al., 1996; Hu et al., 1997; Lee et al., 2003;
Ravindranath et al., 2007). However, spatial distribution and
post-translational modification of the splice variants present in
mesenchymal tissues like bone still needs to be investigated.

Extracellular full-length AMBN has not been identified in
vivo. This is most probably due to rapid degradation by co-
secreted specific matrix metalloproteases like MMP-20 (Uchida
et al., 1997). Thus, it is important to understand the dynamics
of AMBN processing and the biological role of the processed
products. It is interesting that recombinant full-length AMBN
has been found to enhance the secretion of cytokines and
chemokines involved in inflammation and recruitment of
progenitor cells (Tamburstuen et al., 2010). This effect is evident
in the healing of critical-size defects in the jawbone of rats
(Spahr et al., 2006; Tamburstuen et al., 2010) and in pulpal
wound healing in pigs (Nakamura et al., 2006). These findings
suggest that the full-length product has a biological (or at
least pharmacological) effect on its own or that the full-length
molecule act as a founding source for shorter, active, peptides.

Unprocessed ameloblastin (AMBN-WT) is a two-domain
protein where the amino- and carboxyl ends are differently
organized with opposing chemical properties (Vymetal et al.,
2008). The N-terminus is defined by the first 10 exons encoding
222 aa (human). Both the unprocessed ameloblastin and the N-
terminus may form fibrils through self-assembly supported by
the exon 5 derived region (Wald et al., 2013). The C-terminus is
defined by the last three exons encoding 225 aa (Toyosawa et al.,
2000). It has been suggested that parts of the porcine N-terminus
(17 kDa fragment) is active in mineralization and regeneration
(Fukae et al., 2006; Stout et al., 2014), whereas the C-terminus
product may have a role in cell surface attachment (Sonoda et al.,
2009).

In silico modeling of AMBN-WT folding, suggests that some
discrete peptide-sequences are exposed on the surface of the
folded protein structure (Vymetal et al., 2008). It is reasonable
to assume these domains have biological functions that are
presently unknown. Whether these domains act in concert or
have individual activities also need assessment. Based on in silico
modeling, we have designed synthetic peptides from exons 2–
13 (without signal peptide) representing these exposed domains.
In an attempt to look for biological effects of AMBN and the
processing products as suggested by Tamburstuen et al. and
others (Nakamura et al., 2006; Spahr et al., 2006; Tamburstuen
et al., 2011), these peptides and various other AMBN fragments
were added to cultures of hMSC, and the cells were monitored for

changes in growth and differentiation as well as effects on levels
of selected cytokine and chemokine secretion.

MATERIALS AND METHODS

Experimental Design
Human mesenchymal stem cells (hMSC; Cat.no: PT-2501,
Lonza Walkersville, MD, USA) were maintained in growth
medium [GM; Cat.no: PT-3238 supplemented with MSCGM
SingleQuots, Cat.no: PT-4105, Lonza (http://www.lonza.com/
products-services/bio-research/stem-cells/adult-stem-cells-
and-media/human-mesenchymal-stem-cells-media.aspx)] and
changed every 3rd day. These hMSC cells are isolated from
normal (non-diabetic) adult human bone marrow withdrawn
from bilateral punctures of the posterior iliac crests of healthy
volunteers.

The recombinant AMBN protein, fragments, and peptides,
presented in Figure 1, were produced and purified as described
by Wald et al. (2013).

Human MSC were incubated with 0.1µM and 0.2µM of
AMBN-WT, AMBN-WT without Exon 5 (DelEx5), N-terminus
of AMBN, C-terminus of AMBN, or 0.2µM of exon 5 related
peptides [Ex5 (AA62-98), Ex5-18 (AA62-80), Ex5-36 (AA81-98),
Ex5|Q9NP70 (AA62-113), and Q9NP70 (AA99-113)]. Untreated
hMSC were used as control at each time point tested. Cells and
culture medium were harvested after 1, 3, 7, 14, 21, and 28 days
of incubation.

Proliferation Assay
hMSC (6000 cells/well) were seeded in 48 well plates and
incubated with the various test fragments or controls for 24 h.
New DNA produced in the cells was labeled with 0.1µCi [3H]-
thymidine in a 12 h pulse prior to harvesting. The cells were then
washed twice in PBS and then twice in 5% TCA to remove excess
thymidine, and the remaining pellet dissolved in 1 M NaOH.
Optifluor Scintillation liquid (Lumagel LSC GE BV, Groningen,
Netherlands; 4 ml) was added, and radioactivity was measured

FIGURE 1 | Overview of recombinant ameloblastin (AMBN) proteins

and derivatives of the N-terminus region. Signal sequence of the 26

amino acids is indicated with asterisk in the exon map that is scaled according

to the stretch of residue length in each exon.
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in a Packard 1500 TRI-CARB liquid scintillation counter (Perkin
Elmer, Shelton, CT, USA).

Measurements of Secreted Biomarkers
Harvested cell-culture-medium samples were concentrated 5-
fold in spin columns with a 3 kD cut-off (Pall Life Science, Ann
Arbor, MI, USA).

The concentrations of Eotaxin, granulocyte-colony
stimulating factor (G-CSF), interferon (IFN) α2, IFNγ,
interleukin (IL)-1α, IL-1β, IL-1 Receptor Antagonist (RA),
IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15,
IL-17, interferon gamma-inducible protein (IP-10), monocyte
chemoattractant protein-1 (MCP-1), macrophage inflammatory
protein-1 alpha (MIP-1α), macrophage inflammatory protein-1
beta (MIP-1β), regulated upon activation normal T-cell expressed
and secreted (RANTES), tumor necrosis factor alpha (TNFα),
vascular endothelial growth factor (VEGF), as well as adreno-
corticotrophic hormone (ACTH), Dickkopf-1 (DKK1), Insulin,
Leptin, osteoprotegerin (OPG), osteocalcin (OCN), osteopontin
(OPN), sclerostin (SOST), fibroblast growth factor-23 (FGF-23),
respectively, were measured using HCYTOMAG-60K and
HBNMAG-51K assays (MILLIPORE corporation, Billerica, MA,
USA), respectively, and analyzed with the Luminex xPONENT
version 3.1.871 or MILLIPLEXTM Analyst version 5.1 software
in the Luminex-200 system (Luminex Corp., Austin, TX, USA).
Only the cytokines and chemokines that showed significant
change are discussed here.

mRNA Isolation
hMSCwere washed in PBS and lysed, and themRNAwas isolated
using magnetic beads according to manufacturer’s instructions
(Dynabeads Oligo (dT)25, Life Technologies, Gaithersburg, MD,
USA). The mRNA was separated from the beads by heat
treatment (80◦C for 2 min), and quantified using a nano-drop
spectrophotometer (ND-1000, Thermo Scientific, Wilmington,
DE, USA, with software version 3.3.1.).

Real Time PCR
cDNA was generated from mRNA using Revertaid First Strand
cDNA synthesis kit (Fermentas, Burlington, Ontario, Canada)
according to the producer’s instructions. Real time PCR was
performed using Ssoadvanced SYBRGreen Supermix (Bio-rad,

Hercules, CA, USA) in a reaction mix of 20 µl (1 ng cDNA) in
96 well plates using the CFX ConnectTM-system. Gene expression
was normalized to reference housekeeping genes β-actin and
glyceraldehyde phosphate (GADPH) using the 11CT method
with Bio-Rad CFX Manager software version 2.1. The primer
sequences used are listed in Table 1.

Mineralization
Cells were cultured to confluence in 12-well plates and then
treated with AMBN or its fragments in either GM or osteogenic
differentiation media (DM; Cat.no: PT-3924, supplemented with
hMSC osteogenic SinglequotsTM) for up to 28 days.Mediumwas
changed every 3rd day. Upon harvest, the cells were washed three
times with PBS, fixed in 95% ethanol for 30 min, and then stained
with 1% alizarin red for 5min as described elsewhere (Dahl,
1952). To quantify mineralization, the alizarin red deposition
was extracted with cetyl pyridinium chloride (Sigma-Aldrich, St.
Louis, MO, USA) at room temperature, and measured at 562 nm
in (EL× 800 Absorbance Reader, BioTek instruments, Winooski,
VT, USA).

Statistics
Student t-test was used to evaluate the effect of AMBN and its
fragments compared to untreated controls at each individual
time point. The Mann-Whitney U- Test was used if the results
were not normally distributed. The significance level was set to
P ≤ 0.05.

RESULT

Proliferation of hMSC is Influenced by
Peptides Derived by exon 5 and Q9NP70
AMBN-WT (0.1µM) enhanced cell proliferation of hMSC to 1.8-
fold (P = 0.002) of the control. DelEx5 was found to enhance
proliferation to 1.5-fold (P = 0.004), whereas no effects were
observed from the C-terminus or the N-terminus fragments
alone at the time points tested (Figure 2A). Among the tested
peptides, Ex5 enhanced the proliferation to 2.6-fold (P = 0.004)
while Q9NP70 and Ex5|Q9NP70 both inhibited proliferation
to 0.5-fold of control (P = 0.015 and P = 0.003, respectively;
Figure 2B).

TABLE 1 | Description of human primers used in experiments.

Genes Forward primer Reverse primer

OCN 5′-GAAGCCCAGCGGTGCA 3′-CACTACCTCGCTGCCCTCC

Col1α1 5′-AAGGGACACAGAGGTTTCAG 3′-TAGCACCATCATTTCCACGA

RUNX2 5′-CCAGATGGGACTGTGGTTACC 3′-ACTTGGTGCAGAGTTGAGGG

Osterix 5′-GCCAGAAGCTGTGAAACCTC 3′-GCTGCAAGCTCTCCATAACC

β-Actin 5′-CTGGAACGGTGAAGGTGACA 3′-AAGGGACTTCCTGTAACAATGCA

GADPH 1′–TGCACCACCAACTGCTTAGC 2′-GGCATGGACTGTGGTCATGAG

RANKL 5′-CGGGGTGACCTTATGAGAAA 3′-GCGCTAGATGACACCCTCTC

OPG 5′-TGGGAGCAGAAGACATTGAA 3′-GTGTCTTGGTCGCCATTTTT

OCN (osteocalcin), Col1α1 (collagen type 1 α1), RUNX2 (Runt-related transcription factor 2), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), RANKL (Receptor Activator of

Nuclear Factor κ B), OPG (osteoprotegerin).
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FIGURE 2 | Proliferation measured as [3H]-thymidine incorporation in hMSC exposed to (A) 0.1µM AMBN-WT, N-terminus, C-terminus or DelEx5 (n = 6).

(B) 0.2µM Ex5, Ex5-18, Ex5-36, Ex5|Q9NP70, or Q9NP70 (n = 12). 3H-thymidine incorporation (CPM) was calculated relative to untreated control cells (%), and

presented as mean ± SD. *Indicate P < 0.05, **Indicate P < 0.01.

Cytokine and Chemokine Secretion is
Enhanced by AMBN-WT and N-Terminus
AMBN-WT (0.2µM) enhanced the secretion of RANTES 19 and
21-fold at day 7 and 14 respectively (P = 0.015 and P = 0.019).
The secretion of IP-10 was enhanced 22-fold and 24-fold at day
1 and day 14, respectively (P = 0.029 and P = 0.047). Finally
AMBN-WT enhanced the secretion of MIP-1α 8-fold at day 1
(P = 0.043) and 12-fold at day 14 (P = 0.001; Table 2). Lower
concentration (0.1µM) of AMBN-WT produced only a slight
increase in secretion of MCP-1 and IL-6 at day 1 (values not
shown).

N-terminus (0.2 µM) enhanced the secretion of RANTES 2.5,
4.5, and 3-fold at days 1, 7, and 14 respectively (P = 0.036, P
= < 0.001, P = 0.003). The secretion of IP-10 was enhanced
5.5 and 2.7-fold at day 1 and 14, respectively (P = 0.003 and
P = 0.037). N-terminus enhanced the secretion of MIP-1α 2.6-
fold at day 14 (P = 0.004). The N-terminus also significantly
enhanced secretion of IL-8 2.5-fold at day 3 (P = 0.038;
Table 2).

The C-terminus and DelEx5 did not have any significant
effects on the secretion of cytokines or chemokines,
nor did they influence any differentiation markers
tested.

Differentiation of hMSC are Stimulated by
Peptides Derived by exon 5 and Q9NP70
The N-terminus and the Ex5, Ex5-18, and Ex5|Q9NP70
peptides all stimulated the mRNA expression of RUNX2
(3-fold (P = 0.008), 1.9 -fold (P = 0.016), 2.1-fold (P =

0.004), and 1.5-fold (P = 0.019)), respectively (Figure 3A).
Ex5 stimulated the mRNA expression of OCN 2.5-fold
(P = 0.009; Figure 3B), however no significant effect was
observed on the secretion of OCN to the cell culture

TABLE 2 | Cytokine/chemokine secretion from hMSC.

Chemokine Days AMBN-WT DelEx5 N-term C-term

RANTES 1 10 ± 6 1.5 ± 0.8 2.5 ± 1.3* 0.9 ± 0.2

3 0.9 ± 0.4 0.7± 0.04 1.3 ± 1 0.9 ± 0.4

7 19 ± 7* 1 ± 0.3 4.5 ± 0.6*** 1.3 ± 0.3

14 21 ± 9* 1 ± 0.5 3 ± 0.7** 0.9 ± 0.3

IP-10 1 22 ± 13* 2 ± 1 5.5 ± 0.8** 1 ± 0.4

3 1.6 ± 0.08 2 ± 0.2 1 ± 0.5 2 ± 0.3

7 24 ± 14* 1.5 ± 0.4 5.8 ± 5 1.7 ± 1

14 21 ± 7.9 1.8 ± 0.7 2.7 ± 0.5* 1.2 ± 0.3

IL-8 1 2 ± 1.3 1.6 ± 113 2.3 ± 2.1 1 ± 0.8

3 3 ± 0.5 1.3 ± 0.4 2.5 ± 1.3* 1.2 ± 0.04

7 4 ± 0.8 1.7 ± 0.6 3.9 ± 0.8 1.6 ± 0.6

14 3 ± 0.6 2 ± 0.7 3 ± 0.3 1.7 ± 0.6

MIP-1α 1 8 ± 5.5* 1 ± 0.5 2.4 ± 1.3 0.7 ± 0.4

3 n/a n/a n/a n/a

7 14 ± 6 3 ± 0.6 4.7 ± 0.7 1.5 ± 0.05

14 12 ± 2*** 1.3 ± 0.6 2.6 ± 0.3** 0.8 ± 0.1

Secretion of RANTES, IL-8, IP-10, and MIP-1α from human mesenchymal stem cells

(hMSCs) grown in standard growth media containing 0.2 µM of AMBN-WT, DelEx5,

C-terminus, or N-terminus. Data are presented as –fold change mean ± SD (n = 2–

6). *Indicate P < 0.05, **Indicate P < 0.01, ***Indicate P < 0.001. n/a means data not

available.

medium (results not shown). AMBN-WT stimulated the
mRNA expression of RANKL; however neither AMBN
nor its fragments had any significant effect on mRNA
expression of OPG at the time-point analyzed (Figures 3C,D,
respectively).
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FIGURE 3 | Gene expression of RUNX2 (A), OCN (B), RANKL (C), and

OPG (D) in human hMSCs at 72 h. Expression was normalized against the

reference genes Glyceraldehyde-3-Phosphate Dehydrogenase (GADPH) and

Beta Actin using the 11CT method. Data are calculated relative to untreated

control as fold-changes and presented as mean ± SD (n = 5) (%). *Indicate P

< 0.05, **Indicate P < 0.01.

FIGURE 4 | Extracted alizarin red from mineralized surfaces of hMSC

after 28 days incubation with Ex5, Ex5-18, Ex5-36, Ex5|Q9NP70, or

Q9NP70 (0.2 µM). Data are presented as mean ± SD (n = 5) (%). *Indicate P

< 0.05.

Mineralization of hMSC is Mostly
Influenced by exon 5 Derived Peptides
In initial tests with hMSC growing in regular medium for 21
days, none of the larger fragments AMBN-WT, N-terminus, C-
terminus, or DelEx5, promoted in vitromineralization. However,
exon 5 and Q9NP70 derived peptides had a visible but not
statistically significant, effect on the formation of mineralized
nodules in hMSC cell cultures (results not shown). Only when
a combination of Ex5 peptide and osteogenic medium (DM) was
used did the mineralization increase significantly to 1.7-fold over
the DM-only control (P = 0.029; Figure 4).

DISCUSSION

AMBN is first and foremost an extra cellular matrix protein, and
may as such constitute a slow-release depot for biological signals.
AMBN has not been identified as an intact soluble protein in
vivo (Brookes et al., 2001; Iwata et al., 2007), and no complete
information is available on the processing of AMBN in tissues
other than in teeth. In other tissues, fragments are probably
released into solution from the self-assembled AMBN complex,
but little is known about the nature and the function of these
fragments. Here we have shown that some selected fragments
have discrete and significant effects on cultured hMSC.

To be able to compare different peptides and fragments we
performed the experiments with equimolar concentrations. The
recombinant proteins and peptides were administered to hMSC
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in a dosage (0.2µM) to reflect the levels previously shown to
be secreted from cultured hMSC (Tamburstuen et al., 2011)
and that has been shown to have effects in other experiments
with hMSC (Tamburstuen et al., 2010). We also included a
lower concentration of AMBN to test the responsiveness to
concentration levels similar as found in mature osteoblasts
(0.1µM; Tamburstuen et al., 2011). Both concentrations induced
effects on proliferation and secretion of chemokines, suggesting
that the AMBN secreted from progenitor cells and osteoblasts
(Tamburstuen et al., 2011) indeed can have an effect as a signaling
molecule in mesenchymal tissues.

Proliferation of hMSC Were Modulated by
AMBN-WT and Regions Derived by exon 5

and Q9NP70
Proliferation of stem cells is a key feature in healing and tissue
homeostasis. Here we have shown that AMBN-WT and peptide
Ex5 stimulate hMSC proliferation. In fact Ex5 alone is more
efficient as a signal for proliferation for these cells than the whole
WT molecule, most probably due to superior bioavailability
and/or a more favorable structural conformation. Interestingly,
when exon 5 was deleted out of the full length AMBN there
was little effect on proliferation, suggesting that Ex5 is a key
element for this process. This was further demonstrated by the
fact that additional processing of Ex5 into smaller fragments
minimizes the effect on proliferation. The other fragments tested
here did not significantly alter proliferation of hMSC. This is also
supported by other studies, where a 15 aa peptide derived by exon
2 and exon 3 was shown not to influence proliferation (Kitagawa
et al., 2011, 2016). Moreover, overexpression of AMBN lacking
exon 5 and exon 6 inmice resulted in reduced bone growth, femur
length, and higher fracture rate (Lu et al., 2016a,b) indirectly
suggesting the importance of exon 5 in cell proliferation.

The regions derived by exon 5 and exon 6 have been shown
to be vital for proper development of enamel (Smith et al.,
2009; Wazen et al., 2009). Interestingly, the upstream part of
exon 6 encodes a peptide (Q9NP70) that was found to inhibit
proliferation of hMSC. This inhibition is probably stronger than
the positive signal from Ex5 since the combination of the two
(Ex5|Q9NP70) has a net inhibitory effect. However, this may also
be due to steric inhibition or interfering pathways. The exon 6
derived Q9NP70 has been found in vivo during post-natal tooth
development (Lee et al., 2003; Ravindranath et al., 2007) and thus
may contribute by inhibiting cell proliferation at a stage where
differentiation probably is more developmentally desired than
proliferation.

The C-terminus fragment of AMBN showed no effect on
hMSC proliferation. This fragment has however, been found to
inhibit the proliferation of PDL and dental follicle cells (Zhang
et al., 2011). This suggests that the effect of the various processed
AMBN fragments might be tissue specific in real life situations.

Cytokines/Chemokines Secretion
Enhanced by AMBN Fragments
Several reports suggest that AMBN can play a role in regeneration
of bone (Nakamura et al., 2006; Spahr et al., 2006; Tamburstuen

et al., 2010; Lu et al., 2016a,b). Overexpression of AMBN has
been found to increase osteoclastogenesis (Lu et al., 2013).
Osteoclastogenesis and inflammation are both critical processes
influencing the early stages in regeneration of bone (Mountziaris
and Mikos, 2008). Here we have demonstrated that AMBN-WT
significantly enhanced the secretion of MCP-1, IL-6, RANTES,
MIP-1α, and IP-10. All these factors have been associated with
osteoclastogenesis (Kotake et al., 1996;Watanabe et al., 2004; Kim
et al., 2005, 2006) in addition to inflammatory processes (Schall
et al., 1990; Dufour et al., 2002). Interestingly, again, this effect is
only observed from peptides derived from the N-terminus part of
the AMBN molecule. Moreover, when the N-terminus fragment
was tested alone it also enhanced the secretion of IL-8.

None of the other fragments, DelEx5, C-terminus, Ex5, Ex5-
18, Ex5-36, Ex5|Q9NP70, or Q9NP70, had any effect on the
markers analyzed here. Relevant for bone formation is the fact
that IL-8 so far is the only chemokine known to enhance secretion
of MMPs (Li et al., 2003).

Both the N-terminus and AMBN-WT self-assemble into
fibrils (Wald et al., 2013). It is a surprising but striking feature
that only these fibril forming regions affected the secretion of
cytokines / chemokines from hMSC. Receptor oligomerization
(George et al., 2002) has been shown to enhance secretion
of chemokines (Martinez-Martin et al., 2015). Fibril formation
of AMBN may be a way to expose multiple signaling motifs
in close proximity, which in turn could bind several motifs
at once and thus initiating chemokine associated receptor
oligomerization.

The AMBN-WT includes the C-terminus that has been
suggested to provide cell anchoring (Fukumoto et al., 2004)
through DGEA binding motifs (Cerný et al., 1996). AMBN
has also been shown to bind integrin β1 (Iizuka et al., 2011;
Lu et al., 2013), and Integrin β1 ligands have been shown
to enhance secretion of RANTES (Peng et al., 2005). This
may explain the observation that AMBN-WT is more potent
in enhancing secretion of cytokines and chemokines than its
processed products.

Expressed Markers for Differentiation and
Mineralization
The expression of RUNX2, a transcriptional factor for
extracellular matrix proteins like collagen and OCN (Ducy
et al., 1997; Kern et al., 2001), has been found to be enhanced
by AMBN and synthetic peptides derived from its 17 kDa
fragment in PDL (Kitagawa et al., 2011, 2016). Enhanced
hMSC expression of RUNX2 and OCN by the N-terminus,
exon 5, and Q9NP70 peptides presented here, support the
idea that AMBN has effect on bone differentiation and
mineralization.

This is further underlined by AMBN knockdown experiments
that show reduction in alizarin red deposition duringmineralized
nodule formation (Iizuka et al., 2011). In the initial experiments
on hMSC grown in GM we here found effects on mineralization
only with the exon 5 and the Q9NP70 derivedpeptides.
Exon 5 and exon 6 (including Q9NP70) have previously
been shown to be important in enamel mineralization
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(Smith et al., 2009; Wazen et al., 2009). Accordingly, we
confirmed that the Ex5 peptide stimulates calcium deposition
under mineralizing conditions (DM) as visualized by alizarin
staining.

CONCLUSION

AMBN-WT enhances the proliferation of hMSCs and
secretion of cytokines/chemokines. Moreover, the two main
AMBN processing fragments and derived peptides have
markedly diverse effects. The N-terminus portion seems to
enhance secretion of cytokines/chemokines, whereas peptides
derived by exon 5 and Q9NP70 modulate proliferation,
enhance secretion of markers for hMSC differentiation and
extracellular mineralization. In contrast the C-terminus
fragment shows no discernible effect on hMSC differentiation
or proliferation and is probably only involved in cell
attachment.
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