
Process Tailoring in Large-Scale

Agile Programs

A case study of coordination in

Autonomous DevOps Teams

Andreas Aasheim

Thesis submitted for the degree of

Master in Software Engineering

 60 credits

Department of Informatics

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2018

II

III

Process Tailoring in Large-Scale

Agile Programs

A case study of coordination in

Autonomous DevOps Teams

Andreas Aasheim

Spring 2018

IV

© Andreas Aasheim

2018

Process Tailoring in Large-Scale Agile Programs

Andreas Aasheim

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

V

Abstract

Background: Teams in large-scale agile programs need to achieve collaborative software

development. A proposed guide to collaboration is effective coordination. Large-scale agile

software development is well accepted in the software industry, but there is little

understanding of such projects and programs achieve effective coordination in autonomous

cross-functional teams. Therefore, I conducted a case study of a large-scale software

program consisting of seven autonomous teams in an organization. Five of them was

DevOps teams, where DevOps is merely a team composed of developers who are working

on the development and operational tasks.

Aim: The thesis aims to investigate what dependencies and their related agile practices that

act as coordination mechanisms to facilitate the large-scale agile development.

Additionally, the aim is also to recommend a starter set for providing coordination in the

large-scale by using a dependency taxonomy, which mapping agile practices.

Method: A qualitative case study was conducted for the research design. The data was

collected by conduction 40 observed meetings, as well as 18 entire working days in the

organization's open work area to observe them in their everyday work. A dependency

taxonomy was used to map and categorize the coordination mechanisms.

Results: The results revealed that there were 34 coordination mechanisms and 77 pairs of

dependencies presented in the program. The coordination mechanisms could be mapped

into three categories, with subcategories each: knowledge dependency, process

dependency, and resource dependency. The knowledge dependency was predominant with

the frequency of 73 % of the three categories. These means that focusing on selecting agile

practices that address the types of knowledge dependency should be recommended for

providing coordination. Furthermore, the results revealed that 12 agile practices would be

a good choice for coordinating and tailoring a large-scale program.

Conclusion: It is possible to use a dependency taxonomy to map coordination mechanisms

in a large-scale agile program. The coordination mechanisms made collaboration between

the teams in the program, by implement Scrum of Scrum meetings, daily stand-up

meetings, demo meetings, Sprint Planning meetings, and introduce different roles, such as

project managers, team leads, Product Owners and DevOps developers. These mechanisms

lead to fast Sprint periods, frequent production setting, a common understanding of what is

being created, and autonomous decisions in the program.

VI

VII

Acknowledgements

First, I would like to thank all those who have contributed to my master thesis, both in

terms of academic and patient support. I would like to thank my supervisor Viktoria Stray

from the University of Oslo for all your help, guidance and putting me in contact with the

relevant people. I am also thankful to Nils Brede Moe from the research group in SINTEF

for giving me the opportunity to write this thesis, for perfect feedback and guidance

throughout this thesis. Furthermore, I am thankful to all the participants in the study, for

welcoming me into their organization and therefore I would like to give a special thanks to

the CTO in Knowit Objectnet AS, Jan Henrik Gundelsby for including me in their projects

and workplace.

A special thanks go to my fellow students and other employees from the research group

Programming and Software Engineering at the Department of Informatics for discussions

and other valuable help.

Lastly, I would like to thank my family and friends for their help and support, my parents

Bente and Tom, for all great contributions and my siblings for continues support. I am

especially thankful to my dear Frida for her love, encouragement, and optimism through

this research and writing period.

Oslo, May 2018

Andreas Aasheim

VIII

IX

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 2

1.2 Research Area and Questions .. 4

1.3 Approach ... 4

1.4 Chapter Overview ... 5

2 Background and Theoretical Perspective... 7

2.1 Agile Software Development ... 7

2.1.1 Scrum .. 8

2.1.2 Lean Software Development... 13

2.1.3 Kanban .. 14

2.2 Large-Scale Agile Development .. 14

2.2.1 Guidelines for Tailoring Agile in Large-Scale ... 15

2.3 Coordination .. 16

2.3.1 Research on Coordination ... 16

2.3.2 Theories on Coordination Mechanisms .. 18

2.4 Autonomous Cross-Functional Teams ... 21

2.4.1 Teams vs. Groups.. 23

2.5 DevOps .. 23

3 Research Method and Design .. 25

3.1 Qualitative Research .. 25

3.1.1 Case Study .. 25

3.1.2 Research Sites ... 27

3.2 Data Collection .. 28

X

3.2.1 Observation ... 29

3.3 Data Analysis ... 30

3.4 Validity .. 32

4 Research Context ... 33

4.1 The Organization and Project Case.. 33

4.1.1 The Large-Scale Agile Program ... 33

4.1.2 Work Area ... 37

4.2 The Investigated Teams ... 38

4.2.1 Team Jupiter.. 39

4.2.2 Team Pluto .. 40

4.2.3 Team Mars .. 40

4.2.4 Team Saturn .. 41

4.2.5 Team Venus .. 42

4.2.6 Team Customer ... 44

4.2.7 Team Earth .. 44

4.3 Roles .. 45

5 Results .. 49

5.1 Using the Taxonomy to assemble Agile Practices ... 51

5.2 Dependencies and Coordination Mechanisms ... 56

5.3 Knowledge Dependency .. 58

5.3.1 Expertise Dependency .. 59

5.3.2 Requirement Dependency ... 61

5.3.3 Task Allocation Dependency .. 63

5.3.4 Historical Dependency .. 68

5.4 Process Dependency .. 70

5.4.1 Activity Dependency .. 70

XI

5.4.2 Business Process Dependency .. 71

5.5 Resource Dependency .. 72

5.5.1 Entity Dependency .. 72

5.5.2 Technical Dependency .. 72

6 Discussion .. 73

6.1 Working Group or a Working Team .. 74

6.2 Dependencies and their associated Agile Practices that facilitate the Large-Scale

Agile ... 75

6.2.1 Knowledge Dependency ... 76

6.2.2 Process Dependency ... 79

6.2.3 Resource Dependency ... 81

6.2.4 What Dependencies occur in Large-Scale Agile Program 82

6.3 Providing Coordination in the Large-Scale Agile ... 83

6.3.1 Implications for Practice ... 83

6.4 Implications for Theory ... 86

7 Conclusion and Future Work ... 87

Bibliography .. 89

Appendix .. 93

Attachment A: Observation Protocol ... 93

Attachment B: Coding Scheme for Daily Stand-up ... 94

XII

XIII

List of Figures

Figure 1: Schematic of the dependency taxonomy (Strode, 2016) 20

Figure 2: The flow in the DevOps concept (Kornilova, 2017) .. 24

Figure 3: The context of the reorganized structure after the scaling process 26

Figure 4: An example of the coding process in my study.. 31

Figure 5: The large-scale agile program before the scaling process 34

Figure 6: A timeline of the large-scale program .. 35

Figure 7: The large-scale program after the scaling process ... 36

Figure 8: Open work area where the program was situated on the 4th floor 37

Figure 9: Open work area where the program was situated on the 5th floor 38

Figure 10: Team Jupiter's seating arrangement ... 39

Figure 11: Team Mars seating arrangement .. 41

Figure 12: Team Saturn's seating arrangement .. 42

Figure 13: Team Venus seating arrangement before the scaling process 43

Figure 14: Team Venus and team Mars seating arrangement after the scaling process 43

Figure 15: An overview of the Product Owner's relations to the DevOps teams 47

Figure 16: An overview of the frequency of dependencies in whole large-scale program 52

Figure 17: An overview of the agile practices usage in knowledge dependency 53

Figure 18: An overview of the frequency of dependencies ... 55

Figure 19: The hot-air balloon exercise in a futurespective meeting 60

Figure 20: The most common sequence of interaction in a daily meeting 65

Figure 21: The Kanban board in Jira ... 67

Figure 22: The open work area from a DevOps team .. 69

file:///C:/Users/aashe/Desktop/Master%20Thesis%20Andreas%20Aasheim.docx%23_Toc513033747
file:///C:/Users/aashe/Desktop/Master%20Thesis%20Andreas%20Aasheim.docx%23_Toc513033749
file:///C:/Users/aashe/Desktop/Master%20Thesis%20Andreas%20Aasheim.docx%23_Toc513033750
file:///C:/Users/aashe/Desktop/Master%20Thesis%20Andreas%20Aasheim.docx%23_Toc513033752
file:///C:/Users/aashe/Desktop/Master%20Thesis%20Andreas%20Aasheim.docx%23_Toc513033757

XIV

XV

List of Tables

Table 1: Practices in the Scrum framework ... 9

Table 2: A guideline overview for tailoring agile in large-scale 15

Table 3: Definitions of coordination strategy components .. 19

Table 4: Important advantages in cross-functional teams.. 22

Table 5: Working group vs. a team .. 23

Table 6: Four strategies of data collection and fieldwork.. 29

Table 7: An overview of the meetings observed ... 30

Table 8: Team overview .. 38

Table 9: An overview of the different roles in the program .. 45

Table 10: A description of the dependencies .. 50

Table 11: Dependencies and agile practices that act as coordination mechanisms 51

Table 12: The 12 agile practices found to address three or more dependencies 54

Table 13: Dependencies and coordination mechanisms identified 56

Table 14: The selected coordination mechanisms that will be described 57

Table 15: The meetings identified in knowledge dependency... 58

Table 16: An overview of the roles of the meetings discovered as knowledge 58

Table 17: The observed program, a working group vs. a team.. 74

Table 18: Agile practices from this study compared with other findings in other studies 75

Table 19: The functions of the role Product Owner in my study and Bass (2015) 80

Table 20: Scrum Master in my study, Bass (2014) and T. Dingsøyr et al. (2018) 81

Table 21: Agile practices from my study and co-located by Strode (2016) 83

Table 22: My agile practices mapped to a Scrum type .. 84

XVI

1

1 Introduction

Firms today must be able to adapt to complex and unpredictable tasks in IT projects, where

it is necessary to quickly change the focus on tasks according to the costumer's needs.

Autonomous cross-functional teams, teams put together with different expertise, are

increasingly being used in IT projects, and are often relevant in large-scale projects and

distributed projects (Marczak & Damian, 2011). Autonomous cross-functional teams

exploit skills across functions, are assumed to make better collaboration, and the decision-

making in such teams are more divided. Cross-functional teams are spreading fast in

organizations as they attempt to improve coordination, and are most often structured as

work-groups or teams, created to make decisions lower in an organization's hierarchy

(Denison, Hart, & Kahn, 1996). This creates a smoother structure with increased

involvement of responsibility across the different teams and more effective decisions.

This master thesis aims at making a comparative study of coordination mechanisms of the

future's flexible agile software development. This thesis is linked to a research project led

by SINTEF. To clarify and define the scope of this thesis, when the terms cross-functional

teams are being mentioned, it is referred to each their respective units within a product

producing company. This master thesis is therefore about in-house development.

Furthermore, since I have chosen to look at autonomous DevOps teams, I will study the

notion of coordination of teams into how a combination between development and

operations (DevOps) people in large-scale development can be integrated as an

interdisciplinary team. Coordination is achieved through coordination mechanisms and

dependencies for choosing effective coordinative practices to better support a collaborative

systems development environment (Strode, 2016), such as different types of meetings and

roles. The dependencies in agile software development can help teams, team members, and

other participants involved in development projects to choose valid coordinative practices

(Strode, 2016). In this thesis, I will examine coordination through studying the different

dependencies and their associated agile practices acting as coordination mechanisms in a

large-scale agile program which practices the DevOps culture.

2

1.1 Motivation

In my daily work and for me personally, collaboration and coordination are important.

From my experience in the airline industry, I learned that collaboration in teams is a key

factor and provides success to get the airplanes on time for the commercial airlines at

Norway's largest international airport. Cooperation and coordination provides motivation

and makes a good form for research on collaboration and coordination in teams, especially

in the software industry. This master thesis is, therefore, a study about what type of

mechanisms that form good collaborated teams.

Moreover, cross-functional teams are often characterized by complex processes and high

uncertainty (Parker, 2003). To make cross-functional teams in companies effective in

today's and future value creation processes, there is a need for knowledge of how such

teams work. It is necessary to find out how autonomous cross-functional teams can work

in software development projects and test new models for team organization, where the

skills and benefits of a working culture are utilized in the best possible way tailored by

coordination mechanisms.

Today software is present in consumer and business products, in cars, airplanes,

smartphones, and people regularly use software-based products home or at work. More

than two billion people using the broadband internet today. Of this, new markets emerge

for software companies challenging established market incumbents with software-based

products (Schmidt, 2016). Agile development is an answer to the establishment of new

markets in the software industry, and new technologies have quickly adopted since the

beginning of the 2000s. The technological potential led to heavy investment into the IT

industry, and more and more software applications were now developed for the customer

market (Schmidt, 2016). At the beginning of the agile software development period, it was

started by cross-functional teams (Parker, 2003). Cross-functional teams are sweeping

across organizations today and this master thesis is studying how participants as developers,

testers, integration designers, project managers, and designers are gathered and put together

into a team for better collaboration.

Nowadays, there is a need for a general approach to software development when it comes

to collaboration between teams (Marczak & Damian, 2011; Parker, 2003; Wiedemann,

2018). A description is the key concept of "flow" from the Lean development method

(Fitzgerald & Stol, 2017), the goal was to achieve "flow" between the various actors. These

3

actors are usually in teams in an organization and is an effect on how the organization is

coordinated. This organizations are deciding to move from traditional plan-driven software

development to agile approaches. The reason for that is so the organization can stay

competitive. Therefore, the agile approaches have been deciding to implement cross-

functional DevOps teams (Wiedemann, 2018). This collaboration is a combination between

development and operations (DevOps) people. DevOps has some perspectives; a culture of

collaboration between team members, automation of build, deployment and testing, and

sharing of knowledge between the teams (Bang, Chung, Choh, & Dupuis, 2013).

Such collaboration has been proposed in research already, including governance,

architecture, the support of knowledge, skills, and abilities, issues and industrial challenges

in cross-functional DevOps teams. Meanwhile, there is still few studies of collaboration in

large-scale projects and its coordination of cross-functional DevOps teams. Findings in the

DevOps environment has been expressed in research in various ways (Bang et al., 2013;

Nitto, Jamshidi, Guerriero, Spais, & Tamburri, 2016; Wiedemann, 2018).

There seems to be a gap in research when it comes to studies based on coordination between

development and operations and in large-scale agile programs to enable a good

collaboration culture. According to Wiedemann (2018, p. 4931), "the IT organizations

recognize that they have to shift from traditional service-provider role to agiler oriented

approaches to become a partner for the business." The study by Lwakatare et al. (2016),

found that the application of DevOps concepts to the embedded systems domain

underscored the importance of agile software development and specifically cross-

functional teams.

Another statement is that coordination needs change over time and there are agile practices

that are emerged and disappeared, and a change from scheduled meetings to unscheduled

meetings occurs. "Coordinating mechanisms are dynamic social practices that are under

continuous construction" (Jarzabkowski, Lê, & Feldman, 2012). Strode (2012, p. 15)

outlines that "one of the goals of a system development methodology is to provide ways to

organize and coordinate development." Lastly, Dingsøyr, Moe, and Seim (2018) suggest

that future work should seek to develop a further understanding regarding coordination

mechanisms in large development programs to investigate how coordination mechanisms

are tailored to the specific context of a program. I would argue that these statements and

gaps increase the need for this master thesis.

4

1.2 Research Area and Questions

The research area of this thesis is autonomous cross-functional teams created by

coordination mechanisms to address dependencies between development and operations

(DevOps), stakeholder, and supplier within a large-scale program in agile software

development. The process of this aspects will be studied by examining agile practices that

act as coordination mechanisms, by daily stand-up meetings, Scrum of Scrum meetings,

project meetings, and other relevant mechanisms that are dependent on the agile software

development methodology.

In this thesis the overall research focus will be to study the effects of dependencies and

coordination mechanisms in autonomous DevOps teams for an in-house software company.

Following research questions are:

RQ1: What dependencies and their associated agile practices that act as coordination

mechanisms facilitate the large-scale agile development?

RQ2: What could be a recommended starter set for providing coordination in large-scale

agile development programs by using a dependency taxonomy?

1.3 Approach

I will conduct a case study to answer the research questions with theories from other case

studies. Datasets through observations in an in-house software company will be used to do

the case study, and these methods will be evaluated at the team level. The software

company under study consists of seven teams, all of them will be studied.

The workflow that creates results and to evaluate data I will choose a strategy for the data

analysis. To conduct the datasets and data analysis, a software application called NVivo1

was used. The software application will convert the dataset into more deliberate data. This

topic is presented more in Chapter 3 Research Method and Design.

1 NVivo is a registered trademark of QSR International, www.qsrinternational.com

www.qsrinternational.com

5

1.4 Chapter Overview

Chapter 2: Background and Theoretical Perspective gives a brief introduction to agile

software development methodologies, large-scale agile development, coordination,

autonomous cross-functional teams and the DevOps concept that is considered to be

necessary to understand the rest of this thesis.

Chapter 3: Research Method and Design introduces and explains the research methods

used in this work to study coordination mechanisms and agile practices in autonomous

cross-functional teams consisting of development and operations in the large-scale agile

program.

Chapter 4: Research Context presents an overview of the large-scale agile program in

the organization under study to provide a context for the study.

Chapter 5: Results presents the results related to the methods and findings in coordination

mechanisms as agile practices mapped to dependencies, as well an extensive description of

some one of them.

Chapter 6: Discussion presents a discussion on the results from the case study against the

findings from prior research and the research questions from this work.

Chapter 7: Conclusion and Future Work contains the conclusion to the research

questions of this thesis and points at interesting directions for future work.

6

7

2 Background and Theoretical

Perspective

This chapter introduces important background theory to this research. First, there will be a

brief introduction to agile software development methodologies, with methods such as

Scrum, Lean and Kanban. Then, I introduce methodologies to large-scale agile

development. Then, theories on coordination are presented with a brief introduction to

autonomous cross-functional teams. Lastly, there will be a brief introduction to the DevOps

concept. To be able to discuss the results of this study, it is important to look at relevant

cases and theory which can put this into perspective.

2.1 Agile Software Development

This thesis uses theories on agile software development, such as theories and studies on the

Scrum framework, lean software development, and Kanban. Software development is

constantly evolving due to changes technologies and new demands from users (Nerur,

Mahapatra, & Mangalaraj, 2005). Software development is a knowledge-intensive activity

and belongs to the engineering discipline with an engineering effort involving a lot of

design, and the production is relatively simple (Wohlin, Šmite, & Moe, 2015). This

description is called software engineering. The dynamic business environment has given

rise to emergent organizations that continuously adapt their structures strategies and

policies to suit the new technical environment (Nerur et al., 2005). A theory on this suggests

that software engineering is a balancing act between three resources; human, social and

organizational (Wohlin et al., 2015).

Furthermore, software engineering was coined in 1968 at a conference whose aim was to

discuss the need for the software development discipline (Kirk & MacDonell, 2015). This,

to be more strongly based on theoretical engineering principles. Software development is

the production of software, which consists of a sequence of fundamental activities called a

"software process" (Paulk, Curtis, Chrissis, & Weber, 1993). The first software process

model was the traditional waterfall model. This model, a then-popular model used in

manufacturing, was adopted as the standard approach for developing software. As time

progressed, it became apparent that a strict implementation of this model was not

8

appropriate for software. A number of modifications, for example, extreme programming,

have emerged (Kirk & MacDonell, 2015).

The main goal of the traditional is to plan in early stages to ensure design flaws before

programming is started, thus we get a plan-driven method (Munassar & Govardhan, 2010).

Moreover, as a response to the plan-driven process model, the agile development methods

emerged. From the field of agility in IT, Fink and Neumann (2007, p. 444) define agility

as "the ability to respond operationally and strategically to changes in the external

environment. The response has to be quick and effective for the organization to be

considered agile" (Fink & Neumann, 2007). The agile methods were created because there

was a need for methods to take into account the unpredictability of the world, including the

higher rates of change and to involve the customer much earlier during development (Dybå

& Dingsøyr, 2008). One other definition is given by Erickson, Lyytinen and Siau (2005, p.

89) and define agility as fellows: "agility means to strip away as much of the heaviness,

commonly associated with the traditional software development methodologies, as possible

to promote quick response to changing environments, changes in user requirements,

accelerated project deadlines and the like."

The agile methodology has become a key factor in driving innovation and gaining a

competitive advantage in the digital age. Coyle, Conboy, and Action (2015) consider that

one of the most differences between organizations that follow agile approaches and

organizations that follow more traditional approaches is that the agile ones establish

autonomous, self-organized teams in their projects (Coyle et al., 2015). These self-

organized teams are an answer to that the IT companies must be able to adapt complex and

unpredictable tasks in IT projects, where it is necessary to quickly change the focus on tasks

according to the costumers needs.

2.1.1 Scrum

Scrum is a framework used in the agile software development process to organize teams

and get work done. Scrum allows teams to choose the size of work to be done and decide

themselves how best to do it by a "lean" approach to software development (Sutherland &

Schwaber, 2007). In Scrum, a working period called Sprint is conducted. A Sprint is a

period which the Scrum team works one month or two weeks. During one Sprint the Scrum

team produces a product increment (Schwaber & Beedle, 2001).

9

A recently study by Cooper and Sommer (2018) found at the beginning of each Sprint in

six different case studies from six companies in North America and Europe, the

development teams met to agree on what it can accomplish in the sprint and created a task

plan by a Sprint Planning meeting. During the Sprint, daily stand-up was held to ensure

that work is on course to accomplish in the last 24 hours, and what should be done in the

next 24. At the end of each Sprint, product demo meetings and retrospective meetings were

held to review how team members worked together.

Moreover, to implement the Sprint, tasks for the working period is put into a Product

Backlog. The Product backlog "contains a list of prioritized tasks defined by the Product

Owner. The development team breaks this backlog into sprint backlog items and tracks its

progress during each Sprint" (Schmidt, 2016, p. 17). Furthermore, the Scrum framework

based on Sutherland and Schwaber (2007) has a list of different practices shown in Table

1:

Table 1: Practices in the Scrum framework

Type Practice

Roles

Scrum team

Scrum Master

Product Owner

Test lead

Ceremonies

Sprint Planning meeting

Sprint Review meeting

Scrum of Scrums meeting

Daily Scrum meeting

Product demo meeting

Scrum Team

The Scrum team organizes itself and they consist of seven people, plus/ minus two

members. A team is a unit of people which produces the software and selects the Sprint

goal and specifies work results (Sutherland & Schwaber, 2007) The team is cross-

functional and should include the necessary roles to complete their tasks (Schwaber &

Beedle, 2001). Roles in Scrum teams can be defined as project manager, team lead, test

lead, developers, Scrum Master and Product Owner (Beranek, Zuser, & Grechenig, 2005;

Evbota, Knauss, & Sandberg, 2016).

10

Scrum Master (SM)

The SM has the role to ensure that the team is fully functional and productive and enables

close cooperation across all roles (Sutherland & Schwaber, 2007). The SM acts as a

facilitator for software development teams, to make sure agile practices are followed (Bass,

2014). A study by Bass (2014) in large-scale projects, found that the SM work together in

geographically distributed teams and use Sprint Planning to avoid development tasks that

overlap team boundaries, coordinate status, and effort across teams. The study identified

that the SM role comprises six activities: process anchor, stand-up facilitator, impediment

remover, Sprint planner, a Scrum of Scrums facilitator, and integration anchor (Bass, 2014).

Another study in large-scale program done by T. Dingsøyr et al. (2018) found that the

Scrum Master facilitated daily meetings, iteration planning, demonstration, and

retrospective.

Product Owner (PO)

The PO defines the features of the product, decides on release date and content. The PO

also accepts or reject works results and can change features and priority every sprint

periods. Furthermore, the PO is responsible for the profitability of the product and

prioritizes features according to market value (Sutherland & Schwaber, 2007). Findings in

studies by Bass (2015) was that the PO's role was to reconcile competing business interests,

the PO identifies and prioritizes customer requirement and that the PO was formed into

teams. A second finding was that it was identified nine team functions for a PO: groom,

prioritize tasks, release master, technical architect, governor, communicator, traveler,

intermediary and risk assessor. A second study in this role is done by Bass, Beecham, Nic

Canna, Noll, and Razzak (2018). They found that the PO is responsible for gathering and

prioritizing requirements and assessing whether features have met the definition of "done".

The PO is also responsible for translating business needs into a software implementation.

Test Lead

In the Perform programme by Dingsøyr, Moe, Fægri, and Seim (2018), about exploring

software development at the very large-scale, they found that the test lead made sure that

testing was conducted at team level by unit tests, integration tests, system tests, and system

integration tests.

11

Sprint Planning Meeting

The work to be performed in the Sprint is planned at the Sprint Planning meetings

(Schwaber & Sutherland, 2013). The meeting is organized by the Scrum Master and is a

two-phase meeting. First, users, management, the customer, and the Scrum team held the

meeting to decide goals for the next sprint. Second, Scrum Master and the Scrum team

focusing on how the product increment is implemented during the Sprint (Abrahamsson,

Salo, Ronkainen, & Warsta, 2017). In a case study by Paasivaara, Durasiewicz, and

Lassenius (2009), they found in distributed projects that the Sprint Planning meetings were

divided into three phases; distributed meeting, local meeting onsite and local meeting

offsite. The PO presented the prioritized items in the backlog, and the team asked questions.

The distributed meetings were arranged using teleconferencing and tools for application

sharing. The meetings were time-boxed because of the time-zone difference. The meetings

were held at the end of the day for the offsite team and the onsite team continued by dividing

the backlog items into more detailed tasks for the rest of the day. The offsite team continued

the work the following morning.

Sprint Review Meeting

The Sprint review, or demo, is an informational meeting at the end of a Sprint and the

Scrum Master is responsible for conducting it. During the Sprint review, the Scrum team

and stakeholders collaborate about what was done in the Sprint (Schwaber & Sutherland,

2013).

Scrum of Scrums Meeting

Scrum of Scrums allows teams to communicate with each other to ensure that the software

of each team integrates well with the fundamentals of the other teams. The meeting should

last a maximum of 15 minutes (Larman & Vodde, 2010). A previous study in Scrum of

Scrums have been identified by Lee & Young (2009) with three distributed models:

- Isolated Scrums: Used mainly where outsourcing is used. These teams are not cross-

functional and not flexible. There are often teams that are isolated across different

geographies. Projects are often offended by communication problems and weak

team relationships.

12

- Distributed Scrums: The Scrum team is isolated in several places and integrated by

Scrum of Scrums that meets regularly across locations. This model works across

cross-functional teams and isolated Scrum teams. The Scrum team is linked with

Scrum of Scrums where Scrum Master meets regularly across different

geographies.

- Fully distributed: The Scrum teams are cross-functional with members from several

different locations. This model is suggested for experienced flexible teams in

several places because the cost per historical point is the same as it would be for

collocated teams.

In the literature, the Scrum of Scrum meetings have been described as the mechanism for

managing inter-team coordination in large-scale Scrum, but how to implement it in projects

with a higher number of different teams is not explained (Paasivaara, Lassenius, &

Heikkilä, 2012). Moreover, Paasivaara et al. (2012) found how Scrum of Scrums meetings

was used in two large-scale, globally distributed Scrum projects. Both projects worked with

at least 20 Scrum teams, and 58 interviews were conducted by project staff including

managers, architects, Product Owners, developers, and testers. Moreover, the results

showed that Scrum of Scrums meetings with representatives from all teams was seriously

challenged. The audience was too big to keep everyone interested, the participants did not

know what to report to the other teams and challenges with coordination at the project level

remained (Paasivaara et al., 2012).

Daily Scrum Meeting

The daily Scrum meeting is a 15-minute meeting designed to clarify the state of the Scrum

(Sutherland & Schwaber, 2007). The daily Scrum meeting has multiple names, and the

most used originates from Extreme Programming (XP) and is daily stand-up meeting

(Stray, Sjøberg, & Dybå, 2016). A recent study shows that 87 % of those who practice agile

methods in their projects use daily stand-up meeting (Stray, Moe, & Bergersen, 2017). Each

team member speaks to three Scrum questions (Stray, Moe, & Aurum, 2012):

Q1: What have I done since the last meeting?

Q2: What will be done before the next meeting?

Q3: What obstacles are in the way?

13

Moreover, Stray et al. (2016) analyzed the data from four countries, 12 software teams, 60

persons and 79 observed daily stand-up meetings and concluded that these types of

meetings affect more than we think. The study shows that the meeting should be held on

time before lunch. Then the teams can go for lunch together and talk about the topics that

were raised in the meeting before lunch. The study also showed that it to very important to

be standing during these meetings because their result shows that "the teams that had all

participants standing had considerably shorter meetings than those that had some people,

especially the Scrum Master, sitting" (Stray et al., 2016).

Product Demo Meeting

Demonstrate the functionalities to the customer is done by a product demo meeting (Jain

& Suman, 2017). Nyrud and Stray (2017) found that a demo meeting facilitated

coordination because it was an arena for creating common expectations. This meeting also

created a common understanding of the finished product. In the case by Paasivaara et al.

(2009), they found that the biggest problem with the demo was the used technology,

teleconferencing and application sharing, did not offer enough possibilities to communicate

efficiently.

2.1.2 Lean Software Development

Lean software development is "all about getting the right things to the right place at the

right time the first time while minimizing waste and being open to change" (Raman, 1998,

p. C13). This approach was derived from the Lean manufacturing, especially the Toyota

production system from 1948, because the Lean methodology was successful in the car

manufacturing industry (Poppendieck & Poppendieck, 2003). The main goal in Lean is to

maximize the value produced by an organization and delivered to the customer. This is

done by finding and eliminating waste, controlling variability and maximizing the flow of

delivered software all within the culture of continuous improvements (Anderson, Concas,

Lunesu, & Marchesi, 2011). Moreover, when it comes to Lean software development the

book from the Poppendiecks outlines that an important concept is to manage workflow with

the concept of pull systems, which means that tasks are put in production only when a

customer asks for it (Poppendieck & Poppendieck, 2003). "The pull system in software

development is short iterations based on customer input at the beginning of each iteration"

(Poppendieck & Poppendieck, 2003, p. 74).

14

Furthermore, Anderson et al. (2011) point out that the pull-based method Kanban has in

recent years been introduced more and more to software development. It is becoming one

of the keys to Lean practice in software development. The Lean methodology consists of

seven fundamental principles (Ahmad, Markkula, & Oivo, 2013): Eliminate waste, build

quality in, create knowledge, defer commitment, deliver fast, respect people and optimize

the whole.

2.1.3 Kanban

Kanban was introduced in the Toyota production system as a scheduling system for Lean

and Just-In-Time production during the late 1940's and in the early 1950's. This scheduling

system was conducted to catch up with the American car industry. This method combined

with the Lean methodology was a success for Toyota (Ohno, 1988). Recently it has

however been more popular in the software development industry and the methodology has

seen an increasing amount of project that applies Kanban and Lean principles (Anderson

et al., 2011). The Kanban methodology consists of five fundamental principles (Ahmad et

al., 2013): Visualise the workflow, limit work in progress, measure and manage flow, make

process policies explicit and improve collaboratively.

Moreover, Anderson et al. (2011) investigated the different impact of the Lean-Kanban

approach and defined the Kanban as: "The work in process (WIP) is usually made evident

to the team, and to the stakeholders, using a Kanban board. In general, we can define the

Kanban software process as a WIP limited pull system visualized by the Kanban board"

(Anderson et al., 2011, p. 14).

2.2 Large-Scale Agile Development

Large-scale agile development has been used to describe agile development in a range of

context (Dingsøyr et al., 2018). In a case study presented by Moe, Olsson and Dingsøyr

(2016) large-scale agile development is described on aspects as the number of people

involved in the development and the number of teams. Arguments for a definition based on

the number of teams in the large-scale agile development is presented by Dingsøyr, Fægri,

and Itkonen (2014). In the case study, they present the number between 2-9 teams. In very

large-scale Dingsøyr et al. (2018) describe the number of more than ten teams.

15

However, to be able to discuss the results of this study on large-scale agile development,

which will be done in Chapter 5 and 6, it is important to look at a relevant theory which

can put this into perspective. The next sections will present more relevant theories and

taxonomies that are useful when investigating the findings. The next sections is about

guidelines for tailoring agile by Rolland, Mikkelsen, and Næss (2016), coordination in agile

software development from different cases, coordination in large-scale by Nyrud and Stray

(2017), determinants of coordination dependencies and their mechanisms within the

taxonomy by Strode (2016), important advantages on autonomous cross-functional teams

by Parker (2003), and the concept on the DevOps methodology by Lwakatare et al. (2016).

2.2.1 Guidelines for Tailoring Agile in Large-Scale

Based on a study from a large-scale agile software development effort involving more than

120 participants in a Governmental organization and running for 3,5 years, Rolland et al.

(2016) described a guideline for tailoring agile as illustrated in Table 2:

Table 2: A guideline overview for tailoring agile in large-scale (Rolland et al., 2016)

Guideline Description

Record and move on

Is important to building trust in the development organization, enabling

pragmatic decisions and temporary solutions, by not waiting for sorting

out contractual details.

Improve inter-team

coordination

Establish long-term "communities of practice" and short-term "task

forces" term to improve inter-team coordination.

Scale the project

The study implements first the importance to give the customer time to

get accustomed to the working process. Second, the importance to give

them training activities to ensure customers are aware of what is

required of them. Both these points should be done before a ramp-up

phase.

Adjust content in

sprints

The customer must be given time to absorb and process new

information, and coordinate requirement elicitation with stakeholders in

their organization. This practice can being followed by having technical

Sprints, where the customer is left alone, and the developers focus on

technical tasks.

Experiment with

new practices

Projects should experiment with practices that highlight functional and

technical interdependencies in the software being developed for

tailoring agile. This will improve coordination and communication

across teams and roles.

Demo

In the study, demos were improvised in the middle of sprints to get the

users feedback on functionality and interaction design. The demos made

the communication and collaboration with the customer smooth.

16

2.3 Coordination

This master thesis is a research on coordination in autonomous DevOps teams in large-

scale agile programs. The definition of coordination in organization studies and software

development at the organization, project and team level can be seen in different ways

(Strode, Huff, Hope, & Link, 2012). Therefore, theories on coordination are outlined here.

2.3.1 Research on Coordination

One proposed theory of coordination was done by Malone (1988), he proposed the

definition of coordination as: "when multiple actors pursue goals together, they have to do

things to organize themselves that a single actor pursuing the same goals would not have

to do" (Malone, 1988, p. 5). He called these extra organizing activities coordination.

Moreover, this definition was refined in 1994 by Malone and Crowston and introduced the

following definition: "coordination is the managing of dependencies between activities"

(Malone & Crowston, 1994, p. 90). This theory is based on ideas from organization theory,

management, computer science and economics. However, the idea in this coordination

theory is that coordination is needed to address and identifying dependencies, categorizing

those dependencies, and identifying the coordination mechanisms in a situation, as stated

in Strode et al. (2012).

Coordination in Agile Software Development

In agile software projects coordination has been identified in the empirical research.

Pikkarainen, Haikara, Salo, Abrahamsson, and Still (2008) used Malone and Crowston's

theory from 1994 to study two small co-located agile projects. In this study, they found

Sprint Planning meetings, daily meetings, and open work area. The findings were found to

promote communication as a mechanism. Moreover, the product backlog, scrum board,

sprint backlog, and daily meetings were findings identified for achieving coordination in a

globally distributed Scrum project done by Pries-Heje and Pries-Heje (2011). The study

identified coordination as one of the critical elements that explain why Scrum works as a

project management project. Other findings are done by Moe, Dingsøyr, and Dybå (2010).

In their case study in a co-located Scrum project about how to understanding a teamwork

model for an agile team, the findings were that team members "not knowing what others

were doing" (Moe et al., 2010, p. 488). In this project, the coordination suffered due to

17

misapplication of Scrum practices partially caused by an existing organizational structure

that promoted specialization of skills within individuals.

Moreover, Strode (2016) explored dependencies in three co-located agile software

development projects and organized them into a taxonomy of dependencies. The findings

on coordination mechanisms was mechanisms such as cross-team walk, task, product

backlog, burndown chart, formal meeting, and Wiki for sorting project information (Strode,

2016). She mapped the findings on coordination mechanisms into categories and drew it in

a table based on dependency keys as knowledge, process and resource. Furthermore,

coordination mechanisms based on strategy components as synchronization activity,

synchronization artefact, proximity, availability, substitutability, boundary spanning

activity, boundary spanning artefact and coordinator role. "This taxonomy provides basic

knowledge about dependencies useful for deciding how to assemble practices from

commonly used in agile methods to achieve effective project coordination" (Strode, 2016,

p. 43).

Coordination in Large-Scale Agile

In large-scale software, development coordination is an important but challenging success

factor (Nyrud & Stray, 2017), and coordination has been identified likely as in co-located

programs. In large-scale agile, a case study on inter-team coordination found eleven

different coordination mechanisms by Nyrud and Stray (2017). The findings were

mechanisms as an agile process, open work area, stand-up meeting, retrospective, backlog

grooming, demo, Sprint Planning, and Jira. They mapped the coordination mechanisms

into five categories and drew it on a framework of coordination mechanisms proposed by

Van De Ven, Delbecq, and Koenig (1976). The categories in the framework were used with

the type of programming with impersonal mode and the type of feedback with personal

mode and group mode.

The framework of Van De Ven et al. (1976) in the case was valuable as a tool to map

coordination mechanisms in a large-scale program. The framework was valuable "because

the framework makes you aware of what to look for and to understand the concept of

coordination" (Nyrud & Stray, 2017, p. 4). Furthermore, the framework was valuable in

terms of mapping impersonal modes of coordination such as rules, plans and

communication systems (programming).

18

2.3.2 Theories on Coordination Mechanisms

To examine coordination mechanisms to suggest agile practices, such as co-located

customers and short iterations, Cao and Ramesh (2007) used the proposed framework by

Van De Ven et al. (1976). Moreover, Malone and Crowston's theory from 1994 was used

in the case from Pikkarainen et al. (2008) to study co-located agile projects with findings

in communication as a coordination mechanism. The case study from (Strode, 2016)

addressed dependencies and coordination mechanisms by a dependency taxonomy in co-

located projects. However, since Strode (2016) suggests that further research could assess

the applicability of her dependency taxonomy in contexts such as large-scale or distributed

agile software development, the approach by Strode (2016) is suitable for my case, and

therefore her dependency taxonomy was followed in my case study about a large-scale

program.

However, since coordination is achieved through coordination mechanisms, such as

meetings and tools for sorting project information, this case will examine coordination

through outlining the different mechanisms in large-scale. Moreover, since Strode (2016)

also propose a taxonomy for mapping out coordination mechanisms, my case use her

proposed dependency taxonomy in the collected data.

Strode (2016) defines coordination in a dependency taxonomy. The taxonomy identifies

three modes of dependencies: knowledge, process and resource with subcategories each,

as shown in Figure 1. These three dependencies are addressed by coordination mechanisms

and these mechanisms are arranged into categories called coordination strategy components

with subcategories each, as shown in Table 3. Following sections will describe the

coordination strategy components working as coordination mechanisms by Strode et al.

(2012) and the taxonomy of dependencies by Strode (2016).

Coordination Strategy Components

Coordination strategy is defined as a group of coordination mechanisms that manage

dependencies in a situation and the strategy has three components: synchronization,

structure, and boundary spanning (Strode et al., 2012). Table 3 provides the definitions for

the coordination strategy components and is also defined as a theory of coordination in

agile software development projects.

19

Table 3: Definitions of coordination strategy components (Strode et al., 2012)

Distinct component Component Definition

Synchronization

Synchronization

activity

Activities performed by all team members

simultaneously that promote a common

understanding of the task, process, and or

expertise of other team members.

Synchronization

artefact

An artefact generated during synchronization

activities. The nature of the artefact may be

visible to the whole team at a glance or largely

invisible but available. An artefact can be

physical or virtual, temporary or permanent.

Structure

Proximity

This is the physical closeness of individual team

members. Adjacent desks provide the highest

level of proximity.

Availability

Team members are continually present and able

to

respond to requests for assistance or information.

Substitutability
Team members are able to perform the work of

another to maintain time schedules.

Boundary spanning

Boundary spanning

activity

Activities (team or individual) performed to elicit

assistance or information from some unit or

organization external to the project.

Boundary spanning

artefact

An artefact produced to enable coordination

beyond the team and project boundaries. The

nature of the artefact may be visible to the whole

team at a glance or largely invisible but available.

An artefact can be physical or virtual, temporary

or permanent.

Coordinator role

A role taken by a project team member

specifically to support interaction with people

who are not part of the project team but who

provide resources or information to the project.

Dependency Taxonomy

In coordination mechanisms, there are necessary to address dependencies in a situation.

This is one of the central principles of coordination (Strode, 2016). Dependencies are

proposed by Crowston and Osborn (1998), with a definition of dependency: "a dependency

occurs when the progress of one action relies upon the timely output of a previous action

or on the presence of a specific thing, where a thing can be an artefact, a person, or a piece

of information. When dependencies occur in a development project, they can be managed

well, poorly, or not at all" (Strode, 2016, p. 24). A taxonomy done by Strode (2016) was

20

developed to organize knowledge about dependencies. This taxonomy is built on the theory

of coordination, coordination mechanisms and dependencies by Strode (2012). Taxonomy

in information systems is described with theories with respect to the manner in which four

central goals are addressed: analysis, explanation, prediction, and prescription (Gregor,

2006). Taxonomies are useful when little is known about a topic. Then concepts and

constructs need to be identified (Strode, 2016).

The taxonomy including knowledge, process, and resource dependencies. Knowledge

dependencies consist of requirements, task allocation, historical, and expertise

dependencies; process dependencies include activity and business process dependencies;

and resource dependencies include entity, and technical dependencies (Strode, 2016).

Figure 1 give an overview of this dependencies and a description of each is described in

Table 11 in Chapter 5.

Dependency

When the progress of

one action relies upon

the timely output of a

previous action, on

the presence of some

specific ting

Knowledge

When a form of

information is required

for a project to progress

Process

When a task must be

completed before

another task can

proceed and this

affects project progress

Resource

When an object is

required for a project to

progress

Expertise

Requirement

Task allocation

Historical

Activity

Business process

Entity

Technical

Figure 1: Schematic of the dependency taxonomy (Strode, 2016)

21

2.4 Autonomous Cross-Functional Teams

A team is a group of people with a high degree of interdependence and is aimed at achieving

a goal or completing a task (Parker, 2003). Team members confirm the goal and confirm

that the only way to reach the goal is to work together. There are groups that are not teams,

this is groups with the same goal. The best-known types of teams are functional teams, self-

directed teams and cross-functional teams (Parker, 2003). As Parker states in his book about

a world of business are changing: "Individualism is out, teamwork is in. Power is out,

empowerment is in. Hierarchical organizations are out, replaced by network organizations,

adaptive organizations informational organizations and horizontal organizations" (Parker,

2003, p. 1). In the middle of this statements sit cross-functional teams, to changing business

needs composed of experts ready to move quickly and flexibly (Parker, 2003).

Cross-functional teams are structured as working groups created to make decisions lower

in an organizations hierarchy (Denison et al., 1996). Cross-functional teams differ in

important ways and share many characteristics with conventional teams. First, cross-

functional teams are "usually representative groups in which each member has a competing

social identity and obligation to another submit of the organization" (Denison et al., 1996,

p. 1005). Second, the team "are often temporary task teams experiencing abundant pressure

and conflict, so the early development of stable and effective group processes is critical to

their success" (Denison et al., 1996, pp. 1005-1006). Third, the team "typically confront a

different set of performance expectations than conventional work teams and are often

expected to reduce cycle time, create knowledge and disseminate organizational learning"

(Denison et al., 1996, p. 1006).

Furthermore, cross-functional teams work best in markets that work with environments like

agile development. The reason for this is because of those teams are most effective in

companies working in a rapidly changing market, such as IT, telecommunications, the

pharmaceutical industry, and other industries that value adaptability, speed and a high focus

on meet customer needs in the market (Parker, 2003). Cross-functional teams bring six

important advantages to organizations that successfully implement and manage them as

shown in Table 4:

22

Table 4: Important advantages in cross-functional teams (Parker, 2003, pp. 12-13)

Advantages Description

Speed
Cross-functional teams reduce the time it takes to get things done,

especially in the product development process.

Complexity
Cross-functional teams improve an organizations ability to solve

complex problems.

Customer focus
Cross-functional teams focus the organizations resources on

satisfying the customers need.

Creativity

By bringing together people with a variety of experiences and

backgrounds, cross-functional teams increase the creative capacity

of an organization.

Organization

learning

Members of cross-functional teams are more easily able to

develop new technical and professional skills, learn more about

other disciplines, and learn how to work with people who have

different team-player styles and cultural backgrounds than those

who do not participate in cross-functional teams.

Single point of

contact

The cross-functional teams promote a more effective cross-team

effort by identifying one place to go for information and for

decisions about a project or customer.

Moreover, when it comes to cross-functional teams, it exists autonomous teams as well. In

the literature, autonomous teams are defined as "self-managed teams, empowered work

groups, or self-directed work teams" (Janz, Wetherbe, Davis, & Noe, 1997, p. 43). A recent

study by Patanakul, Chen, and Lynn (2012) involved a case study of autonomous teams

and new product development. They described autonomous teams as separate from the

mainstream organization, having its own members handling development, manufacturing,

and marketing. Autonomous teams "is a team whose members typically are dedicated and

collocated with a project leader who is a senior manager in the organization" (Patanakul et

al., 2012, p. 736). Autonomous teams should be appropriate for a project with a high degree

of technology innovation. Lastly, such teams allow rich frequent communication,

decentralized decision making, and high levels of cross-functional integration (Patanakul

et al., 2012).

23

2.4.1 Teams vs. Groups

"Despite what we call team, not all "teams" are teams. Some so-called teams are simply

groups masquerading as teams because in today's world it is important to be on something

called team" (Parker, 2003, p. 1). Other statements about groups are done by Katzenbach

and Smith (2005) why describe that "the best working groups come together to share

information, perspectives and insights; to make decisions that help each person do his or

her job better; and to reinforce individual performance standards". It is possible to compare

a working group and a team. Table 5 shows this comparison, and is based on Katzenbach

and Smith (2005, p. 4):

Table 5: Working group vs. a team

Working group Team

Strong, clearly focused leader Shared leadership roles

Individual accountability Individual and mutual accountability

The group’s purpose is the same as the

broader organizational mission

Specific team purpose that the team itself

delivers

Individual work products Collective work products

Runs efficient meetings
Encourages open-ended discussion and

active problem-solving meetings

Measures its effectiveness indirectly by its

influence on others (such as financial

performance of the business)

Measures performance directly by assessing

collective work products

Discusses, decides, and delegates
Discusses, decides, and does real work

together

2.5 DevOps

DevOps is an interesting concept in the web domain. DevOps has two core principles

highlight collaboration between development and operations in software and it is a clipped

compound of this words. The concept uses agile principles to manage deployment

environments and their configurations (Lwakatare et al., 2016). The DevOps concept is

also a collaboration between automation and the use of new tools and technologies

(Wiedemann, 2018). DevOps is a quite new phenomenon in software engineering and "the

main goal is to shorten feedback loops and the development cycle through collaboration,

automation and frequent software releases" (Lwakatare et al., 2016).

24

So far, however, there has been little discussion about this gap between the collaboration

between departments in companies. In most company's development and operations exist

as separate functions, therefore the collaboration in DevOps seeks to bridge the silos of

software development and operations functions (Lwakatare et al., 2016). Figure 2 shows

the flow of the DevOps concept and this collaboration is essential when new software

features are developed and released to the customer frequently and quickly on a continuous

basis.

Figure 2: The flow in the DevOps concept (Kornilova, 2017)

The concept of DevOps can cause changes in the internal IT functions when the

implementation of it is done. The changes are reflected in new processes, structures, and

governance mechanisms. Wiedemann mentions that "some organizations have already

started to adapt their IT functions. Incumbent companies have to rethink their IT

governance mechanisms within dynamic and agile environments" (Wiedemann, 2018). A

small-scale study by Fitzgerald and Stol (2014) reaches different conclusions about trends

and challenges in software engineering. They mention that departments should implement

cross-functional teams for fast delivery of new software features, innovations and quick

handling of problems. One service should be conducted by a single team for all necessary

activities for the software delivery cycle. Furthermore, the DevOps broadens the agile

approach by applying continuous integration, defined as a process that is triggered

automatically and includes interconnected stages. E.g. testing, release package

development and code validation (Fitzgerald & Stol, 2014).

25

3 Research Method and Design

The previous chapters have motivated the need for this thesis, presented research questions,

relevant case studies, and theory. To answer the research questions, this chapter present

and provide the research method and design used in this thesis and technique for data

analysis. First, there will be a brief content of qualitative research. Then data collection and

data analysis will be introduced. Lastly, a brief introduction to validity will be presented.

3.1 Qualitative Research

When investigating the research questions, I started to develop the research design.

Research methods may be qualitative or quantitative (Merriam, 1998; Patton, 1990; Yin,

2002). The differences between these methods can be discussed in different ways. One

statement is Yin (2002), he argues against those who make distinctions between the

methods due to the irreconcilable philosophical disparities: "regardless of whether one

favors qualitative or quantitative research, there is a strong and essential common ground

between the two" (Yin, 2002, p. 15). He does not distinguish between quantitative and

qualitative case study methods. He attends to the commonalities of the two research

methods and pragmatically foregrounds the common tools which can be functional and

instrumental in the design and methods of case study he suggests.

However, since my research questions involve coordination mechanisms between peoples

decided by peoples, qualitative methods seemed most to fit the research design. In the

qualitative research methods, there are three traditional strategies, namely case study,

ethnographic study and grounded theory study (Gerring, 2007), where the conducted

strategy in this thesis is a case study. Furthermore, in case studies there are four ways to

collect data: interviews, observation, written documents, and audio and video material

(Johannessen, Tufte, & Christoffersen, 2010).

3.1.1 Case Study

A case study was conducted to investigate the research questions of how the effects of

coordination in autonomous DevOps teams can be adapted to large-scale agile development

in software engineering. A case study in general, the preferred strategy is to answer "how"

or "why" questions (Yin, 2002, p. 1). In this case study, it is highly appropriate at answering

26

the research questions regarding "how" different cross-functional teams coordinate

themselves, and "why" the coordination mechanism found in a research period is used.

The chosen type of data collection is participant observation. Gerring (2007) states Platt

(1992), where she notes that "much case study theorizing has been conceptually confused

because too many different themes have been packed into the idea case study" (Gerring,

2007, p. 18). Furthermore, Gerring (2007, p. 20) writes: "a case study may be understood

as the intensive study of a single case where the purpose of that study is – at least in part to

shed light on a larger class of cases". Of these statements, there is no clear rule for how to

conduct a case study or what it is.

Moreover, in this research, a team of analysis is a group of people, composed of a so-called

autonomous DevOps teams. However, in addition to the teams of analysis later called team

Venus, team Mars, team Jupiter, team Pluto, team Customer and team Earth. There was

another team, later called team Saturn, that had recently occurred into a new team with a

mix of members from team Venus, team leads, Product Owners and other outsourced

developers from other consultant houses. I, therefore, collected data from all the teams and

other units in the organization to better understand the large-scale program.

Figure 3 shows the context of this study which both the development unit (Dev) and the

operation unit (Ops) were working in the same project area with different teams. Moreover,

where the teams working in the same project area before and after the scaling process.

Project Area

DevOps

Project Area

Venus

Mars

Jupiter

Pluto

Project Area

Venus

Mars

Jupiter

Pluto

Saturn

Earth

Customer

Earth

Customer

Figure 3: The context of the reorganized structure after the scaling process

27

3.1.2 Research Sites

The organization under study is a Norwegian department, called Knowit Objectnet AS at a

Swedish consultancy company named Knowit AB. The company creates customer value

in a world of accelerating digitalization and offering international solutions in design and

communication, management consulting and IT. The selected company have offices in 14

locations in Sweden, five in Norway and one each in Denmark, Finland, and Germany. The

company had a net sale on 2,426.2 SEK million in 2016 and is listed on the Nordic

Exchange in Stockholm. The company is divided into three divisions: Experience, Insight,

and Solutions. The company has around 2000 employees all over, and the participant

observations were conducted at the Solutions department at the head office in Oslo,

Norway, with around 40 persons involved in the project. This department helps companies

and organizations to develop their activities through a range of IT solutions. The largest

customer in this department is in public sector. This case study is therefore about a case in

the public sector, namely the digitization process for a municipality. The company was

chosen because it is part of a research group on agile methods and autonomous team for

global software development.

However, the research study participants in the early phase were through a snowball

sampling technique (Patton, 1990). As stated by Patton (1990, p. 177) this technique "is an

approach for locating information-rich key informants or critical cases. The process begins

by asking well-situated people: "Who knows a lot about…? Who should I talk to?"". The

technique was conducted by contacting people in a higher section of the department at the

consultancy company. After getting contact with persons, a person gave access to a range

of project teams and stakeholder with different perspectives. Participants from a big project

that matched the agile large-scale approaches were selected after a discussion between the

supervisor, the consultancy company, and the stakeholder. Later in the study, intensity

sampling was used to obtain greater richness by targeting observation of different

responsibilities in the same project. The intensity sampling technique is stated by Patton

(1990, p. 182) as: "Information-rich cases that manifest the phenomenon intensely, but not

extremely, such as good students/ poor students, above average/below average".

Moreover, the project under study, develop solutions in the public sectors. The goal in the

public sector is to streamline operations and to simplify communication with citizens.

Examples of solutions they provide are web solutions, mobile solutions, document handling

28

solutions and business systems. 1th of January 2018, there was a reorganized shift between

the supplier and the customer. The customer introduced three more suppliers in the same

project. Therefore, customer reorganized the coordination mechanisms by adapting to

divide the tasks into multiple suppliers.

To summarize, the research site in the early phase of the study was selected to provide

replication using the snowball technique sampling. Lastly, in the later phase, the intensity

sampling was used to enhance both depth and richness. Hence increasing data reliability

through participant observation.

3.2 Data Collection

The data may be collected in naturalistic analysis approaches. The qualitative data are the

primary focus of naturalistic inquiry; there controlled experimental designs predominantly

aim for statistical analyses of qualitative data (Patton, 2002). "Qualitative data describe.

They take us, as readers, into the time and place of the observation so that we know what

it was like to have been there" (Patton, 2002, p. 47).

Another central activity of qualitative analysis is fieldwork. Likewise, a qualitative analysis

is described by Patton (2002, p. 48) as "into the real world of programs organizations,

neighborhoods, street corners and getting close enough to the people and circumstances

there to capture what is happening." Furthermore, fieldwork is described as: "going into the

field." This means having personal contact with people under study in their own

environments (Patton, 2002).

The data that was collected in this master thesis is sources based on evidence of participant

observation. In Table 6 the four strategies of data collection and fieldwork put forth by

(Patton, 2002, p. 40) were followed when collecting the data. This was a part of the themes

of qualitative analysis.

29

Table 6: Four strategies of data collection and fieldwork

Strategies My approach

Qualitative data
I used participant observation that yield detailed,

thick description; analysis in depth.

Personal experience and engagement

Under the study, I was in direct contact with the

people and situation. And for me personally,

experiences and insights were an important part of

the analysis and critical to understanding the

phenomenon.

Empathic neutrality and mindfulness
In the observation under the study, the

mindfulness was fully presented.

Dynamic systems

Mindful of and attentive to system and situation

dynamics was given. Attention to the process was

given by change as ongoing whether the focus

was on an individual and an organization.

3.2.1 Observation

Through this study, I was able to observe one department in the organization to get insight

into their way of working. To answer the research questions, the observation method was

selected. According to Johannessen et al. (2010) observations are detailed descriptions of

human activities, behavior or actions as well as interpersonal interaction and organizational

processes. "The observation is best suited as a method when the problem is linked to a

limited geographical area" (Johannessen et al., 2010, p. 120). Since the organization under

study was the access to the field, the data produced greatly influenced the validity of the

knowledge. In section 3.4 the principles around validity will be presented.

Moreover, when document the observations it is possible to separate structured and

unstructured observations (Johannessen et al., 2010). Structured observation means that the

researcher operates with a form that contains predetermined categories that determine what

should be observed and recorded (Johannessen et al., 2010). Based on this the observations

were guided by an observation protocol based on Spradley (1980) and Stray et al. (2016),

see Appendix A. A structured observation was chosen, during the observations, notes were

written with general information, such as a number of attendees, content, start and end time.

Morover, the observations lasted from November 2017, to April 2018.

The primary data used in the study were from observation, and it was observed types of

meetings as shown in Table 7. The visits enabled observation of working practices and

30

workplace environments in the organization. 40 coordination meetings were observed for

all the seven teams in the project, as well as 18 entire working days in the organization's

open work area where the teams were situated in order to observe them in their everyday

work. Various informal, sometimes offsite, discussions with executives, project

management, and development team members were conducted during the lunch break or

in a natural way in the open work area.

Table 7: An overview of the meetings observed

Observations Total Team Observed

Daily Stand-up 12 3 team Jupiter, 3 team Mars, 2 team Saturn, 4 team Venus

Demo meetings 6 Participants from all 7 teams

Sprint meetings 2 Participants from team Venus

Scrum of scrums 5 Participants from all 7 teams

Project meetings 7 Participants from team Earth and the customer

Workshop 3 Participants from Jupiter, Pluto, Mars, Saturn and Venus

Team lead meetings 2 Participants from Jupiter, Pluto, Mars, Saturn and Venus

Futurespective 1 Participants from team Pluto

Other meetings 2 Participants from team Earth and the customer

Sum: 40

3.3 Data Analysis

To make sense of the data, I analyzed the data. My first step in data analysis was to prepare

a summary and a reflection paper of each note from the meetings and other observed

material. In total I analyzed over 60 pages from the observed meeting notes. The reflection

paper included details of the organization under study, the project, the teams, the meetings,

the roles, and other coordination observations.

My analysis built on theories presented in Chapter 2 on agile software development and

large-scale agile development, coordination, and teamwork. The taxonomy of

dependencies and coordination mechanisms proposed by Strode (2016) was used to getting

an overview of the field of dependencies and coordination mechanisms. The results in

Chapter 5 are organized according to the dependency taxonomy by Strode (2016), and an

example of the coding process performed in my study is shown in Figure 4.

31

 Source Phase 1: Coordination code Phase 2: Coordination category Phase 3: Dependency category

 My meeting

 notes

 Received

 meeting

 notes

 Reflection

 paper

To conduct the data analysis, all the data sources were uploaded into a software program

tool called QSR NVivo. The software is designed for analyzing qualitative data coding. A

general inductive coding technique was followed (Miles & Huberman, 1994), beginning

with starter codes involved identifying data items that shared an ordinary meaning. The

data items were given a descriptive name, called a code, and each code was defined

uniquely. This analyses aimed to identify dependencies and their associated coordination

mechanisms, so the coding approach was guided by Crowston and Osborn (1998).

Figure 4 is more detailed and described here: In the first phase, coordination mechanisms

were identified from the sources meeting notes and the reflection paper. In the second

phase, the coordination mechanisms were mapped into a coordination mechanism category.

In the third phase, dependencies were grouped, such as knowledge, process and resource

dependencies. Then, the coordination mechanisms from the first phase were mapped to one

or more dependencies.

Software release

Product Backlog

Demo to

customer

List of tests

Full-time team

Open work area

Workshop

Team lead

Synchronization

activities

Synchronization

artefacts

Boundary

spanning

activity

Boundary

spanning

artefact

Availability

Proximity

Substitutability

Coordinator

role

Knowledge

dependency

Figure 4: An example of the coding process in my study

Process

dependency

Resource

dependency

32

3.4 Validity

The previous chapters have described the qualitative research method with a case study and

research sites, data collection and the data analysis. A key question in research is then how

good or relevant data represent the phenomenon. The research literature uses the term

validity. A distinction is made between different forms of validity, including construct

validity, internal validity and external validity (Johannessen et al., 2010). The approach to

increasing the validities in this case study is outlined in the implications for theory, section

6.4 in Chapter 6.

Construct Validity

Construct validity is concerned about the relation between the general investigated

phenomenon and the specific data. We have to ask ourselves (Johannessen et al., 2010):

Are the data good, valid representations of the general phenomenon? Validity must not be

perceived as absolute if data is valid or not, but it is a quality requirement that can be

virtually satisfied. Construct validity is a typical measurement phenomenon. It is a matter

of whether there is a match between the general phenomenon to be investigated and the

measurement (Johannessen et al., 2010).

Internal Validity

The internal validity is relevant when an experiment has carried out that a proven relation

between two variables concerns a possible causal connection (Johannessen et al., 2010).

External Validity

According to Johannessen et al. (2010, p. 231) "the research cannot be limited to pure data

collection. The information must be systematized and analyzed. The analysis involves

coded information". In external validity increases the use of theory, and the external

validity develops theories, concepts, and interpretations that illustrate the phenomenon of

your study (Johannessen et al., 2010).

33

4 Research Context

This chapter will explain the research context of this research. First, a brief description of

the organization and project case under study will be presented. Then, the teams will be

introduced with a detailed description and seating map. Lastly, an overview of the roles

will be presented.

4.1 The Organization and Project Case

Since the chosen department in this case study developing IT solutions for the customer,

the research subjects under study are seven teams. The seven teams under study are called

team Jupiter, team Pluto, team Mars, team Saturn, team Venus, team Earth, and team

Customer. This altogether makes it to a large-scale agile program. The five DevOps teams

Jupiter, Pluto, Mars, Saturn, and Venus develop and operate products from the conceptual

phase to the finished solution. The main role of team Earth is to support the DevOps teams

with User Experience (UX) designers, different architects, and Product Owners. One team

standing outside, team Pluto, they are outsourced and located at one of the customers

department. Their Product Owner is from one of the customers department. Moreover, the

team members from the customer have a central part and are involved with a project

manager in front, a test lead, architects, designers, a security manager and representatives

from different departments. Express in other words; they are a part of this large-scale

program with own resources. The next section will detail this unit by illustrated overviews.

4.1.1 The Large-Scale Agile Program

The large-scale project under study was studied in two different periods. The first period,

autumn 2017 was the period with just one supplier. Knowit was the only company that

developed the solutions and had full responsibility for the DevOps teams. All the

participants in this DevOps teams were a project manager, developers and team leads from

their own house. Only the Product Owners was participants from team Earth who was

related to the DevOps teams but was still standing outside. Figure 14, in section 4.3 gives

a more detailed overview on this.

By an organizational map, Figure 5, illustrates the large-scale agile program before the

scaling process.

34

Figure 5: The large-scale agile program before the scaling process

35

Moreover, after 1st of January 2018, there was a scaling process for the customer. Three

new suppliers were retrieved, with the names company B, C and D. A new structure of the

large-scale agile program was reorganized as showed in a timeline in Figure 6:

In this large-scale agile program, the scaling process was a request from the customer and

this resulted in a major change of team size, stakeholders, and reorganizations at the

management level. An organizational map Figure 7 illustrates the large-scale agile program

after the scaling process.

One supplier

2017

New team created:

Team Saturn
Venus: Team

lead from

company C

Project manager DevOps

was replaced by project

manager Earth

2018

 Scaling

Saturn: Team lead from

company B. Old

developers from Venus

and new developers

from company B

Mars: Team lead and

developers from

company D

Earth: Technical

architect from

company D

Figure 6: A timeline of the large-scale program

36

Figure 7: The large-scale program after the scaling process

37

4.1.2 Work Area

The large-scale agile program was situated at Knowits offices, and the open work area was

spread over two floors. Figure 8 shows the open work area and the status of the teams on

the 4th floor. All the UX designers were placed in a small room at the end of the area. Team

Earth with Product Owners and the project manager for the DevOps teams were set in an

open area beside the UX designers working room. Project manager, test lead, and architects

from the customer were also placed in this area with the team Earth. Team Saturn was

placed nearby team Venus and team Mars with a meeting room in between them. The

participants from team Mars in the 4th-floor area were some developers and their Product

Owner from team Earth. The rest of team Mars was located on the 5th floor, see Figure 9.

Figure 8: Open work area where the program was situated on the 4th
 floor under this study

Figure 9 shows the open work area and the status of the teams on the 5th floor. The rest of

the team Mars were placed in an own working room. Team Jupiter was situated in the same

area as team Mars with a wall between them. Team Pluto was off-site and located at one of

the customers departments a minute from the head offices. But sometimes some of the

developers were placed on the 5th floor. Under this study, this did not happen often. Team

Pluto was therefore not observed as much as the rest of the teams in this large-scale agile

program.

38

Figure 9: Open work area where the program was situated on the 5th floor under this study

As we can see of this part in the study, the DevOps teams on the 4th floor are placed on the

same level as the Product Owners, the product managers, the UX designers, and the

architects.

4.2 The Investigated Teams

Table 8: Team overview

Team Members Located Responsibility

Jupiter 7 5th floor Developing to the commercial department

Pluto 5 Off-site Developing to one of the customers department

Mars 8 5th and 4th floor "Min side", developed by Difi

Saturn 5 4th floor Data-Driven Guided Dialogue (DVD)

Venus 9/4 4th floor Common components and API

Customer 6 4th floor The customer, project is up and running

Earth 8 4th floor Hired resources, Product Owners, UX Designers

Total members 48

Table 8 gives an overview of the teams, a number of the members, where they are located,

and a description of their responsibilities. In the text sections, the teams will be more

described in detail.

39

4.2.1 Team Jupiter

Team, Jupiter has the responsibility for developing solutions to the commercial department.

The team is a mix of junior and senior developers, and team Jupiter took place in the early

phase of the project with a team lead with a lot of experience over several years.

The team consists of seven representatives, one team lead and six developers. However,

some of the team members possess multiple roles. Of the six developers, there is one back-

end developer and five front-end developers. From the team Earth, there is one Project

Owner and one technical architect who support the team. There is not a defined test role in

this team. Of the six developers, they are responsible for keeping the testing up and running

by unit testing internally within the team. Sometimes testing material is sent to the test lead

before deploying to the customer. Team lead has the overall responsibility for the products

being developed.

The developers are placed in open-plan offices with the team lead on the 5th floor. The

front-end and back-end developers are sitting mixed with the team lead at one of the ends,

see Figure 10. The Product Owner and the technical architect are not placed with the team;

they are located on the 4th floor.

Figure 10: Team Jupiter's seating arrangement

40

4.2.2 Team Pluto

Team Pluto has the responsibility for developing solutions to one of the customers

department. Team Pluto is a team with a team lead with much experience who joined the

project in an early phase. The team is a mix of junior and senior developers, and this team

is the off-site team.

The team consists of five representatives, one team lead and four developers. Of the four

developers there is one who is working as front-end and back-end developer, one developer,

is working with only front-end and two developers with the only back-end. The Product

Owner for this team is a person from one of the customers department, and from team

Earth, the technical architect supports the team with the architectural part.

While this team working off-site, the team is still on-site. The team are located just a minute

from the main offices and attends the scheduled meetings by a short walk from their

locations.

4.2.3 Team Mars

Team Mars has the responsibility for "Min side". This is a solution that offers services and

information that pertains the users by a login portal developed by the Agency for Public

Management and eGovernment (Difi). Before the reorganization one of the team leaders

also joined the project in an early phase with over 20 years of experience in the company.

The team consists of eight representatives; one team lead who working 50% in this case

and another member who is working 50% as a team lead and 50% as a developer. This

team lead work as a front-end developer. Of the six developers, there are some of those

who have optional roles with a combination of both back-end and front-end development.

Apart from these, there are clear roles between who is front-end and back-end developers.

Some developers come from the new suppliers. The Product Owner and the technical

architect for this team are representatives from the team Earth. Furthermore, neither in this

team, there is not a defined test role. The team members are responsible for keeping the

testing up and running by unit testing and manual tests.

Team Mars is also placed on the 5th floor in open-plan offices in a closed room just a few

meters from team Jupiter, see Figure 11. All the team members on this floor are located

next to each other, but two of the developers located with the Product Owner who is also

41

working as a solution architect is placed next to team Venus on the 4th floor. This map is

shown in Figure 14.

4.2.4 Team Saturn

Team Saturn was established in January 2018 after team Venus was divided. This team has

the responsibility for the Data-Driven Guided Dialogue (DVD)-framework. Team Saturn

is, therefore, one of the latest team in this large-scale program with a new team lead which

comes from one of the new suppliers.

The team consists of five representatives, one team lead, and four developers. The team

lead is responsible for the product delivery and sometimes working also as a developer. Of

the four developers, there is two front-end and two back-end developers. These developers

specialize in these areas, and the team members are a mix of old developers and new

developers from the new suppliers. The old team members were part of a former major

team Venus after the team divided in the scaling process. Team Saturn's main goal is to

share equal skills among the team members on the product delivered to the customer. The

Product Owner and the technical architect for this team are representatives from team Earth.

Testing is done via unit testing and automated testing. Final tests before the product launch

are done via the test lead.

Team Saturn is located at team Venus old open-plan offices on the 4th floor, see Figure 12.

All the developers are located next to each other with the team lead placed by himself with

Figure 11: Team Mars seating arrangement

42

empty spaces between them. The empty spaces in the open-plan offices take place because

former team Venus had more team members than today's team Saturn.

Figure 12: Team Saturn's seating arrangement

4.2.5 Team Venus

Team Venus has the responsibility for all common components and API components in the

project and working with typically back-end-oriented tasks. Team Venus is an old team in

this large-scale program, but after the scaling process, the team was reorganized with a new

team lead and some new developers from the new suppliers. Before the scaling process,

team Venus was the main team in the program and by far the greatest team.

Before the scaling process team Venus consist of nine team members and after the

reorganization the team was divided into just four team members, one team lead and three

developers. Some of the developers remained in the team, and other developers joined team

Saturn. Of the three developers all of them is typically back-end developers since the team

focuses on back-end-oriented solutions, but with different programming skills. The Product

Owner and the technical architect for team Venus is also representatives from team Earth.

Test lead is being contacted before deploying to the customer. Otherwise, testing will be

done by unit testing, automated testing and functional testing by the developers.

Before the scaling process, team Venus was located on the 4th floor next to team Earth and

the team from the customer. However, the developers were placed in open-plan offices with

the project manager from Knowit next to the team lead, see Figure 13. Since this team was

the biggest and greatest team, it was natural to place the project manager next to team

Venus.

43

Figure 13: Team Venus seating arrangement before the scaling process

After the scaling process, the team were divided and was placed in a new smaller open area

next to some team members from team Mars as shown in Figure 14. The project manager

for the DevOps teams leave the project, and the managers place in the open-plan office

remained standing empty after team Saturn took over the location, see Figure 12.

Figure 14: Team Venus and team Mars seating arrangement after the scaling process

Mars Venus

44

4.2.6 Team Customer

The customer are previously mentioned as the customer in this project. They are also

involved with their resources from their IT department and other departments. With a

project manager in the lead, the manager has the main responsibility for the project is up

and running. Next to the manager, we can find one test lead, architects, a security manager

and one representative UX designer who makes them to a separate team in this large-scale

program. The team is placed next to team Earth in the same open-plan offices and they

practiced free seating. Figure 8 shows their location in the open-plan office.

4.2.7 Team Earth

In addition to the DevOps teams and the team from the customer above, the customer hire

consultants from other technology companies. These participants are product owners who

also act as different architects. Furthermore, UX designers and other types of architects are

also hired. Before the scaling process, the project manager for team Earth was hired from

a management consultant company. After the scaling process and reorganizations in the

project, the manager from team Earth joined the DevOps teams and acts now as the project

manager for the DevOps teams. After the reorganizations, a technical architect joined team

Earth from company D, as one of the new suppliers. The team practiced free seating and

the seating arrangement for team Earth is shown in Figure 8.

45

4.3 Roles

It is necessary to outline how the different roles are carried out in this large-scale agile

program since real-life cases offer from typical definition explanations. Table 9 presents an

overview of the different roles in this program.

Table 9: An overview of the different roles in the program

Roles
Team

Jupiter

Team

Pluto

Team

Mars

Team

Saturn

Team

Venus

Team

Earth
Customer

PM 1 ✓ ✓ ✓ ✓ ✓

PM 2 ✓

PM 3 ✓

Team Lead ✓ ✓ ✓ ✓ ✓

Developer ✓ ✓ ✓ ✓ ✓

UX Designer ✓ ✓

PO Department ✓

PO 1 Earth ✓

PO 2 Earth ✓

PO 3 Earth ✓ ✓

Technical Architect ✓ ✓ ✓ ✓ ✓ ✓

Solution Architect ✓

Functional

Architect
 ✓ ✓

Test Lead ✓

Security Manager ✓

Project Manager (PM 1) DevOps Teams

The manager was the head and organizer for the DevOps teams and was responsible for

coordinating meetings between the DevOps teams, team lead meetings, and present the

company in different events. The manager role was also to coordinate demo meetings and

be a part of the delivery of the products to the customer.

However, after the scaling process, the project manager resigned as manager. The former

PM from team Earth took over this position and is now the head leader of the DevOps

teams.

46

Project Manager (PM 2) Team Earth

Typical tasks a PM for team Earth work with is coordinating scheduled meetings and be a

role between the supplier and the customer. The manager was hired in from a management

consultancy company.

Project Manager (PM 3) Customer

The PM from the customer is the head leader for the project. This manager coordinates

meetings, suppliers, stakeholders and participants in the project. The PM is responsible to

lead meetings and has a high position in when it comes to decisions. The PM works closely

with some of the hired architects and Product Owners.

Team Lead

The team lead is the head and organizer of the developers. The team lead manages and

organizes internal meetings for the team, such as daily stand-up meeting and Sprint

meeting. In the daily stand-up meeting, the team lead works as a Scrum Master. Other

important tasks for the team lead is to ensure that the product is represented in a good way

before putting it into production. Moreover, sometimes in some teams the team leads act

also as a developer.

Developer

The developers in this large-scale agile program consist of both back-end and front-end

developers. The developers work in a DevOps environment with responsibility in

development and operations. Besides this, the developers also take care of the internal

testing within the team.

UX Designer

The UX designer work with designing the solutions and often works closely with some of

the architects. Some of the designers are hired designers from other technology companies,

one is employed at Knowit, and one is from the customer. A representative from the

customer leads the designers. Moreover, all the designers are located together as shown in

Figure 8 next to team Earth.

47

Product Owner (PO)

The PO makes decisions regarding what are the most critical epics. The PO, in this case, is

either from one of the hired consultants or one of the customers departments and they stand

outside the DevOps teams. The hired PO's works also as an architect, one of them is a

solution architect and the remaining PO's jobs as functional architects. The PO's decide not

only crucial decisions. They also try to sell the products developed from the DevOps teams

to several departments at the customer. The PO's can sell existing products or trade non-

productive products. If the scenario is to sell non-productive products, the PO tells the team

what to produce. As shown in Figure 15 the four different Product Owners, in this case, is

mapped in an overview with relations to their teams.

Figure 15: An overview of the Product Owner's relations to the DevOps teams

Architect

The architects, in this case, are employed at the customer, or the architects are

representatives from the Product Owners. However, the difference between the type of

architects is the knowledge and experience of the departments. Some architects work less

with the departments and are more responsible for the product development process,

including decision making and technical inputs. Some architects are located on-site, others

are located off-site but attending important scheduled meetings on-site. The role architect

in this study can be categorized into different roles: functional architect, solution architect

and technical architect and supports the DevOps teams.

48

Test Lead

The test leader is responsible for thoroughly testing the solutions the teams create to find

bugs. The test leader is employed at the customer and is located on-site with the members

from the customer and team Earth.

Security Manager

The security manager is responsible for security testing of the solutions the teams create to

find security risks. The security manager works closely with the test leader and is employed

at the customer. The security manager is located off-site but attending important scheduled

meetings on-site.

49

5 Results

In Chapter 4, the research context was described with an overview of the large-scale

program. In this chapter, what was found through the data analysis will be presented, and

the results is discussed in relation to the theory presented in Chapter 2.

Furthermore, this chapter describes different dependencies and their associated agile

practices as coordination mechanisms using a taxonomy proposed by Strode (2016). The

focus is to describe the various coordination mechanisms and dependencies because I

examine what dependencies and their associated agile practices that facilitate the large-

scale agile development.

In Chapter 2, I presented how Strode (2016) divided dependency into three main categories;

knowledge, process, and resource (see Table 11). First, the knowledge dependency is split

into expertise, requirement, task allocation and historical dependencies. Then, the process

dependency into activity and business process dependencies. Lastly, the resource

dependency into the entity and technical dependencies. Table 10 describes each of the

dependencies. Table 11 shows an overview of the dependencies and the agile practices that

act as coordination mechanisms in this large-scale program. 34 coordination mechanisms

and 77 pairs of dependencies in total were found and the findings are based on my data

described in Chapter 3.

Moreover, in Chapter 2, I presented how Strode et al. (2012) divided coordination

mechanisms into eight main strategy components; synchronization activity,

synchronization artefact, boundary spanning activity, boundary spanning artefact,

availability, proximity, substitutability and coordinator role. Table 13 shows how I have

mapped these strategy components with their mapped coordination mechanisms.

50

Table 10: A description of the dependencies (Strode, 2016)

Dependency Description

Knowledge

dependency

Expertise

Technical or task information is known only by a particular

person or group and this affects, or has the potential to affect,

project progress.

Requirement

Domain knowledge or a requirement is not known and must be

located or identified and this affects, or has the potential to affect,

project progress.

Task

allocation

Who is doing what, and when, is not known and this affects, or

has the potential to affect, project progress.

Historical
Knowledge about past decisions is needed and this affects, or has

the potential to affect, project progress.

Process

dependency

Activity
An activity cannot proceed until another activity is complete and

this affects, or has the potential to affect, project progress.

Business

process

An existing business process causes activities to be carried out in

a certain order and this affects, or has the potential to affect,

project progress.

Resource

dependency

Entity
A resource (person, place, or thing) is not available and this

affects, or has the potential to affect, project progress.

Technical

A technical aspect of development affect progress, such as when

one software component must interact with another software

component and its presence or absence affects, or has the

potential to affect, project progress.

51

5.1 Using the Taxonomy to assemble Agile

Practices

Table 11: Dependencies and agile practices that act as coordination mechanisms in the large-scale program

Coordination

mechanisms (34)

Dependency

Knowledge Process Resource Total

Expertise Requir-

ement

Task

allocation

Histo-

rical

Activity Business

process

Entity Tech-

nical

Futurespective ✓ 1

Scrum of Scrums ✓ ✓ ✓ 3

Knowledge-sharing ✓ ✓ 2

Daily stand-up ✓ ✓ 2

One on one meeting ✓ ✓ ✓ 3

Sprint ✓ ✓ ✓ ✓ 4

Software release ✓ 1

Sprint Planning ✓ ✓ ✓ 3

Task ✓ 1

Informal ad hoc ✓ ✓ ✓ ✓ ✓ 5

Team lead meetings ✓ ✓ ✓ 3

Product backlog ✓ ✓ 2

Project meetings ✓ ✓ 2

Preparation for demo ✓ ✓ 2

Open work area ✓ ✓ 2

Wiki-Confluence ✓ 1

Kanban board ✓ ✓ 2

Demo to customer ✓ 1

Tools-Skype-Slack ✓ ✓ ✓ 3

JIRA ✓ ✓ 2

Priority list ✓ ✓ 2

Wallboard ✓ ✓ ✓ ✓ 4

List of tests ✓ 1

Whiteboard ✓ 1

Full-time team ✓ 1

Customer on-site ✓ 1

Project manager ✓ 1

Team lead/ SM ✓ ✓ ✓ ✓ 4

Test lead ✓ ✓ ✓ ✓ 4

Security lead ✓ ✓ 2

Product Owner ✓ ✓ ✓ ✓ 4

Technical architect ✓ ✓ 2

UX/designer ✓ ✓ 2

Scaling process ✓ ✓ ✓ 3

Total Pairs of

Dependency

20 18 14 4 7 4 5 5

 56 11 10 77

52

To analyze which agile practices that act as coordination mechanisms to address

dependencies and which dependency that was mostly used in the large-scale program, the

data from Table 11 were merged. The agile practices are multipurpose because they can

address more than a single dependency. Furthermore, Table 11 shows that 77 pairs of

dependency in total was found with 34 different coordination mechanisms that act as agile

practices.

The Frequency of Dependencies in the whole Large-Scale Program

A finding shown in Figure 16, is that 56 of 77 pairs of dependencies, or 73 % is knowledge

dependency, 14 % is process dependency, and 13 % is resource dependency.

Figure 16: An overview of the frequency of dependencies in the whole large-scale program

Knowledge
dependency; 56;

73 %

Process
dependency; 11;

14 %

Resource
dependency; 10;

13 %

The most used dependency in this study

Knowledge dependency Process dependency Resource dependency

53

Usage of Agile Practices

Since a finding around the most used dependency (knowledge dependency) in this study is

presented, it could be interesting to look at the usage of agile practices that addressed the

whole large-scale program and the most used dependency, knowledge dependency. A

finding, shown in and Table 11, is that 20 different agile practices acted as coordination

mechanisms to address the expertise dependency. This means that 20 of 34 coordination

mechanisms, or 59 % of all the coordinative agile practices found in the whole large-scale

program managed an expertise dependency.

Moreover, since knowledge dependency include 56 pairs of dependency (Table 11), and is

clearly the largest used dependency, a more divided finding in knowledge dependency is

presented. Shown in Figure 17 is that 20/56, or 36 % of all agile practices addressed in

knowledge dependency is expertise dependency.

Figure 17:An overview of the agile practices usage in knowledge dependency

Requirement; 18;
32 %

Expertise; 20; 36 %

Historical; 4;
7 %

Task allocation; 14;
25 %

The most used agile practices to address knowledge dependency in

this study

Requirement Expertise Historical Task allocation

54

Used Agile Practices to Promote a Smooth Workflow in Large-Scale

To find the agile practices that promote a smooth workflow during the project in this large-

scale program, Table 12 gives an overview of the agile practices that address three or more

dependencies and therefore promotes a smooth workflow.

Table 12: The 12 agile practices found to address three or more dependencies

Agile practices
Total of

dependencies
Best matched dependency

Informal ad hoc conversations 5 Knowledge dependency

Wallboard 4 Resource dependency

Team lead 4 Resource dependency

Test lead 4 Resource dependency

Product Owner 4 Process dependency

Sprint 4 Process dependency

Scrum of Scrum meetings 3 Knowledge dependency

One on one meetings 3 Process dependency

Sprint Planning meetings 3 Knowledge dependency

Team lead meetings 3 Knowledge dependency

Communication tools 3 Knowledge dependency

Scaling process 3 Knowledge dependency

Moreover, by this 12 recommended used agile practices to promote a smooth workflow in

large-scale agile development, is it possible to match these coordination mechanisms to the

best-fitted dependencies (Table 14), and look if the most used dependency actually affects.

Figure 16 gives us an overview of the frequency of dependencies of total 77 pairs of

dependencies mapped by 34 agile practices. The finding shows that the most used

dependency was knowledge dependency with 73 % usage. If we look at the 12 agile

practices showed in Table 12, we can see knowledge dependency is mapped six times,

process dependency three times and resource dependency three times. This gives us this

overview shown in Figure 18:

55

Figure 18: An overview of the frequency of dependencies in the 12 recommended agile practices

By this overview (Figure 18), we can see that the frequency number of agile practices map

knowledge dependency for the highest usage in both the whole large-scale program with

73 % and in the recommended 12 agile practices to promote a smooth workflow in large-

scale agile development with 50 %. With these findings, we can see that the most used

dependency affects to promote a smooth workflow as well.

Knowledge
dependency; 6;

50 %

Process
dependency; 3;

25 %

Resource
dependency; 3;

25 %

Most used dependency to promote a smooth workflow

Knowledge dependency Process dependency Resource dependency

56

5.2 Dependencies and Coordination Mechanisms

Table 13: Dependencies and coordination mechanisms

identified in the large-scale program

Dependency

K
n

o
w

led
g

e

P
ro

cess

R
eso

u
rce

E
x

p
ertise

R
eq

u
irem

en
t

T
ask

 allo
catio

n

H
isto

rical

A
ctiv

ity

B
u

sin
ess p

ro
cess

E
n

tity

T
ech

n
ical

C
o
o
rd

in
atio

n
 M

ech
an

ism
s

Synchronization Daily stand-up

activities Futurespective

 Scrum of Scrum meetings

 Software release

 Knowledge-sharing workshop

 One on one meeting

 Sprint Planning meetings

 Sprint

Informal ad hoc conversation

Team lead meetings

Project meetings

Preparation for product demo

Synchronization

artefacts

Wiki

Kanban board

Task

Product backlog

Communication tool

JIRA

Priority list

Wallboard

Whiteboard

Boundary

spanning activity

Product demo to customer

Informal ad hoc conversation

Boundary

spanning artefact

List of tests

Scaling process

Availability Full-time team

Proximity Open work area

Customer on-site

Substitutability Knowledge-sharing workshop

Coordinator role Project manager

Team lead/ SM

Test lead

Security lead

Product Owner

Technical architect

UX/ Designer

Knowledge dependency

Process dependency

Resource dependency

Strategy

components

57

Table 13 provides the data I mapped for this large-scale program and shows both

dependencies and coordination mechanisms to illustrate how coordination mechanisms

address dependencies. The mechanisms are also mapped to strategy components for

following the taxonomy. The identified 34 agile practices are listed to dependencies, and

strategy components and can address more than a single dependency. These dependencies,

see Table 14, is described in section 5.3, 5.4 and 5.5 with some of the findings presented

as agile practices that act as coordination mechanisms. The selected mechanisms are chosen

because of the substantial, strong data collection on them, and minimum one mechanism

for every dependencies will be described. Moreover, since some coordination mechanisms

address more dependencies, the presented coordination mechanisms are selected for their

best-matched dependency as shown in Table 14.

Table 14: The selected coordination mechanisms that will be described

Dependency Coordination Mechanisms

5.3 Knowledge

dependency

Expertise

Futurespective meeting

Knowledge-sharing workshop

Project meetings

Project manager

Requirement

Informal ad hoc conversations

Product demo to customer

Customer located on-site

Task allocation

Daily stand-up meetings

Scrum of Scrum meetings

Sprint Planning meetings

Kanban board

Communication tools

Historical

Team Lead meetings

Open work area

Scaling process

5.4 Process

dependency

Activity
Sprint

Wallboard

Business process Product Owner

5.5 Resource

dependency

Entity Team lead/ Scrum Master

Technical
Test lead

Security lead

58

5.3 Knowledge Dependency

I found that 33 of the 34 coordination mechanisms could be categorized as knowledge

dependency, as they were meetings. Table 15 gives an overview of the coordination

mechanisms that work as meetings or workshop in knowledge dependency, and Table 16

gives an overview of the roles of these meetings.

Table 15: The meetings identified in knowledge dependency

Coordination mechanisms Frequency

Futurespective meetings Rare

Knowledge-sharing workshop Once a month

Project meetings Every week

Product demo to customer Every other week

Daily stand-up meetings Daily

Scrum of Scrum meetings Every week

Sprint Planning meetings Every other week

Team lead meetings Every week

Table 16: An overview of the roles of the meetings discovered as knowledge dependency

Attendees
Future-

spective

Work-

shop

Project

meetings
Demo

Stand-

up

Scrum

of

Scrums

Sprint

Planning

Team

lead

meetings

Project

manager
 ✓ ✓ ✓ ✓

Team lead ✓ ✓ ✓ ✓ ✓ ✓ ✓

Developer ✓ ✓ ✓ ✓ ✓

UX

Designer
 ✓ ✓ ✓

Product

Owner
✓ ✓ ✓ ✓ ✓

Architect ✓ ✓ ✓

Test lead ✓ ✓ ✓

Security

manager
 ✓ ✓

59

5.3.1 Expertise Dependency

Typically, coordination mechanisms of expertise dependency include futurespective

meetings, knowledge-sharing workshop, project meetings, and the role project manager.

Expertise dependencies occurred in this large-scale program by these mentioned

mechanisms. For example, a developer from team Venus noted that it was during the

knowledge-sharing workshop he identified other knowledge and expertise about a security

issue from other team members from other teams. This information made it possible to

complete the security tasks during the Sprint.

Futurespective Meeting

The futurespective meeting has been recently introduced in the project. Team Pluto had a

futurespective meeting in April 2018 with a department from the customer. This meeting

was in cooperation between team Pluto and the department because the Product Owner

from the department and the team lead from team Pluto wanted to gather all the

representatives who had a role in the project. With team Pluto and the departments high

level of cooperation and some internal issues which had occurred about planning, the

management wanted to measure what could solve the problem. A team member stated:

"It is dangerous to ask for more predictable planning. Then it becomes a wish to

follow the waterfall model. It is important to see that life has room for changes

along the way."

This statements from the architect show that an approach to the agile development

methodologies must be followed. Moreover, frustration about future deliveries was spread

within the team, and a team member stated:

"We had to move many plans, it was frustrating because we had to look at what

everyone else was doing."

Another agreed:

"We have too many activities at the same time, this can affect the workflow. There

is little interaction with other teams relative to dates of deliveries."

To measure the problems, one solution was held by one futurespective meeting. One

possible exercise in the futurespective meeting is called the hot-air balloon, where the team

60

members supposed success factors in the future. The team members wrote notes on post-it

stickies with their thoughts about factors that will affect parts of the project's future, with

either negative or positive notes. The positive notes were placed at the top of the balloon;

this marked that the balloon got more air and could soar longer. The negative notes were

placed at the bottom of the balloon; this was notes that could slow down the workflow in

the project. A picture of this exercise is shown in Figure 19.

Figure 19: The hot-air balloon exercise in a futurespective meeting

Knowledge-Sharing Workshop

The developers from the DevOps teams meet once a month. The developers can attend

voluntary upon request from the project manager. The developers who participate, get one

hour to discuss and demonstrate front-end and back-end related programming code. The

main goal in this type of workshop was to share skills among the team members. A typical

scenario was when a front-end developer from team Jupiter demonstrated functions in the

code to the rest of the developers. This was typically skills which may be as relevant to the

other team members.

Project Meetings

The project meeting was a meeting typically for team Earth and the customers team

members with a duration of 70 minutes once a week. The participants of this type of

meeting were the project manager customer, project manager supplier, Product Owners,

61

test lead, architects, security manager and UX Designers. This meeting included status

reviews on delivery from each competency areas. Typical topics that were raised during

these types of the meeting was problems or other features that had occurred since the last

meeting and the use of resources before new suppliers joined the project. It was the project

manager from the supplier who delegated the words to the different participants. A project

manager stated:

"The designers have to clarify its participation in the product team, and provide

and introduce new designers, simultaneous prepare onboarding of new resources

to the team."

To make sure that resources were complete before the scaling process, every part, such as

DevOps teams and the designer team had to assemble their teams by decisions from team

leads and managers with expertise experience.

Project Manager

I observed three project managers. One from the customer, one from team Earth and one

from the supplier. The project manager from the customer had a main role in this project.

His potential to lead meetings and discuss requirements were huge. By his expertise

competence, the project manager from the customer had a position to make the final

decisions about technical issues and tasks. A project manager stated during a demo

meeting:

"For me personally, I am happy with the solutions. However, for the customer, we

need to create a better user interface, so we follow the requirements set by the

customer."

The project manager roles are more described in Chapter 4 in section 4.9 Roles.

5.3.2 Requirement Dependency

Typically, coordination mechanisms in requirement dependency include informal ad hoc

conversations, product demo to the customer and that the customer was located on-site. In

the project, when developers or team leads from the DevOps teams failed on domain

requirements, it was easy to talk to a specialist form the customer who was co-located in

the room with the teams. This lead to easy communication when tasks on requirements

62

were failed or unclear. These situations often lead to ad hoc conversations. Based on

evidence of this type, a requirement dependency is defined as a situation wherein domain

knowledge is not known and must be located or identified, for example, when ad hoc

conversations occurred between developers and project manager.

Informal Ad Hoc Conversations

Informal ad hoc conversations occurred several times a day. Every team in the project

practiced this coordination mechanism. The informal conversations took place

everywhere, especially where the teams were located. The open work area made it easy for

the team members to make quick discussions, which created a fast working culture. By

having other teams inside a short distance, it was possible to walk from team to team. The

mechanism often occurred inside team Earth because they were located together with team

members from the customer. One of the Product Owners stated:

"By sitting in the same location as the customer and a short distance from the

DevOps teams it is possible to make important decisions through fast, informal

conversations. If there are several small issues, it is easier to handle the problem

by talking with other team members instead of using time on the issues in the

scheduled meetings."

Furthermore, the informal ad hoc conversations between other teams were observed most

on the 4th floor because this area was the most open area and it was easy to take a short

walk just around the corner.

Product Demo to Customer

The product demos were meeting related to the Sprint reviews. The meeting took place

every other week at the end of a two-week Sprint with a duration of two hours. The purpose

was to demonstrate the product to the customer. The demo meeting was divided into four

parts; 30 minutes to team Venus, 30 minutes to team Jupiter, 30 minutes to team Mars and

30 minutes to team Pluto. Developers and team leads demonstrated the developed

functionality to the project manager customer, Product Owners, teat lead, and designers.

Discussion between designers and Product Owners often occurred in this type of meeting,

and a designer stated:

63

"We always have to follow standards from the requirements of the customer,

functionality from one of the teams does not follow these requirements and need to

be changed."

Moreover, one of the Product Owners stated:

"These tasks are placed in the product backlog, and we always want to follow the

customer requirements."

After the scaling process, and after team Saturn was introduced to the project, the demo

meeting was changed. The four phases were merged, and the demos were not divided into

DevOps teams anymore. Almost everyone from the project attended the meeting. This

resulted in that 30 people attended the demo meeting after the scaling process.

Customer Located On-site

In the project, members from the customer was located on-site. This was roles as project

manager, test lead, designer, and architects. The designer was located with the rest of the

designers, and they created their own UX Designer team. By having the customer inside

the head office, a project manager from the program stated:

"By having the customer on-site and located together with us make the delivery fast,

and it is possible to set the thing in production very quickly. The test responsible

and the project manager can let us know in an easy way when deployment is

allowed."

5.3.3 Task Allocation Dependency

Typically, coordination mechanisms in task allocation dependency include daily stand-up

meetings, Scrum of Scrum meetings, Sprint Planning meetings, Kanban board and

communication tools. In the project, tasks under development are displayed on a Kanban

board. This is tasks grouped in a "to do" section, "in progress", "awaiting" and a "done"

section. In the meetings, typically in the daily stand-up, Scrum of Scrums, and Sprint

Planning, project team members always gave its status on tasks to other team members.

This means that all the team members can see who is doing what and when. These task

allocation dependencies are more described in detail in the following sections.

64

Daily Stand-Up Meetings

Team Venus started their stand-up every morning at 10:30 a.m., in which they followed up

with lunch afterward. Team Venus carried out the meeting in their open workspace, next

to their seats, and used a screen to involve team members on Skype who was not available

at the office. This screen was the same screen used for wallboard. After the scaling process,

team Venus got a new team lead. This team started their stand-up every morning at 09:30

a.m., and not followed up with lunch afterward. The team lead gave his reasoning and

stated:

"The reason for starting the stand-up earlier is to sync the team members on where

we stand with tasks. For me, it is a good routine to have a fixed time for these

meetings, and the meetings help the team to kick-start the workday."

Meanwhile, team Jupiter started their stand-up every morning at 10:45 a.m., in which they

followed up with lunch afterward. Team Jupiter carried out the meeting in their open

workspace by standing up from their seats. During the meeting, all the computer screens at

the desks were standing in between the team members. Furthermore, team Mars did it in

the same way as team Jupiter, but started their stand-up every morning at 11:15 a.m., and

followed up with lunch afterward. Team Saturn started their stand-up every morning at

10:30 a.m., in which they followed up with lunch afterward. Since team Saturn took over

team Venus earlier workspace, Saturn carried out the meeting in their open workspace, next

to their seats with a screen available.

Sequence of Categories

For daily stand-up in all observed teams, it was a typically common sequence of interaction

in the daily meetings. I analyzed the interaction processes at the meetings and identified

the various patterns of a sequence of interaction. The sequence was also the pattern that

included all three Scrum questions (Q1, Q2, Q3) (C1). The most common sequence of

interaction at the meetings is shown in Figure 20. A description of the coding schema is

placed in Appendix B (Stray et al., 2012).

65

Figure 20: The most common sequence of interaction in a daily meeting

When following this pattern, a team member started by telling the team what he or she had

done since last daily stand-up meeting (C1) before discussing obstacles (C1). An obstacle

often caused another team member to discuss problem focused communication (C2)

regarding answer on what is the best solution to the identified problem. The discussion

usually ended up with coordinating tasks (C5) with a discussion of who should be involved

in solving the task and the obstacles. To the end, the team member ended his or her round

by telling what will be done before next meeting (C1). Then the next team member started

his or her status update, and the cycle began again by telling what was done since last

meeting (C1). After the update from the last team member, they provided information about

other meetings (C7) before summing up the meeting (C6) and ended it.

Scrum of Scrum Meetings

Scrum of Scrums meeting was a meeting with a duration of 60 minutes and was held every

week. The participants in this meeting were project manager supplier and customer, team

leads, UX Designers, Product Owners, architects, test lead, and security manager.

Moreover, maximum 12 participants attended the meetings. Furthermore, every team lead

gave a status of their tasks to the project manager customer. The team leads were prepared

and got an own list of topics on what they are going to say in the meeting. During the

meeting, the participants discussed issues on what the team leads submitted. The Product

Owners and the project managers discussed the issues with the specific team lead and tried

66

to make a good solution on what the DevOps team could do to solve the problem. The team

lead always noted the suggestions from the Product Owner and the project manager.

A project manager from the program stated following about the Scum of Scrum meetings:

"We schedule this type of meeting every week because it is possible to gather

different important roles from the project. It also allows us to prepare and discuss

problems when roles, such as Product Owners and team leads are gathered

together. This makes it worth spending one hour weekly on this type of meeting."

The Scrum of Scrum meetings observed can be categorized as fully distributed Scrum (Lee

& Yong, 2009). With findings on that the teams were cross-functional with members from

several different locations, such as security manager and architects located off-site, and

Product Owners, UX Designers, project managers and test lead gathered together as one

large unit for coordinating tasks.

Sprint Planning Meeting with Venus

At the Sprint Planning meeting team Venus divided the meeting into two phases; pre-

planning and Sprint Planning. First, 60 minutes with pre-planning was conducted. The

purpose of the pre-planning was to plan unfinished tasks from the last Sprint and plan new

tasks for the new Sprint period. The team lead focused on goals and tasks from the "to do"

list from the Kanban-board and discussed the tasks with the team members. Together, the

team members coordinated the tasks to each other and estimated time for when the task

should be done. If the task was not given priority, the task was placed in the product

backlog. This ensured that Sprint Planning meeting ensured coordination between the team.

Then, after the pre-planning, the team followed up with lunch.

Lastly, after the lunch, the team met for Sprint Planning. The duration was new 60 minutes

with the developers, the team lead, and the Product Owner. The goal was to submit the

tasks with the Product Owner that was discussed in the previous pre-planning. If the

Product Owner disagreed with the estimates of the tasks, the Product Owner overturned the

tasks and changed the priority list and the product backlog.

67

Kanban Board – Jira2

Jira creates user stories, issues, plan sprints, prioritize, and distribute tasks across teams.

The team lead, and the Product Owner was responsible for updating the Kanban board in

Jira and entered tasks into Jira. The team estimated the time for each task and an example

of the Kanban board is shown in Figure 21. The Kanban board was an important

coordination mechanism during Sprints and meetings, such as Sprint Planning meetings

and project meetings.

Figure 21: The Kanban board in Jira

The tasks in the Kanban board was grouped in a "to do" section, "in progress", "awaiting"

and a "done" section. When the teams were going to updating and adding tasks to the

Kanban board, the team leads, and the Product Owners were the responsible for the

implementing.

Communication Tools – Slack3 – Skype4

The teams made use of several tools for communications, such as Slack and Skype. Slack

was used for communications through channels. The channels divided the tasks and

grouped them in a clearer overview when messaging. The communication tool informed

the team members about deliveries and other work-related tasks. In addition, the tool was

2 Jira is a registered trademark of Atlassian, www.atlassian.com/software/jira
3 Slack is a registered trademark of Atlassian, www.slack.com
4 Skype is a registered trademark of Skype Technologies and parent is Microsoft, www.skype.com

68

also rather social, by inviting other teams to lunch and other social small events during the

workday.

Skype is a tool for video conversations and chats messaging. This tool was used when team

members joined meetings, such as daily stand-up and demo meetings through video if they

were located at home or in a special trip away from the office.

5.3.4 Historical Dependency

Typically, coordination mechanisms in historical dependency include team lead meetings,

open work area, and scaling process. Historical dependencies were identified in this large-

scale program by decision making around mechanisms. The decisions around the

mechanisms were typical of persons with many years experience and historical knowledge

about a mechanism. The scaling process was determined by people in the management,

persons with the historical background of such large projects. Based on evidence of this

type, a historical dependency is defined as a situation wherein knowledge about past

decisions is needed. For example, team leads discussed about resources in their team in the

team lead meetings.

Team Lead Meetings

The team lead meeting was a meeting with a duration of 60 minutes once a week. The

participants during this type of meeting were all team leads, and the project manager form

the supplier. The topics for the meeting was internal situations and to give status updates

for each team. Every team lead talked about what was done since last team lead meeting

and updated the project manager about finished tasks. It was also normal to discuss about

resources in each team, and this was a challenging topic before the scaling process that

introduced three new suppliers. The team leads knew little about what would happen with

their teams. A team lead from one of the teams with a high historical competence stated:

"I don’t know what happens to my team. If the plan is to continue, we need more

resources in the form of back-end developers. We don’t want that one of our team

members shall be removed because our team has too many priorities in the project.

We also do not want resources from the new suppliers if we should be able to finish

our tasks but introduce resources from our own company with historical

competence."

69

Moreover, another team lead from the program stated:

"We also need more and stronger resources if we shall reach the goals and complete

our tasks in this project."

The project manager also gives updates on what was done at the management meetings the

day before. Issues and information about resources from the management in the company

was shared with the team leads.

Open Work Area

The DevOps teams, team Earth and the customer team was seated in an open work area.

Figure 22 provides a picture of the work area. The open work area facilitated coordination

through easy access to other team members and teams and enabled quick oral coordination.

The work area where an area for discussion topics about tasks and solutions and allowed

the coordination mechanism informal ad hoc conversation. Moreover, with meeting rooms

available just a few meters from the seating arrangements, it was possible to implement

informal and unscheduled meetings.

Figure 22: The open work area from a DevOps team

In large projects, it is many participants involved and is therefore impossible to gather all

members from the project, and we know that the location influences the coordination. The

project manager from the supplier stated following about this mechanism:

70

"By using the offices on the best possible way, and so many participants involved in

the project, we know from earlier that open areas make the teams more autonomous

and enable decisions in the project."

Scaling Process

From the 1st of January 2018, the customer introduced three new suppliers to the project.

This process reorganized the large-scale program with new team members, such as

developers, team leads, architects, and designers. The DevOps teams went from being four

teams to five teams. The onboarding period lasted in around two months, and the project

management introduced a trial period with some reorganizing in the meetings and the

teams, and lastly, introduced a new type of meetings. The trial period was introduced to the

new coordination mechanisms took place in an easy way for the employees. A member of

the project management stated:

"We did not decide who should be the supplier, the customer regulates this. By

letting three new suppliers join the project is perfect for the process and the

workflow. By doing this the teams are more cross-functional, and we can solve some

of the problems we had with the business model."

5.4 Process Dependency

I found that 9 of the 34 coordination mechanisms could be categorized as process

dependency.

5.4.1 Activity Dependency

Typically, coordination mechanisms of activity dependency include the scrum practice

Sprint and the tool wallboard. In the project, activity dependencies occurred. During the

Sprints, activities in the form of tasks could not proceed until another activity was

completed. The wallboard coordinates this activity dependency by sharing the Kanban

board at the team locations.

71

Sprint

A Sprint was conducted over a two-week period. This was two weeks with the development

of tasks and product increment. At the start of a Sprint, Sprint Planning meetings were

conducted with the team members, team lead, and the Product Owner. At the end of a

Sprint, product demo meetings were conducted by product demonstration to the customer.

This meeting was the last ceremony in a Sprint period for the five DevOps teams.

Wallboard

To make sure tasks enabled for the teams, wallboards were placed on the 4th and 5th floors.

The wallboard was big TV screens and was used to display activities and project progress

by a dashboard.

5.4.2 Business Process Dependency

Typically, coordination mechanisms of business process dependency include the role

product owner. Business process dependency occurred in this project by roles that

improved a solution to the public by selling to different departments.

Product Owner

In this study, it was observed four Product Owners. Some of them also acted as architects

and had a relation to the DevOps teams by attending meetings such as Sprint Planning

meetings, demo meetings and Scrum of Scrum meetings. The Product Owner also tried to

sell finished solutions to different departments at the customer. The role Product Owner is

described more in detail in Chapter 4 in section 4.9 Roles.

72

5.5 Resource Dependency

I found that 10 of the 34 coordination mechanisms could be categorized as resource

dependency.

5.5.1 Entity Dependency

Typically, coordination mechanisms in entity dependency include the role team lead. Entity

dependency occurred in this program by physical things such as people.

Team Lead/ Scrum Master

During the observations, it was observed four team leads. The team leads also acted as

Scrum Masters during the daily stand-up meetings. For letting the project be in process,

developers were an object that was required. When the DevOps teams missed this

requirement, it was the team lead that ensured that all resources were obtained. The team

lead role is more described in Chapter 4 in section 4.9 Roles.

5.5.2 Technical Dependency

Typically, coordination mechanisms in technical dependency include the roles test lead and

security manager. Technical dependencies occurred in the project when the security

manager during the project meetings told the project members that critical issues had to be

addressed to the Security Council and the test lead missed test data from the developers.

Test Lead

During the observations, it was observed one test lead. The test lead ensured that one

software component interacted with another software component and the test lead was a

required object for this project. The role test lead is more described in Chapter 4 in section

4.9 Roles.

Security Manager

During the observations, it was observed one security manager. The security manager

ensured that software components corresponded to the security requirements. The role

security manager is more described in Chapter 4 in section 4.9 Roles.

73

6 Discussion

In chapter 5 the results based on my data described in Chapter 3 was outlined. In this

chapter, the discussions from the results are outlined, such as discussions of the theory and

related research to answer the research questions in this study.

The results in Chapter 5 show the agile practices that acted as coordination mechanisms in

a large-scale agile program with seven different teams, six of them located on-site and one

of them located off-site. The results showed 34 mechanisms and 77 mapped pairs of

dependencies. The dependencies were described by their best matched agile practices with

a description of the practices. Later, by using the dependency taxonomy by Strode (2016),

it was possible to assemble the usage of agile practices, find the frequency of dependencies

and promote a smooth workflow in large-scale agile development by suggesting 12 agile

principles.

Before answering the research questions, I will discuss whether the participants in the

program belongs to a working group or a team. This part is necessary because it will

influence the next discussion sections in this chapter. To discuss this topic, I will use the

theory by Katzenbach and Smith (2005) described in Table 5 in section 2.4.1 in Chapter 2.

Furthermore, to answer the research questions, I will first discuss and analyze my results

on dependencies and coordination mechanisms compared with other studies and discuss

what dependencies that occur in large-scale agile. Second, discuss and explain my

suggested agile practices in large-scale which can form a smooth workflow and could be a

recommended starter set for providing coordination compared with suggested agile

practices in co-located. Lastly, the implications for practice and theory will be discussed.

74

6.1 Working Group or a Working Team

The participants in the program belong to a group or a team. To answer this topic, I use the

proposed theory by Katzenbach and Smith (2005). Table 17 shows the comparison between

a working group and a working team from the analyzed program.

Table 17: The observed program, a working group vs. a team

Working group Yes Team Yes

Strong, clearly focused leader Shared leadership roles ✓

Individual accountability Individual and mutual accountability ✓

The group’s purpose is the same as the

broader organizational mission
✓

Specific team purpose that the team

itself

delivers

✓

Individual work products Collective work products ✓

Runs efficient meetings ✓
Encourages open-ended discussion and

active problem-solving meetings
✓

Measures its effectiveness indirectly by

its influence on others (such as

financial performance of the business)

Measures performance directly by

assessing collective work products

Discusses, decides, and delegates
Discusses, decides, and does real work

together
✓

Sum 2 6

By analyzing and summarizing Table 17, the participants of the analyzed program match

both the characteristics of a working group and a team. Moreover, the "team" part got six

matches, and seem to be dominant. The program matches the characteristics of a working

team. First, the teams had shared leadership roles represented by the project managers and

the team leads. Second, the teams had individual and mutual accountability, and the specific

teams purposed that the teams itself delivered. Third, the teams in the program encouraged

open-ended discussions and conducted problem-solving meetings through project

meetings, Scrum of Scrum meetings and daily stand-up meetings. Lastly, the teams

discussed, decided and did real work together by following each team's area of

responsibility.

However, the participants in the program belong to working teams instead of working

groups. This is helpful when discussing the next sections in this chapter, and it realizes that

the large-scale agile program consists of seven teams and not groups. Moreover, the

"collective work products" section in Table 17 is marked since the teams worked on the

75

same solution. The information that one team had about their solution was relevant for the

others, for example through demo meetings and Scrum of Scrum meetings.

6.2 Dependencies and their associated Agile

Practices that facilitate the Large-Scale Agile

This section answering and discuss the first research question:

RQ1: What dependencies and their associated agile practices that act as coordination

mechanisms facilitate the large-scale agile development?

In Chapter 2 different case studies and theory were presented. This section will look at the

findings in the case studies presented in Chapter 2 in relation to my case study about

coordination mechanisms in the large-scale agile development program. The goal is to

present my results and findings compared with other findings in other case studies, with a

discussion about findings that acts as agile practices in large-scale development related to

knowledge dependency, process dependency and resource dependency as shown in Table

18.

Table 18: Agile practices from this study compared with other findings in other studies

Dependency Agile practices

Knowledge dependency

Scrum of Scrum meetings

Daily Stand-up meetings

Sprint Planning meetings

Product demo to customer

Process dependency
Sprint

Product Owner

Resource dependency
Team lead/ Scrum Master

Test lead

76

6.2.1 Knowledge Dependency

The aggregated category of knowledge dependencies accounted for 73 % of all

dependencies across the project and was the most used dependency. By mapping agile

practices to the best-matched dependency, it was possible to categorize the agile practices

to one main dependency. Agile practices in knowledge dependency that could be interesting

to compare with other findings in other case studies are the following: Scrum of Scrums

meetings, daily stand-up meetings, Sprint Planning meeting, product demo to customer and

scaling process.

Scrum of Scrum Meetings

The goal of Scrum of Scrum meetings is to allow teams to communicate with each other to

ensure that the solutions integrate well with the fundamentals of the other teams. The

meeting is suggested to be time-boxed to last a maximum of 15 minutes (Larman & Vodde,

2010), just like the daily stand-ups. Other indicates to last 30-60 minutes (Cohn, 2007).

Challenges in Scrum of Scrums is not to make it into a status reporting meeting for

management, but to keep it as a synchronization meeting between the teams (Larman &

Vodde, 2010).

Paasivaara et al. (2012) found that Scrum of Scrums in two large-scale projects worked

with at least 20 teams each was challenging. The representatives were from all teams with

roles including managers, Scrum Masters, architects, Product Owners, developers, and

testers. The results showed that the audience was too big to keep everyone interested, and

the participants did not know what to report. Moreover, as a result to this, one of the case

projects introduced feature-specific Scrum of Scrums meetings for 3-5 teams. This new

introduction seemed to work well, but challenges with coordination at the project level

remained.

However, the use of Scrum of Scrums seemed to work well in my case study. The weekly

meeting gathered the whole project participants, expect the developers. This compressed

the meeting considerably, but team members form seven teams maintained still the number

of participants. The study by Paasivaara et al. (2012) worked well after the introduction of

involving just 3-5 teams. This compressed the meeting, but every participant from the teams

still attended. In my case study, seven teams participated as mentioned, but without the

developers, this reduced the number of participants. Maximum 12 participants participated

77

in the meetings. That we can see from this, it can be essential to compress the participants

so that the meeting can involve everyone. In my case study, this worked well, and a

distributed Scrum occurred. This meeting was an excellent arena to allow teams to

communicate with each other and integrate information and knowledge from other teams,

simultaneously give status about tasks to the project manager. This makes the Scrum of

Scrums meeting to fit the task allocation dependency (knowledge dependency). Everyone

was interested, and 60 minutes was enough to involve everyone.

Furthermore, I would argue and suggest allowing maximum 60 minutes of duration of a

Scrum of Scrums meeting. 15 minutes, like the daily stand-ups is a short time to involve

everyone. 60 minutes and few numbers of participants allows discussion if significant

problems showing up and situations like in the study by Paasivaara et al. (2012), where the

participants do not know what to report, disappears.

Daily Stand-up Meetings

The goal of the daily stand-up meeting is to involve every team members and let them

speak to three questions (Q1, Q2, Q3 from Chapter 2, section 2.1.1). Stray et al. (2016)

found that daily stand-up meeting affects more than we think by analyzing data from four

countries, 12 software teams, 60 persons and 79 observed daily stand-up meetings. The

study shows that the meeting should be held on time before lunch and it very important to

be standing during these meetings because to be standing shorter down the time.

Similarly, the daily stand-up meeting in my case study seemed to be implemented in the

same way from the literature from Stray et al. (2016) case study. In my case study, four of

five teams followed up with lunch. They also practiced the standing method by speak to

the three suggested questions (Q1, Q2, Q3), but in a different order. In my case, Figure 20,

in Chapter 5, showed the interaction process for the daily stand-up meetings and identified

the various patterns of a sequence of interaction. I found that the frequencies for the

questions (Q1, Q2, Q3), were followed in the order; Q1, Q3 and then Q2. Moreover, I

expected the sequence to follow the Scrum guide, which turned out and was not the case.

In knowledge dependency, I would argue that the use of daily stand-up meeting should be

implemented as a recommended coordinated mechanism by letting team members share

status with the rest of the team members. The daily stand-up meeting allows the team

78

members share information on who is doing what, and when. This makes the mechanism

to fit the task allocation dependency (knowledge dependency).

Sprint Planning Meetings

The goal in Sprint Planning meeting is to delegate tasks to team members, estimate time

on the tasks, and make a priority list in the Sprint. Abrahamsson et al. (2017) suggested

that the meetings should be divided into two phases: First, users, management, the

customer, and the Scrum team held the meeting to decide goals for the next sprint. Second,

Scrum Master and the Scrum team focusing on how the product increment is implemented

during the Sprint. In my case study it was completed in two phases, but in the opposite

order that Abrahamsson et al. (2017) suggested. First, pre-planning with the team lead/

Scrum Master and the developers were gathered. Second, the Product Owner, team lead,

and developers were gathered. The team lead submitted the tasks with the Product Owner

to the developers.

Moreover, to facilitate a proper coordination mechanism in knowledge dependency, I

suggest following the two-phased layout from my case study. The team needs to involve

the customer (PO) once. By including the customer once, it lets the Product Owner in my

case study release time for other tasks, and he can be involved in other Sprint Planning

meetings because he maybe is related to other teams that also ends and starts the Sprint

period at the same time. I would argue that the Sprint Planning meeting fit the task

allocation dependency (knowledge dependency) because the meeting gives an overview

who is doing what and when.

Product Demo to Customer

Demonstrating the functionality of the software is done by a product demo meeting. The

teams are located together with the customer and demonstrate the functionality. Nyrud and

Stray (2017) found that a demo meeting facilitated coordination because it was an arena for

creating common expectations and the meeting created a common understanding of the

developed product. Moreover, in my case study, the demo meeting also created a good

coordination mechanism by creating expectations and created a common understanding of

the product, between the teams and the customer. This common understanding of the

project fit the requirement dependency (knowledge dependency) by giving a common

79

domain knowledge of the project. Therefore, my findings from the observations, are

compared to Nyrud and Stray (2017).

Paasivaara et al. (2009) found the biggest problem with the demo meeting was the use of

technology, teleconferencing and application sharing. This did not offer enough

possibilities to communicate efficiently. However, from the observations, this seemed to

be unproblematic in my case. The customer was located on-site, and a scheduled practice

was used to conduct demo meetings at the end of every Sprint. The project manager from

the customer always communicated well by giving feedback to each team after the

demonstration. By this, an efficient communication culture was solved.

Moreover, Rolland et al. (2016) found that the demo meeting was improvised in the middle

of Sprints to get the users feedback. In my case study, this was done oppositely. The demo

meeting was performed after each Sprint, every second week. My findings, therefore, did

not compare in the same way as the guidelines for tailoring agile in the large-scale.

6.2.2 Process Dependency

In process dependency, which covered 14 % of agile practices, it could be interesting to

compare following agile practices to other case studies: Sprint and Product Owner.

Sprint

In the project, a Sprint period was scheduled for two weeks. The two-week Sprint was

weeks with the development of tasks and product increment. Cooper and Sommer (2018)

also looked at how the Sprint period was conducted in agile development projects form six

different case studies. They found at the beginning of each Sprint the development team

met to agree on what it can accomplish in the Sprint and created a task plan by a Sprint

Planning meeting. During the Sprint, daily stand-up was held to ensure that work is on

course to accomplish in the last 24 hours, and what should be done in the next 24. At the

end of each sprint, product demo meetings and retrospective meetings were held to review

how team members worked together. Moreover, the practices during the Sprint period as

described in the article by Cooper and Sommer (2018) increased in my case study as well,

expect the mechanism retrospective.

80

I would argue that the Sprint mechanism is an important recommended artifact in Scrum

since my findings and resent study on the mechanism Sprint seems to work well in agile

development programs. Moreover, I argue that the mechanism maps the activity

dependency (process dependency) well, because a Sprint is the main period for completing

tasks (activities) before other tasks can proceed.

Product Owner

In the project, the role Product Owner attended Sprint Planning meetings, project meetings,

Scrum of Scrum meetings and demo meetings. The Product Owner was related to one or

more DevOps teams, but was not a team member in practice, the Product Owner was

standing outside and presented team Earth. In the study by Bass (2015) the Product Owner

identified and prioritized customer requirement, and the Product Owner was formed into a

team. In the case study, Bass identified nine team functions for the Product Owner, in my

case six functions were found. My findings on the Product Owners functions compared

with Bass (2015) is shown in Table 19.

Table 19: The functions of the role Product Owner in my study and Bass (2015)

This study Bass (2015)

Prioritize tasks

Technical architect

Functional architect

Communicator

Translating business needs

Business seller

Groom

Prioritize tasks

Release master

Technical architect

Governor

Communicator

Traveler

Intermediary

Risk assessor

Both results show that the Product Owner also has the role as an architect. In my case as a

technical architect or a functional architect and prioritizing tasks. I would argue that the

role Product Owner is a defined role with given functions matched to the project type and

size and fit the process dependency. By mapping the Product Owner, the Product Owner

fit the description of the business process dependency (process dependency), by causing

activities in form of tasks in the project.

81

6.2.3 Resource Dependency

The aggregated category of resource dependencies accounts for 13 % of all dependencies

across the project. Agile practices in resource dependency that could be interesting to

compare with other findings in other case studies are the following: The roles team lead,

and test lead.

Team Lead/ Scrum Master

In my case study, the team lead also worked as a Scrum Master and was the head and

organizer of the developers. The team lead managed and organized internal meetings for

the team, such as daily stand-up meetings and Sprint Planning meetings. Other important

tasks for the team lead was to ensure that the product is represented in a good way before

putting it into production. Compared with findings from other studies by Bass (2014), T.

Dingsøyr et al. (2018) and my study, the role Scrum Master comprises activities as shown

in table 20.

Table 20: Functions for a Scrum Master in my study, Bass (2014) and T. Dingsøyr et al. (2018)

This study Bass (2014) T. Dingsøyr et al. (2018)

Stand-up facilitator

Sprint planner

Release facilitator

Developer

Resource responsible

Process anchor

Stand-up facilitator

Impediment remover

Sprint planner

A Scrum of Scrums facilitator

Integration anchor

Stand-up facilitator

Iteration planning

Demonstration facilitator

Retrospective facilitator

I would argue that the role Scrum Master fit the entity dependency (resource dependency)

because the Scrum Master is a resource in the form of a person. In my case, the Scrum

Master ensures that the teams were prepared with resources in the way of developers. This

resource, the developer, was an object that was required for the project progress.

Test Lead

In my case study, the test lead was responsible for thoroughly testing the solutions the teams

create to find bugs and ensuring that one software component interacted with another

software component. In the case study by Torgeir Dingsøyr et al. (2018), they found that

82

the test lead made sure that testing was conducted at team level by unit tests, integration

tests, system tests, and system integration tests.

Moreover, I would argue that the role test lead fit the technical dependency (resource

dependency) because the test lead is an object that is required for the project progress and

makes sure that one software component interacts with another software component by

integration tests and system integration tests.

6.2.4 What Dependencies occur in Large-Scale Agile Program

My case study provided evidence for eight types of dependencies, including expertise,

requirements, historical, task allocation, activity, business process, entity and technical

dependencies. For example, does the knowledge dependency involve knowing how to do

an activity or task (expertise), by the mechanism project manager. Knowing what to do

(requirement), for the mechanism product demo. Knowing who is doing what and when

(task allocation), by the mechanism Kanban board. Alternatively, knowing how or why

things were done in the past (historical), by the mechanism team lead meetings.

Moreover, by having identified dependencies, it is useful to understand which dependencies

that occurred most frequently in the program. By doing this, the most common dependency

should have an impact on large-scale agile program coordination. In my case study, the

most frequently occurred dependency was knowledge dependency, with 73 % coverage.

This coverage is an exciting finding because it indicates that addressing knowledge

dependencies should have an impact on large-scale agile program coordination.

By only addressing knowledge dependency and setting focus on the dependency with the

highest frequency, is an interesting statement. But what about the critical findings from the

process and resource dependencies, such as the mechanisms Sprint, Product Owner, Scrum

Master (team lead in my case) and test lead? These mentioned mechanisms are mapping

the process and resource dependencies. These two dependencies were mapped together

with 27 % overall coverage of agile practices. The role Scrum Master, for example, is an

essential mechanism in large-scale development projects and is mapped to the resource

dependency. By look at the comparing with my study, Bass (2014) and T. Dingsøyr et al.

(2018) about the functions associated with the Scrum Master, the results shows that the

Scrum Master has different but essential tasks in during projects. By this, there is necessary

83

not to forget mechanisms connected to other dependencies, such as process dependency

and resource dependency than just knowledge dependency in large-scale agile programs.

6.3 Providing Coordination in the Large-Scale

Agile

6.3.1 Implications for Practice

This section answering and discuss the second research question:

RQ2: What could be a recommended starter set for providing coordination in large-scale

agile development programs by using a dependency taxonomy?

I will discuss my study's 12 suggested agile practices that map a starter set for providing

coordination in large-scale agile development with findings from agile practices in co-

located projects by Strode (2016). The 12 suggested agile practices have identified that

address three or more dependencies (see Table 11), and these practices are potentially a

useful minimal set for coordinating a large-scale program. Table 21 gives an overview of

my suggested agile practices and suggested findings from co-located that could be a

recommended starter set for providing coordination:

Table 21: Agile practices from my study and co-located by Strode (2016)

Large-scale agile practices

(this study)

Agile practices in both

(this study and Strode

(2016))

Co-located agile practices

(Strode (2016))

Team lead

Test lead

Product Owner

Scrum of Scrum meetings

One on one meetings

Sprint Planning meetings

Team lead meetings

Communications tools

Scaling process

Informal ad hoc

conversations

Sprints

Wallboard

Cross-team talk

A co-located team

Iteration planning session

Story breakdown session

A done checklist

Working software at the end

of each sprint

A single priority team

A product backlog

User stories for managing

requirements

The dependencies in agile software development can help teams, team members and other

participants involved in development projects to choose valid coordinative practices

84

(Strode, 2016). Since agile practices map dependencies, it is essential to look at the agile

practices in use and implement these practices as coordination mechanisms. In large-scale,

I would argue that my suggested 12 agile practices are an excellent recommended starter

set for providing coordination. But there is one essential and central mechanism I think

missing both in large-scale and in co-located, the daily stand-up meeting. Stray et al. (2017)

invited professional developers of a programming forum for a survey and obtained 221

responses. They found that 87 % of those who practice agile methods in their projects used

daily stand-up meetings. They argued that the value of the meeting should be evaluated

according to the team needs.

My Suggested Agile Practices Divided in Scrum Types

It would be interesting to discuss my findings on the suggested agile practices that

providing coordination in a recommended starter set in the large-scale agile. Table 22 sows

my agile practices mapped to a Scrum type.

Table 22: My agile practices mapped to a Scrum type

Type Practices

Roles

Team lead

Test lead

Product Owner

Ceremonies

Scrum of Scrum meetings

One on one meetings

Sprint Planning meetings

Team lead meetings

Tools Communication tools

Incident Scaling process

Roles

When implementing the roles in the software industry, I recommend applying a team lead,

a test lead and a Product Owner in a large-scale project. In my case study, these roles had

a strong position in the project and were significantly involved at team-level. These roles

lead to a high value of coordination. Moreover, what about a project manager? I would

argue that the role project manager should be implemented such as a team lead and a

Product Owner. By using the dependency taxonomy by Strode (2016), the project manager

85

is not a recommended implemented role. However, still, in my case study, the project

managers lead to coordination because of their knowledge, historical background, and the

network was used.

Ceremonies

The four ceremonies in my case study worked well, and I will argue that the use of the

dependency taxonomy by Strode (2016) to find the suggested ceremonies. I recommend

implementing the meetings: Scrum of Scrum meeting, Sprint Planning meeting, and team

lead meeting. The mentioned meetings were meetings that effectively created coordination

in the large-scale agile program. Furthermore, I still recommend implementing the daily

stand-up meetings, although the dependency taxonomy mapped the mechanism two times

(see Table 11). The daily stand-up in this program created coordination and discussed tasks

and internal issues at team-level.

Tools

For implementing tools in the daily work, I recommend the use of Slack. This tool lets team

members communicate digitally, and it is possible to join channels. The channels let the

team members communicate effectively by messaging through proper channels divided

into roles, topics or teams.

Incident

Another interesting finding in my study is the mechanism scaling process. By following

the dependency taxonomy by Strode (2016), the scaling process mechanism was mapped

three times (see Table 11). By this mapping, it makes the mechanism to be one of the 12

mechanisms that providing well coordination in large-scale programs. Furthermore, in my

case, the scaling process lead to weakness. The earlier project manager for the DevOps

teams was sent off the program, and the project manager from team Earth took over her

position. This process reduced the number of project managers, and the program lost

valuable knowledge, and her network disappeared. For the software industry, the scaling

process mechanism should be read with some degree of skepticism.

86

6.4 Implications for Theory

Taxonomy by Strode (2016)

The dependency taxonomy by Strode (2016) was implemented to identify dependencies

and coordination mechanisms in the large-scale program. Further research in the case study

by Strode (2016) was to assess the applicability of the taxonomy in a context such as large-

scale agile. The taxonomy was used as a framework to identify coordination, and I want to

say that it seems to be successful. The taxonomy let the coordination mechanisms be

mapped in their best-matched strategy components and dependencies. By this, it is possible

to collect out the best used agile practices in a project and suggest the practices in similar

projects in the software industry.

Limitations

The results presented in the compared case studies are collected in several work units with

interviews and observations over a longer period, while my results are based on only one

case project based on a taxonomy used as a framework to map my findings during

observations. Therefore, the results should be read with some degree of skepticism. There

are other frameworks that could have been chosen to map the findings, such as the theory

proposed by Van De Ven et al. (1976).

Validation

Since the use of a theory increases the external validity, the taxonomy of dependencies and

coordination mechanisms proposed by Strode (2016) was used to getting an overview of

the field of dependencies and coordination mechanisms. On the data collection, I followed

the four strategies of data collection and fieldwork purposed by Patton (2002) since the

construct validity is concerned about the relation between the general investigated

phenomenon and the specific data. Furthermore, the conversations that I had with team

leads and team members, where they corrected me during the end of the observation period,

reduced the threat to construct validity. The conversations contributed a better

understanding of the program and created a match between the general phenomenon that

was investigated and the measurement. Moreover, the internal validity is not relevant as

my study is not trying to examine causal connections.

87

7 Conclusion and Future Work

In this master thesis, the goal was to investigate what dependencies and their related agile

practices that acted as coordination mechanisms to facilitate the large-scale agile

development. Then, what could be a recommended starter set for providing coordination in

the large-scale agile development program by using a dependency taxonomy. In order to

answer the research questions, I observed 40 meetings to get insight into the company ways

of working in a large-scale software project. The program involved seven autonomous

teams, five of the these were DevOps teams.

The case study explored agile practices that acted as coordination mechanisms. To map the

different coordination mechanisms, a dependency taxonomy was used. The dependency

taxonomy was useful for describing different dependencies and their associated agile

practices to achieve effective project coordination to tailoring the large-scale agile program.

The coordination mechanisms made collaboration between the teams in the program, by

implement Scrum of Scrum meetings, daily stand-up meetings, demo meetings, Sprint

Planning meetings, and introduce different roles, such as project managers, team leads,

Product Owners and DevOps developers. These mechanisms lead to fast Sprint periods,

frequent production setting, a common understanding of what is being created, and

autonomous decisions in the program.

Moreover, the case study mapped coordination mechanisms into their best-matched

coordination strategy components, and the mechanisms were multipurpose because they

addressed more than a single dependency. In addition, the case study found that knowledge

dependencies are predominant. Moreover, to benefit coordination in large-scale agile

development programs, I suggest that focusing on selecting agile practices that address the

types of knowledge dependency.

12 agile practices can address multiple project dependencies. This would be a good starter

set of practices for programs to achieve effective coordination and support collaboration.

The 12 agile practices are: Informal ad hoc conversations, wallboard, team lead, test lead,

Product Owner, Sprint, Scrum of Scrum meetings, one on one meetings, Sprint Planning

meetings, team lead meetings, communication tools and scaling process. Overall, these

suggested agile practices would lead to providing coordination in the large-scale agile

development and hopefully provide a smooth workflow in projects.

88

For future work, I recommend doing the same work as in this thesis with other datasets and

comparing the outcome. Further research could, therefore, be to use the dependency

taxonomy to discover more effective agile practices in large-scale agile development

programs to create better coordination in the software industry. Second, it is recommended

to look at the decision making in agile software development. Further research could,

therefore, be to look at how is it possible to create coordination through decisions.

89

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile Software Development

Methods: Review and Analysis. VTT Technical Research Centre of Finland, VTT Publications
478.

Ahmad, M. O., Markkula, J., & Oivo, M. (2013). Kanban in software development: A systematic
literature review. Paper presented at the 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications.

Anderson, D., Concas, G., Lunesu, M. I., & Marchesi, M. (2011). Studying Lean-Kanban Approach
Using Software Process Simulation. Agile Processes in Software Engineering and Extreme
Programming, 12-26.

Bang, S. K., Chung, S., Choh, Y., & Dupuis, M. (2013). A grounded theory analysis of modern web
applications: knowledge, skills, and abilities for DevOps. Paper presented at the
Proceedings of the 2nd annual conference on Research in information technology.

Bass, J., Beecham, S., Nic Canna, C., Noll, J., & Razzak, M. A. (2018). A Large Empirical Study of the
Product Owner Role in Scrum.

Bass, J. M. (2014). Scrum Master Activities: Process Tailoring in Large Enterprise Projects. Paper
presented at the 2014 IEEE 9th International Conference on Global Software Engineering.

Bass, J. M. (2015). How product owner teams scale agile methods to large distributed enterprises.
Empirical Software Engineering, 20(6), 1525-1557.

Beranek, G., Zuser, W., & Grechenig, T. (2005). Functional group roles in software engineering
teams. SIGSOFT Softw. Eng. Notes, 30(4), 1-7.

Cao, L., & Ramesh, B. (2007). Agile Software Development: Ad Hoc Practices or Sound Principles?
IT Professional, 9(2), 41-47.

Cohn, M. (2007). Advice on conducting the scrum-of-scrums meeting.
Cooper, R. G., & Sommer, A. F. (2018). Agile–Stage-Gate for Manufacturers. Research-Technology

Management, 61(2), 17-26.
Coyle, S., Conboy, K., & Action, T. (2015). An Exploration of the relationship between Contribution

Behaviours and the Decision Making Process in Agile Teams. International Conference on
Information Systems.

Crowston, K., & Osborn, C. S. (1998). A Coordination Theory Approach to Process Description and
Redesign. Management Sciences and Quantitative Methods, 1-60.

Denison, D. R., Hart, S. L., & Kahn, J. A. (1996). From Chimneys to Cross-Functional Teams:
Developing and Validating a Diagnostic Model. Academy of Management Journal, 39(4),
1005-1023.

Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What Is Large in Large-Scale? A Taxonomy of Scale
for Agile Software Development. Paper presented at the International Conference on
Product-Focused Software Process Improvement, Cham.

Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2018). Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation.
Empirical Software Engineering, 23(1), 490-520.

Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating Knowledge Work in Multi-Team
Programs: Findings from a Large-Scale Agile Development Program. Project Management
Journal.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9), 833-859.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and
extreme programming: The state of research. Journal of Database Management, 16(4),
88-100.

90

Evbota, F., Knauss, E., & Sandberg, A. (2016). Scaling up the Planning Game: Collaboration
Challenges in Large-Scale Agile Product Development, Cham.

Fink, L., & Neumann, S. (2007). Gaining Agility through IT Personnel Capabilities: The Mediating
Role of IT Infrastructure Capabilities. Journal of the Association for Information Systems,
8(8), 440-462.

Fitzgerald, B., & Stol, K.-J. (2014). Continuous software engineering and beyond: trends and
challenges. Paper presented at the Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, Hyderabad, India.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software, 123, 176-189.

Gerring, J. (2007). Case Study Research: Principles and Practices. New York: Cambridge University
Press.

Gregor, S. (2006). The Nature of Theory in Information Systems. MIS Quarterly, 30(3), 611-642.
Jain, R., & Suman, U. (2017). An Adaptive Agile Process Model for Global Software Development.

International Journal on Computer Science and Engineering, 9.
Janz, B. D., Wetherbe, J. C., Davis, G. B., & Noe, R. A. (1997). Reengineering the Systems

Development Process: The Link between Autonomous Teams and Business Process
Outcomes. Journal of Management Information Systems, 14(1), 41-68.

Jarzabkowski, P. A., Lê, J. K., & Feldman, M. S. (2012). Toward a Theory of Coordinating: Creating
Coordinating Mechanisms in Practice. Organization Science, 23(4), 907-927.

Johannessen, A., Tufte, P. A., & Christoffersen, L. (2010). Introduksjon til Samfunnsvitenskapelig
Metode (4 ed.): Abstrakt forlag AS.

Katzenbach, J. R., & Smith, D. K. (2005). The discipline of teams. Harvard Business Review, 83(7),
167.

Kirk, D., & MacDonell, S. G. (2015). Progress report on a proposed theory for software
development. 10th International Joint Conference on Software Technologies (ICSOFT), 1-
7.

Kornilova, I. (2017). DevOps is a culture, not a role! Retrieved from
https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0

Larman, C., & Vodde, B. (2010). Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Boston, MA, USA: Addison-
Wesley Professional.

Lee, S., & Yong, H.-S. (2009). Distributed agile: project management in a global environment.
Empirical Software Engineering, 15(2), 204-217.

Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H., Bosch, J., & Oivo, M. (2016).
Towards DevOps in the Embedded Systems Domain: Why is It So Hard? Paper presented
at the 2016 49th Hawaii International Conference on System Sciences (HICSS).

Malone, T. W. (1988). What is Coordination Theory? .
Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Comput.

Surv., 26(1), 87-119.
Marczak, S., & Damian, D. (2011). How interaction between roles shapes the communication

structure in requirements-driven collaboration. 2011 IEEE 19th International
Requirements Engineering Conference, 47-56.

Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco,
CA: Jossey-Bass.

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook:
Thousand Oaks: Sage.

Moe, N. B., Dingsøyr, T., & Dybå, T. (2010). A teamwork model for understanding an agile team: A
case study of a Scrum project. Information and Software Technology, 52(5), 480-491.

https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0

91

Moe, N. B., Holmström Olsson, H., & Dingsøyr, T. (2016). Trends in Large-Scale Agile Development:
A Summary of the 4th Workshop at XP2016. Paper presented at the Proceedings of the
Scientific Workshop Proceedings of XP2016, Edinburgh, Scotland, UK.

Munassar, N. M. A., & Govardhan, A. (2010). A Comparison Between Five Models Of Software
Engineering. International Journal of Computer Science Issues, 7(5), 94-101.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies.
Communications of the Association for Computing Machinery, 45(5), 72-78.

Nitto, E. D., Jamshidi, P., Guerriero, M., Spais, I., & Tamburri, D. A. (2016). A software architecture
framework for quality-aware DevOps. Paper presented at the Proceedings of the 2nd
International Workshop on Quality-Aware DevOps.

Nyrud, H., & Stray, V. (2017). Inter-team coordination mechanisms in large-scale agile. Paper
presented at the Proceedings of the XP2017 Scientific Workshops, Cologne, Germany.

Ohno, T. (1988). The Toyota production system; beyond large-scale production: New York:
Productivity Press.

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2009). Using Scrum in Distributed Agile
Development: A Multiple Case Study. Paper presented at the 2009 Fourth IEEE
International Conference on Global Software Engineering.

Paasivaara, M., Lassenius, C., & Heikkilä, V. T. (2012). Inter-team coordination in large-scale
globally distributed scrum: do scrum-of-scrums really work? Proceedings of the 2012
ACM-IEEE international symposium on Empirical software engineering and measurement,
19(20), 235-238.

Parker, G. M. (2003). Cross- Functional Teams: Working with Allies, Enemies, and Other Strangers,
Edition 2. San Francisco: Jossey-Bass.

Patanakul, P., Chen, J., & Lynn, G. S. (2012). Autonomous Teams and New Product Development.
Journal of Product Development & Management Association, 29(5), 734-750.

Patton, M. Q. (1990). Qualitative Evaluation and Research Methods (2 ed.). Beverly Hills, CA: SAGE
Publications.

Patton, M. Q. (2002). Qualitative Research & Evaluation Methods (3 ed.). California: SAGE
Publications.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity model, version
1.1. IEEE Software, 10(4), 18-27.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile
practices on communication in software development. Empirical Software Engineering,
13(3), 303-337.

Platt, J. (1992). “Case Study” in American Methodological Thought. SAGE Social Science
Collections, 40(1).

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit.
Crawfordsville, Indiana, US: Addison-Wesley.

Pries-Heje, L., & Pries-Heje, J. (2011). Why Scrum Works: A Case Study from an Agile Distributed
Project in Denmark and India. Paper presented at the 2011 Agile Conference.

Raman, S. (1998). Lean software development: is it feasible? Paper presented at the 17th DASC.
AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267).

Rolland, K. H., Mikkelsen, V., & Næss, A. (2016). Tailoring Agile in the Large: Experience and
Reflections from a Large-Scale Agile Software Development Project, Cham.

Schmidt, C. (2016). Agile Software Development Teams. München, Germany: Springer
International Publishing Switzerland.

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum (1st). NJ, USA: Prentice
Hall PTR Upper Saddle River.

Schwaber, K., & Sutherland, J. (2013). The Scrum Guide. Retrieved from
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

Spradley, J. P. (1980). Participant Observation (1 ed.). Austin, TX: Holt, Rinehart and Winston.

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

92

Stray, V., Moe, N. B., & Aurum, A. (2012). Investigating Daily Team Meetings in Agile Software
Projects. Paper presented at the 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications.

Stray, V., Moe, N. B., & Bergersen, G. R. (2017). Are Daily Stand-up Meetings Valuable? A Survey
of Developers in Software Teams. Paper presented at the International Conference on
Agile Software Development, Cham.

Stray, V., Sjøberg, D. I. K., & Dybå, T. (2016). The daily stand-up meeting: A grounded theory study.
Journal of Systems and Software, 114, 101-124.

Strode, D. E. (2012). A Theory of Coordination in Agile Software Development Projects. (Doctor of
Philosophy), Victoria University of Wellington,

Strode, D. E. (2016). A dependency taxonomy for agile software development projects.
Information Systems Frontiers, 18(1), 23-46.

Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software
development projects. Journal of Systems and Software, 85(6), 1222-1238.

Sutherland, J., & Schwaber, K. (2007). The Scrum Papers: Nuts, Bolts, and Origins of an Agile
Process. Co-Creators of Scrum.

Van De Ven, A. H., Delbecq, A. L., & Koenig, R. (1976). Determinants of Coordination Modes within
Organizations. American Sociological Review, 41(2), 322-338.

Wiedemann, A. (2018). IT Governance Mechanisms for DevOps Teams – How Incumbent
Companies Achieve Competitive Advantages. Proceedings of the 51st Hawaii International
Conference on System Sciences, 4931-4940.

Wohlin, C., Šmite, D., & Moe, N. B. (2015). A general theory of software engineering: Balancing
human, social and organizational capitals. Journal of Systems and Software,
109(Supplement C), 229-242.

Yin, R. K. (2002). Case study research: Design and methods. California: SAGE Publications

93

Appendix

Attachment A: Observation Protocol

Topic Questions

Space
What is the layout of the physical room?

How are the actors positioned?

Participants
What are the names and relevant details of the people involved?

Is someone acting as a leader or facilitator?

Activities What are the various activities and discussions?

Objects Which physical elements are used?

Acts
Are there any specific individual actions?

What are the ways in which all actors interact and behave toward each other?

Events Are there any particular occasions or anything unexpected?

Time

When does the meeting start?

What is the sequence of events?

When does the meeting end?

Goals What are the actors attempting to accomplish?

Feelings
What are the emotions in the particular contexts?

How is the atmosphere?

Closing
How is the meeting ended?

Is there a post meeting?

(Spradley, 1980; Stray et al., 2016)

94

Attachment B: Coding Scheme for Daily Stand-up

No Category Explanation Examples

C1 The three

Scrum

questions

What have I done since the last

meeting?

What will be done before the next

meeting?

What obstacles are in the way?

Informing other members about

the tasks the individual is working

on.

C2 Problem

focused

communication

The major questions and

problems that need to be

addressed, including the

elaboration of the issue and

discussions of possible solutions

to the problems.

Discussing questions such as

“How can we implement that

feature? How do we integrate the

components? What is the best

solution to the identified

problem?”

C3 Clarification Explanations that make an earlier

event, situation, or statement

clear.

Questions that someone asked to

better understand an issue.

C4 Criterion The reasons or arguments that

evaluate an alternative solution or

proposal.

Arguments for a solution,

customer requirements, and

technical possibilities.

C5 Coordination

of tasks

Delegation of tasks and

assignment of responsibilities.

Discussing who should be

involved in solving a task.

C6 Meeting

management

Statements related to the

orchestration of the meeting

activity.

Indicating that members hold off

on discussions, asking someone to

speak, and summing up the

meeting.

C7 Project

management

Statements concerning activities

not directly related to the content

of the meeting.

Discussing the reporting of

resources and hours and providing

information about other meetings.

C8 Digression Discussions of side topics or

interruptions related to things

outside the content of the

meeting.

Telling a joke, interrupting

because of technical problems

with phone conference equipment,

and other distractions

(Stray et al., 2012)

