
Oslo, 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

  

Towards 5G Mobile Networks with 
OpenAirInterface5G Virtualization 

Master's thesis 
 
Bruno Dzogovic 

01.05.2018 



2 
 

Towards 5G mobile networks with 
OpenAirInterface5G virtualization 

 

 

 
 

 

University of Oslo, Mathematics and Natural Sciences - 
Department of Informatics  

Programme: Network and System Administration  
 

 
 

 

 

 

 

 

Bruno Dzogovic, M.Sc.      Mentor: Prof. Dr. Thanh van Do 
Head Cloud Network Engineer,      Telenor Group, Telenor Research 
5G Networks Research Assistant    Oslo Metropolitan University 
Oslo Metropolitan University     Oslo, Norway 
Oslo, Norway       thanh-van.do@telenor.com 
+47 465 61 964 
bruno.dzogovic@hioa.no 
bruno.dzogovic@gmail.com 



3 
 

TABLE OF CONTENTS 
1. Introduction ................................................................................................................................... 6 

1.1. Motivation ................................................................................................................................. 6 

1.1. Problem statement ..................................................................................................................... 7 

1.1. Methodology ............................................................................................................................. 8 

1.2. Organization of the thesis ......................................................................................................... 8 

2. Background ................................................................................................................................. 10 

2.1. 4G LTE (Long-term evolution) ............................................................................................... 10 

2.1.1. Architecture and components of LTE ............................................................................. 13 

A. Protocol architecture in LTE ........................................................................................... 15 

B. Interfaces ......................................................................................................................... 19 

C. Quality of Service (QoS) and EPS bearers ..................................................................... 22 

2.1.2. The E-UTRAN radio network ......................................................................................... 24 

A. Transport network ........................................................................................................... 25 

B. Physical, transport and logical channels ......................................................................... 25 

2.1.3. Diversity processing ........................................................................................................ 36 

2.1.4. Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency 
Division Multiple Access (OFDMA) for the downlink channel in LTE ............................................ 37 

A. Measurements based on constellations and Error Vector Magnitude (EVM) metrics .... 45 

2.1.5. Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink channel ... 55 

2.1.6. Multiple-antenna techniques ........................................................................................... 56 

A. Smart antennas ................................................................................................................ 57 

B. Adaptive Beamforming ................................................................................................... 58 

C. Antenna Diversity (Spatial Diversity) ............................................................................. 59 

D. Spatial multiplexing (SMX) ............................................................................................ 60 

E. Space-Division Multiple Access (SDMA) ...................................................................... 60 

F. MIMO (Multiple-Input Multiple-Output) ....................................................................... 61 

G. Multi-beam antennas for 5G radio .................................................................................. 63 

H. Evolution of the antenna systems .................................................................................... 63 

2.1.7. Security architecture of 4G LTE ..................................................................................... 64 

A. Authentication and key agreement protocol (AKA) ....................................................... 65 

B. DIAMETER protocol in LTE ......................................................................................... 67 

C. Protection of Signaling and User data ............................................................................. 70 

D. EPS cryptographic algorithms ........................................................................................ 70 

2.2. LTE-Advanced and LTE-Advanced Pro as a step before 5G ................................................. 72 



4 
 

2.3. Virtualization and cloud computing ........................................................................................ 73 

2.3.1. OpenStack cloud platform .............................................................................................. 74 

2.4. Multi-platform containers and their role in service deployment and software-defined 
networking .............................................................................................................................................. 76 

2.4.1. Docker ............................................................................................................................. 76 

A. Docker-Compose ............................................................................................................ 77 

B. Docker Cloud .................................................................................................................. 78 

C. Docker Hub ..................................................................................................................... 78 

D. Docker networking .......................................................................................................... 78 

E. Docker storage ................................................................................................................ 79 

2.4.2. Etcd ................................................................................................................................. 79 

A. Layer-4 Etcd gateway ..................................................................................................... 79 

B. Role-based access control (RBAC) ................................................................................. 80 

2.4.3. Kubernetes ...................................................................................................................... 80 

A. Master components: ........................................................................................................ 81 

B. Node Server Components: .............................................................................................. 83 

C. Kubernetes Work Units: .................................................................................................. 84 

D. Controller units: .............................................................................................................. 84 

E. Namespaces: ................................................................................................................... 85 

2.4.4. Orchestration of Docker containers with Kubernetes ..................................................... 86 

2.4.5. Security of application containers, secret storage and managing secrets ........................ 86 

2.4.6. Automation with Puppet and Terraform (Infrastructure-as-a-Code) .............................. 88 

2.5. The role of NFV and SDN in the evolution towards 5G ......................................................... 88 

2.5.1. Mobility meets virtualization .......................................................................................... 89 

2.5.2. SDN and NFV solutions, network overlay and underlay ................................................ 91 

A. Calico .............................................................................................................................. 91 

B. Open vSwitch (OvS) ....................................................................................................... 94 

2.6. Hardware for establishing a base station (software-defined radio) ......................................... 95 

2.6.1. USRP N200 – Network series ......................................................................................... 96 

2.6.2. USRP B200/B210 – Bus series ....................................................................................... 96 

3. Description of Open Air Interface .............................................................................................. 98 

3.1. OpenAirInterface5G as EURECOM project and its aims ....................................................... 98 

3.2. Architecture of OpenAirInterface5G ...................................................................................... 99 

3.2.1. Built-in emulation platform .......................................................................................... 101 

3.3. OpenAirInterface5G as an open-source solution is a driver towards 5G .............................. 101 

4. Description of the establishment of the mobile network .......................................................... 103 



5 
 

4.1. Containerizing the infrastructure modules in Docker containers .......................................... 105 

4.1.1. Containerizing the EPC elements for the network core (HSS, MME, S/PGW) ........... 106 

4.1.2. Containerizing the eNB base-station and regulating the wireless radio propagation 
parameters 108 

4.2. Connecting the eNB with the EPC through container network ............................................ 113 

5. Security and authentication of the mobile network ................................................................... 117 

5.1. Building USIM cards with MILENAGE encryption for authentication ............................... 117 

5.1.1. Programming a USIM card for the OpenAirInterface5G network ............................... 118 

5.2. Tunneling SCTP protocol into L2TP/VPN and advanced security control .......................... 118 

6. Evaluation ................................................................................................................................. 120 

6.1. Testing the Access Stratum (AS) and the Non-Access Stratum (NAS) ................................ 120 

6.2. EURECOM MIMO OpenAir Sounder (EMOS) for testing MIMO propagation ................. 125 

6.3. ITTI analyzer ........................................................................................................................ 126 

7. Virtualization and deployment in Cloud ................................................................................... 127 

7.1. Deploying OpenAirInterface5G EPC core in OpenStack using Heat templates ................... 127 

7.2. Using Kubernetes for orchestration of the container resources remotely in the cloud ......... 128 

8. Discussion ................................................................................................................................. 131 

9. Conclusion ................................................................................................................................ 133 

9.1. Future work ........................................................................................................................... 133 

References ........................................................................................................................................... 135 

Appendix ............................................................................................................................................. 144 

 

  



6 
 

1. INTRODUCTION 
Mobile communications encompass most of modern-day life, including professional, personal and even 

enterprise applications. In order to enable adequate connectivity and optimized user experience, the telecom 
operators or communication service providers as they call themselves nowadays, are constantly introducing 
new and emerging technologies which fit to the different environments. Indeed, different technologies and 
different configuration are applied in order to achieve satisfactory level of quality of service.  

1.1.  Motivation 
The main objectives of a sound mobile infrastructure are not only to provide appropriate quality of 

service for good user experience, and to offer high service availability to the user but also to ensure 
economic affordability. The latter objective is in direct conflict with the two first ones and quite often 
mobile operators would have to find a good balance between them. This is unfortunately not a trivial task 
since the number of users and the demand of bit rates are changing dynamically depending on the situation 
such as the required bit rate at a football station during a soccer game could be hundred times more than at 
regular daily situation. A static over dimensioning of resources in this case will lead to higher costs and 
consequently higher subscription for the users while a static configuration based on normal traffic will result 
to loss of service for a certain number of users in peak traffic situation. Consequently, a much more flexible 
network solution with dynamic resource allocation is urgently needed (UDDENFELDT, Jan, 2017). 

Furthermore, with the advent of the Internet of Things the mission of the mobile infrastructure will be 
no longer to be confined to serving human-to-human communication but also to serving device-to-device 
or machine-to-machine communication. This constitutes a considerable challenge due the number of 
devices and also to their heterogeneous demands in terms of bit rate, latency, packet frequency, mobility, 
etc. which current 4G mobile technologies are not capable of dealing with. Again, the demand for new 
technologies supporting heterogeneous traffic demands is getting urgent. 

To meet the urging needs mentioned above, activities on 5G specifications have been started and the 
concept of network slicing has been proposed.  

According to 3GPP specification TS 23.501 V1.3.0 (3GPP, 2017) 

“A Network Slice is defined as a logical network that provides specific network capabilities and network 
characteristics”. 

“Network slices may differ for supported features and network functions optimizations. The operator 
may deploy multiple Network Slice instances delivering exactly the same features but for different groups 
of UEs, e.g. as they deliver a different committed service and/or because they may be dedicated to a 
customer”. 

“A single UE can simultaneously be served by one or more Network Slice instances via a 5G-AN. A 
single UE may be served by at most eight Network Slices at a time. The AMF instance serving the UE 
logically belongs to each of the Network Slice instances serving the UE, i.e. this AMF instance is common 
to the Network Slice instances serving a UE”. 

The 5GPPP in the white paper “View on 5G Architecture” (5GPPP, 2016) has a more business oriented 
of 5G and network slicing as follows: 

“In responding to the requirements of these services and application, the 5G system aims to provide a 
flexible platform to enable new business cases and models to integrate vertical industries, such as, 
automotive, manufacturing, and entertainment. On this basis, network slicing emerges as a promising 
future-proof framework to adhere by the technological and business needs of different industries”. 



7 
 

“The vision of network slicing will therefore satisfy the demand of vertical sectors that request dedicated 
telecommunication services by providing “customer-facing” on-demand network slice requirement 
descriptions to operators”. 

At first glance the two mentioned definitions seem to complement each other but a thorough review 
reveals conflicting requirements. Indeed, mobile operators are aiming at providing different network slices 
with different network functions optimizations and features which fit the demands of a vertical sectors such 
as automotive, manufacturing, and entertainment. However, the realization of this objective relies on the 
assumption that a vertical sector uses only one type of devices and a network slice with specific network 
functions and features can meet their requirements. This is unfortunately not always the case. For example, 
in health care, there is a need of all three types of devices as follows: 

- eMBB (Enhanced Mobile Broadband) devices that have high requirements for bandwidth, such as 
high definition (HD) videos, virtual reality (VR), and augmented reality (AR).  

- uRLLC (Ultra-reliable and Low-latency Communications) devices that requires high reliability and 
low latency.  

- mMTC (Massive Machine Type) that have high requirements for connection density, such as smart 
city and smart agriculture. 

It is hence uncertain whether three types of network slices are required for Health Care vertical or a 
unique network slice capable of accommodating all the three types of devices is the best solution. One 
major objective of this Master thesis work is to contribute to the clarification of the concept of network 
slice via introducing the concepts of softwareization and virtualization of the network function (vNF) of 
the mobile network infrastructure. With virtualization, the mobile setups should offer high potential for 
scalability, immutability, ease of operation and deployment simplification while paving the way towards 
the next generation 5G networks. In the end, the main principles upon which the future generation networks 
will be based on, are the software-defined networking (SDN) and virtualization of the network function 
(vNF) – key values for empowering the utilization of the network slicing concept.  

1.1. Problem statement 
To experiment, test and verify the network slice concept, it is necessary to have a 5G mobile network 

which is open for configuration and management such that network slices can be configured and instantiated 
dynamically. The most straightforward solution is to approach a commercial mobile equipment 
manufacturer such as Ericsson, Nokia, Huawei, etc. This option is challenging because it is not simple for 
a university to establish a deal with a commercial player, at the same time as a commercial solution may 
not be sufficiently open to carry our experiments. Another solution is therefore required.  

It is hence decided to attempt building a distinct 5G mobile network. Indeed, if the objective is to test 
and verify the network slice concept and not the advanced radio access technologies, it is sufficient to build 
an early and primitive version of 5G mobile network consisting of only virtual Network Functions (vNF) 
connected together by SDN courses. Although quite exciting, this alternative solution is relatively 
precarious and may prove entirely unachievable.  

The main problem addressed by the Master thesis is to demonstrate that it is possible to build an earlier 
version of 5G mobile network comprising of simply virtual Network Functions (vNF) connected together 
by SDN lanes by using an open source 4G/LTE mobile software. 

To address the main problem, the following subproblems shall be considered: 

Subproblem 1: Uncertainties about the quality and maturity of open source 4G/LTE software: 
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 There are currently a few open-source 4G/LTE software, namely OpenAirInterface5G and 
OpenLTE 

 However, it is quite uncertain that they are able to function properly and form an operational 4G 
LTE network. 

 It is hence necessary to verify that there exists a reliable and operational open source 4G/LTE 
software. 

Subproblem 2: Difficulties in the virtualization of the open 4G/LTE software: 

 Even if the open source 4G/LTE is functioning properly on commercial off-the-shelf (COTS) 
it may not work at all when being executed in virtual environments. 

 It is hereafter necessary to verify that the open source 4G/LTE software can be virtualized 
properly. 

Subproblem 3: Challenges in the cloudification aspect of the open 4G/LTE software: 

 Even if the open source 4G/LTE could be virtualized, it is still unsure that its cloudification 
can function properly due to introduced overheads, propagation delays as well as unpredictable 
factors. 

 It is henceforth necessary to experiment and verify that the open source 4G/LTE software can 
be cloudified.   

1.1. Methodology 
To solve the problem stated in the previous section the methodology adopted in this Master thesis work 

is a qualitative one, aiming to provide solutions to the subproblems consisting of the following research 
components: 

 Verification of the quality and maturity of the open source 4G/LTE software. 

 Verification of the virtualization of the open source 4G/LTE software. 

 Verification of the cloudification of the open source 4G/LTE software. 

For each research component an experimental research method is adopted and it consists of the 
following steps:  

 Defining the objectives of the experiment 

 Identifying the research Problem 

 Conducting the Experiment 

 Analysis and Conclusions 

1.2. Organization of the thesis 
The Master thesis is organized as follows: 

 Chapter 1: Introduction gives an overview of the development in the mobile network 
technologies and an explanation of the motivation of the thesis work. The problem statement 
and the used methodology are also described thoroughly. 

 Chapter 2: Background summarizes all the background knowledge and information that are 
necessary to read and understand this thesis. 

 Chapter 3: Description of OpenAirInterface5G provides a thorough description of the 
OpenAirInterface5G, the open source 4G/LTE software used in this Master thesis work. 

 Chapter 4: Description of the establishment of the mobile network 

 Chapter 5: Security and authentication of the mobile network 
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 Chapter 6: Evaluation 

 Chapter 7: Virtualization and Deployment in Cloud  

 Chapter 8: Discussion 

 Chapter 9: Conclusion 
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2. BACKGROUND 
In this chapter, the crucial particularities that elucidate the essential traits of the next-generation mobile 

networks will be presented. In other words, the 4G LTE existing technology is the prime bridge to the 
evolution towards 5G networks. As it will later be explained in the further chapters, the softwareization and 
virtualization of the 4G LTE hardware is the main aspect, which will enable the next-generation networks 
to accommodate larger number of expected devices that indeed includes the IoT, sensor, M2M (Machine-
to-Machine) communication devices as well as the existing and emerging mobile technologies. Through 
concepts of network slicing, containerization, service replication, network function virtualization and 
cloudification, the next-generation networks will provide extensive functionality and robustness of 
connectivity over longer period of time. However, in order to comprehend the implementation of the open-
source solutions that underlie the development of 5G networks, the rudiments of the prevailing 4G LTE 
technology need to be explicated thus. Principally, the most essential elements to fathom are the LTE 
constituents, such as i.e. the access channels whose tedious tweaking is of utmost significance to render the 
production network operational and stable. The understanding of the LTE architecture is indispensable, and 
therefore, in the following chapter it is explained in detail, together with access techniques, antenna 
technologies, routing algorithms and security characteristics of the 4th Generation networks. 

Furthermore, the chapter encompasses a description of all necessities required for achieving 
cloudification, virtualization and automation of the mobile network and its deployment. The fundamental 
open-source solutions are thus being introduced, that include cutting-edge technologies such as: Docker 
container technology, Kubernetes orchestration of containers, OpenStack cloud platform, as well as 
software-defined networking solutions as: Calico and Open vSwitch, which in conjunction with Docker 
and Linux networking shall provide Network Function Virtualization. The chapter is consequently closed 
with the description of the hardware used for the experiments, specifically the software-defined radio 
platform that defines the access stratum of the mobile network.   

2.1.  4G LTE (Long-term evolution) 
LTE, Long Term Evolution, the successor to UMTS and HSPA is the latest way of deployment of high 

speed cellular services. In its first forms it was a 3G or also referred as a 3.99G technology, but with 
supplementary accompaniments the technology satisfied the requirements for a 4G standard. In this form it 
was referred to as LTE-Advanced. There has been a rapid increase in the use of data carried by cellular 
services, and this increase will only become larger in what has been termed the "data explosion". To 
accommodate for this and the augmented demands for bigger data communication speeds and lesser latency, 
additional expansion of the cellular technology is essential. The UMTS cellular technology advancement 
has been labelled LTE - Long Term Evolution. The idea is that 4G LTE enables much higher speeds to be 
achieved along with much lower packet latency (a rising demand for many services nowadays), and that 
3GPP LTE enables cellular communications services to move forward to meet the needs for cellular 
technology in the future. The use of LTE also provided the data capabilities that were required before the 
full launch of the 4G standard known as LTE-Advanced. To better understand the progression of the mobile 
technologies, the 3GPP (3rd Generation Partnership Project) introduces different releases. The releases start 
from Phase 1, which refers to the initial phase GSM deployment in 1987. The latest 3GPP Release 16, also 
known as “5G phase 2” (3GPP, 2017), is started on 22nd of March 2017 and is still in development in the 
time of writing of this thesis. Each release is a step further on in the evolution of the mobile technology. 
Purposefully, the Release 15 and 16 represent phase 1 and 2, consequently, where the initial proposals for 
the deployment of 5G infrastructure are discussed. The fifth generation of mobile networks, factually, 
represents an evolved LTE network. As with the preceding technologies, the 5G model exploits the existing 
traits of the LTE in a new manner, which should gracefully improve the performance and usability of the 
network. Analogously, there are minor and major changes on different architecture layers, especially the 
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access stratum and the eNB (evolved NodeB), which are represented through adaptive measures and 
simplify the infrastructure further (3GPP, 2017).  

Although there are major step changes between LTE and its 3G predecessors, it is nevertheless looked 
upon as an evolution of the UMTS / 3GPP 3G standards. Consequently, it uses a different form of radio 
interface, using OFDMA / SC-FDMA instead of CDMA access techniques, there are many similarities with 
the earlier forms of 3G architecture and there is scope for much re-use. In deciding what is LTE and how 
does it differ from other cellular systems, a preview at the specifications for the system can provide the 
desirable answers. LTE enables further evolution of functionality, increased speeds, and general improved 
performance, as observed in Table 1 (SAUTER, Martin, 2014).  

Table 1. Comparison of LTE features with the earlier standards 

  WCDMA  
(UMTS) 

HSPA/  
HSDPA/  
HSPUPA 

HSPA+ LTE 

Max downlink speed (bps) 14 M 28 M 100M 14 M 

Max uplink speed (bps) 128K 5.7 M 11 M 50 M 
Latency round trip time (ms) 150 ms 100 ms 50ms (max) ~10 ms 

3GPP releases Rel 99 / 4 Rel 5 / 6 Rel 7 Rel 8 

Year of initial roll out 
2003 / 4 

2005 / 6 HSDPA  
2007 / 8 HSUPA 

2008 / 9 2009 / 10 

Access type CDMA CDMA CDMA OFDMA / SC - CDMA 

 

Additionally, LTE is an all IP-based network, supporting both IPv4 and IPv6. Originally there was also 
no basic delivery for voice application. Although Voice over LTE (VoLTE) was complemented, GSMA is 
decided to be the standard for this purpose. Also, as a temporary solution, techniques including circuit 
switched fallback (CSFB) are used. LTE has introduced several new technologies in comparison to the 
aforementioned cellular systems. They allow LTE to function more cost-effectively relating to the spectrum 
utilization, and also to provide the much higher data rates that are being demanded (SAUTER, Martin, 
2014): 

 OFDM (Orthogonal Frequency Division Multiplex):   OFDM technology has been introduced 
into LTE because it empowers high data rates to be conducted efficiently while still providing a 
high degree of pliability to reflections and interference. The access schemes differ between the 
uplink and downlink: OFDMA (Orthogonal Frequency Division Multiple Access is used in the 
downlink; while SC-FDMA (Single Carrier - Frequency Division Multiple Access) is used in the 
uplink. SC-FDMA is used in view of the fact that its peak to average power ratio is small and the 
more constant power enables high RF power amplifier efficiency in the mobile handsets - an 
important factor for battery power equipment.   

 MIMO (Multiple Input Multiple Output):   One of the main problems that previous 
telecommunications systems have encountered is that of multiple signals arising from the many 
reflections that are encountered. By using MIMO, these additional signal paths can be used to 
advantage and are able to be used to increase the throughput.  

When using MIMO, it is necessary to use multiple antennas to enable the different paths to be 
distinguished. Accordingly, schemes using 2 x 2, 4 x 2, or 4 x 4 antenna matrices can be used. 
While it is relatively easy to add further antennas to a base station, the same is not true of mobile 
handsets, where the dimensions of the user equipment limit the number of antennas which should 
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be place at least a half wavelength apart. These properties are discussed in a greater detail in the 
further chapters.    

 SAE (System Architecture Evolution):   With the very high data rate and low latency requirements 
for 3G LTE, it is necessary to evolve the system architecture to enable the improved performance 
to be achieved. One change is that a number of the functions previously handled by the core network 
have been transferred out to the periphery. This provides a much "flatter" form of network 
architecture. In this way latency times can be reduced, and data can be routed more directly to its 
destination.   

The speed in LTE is increased by the upsurge of narrowband carriers without changing the parameters 
of the actual narrowband channels. Few bandwidths are dedicated for the LTE standard: from 1.25 MHz 
up to 20 MHz. In order to accommodate the needs of the subscribers, the UE (User Equipment) vendors 
should produce devices that support those bandwidths. The usage of the particular bandwidth depends on 
the band utilized (for example band 3, from 1710-1785 MHz for uplink channel and 1805-1880 MHz for 
the downlink channel, according to the European standards). For example, with adequate signal conditions 
in a 20-MHz carrier, data speeds beyond 100 Mbit/s can be achieved. To separate the uplink and downlink 
channels, LTE uses FDD (Frequency Division Duplexing) in most European countries. Some countries 
have adopted the TDD (Time Division Duplexing), due to the conditions and therefore, the air interfaces 
of both versions differ significantly. Accordingly, the usage of some LTE devices can be restricted between 
these areas due to these differences. To address this drawback, the vendors are issuing devices with an air 
interface that can support the both operational modes, with exclusion of some UE that support either FDD 
or TDD-capable transmissions. However, the devices must be capable of backwards-compatibility, which 
means they have to be capable for supporting GSM, GPRS, EDGE and UMTS as well. In the core network 
of LTE, the interfaces and protocols are established to support sessions and routing of various traffic type 
and amalgamated movement between the technologies, when the user is roaming between areas served by 
different air interfaces. Since the LTE is completely IP-based, that trait can be regarded as a major change 
with regard the previous standards. The 3G UMTS network core is based on traditional circuit-switched 
packet core for voice, SMS and other services, inherited from GSM. Unlike that, the core network of LTE 
is completely IP-based, which significantly simplifies the design and reduces the costs for implementation. 
Analogously, that represents an easier way for management, maintenance and organization of the network 
infrastructure (SAUTER, Martin, 2014).  

The Long-Term Evolution defines particular bands of operation on different continents, which is decided 
by the World Radio Conference (WRC). Table 2 represents the European bands on which LTE operates.  

Table 2. European LTE frequencies (ETSI, 2017) 

Band 
Duplex 
mode 

f 
(MHz) 

Uplink 
(MHz) 

Downlink 
(MHZ) 

Duplex 
spacing 
(MHz) 

Channel 
bandwidths (MHz) 

1 FDD 2100 1920 – 1980 2110 – 2170 190 5, 10, 15, 20 

3 FDD 1800 1710 – 1785 1805 – 1880 95 1.4, 3, 5, 10, 15, 20 

7 FDD 2600 2500 – 2570 2620 – 2690 120 5, 10, 15, 20 

8 FDD 900 880-915 2110-2170 400 5, 10, 15, 20 

20 FDD 800 832 – 862 791 – 821 −41 5, 10, 15, 20 

28 FDD 700 703-748 758-803 55 3, 5, 10, 15, 20 

32 FDD 1500 N/A 1452-1496 N/A 5, 10, 15, 20 

38 TDD 2600 2570 – 2620 N/A  5, 10, 15, 20 
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Another key concept and issue in LTE is the latency, which ranges from 50 – 100ms delay for the 
control-plane (the network core), and approximately 5ms delay for the user-plane. However, in practice 
even though LTE has low air interface delays, measurements reveal that core network delays compromise 
the overall round-trip time design requirement. LTE's break-before-make handover implementation causes 
a data interruption at each handover of 40ms at the median level (LAURIDSEN, Mads et al., 2017, pp.156 
- 162). The overall delay in 4G LTE networks is the main entity that needs to be addressed in order to 
establish the evolution towards 5G. For that purpose, the 3GPP has introduced improvements at the physical 
and MAC layer in Release 14 and 15 (C. S. ARENAS, John et al., 2017).  

2.1.1. Architecture and components of LTE 
The LTE network architecture resembles the 3G UTRAN network, thereby the term E-UTRAN 

(Evolved Universal Terrestrial Radio Access Network). As portrayed in the Figure 1, the components of 
the E-UTRAN network are connected to the evolved packet core (EPC). The constituents of the EPC are 
routing the traffic from the physical E-UTRAN plane to the Internet, where each of them has a special 
dedicated role. Principally, the architecture of the 4G LTE Evolved Packet Core is very similar to the 3G 
UMTS and 2G GSM, with the difference that it is simplified and separated into radio network part and core 
network part (COX, C., 2014). The LTE network is divided in two layers of abstraction: Access stratum 
(AS) (3GPP, 2017) and Non-Access stratum (NAS) (3GPP, 2015). As the names indicate, the Access stratum 
enables the UEs to establish a successful connection through the radio equipment, which is also called radio 
access network. On the other side, the Non-Access stratum is the abstraction layer that defines the 
communication between the UE and the core network in a transparent manner. Examples of NAS messages 
are Update or Attach messages, Authentication messages, Service requests etc. (ALI-YAHIYA, Tara, 
2011).  

 

Figure 1. Components of the Evolved Packet Core 

The first component is the Home Subscriber Server (HSS), which is in fact a MySQL database 
containing the users. Accessing the database is regulated with the DIAMETER protocol (FAJARDO, V. et 
al., 2012), which provides Authentication, Authorization and Accounting (AAA). The S6a is the 
DIAMETER IP interface through which the MME communicates with the HSS database. The HSS has all 
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the user parameters required for successful authentication of the UE (User Equipment), i.e. mobile phone, 
with the EPC. The most important parameters are (COX, C., 2014):  

 The International Mobile Subscriber Identity (IMSI), which is a unique identifier of a subscriber. 
The IMSI has the Mobile Country Code (MCC) and Mobile Network Code (MNC), which 
identifies the user when roaming abroad in order to locate the home network and contact the HSS. 
The IMSI code is embedded into the SIM card.  

 Authentication information for generating encryption keys each session 

 Circuit-switched service features as the Mobile Subscriber Integrated Service Digital Network 
(MSISDN or known as a telephone number). This service allows the subscriber to utilize the GSM 
and UMTS networks for voice calls, instead of using IP-based LTE.  

 Packet-switched service features as the Access Point Names (APNs). This refers to the PDN 
(Packet Data Network) that the subscribers are going to use in order to access the IP network 
through the Packet Gateway (P-GW). 

 IMS-specific information  

 The ID of the particular MSC (Mobile Switching Center, that is a protocol of GSM and UMTS) 
for correct routing of circuit-switched calls and SMS messages 

 The ID of the SGSN (Serving GPRS Support Node) or MME (Mobility Management Entity). This 
is used in case there are changes in the user’s profile, so the updates can be pushed to the other 
network elements.  

The next element of the EPC is the Packet Data Network Gateway (P-GW). This gateway enables the 
EPC to communicate to the outside world through SGi interface. The SGi interface is utilized by the P-GW 
for communication with external devices or other packet data networks, operator’s servers, the Internet or 
some IP multimedia subsystem. As previously stated, the packet data network is identified by APN (Access 
Point Name), found in the HSS database. An operator can define few APN names for different purposes, 
for example: one access point name for accessing the Internet and another one for accessing IP multimedia 
subsystem. Those APNs are saved as entries in the mobile device, which should automatically connect to 
the default packet data network, such as the Internet (COX, C., 2014).  

The Serving Gateway (S-GW) is another type of router that forwards data between the eNB base station 
and the P-GW. One network usually contains multiple S-GWs, which have the role of tracking the mobile 
devices in certain geographical region. Every device that is attached to a base station is assigned to a certain 
S-GW but can also change the router if it roams to another geographical region with different eNB and 
dedicated S-GW (COX, C., 2014). In the radio network plane, the S-GW terminates the S1-UP GTP (GPRS 
Tunneling Protocol) tunnels, and on the core network plane, it terminates the S5-UP GTP tunnels to the 
gateway to the outside world. The S1 and S5 tunnels are independent and are interchanged by requirement. 
For example, when there is a handover to an eNB under the control of the same MME and S-GW, only the 
S1 tunnel needs to be modified to redirect the user’s stream to and from the new base station. On the other 
hand, if the connection is handed over to an eNB that is under the control of another MME and S-GW, the 
S5 tunnel has to be modified as well (SAUTER, Martin, 2014). The tunnel generation and modification are 
controlled by the MME, which informs the S-GW via the S11 interface (Figure 1). In fact, the S11 interface 
utilizes the same GTP-C control protocol from GSM and UMTS by presenting new messages. UDP 
protocol is utilized as a transport protocol instead of SCTP, and the IP protocol is used in the network layer 
(SAUTER, Martin, 2014).  

The Mobility Management Entity (MME) is the most complex component of the EPC. It controls the 
high-level operation of the mobile devices. Namely, the MME handles the users and the eNBs at the core 
network. Bigger networks utilize multiple MMEs to handle the bigger load and to enable redundancy and 
fault-tolerance. Since the MME is not responsible for the air interface operations, the signaling it exchanges 
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with the radio network is referred to as Non-Access Stratum (NAS) signaling. The following tasks are the 
main obligations of MME (SAUTER, Martin, 2014):  

 The MME handles the user authentication with the core network. Since it communicates directly 
with the HSS via the S6a interface, the user authentication requests are forwarded from the eNB 
through the S1 interface to MME and then the MME proceeds with the DIAMETER protocol. If 
successful, the MME forwards encryption keys to the eNB so that further signaling exchange 
encryption proceeds over the radio network.  

 Another task that MME has is the establishment of bearers. Since it is not directly implicated in the 
exchange of user data packets between mobile devices and the Internet, the MME establishes IP 
tunnels between the eNB and other EPC components as the P-GW. This includes selection of a 
gateway router to the Internet if there is more than one gateway available.  

 Non-Access Stratum mobility management. A mobile device that can find itself idle for some time 
(usually 10-30 seconds) is released from the radio network. The device can roam between different 
eNBs in a same Tracking Area (TA), without notifying the network in order to save battery capacity 
and signaling overhead. In case when new data packets from the Internet arrive at the device while 
in this state, the MME sends paging messages to all base stations that are part of the current 
Tracking Area of the mobile device. Once the device responds to the paging, the bearers are 
reinitialized.  

 If there is no support for X2 interface, the MME aids the forwarding of handover messages between 
the two involved base stations. The MME is also responsible for establishing and modification of 
the user data IP tunnel after a handover, in case different core network routers are selected.  

 The MME dictates interworking with other radio networks. This refers to devices that reach the 
limit of the LTE coverage area and roam into areas that are covered by GSM or UMTS. In this 
case, the eNB decides to hand over the device to the GSM or UMTS networks or instructs it to 
perform a cell change to suitable cell. During this process, the MME communicates with the GSM 
or UMTS network to manage the transfer of the device successfully.  

 SMS and voice support are managed by MME in LTE. Since LTE is IP-based network, still the 
SMS and voice services are in high demand. The MME maps these services to the UMTS and GSM 
circuit-switched core networks. To perform this, the MME initializes a number of different 
interfaces (S5, S6a, S11 and SGs).  

When compared to GPRS and UMTS, the tasks of MMEs are the same as those of the SGSN. The major 
difference between the two entities is that while the SGSN is also responsible for forwarding the user data 
between the core network and the radio network, the MME deals only with the signaling tasks described 
above and leaves the user data to the Serving Gateway (S-GW), which is described in the next section 
(SAUTER, Martin, 2014).  

A. Protocol architecture in LTE 
Generally, in an LTE network, the protocols can be divided into two groups: Control-plane protocols 

and User-plane protocols. The control-plane protocols are handling Access Stratum (AS) radio-specific 
functionalities, whereas the user-plane protocols define three main tasks: handling IP packets, radio link 
control and MAC-layer particularities (ALI-YAHIYA, Tara, 2011).   

Control plane protocols 
As represented in Figure 2, the greyed part of the stack represents the Access Stratum protocols. The 

AS interacts with the Non-Access Stratum (NAS), also referred to as “upper layers”. Among other 
functions, the NAS control protocol handle Public Land Mobile Network (PLMN) selection, tracking area 
update, paging, authentication and Evolved Packet System (EPS) bearer establishment, modification and 
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release. The applicable AS-related procedures largely depend on the Radio Resource Control (RRC) state 
of the User Equipment (UE), which can be either RRC_IDLE or RRC_CONNECTED. A UE in RRC_IDLE 
performs cell selection and reselection – in other words, it decides on which cell to camp. The cell 
(re)selection process takes into account the priority of each applicable frequency of each applicable Radio 
Access Technology (RAT), the radio link quality and the cell status (i.e. whether a cell is barred or 
reserved). An RRC_IDLE UE monitors a paging channel to detect incoming calls, and also acquires system 
information. The System Information (SI) mainly consists of parameters by which the network (E-UTRAN) 
can control the cell (re)selection process. In RRC_CONNECTED, the E-UTRAN allocates radio resources 
to the UE in order to facilitate the transfer of unicast data via shared data channels. To support this operation, 
the UE monitors an associated control channel used to indicate the dynamic allocation of the shared 
transmission resource in time and frequency. The UE provides the network with reports of its buffer status 
and of the downlink channel quality, as well as neighborhood cell measurement information to enable E-
UTRAN to select the most appropriate cell for the UE. These measurement reports include cells using other 
frequencies or RATs. The UE also receives SI, consisting mainly of information required to use the 
transmission channels. To extend its battery lifetime, a UE in RRC_CONNECTED may be configured with 
a Discontinuous Reception (DRX) cycle. RRC, as specified in the figure, is the protocol by which the E-
UTRAN controls the UE behavior in RRC_CONNECTED. RRC also includes the control signaling 
applicable for a UE in RRC_IDLE, namely paging and SI, which altogether defines the connection control 
in LTE (VELDE, Himke van der, 2011, pp.57-86). 

 

Figure 2. LTE Control plane protocol stack 

The more important entities for establishment and connection detachment in LTE are the constituents 
that carry system information, namely the carried System Information Blocks (SIBs) (VELDE, Himke van 
der, 2011, pp.57-86). They constitute functionality-related parameters required for a successful 
communication between the UE and the NAS:  

 Master Information Block (MIB): Includes limited number of the most frequently transmitted 
parameters, which are essential for a UE’s initial access to the network  

 System Information Block Type 1 (SIB1): Contains parameters needed to determine if a cell 
is suitable for cell selection, as well as information about the time-domain scheduling of other 
SIBs.  

 System Information Block Type 2 (SIB2): Includes common and shared channel information.  

 SIB3-SIB8: Include parameters used to control intra-frequency, inter-frequency and inter-RAT 
cell reselection.  

 SIB9: Used to signal the name of a Home eNodeB (HeNB).  
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 SIB10-SIB12: Include the Earthquake and Tsunami Warning Service (ETWS) notifications and 
Commercial Mobile Alert System (CMAS) warning messages 

 SIB13: Includes MBMS (Multimedia Broadcast Multicast Service) related control information.  

The way connections are established in LTE are described in Figure 3, where the RRC connection 
involves establishment of SRB1 and the transfer of the initial uplink NAS message (the SRB0-2 are the 
signaling radio bearers, which are used for the transfer of RRC and NAS signaling messages and elucidated 
in the succeeding subsection. The same signaling radio bearers carry also information about the previously-
explained channels assignment). The NAS message triggers the establishment of the S1 connection, which 
initiates a subsequent step during which E-UTRAN activates Access Stratum security and starts the 
following SRB2 (VELDE, Himke van der, 2011, pp.57-86).  

 

Figure 3. RACH procedure connection establishment in LTE 

User plane protocols 
The user-plane Layer-2 architecture incorporates three sublayers as shown in the encapsulation in Figure 

4:  

 Packet Data Convergence Protocol (PDCP): This protocol resides on the physical Layer 1 
and processes RRC messages in the control plane and IP packets in the user plane. In accordance 
to the radio bearer, the main functions of the PDCP layer are header compression, security 
(integrity protection and ciphering), also support for encoding and retransmission during 
handovers. For radio bearers which are configured to use PDCP layer, there is one PDCP entity 
per radio bearer. The PDCP layer manages data streams in the user plane as well as in the control 
plane, only for the radio bearers using either a Dedicated Control Channel (DCCH) or a 
Dedicated Transport Channel (DTCH). The architecture of the PDCP layer differs for user plane 
data and control plane data. Two different types of PDCP PDU are defined in LTE: PDCP Data 
PDUs and PDCP Control PDUs. The PDCP Data PDUs are used for both control and user plane 



18 
 

data, whereas PDCP Control PDUs are only used to transport the feedback information for 
header compression and for PDCP status reports, which are used in case of handover. 
(FISCHER, P. et al., 2011, pp.87-120).  

 Radio Link Control (RLC): This protocol is situated on Layer-2 and the main functions it 
performs are segmentation and reassembly of upper layer packets in order to adapt them to the 
size which can actually be transmitted over the radio interface. For radio bearers which need 
error-free transmission, the RLC layer also performs retransmission to recover out-of-order 
reception due to Hybrid Automatic Repeat Request (HARQ) operation in the lower layer. One 
RLC entity exists per radio bearer. The RLC layer is located between the PDCP layer and the 
MAC layer (Figure 4). It communicates with the PDCP layer through a Service Access Point 
(SAP), and with the MAC layer via logical channels. The RLC layer reformats PDCP PDUs in 
order to fit them into the size indicated by the MAC layer; that is, the RLC transmitter segments 
and/or concatenates the PDCP PDUs, and the RLC receiver then reassembles the RLC PDUs to 
reconstruct the PDCP PDUs. Additionally, the RLC reorders the RLC PDUs if they are received 
out of sequence due to the HARQ operation performed in the MAC layer. This is the key 
difference from UMTS, where the HARQ reordering is performed in the MAC layer. The 
advantage of HARQ reordering in RLC is that no additional SN and reception buffer are 
required for the HARQ reordering and RLC-level ARQ related operations. The functions of the 
RLC layer are performed by RLC entities. An RLC entity is configured in one of three data 
transmission modes: Transparent Mode (TM), Unacknowledged Mode (UM) and 
Acknowledged Mode (AM). In AM, special functions are defined to support retransmission. 
When UM or AM is used, the choice between the two modes is made by the eNB during the 
RRC radio bearer setup procedure, based on the QoS requirements of the EPS bearer 
(FISCHER, P. et al., 2011, pp.87-120). 

 Media Access Control (MAC): The Layer-2/3 MAC is analogous to the TCP/IP MAC layer, 
which in LTE actually performs multiplexing of data from different radio bearers. Therefore, 
there is only one MAC entity per UE. By deciding the amount of data that can be transmitted 
from each radio bearer and instructing the RLC layer as to the size of packets to provide, the 
MAC layer aims to achieve the negotiated Quality of Service (QoS) for each radio bearer. For 
the uplink (UL), this process includes reporting to the eNB the amount of buffered data for 
transmission. Specifically, the MAC layer consists of a HARQ entity, a 
multiplexing/demultiplexing entity, a logical channel prioritization entity, a random access 
control entity and a controller which performs various control functions. The MAC layer 
conducts multiplexing and demultiplexing between logical and transport channels as well as 
transport channels by constructing MAC PDUs, known as Transport Blocks (TBs), from MAC 
SDUs received through the aforementioned logical channels. Afterwards, the MAC layer in the 
receiving side recovers MAC SDUs from MAC PDUs received through transport channels. To 
elucidate the HARQ entity, its responsibility for the transmission and receiving of HARQ 
operations is explicated; indicating, that the transmit HARQ operation includes (re)transmission 
of TBs and reception and processing of ACK/NACK signaling. The receive HARQ operation 
includes reception of TBs, combining of the received data and generation of ACK/NACK 
signaling. In order to enable continuous transmission while previous TBs are being decoded, up 
to eight HARQ processes in parallel are used to support multiprocess ‘Stop-And-Wait’ (SAW) 
HARQ operation. SAW operation means that upon transmission of a TB, a transmitter stops 
further transmission and waits for feedback from the receiver. When a NACK is received, or 
when a certain time elapses without receiving any feedback, the transmitter retransmits the TB. 
Such a simple SAW HARQ operation cannot on its own utilize the transmission resources 
during the period between the first transmission and the retransmission. Therefore, multiprocess 
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HARQ interlaces several independent SAW processes in time so that all the transmission 
resources can be used. Each HARQ process is responsible for a separate SAW operation and 
manages a separate buffer (FISCHER, P. et al., 2011, pp.87-120). The MAC layer is comprised 
of various logical, transport and physical channels which are detailed in the incoming section.  

 

Figure 4. LTE User plane protocol stack 

B. Interfaces  
LTE defines various interfaces for communication between the different constituents, as shown in Figure 

1. Namely, there are several significant interfaces that are residing in the EPC among which the most 
important is the S1 which defines the communication between the eNB and the EPC through the MME, as 
well as communication between base-stations:  

 S1 interface – The S1 interface is split into two interfaces, one for the control plane and the 
other for the user plane. At the control plane (see Figure 2), the S1 is based on the SCTP (Stream 
Control Transmission Protocol) protocol (PALAT, S. and Godin, P., 2011, pp.25-55).  
SCTP is constructed to carry Public Switched Telephone Network (PSTN) signaling messages 
over IP networks, but is also efficient in variety of other applications. SCTP is a reliable 
transport protocol operating on top of a connectionless packet network such as IP.  It offers the 
following services to its users: acknowledged error-free non-duplicated transfer of user data, 
data fragmentation to conform to discovered path MTU size, sequenced delivery of user 
messages within multiple streams, with an option for order-of-arrival delivery of individual user 
messages, optional bundling of multiple user messages into a single SCTP packet, and network-
level fault tolerance through supporting of multi-homing at either or both ends of an association. 
SCTP delivers some of the equivalent properties of UDP and TCP: it is message-oriented like 
UDP and guarantees a reliable, in-sequence transport of messages with congestion control like 
TCP. SCTP differs by that it provides multi-homing and redundant paths to increase resilience 
and reliability. SCTP applications acquiesce their data to be transferred in messages (groups of 
bytes) to the SCTP transport layer. SCTP groups messages and control information into distinct 
portions (data chunks and control chunks), each identified by a chunk header. The protocol can 
fragment a message into a number of data chunks, but each data chunk contains data from only 
one user message. SCTP bundles the chunks into SCTP packets. The SCTP packet, which is 
submitted to the Internet Protocol, consists of a packet header, SCTP control chunks (when 
necessary), followed by SCTP data chunks (when available). One can characterize SCTP as 
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message-oriented, meaning it transports a sequence of messages (each being a group of bytes), 
rather than transporting an unbroken stream of bytes as does TCP. As in UDP, in SCTP a sender 
sends a message in one procedure, and that particular message is conceded to the receiving 
application process in a single action. Contrary to that, TCP is a stream-oriented protocol, 
transferring streams of bytes steadfastly and in organized manner. However, TCP does not 
inform the receiver about the number of times the sender application called on the TCP transport 
passing it groups of bytes to be sent out. At the sender, TCP simply affixes more bytes to a 
queue of bytes anticipating to be sent over the network, rather than maintaining a queue of 
individual distinct outbound messages which must be conserved per se. SCTP is referred to as 
‘multi-streaming’ due to the aptitude for transmission of several independent streams of chunks 
in parallel; for example, transmitting web page images together with the web page text. 
Practically, SCTP encompasses pairing several connections into a single SCTP association, 
operating on messages (or chunks) rather than bytes. TCP preserves byte order in the stream by 
including a byte sequence number with each segment. SCTP, on the other hand, assigns a 
sequence number or a message-id to each message sent in a stream. This allows independent 
ordering of messages in different streams. However, message ordering is optional in SCTP; a 
receiving application may choose to process messages in the order of receipt instead of in the 
order of sending (IETF, 2007) [SCTP – Stream Control Transmission Protocol standard].  
A further simplification in LTE (compared to the UMTS Iu interface, for example) is the direct 
mapping of the S1-AP (S1 Application Protocol) on top of SCTP which results in a simplified 
protocol stack with no intermediate connection management protocol. The individual 
connections are directly handled at the application layer. Multiplexing takes place between S1-
AP and SCTP whereby each stream of an SCTP association is multiplexed with the signaling 
traffic of multiple individual connections. Another point of flexibility that comes with LTE lies 
in the lower layer protocols for which fully optionality has been left regarding the choice of the 
IP version and the choice of the data link layer (PALAT, S. and Godin, P., 2011, pp.25-55). On 
the user plane, the S1 interface is based on the GTP-U (GPRS Tunneling Protocol-User plane) 
and UDP, inherited from the UMTS networks. One of the advantages of using GTP-U is its 
inherent facility to identify tunnels and also facilitate intra-3GPP mobility. The IP version 
number and the data link layer have been left fully operational, as for the control plane stack. A 
transport bearer is identified by the GTP tunnel endpoints and the IP address (source Tunneling 
End ID (TEID), destination TEID, source IP address, destination IP address). The S-GW 
(Service Gateway) sends downlink packets of a given bearer to the eNB IP address (received in 
S1-AP) associated to that particular bearer. Similarly, the eNB sends upstream packets of a 
given bearer to the EPC IP address (received in S1-AP) associated to that particular bearer. The 
initialization of S1-MME control plane interface starts with the identification of the MMEs to 
which the eNB must connect, followed by the setting up of the Transport Network Layer (TNL). 
Only one SCTP association is established between one eNB and one MME, but with multiple 
pairs of streams for avoiding head-of-line blocking. When a UE is associated to a specific MME, 
a context is created and saved for the particular UE in the MME. This particular MME is selected 
by the NAS Node Selection Function (NSSF) in the first eNB from which the UE entered the 
pool. When the UE becomes active under the coverage of a particular eNB in the pool area, the 
MME provides the UE context information to this eNB using the 
‘INITIAL_CONTEXT_SETUP_REQUEST’ message, which allows the eNB in turn to create 
a context and manage the UE while it is in active mode. Besides these functionalities, the S1 
interface also enables load-balancing of the traffic that reaches the MME from the eNB and the 
UEs attached to it. Bearer management is initiated via S1 with the 
BEARER_SETUP_REQUEST and BEARER_SETUP_RESPONSE messages. When a 
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handover process starts, the S1 interface communicates with the X2 interface in order to acquire 
information about the UE that is subject to the handover from the current to the next eNB 
(PALAT, S. and Godin, P., 2011, pp.25-55).  

 S3 interface - S3 is a GTP signaling-only interface, used between the Serving GPRS Support 
Node (SGSN) and the Mobility Management Entities (MME) to support inter-system 
mobility. In other words, the S3 interface serves as a control interface between the MME and 
2G/3G SGSNs (3GPP, 2010) [Specification TS 29.303 v9.1.0: Stage 3, Release 9]. 

 S5/S8 interfaces – The communication between the Service Gateway (SGW) and the Packet 
Gateway (PGW) is defined via the S5/S8 interfaces. Technically, the S5 is identical as S8 
interface with the difference that S8 is used when roaming between different operators while S5 
is network internal. The S5 / S8 interface will exist in two flavors one based on Gn/GTP (SGSN-
GGSN) and the other will use the IETF specified Proxy Mobile IP (PMIP) for mobility control 
with additional mechanism to handle QoS. The motivation for the PMIP flavor of S5/S8 has 
mainly come from WiMAX/CDMA2000 operators and vendors interested in inter-working with 
E-UTRAN, GERAN or UTRAN, or re-using the 3GPP EPS specified mechanism also for intra 
WiMAX / CDMA2000 mobility. It has been agreed in 3GPP that the usage of PMIP or GTP on 
S5 and S8 should not impact RAN behavior or impact the terminals. The usage of PMIP or GTP 
on S5/S8 will not be visible over the S1 interface or in the terminal. In the non-roaming case, 
the S-GW and P-GW functions can be performed in one physical node. The S5/S8 is a many-
to-many interface (3GPP, 2010) [Specification TS 23.402 v 9.5.0 Release 9]. 

 S6a interface – Handles the DIAMETER authentication procedure (IETF, 2003) [RFC3588 
standard] from the MME towards the HSS database of UEs that request attachment procedures 
on the specific eNB (3GPP, 2015) [3GPP specification 29.272].  

 S10 interface - This is a control interface between the MMEs which will be very similar to the 
S3 interface between the SGSN and MME. The interface is based on Gn/GTP-C 
(SGSNSGSN) with additional functionality and is a many-to-many interface (3GPP, 2010) 
[Specification TS 29.303 v9.1.0: Stage 3, Release 9].  

 S11 interface – Establishes communication between the MME and the S-GW. The interface is 
based on Gn/GTP-Control (GTP-C) with some additional functions for paging coordination, 
mobility compared to the legacy Gn/GTP-C (SGSN-GGSN) interface (3GPP, 2015) 
[Specification 29.274: EPS; eGPRS, GTPv2-C, stage 3]. 

 X2 interface – Interconnects two eNBs. The protocol stack at which X2 resides is the same as 
the S1 interface; specifically, it uses the SCTP protocol to establish a communication between 
two or eNodeBs. This way, the succeeding eNB receives signaling information from the 
preceding eNB for a UE that is roaming and is subject to a handover from the latter to the former. 
The exchange of load information between eNBs is of key importance in the flat architecture 
used in LTE, as there is no central Radio Resource Management (RRM) node as in the case of 
UMTS with the Radio Network Controller (RNC). The exchange information can be of a load-
balancing character or interference coordination (PALAT, S. and Godin, P., 2011, pp.25-55).  

 SGi/Gi interfaces – The SGi interface connects the PGW to an external network (PDN), and 
the Gi interface connects the GGSN to an external network (PDN). The interface is based on 
the IP packet (user data/payload/data plane). It also enables exchange of signaling and routing 
redistribution (OSPF, BGP, RIP routing etc.). The interface can connect to the 
RADIUS/DIAMETER servers if the service is used. The implementation of SGi and Gi 
interfaces in real topology network combine all IP various packets in one routing table (virtual 
router or routing instance). It is possible to enable dynamic routing protocols such as OSPF, 
RIP, ISIS, BGP or EIGRP etc., for advertising PGW/GGSN IP address to external networks. 
Usually the PGW/GGSN can enable minimum basic OSPF routing and also enable redundancy 
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mechanism such as VRRP (Virtual Router Redundancy Protocol) (CISCO, 2017) for multiple 
nodes (3GPP, 2010) [Specification 29.061: Release 9; v9.3.0].  

C. Quality of Service (QoS) and EPS bearers 
In a real scenario, the UE runs multiple applications simultaneously, which may require different Quality 

of Service parameters. For example, one can use the UE for engaging in a VoIP call while at the same time 
browsing the Internet or downloading a file. The VoIP call requires lower latency and jitter, whereas the 
file transfer needs much lower packet loss rate. To support the different requirements for QoS factors, 
bearers are being established that can be associated with a particular QoS feature. Bearers can be classified 
into two categories: Minimum Guaranteed Bit Rate (GBR) bearers and Non-GBR bearers. The former ones 
are used for applications such as VoIP and have associated a GBR value for which dedicated transmission 
resources are permanently allocated at bearer establishment. If there are resources available, then higher bit 
rates than the defined GBR may be allowed for the particular bearer. The Non-GBR bearers do not guarantee 
any particular bit rate. Accordingly, they can be used for FTP applications, web browsing and similar 
appliances. For these bearers, no bandwidth resources are allocated permanently to the bearer (PALAT, S. 
and Godin, P., 2011, pp.25-55).  

In the Access Stratum (AS), the eNB sets the bearers up and ensures that the adequate QoS parameters 
are assigned to each. A bearer has a Class Identifier (QCI) and an Allocation and Retention Priority (ARP) 
associated. The QCI is characterized by priority, packet delay budget and acceptable packet loss rate. The 
QCI label for a bearer determines the way it is handled in the eNB. The CQIs are standardized and thus the 
vendors can all have the same understanding of the underlying service characteristics and thus provide the 
corresponding treatment, including queue management, conditioning and policy strategy. This ensures that 
the LTE operator can expect uniform traffic handling behavior throughout the network regardless of the 
manufacturers of the eNB equipment (see Table 3) (PALAT, S. and Godin, P., 2011, pp.25-55).  

Table 3. Standardized QoS Class Identifiers (QCI) for LTE (PALAT, S. and Godin, P., 2011, pp.25-55) 

QCI 
Resource 
type 

Priority 
Packet 
delay 
budget (ms) 

Packet 
error loss 
rate 

Example services 

1 GBR 2 100 10-2 Conversational voice  

2 GBR 4 150 10-3 Conversational video (live 
streaming) 

3 GBR 5 300 10-6 Non-conversational video (buffered 
streaming) 

4 GBR 3 50 10-3 Real-time gaming 

5 Non-GBR 1 100 10-6 IMS signaling 

6 Non-GBR 7 100 10-3 Voice, video (live streaming), 
interactive gaming 

7 Non-GBR 6 300 10-6 Video (buffered streaming) 

8 Non-GBR 8 300 10-6 TCP based (e.g. WWW, e-mail) 
chat, FTP, p2p file sharing, 
progressive video call etc. 

9 Non-GBR 9 300 10-6 
 

 

The priority and packet delay budget from the QCI label determine the RLC mode configuration, and 
how the scheduler in the MAC handles packets sent over the bearer (e.g. in terms of scheduling policy, 
queue management policy and rate shaping policy). The ARP of a bearer is used for call admission control 
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(for example, to decide whether or not the requested bearer should be established in case of radio 
congestion. It also governs the prioritization of the bearer for pre-emption with respect to a new bearer 
establishment request. Once successfully established, a bearer’s ARP does not have any impact on the 
bearer-level packet forwarding treatment. Such packet forwarding treatment should be explicitly 
determined by the other bearer-level QoS parameters such as QCI, GBR and MBR (PALAT, S. and Godin, 
P., 2011, pp.25-55). 

As shown in Figure 5, an EPS bearer has to cross multiple interfaces (the S5/S8 interface from the P-
GW to the S-GW, the S1 interface from the S-GW to the eNB and the radio interface (LTE-Uu) from the 
eNB to the UE. Across each interface, the EPS bearer is mapped onto a lower layer bearer, each with its 
own bearer identity. Each node must keep track of the binding between the bearer IDs across its different 
interfaces. An S5/S8 bearer transports the packets of an EPS bearer between a P-GW and an S-GW. The S-
GW stores a one-to-one mapping between a S1 bearer and a S5/S8 bearer. The bearer is identified by the 
GTP tunnel ID across both interfaces. A S1 bearer transports the packets of an EPS bearer between the S-
GW and the eNB. A radio bearer transports the packets of an EPS bearer between a UE and an eNB. An E-
UTRAN Radio Access Bearer (E-RAB) refers to the concatenation of an S1 bearer and the corresponding 
radio bearer. An eNB stores one-to-one mapping between a radio bearer ID and a S1 bearer to create the 
mapping between the two (PALAT, S. and Godin, P., 2011, pp.25-55).  

 

Figure 5. Overall EPS bearer service architecture 

IP packets mapped to the same EPS bearer receive the same bearer-level packet forwarding treatment 
(scheduling policy, queue management policy, rate shaping policy, RLC configuration). Providing different 
bearer-level QoS thus requires that a separate EPS bearer is established for each QoS flow, and use IP 
packets must be filtered into the different EPS bearers. Packet filtering into different bearers is based on 
Traffic Flow Templates (TFTs). The TFTs use IP header information such as source and destination IP 
addresses and Transmission Control Protocol (TCP) port numbers to filter packets such as VoIP from web 
browsing traffic, so that each can be sent down the respective bearer with appropriate QoS. An Uplink TFT 
(UL TFT) associated with each bearer in the UE, filters IP packets to EPS bearers in the uplink direction. 
A Downlink TFT (DL TFT) in the P-GW is a similar set of downlink packet filters. As part of the procedure 
by which a UE attaches to the network, the IE is assigned an IP address by the PGW and at least one bearer 
is established, called the default bearer, and it remains established through the lifetime of the PDN 
connection, in order to provide the UE with always-on IP connectivity to that PDN. The initial bearer-level 
QoS parameter values of the default bearer are assigned by the MME, based on subscription data retrieved 
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from the HSS. The PCEF may change these values in interaction with the PCRF or according to local 
configuration. Additional bearers called dedicated bearers can also be established at any time during or after 
completion of the attach procedure. A dedicated bearer can be either GBR or Non-GBR (the default bearer 
always has to be a non-GBR bearer since it is permanently established). The distinction between default 
and dedicated bearers should be transparent to the access network (i.e. E-UTRA). Each bearer has an 
associated QoS, and if more than one bearer is established for a given UE, Then each bearer must also be 
associated with appropriate TFTs. These dedicated bearers could be established by the network, based for 
example on a trigger from the IMS domain, or they could be requested by the UE. The dedicated bearers 
for a UE may be provided by one or more P-GWs. The bearer-level QoS parameter values for dedicated 
bearers are received by the P-GW from the PCRF and forwarded to the S-GW. The MME only transparently 
forwards those values received from the S-GW over the S11 interface to the E-UTRAN (PALAT, S. and 
Godin, P., 2011, pp.25-55). 

2.1.2. The E-UTRAN radio network 
The E-UTRAN system is depicted in Figure 6. It handles the radio communication between the mobile 

device and the evolved packet core and just has one part, the evolved Node B (eNB). Each eNB is a base 
station that controls the mobiles in one or more cells. A mobile communicates with just one base station 
and one cell at a time, so there is no equivalent of the soft handover state from UMTS. The base station that 
is communicating with a mobile is known as its serving eNB. The eNB has two main functions. Firstly, the 
eNB sends radio transmissions to all its mobiles on the downlink and receives transmissions from them on 
the uplink, using the analogue and digital signal processing functions of the LTE air interface. Secondly, 
the eNB controls the low-level operation of all its mobiles, by sending them signaling messages such as 
handover commands that relate to those radio transmissions. In carrying out these functions, the eNB 
combines the earlier functions of the Node B and the radio network controller, to reduce the latency that 
arises when the mobile exchanges information with the network. Each base station is connected to the EPC 
with the S1 interface. It can also be connected to nearby base stations by the X2 interface, which is used 
for signaling and packet forwarding during handover (COX, C., 2014). 

 

Figure 6. Architecture of the E-UTRAN radio access network 
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The architecture of the Evolved UMTS terrestrial radio access network is same as the 3G UMTS radio 
access network (Figure 6). The X2 interfaces serve for eNB to eNB communication and are optional. 
Nearby base-stations only need to communicate to each other because of handovers, and distant base 
stations do not need to interact at all. Another reason the X2 interface is optional is because one X2 
communication can be carried via two S1 instances in a slower manner, due to the signaling through the 
EPC. X2 interfaces can be configured automatically via self-optimization parameter functions (COX, C., 
2014).  

A. Transport network  
In a usual scenario, the S1 and X2 interfaces do not represent direct physical connections. As represented 

in Figure 7, the information is routed across an underlying IP transport network (which is usually optical). 
In reality, the base stations and the components have their IP addresses, which enables them to communicate 
between each other, and therefore the X2 and S1 are best understood as logical connections through which 
the devices exchange information (COX, C., 2014).  

 

 

Figure 7. Architecture of the E-UTRAN transport network 

 

B. Physical, transport and logical channels 
In order to understand the structure in later stages of the virtualized OpenAirInterface5G LTE network, 

some elementary concepts of currently-employed LTE channels are described. Each channel has parameters 
that need to be set up for the network to run properly. In case of misconfiguration of some parameters of a 
channel, then the stability of the access stratum will suffer. The channels are divided in three categories, 
and they represent a base from which a UE establishes connection to the network. To be able to transmit 
data across the air interface, LTE defines various channels. These channels are employed to differentiate 
the different types of data and transport it through the radio access network. Namely, the different channels 
allow interfacing to the higher layers within the LTE protocol stack and logically define the segregation of 
the data. To efficiently support various QoS classes of services, LTE adopts a hierarchical channel structure. 
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There are three different channel types defined in LTE—logical channels, transport channels, and physical 
channels, each associated with a service access point (SAP) between different layers. These channels are 
used by the lower layers of the protocol stack to provide services to the higher layers (GHOSH, A. et al., 
2011):  

 Physical channels: Each physical channel corresponds to a set of resource elements in the time-
frequency grid that carry information from higher layers. The basic entities that make a physical 
channel are resource elements and resource blocks. A resource element is a single subcarrier over 
one OFDM symbol, and typically this could carry one (or two with spatial multiplexing) modulated 
symbol(s). A resource block is a collection of resource elements and in the frequency domain this 
represents the smallest quanta of resources that can be allocated (GHOSH, A. et al., 2011). 

 

 Transport channels: The transport channels are used by the PHY to offer services to the MAC. 
A transport channel is basically characterized by how and with what characteristics data is 
transferred over the radio interface, that is, the channel coding scheme, the modulation scheme, 
and antenna mapping. Compared to UTRA/HSPA, the number of transport channels in LTE is 
reduced since no dedicated channels are present (GHOSH, A. et al., 2011). 

 

 Logical channels: Logical channels are used by the MAC to provide services to the RLC. Each 
logical channel is defined based on the type of information it carries. In LTE, there are two 
categories of logical channels depending on the service they provide: logical control channels and 
logical traffic channels (GHOSH, A. et al., 2011).  

Each channel categories can be found separately on the uplink (UL) and the downlink (DL). On the 
downlink, LTE has a variety of channels, each offering different functionality (see Figure 8).  

 
 

 

Figure 8. LTE Downlink channels 

Starting from the physical channels, the differences are pointed out with regard the different 
requirements and operation:  

 Physical Broadcast Channel (PBCH):   This physical channel carries system information for UEs 
requiring accessing the network. It only carries what is termed Master Information Block, MIB, 
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messages. The modulation scheme is always QPSK and the information bits are coded, and rate 
matched. The bits are then scrambled using a scrambling sequence specific to the cell to prevent 
confusion with data from other cells. The MIB message on the PBCH is mapped onto the central 
72 subcarriers or six central resource blocks regardless of the overall system bandwidth. A PBCH 
message is repeated every 40ms, i.e. one TTI of PBCH includes four radio frames. The PBCH 
transmissions has 14 information bits, 10 spare bits, and 16 CRC bits (POOLE, I., 2017). 

 

 Physical Downlink Shared Channel (PDSCH):   As the name implies, The PDSCH channel is the 
main data bearing channel which is allocated to users on a dynamic and opportunistic basis. The 
PDCH is also used to transmit broadcast information not transmitted on the PBCH which include 
System Information Blocks (SIB) and paging & RRC signaling messages. PDSCH is also used to 
transfer application data. There are two types of messages being transmitted through the PDSCH 
channel:  

- Paging messages. These are broadcast using PDSCH channel. LTE UE in RRC IDLE mode 
monitor PDCCH for paging indications. Based on trigger, it will decode the paging 
message carried in PDSCH RBs.  

- Downlink RRC Signaling messages. These are carried by PDSCH. Signaling Radio Bearers 
(SRB) will use PDSCH. Every connection usually will have its own set of SRB (POOLE, 
I., 2017). 

 

 Physical Control Format Indicator Channel (PCFICH): This channel is used at the starting of 
each 1ms subframe. It provides information about number of symbols used for PDCCH 
transmission. The signaling values for PCFICH depends upon channel bandwidth. The same is 
mentioned in the following Table 4 for different LTE channel bandwidths. 

Table 4. PCFICH values for different channel bandwidths (RF WIRELESS WORLD, 2012) 

 Channel Bandwidth 
 1.4 MHz 3MHz  5MHz  10 MHz  15 MHz 20 MHz 

PCFICH values 2, 3, 4 1, 2, 3 

  

As denoted, 1.4MHz requires more time domain symbols compared to other channel bandwidths 
due to less carriers in frequency domain. Signaling value depends on eNodeB RRM (Radio 
Resource Management). It is directly connected to the number of active connections. Hence 
PDCCH signaling increases parallelly with the number of active connections (RF WIRELESS 
WORLD, 2012). 
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Figure 9. PCFICH subframe (RF WIRELESS WORLD, 2012) 

From the Figure 9 it can be perceived that LTE PCFICH channel occupies 16 REs (Resource 
Elements) in first OFDMA symbol of each 1ms frame. PCFICH uses QPSK modulation and hence 
16 REs will occupy 32 bits. This 16REs are divided into 4 quadruplets. The position of which in 
first OFDMA symbol depends on Channel BW and Physical layer cell identity.  

As mentioned, each quadruplet is mapped to REG (Resource Element Group) with subcarrier 
index k = k' and is as per following equation: 

�� = (��� ��� 
��

2
) ∙ (����������2 ������) 

The rest of three quadruplets are mapped to REGs spaces at intervals of (NDL-RB/2) * (Nsc per 
RB /2) from the first quadruplet and each other. This way LTE PCFICH channel information is 
spread across entire subframe as shown. The PCFICH carries CFI (Control Format Indicator) which 
has a value ranging from 1 to 3. This CFI is coded to occupy complete PCFICH capacity of 32 bits 
(RF WIRELESS WORLD, 2012).  

Actual value = signaled value + 1 (for 1.4 MHz BW)  

Actual value = signaled value (for all the channel BWs)  

 Physical Multicast Channel (PMCH): This channel defines the physical layer structure to carry 
Multimedia Broadcast and Multicast Services (MBMS). This control channel occupies the first 1, 
2, or 3 OFDM symbols in a subframe extending over the entire system bandwidth. For PMCH 
channel QPSK, 16QAM, 64QAM modulations are used. It carries MCH. Multicast Channel (MCH) 
characterized by:  

o requirement to be broadcast in the entire coverage area of the cell  
- support for MBSFN combining of MBMS transmission on multiple cells  
- support for semi-static resource allocation e.g. with a time frame of a long cyclic prefix 

In Downlink, MTCH logical channel can be mapped to DL-SCH and MCH transport channels 
(RF WIRELESS WORLD, 2012).  
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 Physical Downlink Control Channel (PDCCH):   The main purpose of this physical channel is to 
carry mainly scheduling information of different types:  

- Downlink resource scheduling  
- Uplink power control instructions  
- Uplink resource grant  
- Indication for paging or system information  

 
The PDCCH contains a message known as the Downlink Control Information, DCI which 

carries the control information for a particular UE or group of UEs. The DCI format has several 
different types which are defined with different sizes. The different format types include: Type 0, 
1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, and 4 (POOLE, I., 2017). 

 

 Physical Hybrid ARQ Indicator Channel (PHICH):   As the name indicates, this channel is used 
to report the Hybrid ARQ status. It carries the HARQ ACK/NACK signal indicating whether a 
transport block has been correctly received. The HARQ indicator is 1 bit long - "0" indicates ACK, 
and "1" indicates NACK. The PHICH is transmitted within the control region of the subframe and 
is typically only transmitted within the first symbol. If the radio link is poor, then the PHICH is 
extended to a number symbols for robustness (POOLE, I., 2017). 

The transport channels are used by the PHY to offer services to the MAC layer. There are four LTE 
downlink transport channels (POOLE, I., 2017) (GHOSH, A. et al., 2011):  

 Broadcast Channel (BCH): A downlink channel associated with the BCCH logical channel and is 
used to broadcast system information over the entire coverage area of the cell. It has a fixed 
transport format defined by the specifications (GHOSH, A. et al., 2011). 

 

 Downlink Shared Channel (DL-SCH): Used for transmitting the downlink data, including both 
control and traffic data, and thus it is associated with both logical control and logical traffic 
channels. It supports H-ARQ, dynamic link adaption, dynamic and semi-persistent resource 
allocation, UE discontinuous reception, and multicast/broadcast transmission. The concept of 
shared channel transmission originates from HSDPA, which uses the High-Speed Downlink Shared 
Channel (HS-DSCH) to multiplex traffic and control information among different UEs. By sharing 
the radio resource among different UEs the DL-SCH is able to maximize the throughput by 
allocating the resources to the optimum UEs (GHOSH, A. et al., 2011). 

 

 Paging Channel (PCH): Associated with the PCCH logical channel. It is mapped to dynamically 
allocate physical resources and is needed for broadcast over the entire cell coverage area. It is 
transmitted on the Physical Downlink Shared Channel (PDSCH) and supports UE discontinuous 
reception (GHOSH, A. et al., 2011). 

 

 Multicast Channel (MCH): Associated with MCCH and MTCH logical channels for the 
multicast/broadcast service. It supports Multicast/Broadcast Single Frequency Network (MBSFN) 
transmission, which transmits the same information on the same radio resource from multiple 
synchronized base stations to multiple UEs (GHOSH, A. et al., 2011). 

LTE defines seven logical downlink channels:  

 Broadcast Control Channel (BCCH): A downlink common channel used to broadcast system 
control information to the mobile terminals in the cell, including downlink system bandwidth, 
antenna configuration, and reference signal power. Due to the large amount of information carried 
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on the BCCH, it is mapped to two different transport channels: The Broadcast Channel (BCH) and 
the Downlink Shared Channel (DL-SCH) (GHOSH, A. et al., 2011). 

 

 Multicast Control Channel (MCCH): A point-to-multipoint downlink channel used for 
transmitting control information to UEs in the cell. It is only used by UEs that receive 
multicast/broadcast services (GHOSH, A. et al., 2011). 

 

 Paging Control Channel (PCCH): A downlink channel that transfers paging information to 
registered UEs in the cell, for example, in case of a mobile-terminated communication session 
(GHOSH, A. et al., 2011). 

 

 Common Control Channel (CCCH): A bi-directional channel for transmitting control information 
between the network and UEs when no RRC connection is available, implying the UE is not 
attached to the network such as in the idle state. Most commonly the CCCH is used during the 
random-access procedure (GHOSH, A. et al., 2011). 

 

 Dedicated Control Channel (DCCH): A point-to-point, bi-directional channel that transmits 
dedicated control information between a UE and the network. This channel is used when the RRC 
connection is available, that is, the UE is attached to the network (GHOSH, A. et al., 2011). 

 

 Dedicated Traffic Channel (DTCH): A point-to-point channel, dedicated to one UE for the transfer 
of user information. A DTCH can exist in both uplink and downlink channels (GHOSH, A. et al., 
2011). 

 

 Multicast Traffic Channel (MTCH): A point-to-multipoint downlink channel for transmitting 
traffic data from the network to the UE. This channel is only used by UEs that receive MBMS. It 
is associated with the multicast/broadcast service (GHOSH, A. et al., 2011). 

The Figure 10 depicts the classification of the channels instituted at the uplink. The logical channels will 
be omitted, because they are also found in the downlink.  

 

Figure 10. LTE Uplink channels 

As on Figure 10, LTE defines three physical channels:  
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 Physical Uplink Control Channel (PUCCH): It carries uplink control information including 
Channel Quality Indicators (CQI), ACK/NAKs for H-ARQ in response to downlink transmission, 
and uplink scheduling requests. This LTE channel is used to carry UCI (Uplink Control 
Information). UCI can also be transported using PUSCH channel. An LTE UE can never transmit 
both PUCCH and PUSCH during the same subframe. If UE has application data OR RRC signaling, 
then UCI is carried over PUSCH. If UE does not have any application data OR RRC signaling, 
then UCI is carried over PUCCH (GHOSH, A. et al., 2011). 

As a stand-alone uplink physical channel, the PUCCH control signaling channel consists the 
following: 

- HARQ ACK/NACK 
- CQI-channel quality indicators 
- MIMO feedback - RI (Rank Indicator), PMI (Precoding Matrix Indicator) 
- scheduling requests for uplink transmission 
- BPSK or QPSK used for PUCCH modulation 

 

Figure 11. PUCCH subframe structure (RF WIRELESS WORLD, 2012) 

PUCCH consists of 1 RB/transmission at one end of the system bandwidth which is followed 
by another RB in the following slot (at opposite end of the channel spectrum). This makes use of 
frequency diversity with 2dB estimated gain. A PUCCH Control Region encompasses every two 
such RBs (see Figure 11 and Table 5). 

Table 5. Composition of the PUCCH control region (RF WIRELESS WORLD, 2012) 

System BW in MHz 1.25 2.5 5 10 15 20 
PUCCH control region  1 2 4 8 12 16 
No. of resource blocks 2 4 8 16 24 32 

 

The standard specifies 6 LTE PUCCH formats as mentioned in the Table 6 below. As stated, 
PUCCH format 2a and 2b are not applicable for extended CP. 

Table 6. LTE PUCCH formats (RF WIRELESS WORLD, 2012) 
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LTE PUCCH 
Format 

Modulation 
index 

No. of bits per 
subframe 

No. of Res 
occupied 
(Normal CP) 

No. of Res 
occupied 
(Extended CP) 

1 / / 48+48=96 OR 48+36=84 
1a BPSK 1 48+48=96 OR 48+36=84 
1b QPSK 2 48+48=96 OR 48+36=84 
2 QPSK 20 120 
2a QPSK+BPSK 21 120 Not applicable 
2b QPSK+BPSK 22 120 Not applicable 

The LTE PUCCH channel is distributed 2 RBs at the edges of channel BW (Table 7). Each 
PUCCH transmission occupy 1 RB on each side of the channel bandwidth. These two RBs are 
distributed across two-time slots. RB numbering for PUCCH starts on outside edges and increases 
inwards (RF WIRELESS WORLD, 2012).  

PUCCH has RBs allocated at the edge of channel BW to avoid fragmenting.  

Table 7. Information carried by PUCCH format (RF WIRELESS WORLD, 2012) 

LTE 
PUCCH 
format 

No. of 
bits per 
subframe 

Normal CP Extended CP 

1 / Scheduling request 
1a 1 1 x HARQ-ACK OR 1 x HARQ-ACK +SR 
1b 2 2 x HARQ-ACK OR 2 x HARQ-ACK +SR 
2 20 CQI CQI OR HARQ-ACK+CQI 
2a 21 1 x HARQ-ACK + CQI / 
2b 22 2 x HARQ-ACK + CQI / 

 

 Physical Uplink Shared Channel (PUSCH): Carries user data and higher layer signaling. It 
corresponds to the UL-SCH transport channel (GHOSH, A. et al., 2011). Namely, the channel is 
used to carry RRC signaling messages, UCI (uplink Control Information) and application data. 
Uplink RRC messages are carried using PUSCH. SRB use PUSCH and each connection will have 
its unique SRB. The LTE PUSCH channel contains user information data and carries both user data 
as well as control signal data. Control information carried, can be MIMO related parameters and 
transport format indicators. The control data information is multiplexed with the user information 
before DFT spreading module in the uplink SC-FDMA physical layer. PUSCH supports QPSK, 
16QAM and 64QAM (optional). The LTE eNodeB selects suitable modulation based on adaptation 
algorithm. UCI is transmitted using PUSCH instead of PUCCH when there is RRC and application 
data to be transferred at the same time instant (RF WIRELESS WORLD, 2012).  
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Figure 12. PUSCH channel frame structure (RF WIRELESS WORLD, 2012) 

As according to Figure 12, modulation type is conveyed to UE using PDCCH DCI format-0. 
This CI also signals RB allocation and TB size. LTE PUSCH channel uses QPSK when TTI 
bundling is enabled. If eNodeB directs UE to use 64QAM, but if UE does not support it, then 
16QAM modulation type is selected (RF WIRELESS WORLD, 2012).  

 

 Physical Random-Access Channel (PRACH): This channel carries the random-access preamble 
sent by UEs (GHOSH, A. et al., 2011). As shown a random-access preamble includes a CP, a 
sequence and a guard time (RF WIRELESS WORLD, 2012). There are 4 different RA (random 
access) preamble formats defined in LTE FDD specifications. The same have been mentioned in 
the Table 8 below. It consists of different preamble and CP duration to accommodate different cell 
sizes. The preamble format to be used in a specific cell is informed to the UE using PRACH 
configuration index. This is broadcasted in SIB-2. PRACH configuration index also indicates SFN 
and subframes. This gives the exact position of random access preamble. 

Table 8. Random-access preamble formats (RF WIRELESS WORLD, 2012) 

LTE PRACH 
preamble format 

CP 
length 

Sequence 
length 

Guard 
time 

Total 
length 

Guard 
time 
equiv. dist. 

Typical 
max. cell 
range 

0  0.10ms  0.8ms  0.10ms  1ms  30Km  15Km  
1  0.68ms  0.8ms  0.52ms  2ms  156km  78km  
2  0.2ms  1.6ms  0.2ms  2ms  60Km  30Km  
3  0.68ms  1.6ms  0.72ms  3ms  216Km  108Km 

 

The preamble uses subcarrier spacing of 1.25 KHz instead of 15 KHz. As represented in Figure 
13 and Figure 14, the random-access preamble occupies 1, 2 or 3 subframes in the time domain (1, 
2, 3 ms) and 839 subcarriers in frequency domain (1.05 MHz). There is a 15 KHz guard band on 
both the sides and hence it uses total of 1.08MHz (equal to 6 RBs). The position of LTE random 
access preamble is defined by PRACH frequency offset parameter carried in SIB-2 (RF 
WIRELESS WORLD, 2012). 
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Figure 13. Position of PRACH in uplink frame (RF WIRELESS WORLD, 2012) 

There is a maximum of one random access preamble in a subframe but more than one UEs can 
use it. Multiple UEs using same preamble resource allocations are differentiated by their unique 
preamble sequences. Accordingly, maximum of 64 preamble sequences are divided into group-A 
and group-B. LTE UE selects the sequence from these two groups based on size of uplink packet 
and radio conditions. This helps eNodeB to calculate PUSCH resources needed for UE uplink 
transfer. Sequences in Group-A are used for smaller size packets or larger size packets in poor radio 
conditions. Sequences in Group-B are used for larger size packets in good radio conditions (RF 
WIRELESS WORLD, 2012). 

 

 

Figure 14. Structure of random access preamble (RF WIRELESS WORLD, 2012) 

 

At the transport uplink layer, LTE has two dedicated channels: RACH and UL-SCH.  

 Random Access Channel (RACH): This is the first message from UE to eNB when the device 
powers on. Even though the name designations for the channel are different in all cellular 
technology (CDMA, GSM, WCDMA, LTE) there is a specific signal that performs the same 
function. In CDMA, it is appointed as 'Access Probe', while in GSM it is known as 'Channel 
Request', and in WCDMA / LTE referred to as 'RACH'. From the aspect of eNB, seemingly the 
signal is received from the UE in almost random character (i.e. in Random timing, Random 
Frequency and in Random Identification) because it doesn’t have information when a user turns on 
the UE (Therefore, it is not completely random, as there is a certain range of agreement between 
UE and Network about the timing, frequency location and possible identification. However, in large 
scale it appears randomly). In terms of Radio Access Network implementation, handling RACH is 
one of the most challenging jobs. The RACH channel is shared, and therefore, there is a high 
probability that two or more devices transmit simultaneously. This can lead to transmission 
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collisions in the medium and the access to the network can be restricted accordingly. In GSM for 
example, the upper limit of number of devices transmitting in one RACH timeslot is not specified. 
If there are collisions, then the device waits for random period before re-transmitting a RACH 
signal again (COX, C., 2014). The parameters for RACH access procedure include: access slots, 
preamble scrambling code, preamble signatures, and spreading factor for data part, available 
signatures and subchannels for each Access Service Class (ASC) and power control information. 
The Physical channel information for PRACH is broadcasted in SIB5/6 and the fast-changing cell 
parameters such as uplink interference levels used for open loop power control and dynamic 
persistence value are broadcasted in SIB7. RACH access procedure follows slotted-ALOHA 
approach with fast acquisition indication combined with power ramping in steps (KUMAR, S., 
2017). 

 
Maximum of 16 different PRACHs can be offered in a cell, in FDD, the various PRACHs are 

distinguished either by employing different preamble scrambling codes or by using common 
scrambling code with different signatures and subchannels. Within a single PRACH, a partitioning 
of the resources between the maximum 8 ASC is possible, thereby providing a means of access 
prioritization between ASCs by allocating more resources to high priority classes than to low 
priority classes. SC 0 is assigned highest priority and ASC 7 is assigned lowest priority. SC 0 shall 
be used to make emergency calls which has more priority. The available 15 access slots are split 
between 12 RACH subchannels. The RACH transmission consists of two parts, namely preamble 
transmission and message part transmission. The preamble part is 4096 chips, transmitted with 
spreading factor 256 and uses one of 16 access signatures and fits into one access slot. ASC is 
defined by an identifier � that defines a certain partition of the PRACH resources and is associated 
with persistence value �(�). The persistence value for �(0) is always set to one and is associated 
with ASC 0. The persistence values for others are calculated from signaling. These persistence 
values control the RACH transmissions. To start a RACH procedure, the UE selects a random 
number �, between 0 and 1 and if � ≤ �(�), the physical layer PRACH procedure is initiated else 
it is deferred by 10 ms and then the procedure is started again. Once the UE PRACH procedure is 
initiated, then the real transmission takes place (KUMAR, S., 2017). 

 
As described above, the preamble part transmission starts first. The UE picks one access 

signature of those available for the given ASC and an initial preamble power level based on the 
received primary CPICH power level and transmits by picking randomly one slot out of the next 
set of access slots belonging to one of the PRACH subchannels associated with the relevant ASC. 
The UE then waits for the proper access indicator sent by the network on the downlink Acquisition 
Indicator Channel (AICH) access slot which is paired with the uplink access slot on which the 
preamble was sent. There are 3 scenarios possible (KUMAR, S., 2017): 

 
a) If the Acquisition Indication (AI) received is a positive acknowledgement, then UE 

sends the data after a predefined amount of with a power level which is calculated from 
the level used to send the last preamble (KUMAR, S., 2017). 

b) IF the AI received is a negative acknowledgement, the UE stops with the transmission 
and hands back control to the MAC layer. After a back off period, the UE will regain 
access according to the MAC procedure based on persistence probabilities (KUMAR, 
S., 2017). 

c) If no acknowledgement is received, then it is considered that network did not receive the 
preamble. If the maximum number of preambles that can be sent during a physical layer 
PRACH procedure is not exceeded, the terminal sends another preamble by increasing 
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the power in steps. The ability of the UE to increase its output power, in terms of steps 
to a specific value is called as open loop power control. RACH follows open loop power 
control (KUMAR, S., 2017) 

 Uplink Shared Channel (UL-SCH): The UL-SCH is used to transmit RRC signaling and 
application data. UCI can be added during physical layer processing before mapping on PUSCH 
physical channel. TBs belong to UL-SCH has variable size. The physical-layer model for Uplink 
Shared Channel transmission is described based on the corresponding physical layer processing 
chain. It should be noted that, in case PUSCH, the scheduling decision is partly made at the network 
side, if there is no blind decoding it is fully done at the network side. The uplink transmission 
control in the UE then configures the uplink physical-layer processing, based on uplink transport-
format and resource-assignment information received on the downlink. As in Figure 15, the 
processing steps that are relevant for the physical-layer model, e.g. in the sense that they are 
configurable by higher layers, are highlighted in blue (3GPP, 2007-2012). After the UL-SCH 
passes through the modules as shown in the figure, UL-SCH code word is formed. This code word 
is modulated and later used to generate SC-FDMA signal. UL-SCH codeword is transmitted during 
1ms subframe. 

 

Figure 15. Physical-layer model for UL-SCH transmission (3GPP, 2007-2012) 

2.1.3. Diversity processing 
The methods which improve the robustness and reliability of a message signal by implementing two or 

more communication channels with various characteristics are denoted as a diversity scheme (AVIAT 
NETWORKS, 2017). Specifically, diversity techniques are used for tackling fading and co-channel 
interference and avoiding error bursts. In other words, a same signal can be transmitted in multiple versions, 
and then received and combined at the receiver. A redundant forward error correction code can be 
implemented, and different parts of the message can be transmitted over different channels. The diversity 
techniques are utilizing the multipath propagation, which is a known problem in wireless systems and 
discussed accordingly in the following chapters; which results in a diversity gain, measured in decibels 
(dB). There are several diversity techniques (MOLISCH, A. F., 2011):  
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 Time diversity – Multiple versions of a single signal are transmitted at different time intervals, 
which adds a redundant forward error correction code (FEC) and the message is spread in terms of 
bit-interleaving before it is sent. This aids avoidance of error bursts and simplifies the error 
correction procedure.  

 Frequency diversity – Refers to the application of various frequency manipulation techniques for 
reaching improved spectral efficiency (an example for frequency diversity technique is OFDM – 
Orthogonal Frequency Division Multiplexing). 

 Space diversity – Also known as antenna diversity, refers to the spatial utilization and combining 
of antennas in order to achieve better spectral efficiency. For example, such techniques involve the 
MIMO (Multiple-Input-Multiple-Output), beamforming or space-time coding.  

 Polarization diversity – When multiple versions of a same signal are transmitted and received 
through antennas with different polarization.  

 Multiuser diversity – In multiuser diversity techniques, there are methods such as opportunistic user 
scheduling that selects the best user candidate as a receiver, according to the qualities of each 
channel between the transmitter and each receiver. The channel quality information is then spread 
by the receiving user to the transmitter using restrictive levels of resolution, after which the 
transmitter (base station) can process the multiuser diversity.  

 Cooperative diversity – Widely implemented in Distributed Antenna Systems (DAS) and attains 
antenna diversity gain by means of the cooperation amongst antennas belonging to each node 
(YEO, Y. et al., 2018).  

 

2.1.4. Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal 
Frequency Division Multiple Access (OFDMA) for the downlink channel in 
LTE 

The Orthogonal Frequency Division Multiple Access technique is based on the Orthogonal Frequency 
Division Multiplexing (OFDM). Namely, OFDM (3GPP, 2017) [according to 3GPP Specification 25.892] 
is one of the most prominent advances in access techniques. It enables bigger transmission rates with a 
significant equalization and detection convolutions. High transmission is accomplished through modulating 
a set of narrowband orthogonal subcarriers. An OFDM block is created as shown in Figure 16. The sequence 
of L-modulated symbols, x0, x1, . . ., xL−1, are converted into L parallel streams before taking the N -point 
Inverse Fast Fourier Transform (IFFT) (COCHRAN, W.T. et al., 1967) of each. The possible mismatch 
between L and N is overcome by zero padding the remaining N − L inputs of the IFFT block. Next, the N 
outputs, s0, s1, . . ., sN−1 are converted back to a serial stream before adding the Cyclic Prefix (CP). Finally, 
the resulting OFDM block is converted to its analog form prior to sending it over the channel (TAHA, A-
E. M. et al., 2012).  
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Figure 16. OFDM modulation with IFFT 

With this architecture, an OFDM block can resist the Inter-Carrier Interference (ICI) by empowering 
orthogonal subcarriers, that is, as a result of using the IFFT (Inverse Fast Fourier Transform). It is also 
efficient in extenuating the channel time dispersion by introducing the CP (Cyclic Prefix). Truthfully, the 
insertion of the CP is a generally used method to produce a so-called guard period between consecutive 
OFDM symbols. The CP is basically a reiteration of the vestige of the preceding OFDM symbol. The span 
of this reiteration is made long enough to surpass the channel delay spread, hence extenuating the channel 
delay spread instigates Inter-Symbol-Interference (ISI). Additionally, the detection process becomes a 
circular convolution process which augments the signal detection capabilities and abridges the equalization 
procedure. OFDM Demodulation overturns the above-mentioned procedures. After converting the received 
signal back into the digital domain, the CP is detached. Following that, the signal is transformed into a 
parallel N data streams before performing an N -point FFT (Fast Fourier Transform) (COCHRAN, W.T. et 
al., 1967). Finally, the sequence is returned into a serial one. These steps are represented in Figure 17.  

 

Figure 17. OFDM demodulation 

Despite the many advantages of OFDM, actual implementations incurred some challenges. The most 
famous one is the high Peak-to-Average Power Ratio (PAPR) problem (GAMAGE, H. et al., 2016). 
Principally, high PAPR, which results from the coherent addition of the modulated subcarriers, reduces the 
efficiency of the power amplifier. The high PAPR also sophisticates the Analog to Digital (ADC) and 
Digital to Analog (DAC) conversion processes. While these two disadvantages can be overcome at the base 
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station side, they form a serious challenge to the battery-powered Mobile Station (MS). Consequently, 
3GPP replaced OFDM at the uplink in their IMT-Advanced proposal by SC-FDMA (TAHA, A-E. M. et 
al., 2012).  

OFDM is employed in all modern wireless technologies, such as: IEEE 802.11 Wi-Fi, IEEE 802.16 
WiMAX, 3G/UMTS, 4G/LTE, IEEE 802.15.3a Ultra-Wideband (UWB) Wireless PAN, IEEE 802.20 
Mobile Broadband Access Technology (MBWA) as well as satellite systems as DVB-RCS Digital Video 
Broadcast – Return Channel via Satellite, Flash-OFDM cellular systems etc. Also, some wireline 
technologies are exploiting the benefits of OFDM, such as: ADSL and VDSL broadband access via POTS 
copper wiring, MoCA (Multimedia over Coax Alliance) networking, PLC Power Line Communication etc. 
For the purpose of more data services, a system has to provide high spectral efficiency or better spectrum 
utilization. Another trait that should be pointed out is resiliency to interference, where a system needs to 
enable excellent performance in unregulated and regulated frequency bands. The multi-path problem 
(CISCO, 2008) degrades a signal in such way that when a radio frequency (RF) signal is transmitted towards 
the receiver, the general behavior of the RF signal is to grow wider as it is transmitted further. As in Figure 
18, on its way, the RF signal encounters objects that reflect, refract, diffract, absorb, scatter or interfere with 
the signal (BIEHLE, G., 2016). When an RF signal is reflected off an object, multiple wavefronts are 
created. As a result of these new duplicate wavefronts, there are multiple wavefronts that reach the receiver. 

 

Figure 18. Laws of Reflection, Refraction, Diffraction, Absorption and Scattering (BIEHLE, G., 2016) 

Multipath propagation occurs when RF signals take different paths from a source to a destination. A part 
of the signal arrives at the destination while another part bounces off an obstruction, then proceeds to the 
destination. As a result of the reflection, parts of the signal encounter delay and travel a longer path to the 
destination. Multipath can be defined as the combination of the original signal plus the duplicate wavefronts 
that result from reflection of the waves off obstacles between the transmitter and the receiver. Multipath 
distortion is a form of RF interference that occurs when a radio signal has more than one path between the 
receiver and the transmitter. This occurs in cells with metallic or other RF-reflective surfaces, such as 
furniture, walls, or coated glass (CISCO, 2008).  

For example, as in Figure 19, the multi-path problem reflects on a Bluetooth transmitting and receiving 
systems (KEITHLEY INSTRUMENTS, 2008). With a symbol rate of 1 MSymbols/s, it is noticeable that 
Bluetooth uses a single carrier to transmit a single symbol at a time. This case is analogous to the 2G - GSM 
and CDMA systems. For that purpose, to increase the data throughput, the symbol rate has to be increased. 
With the cumulative symbol rate, parallelly the Multi-path distortion will intensify. For comparative 
incidence, in contrast to Bluetooth, W-CDMA uses 3.16 MSymbols/sec. If the Multi-path effect is fervent, 
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then a solution would be to reduce the symbol rate by a third, or namely to 300kSymbols/s. This will reduce 
the data throughput as well, which is not a favored setting.  

 

 

Figure 19. The Multi-path problem (KEITHLEY INSTRUMENTS, 2008) 

To tackle the problem of the directly-proportional relation between the symbol rate and Multi-path 
effect, a solution is to increase the number of carriers from a single one to multiple. The modern 
technologies such as Wi-Fi, WiMAX or LTE use multiple carriers to provide access to multiple users 
simultaneously and deliver robust connection in dense environments or locations obstructed by numerous 
physical objects (Figure 20).  

 

Figure 20. 802.11a-g Wi-Fi multiple carriers with 312.5 KHz sub-spacing 

In order to calculate the data rate, it is required to multiply the symbol rate by the number of sub-carriers 
and the coded bits divided by the subcarriers, all of which is multiplied by ¾ the coding rate. Specifically: 
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�� , where �� is the symbol rate, � is the number of subcarriers, 
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�
 is the number of coded bits 

per sub-carrier and �� is the coding rate.  For example, 802.11a-g Wi-Fi uses 250 kbps symbol rate, 48 data 
sub-carriers, from which 6 coded bits per sub-carrier, which gives the actual data rate of 54 Mbps. A 
standard Wi-Fi symbol is 4us (useful symbol duration), composed of 3.2us IFFT and 0.8us long guard 
interval. If using a short guard interval of 0.4us then the total symbol time is 3.6us. The subcarrier spacing 
is equal to the reciprocal of symbol time. Since the useful symbol duration is 3.2us IFFT then the reciprocal 

of symbol duration would be 
� �����

�.������� ���
 = 312500 cycles/sec, which is 312.5 KHz spacing (ROHLING, 

Hermann, 2011) .  



41 
 

OFDM subcarrier spacing creates "nulls", canceling out inter-carrier interference (ICI) without the need 
for guard bands or expensive bandpass filters. OFDM divides a given channel into many narrower 
subcarriers. The spacing is such that the subcarriers are orthogonal (GOLDBLATT, Robert, 1987), so they 
won’t interfere with one another despite the lack of guard bands between them. This comes about by having 
the subcarrier spacing equal to the reciprocal of symbol time. All subcarriers have a complete number of 
sine wave cycles that upon demodulation will sum to zero. This indicates that the spacing of the subcarriers 
is directly associated to the useful symbol time, or specifically, the amount of time the transmitter spends 
performing IFFT. Because of this relationship, the resulting synchronization frequency response curves 
from each subcarrier create signal nulls in the adjacent subcarrier frequencies thus preventing inter-carrier 
interference (ICI) (GARCIA, M. and Oberli, C., 2009). OFDM is a form of frequency division multiplexing 
(FDD), which typically requires guard bands between carriers and specialized hardware with bandpass 
filters to remove interference. OFDM eliminates the need for these which increases spectral efficiency and 
reduces cost and complexity of the system since all functions can be completed with digital signal 
processing (DSP) (ELKHODR, M. et al., 2017). As shown in Figure 21, Each 20 MHz channel, whether 
it's 802.11a/g/n/ac, is composed of 64 subcarriers spaced 312.5 KHz apart. This spacing is chosen because 
64-point FFT sampling is used. 802.11a/g for example, employs 48 subcarriers for data, 4 for pilot, and 12 
as null subcarriers. 802.11n/ac use 52 subcarriers for data, 4 for pilot, and 8 as null (ROHLING, Hermann, 
2011) (ANDREW, A., 2015). 

 

Figure 21. OFDM subcarriers in 802.11a-g Wi-Fi (ANDREW, A., 2015) 

Another advantage of OFDM is that by using a reduced symbol rate of 250,000 symbols per second, the 
negative effects of multipath distortion are reduced. Since each symbol occupies more time, there is more 
resilience to delay spread which is caused by multipath when signal reflections cause multiple copies of the 
same transmitted symbol to arrive at the receiver at slightly different times. In contrast to the OFDM symbol 
rate, the 802.11b DSSS and Bluetooth both have over 1M symbols per second, where DSSS has 11M 
symbols per second if the 'chipping' rate is considered (ROHLING, Hermann, 2011) (ANDREW, A., 2015). 

However, multipath also has a negative effect on OFDM, especially when clients are mobile 
(ANDREW, A., 2015). The orthogonality of the subcarriers can be lost when movement and multipath are 
present because signal delays (the delay spread) affect the reciprocal relationship of the subcarriers and the 
useful symbol time (IFFT). Without proper orthogonality between subcarriers, inter-carrier interference 
(ICI) would result from this doppler shifting. The solution for this, is to include a cyclic prefix (CP) with 
each symbol, which is part of the guard interval that allows channel estimation and equalization. Thus, 
contrary to popular belief, the guard interval is actually not empty airtime but actively used for cyclic 
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prefixing to allow proper OFDM operation in a multipath environment . One of the primary reasons for 
using OFDM as a modulation format within LTE (and many other wireless systems for that matter) is its 
resilience to multipath delays and spread. However, it is still necessary to implement methods of adding 
resilience to the system. This helps overcome the inter-symbol interference (ISI) that results from this. In 
areas where inter-symbol interference is expected, it can be avoided by inserting a guard period into the 
timing at the beginning of each data symbol. It is then possible to copy a section from the end of the symbol 
to the beginning. As previously mentioned, this is known as the cyclic prefix (CP). The receiver can then 
sample the waveform at the optimum time and avoid any inter-symbol interference caused by reflections 
that are delayed by times-up to the length of the cyclic prefix, CP. The length of the cyclic prefix is 
important. If it is not long enough then it will not counteract the multipath reflection delay spread. If it is 
too long, then it will reduce the data throughput capacity. For LTE, the standard length of the cyclic prefix 
has been chosen to be 4.69 µs. This enables the system to accommodate path variations of up to 1.4 km. 
With the symbol length in LTE set to 66.7 µs. The symbol length is defined by the fact that for OFDM 
systems the symbol length is equal to the reciprocal of the carrier spacing so that orthogonality is achieved. 
With a carrier spacing of 15 kHz, this gives the symbol length of 66.7 µs (ROHLING, Hermann, 2011) 
(ANDREW, A., 2015). 

Despite the slower symbol rate, there are much higher data rates due to the increase in carriers being 
modulated by an order of magnitude, from 1 (DSSS) to 48 (OFDM in 802.11a/g) and 52 (OFDM in 
802.11n/ac) per 20 MHz channel. Therefore, a serial data stream is taken, and parallel data transmission is 
performed across the frequency domain. The sub-carriers are spaced at regular intervals called “sub-carrier 
frequency spacing” or offset (∆�). The sub-carrier frequency relative to the center frequency is �∆�, where 
� is the sub-carrier number (Figure 22). 

 

Figure 22. OFDM sub-carrier spacing (KEITHLEY INSTRUMENTS, 2008) 

There are two types of frame structure in the LTE standard, Type 1 and Type 2. Type 1 uses Frequency 
Division Duplexing (uplink and downlink separated by frequency), and TDD uses Time Division 
Duplexing (uplink and downlink separated in time). FDD is the dominant frame structure used in most of 
the LTE deployments (3GPP, 2017).  
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Figure 23. An FDD frame for 1.4 MHz channel and normal CP (3GPP, 2017) 

According to Figure 23, a resource block (RB) is the smallest unit of resources that can be allocated to 
a user. The resource block is 180 kHz wide in frequency and 1 slot long in time. In frequency, resource 
blocks are either 12 x 15 kHz subcarriers or 24 x 7.5 kHz subcarriers wide. The number of subcarriers used 
per resource block for most channels and signals is 12 subcarriers. Frequency units can be expressed in 
number of subcarriers or resource blocks. For instance, a 5 MHz downlink signal could be described as 25 
resource blocks wide or 301 subcarriers wide (DC subcarrier is not included in a resource block). The 
underlying data carrier for an LTE frame is the resource element (RE). The resource element, which is 1 
subcarrier x 1 symbol, is the smallest discrete part of the frame and contains a single complex value 
representing data from a physical channel or signal (3GPP, 2017).  

In FDD mode, the UL and DL frames are both 10ms long and are divided by frequency (Figure 24) or 
by time (Figure 25).  

 

Figure 24. LTE frame Type-1 (FDD) 

 

 

Figure 25. LTE frame Type-2 (TDD) (3GPP, 2017) 

For full-duplex FDD, uplink and downlink frames are separated by frequency and are transmitted 
continuously and synchronously. For half-duplex FDD, the only difference is that a UE cannot receive 
while transmitting. The base station can specify a time offset (in PDCCH) to be applied to the uplink frame 
relative to the downlink frame. In TDD mode, the uplink and downlink subframes are transmitted on the 
same frequency and are multiplexed in the time domain. The locations of the uplink, downlink, and special 
subframes are determined by the uplink-downlink configuration. There are seven possible configurations 
given in the standard (3GPP, 2017).  
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The OFDM signal used in LTE comprises maximum of 2048 different sub-carriers, having a spacing of 
15 kHz. Although it is mandatory for the devices to have capability to be able to receive all 2048 sub-
carriers, not all need to be transmitted by the base station which only needs to be able to support the 
transmission of 72 sub-carriers. In this way all mobiles will be able to talk to any base station. Since the 
bandwidths defined by the LTE standard are 1.4, 3, 5, 10, 15, and 20 MHz, the Table 9 shows how many 
subcarriers and resource blocks there are in each bandwidth for uplink and downlink (3GPP, 2017). 

Table 9. Frequency measures (3GPP, 2017) 

Bandwidth 
Resource 
Blocks 

Subcarriers 
(downlink) 

Subcarriers 
(uplink) 

1.4 MHz 6 73 72 
3 MHz 15 181 180 
5 MHz 25 301 300 
10 MHz 50 601 600 
15 MHz 75 901 900 
20 MHz 100 1201 1200 

 

As described before, uplink user transmissions consist of uplink user data (PUSCH), random-access 
requests (PRACH), user control channels (PUCCH), and sounding reference signals (SRS). FDD and TDD 
uplink transmissions have the same physical channels and signals. The only difference is that TDD frames 
include a special subframe, part of which can be used for SRS and PRACH uplink transmissions (Figure 
25). The following figure stands as an example for User 1 that has a PUSCH allocation of [RB 20, slots 4-
5], and User 2 that has a PUCCH allocation of [subframe 2, PUCCH index 0]. User 3 has been given an 
SRS allocation of subcarrier 94 to 135 in subframe 2, and User 4 is transmitting in a PRACH allocation. A 
user cannot transmit both PUCCH and PUSCH data in the same slot (3GPP, 2017).  
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Figure 26. LTE uplink subframes 2-3; Bandwidth: 5 MHz = 300 subcarriers = 25 RB; Normal CP, PUCCH Type 2, 15 
KHz subcarrier spacing (3GPP, 2017) 

Within the OFDM signal it is possible to choose between three types of modulation for the LTE signal: 

a) QPSK (= 4QAM) 2 bits per symbol 

b) 16QAM   4 bits per symbol 

c) 64QAM   6 bits per symbol 

The exact LTE modulation format is chosen depending upon the prevailing conditions. The lower forms 
of modulation, (QPSK) do not require such a large signal to noise ratio but are not able to send the data as 
fast. Only when there is a sufficient signal to noise ratio can the higher order modulation format be used 
(ADRIO COMMUNICATIONS LTD., 2017). 

A. Measurements based on constellations and Error Vector Magnitude (EVM) metrics 
To measure the efficiency of the OFDM system, it is required to comprehend the concepts of parallel 

symbol transmissions in OFDM, as described previously. In Figure 27, the symbol that undergoes an 
inverse Fast Fourier Transform is coupled in I and Q components that form the waveforms, which is called 
serial symbol transmission. However, OFDM utilizes the efficiency of parallel symbol transmission with 
coupling multiple symbols using inverse Fast Fourier Transform, that results also in modulated I and Q 
waveforms. In this case, multiple carriers will transmit multiple symbols in parallel and the carriers may 
have modulations, such as: BPSK, QPSK, 16QAM, 64QAM etc.  
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Figure 27. From symbol to waveform (serial and parallel symbol transmissions) 

Quadrature Amplitude Modulation (QAM) is a form of modulation which is widely used for modulating 
data signals onto a carrier used for radio communications. It is widely used because it offers advantages 
over other forms of data modulation such as PSK, although many forms of data modulation operate 
alongside each other (ADRIO COMMUNICATIONS LTD., 2017).  

Quadrature Amplitude Modulation, QAM is a signal in which two carriers shifted in phase by 90 degrees 
are modulated and the resultant output consists of both amplitude and phase variations. Since both 
amplitude and phase variations are present, it may also be considered as a mixture of amplitude and phase 
modulation. A motivation for the use of quadrature amplitude modulation comes from the fact that a straight 
amplitude modulated signal, i.e. double sideband even with a suppressed carrier, and occupies twice the 
bandwidth of the modulating signal. This is very wasteful of the available frequency spectrum. QAM 
restores the balance by placing two independent double sideband suppressed carrier signals in the same 
spectrum, as one ordinary double sideband suppressed carrier signal. Quadrature amplitude modulation, 
QAM, when used for digital transmission for radio communications applications can carry higher data rates 
than ordinary amplitude modulated schemes and phase modulated schemes. As with phase shift keying 
(PSK), etc., the number of points at which the signal can rest, i.e. the number of points on the constellation 
is indicated in the modulation format description, e.g. 16QAM uses a 16-point constellation. When using 
QAM, the constellation points are normally arranged in a square grid with equal vertical and horizontal 
spacing and as a result the most common forms of QAM use a constellation with the number of points equal 
to a power of 2 i.e. 4, 16, 64 etc. By using higher order modulation formats, i.e. more points on the 
constellation, it is possible to transmit more bits per symbol. However, the points are closer together and 
they are therefore more susceptible to noise and data errors. Normally a QAM constellation is square and 
therefore the most common forms of QAM 16QAM, 64QAM and 256QAM. The advantage of moving to 
the higher order formats is that there are more points within the constellation and therefore it is possible to 
transmit more bits per symbol. The downside is that the constellation points are closer together and therefore 
the link is more susceptible to noise. As a result, higher order versions of QAM are only used when there 
is a sufficiently high signal to noise ratio. To provide an example of how QAM operates, the constellation 
diagram in Figure 28 shows the values associated with the different states for a 16QAM signal. From this 
it can be seen that a continuous bit stream may be grouped into fours and represented as a sequence (ADRIO 
COMMUNICATIONS LTD., 2017). 
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Figure 28. 16QAM modulation constellation 

Although QAM appears to increase the efficiency of transmission for radio communications systems by 
utilizing both amplitude and phase variations, it has a number of drawbacks. The first is that it is more 
susceptible to noise because the states are closer together so that a lower level of noise is needed to move 
the signal to a different decision point. Receivers for use with phase or frequency modulation are both able 
to use limiting amplifiers that are able to remove any amplitude noise and thereby improve the noise 
reliance. This is not the case with QAM. The second limitation is also associated with the amplitude 
component of the signal. When a phase or frequency modulated signal is amplified in a radio transmitter, 
there is no need to use linear amplifiers, whereas when using QAM that contains an amplitude component, 
linearity must be maintained. Unfortunately, linear amplifiers are less efficient and consume more power, 
and this makes them less attractive for mobile applications (ADRIO COMMUNICATIONS LTD., 2017). 

To measure the efficiency of the eNB base station, a constellation diagram is formed within a signal 
analyzer which inspects the radio access network. A constellation diagram is a representation of a digital 
modulation scheme in the complex plane, in the particular case a 16QAM modulation scheme. If the 
constellation does not look linear, it is due to excess or shortage of gain at the I or Q components of the 
modulated signal. That indicates the necessity to adjust the gains of the particular channel properly. In such 
case, the constellation offset can be observed at the signal analyzer (Figure 29). 

 

 

Figure 29. Origin offset example of 16-QAM constellation (KEITHLEY INSTRUMENTS, 2008) 

The I and Q components of the signal are forming a correlation angle of 90˚, which when summed forms 
the modulated signal (Figure 30).  
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Figure 30. Digital modulation of a signal (KEITHLEY INSTRUMENTS, 2008) 

The amplitude of the signal is represented as the length of A, that is ��� + �� (Pythagorean Theorem). 

And the phase (angle �) is �����(
�

�
). If the signal is represented on a complex plane, it would look as in 

Figure 31, that is �(�) = ����(2���(�) + �, where �� is the signal frequency. 

 

 

Figure 31. Representation of signal on complex plane (KEITHLEY INSTRUMENTS, 2008) 

The Error Vector Magnitude (EVM) is a metric of performance that derives the relationships among 
signal-to-noise ratio (SNR) and the bit error rate (BER). Namely, “Error Vector Magnitude (EVM) is a 
performance metric for assessing the quality of communication. EVM expresses the difference between   the   
expected complex voltage of a demodulated symbol and the value of the actual received symbol” (SHAFIK, 
R. A. et al., 2006).  

Bit Error Rate (BER) is a used performance metric which describes the probability of error in terms of   
number of 28 mistaken bits per bit transmitted. BER is a direct effect of channel noise for Gaussian noise 
channel models. For fading channels, BER performance of any communication system is worse and can be 
directly related to that of the Gaussian noise channel performance. Considering M-ary modulation with 
coherent detection in Gaussian noise channel and perfect recovery of the carrier frequency and phase, it can 
be shown that (SHAFIK, R. A. et al., 2006):  
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Assuming raised cosine pulses with sampling at data rate, the error rate in terms of signal to noise ratio 
would then be:  
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 is the signal-to-noise ratio for the M-ary modulation system and raised cosine, pulse shaping 

at data rate. Therefore, the BER performance in terms of SNR is defined and used as a main tool for many 
adaptive systems. Consequently, the EVM (Error Vector Magnitude) measurements are performed on the 
vector signal analyzers, real-time analyzers or other instruments that capture a time record and internally 
perform a FFT to enable frequency domain analysis. Signals are down-converted before EVM calculations 
are made. Since different modulation systems such as: BPSK, 4-QAM, 16-QAM etc., have different 
amplitude levels, to calculate and compare EVM measurements effectively some normalization is typically 
carried out. The normalization is derived such that the mean square amplitude of all possible symbols in 
the constellation of any modulation scheme equals one. Thus, EVM is defined as the root-mean-square 
(RMS) value of the difference between a collection of measured symbols and ideal symbols. These 
differences are averaged over a given, typically large number of symbols and are often shown as a percent 
of the average power per symbols of the constellation. Therefore, EVM can be given as:  
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, where �� is the normalized nth symbol in the stream of measured symbols, ��,� is the ideal normalized 

constellation point of the nth symbol and N is the number of unique symbols in the constellation. The 
expression cannot be replaced by their unnormalized value, since the normalization constant for the 
measured constellation and the ideal constellation are not the same. The normalization scaling factor for 
ideal symbol is represented by:  
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, where �� is the total power of the measured constellation of T symbols. For RMS voltage levels of 
inphase and quadrature components, �� and �� and for T>>N, it can be shown that �� is expressed as:  
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The normalization factor for ideal case can be directly measured from N unique ideal constellation points 
as:  
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Accordingly, the EVM per root-mean-square can be extended by:  
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, where �� = ����
�|�| is the normalized in-phase voltage for measured symbols and ��,�����,��|��| is the 

normalized in-phase voltage for ideal symbols in the constellation, �� = ����
�|�|  is the normalized 

quadrature voltage for measured symbols and ��,�����,��|��| is the normalized quadrature voltage for ideal 

symbols in the constellation. This definition is used as a standard definition for the EVM according to the 
IEEE 802.11a – 1999 (SHAFIK, R. A. et al., 2006).  

To represent the EVM into percentage or dB, it is converted accordingly: 
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And 
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, where P is the RMS power.  

The measurements taken from a signal analyzer would represent the EVM as a ratio of measured 
amplitude to intended amplitude in percentage (Figure 32), denoted by the red line. The blue line indicates 
the measured signal and the black line is the intended signal. The angle � the black and blue lines form is 
the phase error, or IQ Error Phase. If the portion of this image is imagined to be one quadrant of the (x,y) 
axis at a signal analyzer constellation, then the unit circle is depicted by the purple dashed line. At this 
point, the distance that we obtain from the dashed line and the red dot is the actual magnitude error, or more 
specifically IQ Error Magnitude.  
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Figure 32. EVM ratio of measured amplitude to intended amplitude  

 When error occurs, the signal analyzer would then simply indicate the constellation imbalance as in 
Figure 33 and Figure 34. 

 

 

Figure 33. Quadrature error examples - QPSK constellations (KEITHLEY INSTRUMENTS, 2008) 
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Figure 34. Modular imbalances examples - QPSK constellations (KEITHLEY INSTRUMENTS, 2008) 

If the signal is subdued to the effects of gain imbalances, then the constellation imperfections are clearly 
indicated at the signal analyzer plot. For example, since Quadrature Amplitude Modulation is the widely 
used modulation scheme in this work, the power amplifier nonlinearity can contribute to EVM as shown in 
Figure 35. 

 

 

Figure 35. EVM due to power amplifier nonlinearity 

Another factor is the Inter Symbol Interference (ISI), which can contribute to have symbols received at 
delayed intervals, and thus the constellation would appear as in Figure 36. 
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Figure 36. Inter Symbol Interference in case of 16-QAM constellations 

Finally, the constellation display at the signal analyzer is an actual composite of all OFDM sub-carrier 
symbols, for particular frequency (Figure 37) and at a particular time (Figure 38), accordingly.  

 

Figure 37. Constellation display - a composite of all OFDM sub-carrier symbols with a particular frequency f 
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Figure 38. Constellation display - a composite of all OFDM sub-carrier symbols at a particular time t 

OFDM as a modulation technique is not a multi-user, because all sub-carriers in a channel are used to 
facilitate a single link. To expand the functionality to multiple users, OFDMA (Orthogonal Frequency 
Division Multiple Access) assigns different number of sub-carriers to different users in a similar fashion as 
in CDMA. The parallel multi-symbol transmission described in Figure 27 is assigned logical number per 
sub-channel. The transmission on both DL and UL channels is performed in bursts, which defines a single 
OFDMA symbol number. As shown in Figure 39 and Figure 40, the physical sub-channels are changed per 
each symbol, using a PN sequence (3GPP, 2017).  

 

Figure 39. Dynamic symbol mapping in OFDMA 
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Figure 40. PN sequence for each physical sub-channel 

2.1.5. Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink 
channel 

Similar to OFDMA, SC-FDMA divides the transmission bandwidth into multiple parallel sub-carriers 
maintaining the orthogonality of the subcarriers by the addition of the cyclic prefix (CP) as a guard interval. 
However, in SC-FDMA the data symbols are not directly assigned to each subcarrier independently like in 
OFDMA. Instead, the signal which is assigned to each subcarrier is a linear combination of all modulated 
data symbols transmitted at the same time instantaneously. For the LTE uplink, a different concept is used 
for the access technique. Although still using a form of OFDMA technology, the implementation is called 
Single Carrier Frequency Division Multiple Access (SC-FDMA). One of the key parameters that affects all 
mobiles is that of battery life. Even though battery performance is improving all the time, it is still necessary 
to ensure that the mobiles use as little battery power as possible. With the RF power amplifier that transmits 
the radio frequency signal via the antenna to the base station being the highest power item within the mobile, 
it is necessary that it operates in as efficient mode as possible. This can be significantly affected by the form 
of radio frequency modulation and signal format. Signals that have a high peak to average ratio and require 
linear amplification do not lend themselves to the use of efficient RF power amplifiers. As a result it is 
necessary to employ a mode of transmission that has as near a constant power level when operating. 
Unfortunately, OFDM has a high peak-to-average ratio. While this is not a problem for the base station 
where power is not a particular problem, it is unacceptable for the mobile. As a result, LTE uses a 
modulation scheme known as SC-FDMA - Single Carrier Frequency Division Multiplex which is a hybrid 
format. This combines the low peak to average ratio offered by single-carrier systems with the multipath 
interference resilience and flexible subcarrier frequency allocation that OFDM provides (ADRIO 
COMMUNICATIONS LTD., 2017). The difference between OFDMA and SC-FDMA is depicted in Figure 
41.  
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Figure 41. LTE uses SC-FDMA at the uplink (UL) 

 

2.1.6. Multiple-antenna techniques  
The wireless technologies, including LTE, utilize the cutting-edge radio antenna technologies in order 

to achieve maximal throughput, better spectral efficiency and accommodate much higher number of users. 
Besides the technology advances, there are various antenna techniques used for increasing the efficiency of 
the radio system. Multiple antennas can be used to achieve a multiplexing gain, a diversity gain, or an 
antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference 
ratio of wireless systems, correspondingly. The field of multiple-antenna systems, often called multiple-
input multiple-output (MIMO) systems, is a major subject of research and is evolving rapidly. For an 
optimal level of quality of service, not only high bit rates are needed, but also a good error performance 
(MOLISCH, A. F., 2011). However, the disruptive characteristics of wireless channels, mainly caused by 
multipath signal propagation (due to reflections and diffraction) and fading effects, make it challenging to 
accomplish both of these goals at the same time. Particularly, given a fixed bandwidth, there is always an 
essential compromise between bandwidth efficiency (high bit rates) and power efficiency (small error 
rates). Conventional single-antenna transmission techniques aiming at an optimal wireless system 
performance, operate in the time domain and/or in the frequency domain. Specifically, channel coding and 
modulation (i.e. OFDM) are ordinarily used to permeate the negative effects of multipath fading. However, 
regarding the ever-growing demands of wireless services, the antenna technologies are advancing very fast. 
In fact, when using multiple antennas, the previously vacant spatial domain can be exploited. The immense 
potential of using multiple antennas for wireless communications has only become clear during the last 
decade. At the end of the 1990s, multiple-antenna techniques were shown to provide an innovative method 
for achieving both higher bit rates and smaller error rates. In addition to this, multiple antennas can also be 
utilized in order to alleviate co-channel interference, which is additional major source of disruption in all 
wireless communication systems. Altogether, multiple-antenna techniques form a key technology for 
modern wireless communications (MIETZNER, J. et al., 2009).  

To accommodate the exponentially-higher expected number of connected devices after 2020, the 5G 
radio systems have massive advancements in antenna technologies, as well as techniques used to back their 
operation. Since there is no particular definition about the structure of a 5G wireless communication system 
at this point, it can be acknowledged that an evolution of the present radio technologies is taking place, of 
which, Massive MIMO (ARAÚJO, D. C. et al., 2016, pp.1938-1946) and Millimeter wave (TOKGOZ, K. 
K. et al., 2018, pp.168-170) technologies are considered to be the key radio progressions for 5G wireless 
communications. Traditionally, the antenna in mobile communication systems is a passive element and is 
separated from the RF transceivers. For massive MIMO, at either lower microwave band or millimeter 
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wave band, the active antenna will be seamlessly integrated with RF transceivers and even with RoF or 
ADC (DAC) and E/O (O/E). Therefore, the antenna for 5G wireless communications will have distinct 
characteristics compared to traditional antennas (WEI, H. et al., 2014).  

A. Smart antennas 
The initial usage of smart antennas dates back in the beginning of the 20th century, which was mostly 

directed towards military appliances and intelligence gathering. The first commercial applications of smart 
antennas start with the rapid growth of cellular technologies in the 1980s. Since then, the remaining wireless 
technologies are acting as an active driver for the development of the smart antennas in the 1990s, namely 
satellite broadcasting systems, indoor wireless networks, fixed and mobile wireless systems etc. The 
resulting efforts thus have produced techniques such as MIMO (Multiple-Input Multiple-Output) as well as 
implementation of access techniques (as OFDMA or SDMA), where multiple antennas are used for 
enhancing the spectrum and accommodating larger number of users. A smart antenna is comprised of an 
antenna array, combined with signal processing in both space and time. Spatial processing enables multiple 
degrees of freedom in the system design, which can increase the global performance of the system. The 
concept of antenna arrays is not new and is widely implemented in radar and aerospace technology through 
the last century (CHRYSSOMALLIS, M., 2000, pp.129-136).  

The smart antenna works in the manner of propagation of each path differently for each different antenna 
element. This allows collection of elements to distinguish individual paths to within a certain resolution. 
Therefore, smart antenna transmitters can encode different streams of data onto different paths or linear 
combination of paths, which increases the data rate and provides diversity gain. Also, this procedure 
automates the placement of the antenna in that way that the smart antenna adapts electronically to the 
environment (ANKIT, D. P., 2013). There are three antenna groups:  

 Phased antenna array systems - A phased array antenna is comprised of numerous radiating 
elements, each containing a phase shifter. Beams are formed by shifting the phase of the signal 
emitted from each radiating element, in order to provide constructive/destructive interference, as 
well as to steer the beams in the anticipated direction. This type of antenna array system is widely 
used in radar technologies.  

 Switched beam systems – Switched-beam antennas have several fixed beam patterns. This approach 
is not very flexible, but its simplicity allows unsophisticated deployments. Switched-beam smart 
antenna systems are shown to either increase the capacity or extend the radio coverage by 
increasing the carrier-to-interference ratio (CIR), consisting of a multiple narrow-beam directional 
antenna along with a beam-selection algorithm. Switched-beam smart antennas offer a potentially 
more desirable solution than adaptive antenna arrays since they are based on well-known 
technology, require no complicated beam-forming (combining) network, and require no significant 
changes to the existing cellular infrastructure. Switched-beam antennas are based on the retro-
targeting concept (STÜBER, G. L., 1996). The choice of the triggered receive beam is constructed 
on the received signal-strength indicator (RSSI) [and also the supervisory audio tone (SAT) for the 
advanced mobile phone systems (AMPS)]. Forward-channel transmissions (BS’s–MS’s) are over 
the best received beam, i.e., the same beam is used for both reception and transmission. Beam 
forming is accomplished by using physically directive antenna elements to create aperture and, 
thus, gain (HO, M-J. et al., 1998, pp.10-19) 

 Adaptive antenna array systems - These type of antenna systems allow the beam to be continually 
steered (directed) to any direction, in order to allow for the maximum signal to be received and the 
interference minimized. Adaptive antenna arrays have been successfully used in TDMA mobile 
wireless systems to mitigate rapid dispersive fading, suppress cochannel interference, and, 
therefore, improve communication capacity. For systems with flat fading, the direct matrix 



58 
 

inversion (DMI), or the diagonal loading DMI (DMI/DL) algorithm for antenna diversity can be 
used to enhance desired signal reception and suppress interference effectively. The DMI/DL 
algorithm, can be also used for spatial-temporal equalization in TDMA systems to suppress both 
inter-symbol and cochannel interference. The use of adaptive antenna arrays in the OFDM systems 
suppresses cochannel interference. The difficulty of adaptive antenna arrays for OFDM systems 
stems from the fast change of parameters for the MMSE-DC because OFDM systems have much 
longer symbol duration than that of single carrier or TDMA systems. Hence, the parameter 
estimation approaches for TDMA systems are not applicable to OFDM systems (LI, Y. and 
Sollenberger, N. R., 1999, pp.217-229).  

B. Adaptive Beamforming 
Beamforming, also known as spatial filtering, is a signal processing technique used in sensor arrays for 

directional signal transmission or reception (GOLBON-HAGHIGHI, M. H., 2016, pp.163-199). This is 
realized by coalescing components in an antenna array in such a way that signals at specific angles 
experience constructive interference while others experience destructive interference. Beamforming can be 
used at both the transmitting and receiving sides in order to achieve spatial selectivity. The improvement 
compared with omnidirectional reception/transmission is known as the directivity of the array (FORENZA, 
A. et al., 2005, pp.3188-3192). In other words, using beamforming technique, it is possible to direct the 
radiation towards the user device in order to achieve better connectivity and lower transmission error rate 
(Figure 42).  

 

 

Figure 42. Omnidirectional radiation pattern and Beamforming 

Smart antennas are widely used for wireless communications due to their ability to increase the coverage 
and capacity of communication systems. Utilization of an adaptive algorithm is one of the core technologies 
of smart antenna. Adaptive beamforming can receive signal from a certain direction by adjusting the array 
weight vector to enhance the desired signal and suppress the interference and noise (YANG, Y. Z. a. X., 
2016, pp.522-525). Adaptive beamforming is a key technology of smart antenna; the core is to obtain the 
optimum weights of the antenna array by some adaptive beamforming algorithms, and finally adjust the 
main lobe to focus on the arriving direction of the desired signal, as well as suppress the interfering signal. 
By these ways, the antenna can receive the interesting signal efficiently. In practical application, the speed 
of convergence, complexity, and robustness are the main factors to be considered when choosing an 
adaptive beamforming algorithm (YONG-JIANG, S. et al., 2012, pp.1-3).  
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C. Antenna Diversity (Spatial Diversity) 
The base station is the most complex element in any wireless system, because it is responsible for various 

processing, including the diversity schemes, combining, modulation, coding, error correction etc. These 
functions instigate high power consumption. In the subsequent chapters, it will be disclosed that the 
virtualization of the base station function and the radio access network, entail high-power computing 
devices to placate the immense demand for computing resources. In addition to diversity processing 
algorithms, there are numerous antenna diversity techniques that can be applied for accomplishing 
improvement and augmenting the consistency of a wireless link. Practically, in urban and indoor settings, 
no clear line-of-sight (LOS) between the transmitter and the receiver exists (DOBKIN, D. M., 2011). 
Instead, the signal is reflected by multiple paths before being received. Therefore, the multi-path effects 
can induce phase shifts, time delays, attenuations, and distortions that can detrimentally interfere between 
each other at the aperture of the receiving antenna. Correspondingly to the increased demand for processing 
power, an antenna diversity technique needs additional hardware integration to accommodate the 
peculiarity of such scenario.  

Antenna diversity is particularly effective at extenuating multipath conditions. This is due to multiple 
antennas offering a receiver several observations of a single signal. Each antenna will confront a diverse 
interference scenery. Thus, if one antenna is facing a deep fade, it is probable that another antenna has an 
adequate signal. Collectively, a system of such scopes can deliver a robust link. While this is principally 
observed in receiving systems (diversity reception) (TATARINSKIY, S. N. et al., 2006, pp.1014-1014), 
the equivalent is also demonstrated valuable for transmitting systems (transmit diversity) (LOZANO, A. 
and Jindal, N., 2010, pp.186-197) as well. 

For example, to alleviate the effects of multipath fading, multiple-antenna diversity systems engage 
multiple antennas and a digital central receiver using diversity combiner. The multiple-antenna adherences 
are handled at distinct receivers and sent to a central receiver. The central receiver combines all the 
individual receiver information to form universal information on which symbol was transmitted. A 
multiple-antenna diversity scheme can be represented by course-resolution information or high-resolution 
information. The exact diversity scheme that functions by course-resolution information is designated for 
the case of non-coherent frequency-shift keying in slow Rayleigh fading and additive Gaussian noise. This 
technique is more cost effective and can be used instead of high-resolution scheme without noticeable loss 
in performance which simplifies receiver design and construction (AZIZ, A. M., 2009, pp.1-10).  

Antenna diversity can be achieved in multiple ways, in accordance to the situation and the environment; 
also, the expected interference, which can direct designers to implement one method or combine several 
for signal quality improvement:  

Spatial diversity – Implementation with multiple physically-separated antennas with same properties. In 
some situations, a space of separation on the order of a wavelength is sufficient, but sometimes the antennas 
need to be distanced more from each other. Sectorization of a cell in the mobile network is an example of 
a separation of antennas kilometers apart, that is a mechanism for combatting co-channel interference and 
spectrum reuse (HANLEN, L. and Fu, M., 2006, pp.133-142).  

Pattern diversity – Colocation of multiple antennas with different radiation patterns. This type of 
diversity includes usually directional antennas that are separated by short distances. The benefit in this case 
is that the directional antennas can achieve higher gain than omnidirectional antennas (YANG, S. L. S. et 
al., 2008, pp.71-79).  

Polarization diversity – Combining pairs of antennas with different polarization radiating patterns 
(horizontal or vertical, left-hand or right-hand circular polarization) (KADIR, M. F. A. et al., 2008, pp.128-
131).  
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Transmit/Receive diversity – Two separate collocated antennas for transmission and receiving. This 
configuration omits the necessity for duplexer and protect sensitive receiver components from the high 
power used to transmit (DIGHE, P. A. et al., 2003, pp.694-703).  

Adaptive arrays – A situation where a single antenna with active elements can be used, which can change 
the radiation pattern in accordance to the requirements of the environment conditions. Phase shifters and 
attenuators are used within active electronically scanned arrays (AESAs), to provide an instantaneous scan 
ability as well as radiation pattern and polarization control. An example is a radar antenna, which can switch 
to different modes of operation (searching, tracking, mapping or jamming countermeasures) (SRAR, J. A. 
et al., 2010).   

D. Spatial multiplexing (SMX) 
Spatial multiplexing, as the name indicates, is a transmission technique used in MIMO (Multiple-Input-

Multiple-Output) wireless systems for transmission of impartial and separately encoded data signals, so-
called streams, from each of the multiple transmit antennas. Therefore, the space dimension is reused 
(multiplexed), multiple times. To take advantage of the additional throughput capability, MIMO utilizes 
several sets of antennas. In many MIMO systems, just two are used, but there is no reason why further 
antennas cannot be employed and this increases the throughput. In any case for MIMO spatial multiplexing, 
the number of receive antennas must be equal to or greater than the number of transmit antennas (LOZANO, 
A. and Jindal, N., 2010, pp.186-197).  

E. Space-Division Multiple Access (SDMA) 
SDMA is an access technique, similar to OFDM, with the difference that SDMA creates parallel spatial 

pipes next to higher capacity pipes through spatial multiplexing and/or diversity. This can enable superior 
performance in radio systems that require multiple-access. Combined with techniques such as 
beamforming, the SDMA can allow the base station to save power and avoid wasting energy on 
transmissions when there are no reachable mobile units, which can also minimize interference. Instead of 
receiving signals coming from all directions including noise and interference signals, the receiving antenna 
can collect adapted signal from the smart transmitting antennas at the base station; which using phased 
array technologies, radiates an adapted pattern according to the requirements for the corresponding user 
devices. The radiation pattern of the base station is adapted to each UE to obtain highest gain in the direction 
of the given user with utilization of phased array techniques. In GSM cellular networks, the base station 
can acquire the distance (but not direction) of a mobile phone by use of a technique called "timing advance" 
(TA) (HUNT, A. et al., 2016, pp.643-647). The base transceiver station (BTS) can determine how far the 
mobile station (MS) is by interpreting the reported TA. This information, along with other parameters, can 
then be used to power down the BTS or MS, if a power control feature is implemented in the network. The 
power control in either BTS or MS is implemented in most modern networks, especially on the MS, as this 
ensures a better battery life for the MS. This is also why having a BTS close to the user results in less 
exposure to electromagnetic radiation. This is why one may be safer to have a BTS close to them as their 
MS will be powered down as much as possible. For example, there is more power being transmitted from 
the MS than what one would receive from the BTS even if they were 6 meters away from a BTS mast. 
However, this estimation might not consider all the Mobile stations that a particular BTS is supporting with 
EM radiation at any given time (HARTMANN, C., 2017). In the same manner, 5th generation mobile 
networks will be focused in utilizing the given position of the MS in relation to BTS in order to focus all 
MS Radio frequency power to the BTS direction and vice versa, thus enabling power savings for the Mobile 
Operator, reducing MS SAR index, reducing the EM field around base stations since beam forming will 
concentrate RF power when it will be used rather than spread uniformly around the BTS, reducing health 
and safety concerns, enhancing spectral efficiency, and decreased MS battery consumption 
(TELECOMPAPER, 2013). 



61 
 

F. MIMO (Multiple-Input Multiple-Output)  
One of the best advantages of LTE systems is that they employ the power of multiple-antenna 

transmission. As stated previously, the combining of antennas can not only increase the throughput of the 
system but also minimize transmission error as well as cope with the multipath problem. There are two 
different scenarios where MIMO is used, specifically: Single-User MIMO (SU-MIMO) or Multi-User 
MIMO (MU-MIMO), although a common set of concepts captures the essential MIMO benefits in both 
cases. Single-User MIMO was established in the first version of LTE, whereas the Multi-User MIMO starts 
with the deployment of LTE Releases 9 and 10 (SÄLZER, T. et al., 2011, pp.249-277), and is the concept 
of research focus in this thesis.  

 

Figure 43. A MIMO system with N-transmit and M-receive antennas, giving an MxN channel matrix with MN links 

While traditional wireless communications such as Single-Input Single-Output (SISO) exploit time or 
frequency domain pre-processing and decoding of the transmitted and received data respectively, the use 
of additional antenna elements at either the base station (eNB) or UE side, opens an extra spatial dimension 
to signal precoding and detection. Space-time processing methods exploit this dimension with the aim of 
improving the link’s performance in terms of one or more possible metrics, such as the error rate, 
communication data rate, coverage area and spectral efficiency. Depending on the availability of multiple 
antennas at the transmitter and/or the receiver, such techniques are classified as Single-Input Multiple-
Output (SIMO), Multiple-Input Single-Output (MISO) or MIMO. Thus, in the scenario of multi-antenna-
enabled base station communicating with a single antenna UIE, the uplink and downlink are referred to as 
SIMO and MISO respectively. When a multiple-antenna terminal is involved, a full MIMO link may be 
obtained, although the term MIMO is sometimes also used in its widest sense, thus including SIMO and 
MISO as special cases. While a point-to-point multiple-antenna link between a base station and a UE is 
referred to as Single-User MIMO (SU-MIMO), Multi-User MIMO (MU-MIMO) features several UEs 
communicating simultaneously with a common base station using the same frequency and time domain 
resources. By extension, considering a multicellular context, neighboring base stations sharing their 
antennas in virtual MIMO fashion to communicate with the same set of UEs in different cells comes under 
the term Coordinated MultiPoint (CoMP) transmission/reception. This latter scenario is not supported in 
the first versions of LTE but is included in LTE-Advanced (SÄLZER, T. et al., 2011, pp.249-277). 

Massive-MIMO for 5G 
Massive MIMO is the currently most compelling sub-6 GHz physical-layer technology for future 

wireless access. The main concept is to use large antenna arrays at base stations to simultaneously serve 
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many autonomous terminals. The rich and unique propagation signatures of the terminals are exploited with 
smart processing at the array to achieve superior capacity. Massive MIMO splendidly offers two most 
desirable benefits (LARSSON, E. G. and Van der Perre, L., 2017): 

a) Excellent spectral efficiency, achieved by spatial multiplexing of many terminals in the same 
time-frequency resource. Efficient multiplexing requires channels to different terminals to be 
sufficiently different, which has been shown to hold, theoretically and experimentally, in diverse 
propagation environments. Specifically, it is known that Massive MIMO works as well in line-of-
sight as in rich scattering (LARSSON, E. G. and Van der Perre, L., 2017). 

b) Superior energy efficiency, by virtue of the array gain, that permits a reduction of radiated power. 
Moreover, the ability to achieve excellent performance while operating with low-accuracy signals 
and linear processing further enables considerable savings (LARSSON, E. G. and Van der Perre, 
L., 2017). 

The key technological characteristics of Massive MIMO are: 

a) Fully digital processing; each antenna has its own RF and digital baseband chain. Signals from all 
antennas at each base station are processed coherently together. Core advantages of fully digital 
processing include the avoidance of specific assumptions on propagation channel, the possibility 
to measure the complete channel response on the uplink and respond fast to changes in the channel. 
Interestingly, recent assessments show that the full digital processing may not only offer superior 
performance but also better energy efficiency, a trend which may be reinforced by the ongoing 
development of tailored low-power circuits (LARSSON, E. G. and Van der Perre, L., 2017). 

b) The reliance on reciprocity of propagation and TDD operation, enabling downlink channels to 
be estimated from uplink pilots, and obviating the need for prior or structural knowledge of the 
propagation channel (LARSSON, E. G. and Van der Perre, L., 2017). 

c) Computationally inexpensive precoding/decoding algorithms, taking the form of maximum-
ratio (known also as conjugate beamforming) or zero-forcing processing. Massive MIMO functions 
equally well with single-carrier transmission and OFDM. Notably, conjugate beamforming with 
OFDM is equivalent to time-reversal in a single-carrier system (LARSSON, E. G. and Van der 
Perre, L., 2017). 

d) Array gain, resulting, in principle, in a closed-loop link budget enhancement proportional to the 
number of base station antennas (LARSSON, E. G. and Van der Perre, L., 2017). 

e) Channel hardening, which effectively removes the effects of fast fading. Operationally, each 
terminal-base station link becomes a scalar channel whose gain stabilizes to a deterministic and 
frequency-independent constant. This greatly simplifies resource allocation problems (LARSSON, 
E. G. and Van der Perre, L., 2017). 

f) The provision of uniformly good quality of service to all terminals in a cell - facilitated by the 
link budget improvement offered by the array gain, and the interference suppression capability 
offered by the spatial resolution of the array. Typical baseline power control algorithms achieve 
max-min fairness among the terminals (LARSSON, E. G. and Van der Perre, L., 2017).  

g) Autonomous operation of the base stations, with no sharing of payload data or channel state 
information with other cells, and no requirements of accurate time synchronization (LARSSON, E. 
G. and Van der Perre, L., 2017).  

h) The possibility to reduce accuracy and resolution of transceiver frontends, and the digital 
processing and number representations in computations (LARSSON, E. G. and Van der Perre, L., 
2017). 

The attractive properties of propagation -- penetration of solid objects and diffractive behavior -- and 
the maturity of hardware renders Massive MIMO primarily a below-6 GHz technology for radio access. 
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This is also the region where spectrum is most valuable. Arrays have attractive form factors even for large 
numbers of antennas: in the 3.5 GHz TDD band, a half-wavelength-spaced rectangular array with 200 dual-
polarized elements is about 0.6 x 0.3 meters large; in practice, larger antenna spacing may be desired and 
is easily afforded. However, systems operating at higher frequencies up to millimeter-waves may also 
benefit from the application of Massive MIMO, especially when these systems would need to support multi-
user access in potentially non-Line-of-Sight scenarios (LARSSON, E. G. and Van der Perre, L., 2017). 

G. Multi-beam antennas for 5G radio 
Using the previously-mentioned traits, the 5G radio is expected to utilize the same techniques in order 

to achieve better global efficiency. With the demanding system requirements for the fifth-generation (5G) 
wireless communications and the severe spectrum shortage at conventional cellular frequencies, multi-
beam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research 
interest and have been actively investigated. They represent the key antenna technology for supporting a 
high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and 
energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical 
infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost 
the 5G (HONG, W. et al., 2017, pp.6231-6249).  

The idea behind 5G is to increase transmission bit rates by using frequency bands higher than those of 
existing frequency bands and widening the signal bandwidth. However, as radio propagation loss increases 
in high frequency bands, the application of massive-element antennas each consisting of more than 100 
antenna elements has been studied as 5G multi-antenna technology (SUYAMA, S. et al., 2016, pp.29-39). 
Application of a massive-element antenna makes it possible to compensate for the radio propagation loss 
by adaptively controlling antenna directivity and increase bit rate by the spatial multiplexing of signals. A 
basic 5G architecture proposed model, consisting of C/U separation by Phantom cell concept is comprised 
of multiple instances of small cell (or quasi-macro cell) in an overlay configuration. In this particular 
scheme, the macro cell uses the Ultra High Frequency band (UHF) (0.3-3 GHz) employed by the existing 
system while overlaid small cells use higher frequency band, namely, the low Super High Frequency band 
(SHF) from 3-6GHz, high SHF band (6-30 GHz), and Extremely High Frequency band (EHF) from 30-300 
GHz. This model establishes a connection link for the Control Plane (C-plane) that handles control signals 
via the macro cell and a connection link specifically for the User Plane (U-plane) that handles user data via 
overlaid cells, i.e., C/U split connections. Another operation that is supported is the introduction of Massive-
element antennas in high-frequency band cells. To achieve higher bit rates than 10Gbps requires bandwidths 
of several 100 MHz. Particularly, to resolve this issue, massive-elements antennas are introduced in high 
frequency bands. When using a flat antenna array with a uniform antenna spacing as a massive-element 
antenna in the 20 GHz band, and when setting the element spacing to half the wavelength (7.5 mm), it 
becomes possible to mount 256 elements in an area approximately of 12 cm2. Generally, for the same area, 
the number of elements that can be mounted can be significantly increased when using higher frequency 
bands with shorter wavelengths. A massive-element antenna can be used to generate sharp beams by 
controlling the amplitude and phase of transmitted and received signals from each element (beamforming) 
(SUYAMA, S. et al., 2016, pp.29-39). 

H. Evolution of the antenna systems 
The development of new types of antennas can be granted mostly to the availability of 3D printing 

technologies. The 3D printing enables usage of various meta-materials that have not been previously tested, 
and currently, they can yield some unprecedented performance for the actual antennas that they are used 
for. Metamaterials are made by arranging naturally occurring materials in a specific pattern that produces 
an electromagnetic response that is not found in nature. The periodic structures created are at scales that are 
smaller than the wavelengths of the phenomena they influence and can create materials with negative 
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indexes that control electromagnetic energy in ways that cannot be done with natural materials. In 
traditional active electronically scanned arrays (AESA), phase shifters embedded in control circuitry steer 
the beam direction. Metamaterial-based AESAs can steer the beam without phase shifters, which reduces 
system complexity, eliminates a source of power loss and simplifies waste-heat dissipation. There are a 
couple of companies using unique metamaterial structures developed for this application. For example, as 
represented in the October 2016 issue of Microwave Journal (ELSALLAL, M. W. et al., 2016), The MITRE 
Corporation is investigating a new generation of 3D printing to realize the complex geometries of wideband 
phased array and metamaterial designs using commercial, low-cost, compact, desktop printers.  Samples of 
the 3D printed plastic and conductive ink printed at room temperature were characterized over frequency. 
The polylactic acid (PLA) dielectric constant and loss tangent are found to be stable up to 18 GHz. The 
PLA internal architecture was varied to achieve lower effective dissipation factors, which extends 
usefulness to high frequency applications. Micro-strip line samples were fabricated with simulated and 
measured insertion loss data validating the high conductivity through mm-Wave frequencies. A 3D printed 
monopole Wi-Fi antenna was built and tested, showing good performance and agreement with simulations 
(HINDLE, P., 2018).  

2.1.7. Security architecture of 4G LTE 
The communication networks should provide adequate level of security in terms of services, and 

therefore, a suitable cost-to-benefit ratio of deployment is taken into consideration. A complete security of 
a system is impossible, and the focus of establishing a secure environment should be directed towards 
minimizing the potential vulnerabilities of the network, since attackers tend to exploit those in order to 
achieve a goal. Accordingly, a system is secure as its least reliable security asset. The least secure entities 
in a mobile network are the access stratum (the radio network) and the mobile terminals (UE). The main 
features of a secure network are as follows: Confidentiality, Integrity and Non-repudiation. To reach the 
particular goals, a mobile network should fulfill some requirements for mechanisms such as: 
Authentication, Access control and Network availability. The wireless/mobile networks also implement the 
security features of the fixed networks, with particular modification of some protocols and methods that are 
adjusted to correspond to the requirements of the nature of the networks (BOUDRIGA, N., 2010).  

The security architecture in LTE can be categorized for both Non-Access Stratum (NAS) layer security 
and Access Stratum (AS) layer security (see Figure 44). The NAS security is carried out for NAS messages 
and belongs to the domain of UE and MME. Accordingly, the NAS message communication between the 
UE and MME is protected and ciphered with additional NAS security header. Conversely, the AS security 
is carried out for the RRC and user-plane data, and belongs in the sphere of the UE and eNB. The ciphering 
and integrity protection are being carried out by the PDCP layer in the UE and eNB side. The RRC messages 
have their integrity protected and ciphered, and the user-plane data is only being ciphered.  

 

Figure 44. Security distribution in LTE 

The Evolved Packet System (EPS) is designed to interwork with legacy systems, and has thus adopted 
the security mechanisms from 3G UMTS for the sake of backward-compatibility; but however, many new 
extensions and enhancements are introduced (FOSBERG, D. et al., 2013). In LTE, after the UE has been 
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identified, the MME fetches authentication data from the home network. Then, the MME triggers the 
authentication and key agreement protocol (AKA) with the UE, which is the actual DIAMETER service. 
After this protocol is finalized, the MME and the UE share a secret key KASME (ASME refers to Access 
Security Management Entity). The management entity in the EPS system is the actual MME. At this point, 
the MME and UE can derive further keys from the KASME. For confidentiality and integrity protection of the 
signaling data between the MME and UE derived keys are being used. Additional key is being derived and 
thus transported to the eNB. Furthermore, three more keys are subsequently being derived, both at the eNB 
and in the UE. Two of these keys are then used for confidentiality and integrity protection of the signaling 
data between the eNB and the UE (AS security in Figure 44). The third key is used for confidentiality 
protection of the U-plane data between the UE and eNB, which is the NAS security part. Besides the 
security of signaling and UP data originated or terminated by the UE, there is also confidentiality and 
integrity protection for the signaling and user data being transported over the interface between the eNB 
and the EPC, namely the S1-MME interface. The signaling data is transported over the S1-U interface, 
between the UE and the S-GW. As a cryptographic measurement for protection applied to the S1 interfaces, 
the IPsec mechanism (IETF, 2011) [Standard RFC6071] is employed. Additionally, the X2 interface is 
being protected by IPSec with keys that are not specific to the UE where cryptographic protection is utilized 
(FOSBERG, D. et al., 2013).  

A. Authentication and key agreement protocol (AKA) 
In LTE, the authentication is based on the AKA procedure. The key agreement and exchange is a crucial 

process, which enables secure access of the users to the network core (EPC). The AKA procedure is a 
crucial process of the Diameter service, which takes place via the S6a interface between the MME and the 
HSS. The EPS AKA procedure is combination of a procedure for generation EPS authentication vectors 
(AVs) in the HSS upon request from MME, a procedure to mutually authenticate and establish a new shared 
key between the serving network (SN) and the UE and a procedure to distribute authentication data inside 
and between serving networks. The MME invokes the procedure by requesting EPS AVs from the HSS. 
The Authentication Information Request shall include the IMSI (International Mobile Subscriber Identity 
– used to identify the user or acellular network and is a unique identification associated with all cellular 
networks), the SN id (Serving Network ID – refers to the network accessed by the UE) of the requesting 
MME, and an indication that the authentication information is requested for EPS. The SN id is required for 
the computation of KASME in the HSS. Upon the receipt of the Authentication Information Request from 
the MME, the HSS may have pre-computed AVs available and retrieve them from the HSS database, or it 
may compute them on demand. The HSS sends an Authentication Information Answer back to the MME 
that contains an ordered array of n EPS AVs (1 . . . n). If n > 1, the EPS AVs are ordered based on sequence 
number. The 3GPP specification TS 33.401 (3GPP, 2015) [specification TS 33.401] recommends n = 1, so 
that only one AV is sent at a time, because the need for frequently contacting the HSS for fresh AVs has 
been reduced in EPS through the availability of the local master key KASME, which is not exposed in a 
way similar to Ciphering Key in 3G (CK) and Integrity Key in 3G (IK) in UMTS and, hence, does not need 
to be renewed very often. Based on the local master key, and keys derived from it, an MME can offer secure 
services even when links to the HE are unavailable. Furthermore, pre-computed AVs are no longer usable 
when the user moves to a different SN owing to the binding of the local master key KASME to the SN id. 
However, pre-computation may still be useful when the next request for AVs is likely to be issued by an 
MME in the same SN, which may be the case, for example, for a user in his home network. Each EPS AV 
is good for one run of the AKA procedure between the MME and the USIM (FOSBERG, D. et al., 2013).  

The purpose of this procedure is the authentication of the user and the establishment of a new local 
master key KASME between the MME and the UE, and, furthermore, the verification of the freshness of 
the AV and authentication of its origin (the user’s home network) by the USIM. KASME is used in 
subsequent procedures for deriving further keys for the protection of the user plane (UP), RRC signaling 
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and NAS signaling. The MME invokes the procedure by selecting the next unused EPS AV from the ordered 
array of EPS AVs in the MME database (if there is more than one). If the MME has no EPS AV, it requests 
one from the HSS. The MME then sends the random challenge RAND and the authentication token for 
network authentication AUTN from the selected EPS AV to the ME, which forwards it to the USIM. The 
MME also generates a key set identifier in EPS (eKSI) and includes it in the Authentication Request. When 
a user moves around, the MME serving the UE may change. When the UE then sends an Attach Request, 
or a Tracking Area Update Request [TS23.401], the UE will, in general, use its temporary identity, the 
GUTI, in order to protect the confidentiality of its permanent identity, the IMSI. But the new MME is not 
able to make sense of the GUTI, so it has only two choices: request the permanent identity from the UE and 
break identity confidentiality in this way, or ask the old MME, which issued the GUTI, to translate the 
GUTI to the user’s IMSI. The old MME will also send back authentication data to the new MME. Exactly 
what kind of authentication data is allowed to be exchanged between old and new MME depends on whether 
the two MMEs reside in the same or in different SNs (FOSBERG, D. et al., 2013). 

When two parties engage in security-related communication, for example when running an 
authentication protocol or exchanging encrypted data, they need an agreed set of security parameters, such 
as cryptographic keys and algorithm identifiers, for the communication to be successful. Such a set of 
security parameters is called a security context. There are different types of security context depending on 
the type of communication, and the state the communicating parties are in. Additionally, entities may store 
security context data locally even when not engaged in communication. The distinction between locally 
stored security context data and security context shared between two communicating parties for the purpose 
of running a security protocol is useful in principle, but it is a bit academic and not much adhered to in 
practice. As the potential for confusion is low, the common practice is being followed and declared only in 
terms of security contexts. Several different types of security context have been defined for EPS so as to 
have shorthand notations available for the various sets of security parameters used in particular situations 
(FOSBERG, D. et al., 2013). 

There are several security contexts for LTE, among which few will be elucidated for clarification. One 
example is the EPS security context that is comprised of EPS NAS security context and EPS AS security 
context, or specifically contexts for the Non-Access Stratum and the Access Stratum. The EPS NAS 
security context is used for protecting the NAS of EPS between the UE and the MME, and it may even 
exist when the UE is in de-registered state. This context consists of KASME with the associated key set 
identifier eKSI, the UE security capabilities and the NAS uplink and downlink COUNT values. These 
counters are relevant also for security as they are used as input parameters to key derivations in certain state 
and mobility transitions and, in conjunction with integrity protection, for preventing message replay. 
Separate pairs of NAS COUNT-values are used for each EPS NAS security context. The EPS NAS security 
context is called full if it additionally contains the keys KNASint and KNASenc (‘NAS keys’ for short) and 
the identifiers of the selected NAS integrity and encryption algorithms, otherwise it is called partial. An 
EPS security context containing a full or partial EPS NAS security context is also called full or partial, 
respectively. However, both KNASint and KNASenc can be derived from the KASME when the NAS 
integrity and encryption algorithms are known. Thus, they need not necessarily be stored in the memory 
(FOSBERG, D. et al., 2013). 

The EPS AS security context is used for the AS of EPS between the UE and the eNB, and it only exists 
when cryptographically protected radio bearers are established and is otherwise void. For an EPS AS 
security context to exist, the UE needs to be in connected state. This context consists of the cryptographic 
keys at AS level (i.e. between the UE and the eNB) with their identifiers, the NH, the Next Hop Chaining 
Counter parameter (NCC) used for NH access key derivation (see Section 9.4), the identifiers of the selected 
AS level cryptographic algorithms for integrity protection of RRC and (in the context of relay nodes) UP, 
and ciphering of RRC and UP, and the counters used for replay protection (FOSBERG, D. et al., 2013). 
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When the USIM is enhanced for EPS, a part of the EPS native security context is stored on the USIM 
under certain conditions. When the USIM is not enhanced for EPS, the nonvolatile part of the ME memory 
takes on an equivalent role and stores that part of the EPS native security context. The idea is that, in both 
cases, an EPS native security context shall be kept even when the UE de-registers or is switched off. When 
the UE registers again and goes to connected state, the EPS native security context can be retrieved from 
storage and used to protect the initial NAS message. By re-using the stored context, a new run of EPS AKA 
can be avoided. A mapped context is never stored on the USIM. A mapped EPS security context is kept in 
a transition to idle state, and, if available, is used to protect the initial NAS message when the UE transitions 
back to connected state. A mapped EPS security context is deleted when the UE de-registers (FOSBERG, 
D. et al., 2013). 

B. DIAMETER protocol in LTE 
In 1980, the signaling protocol SS7 was introduced by the International Telecommunications Union to 

control telephone call sessions through point-to-point connectivity. Only after scalability and management 
issues became apparent, the need for centralized management was clear and a new network entity called 
the signal transfer point was introduced to manage, connect and route SS7 traffic. SIP, the communication 
protocol to support voice calls over the Internet, has similar origins. Originally SIP was intended to connect 
network entities point-to-point, which lasted a while until management, interoperability and routing 
requirements evolved and the session border controller was introduced in 2003 to handle and solve SIP 
management issues. Beginning in the 1970s, the data plane was also initially designed on point-to-point 
connections. Few people imagined that there would be so many connections, and much data and signaling 
traffic to render this architecture obsolete. But, as we know, data and signaling traffic increased, which 
expedited the need for switches, routers and load balancers to support signaling traffic management and 
scaling. When Diameter was first introduced by the Internet Engineering Task Force (IETF), it included 
the concepts of Diameter agents that can proxy, route and balance Diameter traffic to provide scalability 
and management requirements (IETF, 2003) [Diameter base protocol standard]. However, when the 3GPP 
promoted Diameter as the foundation for signaling in IMS and EPC architectures, it left Diameter Agents 
out, perhaps thinking that the introduction of a distributed architecture would avoid the need for Diameter 
signaling management (RUSSELL, Travis, 2016).  

Unlike legacy signaling protocols, which were predominately circuit-switch based, Diameter protocol 
is always packet based and uses TCP or SCTP as a transport protocol to enhance reliability. However, TCP 
creates twice as much network traffic due to the need to ACK all messages (meaning every message must 
send a receipt message). Sending a receipt automatically doubles the number of signaling messages. As 
clearly seen, the move to an all-IP network significantly increases the amount of signaling. Although the 
move from circuit switch to packet switch will bring many other advantages, it generates tons more data 
traffic, and data is one of the major forces behind growth in signaling. Operators need to confront the blitz 
of signaling from a multitude of fronts never seen before and must be managed before damage is caused to 
their networks. LTE introduced a major change to the overall 2G GSM architecture and thus, network 
elements were consolidated to only support IP transport. Everything from the radio to the packet core runs 
over IP transport. The protocols used in the network were changed as well, with SS7 being replaced by 
Diameter (for authentication, authorization and accounting) and the Session Initiation Protocol (SIP). SIP 
provides the signaling for voice and multimedia in the network, replacing SS7 ISUP call control. However, 
3GPP decided against simple VoIP as the means of supporting voice and standardized on IP Multimedia 
Subsystem (IMS) as the architecture for the SIP network. Voice over LTE (VoLTE) requires IMS to support 
voice in 4G networks (RUSSELL, Travis, 2016).  
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DIAMETER is an evolution from the older protocol named RADIUS (Remote Authentication Dial-In 
User Service), originally developed to support PPP connections. RADIUS managed authentication, 
authorization and accounting (AAA) over these dial-up connections. Networks have evolved majorly over 
the years, and RADIUS became too limited for modern-day services, especially in the modern 
mobile/wireless networks. Since the RADIUS protocol is acronym, Diameter is not. The name emerged 
from an engineering joke, starting from the point that Diameter is twice the protocol RADIUS is, 
analogously to the mathematical terms for calculation of radius and diameter of a circle. Disregarding that 
fact, the real distinction between these two protocols is in their functionality. Namely, RADIUS was not 
able to provide fail-over procedures. There is no means for servers to communicate that they are going out 
of service, or for the orderly termination of sessions for any reason. When an error emerges in RADIUS, 
there are no existing procedures for attempts of rectification of the error. The session simply fails, which is 
unacceptable for many modern-day services. Also, RADIUS assumes that security is managed in the back 
office building systems rather than in the network. This stems from the notion that network connections 
between service providers can be trusted. In today’s world, security must be implemented at all levels, using 
layered security architecture; starting from the transmission level and up to the application level. One of 
the issues in SS7 is the lack of authentication at the transport layer (between networks). This is resolved, as 
stated previously, by using IPSec. Diameter, on the contrary, supports the use of encryption at the transport 
layer. This is as important in today’s implementations where Diameter is replacing SS7 Mobile Application 
Part (MAP) applications in the 4G LTE wireless networks. RADIUS uses the UDP protocol as its transport, 
which is very unreliable. As previously stated, Diameter is based on the SCTP, which is a congregation of 
the UDP and TCP protocols with connection control (RUSSELL, Travis, 2016).  

DIAMETER is the most complicated AAA protocol existing (RUSSELL, Travis, 2016), and herein the 
brief explanation that follows is a synopsis of the rationale.  Diameter is an agent-based protocol, which is 
designed as Peer-to-Peer (P2P) architecture. There are two constituents upon the architecture is built on: a 
Diameter node (the client) and a Diameter agent (the server). It is possible also to implement few Diameter 
agents (RUSSELL, Travis, 2016):   

 Relay Agent (DRA) – Used to forward messages to the appropriate destination in dependence to 
the information contained in the message. The relay agent can aggregate requests from different 
realms (regions/FQDN) to a specific realm. That eliminates the onerous configurations of network 
access servers for every Diameter server alteration.  

 Proxy Agent – Can be used to forward messages with a difference from the relay agent that it can 
modify the message composition and deliver value-added services; administer rules on different 
messages or perform various managerial processes for a particular realm.   

 Redirect Agent – Represents a centralized configuration repository for other Diameter nodes. 
When a message is received, the agent checks the routing table and returns a response message 
together with redirection information to the original sender. This is useful for other Diameter nodes, 
since a local routing table can then be omitted on all the nodes individually and they can look up 
for a redirect agent instead.  

 Translation Agent – It is a special agent that converts message from one AAA protocol to another. 
The translation agent is useful when operators need to integrate a user database of two application 
domains, while keeping the original AAA protocols. Another case where the translation agent is 
useful would be a situation of migration to Diameter protocol from another establishment, where it 
can provide backward compatibility for smoother migration.  

The summary of the agents is represented in Figure 45:  
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Figure 45. DIAMETER agents 

A Diameter message is the elementary unit used to deliver a notification or issue a command to other 
Diameter nodes. The Diameter protocols defines several type of messages that are identified by their 
function (command code). A Diameter packet format is given in Figure 46.  

 

Figure 46. DIAMETER packet format 
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Diameter works on the principle of peer discovery: the Diameter agent needs to broadcast which 
application it supports, along with the provided security level. Thus, it can be decided how the Diameter 
clients can depend on the desired Diameter application, security level, and realm info to look up suitable 
first-hop Diameter nodes to which they can forward Diameter messages. The Diameter node maintains a 
peer table in which host addresses are stored, as well as other information (status, security-related 
information etc.). Also there is a peer routing table maintained, which contains four important columns that 
require extra attention for message routing: Realm name, Application name, Action to be taken for the 
target message and Reference to an entry in the Peer Table. After the peer is discovered, the following 
procedure is to establish a connection with that peer. Here, the AKA procedure takes place, which in 
Diameter is initiated via the SCTP protocol. Due to the fact that Diameter is a peer-to-peer based protocol, 
multiple connections per node may exist; this inclines on the existence of a session, or a logical connection 
between two Diameter nodes that has multiple connections. Each session in Diameter is associated with a 
client-generated Session-ID that is globally and generally exclusive. As indicated in Figure 45, a Diameter 
session is established in the request-response paradigm as in the case with other client-server 
communication models.  

C. Protection of Signaling and User data 
Protecting communication over the air and inside the network is important so that confidentiality of 

information can be assured and attacks on the communication channels can be more easily mitigated. 
Evolved Packet System (EPS) has two layers of security for signaling: the first layer is between User 
Equipment (UE) and the base stations, and the second layer is between UE and the core network. The user 
plane data packets are protected between UE and base stations and further in the network in hop-by-hop 
manner. In this chapter, we describe in detail how the communication between UE and network and inside 
the network is protected. Long Term Evolution (LTE) has separate signaling and user planes. The signaling 
plane is further divided into signaling between UE and base stations (i.e. Access Stratum, AS) and between 
UE and core network (i.e. Non-Access Stratum, NAS). Signaling protection consists of ciphering and 
integrity protection with replay protection; for the user plane (data) on the air interface only ciphering is 
provided, with the exception of the Un air interface between a relay node and a Donor evolved NodeB 
(DeNB) (RUSSELL, Travis, 2016).  

D. EPS cryptographic algorithms  
One principle that has been used in the design of EPS security is that of algorithm agility: the system 

should be flexible in the sense that new algorithms can be introduced and outdated ones can be removed, 
both without major hassle. Therefore, it is expected that in the future new algorithms would appear in EPS, 
but they are potentially not even invented at the time of writing and hence naturally not yet discussed in 
this chapter. The need for better algorithm agility has stemmed from experiences with 2G and 3G systems 
where new algorithms have been introduced and one algorithm (A5/2) has also been removed from the 3rd 
Generation Partnership Project (3GPP) system. A general principle for any standardized mechanisms 
(including non-security-related ones) is that options should only be introduced if they serve a clear benefit 
for the system as a whole. If the difference between one option and another is more like a matter of taste, 
or if the benefit of each option over the others materializes only in a small minority of all circumstances, 
options should not be introduced because they complicate the system, add development cost and put the 
interoperability at risk. Hence, the number of different algorithms should be kept small and introduction or 
removal of algorithms should be done only after it is clear that such action adds value to the system as a 
whole (RUSSELL, Travis, 2016).  

There are four types of cryptographic algorithms used in LTE:  

 Null algorithms - When the protection needs to be explicitly turned ‘off’ instead of just not 
‘on’. The start of no-protection has to be done explicitly, it is simplest from the system point of 
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view to use procedures for starting no-protection similar to those that are used for starting 
protection. Bear in mind here that the start of protection needs to be done explicitly as well, 
mainly for synchronization reasons. Thus, instead of choosing a proper algorithm to be put in 
place in order to start protection, we choose a Null algorithm to be put in place to start no-
protection. Indeed, a Null algorithm is not a cryptographic algorithm; in fact it is not really an 
algorithm at all. A way of realizing a Null algorithm is to do some very simple operation, just 
in order to make it explicit that a Null algorithm has indeed been in use. This is the option that 
has been chosen for the Null integrity algorithm in EPS: regardless of the message content or 
key or any other parameter, a 32-bit string of all zeros is appended to the message as the result 
of applying the Null integrity algorithm (RUSSELL, Travis, 2016). 

 Ciphering algorithms - The encryption mechanisms used in EPS are very similar to those used 
in 3G. There are many differences between EPS and 3G in how keys are generated and managed 
but, once the correct key is in place, the usage of the key is very similar in these systems. This 
is fortunate in the sense that it allows terminals to use some internal components for both Long 
Term Evolution (LTE) and 3G. The both levels of security, the NAS and AS can have the same 
encryption algorithm. It would be easy to draw the conclusion that the same set of algorithms 
that is in use for 3G would also be a good choice for EPS. Presented the opportunity in a new 
system, the EPS adopts new elevated approaches. The two 3G algorithms are, at the time of 
writing, UEA1 (UMTS Encryption Algorithm) based on KASUMI and UEA2 based on SNOW 
3G. It is notable that the leading general-purpose algorithm Advanced Encryption Standard 
(AES) is not among the two. Briefly, AES was not ready yet when KASUMI-based UEA1 was 
chosen, while SNOW 3G-based UEA2 was the preferred choice as the base algorithm, over 
AES, because its design was more different from that of KASUMI.  
To use the AES algorithm, it is possible to adopt another approach, since the AKA protocol 
does not require standardization of the cryptographic algorithms. As for the purpose of this 
project, the MILENAGE set is employed, which is developed accordingly to the [TS35.205]; 
[TS35.206]; [TS35.207] and [TS305.208] 3GPP specifications (3GPP, 2017) (RUSSELL, 
Travis, 2016). The MILENAGE algorithms use a core function of a block cipher, in which both 
block size and key size are 128 bits. For instance, the (basic form of) the AES algorithm can be 
used as the core function (RUSSELL, Travis, 2016). 

 Integrity protection algorithms - Many of the facts explained for the background of EPS 
ciphering algorithms also apply to integrity algorithms. The integrity protection mechanisms 
are similar in both 3G and LTE, although there are big differences in key management. Each 
integrity algorithm applies as such to both AS-level and NAS-level protection. In order to have 
a good security margin against progress in cryptanalysis, two different algorithms are in place 
from the beginning of EPS. From an implementation point of view, especially for terminals, it 
would be good to have algorithms that are usable also for some other purposes. There is a typical 
practice of using the same core cryptographic functions for both ciphering and integrity 
purposes. This practice is also mainly due to re-usability benefits, and there are no cryptographic 
reasons behind it. However, no heavy arguments were found that would have spoken against 
such a practice, so it was decided that the two integrity algorithms that are supported from the 
start are based on AES and SNOW 3G (RUSSELL, Travis, 2016).  

 Key derivation algorithms - The EPS key hierarchy is significantly more complex than that of 
3G or GSM. One consequence is that there has to be a standardized way to derive keys from 
each other. From the security point of view, it is crucial that the derivation is one-way: it should 
not be possible to use physically less protected keys on the lower layers of the hierarchy to get 
information about the physically more protected keys that are higher up in the hierarchy. In 
addition, two keys derived from the same key should be independent. Notably, the difference in 
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the physical protection refers rather to the network side; on the UE side there are fewer 
differences. Although 3G access security did not require defining a standardized Key Derivation 
Function (KDF), it has been needed for other 3GPP features. Most notably, the Generic 
Bootstrapping Architecture (GBA) includes the derivation of new keys as one of its core 
features. EPS key derivation re-uses the standard KDF of GBA. The core of the KDF is the 
cryptographic hash function SHA-256. It is used in the keyed HMAC (Keyed-Hash Message 
Authentication Code) mode [RFC2104], where the key for HMAC is the ‘mother’ key from 
which the lower layer key is derived. The other input parameter for HMAC is called the 
message, a name motivated by the primary use of HMAC for message integrity purposes 
(RUSSELL, Travis, 2016). 

2.2.  LTE-Advanced and LTE-Advanced Pro as a step before 5G 
In LTE-Advanced focus is on higher capacity: The driving force to further develop LTE towards LTE–

Advanced – LTE. Release 10 was to provide higher bitrates in a cost efficient way and, at the same time, 
completely fulfil the requirements set by ITU for IMT Advanced, also referred to as 4G. In this thesis, the 
latest implementation of the Release 10 and forward is used for the research, where the experiments 
incorporate software-defined solutions that include LTE-A attributes. Namely, the aim of the LTE-A 
features is:  

 Increased peak data rate, DL 3 Gbps, UL 1.5 Gbps 

 Higher spectral efficiency, from a maximum of 16bps/Hz in R8 to 30 bps/Hz in R10 

 Increased number of simultaneously active subscribers 

 Improved performance at cell edges, e.g. for DL 2x2 MIMO at least 2.40 bps/Hz/cell.  

LTE-A starts with the 3GPP Release 10 in 2011, powered with new functionalities such as Carrier 
Aggregation (CA), enhanced use of multi-antenna techniques and support for Relay Nodes (RN). The most 
straightforward way to increase capacity is to add more bandwidth. Since it is important to keep backward 
compatibility with R8 and R9 mobiles the increase in bandwidth in LTE-Advanced is provided through 
aggregation of R8/R9 carriers. Carrier aggregation can be used for both FDD and TDD. Each aggregated 
carrier is referred to as a component carrier. The component carrier can have a bandwidth of 1.4, 3, 5, 10, 
15 or 20 MHz and a maximum of five component carriers can be aggregated. Hence the maximum 
bandwidth is 100 MHz. The number of aggregated carriers can be different in DL and UL, however the 
number of UL component carriers is never larger than the number of DL component carriers. The individual 
component carriers can also be of different bandwidths. In LTE-Advanced, the possibility for efficient 
heterogeneous network planning – i.e. a mix of large and small cells - is increased by introduction of Relay 
Nodes (RNs). The Relay Nodes are low power base stations that will provide enhanced coverage and 
capacity at cell edges, and hot-spot areas and it can also be used to connect to remote areas without fiber 
connection. The Relay Node is connected to the Donor eNB (DeNB) via a radio interface, Un, which is a 
modification of the E-UTRAN air interface Uu. Hence in the Donor cell the radio resources are shared 
between UEs served directly by the DeNB and the Relay Nodes. When the Uu and Un use different 
frequencies the Relay Node is referred to as a Type 1a RN, for Type 1 RN Uu and Un utilize the same 
frequencies, see figure 7. In the latter case there is a high risk for self-interference in the Relay Node, when 
receiving on Uu and transmitting on Un at the same time (or vice versa). This can be avoided through time 
sharing between Uu and Un, or having different locations of the transmitter and receiver. The RN will to a 
large extent support the same functionalities as the eNB – however the DeNB will be responsible for MME 
selection (3GPP, 2011) [Release 10 specification 36.912].  

One of the imperative advantages of LTE Advanced is the capability to utilize advanced topology 
networks; optimized heterogeneous networks with a mix of macrocells with low-power nodes such as 
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picocells, femtocells and new relay nodes (3GPP, 2011) [Release 10 specification 36.912]. LTE-Advanced 
exploits these capabilities for application of smaller cells and bringing the services closer to the end user, 
while ensuring fairness and quality of experience. LTE Advanced also introduces multicarrier for usage of 
ultra-wide bandwidth, namely up to 100 MHz of channel bandwidth that can support very high data rates. 
In the research phase, various suggestions have been studied as candidates for LTE Advanced (LTE-A) 
technologies. The proposals (3GPP, 2011) [Release 10 specification 36.912] are represented as: 

 Support for relay node base stations 

 Coordinated multipoint (CoMP) transmission and reception 

 UE Dual TX antenna solutions for SU-MIMO and diversity MIMO, commonly referred to as 
2x2 MIMO 

 Scalable system bandwidth exceeding 20 MHz, up to 100 MHz 

 Carrier aggregation of contiguous and non-contiguous spectrum allocations 

 Local area optimization of air interface 

 Nomadic / Local Area network and mobility solutions 

 Flexible spectrum usage 

 Cognitive radio 

 Automatic and autonomous network configuration and operation 

 Support of autonomous network and device test, measurement tied to network management 
and optimization 

 Enhanced precoding and forward error correction 

 Interference management and suppression 

 Asymmetric bandwidth assignment for FDD 

 Hybrid OFDMA and SC-FDMA in uplink 

 UL/DL inter eNB coordinated MIMO 

 SONs, Self-Organizing Networks methodologies 

Within the range of system development, LTE-Advanced and WiMAX 2 can employ up to 8x8 MIMO 
configuration and 128 QAM in downlink direction. Particularly, that will enable a 100 MHz aggregated 
channel bandwidth, and approximately 3.3 Gbit peak download rates per sector of the base station under 
ideal conditions. Advanced network architectures combined with distributed and collaborative smart 
antenna technologies provide several years road map of commercial enhancements (3GPP, 2011) [Release 
10 specification 36.912].  

2.3.  Virtualization and cloud computing 
A key concept for the progression towards 5G networks are the cloud computing and virtualization 

paradigms. Virtualization offers many advantages in the present, which are being exploited for the benefit 
of developing the 5G evolution initiative. In other words, the existing hardware deployed to serve the 4G 
LTE and LTE-Advanced infrastructures is being emulated into software and virtualized, i.e. adapted to 
operate on a generic computing machine (a PC or a server). From there, a congregated research is being 
carried out in order to achieve automation of deployment and portability of emulated mobile network 
platforms. As an attempt to move the manual configuration into automated solution, the networking 
industry formulates the concepts of network virtualization (NV), network function virtualization (NFV) and 
the software-defined networking (SDN). Factually, the three concepts serve the purpose of network 
configuration automation and scalability in order to support virtualized and cloud environments. Another 
reason those software-defined schemes exist is explicit increment of networking agility, as well as 
simplifying service and application delivery methods. Therefore, the concept of network mobility can be 
solved with the option for programmability. Additionally, those three concepts are independent from each 



74 
 

other and can be implemented individually, without the impairment of their function. Namely, virtualization 
refers to the “process of abstracting computing resources such that multiple applications can share a single 
physical hardware” (VAEZI, Mojtaba and Zhang, Ying, 2017).  

As denoted, the virtualization refers mostly to server virtualization, where a particular physical server 
has an abstraction formed and is decomposed into virtual entities. The virtual constituents are assembled 
into a hypervisor which is in fact the virtualization software (like KVM, VirtualBox or VMware). The 
virtual constituents are in actual fact a virtual CPU, virtual RAM, and virtual NIC etc. Besides the 
represented entities, the storage can also be virtualized. This allows alleviated sharing of resources between 
users. Subsequently, a network can be virtualized as well, which encompasses creating virtual links, 
subnetworks, gateways and layer-2 bridges, etc. Since the server virtualization exists for an extensive period 
of time, numerous virtualization software is available. There are some major benefits the virtualization has 
brought into the world of computation management. With the improvement of availability, the servers are 
more user-friendly and available to supply bigger number of consumers efficiently. The users can create 
virtual machines and migrate the operations they perform in the form of images and run the same image in 
another environment. This inclines on the fact that virtualization also improves mobility, which is a very 
important factor. Another improvement is the improvement in the efficiency if exploitation of the hardware. 
A single virtual machine performs segmentation and is able to run a distinct operating system than the one 
at which the virtualization software is running. This allows the users to execute different software on 
different platforms, and at the same time distributing the resources of the physical machine more efficiently. 
Additionally, storage aggregation augments the global manageability of storage and delivers improved 
distribution of storage resources. At the same time, the capability of backup in the virtual environment is a 
big advantage. In case of failure, the servers can be configured to automatically migrate the data to another 
machine, without compromising the work they perform at the given moment, which in fact will also prevent 
data loss (VAEZI, Mojtaba and Zhang, Ying, 2017). 

2.3.1. OpenStack cloud platform 
Cloud computing has attracted considerable attention over the past few years. It offers the possibility to 

move an infrastructure to a platform where the requirement for hardware is no longer obligatory, but instead 
invest for uptime. With an interface that enables increasing and decreasing the number of virtual machines 
in a cloud, one builds a cluster that can adapt the number of servers to actual user demand, thereby both 
decreasing cost and evading saturated servers. A dedicated virtual machine (VM) model is not working 
when it comes to compute-intensive applications. Yet while considering Docker containers is a feasible 
idea, avoiding "noisy neighbor" problems that are common on shared infrastructure with SaaS offerings 
and performance problems for stateful applications like databases, is very desirable. OpenStack is a set of 
software tools for building and managing cloud computing platforms for public and private clouds. Backed 
by some of the biggest companies in software development and hosting, as well as thousands of individual 
community members, many regard OpenStack as the future of cloud computing. OpenStack is managed by 
the OpenStack Foundation, a non-profit organization that practices both development and community-
building around the project. OpenStack allows users to deploy virtual machines and other instances that 
handle different tasks for managing a cloud environment, continuously. The horizontal scaling is eased, 
which means that tasks that benefit from running concurrently can easily serve more or fewer users 
simultaneously by just running up more instances. For example, a mobile application that needs to 
communicate with a remote server might be able to divide the work of communicating with each user across 
many different instances, all communicating with one another but scaling quickly and easily as the 
application gains more users. And most importantly, it is open source software, which means that anyone 
who chooses to can access the source code, make any changes or modifications they need, and freely share 
the changes back out to the community at large. It also means that OpenStack has the benefit of thousands 
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of developers all over the world working in tandem to develop the strongest, most robust, and most secure 
product that they can (OPENSTACK, 2017).  

The cloud provides computing for end users in a remote environment, where the actual software runs as 
a service on reliable and scalable servers rather than on each end-user’s computer. Cloud computing can 
refer to a lot of different entities, but typically the industry discusses about running different items "as a 
service" - software, platforms, and infrastructure. OpenStack falls into the latter category and is considered 
Infrastructure as a Service (IaaS). Providing infrastructure means that OpenStack makes it easy for users to 
quickly add new instance, upon which other cloud components can run. Typically, the infrastructure then 
runs a "platform" upon which a developer can create software applications that are delivered to the end 
users. OpenStack is comprised of many different dynamic parts. Because of its open nature, anyone can 
add additional components to help it meet the demands. One of the advantages that OpenStack brings is 
that it helps prevent vendor lock-in to the underlying software and hardware. This is made possible by 
managing the resources through OpenStack, instead of using the vendor’s part directly. This means that a 
vendor’s component can potentially be replaced with another vendor’s easily. The drawback of this 
approach is that OpenStack only supports common required features for all kinds of supported modules and 
may miss some features specific to a vendor’s constituents. On the other hand, it should not go unnoticed 
that, due to the lack of an accepted standard for cloud platforms, using OpenStack implies a type of lock-
in to OpenStack itself, with no guarantee of portability to a different cloud framework (OPENSTACK, 
2017). 

However, disregarding the type of cloud infrastructure employed, there are several repercussions that 
need to be addressed when it comes to implementation of the future 5G networks. Since the main goals of 
5G are to improve capacity, reliability and energy efficiency, while reducing latency and massively 
increasing connection density; a crucial part of 5G is the empowerment of real-time application support. 
The given applications such as self-driving cars, robotics, medical appliances or online-gaming, require as 
lower network latency as possible. In the case of the present cloud technologies, the orientation towards 
latency minimization is instead diverted to providing service reliability and robustness. The  focus  of  next  
generation  mobile  communication  is  to provide  seamless  communication  for  machines  and  devices 
building the Internet-of-Things (IoT) along with personal communication. New applications such as tactile 
Internet, high-resolution video streaming, tele-medicine, tele-surgery, smart transportation, and real-time 
control dictate new specifications for throughput, reliability, end-to-end (E2E) latency, and network 
robustness. Additionally, intermittent or always-on type connectivity is required for machine-type 
communication (MTC)  serving  diverse  applications  including  sensing  and monitoring, autonomous 
cars, smart homes, moving robots and manufacturing industries. Several emerging technologies including 
wearable devices, virtual/augmented reality, and full immersive experience (3D) are shaping the demeanor 
of human end users, and they have special requirements for user satisfaction. Therefore, these use cases  of  
the  next generation network push the specifications of 5G in multiple  aspects  such  as  data  rate,  latency,  
reliability,  device/network  energy  efficiency,  traffic  volume  density, mobility, and connection density.  
Current fourth generation (4G) networks are not capable of fulfilling all the technical requirements for these 
services (PARVEZ, I. et al., 2017).  

One secret behind the manipulation with latency and service reliability is the situating of the core 
network and the way it is accessed by the eNB. Although, there are major advancements in the radio-access 
entity, coding, modulation and access techniques, the main goal of this thesis is to allude on the importance 
of the concepts of cloud computing merged with Software-Defined Networking and virtualizing of a 
Network Function. Consequently, the current cloud infrastructures are clustered in existing datacenters, 
where the virtualized core network can be deployed. Analogously, the eNB processing should reside on the 
premises of the core network, which can directly impact the performance at which UE is accessing the NAS 
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(Non-Access Stratum). This concept is known as Virtualized cloud Radio Access Network (C-RAN). A C-
RAN over passive optical network (PON) architecture is introduced called virtualized-CRAN (V-CRAN), 
which can dynamically associate any radio unit (RU) to any digital unit (DU) so that several RUs can be 
coordinated by the same DU, and the concept of virtualized BS (V-BS) that can jointly transmit common 
signals from multiple RUs to a user. This concept of splitting the core network (CN) into multiple entities 
allow for greater granular control and flexibility of computation resources placement and scaling 
(PARVEZ, I. et al., 2017). Given that the splits are deployed in a distributed cloud, the computational units 
for the eNB should be executed in the vicinity of the cloudified mobile core network. This will allow a 
direct communication between the eNB and the core network, specifically referred to as Edge computing 
(FARRIS, I. et al., 2017, pp.1-13).  

2.4. Multi-platform containers and their role in service deployment and 
software-defined networking  

To allow the deployment of splits and granular control over the core network constituents as well as the 
virtualized eNB application, a virtualization concept of containers is necessary to be apprehended. The old 
way of deploying applications was to install the applications on a host using the operating system package 
manager. This had the disadvantage of entangling the applications’ executables, configuration, libraries, 
and lifecycles with each other and with the host OS. One could build immutable virtual-machine images to 
achieve predictable rollouts and rollbacks, but VMs are heavyweight and non-portable. The new way is to 
deploy containers based on operating-system-level virtualization rather than hardware virtualization. These 
containers are isolated from each other and from the host: they have their own filesystems, they cannot see 
each other’s’ processes, and their computational resource usage can be bounded. They are easier to build 
than VMs, and because they are decoupled from the underlying infrastructure and from the host filesystem, 
they are portable across clouds and OS distributions. Because containers are small and fast, one application 
can be packed in each container image. This one-to-one application-to-image relationship unlocks the full 
benefits of containers. With containers, immutable container images can be created at build/release time 
rather than deployment time, since each application doesn’t need to be composed with the rest of the 
application stack, nor married to the production infrastructure environment. Generating container images 
at build/release time enables a consistent environment to be carried from development into production. 
Similarly, containers are vastly more transparent than VMs, which facilitates monitoring and management. 
This is especially true when the containers’ process lifecycles are managed by the infrastructure rather than 
hidden by a process supervisor inside the container. Finally, with a single application per container, 
managing the containers becomes tantamount to managing deployment of the application (KUBERNETES, 
2017). Containers, among virtual machines, are the prevalent entities used for establishing the mobile 
network. Specifically, as an open-source solution, Docker is being tested and used in conjunction with other 
automation tools such as Kubernetes and Docker-compose. It is shown that with using Docker containers, 
even the performance of high-performance computing platforms (HPC) remain uncompromised while the 
portability is being preserved. This is mostly due to the instantaneous access to faster library imports and 
access to the OS kernel (HALE, J. S. et al., 2017, pp.40-50).  

2.4.1. Docker 
The tool Docker is a very powerful open-source tool for software containerization. Docker introduces 

containers that can wrap a piece of software in a complete filesystem which contains everything needed to 
run: code, runtime, system tools, and system libraries - anything that can be installed on a server. This 
guarantees that the software will always be executed in the exact form, disregarding the environment (see 
Figure 47).  
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Figure 47. Containers and virtual machines have similar resource isolation and allocation benefits, but a different 

architectural approach allows containers to be more portable and efficient 

Containers running on a single machine share the same OS kernel; they start instantly and use less RAM. 
Images are constructed from layered filesystems and share common files, making disk usage and image 
downloads much more efficient. A Linux container is a virtualization instance in which the kernel of an 
operating system enables multiple isolated user-space instances in a Linux operating system. Also, Docker 
supports containerization on a Windows operating system. One can build and run Windows-based 
containers, or also run previously-created containers with a Linux image base, on a Windows OS or even 
MAC (DOCKER, INC., 2017).  

Unlike virtual machines (VMs), containers do not need to run a complete operating system (OS) image 
for each instance. Instead, containers are able to run separate instances of an application within a single 
shared OS. This new feature gives developers the flexibility to build once and move applications without 
the need to rewrite or redeploy their code, which makes up for faster integration and access to analytics, 
big data and services. As noted from Figure 47, virtual machines include the application, the necessary 
binaries and libraries, and an entire guest operating system, all of which can amount to tens of GBs. On the 
contrary, containers include the application and all its dependencies - but share the kernel with other 
containers, running as isolated processes in user space on the host operating system. Docker containers are 
not tied to any specific infrastructure: they run on any computer, on any infrastructure, and in any cloud 
(DOCKER, INC., 2017). Docker offers a wide palette of features, tools and plugins to expand the 
functionality and ease the management of deployed containers. Some of the more important appliances are 
described as follows:  

A. Docker-Compose 
Compose is a tool for defining and running multi-container Docker applications. With Compose, a 

YAML file is used to configure the application’s services. Then, with a single command, all the services 
are created and started from the particular configuration. It is useful when an application is dissected into 
multiple containers and deployed on a host. Compose has traditionally been focused on development and 
testing workflows, which is the basis for Continuous-Integration/Continuous Delivery (CI/CD) paradigms 
(DOCKER, INC., 2018).  
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B. Docker Cloud 
The Docker Cloud provides a hosted registry service with build and testing facilities for Dockerized 

application images; tools to aid the set up and management of host infrastructure; and application lifecycle 
features to automate deploying (and redeploying) services created from images. The Docker Cloud is used 
as a registry in the project for saving the built container images of the mobile network infrastructure, under 
the repository “brunodzogovic” for the current project (DOCKER, 2018) [repository: 
https://hub.docker.com/u/brunodzogovic/]. Docker Cloud uses the hosted Docker Cloud Registry, which 
allows publishing Dockerized images on the internet either publicly or privately. Docker Cloud can also 
store pre-built images, or link to a source code so it can build the code into Docker images, and optionally 
test the resulting images before pushing them to a repository. Before anything is performed with the images, 
they need a place to be initially run. Docker Cloud allows linking to the existing infrastructure or cloud 
services provider, so the new nodes can be automatically provisioned. Once the nodes are set up, one can 
deploy images directly from Docker Cloud repositories (DOCKER, INC., 2018). 

C. Docker Hub 
The registry service which allows linking code to repositories is called Docker Hub. It provides a 

centralized resource for container image discovery, distribution and change management, user and team 
collaboration, and workflow automation throughout the development pipeline (DOCKER, INC., 2018). A 
“Docker ID” is created (“brunodzogovic” in this case) [repository: 
https://hub.docker.com/u/brunodzogovic/], which allows setting up a repository to push the built images. 
Besides repositories, the Docker Hub provides also automated builds and automated creation of images 
when changes are made to the source code in the repository, webhooks, workgroups and integration with 
GitHub and Bitbucket workflows (DOCKER, INC., 2018).  

D. Docker networking 
The most important concept of Docker is connecting containers together in a fully-operational network 

stacks. The networking in Docker is modular and pluggable, using drivers. Several drivers exist by default, 
and provide core networking functionality:  

 Bridge: The default network driver. If a driver is not specified, this is the type of network that the 
Docker daemon will create. Bridge networks are usually used when applications run in standalone 
containers that need to communicate. 

 Host: For standalone containers, one can remove network isolation between the container and the 
Docker host, and use the host’s networking directly. The “host” driver is only available for swarm 
services on Docker 17.06 and higher. 

 Overlay: Overlay networks connect multiple Docker daemons together and enable swarm services 
to communicate with each other, for example with VXLAN. Overlay networks are also used to 
facilitate communication between a swarm service and a standalone container, or between two 
standalone containers on different Docker daemons. This strategy removes the need to do OS-level 
routing between these containers. 

 MACVLAN: MACVLAN networks allow assigning a MAC address to a container, making it 
appear as a physical device on the existing network. The Docker daemon routes traffic to containers 
by their MAC addresses. Using the MACVLAN driver is sometimes the best choice when dealing 
with legacy applications that expect to be directly connected to the physical network, rather than 
routed through the Docker host’s network stack.  

 IPVLAN: The IPVLAN driver offers a very similar functionality as the MACVLAN driver, with 
one major exception of using L3 multiplexing/demultiplexing among slave nodes. This property 
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makes the master device share the L2 with its slave devices. IPVLAN has two modes of operation 
- L2 and L3. For a given master device, one can select one of these two modes and all slaves on 
that master will operate in the same (selected) mode. The RX mode is almost identical except that 
in L3 mode the slaves will not receive any multicast / broadcast traffic. L3 mode is more restrictive 
since routing is controlled from the other (mostly) default namespace. 

 None: For this container, disable all networking. Usually used in conjunction with a custom 
network driver. ‘None’ is not available for swarm services.  

 Network plugins: It is feasible to install and use third-party network plugins with Docker, such as 
Calico or Open vSwitch. These plugins are available from the Docker Store or from third-party 
vendors.  

E. Docker storage 
It is possible to store data within the writable layer of a container, but there are some downsides: The 

data doesn’t persist when that container is no longer running, and it can be difficult to extract the data out 
of the container if another process needs it. A container’s writable layer is tightly coupled to the host 
machine where the container is running. It is thus not simple to move the data elsewhere. Writing into a 
container’s writable layer requires a storage driver to manage the filesystem. The storage driver provides a 
union filesystem, using the Linux kernel. This extra abstraction reduces performance as compared to using 
data volumes, which write directly to the host filesystem (DOCKER, INC., 2018). 

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind 
mounts, or tmpfs volumes. Usually, volumes are almost always the right choice. Volumes are stored in a 
part of the host filesystem which is managed by Docker (/var/lib/docker/volumes/ on Linux). Non-Docker 
processes should not modify this part of the filesystem. Volumes are the best way to persist data in Docker. 
Bind mounts may be stored anywhere on the host system. They may even be important system files or 
directories. Non-Docker processes on the Docker host or a Docker container can modify them at any time. 
Tmpfs mounts are stored in the host system’s memory only and are never written to the host system’s 
filesystem (DOCKER, INC., 2018). In order to solve the storage persistence issue, a third-party solution 
may be implemented, such as etcd (COREOS, 2018).  

2.4.2. Etcd 
Etcd stands for “/etc distributed” key value store, that is an open-source distributed key value store 

which provides shared configuration and service discovery for Linux Container clusters. Etcd runs on each 
machine in a cluster and gracefully handles leader election during network partitions and the loss of the 
current leader. Application containers running on a cluster can read and write data into etcd. Common 
examples are storing database connection details, cache settings, feature flags, etc. Etcd is the essence on 
top of which Kubernetes is built, and therefore, Kubernetes leverages the etcd distributed key-value store.  
It takes care of storing and replicating data used by Kubernetes across the entire cluster, and thanks to the 
Raft consensus algorithm (ONGARO, D. and Ousterhout, J., 2014), etcd can recover from hardware failure 
and network partitions (COREOS, 2018). 

A. Layer-4 Etcd gateway 
Etcd L4 gateway is a simple TCP proxy that forwards network data to the etcd cluster. The gateway is 

stateless and transparent; it neither inspects client requests nor interferes with cluster responses. The 
gateway supports multiple etcd server endpoints and works on a simple round-robin policy. It only routes 
to available endpoints and hides failures from its clients. Other retry policies, such as weighted round-robin, 
are supported. Every application that accesses etcd must first have the address of an etcd cluster client 
endpoint. If multiple applications on the same server access the same etcd cluster, every application still 
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needs to know the advertised client endpoints of the etcd cluster. If the etcd cluster is reconfigured to have 
different endpoints, every application may also need to update its endpoint list. This wide-scale 
reconfiguration is both tedious and error prone. Etcd gateway solves this problem by serving as a stable 
local endpoint. A typical etcd gateway configuration has each machine running a gateway listening on a 
local address and every etcd application connecting to its local gateway. The consequence is only that the 
gateway needs to update its endpoints instead of updating each and every application. In summary, to 
automatically propagate cluster endpoint changes, the etcd gateway runs on every machine serving multiple 
applications accessing the same etcd cluster (COREOS, 2018). 

Clusters are usually built from a large collection of machines with the ability to run any workload at any 
given time. In order for a cluster to perform at high levels of efficiency, the workloads should be distributed 
appropriately across all machines in the cluster.  Then clusters need a way of coordinating with each other. 
For example, a job scheduler needs to notify a machine that it has work to do. Once that work has been 
completed machines may need to communicate that fact to some other component in the cluster. A 
distributed system needs a reliable coordination mechanism, and therefore, it is important that this 
communication happens in an apt and reliable manner to keep everything running efficiently. Essentially, 
something has to manage the state of the cluster, which is the actual etcd that is matter of discussion 
(COREOS, 2018).  

B. Role-based access control (RBAC) 
Etcd has its own authentication features and a role-based access control. Etcd defines one special user 

root and one special role root. The root user, which has full access to etcd, must be created before activating 
authentication. The idea behind the root user is for administrative purposes: managing roles and ordinary 
users. The root user must have the root role and is allowed to change anything inside etcd. The role root 
may be granted to any user, in addition to the root user. A user with the root role has both global read-write 
access and permission to update the cluster's authentication configuration. Furthermore, the root role grants 
privileges for general cluster maintenance, including modifying cluster membership, defragmenting the 
store, and taking snapshots. If an etcd server is launched with the option --client-cert-auth=true, the field 
of Common Name (CN) in the client's TLS certificate will be used as an etcd user. In this case, the common 
name authenticates the user and the client does not need a password.  

2.4.3. Kubernetes 
One of the orchestrating solutions that are used is Kubernetes (KUBERNETES, 2017). Kubernetes is a 

powerful system, developed by Google, for managing containerized applications in a clustered 
environment. It aims to provide better ways of managing related, distributed components across varied 
infrastructure. Kubernetes, at its basic level, is a system for managing containerized applications across a 
cluster of nodes. In many ways, Kubernetes was designed to address the disconnection between the way 
that modern, clustered infrastructure is designed, and some of the assumptions that most applications and 
services have about their environments. Most clustering technologies strive to provide a uniform platform 
for application deployment. The user should not have to care much about where work is scheduled. The 
unit of work presented to the user is at the "service" level and can be accomplished by any of the member 
nodes. However, in many cases, it does matter what the underlying infrastructure looks like. When scaling 
an application, the administrator cares that the various instances of a service are not all being assigned to 
the same host. On the other hand, many distributed applications built with scaling in mind are comprised 
of smaller component services. These services must be scheduled on the same host as related components 
if they are going to be configured in a trivial way. This becomes even more important when they rely on 
specific networking conditions to communicate appropriately. While it is possible with most clustering 
software to make these types of scheduling decisions, running at the level of individual services is not 
perfect. Applications comprised of different services should still be managed as a single application in most 
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cases. Kubernetes provides a layer over the infrastructure to allow for this type of management. Even though 
Kubernetes provides a lot of functionality, there are always new scenarios that would benefit from new 
features. Application-specific workflows can be streamlined to accelerate developer velocity. Ad hoc 
orchestration that is acceptable initially often requires robust automation at scale. This is why Kubernetes 
was also designed to serve as a platform for building an ecosystem of components and tools to make it 
easier to deploy, scale, and manage applications. Labels empower users to organize their resources however 
they please. Annotations enable users to decorate resources with custom information to facilitate their 
workflows and provide an easy way for management tools to checkpoint state. Additionally, the Kubernetes 
control plane is built upon the same APIs that are available to developers and users. Users can write their 
own controllers, such as schedulers, with their own APIs that can be targeted by a general-
purpose command-line tool. This design has enabled a number of other systems to build atop Kubernetes 
(KUBERNETES, 2017).  

Main features of Kubernetes are:  

 Self-healing - Restarts containers that fail, replaces and reschedules containers when nodes die, 
kills containers that don't respond to user-defined health check, and doesn't advertise them to clients 
until they are ready to serve. 

 Horizontal scaling – Scaling an application up and down with a simple command, with a UI, or 
automatically based on CPU usage. This feature can be further upgraded for automatic scaling 
based on metrics taken from the network, CPU/Disk utilization and other metrics.  

 Automatic bin-packing - Automatically places containers based on their resource requirements 
and other constraints, while not sacrificing availability. This stands for mixing critical and best-
effort workloads to drive up usage and save even more resources.  

 Automated rollouts and rollbacks - Kubernetes progressively rolls out changes to the deployed 
application or its configuration, while monitoring its health to ensure that it doesn't kill all the other 
instances at the same time. If unpredictable events take place, Kubernetes will roll back the change 
automatically.  

 Service discovery and load balancing – Is a very important feature that annuls the need to modify 
a running application to use an unfamiliar service discovery mechanism. Kubernetes gives 
containers their own IP addresses and a single DNS name for a set of containers and can load-
balance across them.  

 Secret and configuration management – An excellent security property that allows deploying 
and updating secrets and application configuration without rebuilding the image and without 
exposing secrets in the stack configuration.  

 Storage orchestration - Automatically mount the storage system by choice, whether from local 
storage, a public cloud provider such as GCP or AWS, or a network storage system such as NFS, 
iSCSI, Gluster, Ceph, Cinder, or Flocker. 

 Batch execution - In addition to services, Kubernetes can manage batch and CI workloads, 
replacing containers that fail, if desired. 

 

A. Master components:  
Infrastructure-level systems like CoreOS strive to create a uniform environment where each host is 

disposable and interchangeable. Kubernetes, on the other hand, operates with a certain level of host 
specialization. The controlling services in a Kubernetes cluster are called the master, or control plane, 
components. These operate as the main management contact points for administrators and provide many 
cluster-wide systems for the relatively dumb worker nodes. These services can be installed on a single 
machine or distributed across multiple machines. The servers running these components have a number of 
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unique services that are used to manage the cluster’s workload and direct communications across the system 
(KUBERNETES, 2017). 

 Etcd - Kubernetes uses etcd to store configuration data that can be used by each of the nodes in the 
cluster. This can be used for service discovery and represents the state of the cluster that each 
component can reference to configure or reconfigure themselves. By providing a simple 
HTTP/JSON API, the interface for setting or retrieving values is very straightforward. 

 API Server - This is the main management point of the entire cluster, as it allows a user to configure 
many of Kubernetes’ workloads and organizational units. It also is responsible for making sure that 
the etcd store and the service details of deployed containers are in agreement. It acts as the bridge 
between various components to maintain cluster health and disseminate information and 
commands. • Controller Manager Service - The controller manager service is a general service that 
has many responsibilities. It is responsible for a number of controllers that regulate the state of the 
cluster and perform routine tasks. For instance, the replication controller ensures that the number 
of replicas defined for a service matches the number currently deployed on the cluster. The details 
of these operations are written to etcd, where the controller manager watches for changes through 
the API server. 

 Scheduler Service - The process that assigns workloads to specific nodes in the cluster is the 
scheduler. This is used to read in a service’s operating requirements, analyze the current 
infrastructure environment, and place the work on an acceptable node or nodes. The scheduler is 
responsible for tracking resource utilization on each host to make sure that workloads are not 
scheduled in excess of the available resources. The scheduler must know the total resources 
available on each server, as well as the resources allocated to existing workloads assigned on each 
server. 

 Kube-controller manager - Runs controllers, which are the background threads that handle 
routine tasks in the cluster. Logically, each controller is a separate process, but to reduce 
complexity, they are all compiled into a single binary and run in a single process. These controllers 
include:  

- Node Controller: Responsible for noticing and responding when nodes go down. 
- Replication Controller: Responsible for maintaining the correct number of pods for every 

replication controller object in the system. 
- Endpoints Controller: Populates the Endpoints object (that is, joins Services & Pods). 
- Service Account & Token Controllers: Create default accounts and API access tokens for 

new namespaces. 

 Cloud-controller manager - runs controllers that interact with the underlying cloud providers. The 
cloud-controller-manager binary is an alpha feature introduced in Kubernetes release 1.6. Cloud-
controller-manager runs cloud-provider-specific controller loops only. One must disable these 
controller loops in the kube-controller-manager. It is possible to disable the controller loops by 
setting the --cloud-provider flag to external when starting the kube-controller-manager. Cloud-
controller-manager allows cloud vendors code and the Kubernetes core to evolve independent of 
each other. In prior releases, the core Kubernetes code was dependent upon cloud-provider-specific 
code for functionality. In future releases, code specific to cloud vendors should be maintained by 
the cloud vendor themselves and linked to cloud-controller-manager while running Kubernetes. 
The following controllers have cloud provider dependencies: 

- Node Controller: For checking the cloud provider to determine if a node has been deleted 
in the cloud after it stops responding 

- Route Controller: For setting up routes in the underlying cloud infrastructure 
- Service Controller: For creating, updating and deleting cloud provider load balancers 



83 
 

- Volume Controller: For creating, attaching, and mounting volumes, and interacting with 
the cloud provider to orchestrate volumes 

 Addons – Represent pods and services that implement cluster features. The pods may be managed 
by Deployments, ReplicationControllers, and so on. “Namespaced” addon objects are created in 
the kube-system namespace. Addon manager creates and maintains addon resources.  

 DNS - While the other addons are not strictly required, all Kubernetes clusters should have cluster 
DNS, as many examples rely on it. Cluster DNS is a DNS server, in addition to the other DNS 
server(s) in the given environment, which serves DNS records for Kubernetes services. Containers 
started by Kubernetes automatically include this DNS server in their DNS searches. 

 Web UI (Dashboard) – Is a general purpose, web-based UI for Kubernetes clusters. It allows users 
to manage and troubleshoot applications running in the cluster, as well as the cluster itself. 

 Container resource monitoring – Records generic time-series metrics about containers in a 
central database and provides a UI for browsing that data. 

 Cluster-level logging – A mechanism that handles saving container logs to a central log store with 
search/browsing interface. 

B. Node Server Components: 
In Kubernetes, servers that perform work are known as nodes. Node servers have a few requirements 

that are necessary to communicate with the master components, configure the networking for containers, 
and run the actual workloads assigned to them (KUBERNETES, 2017). 

 Docker running on a dedicated subnet - The first requirement of each individual node server is 
docker. The docker service is used to run encapsulated application containers in a relatively isolated 
but lightweight operating environment. Each unit of work is, at its basic level, implemented as a 
series container that must be deployed. One key assumption that Kubernetes makes is that a 
dedicated subnet is available to each node server. This is not the case with many standard clustered 
deployments. For instance, with CoreOS, a separate networking fabric called flannel is needed for 
this purpose. Docker must be configured to use this so that it can expose ports in the correct fashion. 
Also, Calico can be used in conjunction with Flannel for network overlay, which is supported in 
Kubernetes as a plugin called “Canal”.  

 Kubelet Service - The main contact point for each node with the cluster group is through a small 
service called kubelet. This service is responsible for relaying information to and from the control 
plane services, as well as interacting with the etcd store to read configuration details or write new 
values. The kubelet service communicates with the master components to receive commands and 
work. Work is received in the form of a "manifest" which defines the workload and the operating 
parameters. The kubelet process then assumes responsibility for maintaining the state of the work 
on the node server. 

 Proxy Service - To deal with individual host subnetting and to make services available to external 
parties, a small proxy service is run on each node server. This process forwards requests to the 
correct containers, can do primitive load balancing, and is generally responsible for making sure 
the networking environment is predictable and accessible, but isolated.  

 Rkt – Is an experimental container platform, supported as an alternative to Docker. 

 Supervisord – A lightweight process monitor and control system that can be used to keep kubelet 
and Docker running.  

 Fluentd – A daemon that helps provide cluster-level logging.  
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C. Kubernetes Work Units: 
While containers are the used to deploy applications, the workloads that define each type of work are 

specific to Kubernetes. We will go over the different types of "work" that can be assigned below 
(KUBERNETES, 2017): 

 Pods - A pod is the basic unit that Kubernetes deals with. Containers themselves are not assigned 
to hosts. Instead, closely related containers are grouped together in a pod. A pod generally 
represents one or more containers that should be controlled as a single "application". This 
association leads all the involved containers to be scheduled on the same host. They are managed 
as a unit and they share an environment. This means that they can share volumes and IP space, and 
can be deployed and scaled as a single application. One can and should generally think of pods as 
a single virtual computer to best conceptualize how the resources and scheduling should work. The 
general design of pods usually consists of the main container that satisfies the general purpose of 
the pod, and optionally some helper containers that facilitate related tasks. These are programs that 
benefit from being run and managed in their own container but are heavily tied to the main 
application. Horizontal scaling is generally discouraged on the pod level because there are other 
units more suited for the task. 

 Services - We have been using the term "service" throughout this guide in a very loose fashion, but 
Kubernetes actually has a very specific definition for the word when describing work units. A 
service, when described this way, is a unit that acts as a basic load balancer and ambassador for 
other containers. A service groups together logical collection of pods that perform the same 
function to present them as a single entity. This allows deployment of a service unit that is aware 
of all of the backend containers to pass traffic to. External applications only need to worry about a 
single access point but benefit from a scalable backend or at least a backend that can be swapped 
out when necessary. A service’s IP address remains stable, abstracting any changes to the pod IP 
addresses that can happen as nodes die or pods are rescheduled. Services are an interface to a group 
of containers so that consumers do not have to worry about anything beyond a single access 
location. By deploying a service, one easily gains discover-ability and can simplify the container 
designs. 

 

D. Controller units: 
 Replication Controllers - A more complex version of a pod is a replicated pod. These are handled 

by a type of work unit known as a replication controller. A replication controller is a framework 
for defining pods that are meant to be horizontally scaled. Essentially, the work unit is a nested 
unit. A template is provided, which is basically a complete pod definition. This is wrapped with 
additional details about the replication work that should be done. The replication controller is 
delegated responsibility over maintaining a desired number of copies. This means that if a container 
temporarily goes down, the replication controller might start up another container. If the first 
container comes back online, the controller will kill off one of the containers. • Labels - A 
Kubernetes organizational concept outside of the work-based units is labeling. A label is basically 
an arbitrary tag that can be placed on the above work units to mark them as a part of a group. These 
can then be selected for management purposes and action targeting. Labels are fundamental to how 
both services and replication controllers function. To get a list of backend servers that a service 
should pass traffic to, it usually selects containers based on label.  

 Replica sets - ReplicaSet is the next-generation Replication Controller. The only difference 
between a ReplicaSet and a Replication Controller at this point is the selector support. ReplicaSet 
supports the new set-based selector requirements, whereas a Replication Controller only supports 
equality-based selector requirements. A ReplicaSet ensures that a specified number of pod replicas 



85 
 

are running at any given time. However, a Deployment is a higher-level concept that manages 
ReplicaSets and provides declarative updates to pods along with a lot of other useful features. 
Therefore, it is recommended to utilize Deployments instead of directly using ReplicaSets, unless 
a particular custom update orchestration is required, or no updates are required at all. 

 Deployments - A Deployment controller provides declarative updates for Pods and ReplicaSets. A 
desired state is described in a Deployment object, and the Deployment controller changes the actual 
state to the desired state at a controlled rate. One can define Deployments to create new ReplicaSets, 
or to remove existing Deployments and adopt all their resources with new Deployments. 

 Stateful sets - Manages the deployment and scaling of a set of Pods and provides guarantees about 
the ordering and uniqueness of these Pods. Like a Deployment, a StatefulSet manages Pods that 
are based on an identical container spec. Unlike a Deployment, a StatefulSet maintains a sticky 
identity for each of their Pods. These pods are created from the same spec but are not 
interchangeable: each has a persistent identifier that it maintains across any rescheduling. A 
StatefulSet operates under the same pattern as any other Controller. One defines the desired state 
in a StatefulSet object, and the StatefulSet controller makes any necessary updates to achieve that 
from the current state. 

 Daemon sets - A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are 
added to the cluster, Pods are added to them. As nodes are removed from the cluster, those Pods 
are garbage collected. Deleting a DaemonSet will clean up the Pods it created. Some typical uses 
of a DaemonSet are: running a cluster storage daemon, such as glusterd, ceph, on each node; 
running a logs collection daemon on every node, such as fluentd or logstash; running a node 
monitoring daemon on every node, such as Prometheus Node Exporter, collectd, Datadog agent, 
New Relic agent, or Ganglia gmond. In a simple case, one DaemonSet, covering all nodes, would 
be used for each type of daemon. A more complex setup might use multiple DaemonSets for a 
single type of daemon, but with different flags and/or different memory and cpu requests for 
different hardware types. 

 Garbage collection - The role of the Kubernetes garbage collector is to delete certain objects that 
once had an owner, but no longer have an owner. Some Kubernetes objects are owners of other 
objects. For example, a ReplicaSet is the owner of a set of Pods.  

 Jobs - A job creates one or more pods and ensures that a specified number of them successfully 
terminate. As pods successfully complete, the job tracks the successful completions. When a 
specified number of successful completions is reached, the job itself is complete. Deleting a Job 
will clean up the pods it created. A simple case is to create one Job object to reliably run one Pod 
to completion. The Job object will start a new Pod if the first pod fails or is removed (for example 
due to a node hardware failure or a node reboot). A Job can also be used to run multiple pods in 
parallel. 

 Cron jobs - One Cron job object is like one line of a crontab (cron table) file. It runs a job 
periodically on a given schedule, written in Cron format. 

 

E. Namespaces: 
Kubernetes introduces namespaces as a concept of organizing the components of the management in a 

single namespace (as in Figure 48). Namespace represent an isolated area that can contain pods, replication 
controllers and services that are isolated within it. This allow having services and pods with the same names 
without experiencing conflicts between the namespaces on a same physical Kubernetes cluster (Figure 48) 
(KUBERNETES, 2017).  
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Figure 48. Kubernetes namespaces 

 

2.4.4. Orchestration of Docker containers with Kubernetes  
Container Orchestration refers to the automated arrangement, coordination, and management of 

software containers. When the applications becomes dissected into splits, it encompasses an architecture 
known as microservices (DIGITALOCEAN, 2018). A single-container deployment refers to deploying an 
application in one container image. However, if the specific application (or infrastructure) has multiple 
functional splits, it is possible to dissect the deployment into multiple containers. The formed containers 
can be easily organized into clusters of containers and deployed then remotely using orchestrator such as 
Kubernetes (KUBERNETES, 2017).  

For example, to deploy an application in a Kubernetes Pod, it is necessary to create a YAML file (see 
Appendix A). The execution of the file will create a replicated database cluster, based on SQL and in much 
replicas as designated into the YAML configuration (in this case 3). To create the particular pod, a single 
command only is required: kubectl create –f db-pod.yml, where the db-pod.yml is the name of the YAML 
file. To deploy any other application, the same method can be adopted. The kubectl daemon will initialize 
all the necessary pods and run the specific Docker containers in them. The simplicity of using Kubernetes 
for cluster management of a microservices deployment is thus unprecedented. With conjunction of few 
open-source solutions mentioned in the following chapters and subchapters, Kubernetes can solve all the 
predicaments in terms of service discovery, load balancing, secrets/configuration/storage management, 
health checks, auto-scaling/restart/healing of containers and nodes and provide the desirable zero-downtime 
deployments.  

2.4.5. Security of application containers, secret storage and managing secrets 
It is known that the container technology may suffer from security predicaments as much as any other 

system. The image-oriented nature of containers represents a conundrum by itself. As it is the case with any 
software, containerized deployments can suffer of vulnerabilities. For example, a Docker container can 
have a backdoor installed and if it is available for implementation from a public repository (i.e. Docker 
Hub), it is very easy to deploy an insecure application without having a notion about it. One solution is 
image scanning for vulnerabilities, which is usually manual process or an Enterprise feature that is adopted 
by companies such as Docker, IBM, Google, etc. (TAK, B. et al., 2017).  
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To resolve the security issue on a network and application level, a multi-layer security approach is 
adopted (network-level security with Pfsense firewall (PFSENSE, 2018) and Cisco ACL, container-level 
security with policy-based networking and secret storage, as well as application-level security with 
provided authentication using SIM cards). Since the containers need to communicate between each other, 
exchange tokens, security-related data, encrypted passwords or database access; a policy-based approach 
is defined via SDN (Software-Defined Networking) entities, explained later. Moreover, since the mobile 
network utilizes the DIAMETER authentication protocol, a secret management system is required. For that 
purpose, the open-source tool vault is employed, which is a tool for securely accessing secrets. A secret is 
anything that a specific access control is preferred for, such as API keys, passwords, or certificates. Vault 
provides a unified interface to any secret, while providing tight access control and recording a detailed audit 
log. A modern system requires access to a multitude of secrets: database credentials, API keys for external 
services, credentials for service-oriented architecture communication, etc. Understanding who is accessing 
what secret is already very difficult and platform-specific. Adding on key rolling, secure storage, and 
detailed audit logs is almost impossible without a custom solution, which is the actual main function of 
Vault (HASHICORP, 2018). 

The key features of Vault are: 

 Secure Secret Storage: Arbitrary key/value secrets can be stored in Vault. Vault encrypts these 
secrets prior to writing them to persistent storage, so gaining access to the raw storage isn't enough 
to access the given secrets. Vault can write to disk to Consul etc. 

 Dynamic Secrets: Vault can generate secrets on-demand for some systems, such as AWS or SQL 
databases. For example, when an application needs to access an S3 bucket, it asks Vault for 
credentials, and Vault will generate an AWS keypair with valid permissions on demand. After 
creating these dynamic secrets, Vault will also automatically revoke them after the lease is up. 

 Data Encryption: Vault can encrypt and decrypt data without storing it. This allows security teams 
to define encryption parameters and developers to store encrypted data in a location such as SQL 
without having to design their own encryption methods. 

 Leasing and Renewal: All secrets in Vault have a lease associated with them. At the end of the 
lease, Vault will automatically revoke that secret. Clients are able to renew leases via built-in renew 
APIs. 

 Revocation: Vault has built-in support for secret revocation. Vault can revoke not only single 
secrets, but a tree of secrets, for example all secrets read by a specific user, or all secrets of a 
particular type. Revocation assists in key rolling as well as locking down systems in the case of an 
intrusion. 

Vault is not tied to any specific configuration management system. One can read secrets from 
configuration management, but it is also possible to use the API directly to read secrets from applications. 
This means that configuration management requires fewer secrets, and in many cases doesn’t ever have to 
persist the secrets to disk. Vault encrypts the data onto physical storage and requires multiple keys to read 
it. If an attacker were to gain access to the physical encrypted storage, it could not be read without multiple 
keys, which are generally distributed to multiple individuals. This is known as unsealing and happens once 
whenever the Vault service starts. For an unsealed Vault, every interaction is logged in via the audit devices. 
Even erroneous requests (invalid access tokens, for example) are logged. To access any data, an access 
token is required. This token is usually associated with an identity coming from a system such as GitHub, 
LDAP, etc. This identity is also written to the audit log. Access tokens can be given fine-grained control 
over what secrets can be accessed. It is rare to have a single key that can access all secrets. This makes it 
easier to have fine-grained access for consumers of Vault. In addition to being able to store secrets, Vault 
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can be used to encrypt/decrypt data that is stored elsewhere. The primary use of this is to allow applications 
to encrypt their data while still storing it in the primary data store (HASHICORP, 2018). 

2.4.6. Automation with Puppet and Terraform (Infrastructure-as-a-Code) 
In order to establish a platform for automation, it is essential to introduce some state-of-the-art DevOps 

practices of the modern system administration paradigm. Many open-source technologies exist, that are 
able to accommodate any kind of infrastructures, while establishing a solid base for automation of 
deployment and configuration management. Some of the solutions that are represented thus are: Puppet 
(PUPPET, 2018), Terraform (HASHICORP, 2018) and earlier, Kubernetes (KUBERNETES, 2017) as an 
orchestrator.  

Configuration management tools install and manage software on a machine that already exists. 
Terraform is not a configuration management tool, and it allows existing tooling to focus on their strengths: 
bootstrapping and initializing resources. Using provisioners, Terraform enables any configuration 
management tool (such as Puppet) to be used to setup a resource once it has been created. Terraform focuses 
on the higher-level abstraction of the datacenter and associated services, without sacrificing the ability to 
use configuration management tools to do what they do best. It also embraces the same codification that is 
responsible for the success of those tools, making entire infrastructure deployments easy and reliable 
(HASHICORP, 2018). Terraform is a tool for building, changing, and versioning infrastructure safely and 
efficiently. Terraform can manage existing and popular service providers as well as custom in-house 
solutions. Configuration files describe to Terraform the components needed to run a single application or 
an entire datacenter. Terraform generates an execution plan describing what it will perform in order to reach 
the desired state, and then executes it to build the described infrastructure. As the configuration changes, 
Terraform is able to determine what changed and create incremental execution plans which can be applied. 
The infrastructure Terraform can manage includes low-level components such as compute instances, 
storage, and networking, as well as high-level components such as DNS entries, SaaS features, etc. 
Complex changesets can be applied to the infrastructure with minimal human interaction. With the 
previously mentioned execution plan and resource graph, it is possible to know exactly what Terraform will 
change and in what order, avoiding many possible human errors.  

In the particular research, Software Defined Networking (SDN) is the prevalent area of operation, as it 
provides more control and allows the network to better support the applications running on top. Most SDN 
implementations have a control layer and infrastructure layer. Terraform can be used to codify the 
configuration for software defined networks. This configuration can then be used by Terraform to 
automatically setup and modify settings by interfacing with the control layer. This allows configuration to 
be versioned and changes to be automated. As an example, AWS VPC is one of the most commonly used 
SDN implementations and can be configured by Terraform (HASHICORP, 2018). 

2.5.  The role of NFV and SDN in the evolution towards 5G 
Usually, the concepts of Software-Defined Network (SDN) and virtual Network Function (vNF) are 

being misunderstood and mistaken for each other. However, the definitions for both terms are acutely 
different. Software-Defined Networking is “The physical separation of the network control plane from the 
forwarding plane, and where a control plane controls several devices” 
(OPENNETWORKFOUNDATION , 2018), whereas Network functions virtualization (NFV) is “the 
concept of replacing dedicated network appliances - such as routers and firewalls - with software running 
on commercial off-the-shelf (COTS) servers” (ADVA OPTICAL NETWORKING, 2018). The both 
paradigms have a similar common goal, which is to transform the way communication service providers 
(CSPs) architect networks and deliver network services. Network operations are transformed as network 
function software, that is dynamically instantiated in various locations in the network as needed, without 
requiring the installation of new equipment. 



89 
 

 
As stated previously, the Long-Term Evolution (LTE) is constituted of two entities: UMTS-RAN and 

EPC, namely, the 3G Universal Mobile Telecommunication Service - Radio Access Network and the 
Evolved Packet Core. The EPC contains the HSS (Home Subscriber Server), which is in fact a database for 
the users; the PGW (Packet Data Gateway) that routes the data communication via IP network and interfaces 
SGW (Service Gateway) with the Internet. The SGW is responsible for routing the traffic of calls and other 
services from the eNB to the PGW, which is dictated by the MME (Mobile Management Entity). The 
dedicated hardware for the LTE network serves the purpose of the functionality it is dedicated for. Adding 
additional hardware in the core network adds to the complexity of the system, as well as the cost. When it 
comes to accommodation of larger number of users, the peak times are handled by duplicating the entities. 
Such process will lead to incremental complexity of the core network and linear increase of costs for 
providing the adequate hardware equipment. As the number of users is predicted to increase with the 
emergence of the next-generation networks, the hardware-based 4G LTE equipment is no longer apposite 
to correspond to the requirements, because the expenditures will remain constant while the revenues per 
subscriber will gradually decrease. This introduces the necessity for the Software-Defined Networking 
(SDN) paradigm and Network Function Virtualization (NFV). The proposed methodologies offer various 
scenario improvements, while enabling combinations that are usually not feasible with the existing 
hardware only. In fact, moving the EPC to the cloud helps achieve cost reduction for the benefit of enlarging 
revenues margin (TAWBEH, Ali et al., 2017).  

 
A crucial requirement for telecom network infrastructure is the compatibility with cloud or computing 

architecture as a flexible and cost-effective service platform. With the fact that the NFV and SDN are 
enabling the hardware equipment emulation into the cloud, technical issues from a networking standpoint 
emerge. The desirable outcome for introducing peculiar 5G network slices, should encompass automated 
and scalable management of cloud-based NFV infrastructure; as well as the possibility for improvement of 
the particular performance of the current infrastructure, in terms of latency, throughput and reasonable 
applicability of the model parallelly to the given scenario.  

 

2.5.1. Mobility meets virtualization 
In a 5G world, the capacity and latency are the most critical units that need to be taken into consideration. 

One of the appliances that the technology will be based on, is the Distributed Cloud. A Distributed Cloud 
represents arranging a data center at the edge domain, like central office or a base station. All services that 
are included in this domain are taking a virtual form, which will enable ease of access, reduction of latency, 
exponential reduction of hardware cost for implementation etc. Taking all these instruments into 
consideration will contemplate a logical need for orchestration machinery as well as analytics and 
monitoring solutions that are of frivolous manner. Evidently, this machinery shall be comprised of location 
and even personality-based AI objects, that will automatically evaluate, monitor, troubleshoot, organize 
and manage the infrastructure. This network intelligence is a complex assortment of Software Defined 
Networking (SDN), Network Virtualization Function (NFV), Artificial Intelligence and machine learning 
combined with immutable infrastructure (UDDENFELDT, Jan, 2017). 

To establish these modules, a precise automation method is required. Immutable infrastructure provides 
stability, efficiency, and fidelity to applications through automation and the use of successful patterns from 
programming. No rigorous or standardized definition of immutable infrastructure exists yet, but the basic 
conception is that one creates and operates an infrastructure using the programming concept of 
immutability: once something is instantiated, it is never changed. Instead, it is replaced with another 
instance to make changes or ensure proper behavior. Immutable Infrastructure builds on processes from the 
nature and how it maintains advanced biological systems (STELLA, Josh, 2015). The primary mechanism 
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of fidelity in humans is the constant destruction and replacement of subcomponents. It triggers the immune 
system, which destroys cells to maintain health and it motivates the growth system, which allows different 
subsystems to mature over time through destruction and replacement. The individual human being 
maintains a sense of self and intention, while the underlying components are constantly replaced. Systems 
managed using II patterns are analogous (BERNSTEIN, Ben, 2015). The reimbursements of immutable 
infrastructure are manifold if applied appropriately to an application and have effusively automated 
deployment and recovery methods for any infrastructure: 

• Simplifying operations. With fully-automated deployment methods, it is possible to replace old 
components with new versions to guarantee that systems are never far in time from their initial “known-
good” state. Maintaining a fleet of instances becomes considerably simpler with II since there is no need to 
track the changes that occur with mutable maintenance methods. 

• Continuous deployments, fewer failures. With II, it is known what is running and how it behaves, 
deploying updates can become mundane and continuous, with fewer failures transpiring in production. All 
change is tracked by the source control and Continuous Integration/Continuous Deployment processes. 

• Reduces errors and threats. Services are built atop a complex stack of hardware and software, and 
events usually take wrong occurrence over time. By automating replacement instead of maintaining 
instances, instances are regularly and repeatedly regenerated. This reduces configuration drift, vulnerability 
surface, and level of effort to keep Service Level Agreements. Many of the maintenance fire drills in 
mutable systems are taken care of naturally. 

• Complete cloud rebooting. With Immutable Infrastructure, the running components are familiar, and 
with fully automated recovery methods for the services in place, cloud reboots of the underlying instances 
should be handled gracefully and with minimal, if any, application interruption. 

The concept of immutable infrastructure is an emerging IT strategy enabled using Docker and containers 
(BRYZEK, Michael, 2014). Docker can empower the 5G networking components to behave just like the 
organs in the human body, where a single malfunctioning organ can be replaced with adjacent one from a 
donor that has a corresponding genetic sequence at the 6th chromosome (the Human Leukocyte Antigen). 
The advanced idea that is researched is beyond the replacement of the organs, where an intelligent system 
will decide to automatically perform the replacement of the modules, adjusting network performance, create 
a temporary solution for a peculiar problem. For example, one of the main modules deducted for the 
successful 5G operation is the Air Interface that is the SDN / NFV module of the 5G network, to facilitate 
successful service delivery to the end users (INFLUXDATA, 2017). The Air Interface can be easily 
incorporated into containers, and furthermore in form of a microservice architecture (that opens even 
additional potentials). From this point, the prospects are interminable. At a soccer match, tens of thousands 
of viewers can record the event with presumably HD or even 4K imaging devices. Due to the popularity of 
the social networks, many of the experiences tend to be shared with the acquaintances. The only possible 
way is using the mobile infrastructure at that point. A current LTE network supports [real] 10s of Mbit/s 
traffic speed, which will allow the user to send the video content on Facebook or upload on YouTube. 
Simultaneous uploads from most of the viewers will bottleneck the neighboring base stations with the GBs 
of content intended for sharing. In a 5G scenario, using the immutable infrastructure, the Air Interface 
containers can be delivered to a Distributed Cloud in the vicinity of the soccer match. This action can be 
performed automatically using genetic algorithms for prediction and identification of bigger demands for 
the network, where the NFV module will receive instructions to integrate itself within the Distributed Cloud 
and replicate to enable load-balancing and high availability for other services that require resources at the 
same moment (interconnected train sensors, self-driving car sensors, IoT devices, wearable gadgets etc.). 
This way, the end-to-end service delivery would be uninterrupted, perfected, while lowest possible latency 
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is ensured, altogether approximately less than 1ms. This can scale up to a situation where surgeons can 
perform remote surgeries over long distances using automated hardware and robotics, that will get as much 
resources as required due to priority, all in the same area where the soccer match is taking place. 

2.5.2. SDN and NFV solutions, network overlay and underlay  
To successfully connect remote workloads, a networking solution that can manage L3 and L2 operations 

is required, namely routing and switching. The actual devices that can perform these operations are 
hardware routers and switches. For the particular requirements of the mobile network infrastructure, the 
hardware usage feasibility is limited for a simple reason, which is virtualization of the networking function. 
Specifically, a physical router cannot be virtualized without usage of a software-defined network. For the 
deployment of the mobile network and connecting the eNB base station to the virtualized Evolved Packet 
Core, the most appropriated SDN options are selected and consequently described. Each of these 
technologies have their own distinct features that can contribute to establishing a secure, trustable and fault-
tolerant next-generation virtualized mobile infrastructure.  

A. Calico 
Calico provides secure network connectivity for containers and virtual machine workloads. It [calico] 

creates and manages a flat layer 3 network, assigning each workload a fully routable IP address. Workloads 
can communicate without IP encapsulation or network address translation for bare metal performance, 
easier troubleshooting, and better interoperability. In environments that require an overlay, Calico uses IP-
in-IP tunneling or can work with other overlay networking such as Flannel. Calico also provides dynamic 
enforcement of network security rules. Using simple policy language, it is possible to achieve fine-grained 
control over communications between containers, virtual machine workloads, and bare metal host 
endpoints. Proven in production at scale, Calico features integrations with Kubernetes, OpenShift, Docker, 
Mesos, DC/OS, and OpenStack (TIGERA INC., 2017).  

The Calico's control plane design is reflected upon the design of the Internet itself, which serves billions 
of endpoints around the world, and represents the largest network ever built. Scaling the cloud to millions 
of workloads should be easy, and therefore, Calico borrows proven IP routing technology to connect 
containers (and VMs) to one another and to underlying infrastructure. Accordingly, security policy rules 
are distributed with conventionality to cloud techniques pioneered by web-scale operators such as Google. 
Making use of the same raft consensus algorithm found in systems like Kubernetes, a consistent, fast 
convergence times are achieved (typically a few milliseconds, even at scale) with high levels of fault 
tolerance. Sometimes, an overlay network (encapsulating packets inside an extra IP header) is necessary. 
Often, though, it just adds unnecessary overhead, resulting in multiple layers of nested packets, impacting 
performance and complicating troubleshooting. It would thus be immensely desirable if the virtual 
networking solution adapts to the underlying infrastructure, using an overlay only when required. 
Subsequently, in most environments, Calico simply routes packets from the workload onto the underlying 
IP network without any extra headers. Where an overlay is needed – for example when crossing availability 
zone boundaries in public cloud – it can use lightweight encapsulation including IP-in-IP and VxLAN or 
MACVLAN. Project Calico even supports both IPv4 and IPv6 networks. Moreover, Calico can be 
integrated with all the major cloud platforms, including OpenStack’s Neutron, AWS, GCE, orchestrators 
like Kubernetes, Mesos, Docker container solution serving as CNI (Container Networking Interface) etc. 
In terms of reliability, Calico is a widely-deployed SDN solution. For example, Japan empowers Calico 
with Kubernetes on top of OpenStack to deliver the Yahoo services with enterprise-grade performance and 
reliability (TIGERA INC., 2017).  

Calico security principles 
With Calico as a Docker network plugin, Calico uses an identically named profile to represent each 

Docker network. This profile is applied to each container in that network and the profile is used by Calico 
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to configure access policy for that container. The Calico network plugin will automatically create the 
associated profile if it does not exist when the container is attached to the network. By default, the profile 
contains rules that allow full egress traffic but allow ingress traffic only from containers within the same 
network and no other source. Custom policy for a network can be configured by creating in advance, or 
editing, the profile associated with the Docker network (TIGERA INC., 2017).  

There are two approaches by which the policy that defines the Docker network can be modified: 

a) Modify the profile policy rules - This policy is applied directly to each container in the associated 
Docker network. This approach is simple, but not very flexible, as the profile must describe the full 
set of rules that apply to the containers in the network. 

b) Assign labels to the profile and define global selector-based policy - The (Calico-specific) labels 
are assigned to containers in the associated Docker network. The globally defined policy uses 
selectors to determine which subset of the policy is applied to each container based on their labels. 
This approach provides a powerful way to group together all of the particular network Policy, 
makes it easy to reuse policy in different networks, and makes it easier to define policy that extends 
across different orchestration systems that use Calico. 

Managing Calico policy for a network 
In both cases a Calico-Docker network is created and the “calicoctl” tool is used to achieve the required 

isolation. The following example denotes an isolation between a set of database containers and frontend 
containers: 

 Frontend containers can only access the Database containers over TCP to port 3306. At this point, 
it is assumed that no other connectivity is allowed to/from the frontend. 

 Database containers have no isolation between themselves (to handle synchronization within a 
cluster). This could be improved by locking down the port ranges and protocols, but for brevity a 
full access between database containers is allowed. 

a) Policy applied directly by the profile 
In the following example the policy for containers is applied in both networks with using profiles. Each 

network has associated an identically named profile that consists of a set of labels and policy rules. The 
labels and policy rules are set for each of the two network profiles to provide the required isolation. 
Moreover, Docker networks are created by the following commands:  

docker network create --driver calico --ipam-driver calico-ipam database 
docker network create --driver calico --ipam-driver calico-ipam frontend 

 
After the creation of the networks, the profiles are added for each of the networks. The labels are set on 
each profile indicating the network role, and in this case frontend or database. Each profile also includes a 
set of ingress and egress rules and actions, where each rule can filter packets based on a variety of source 
or destination attributes (which includes selector-based filtering using label selection). The labels and rules 
are applied directly to each container in the corresponding network. The labels themselves are arbitrary 
key/value pairs, and their current purpose at this point is to use the key role showing the network role and 
a value of either frontend or database. Correspondingly, a profile will have the following form in YAML 
structure (see Appendix D) (TIGERA INC., 2017). 

The profiles provide the required isolation between the frontend and database containers. This works as 
follows: 

 Containers in the “database” Docker network are assigned the “database” Calico profile. 
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 Containers in the “frontend” Docker network are assigned the “frontend” Calico profile. 

 Each container in the “database” network inherits the label role = database from its profile. 

 Each container in the “frontend” network inherits the label role = frontend from its profile. 

 The “database” profile applies ingress and egress policy: 

- An ingress rule to allow TCP traffic to port 3306 from endpoints that have the label role = 
frontend (i.e. from frontend containers since they are the only ones with the label role = 
frontend) 

- An ingress and egress rule to allow all traffic from and to endpoints that have the label role 
= database (i.e. from database containers). 

 The “frontend” profile applies a single egress rule to allow all TCP traffic to port 3306 on endpoints 
that have the label role = database (i.e. to database containers) 

a) Global policy applied through label selection  
The same example can be demonstrated using global selector-based policy. In this case, the network 

profiles are used to apply labels (as in the previous example), but additionally define a set of global policy 
resources that use selectors to determine which subset of the policy applies to each container based on the 
labels applied by the profile. After the creation of the Docker networks, the profiles for each of the networks 
are created accordingly (see Appendix E) (TIGERA INC., 2017).  

The labels on each profile indicate the network role, and in this case frontend or database. The labels 
are applied directly to each container in the corresponding network. As with the previous example, the 
key role indicating the network role and a value of either frontend or database is used. Unlike the previous, 
no policy rules are defined within the profile. To enable the required network isolation, the global policy is 
created (policy resources are defined globally, and like profile includes a set of ingress and egress rules and 
actions, where each rule can filter packets based on a variety of source or destination attributes, which 
includes selector-based filtering using label selection). Each policy resource also has a “main” selector that 
is used to determine which endpoints the policy is applied to base on the labels applied by the network 
profiles (refer to Appendix F) (TIGERA INC., 2017). 

Implementing Calico as a solution for securing host interfaces 
It is feasible to use Calico for securing the host’s network interfaces (as opposed to those of any 

container/VM workloads that are present on the host). The host endpoints are distinguishable by workload 
endpoints by the role they play. The former are the physical host network endpoints, while the latter are 
referring to the ones of the virtual machines and containers. Calico supports the same rich security policy 
model for host endpoints that it supports for workload endpoints. Host endpoints can have labels, and their 
labels are in the same “namespace” as those of workload endpoints. This allows security rules for either 
type of endpoint to refer to the other type (or a mix of the two) using labels and selectors. Calico does not 
support setting IPs or policing MAC addresses for host interfaces, it assumes that the interfaces are 
configured by the underlying network fabric (this option is tested further on using VxLAN and MACVLAN 
for performance improvement and avoiding network overlay when possible). Calico distinguishes workload 
endpoints from host endpoints by a configurable prefix. Unless there is a host interfaces whose name 
matches the default for that prefix (cali), changing the same would not be required. In a positive case, it can 
be configured accordingly. Interfaces that start with a value listed in InterfacePrefix are assumed to be 
workload interfaces. Others are treated as host interfaces. Calico blocks all traffic to/from workload 
interfaces by default; allowing traffic only if the interface is known and policy is in place. However, for 
host endpoints, Calico is more lenient; it only polices traffic to/from interfaces that it’s been explicitly 
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informed about. Traffic to/from other interfaces is neglected. As of Calico v2.1.0, Calico applies host 
endpoint security policy both to traffic that is terminated locally, and to traffic that is forwarded between 
host endpoints. Previously, policy was only applied to traffic that was terminated locally. The change allows 
Calico to be used to secure a NAT gateway or router. Calico supports selector-based policy as normal when 
running on a gateway or router allowing for rich, dynamic security policy based on the labels attached to 
the workloads, as represented in Figure 49 (TIGERA INC., 2017). 

 

Figure 49. Organization of Calico security endpoints to protect physical hosts 

 

B. Open vSwitch (OvS) 
Open vSwitch (Figure 50) is a production quality, multilayer virtual switch licensed under the open 

source Apache 2.0 license.  It is designed to enable massive network automation through programmatic 
extension, while still supporting standard management interfaces and protocols (e.g. NetFlow, sFlow, 
IPFIX, RSPAN, CLI, LACP, 802.1ag).  In addition, it is designed to support distribution across multiple 
physical servers similar to VMware's vNetwork distributed vswitch or Cisco's Nexus 1000V. Open vSwitch 
can operate both as a soft switch running within the hypervisor, and as the control stack for switching 
silicon. It has been ported to multiple virtualization platforms and switching chipsets. It is the default switch 
in XenServer 6.0, the Xen Cloud Platform and also supports Xen, KVM, Proxmox VE and VirtualBox. It 
has also been integrated into many virtual management systems including OpenStack, openQRM, 
OpenNebula and oVirt. The kernel datapath is distributed with Linux, and packages are available for 
Ubuntu, Debian, Fedora and openSUSE. Open vSwitch is also supported on FreeBSD and NetBSD 
(OPENVSWITCH, 2018). 
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Figure 50. Open vSwitch architecture (OPENVSWITCH, 2018) 

For this thesis, the Open vSwitch will serve as a translator to the OpenStack cloud, where the GTP-U 
mobile network protocol should interwork with the IP layer-3 Neutron entity via L2TP tunnels. 
Consequently, Open vSwitch can enable container-to-container communication, disregarding the host that 
accommodates the containers. In union with Calico L3 routing with BGP, Open vSwitch will accommodate 
remote workloads from the EPC to the eNB, with full-duplex communication and very low latency.  

2.6.  Hardware for establishing a base station (software-defined radio) 
The hardware used for the experiments is the Universal Software Radio Peripheral (USRP) that is a 

range of software-defined radios designed and sold by Ettus Research (ETTUS, 2018) and its parent 
company, National Instruments. Developed by a team led by Matt Ettus, the USRP product family is 
envisioned to be a comparatively inexpensive hardware platform for software radio, and is commonly used 
by research labs, universities, and hobbyists. Most USRPs connect to a host computer through a high-speed 
link, which the host-based software uses to control the USRP hardware and transmit/receive data. Some 
USRP models also integrate the general functionality of a host computer with an embedded processor that 
allows the USRP device to operate in a stand-alone fashion. The USRP family was designed for 
accessibility, and many of the products are open source hardware. The board schematics for select USRP 
models are freely available for download; all USRP products are controlled with the open source UHD 
driver, which is free and open source software. USRPs are commonly used with the GNU Radio software 
suite to create complex software-defined radio systems (ETTUS, 2018). 

The USRP product family includes a variety of models that use a similar architecture. A motherboard 
provides the following subsystems: clock generation and synchronization, FPGA (Field-Programmable 
Gate Array), ADCs (Analog-to-Digital Converters), DACs (Digital-to-Analog Converters), host processor 
interface, and power regulation. These are the basic components that are required for baseband processing 
of signals. A modular front-end, called a daughterboard, is used for analog operations such as up/down-
conversion, filtering, and another signal conditioning. This modularity permits the USRP to serve 
applications that operate between DC and 6 GHz. In stock configuration, the FPGA performs several DSP 
operations, which ultimately provide translation from real signals in the analog domain to lower-rate, 
complex, baseband signals in the digital domain. In most use-cases, these complex samples are transferred 
to/from applications running on a host processor, which perform DSP operations. The code for the FPGA 
is open-source and can be modified to allow high-speed, low-latency operations to occur in the FPGA. The 
USRP software defined radio products are designed for RF applications from DC to 6 GHz, including 
multiple antenna (MIMO) systems. Example application areas include white spaces, mobile phones, public 
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safety, spectrum monitoring, radio networking, cognitive radio, satellite navigation, and amateur radio 
(ETTUS, 2018).  

2.6.1. USRP N200 – Network series 
The USRP N200 series provides high-bandwidth, high-dynamic range processing capability. The 

product architecture includes a Xilinx® Spartan® 3A-DSP 1800 FPGA, 100 MS/s dual ADC, 400 MS/s 
dual DAC and Gigabit Ethernet connectivity to stream data to host processors. A modular design allows 
the USRP N200 to operate from DC to 6 GHz. An expansion port allows multiple USRP N200 series 
devices to be synchronized and used in a MIMO configuration. An optional GPSDO module can also be 
used to discipline the USRP N200 reference clock to within 0.01 ppm of the worldwide GPS standard. The 
USRP N200 can stream up to 50 MS/s to and from host applications, and users can implement custom 
functions in the FPGA fabric, or in the on-board 32-bit RISC softcore. The FPGA offers the potential to 
process up to 100 MHz of RF bandwidth in both the transmit and receive directions. The FPGA firmware 
can be reloaded through the Gigabit Ethernet interface (ETTUS, 2018). 

The USRP hardware driver (UHD) is the device driver provided by Ettus Research for use with the 
USRP product family. It supports Linux, MacOS, and Windows platforms. Several frameworks including 
GNU Radio, LabVIEW, MATLAB and Simulink use UHD. The functionality provided by UHD can also 
be accessed directly with the UHD API, which provides native support for C++. Any other language that 
can import C++ functions can also use UHD. This is accomplished in Python through SWIG, for example. 
UHD provides portability across the USRP product family. Applications developed for a specific USRP 
model will support other USRP models if proper consideration is given to sample rates and other parameters 
(ETTUS, 2018). 

Several software frameworks support UHD: 

 GNU Radio as a Free/Libre toolkit that can be used to develop software-defined radios. This 
framework uses a combination of C++ and Python to optimize DSP performance while providing 
an easy-to-use application programming environment. GNU Radio Companion is a graphical 
programming environment provided with GNU Radio. 

 National Instruments NI USRP 292x series, which is functionally equivalent to the Ettus Research 
USRP N210. NI also offers LabVIEW support for this device with the NI-USRP Driver 
(NATIONALINSTRUMENTS, 2018). 

 USRP N210 and USRP2 are supported by MATLAB and Simulink. This package includes plug-
ins and several examples for use with both the devices. 

 Many users develop with their own, custom frameworks. In this case, the USRP device can be 
accessed with the UHD API. There are also examples provided with UHD that show how to use 
the API (ETTUS, 2018) [USRP hardware driver and manual]. 

2.6.2. USRP B200/B210 – Bus series 
The USRP B210 provides a fully integrated, single-board, Universal Software Radio Peripheral 

(USRP™) platform with continuous frequency coverage from 70 MHz – 6 GHz. Designed for low-cost 
experimentation, it combines the AD9361 RFIC direct-conversion transceiver providing up to 56MHz of 
real-time bandwidth, an open and reprogrammable Spartan6 FPGA, and fast SuperSpeed USB 3.0 
connectivity with convenient bus-power. Full support for the USRP Hardware Driver™ (UHD) software 
allows developing with GNU Radio, prototype a custom GSM base station with OpenBTS, and seamless 
transition code from the USRP B210 to higher performance, industry-ready USRP platforms. An enclosure 
accessory kit is available to users of green PCB devices (revision 6 or later) to assemble a protective steel 
case. Experiments with the USRP B210 across a wide range of applications include: FM and TV broadcast, 
cellular, GPS, WiFi, ISM, and more. Users can immediately begin prototyping in GNURadio and 
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participate in the open-source SDR community. Full support by the UHD software allows seamless code 
reuse from existing designs, compatibility with open-source applications like HDSDR and OpenBTS, and 
an upgrade path to industry-ready USRP systems to meet application requirements (ETTUS, 2018).  

The integrated RF frontend on the USRP B210 is designed with the new Analog Devices AD9361, a 
single-chip direct-conversion transceiver, capable of streaming up to 56 MHz of real-time RF bandwidth. 
The B210 uses both signal chains of the AD9361, providing coherent MIMO capability. Onboard signal 
processing and control of the AD9361 is performed by a Spartan6 XC6SLX150 FPGA connected to a host 
PC using SuperSpeed USB 3.0. The USRP B210 real time throughput is benchmarked at 61.44MS/s 
quadrature, providing the full 56 MHz of instantaneous RF bandwidth to the host PC for additional 
processing using GNU Radio or applications that use the UHD API (ETTUS, 2018).  

B200 differs from B210 by only the fact that it doesn’t support full-duplex MIMO operation (4 antennas) 
but only 2, from which one is used for Rx and the other for Tx.  
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3. DESCRIPTION OF OPEN AIR INTERFACE 
OpenAirInterface5G is a project developed by EURECOM, a French graduate school and a research 

center in communication systems based in the international science park of Sophia Antipolis within the new 
Campus SophiaTech, which brings together renowned universities such as TELECOM ParisTech and other 
European Universities such as the Polytechnic University of Turin, Aalto University (formerly Helsinki 
University of Technology), Munich University of Technology and the Norwegian University of Science 
and Technology. EURECOM benefits from a strong interaction with the industry through its specific 
administrative structure: Economic Interest Group (consortium type of structure), which brings together 
international companies such as: Orange, ST Microelectronics, BMW Group Research & Technology, 
Symantec, Monaco Telecom, SAP, IABG. The Principality of Monaco is an institutional member which 
joined the consortium at the beginning of 2013. Thanks to its strong ties set up with the industry, 
EURECOM was awarded the "Institut Carnot" label jointly with the Institut Telecom in 2006. The Carnot 
Label was designed to develop and professionalize cooperative research. It encourages the implementation 
of research projects in public research centers that work together with socioeconomic actors, especially 
companies (EURECOM, 2017). 

3.1.  OpenAirInterface5G as EURECOM project and its aims  
The OpenAirInterface5GTM Software Alliance (OSA) is a non-profit consortium fostering a community 

of industrial as well as academic contributors for open source software and hardware development for the 
core network (EPC), access network and user equipment (EUTRAN) of 3GPP cellular networks. The 
Alliance sponsors the initial work of EURECOM to create OpenAirInterface5GTM towards development of 
5G Cellular Stack on Commercial Off-The-Shelf (COTS) hardware. The current generation of 
hardware/software for radio access network (RAN) consist of large numbers of proprietary elements that 
stifle innovation and increase the cost for the operators to deploy new services/application in an ever-
changing fast paced cellular network. Open source software running on general purpose processors (such 
as x86, ARM) can greatly simplify network access, reduce cost, increase flexibility, improve innovation 
speed and accelerate time-to-market for introduction of new services. There is already a movement going 
on within the industry on the development of Software Defined Networking (SDN) concepts to open the 
proprietary interfaces to control the RAN hardware/software. At the same time, open-source has made a 
very significant impact in the extremities of current networks, namely in the terminals due to the Android 
ecosystem and in cloud infrastructure due, in part, to the OpenStack ecosystem (OAI, 2017).  

An open source implementation of fully real-time stack (eNB, UE and core network) on general purpose 
processors when combined with SDN, Network Function Virtualization (NFV) and OpenStack and bring 
significant efficiency in RAN design from both innovation and cost perspective. OSA currently provides a 
standard-compliant implementation of a subset of Release 10 LTE for UE, eNB, MME, HSS, SGw and 
PGw on standard Linux-based computing equipment (Intel x86 PC/ARM architectures). The software is 
freely distributed by the Alliance under the terms stipulated by the OSA license model. It can be used in 
conjunction with standard RF laboratory equipment available in many labs (i.e. National Instruments/Ettus 
USRP and PXIe platforms) in addition to custom RF hardware provided by EURECOM to implement these 
functions to a sufficient degree to allow for real-time interoperation with commercial devices. Some 
industrial users have already been working on OpenAirInterface5GTM (OAI)-based systems integrated with 
commercially-deployable remote radio-head equipment and have provided demonstrations at major 
industrial tradeshows (Mobile World Congress Asia 2014, Mobile World Congress Barcelona in 2013, 
IMIC 2013). The primary future objective is to provide an open-source reference implementation which 
follows the 3GPP standardization process starting from Rel-13 and the evolutionary path towards 5G and 
that is freely-available for experimentation on commodity laboratory equipment (OAI, 2017).  
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3.2.  Architecture of OpenAirInterface5G  
OpenAirInterface5GTM (OAI) wireless technology platform is a flexible solution towards an open LTE 

ecosystem. The peculiar platform offers an open-source software-based implementation of the LTE system 
spanning the full protocol stack of 3GPP standard both in E-UTRAN and EPC. It can be used to build and 
customize a LTE base station (OAI eNB), a user equipment (OAI UE) and a core network (OAI EPC) on a 
PC. The OAI eNB can be connected either to a commercial UEs or OAI UEs to test different configurations 
and network setups and monitor the network and mobile device in real-time. In addition, OAI UE can be 
connected to eNB test equipment (CMW500) and some trials have been successively run with commercial 
eNB in December 2016 (OAI, 2017). 

OAI is based on a PC hosted software radio frontend architecture. With OAI, the transceiver 
functionality is realized via a software radio front end connected to a host computer for processing. OAI is 
written in standard C for several real-time Linux variants optimized for IntelTM x86 and ARMTM processors 
and released as free software under the OAI License Model. OAI provides a rich development environment 
with a range of built-in tools such as highly realistic emulation modes, soft monitoring and debugging tools, 
protocol analyzer, performance profiler, and configurable logging system for all layers and channels (OAI, 
2017). 

When the matter of speech is building an open cellular ecosystem for supple and low-cost 4G/5G 
deployment and researches, OAI objects at the following points (OAI, 2017): 

 Open and integrated development environment under the control of the experimenters; 

 On the network side: Fully software-based network functions offering flexibility to architect, 
instantiate, and reconfigure the network components (at the edge, core, or cloud using the same or 
different addressing space); 

 On UE side: Fully software-based UE functions which can be used by modem designers with 
upgrading and/or developing LTE and 5G advanced features 

 Playground for commercial handsets as well as application, service, and content providers; 

 Rapid prototyping of 3GPP compliant and non-compliant use-cases as well as new concepts 
towards 5G systems ranging from M2M/IoT and software-defined networking to cloud-RAN and 
massive MIMO.  

Currently, the OAI platform includes a full software implementation of 4th generation mobile cellular 
systems compliant with 3GPP LTE standards in C under real-time Linux optimized for x86. At the Physical 
layer, it provides the following features (OAI, 2017): 

 LTE release 8.6 compliant, with a subset of release 10; 

 FDD and TDD configurations in 5, 10, and 20 MHz bandwidth; 

 Transmission mode: 1 (SISO), and 2, 4, 5, and 6 (MIMO 2×2); 

 CQI/PMI reporting; 

 All DL channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH; 

 All UL channels are supported: PRACH, PUSCH, PUCCH, SRS, DRS; 

 HARQ support (UL and DL); 

 Highly optimized base band processing (including turbo decoder). With AVX2 optimization, a full 
software solution would fit with an average of 1×86 core per eNB instance (64QAM in downlink, 
16QAM in uplink, 20MHz, SISO). 

For the E-UTRAN protocol stack, it provides (OAI, 2017): 

 LTE release 8.6 compliant and a subset of release 10 features; 
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 Implements the MAC, RLC, PDCP and RRC layers; 

 protocol service for all Rel8 Channels and Rel10 eMBMS (MCH, MCCH, MTCH); 

 Channel-aware proportional fair scheduling; 

 Fully reconfigurable protocol stack; 

 Integrity check and encryption using the AES and Sonw3G algorithms; 

 Support of RRC measurement with measurement gap; 

 Standard S1AP and GTP-U interfaces to the Core Network; 

 IPv4 and IPv6 support. 

Evolved packet core network features (OAI, 2017): 

 MME, SGW, PGW and HSS implementations. OAI reuses standards compliant stacks of GTPv1u 
and GTPv2c application protocols from the open-source software implementation of EPC called 
nwEPC; 

 NAS integrity and encryption using the AES and Snow3G algorithms; 

 UE procedures handling: attach, authentication, service access, radio bearer establishment; 

 Transparent access to the IP network (no external Serving Gateway nor PDN Gateway are 
necessary). Configurable access point name, IP range, DNS and E-RAB QoS; 

 IPv4 and IPv6 support. 

 

Figure 51. Architecture of OpenAirInterface5G 

Figure 51 shows a schematic of the implemented LTE protocol stack in OAI. OAI can be used in the 
context of a rich software development environment including Aeroflex-Geisler LEON / GRLIB, RTOS 
either RTAI or RT-PREEMPT, Linux, GNU, Wireshark, control and monitoring tools, message and time 
analyser, low level logging system, traffic generator, profiling tools and soft scope.  It also provides tools 
for protocol validation, performance evaluation and pre-deployment system test.  Several interoperability 
tests have been successfully performed (OAI, 2017):  

 OAI eNB with the commercial LTE-enabled mobile devices, namely Huawei E392, E398u-1, 
Bandrich 500 as well as with commercial 3rd party EPC prototypes. 

 OAI-UE with test equipment CMW500 and commercial enodeB (Ericsson on com4Innov network) 
with commercial EPC. 

OAI platform can be used in several different configurations involving commercial components to 
varying degrees (OAI, 2017): 
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 Commercial UE ↔ Commercial eNB + OAI EPC 

 Commercial UE ↔ OAI eNB + Commercial EPC 

 Commercial UE ↔ OAI eNB + OAI EPC 

 OAI UE ↔ OAI eNB + OAI EPC 

 OAI UE ↔ OAI eNB + Commercial EPC 

 OAI UE ↔ Commercial eNB + Commercial EPC 

3.2.1. Built-in emulation platform  
Apart from real-time operation of the software modem on the hardware targets described above, the full 

protocol stack can be run in a controlled laboratory environment for realistic system validation and 
performance evaluation (see Figure 52). The platform is designed to represent the behavior of the wireless 
access technology in a real network setting, while obeying the temporal frame parameters of the air-
interface. The platform targets large-scale repeatable experimentation in a controlled laboratory 
environment with various realistic test-cases and can be used for integration, performance evaluation and 
testing (OAI, 2017).  

 

Figure 52. Emulation platform of the OpenAirInterface5G (OAI, 2017) 

3.3.  OpenAirInterface5G as an open-source solution is a driver towards 5G 
OpenAirInterface5G (OAI) Software Alliance broadly focuses on the evolution of 3GPP Cellular stack 

(eNB + UE + Core Network) on general purpose processor architectures (Intel/ARM) with the goal of 
establishing generic interfaces with 3rd party RF platforms like EURECOM Express MIMO, National 
Instruments/Ettus Research USRP, Nuand BladeRF, SoDeRa Lime SDR platforms. The alliance also 
ensures that several projects conducted within the framework of the alliance are capable of running on 
Commercial-Off-The-Shelf (COTS) hardware platforms, for example Intel x86 and ARM. The Alliance 
engages itself in projects that enhances the core software (eNB/UE and Core Network) with the goal of 
running it across several platforms, while at the same time evolving towards future 3GPP standards. Since, 
the evolution of 5G is still under discussion within academia/industry, we plan to identify different areas in 
which different members of the alliance create projects. The projects are created with the goal of furthering 
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these strategic areas within the alliance and making sure the output of the project is merged back with the 
main repository at some point (OPENAIRINTERFACE, 2018).  
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4. DESCRIPTION OF THE ESTABLISHMENT OF THE MOBILE 
NETWORK  

The mobile network resides in the domain of a distinct Cisco 2800 router inside the OsloMet network 
158.36.118.0/23 (see Appendix B), which can be accessed through SSH (a FQDN: brunos-gw.hioa.no). 
The particular firmware version of the router only allows usage of Diffie-Hellman key exchange procedure, 
and thus the SSH command has to include -oKexAlgorithms=+diffie-hellman-group1-sha1 
bruno@158.36.118.16 flag, in order to successfully log in to the router. To access the other OsloMet 
network 128.39.120.0/23, the datacenters are connected through direct fiber link. The OpenStack cloud of 
the OsloMet University is located at the address 128.39.120.13, where the master node can be accessed for 
the management of the OpenStack cloud named “Alto”, and therefore, it is reachable from the Internet 
(cloud.cs.hioa.no). 

The router redistributes existing routes from the 158.36.118.0/23 network into private segments of 
192.168.10.0/24 for VLAN10 and 192.168.20.0/24 for VLAN20, respectively. The OSPF routing protocol 
is used and the FastEthernet0/0 interface is initialized as a relaying point to the external network. Since the 
option “redistribute connected subnets” and “redistribute static subnets” is being used, the Cisco router 
assigns itself as a distinct AS (Autonomous System) with its own routing area, where the existing subnetted 
OsloMet subnets are redistributed in the inside NAT, beyond the router. At the FastEthernet0/0 interface 
on the router, the option “IP Virtual Reassembly” (VFR) is disabled. This feature adds additional security 
layer for the mobile network that is situated in the NAT domain. Accordingly, the VFR option requires 
modification of the IP packets, and therefore, later the value of the MTU is modified at each physical and 
virtual interface, which can interfere with the operation of the mobile network. Later, the VFR security 
layer will be implemented to protect the mobile networks, after the adequate TCP/SCTP packet size is 
defined. VFR is responsible for detecting and preventing the following types of fragment attacks: 

 Tiny Fragment Attack - In this type of attack, the attacker makes the fragment size small enough 
to force Layer 4 (TCP and User Datagram Protocol (UDP)) header fields into the second 
fragment. Thus, the ACL rules that have been configured for those fields will not match. VFR 
drops all tiny fragments, and an alert message such as follows is logged to the syslog server: 
"VFR-3-TINY_FRAGMENTS." 

 Overlapping Fragment Attack - In this type of attack, the attacker can overwrite the fragment 
offset in the noninitial IP fragment packets. When the firewall reassembles the IP fragments, it 
might create wrong IP packets, causing the memory to overflow or the system to crash. VFR 
drops all fragments within a fragment chain if an overlap fragment is detected, and an alert 
message such as follows is logged to the syslog server: "VFR-3-OVERLAP_FRAGMENT." 

 Buffer Overflow Attack - In this type of denial-of-service (DoS) attack, the attacker can 
continuously send a large number of incomplete IP fragments, causing the firewall to lose time 
and memory while trying to reassemble the fake packets. To avoid buffer overflow and control 
memory usage, a maximum threshold for the number of IP datagrams that are being reassembled 
and the number of fragments per datagram is configured. (Both of these parameters can be 
specified via the IP virtual-reassembly command.) When the maximum number of datagrams 
that can be reassembled at any given time is reached, all subsequent fragments are dropped, and 
an alert message such as the following is logged to the syslog server: "VFR-
4_FRAG_TABLE_OVERFLOW." When the maximum number of fragments per datagram is 
reached, subsequent fragments will be dropped, and an alert message such as the following is 
logged to the syslog server: "VFR-4_TOO_MANY_FRAGMENTS." In addition to configuring 
the maximum threshold values, each IP datagram is associated with a managed timer. If the IP 
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datagram does not receive all of the fragments within the specified time, the timer will expire 
and the IP datagram (and all of its fragments) will be dropped. 

As shown in Figure 53, the router defines two dot1Q encapsulation VLAN segments at two different 
virtual interfaces. The first interface is FastEthernet0/1.10 and the second FastEthernet0/1.20, for VLAN10 
and VLAN20, respectively. The addressing space is assigned appropriately for the both interfaces, namely: 
192.168.10.0/24 and 192.168.20.0/24, accordingly. The access to the subnets is regulated with access-list 
command that allows connection to the particular subnets.  

From this point, the router is connected to a Cisco 2960 switch, that defines the VLANs and ports for 
the particular hosts that are situated in the local networks (see Appendix C). The switch defines two VLANs, 
namely 10 and 20. The VLAN10 is subnetted for the usage of the OpenAirInterface5G project and hosts a 
networked USRP N210 device with IP address 192.168.10.2 on the GigabitEthernet0/1 port, under the 
virtual interface FastEthernet0/1.10 from the router, as a default gateway to the Virtual LAN. Analogously, 
for the VLAN20, the separate USRP N210 device is connected to the GigabitEthernet0/2 port and shares 
the address space of the other hosts that reside in the 192.168.20.0/24 subnet.  

The first port from the switch serves as a trunk port, that carries all the traffic from both VLANs to the 
router, has an IP address 192.168.0.2, and belongs to the routing domain of the router’s physical interface 
192.168.0.1. The same port from the switch serves as a management port and can be accessed from the 
LAN through telnet. The initial Fast-Ethernet switch will be replaced with HP ProCurve 2910al-24G switch 
(HEWLETT-PACKARD, 2018), which is a switch that is comprised of 24 gigabit ports and 4 SFP fiber 
ports for increased data rates.  

 
Figure 53. Architecture of the OpenAirInterface5G core network and eNB base station 
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As indicated in Figure 53, the local network hosts 3 machines that are physical computers. The first host 
is the 192.168.10.4 PC that runs the EPC network core from OpenAirInterface5G, which is accessible from 
the base station PC that is 192.168.10.3, and runs the LTE eNB SoftModem from OpenAirInterface5G. The 
PC is Intel NUC5i5MYHE portable box personal computer with 16GB DDR3 1600MHz RAM, Intel Core 
i5-5300U CPU with 3M cache and up to 2.9GHz frequency, running Linux Ubuntu 16.04 operating system 
on a M.2 SSD disk for a swift access to the HSS database and avoidance of possible bottlenecks.  

The eNB is the current USRP B210, which connects through USB3.0 connection and allows mobile 
devices to access the EPC network core through the routing domain of the LAN 192.168.10.0/24. The eNB 
PC hardware is based on HP architecture with an Intel Core i7-4770 CPU 3.4GHz Haswell architecture (4-
core, 8 threads), 16GB DDR3 RAM, and a normal HDD disk. Each mobile device is equipped with 
programmed SIM card that is performed on the Laptop (Windows) or on the PC 192.168.10.4, that runs 
Linux Ubuntu 16.04 operating system. With the appropriate credentials set in the EPC, the UE can access 
the database and successfully authenticate in the mobile network.  

It is of utmost importance to note that the eNB and EPC run in Docker containers, allowing 
unprecedented flexibility. Further on, this type of sub-virtualized infrastructure will enable remote and 
automated provisioning into the OpenStack cloud, using an orchestrator such as Kubernetes or using 
OpenStack Heat template. Both PCs are running Calico SDN networking segment, with a custom policy 
defined for a granular access to the EPC elements, especially the database of the HSS module (see Appendix 
D, Appendix E and Appendix F). Calico is integrated with the Docker networking portion, and interworks 
with Open vSwitch to create tunnel for routing GTP-U traffic remotely. Containerized deployment allows 
immutability, which is a very useful feature if one prefers to maintain the form of an unfixed infrastructure. 
It allows ease of scaling and most importantly, enables rolling updates of the deployment without downtime.  

4.1.  Containerizing the infrastructure modules in Docker containers 
In order to proceed with the packaging of the infrastructure into Docker containers (Dockerizing), the 

host machines need to meet several requirements. Particularly, since the mobile network processing is of 
real-time nature, it is of utmost importance to implement a Linux low-latency kernel. Thus, the low-latency 
4.8 kernel version is adopted on the Ubuntu 16.04 operating system:  

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.8/linux-headers-4.8.0-040800-
lowlatency_4.8.0-040800.201610022031_amd64.deb 

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.8/linux-image-4.8.0-040800-
lowlatency_4.8.0-040800.201610022031_amd64.deb  

sudo dpkg -i linux-headers-4.8.0-040800-lowlatency_4.8.0-
040800.201610022031_amd64.deb 

sudo dpkg -i linux-image-4.8.0-040800-lowlatency_4.8.0-
040800.201610022031_amd64.deb 

Moreover, the hardware-level power management features can impede with the real-time operation, 
which thus need to be disabled; explicitly, all the possible properties related to power management in BIOS 
are disabled: sleep states, C-states, P-states and CPU frequency scaling, which is the Intel SpeedStep. The 
hyperthreading should be disabled as well, but it may not interfere with some operations, since it is also 
required for running full-duplex MIMO eNB process. To test the stability of the CPU frequency 
fluctuations, the command: watch |grep \”cpu MHz\” /proc/cpuinfo gives details about the EPC host.  
In the Linux boot options, particularly in the /etc/default/grub, the lines intel_pstate=disable and 
GRUB_CMDLINE_LINUX_DEFAULT=”quiet intel_pstate=disable processor.max_cstate=1 
intel_idle.max_cstate=0 idle=poll” are added. The grub boot loader is updated with update-grub. In the 
end of the /etc/modprobe.d/blacklist.conf the power-clamping is blacklisted (with the addition of a single 
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line blacklist intel_powerclamp), since it can cause CPU frequency discrepancies. To check the CPU 
frequency stability, the i7z application is used (see Appendix G).  

To facilitate maximum performance from the PCs, it is required to install cpufrequtils, which needs to 
have a line added in /etc/default/cpufrequitls as follows: GOVERNOR=”performance”. The on-demand 
daemon needs to be thus disabled, for the configuration to take effect after restart: update-rc.d ondemand 
disable and /etc/init.d/cpufrequtils restart. Moreover, all the wireless or Bluetooth interfaces that are 
integrated in the machines need to be completely disabled. This will ensure that CPU scaling will be 
disabled, since most CPUs are mapping computation flags to the kernel on-demand. In this case, everything 
will be diverted towards maximum performance and the CPU utilization will be 100%.  

 As a precondition, the both Linux Ubuntu 16.04 machines need to run Docker. The Docker daemon is 
installed via the official Docker website. To build the image with Dockerfile, the application has to be 
containerized by packaging it from the appropriate Git repository into the Docker 14.04 image. This way, 
a cross-OS operation is demonstrated, since the host OS is Ubuntu 16.04 and the Docker base image is 
Ubuntu 14.04.  

4.1.1. Containerizing the EPC elements for the network core (HSS, MME, 
S/PGW)  

The host that hosts the EPC container is named networkcore with an IP address 192.168.10.4. The realm 
that’s required for the OpenAirInterface5G network is referred to as openair4g.eur and thus he FQDN name 
for the EPC should be epc.openair4g.eur that resolves to the IP address of the host: 192.168.10.4, or the 
Docker container that will run in the 172.19.0.0/24 network (172.19.0.2).  

The HSS and the MME certificates are arranged to last until 2018 August, and can be renewed using the 
HSS script certificate-generator, found in /openair-cn/scripts in the container. The network elements are 
configurable just like when installing the EPC in the operating system directly. The Docker bridge, as well 
as the other interfaces should have increased MTU (from 1500 to at least 1648) to support successful 
connection via SCTP and TCP/UDP between the modules. Since the EPC container runs on a different host 
from the eNB container, a L3 routing is necessary that is configured with the Calico SDN networking with 
a configured BGP router for reducing complexity and easier network troubleshooting and scaling. Since 
mobile networks use RIP routing protocol, the BGP is based on path-vector protocol that is a version of the 
Bellman-Ford algorithm also used in RIP. Another advantage is the support for MPLS termination and 
support of various traffic that can be routed to remote workloads in the cloud.  

According to those traits, a script is built to manually initialize the Docker network named “oainet” and 
add virtual OvS interfaces with virtual bridges using the Linux bridge-utils, while assigning custom MTU 
values and specific IP addresses and networks (see Appendix H). After the initialization of the OvS and 
creating a tunnel to a remote IP address, for running the Evolved Packet Core container, the following 
command should be issued: 

docker run -d -it --net=oainet --name=oai_epc --restart=unless-stopped --expose=1-
9000 -h=epc --privileged=true --cap-add=ALL -v /dev:/dev -v /lib/modules:/lib/modules 
brunodzogovic/oai_epc 

Accordingly, all the FQDN names need to be set in order for the modules to communicate between each 
other on the localhost inside the container:  

127.0.0.1 localhost  
127.0.1.1 mme.openair4g.eur  mme  
127.0.1.1 hss.openair4g.eur hss  
127.0.1.1 spgw.openair4g.eur spgw  
127.0.0.1 epc.openair4g.eur epc 
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The Dockerfile that is created is comprised of procedures for cloning the OpenAirInterface5G Git 
repository and installing the necessary components. The creation of the Docker image can be also 
performed manually, and for the convenience of elucidation, the steps are described subsequently.  

As an initial phase, the installation of SSL certificates is initiated via automated scripts:  

cd ~/openair-cn/SCRIPTS   
./check_hss_s6a_certificate /usr/local/etc/oai/freeDiameter/ hss.openair4G.eur  
./check_mme_s6a_certificate /usr/local/etc/oai/freeDiameter/ epc.openair4G.eur 

The scripts are checking for the validity or existence of already-installed SSL certificates, and proceeds 
with generating new ones using OpenSSL.  

With the certificates installed, the setup of the HSS, MME and S/PGW follows:  

cd ~/openair-cn  
cd SCRIPTS   
./build_hss –c   
./run_hss -i ~/openair-cn/SRC/OAI_HSS/db/oai_db.sql #Run only once to install database   
cd ~/openair-cn/SCRIPTS   
./build_mme -c  
cd ~/openair-cn    
cd SCRIPTS   
./build_spgw –c   

With the EPC constituents built inside the container, a directory is created in 
/usr/local/etc/oai/freeDiameter and the configuration files moved accordingly:  

mkdir -p /usr/local/etc/oai/freeDiameter  
cp ~/openair-cn/ETC/mme.conf /usr/local/etc/oai  
cp ~/openair-cn/ETC/hss.conf /usr/local/etc/oai  
cp ~/openair-cn/ETC/spgw.conf /usr/local/etc/oai  
cp ~/openair-cn/ETC/acl.conf /usr/local/etc/oai/freeDiameter  
cp ~/openair-cn/ETC/mme_fd.conf /usr/local/etc/oai/freeDiameter  
cp ~/openair-cn/ETC/hss_fd.conf /usr/local/etc/oai/freeDiameter 

The HSS, MME and S/PGW configuration files are adjusted to correspond to the particular deployment 
and network parameters (see Appendix I, Appendix J and Appendix K, correspondingly). In the 
/usr/local/etc/oai/freeDiameter/hss_fd.conf configuration files for the Diameter authentication server, it is 
essential to set up the proper FQDN identity and the realm that is previously assigned:  

Identity = "hss.openair4G.eur";  
Realm = "openair4G.eur"; 

The equivalent action applies for the mme_fd.conf configuration file in the same directory, since MME 
is responsible for the Diameter authentication procedure establishment:  

Identity = "epc.openair4G.eur";  
Realm = "openair4G.eur";  
ConnectPeer= "hss.openair4G.eur" { ConnectTo = "127.0.0.1"; No_SCTP ; No_IPv6; 
Prefer_TCP; No_TLS; port = 3868;  realm = "openair4G.eur";}; 

Executable scripts are located at /openair-cn/SCRIPTS, only start the necessary services (apache and 
MySQL database): 

/start_service.sh 

and afterwards, the EPC can be run accordingly: 

./run_hss 
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./run_mme -i 

./run_spgw -i 

With this, the EPC is functional and running. The last phase is to commit the changes and finalize the 
Docker image, so it can be tagged accordingly and pushed to the public/private repository:  

docker commit –a “Bruno Dzogovic” –m “latest EPC version committed” 
brunodzogovic/oai_epc:latest  
docker push brunodzogovic/oai_epc:latest 

This action will push the EPC image to the https://hub.docker.com/r/brunodzogovic/oai_epc/ repository.  

Accessing the HSS database is available on the localhost or the container's IP address: 
http://172.19.0.2/phpmyadmin in which the required user parameters are being stored (phone number, 
security settings etc). In the database, there are few tables: the PDN information, Users table, APN and 
PGW tables (refer to the examples in Appendix M and Appendix N). PGW and APN tables contain the 
address of the Packet gateway location that is 172.19.0.1 (the container network gateway). The APN is the 
name of the network realm, which is oaiipv4 (designating that IPv4 is used for routing). This information 
is used in the UE to assign a Packet Data Network name which the mobile data will use to access the 4G 
network. In order to access the network, the focus is moved to the Docker networking portion. As explained 
before, Docker offers several options for networking from which the automatic one is the usage of the 
Docker Bridge. The Calico network driver offers two modes of operation: integration as a driver in the 
Docker networking, or using as a standalone SDN. In this case, both options are employed, since Calico 
acts not only as an inter-container communication solution, but also as a backbone networking, offering 
BGP connection as an ASBR (Autonomous System Boundary Router); with the support of MPLS, Calico 
can serve massively-scaled workloads on the network Layer 3. Another option is to use the Docker's 
MACVLAN driver, which will enable L2 connection and more reliable connection between the EPC and 
eNB+RRH using MAC addresses instead of IP (especially if the containers are running in clustered mode 
with Kubernetes or Swarm). If VxLAN is employed, then the SCTP+UDP are going to be encapsulated in 
L2TP, creating a network overlay and add a slight but unnoticeable overhead. On the other side, that will 
provide additional layer of security between the network core and the eNB.  

4.1.2. Containerizing the eNB base-station and regulating the wireless radio 
propagation parameters  

Similarly to the procedure explained in the previous subchapter about containerizing the EPC modules, 
the eNB is built in a Docker container image based on Linux Ubuntu 14.04, while running on a host 
operating system Ubuntu 16.04. The FQDN for the eNB PC is designated as 192.168.10.5 bs.openair4g.eur. 
In a Dockerfile or after running the eNB container, it is necessary to install required software and clone the 
OpenAirInterface5G Git repository for the eNB: 

apt-get update  
apt-get install software-properties-common git wget psmisc –y  
GIT_SSL_NO_VERIFY=true git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git  
cd openairinterface5g  
git checkout develop  
git pull  
source oaienv  

Following the cloning of the Git repository, the eNB is built using the USRP option, since the given 
hardware is the USRP B210:  

cd cmake_targets  
./build_oai -w USRP –I –x –c --eNB 
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#verify that USRP is working  
uhd_usrp_probe 

To run the eNB with specifically designated parameters, the configuration file that is located in 
$OPENAIR_DIR/targets/PROJECTS/GENERIC-LTE-EPC/CONFenb.band3.tm1.usrpb210.conf is set for 
the Band 3. Since computational resources are limited on a PC, the higher frequencies require much agile 
CPU, and therefore, instead of Band 7, the Band 3 is chosen (see Appendix L).  

cd cmake_targets/lte_build_oai/build   
sudo -E ./lte-softmodem -O $OPENAIR_DIR/targets/PROJECTS/GENERIC-LTE-
EPC/CONF/enb.band3.tm1.usrpb210.conf –d   
sudo -E ./lte-softmodem -h #(to see help options) 

With Docker, the changes are committed, the image tagged as a latest version and pushed to the 
https://hub.docker.com/r/brunodzogovic/oai5g_enb/ repository:  

docker commit –a “Bruno Dzogovic” –m “latest eNB version committed” 
brunodzogovic/oai5g_enb:latest  
docker push brunodzogovic/oai5g_enb:latest 

The radio configuration adjustment in this stage is a tedious task because the eNB operation is delicate 
and the UE attachment procedure depends on numerous parameters. The frequency selection, according to 
the Band 3, refers to the 1.8 GHz spectrum that is the 1865 MHz for the downlink channel and 1770 MHz 
for the uplink channel, with 95 MHz duplex spacing. The frame type chosen is FDD and the channel 
bandwidth is set to 5 MHz, since increment of the bandwidth demands a superior CPU and will cause 
increased error rate. There are two practicable preferences of operation, specifically: SISO (using one Tx 
transmission and one Rx receiving antenna), as well as full-duplex MIMO using 2 antennas for Rx and 2 
antennas for Tx. Given the implementation of MIMO, the Tx and Rx gains are calculated to 90 dBm and 
105 dBm, respectively. Any altered levels may instigate discrepancies at the uplink channel and decreased 
system stability, which will cause the UE to detach or the MME to crash.  

Most important factor to be taken into consideration is the RACH (Random Access Channel) structure. 
In order to stabilize the function of a UE through the network, it is essential to institute a ground base 
substances for power control of the random access channels (PRACH). Initially, since the base station is 
transmitting in a limited manner (inside a single room), the distance between the UE and the eNB is varying 
between 1m and 5m. Consequently, as an initial starting point, the average free-space path loss is calculated 
(FSPL). For the downlink channel, the values are taken for transmission at 1m average, since the obstruction 
of transmission is zero (direct line of sight to the eNB):  
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Analogously, the calculations are applied for the Uplink channel at 1770 MHz. This step will ensure 
that the radio propagation does not extend out of the building premises, since the transmission at band 3 
has a greater range than transmission at higher frequencies. This is very important because the radio 
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propagation should not interfere with the commercial infrastructure due to strict law restrictions for 
transmission at commercial radio bands.  

Following the calculation of free-space path loss of the radio waves, it is thus necessary to compute the 
optimal channel configuration. For a comparative reference, in wired communications the amount of power 
being sent from the transmitter reaches the receiver without ample variation. However, in wireless 
communications, the energy drop at the receiving point may be immense, which requires higher power 
amplifiers for increasing the power of transmission. The solution might seem simple but it doesn’t come 
without repercussions. If the distance between the UE and the eNB is reasonable, then it is reasonable to 
increase the power of the signal transmission. However, if the distance is very close then the receiver will 
be oversaturated. Handling this situation can be simple in fixed conditions. Specifically, if the distance 
between the transmitter and receiver does not change and the channel conditions (air humidity, 
precipitation, obstructions) remain fixed, a manual setup would work. On the contrary, the distance between 
the receiver and transmitter and channel conditions are subjects to a frequent variation, which requires for 
a dynamic power control mechanism usually referred to as Closed Loop Power Control. The dynamic 
approach takes few stages into consideration; namely, after initial transmission of the signal towards the 
receiver, it [the receiver] measures the power of the received signal. Afterwards, if the measured signal 
power is too low, the receiver sends an “increase the power” command to the transmitter. Also, if the 
received signal power measured is too strong, it would send a “decrease the power” command (3GPP, 2009) 
[3GPP Specification TS 36.213].  

In reality, the resolution of this case is much more complex. For example, many times the transmitter 
and the receiver are not in such state. When the UE is being turned on, it has to send an initial message in 
the first signal. This moment is very important, since the signal transmitted might have too low power and 
the base station would not detect it. If the transmitted signal power from the UE is very high, then it can 
interfere with other UE units. To address this issue, a more granular approach is being utilized. Given the 
fact that the eNB is transmitting a certain reference signal with fixed power value, the information about 
that value is being advertised through the network. Besides that, the network also advertises the information 
about the maximum allowed power that a single UE can transmit. When the UE receives this information, 
it decodes the reference signal coming from the eNB and measures the power. Accordingly, UE measures 
the FSPL and correspondingly to the allowed power, it can fathom with how much power it should 
categorically transmit. This model of power determination process is referred to as Open Loop Power 
Control. To initiate the Open Loop Power Control, the PRACH power should be determined, which is being 
carried by SIB messages (see Figure 54) (3GPP, 2009) [3GPP Specification TS 36.213]. 



111 
 

 

Figure 54. PRACH Open Loop Power Control 

Furthermore, there are several entities that need to be calculated in order to establish efficient power 
control (3GPP, 2009) [3GPP Specification TS 36.213]. Particularly:  

������ = ���{�����, ��������_��������_������_����� + ��} [���] 

����(�) = ���������, ����_������ + 10 log��(����) + �������
(�) + �(�) ∙ �� + �(�)� [���] 

������(�) = ���������, ��_����� + �� + ℎ�����, ������ + ∆������
(�) + �(�)� [���] 

������(�) = ���������, 10 log��(������(�)) + �������
(�) + �(�) ∙ �� + ∆��(�) + �(�)� [���] 

��(�) = ����� − �10 log���������(�)� + �������
(�) + �(�) ∙ �� + ∆��(�) + �(�)� [��] 

 The power of the channel per subframe - i suggests that the channel powers are premeditated and set 
for each subframe. According to the first formula, the scheming takes the minimum value (smaller value) 
between the P_CMAX and the subsequent calculation, meaning that if the formula gives the value smaller 
than P_CMAX; the channel power for a subframe - i will become the value given by the formula. On the 
other hand, if the formula gives the value greater than the P_CMAX, the power of the channel becomes the 
actual P_CMAX value. In any case, the power of the channel cannot exceed the value of P_CMAX. 
According to these calculations, the manufacturers of the UE need to ensure that the devices do not transmit 
any power greater than these particular power values (3GPP, 2009) [3GPP Specification TS 36.213].  

The PUSCH power control has a subframe number i and a variable j that can be either 1 or 0. The 
MPUSCH(i) represents the number of resource blocks allocated for the UE. The P0_PUSCH(j) is the P0_PUSCH 
nominal uplink power plus the P0_UE_PUSCH power, where the two for j=0, 1 come from higher layer (the 
SIB2 messaging). The P0_PUSCH nominal power comes from p0-NominalPUSCH header in the SIB2 message 
and the P0_UE_PUSCH comes from the p0-UE-PUSCH header in the SIB2 message as an initiator for RRC 
connection setup and reconfiguration. The alpha(j), for j= 0, 1 can has values of {0, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1}. The PL variable refers to the calculated Path Loss, which also comes from higher layer filtered 
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RSRP (Reference Signal Power) in the configuration file, and is defined in the SIB2 message (3GPP, 2009) 
[3GPP Specification TS 36.213].  

The PUCCH power control also has the i – subframe number and the j variable that can be 0 or 1. The 
P0_PUCCH is the P0 PUCCH nominal power plus the P0 UE PUCCH power, where they are set from higher 
layer, or specifically the SIB2 message for RRC connection setup and/or reconfiguration. The delta format 
defines the modulation scheme at the PUCCH control, which can be 1 – no modulation scheme; 1a – BPSK 
modulation with 1 bit per subframe; 1b – QPSK modulation with 2 bits per subframe; 2 – QPSK with 20 
bits per subframe; 2a – QPSK+BPSK modulation with 21 bits per subframe; 2b – QPSK+QPSK with 22 
bits per subframe; 3 – QPSK modulation with 48 bits per subframe and delta 4 and delta 5 (3GPP, 2009) 
[3GPP Specification TS 36.213].  

To determine the RACH preamble, the initial message established from the UE to the eNB when the 
device turns on is accordingly expounded. The Random Access Channel (RACH) assignment procedure is 
the most important entity, which can conclude the formation of the configuration file used in the operation 
of the eNB (refer to Appendix O for detailed insight into the eNB configuration). The RACH process 
achieves UL synchronization between the UE and eNB and obtains resources for Message 3 (i.e. RRC 
Connection Request), therein the importance for the Random Access Channel because synchronization 
between transmitter and receiver is the ultimate objective. The synchronization is achieved via special 
synchronization channel that broadcasts to all UEs and transmits synchronization messages at a certain 
interval. According to that, the synchronization process happens only when there is an instant necessity and 
should be dedicated to only a specific UE. The RACH procedure happens in case of an initial access from 
RRC_IDLE or with RRC connection re-establishment procedure. Moreover, it is initialized in case of 
handover or DL/UL data arrival during RRC_CONNECTED when the synchronization status is “non-
synchronized”. The RACH procedure is also used for positioning purposes when timing advance is needed 
for UE positioning. There are two types of RACH procedures: Contention-based and Contention-free 
RACH. When a UE transmits a RACH preamble, it can give out a particular pattern that is called 
‘signature’. In each LTE cell, there are 64 possible preamble signatures from which the UE selects 
randomly. This alludes on the possibility of selecting two identical signatures simultaneously, which can 
induce collisions. In the Contention-based RACH procedure, multiple UEs may select the same signature 
that are being resolved later by the network in a contention resolution step. The other possibility is 
restricting the selection of a signature in a time domain, which means that the UE gets information from 
the network at which time which particular preamble signature to use. The network knows when the UE 
will send the RACH even before the UE sends it, because the network informs the UE about the time when 
it is supposed to transmit the RACH. The selection of a PRACH preamble is denoted in the Table 10, which 
contains the pre-calculated values for a given configuration index and corresponding preamble format and 
subframe number (3GPP, 2009) [3GPP Specification TS 36.213]: 

Table 10. PRACH configuration index (3GPP, 2009) [3GPP Specification TS 36.213]  

PRACH 
configuration 

index 

Preamble 
format 

System 
frame 

number 

Subframe 
number 

PRACH 
configuration 

index 

Preamble 
format 

System 
frame 

number 

Subframe 
number 

0 0 Even 1 32 2 Even 1 
1 0 Even 4 33 2 Even 4 
2 0 Even 7 34 2 Even 7 
3 0 Any 1 35 2 Any 1 
4 0 Any 4 36 2 Any 4 
5 0 Any 7 37 2 Any 7 
6 0 Any 1, 6 38 2 Any 1, 6 
7 0 Any 2, 7 39 2 Any 2, 7 
8 0 Any 3, 8 40 2 Any 3, 8 
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9 0 Any 1, 4, 7 41 2 Any 1, 4, 7 
10 0 Any 2, 5, 8 42 2 Any 2, 5, 8 
11 0 Any 3, 6, 9 43 2 Any 3, 6, 9 
12 0 Any 0, 2, 4, 6, 8 44 2 Any 0, 2, 4, 6, 8 
13 0 Any 1, 3, 5, 7, 9 45 2 Any 1, 3, 5, 7, 9 
14 0 Any 0, 1, 2, 3, 4, 

5, 6, 7, 8, 9 
46 N/A N/A N/A 

15 0 Even 9 47 2 Even 9 
16 1 Even 1 48 3 Even 1 
17 1 Even 4 49 3 Even 4 
18 1 Even 7 50 3 Even 7 
19 1 Any 1 51 3 Any 1 
20 1 Any 4 52 3 Any 4 
21 1 Any 7 53 3 Any 7 
22 1 Any 1, 6 54 3 Any 1, 6 
23 1 Any 2, 7 55 3 Any 2, 7 
24 1 Any 3, 8 56 3 Any 3, 8 
25 1 Any 1, 4, 7 57 3 Any 1, 4, 7 
26 1 Any 2, 5, 8 58 3 Any 2, 5, 8 
27 1 Any 3, 6, 9 59 3 Any 3, 6, 9 
28 1 Any 0, 2, 4, 6, 8 60 N/A N/A N/A 
29 1 Any 1, 3, 5, 7, 9 61 N/A N/A N/A 
30 N/A N/A N/A 62 N/A N/A N/A 
31 1 Even 9 63 3 Even 9 

 

4.2. Connecting the eNB with the EPC through container network  
After completion of the radio configuration, the remaining step is to interconnect the two remote 

workloads: the eNB container and EPC container. As previously stated, they belong to a same Docker 
network named as “oainet” and take the address space of the 172.19.0.0/24 network (see Figure 55). To 
separate the workloads on Layer-2, a virtual switch with OvS is initialized. The virtual bridges that are 
created are used as reference points for assigning an autonomous system with Calico, instead of using the 
eth0 interface. This allows for further expansion of access control and policy-based networking. Because 
Kubernetes is being used for provisioning the infrastructure in microservices architecture, the default 
Flannel SDN is replaced by Calico. An environment variable is set in a .cfg file and Calico is initialized via 
Kubernetes addon:  

NETWORKING_OPTION=Calico 
kubeadm init  
Flannelkubectl create - f http://docs.projectcalico.org/v2.0/getting-
started/kubernetes/installation/hosted/kubeadm/calico.yaml 
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Figure 55. Direct container-to-container communication using OvS 

Calico allows isolation of a Kubernetes namespace. Since the EPC can run in multiple replicas in a same 
or different namespace, Calico can ensure that a specific namespace policy will isolate some constituents 
from remote access and guarantee that only the eNB container can access the EPC container, given that 
their IP addresses and MAC addresses are fixed:  

kubectl create ns policy-oai  
kubectl run --namespace=policy-oai oai_epc --replicas=2 --image=oai_epc  
kubectl expose --namespace=policy-oai deployment oai_epc --ports=1-9000 
 

By enabling isolation for the current policy of the namespace, Calico will prevent connections to the 
pods in that particular namespace:  

kubectl create -f - <<EOF 
kind: NetworkPolicy 
apiVersion: networking.k8s.io/v1 
metadata: 
  name: default-deny 
  namespace: policy-oai 
spec: 
  podSelector: 
    matchLabels: {} 
EOF 
 

When allowing access to the oai_epc service using a network policy, incoming connections from our 
access Pod will be allowed only, but not from anywhere else:  

kubectl create -f - <<EOF 
kind: NetworkPolicy 
apiVersion: networking.k8s.io/v1 
metadata: 
  name: access-oai_epc 
  namespace: policy-oai 
spec: 
  podSelector: 
    matchLabels: 
      run: oai_epc 
  ingress: 
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    - from: 
      - podSelector: 
          matchLabels: 
            run: access 
EOF 

At this point, the container environment is secured with a simple Calico policy. To proceed further, the 
networking model is premeditated. Since the physical router uses the OSPF protocol, Calico will need to 
redistribute its physical routes into the SDN BGP autonomous system. For this purpose, there are several 
factors that need to be taken into consideration. First and foremost, the AS (Autonomous System) has a 
number which is used by the BGP agent on a Calico node when it has not been explicitly specified. In 
practice, all the Calico nodes use the same AS number for the matter of simplicity. Moreover, the node-to-
node mesh is enabled by default, which provides a mechanism for automatic configuring peering between 
all Calico nodes. This is useful for smaller deployments, but when the infrastructure is scaled, then the full 
node-to-node mesh is disabled and explicit BGP peers are configured for the Calico nodes. With a simple 
command, the status of the peerings on Calico nodes can be checked:  

sudo calicoctl node status 
 
Calico process is running. 
 
IPv4 BGP status 
+--------------+-------------------+-------+----------+-------------+ 
| PEER ADDRESS |     PEER TYPE     | STATE |  SINCE   |    INFO     | 
+--------------+-------------------+-------+----------+-------------+ 
| 172.19.0.2   | node-to-node mesh | up    | 23:30:04 | Established | 
| 172.19.0.3   | node-to-node mesh | up    | 23:30:27 | Established | 
| 10.20.30.40  |       global      | start | 10:16:13 |   Connect   | 
| 192.10.0.0   |   node specific   | start | 10:28:46 |   Connect   | 
+--------------+-------------------+-------+----------+-------------+ 
 
IPv6 BGP status 
+--------------+-------------------+-------+----------+-------------+ 
| PEER ADDRESS |     PEER TYPE     | STATE |  SINCE   |    INFO     | 
+--------------+-------------------+-------+----------+-------------+ 
| aa:bb::ff    | node-to-node mesh | up    | 23:17:26 | Established | 
+--------------+-------------------+-------+----------+-------------+ 

The IP pools need an external connectivity for OSPF route redistribution, and therefore, the NAT option 
is turned on:  

calicoctl get ipPool 
 
cat << EOF | calicoctl apply -f - 
- apiVersion: projectcalico.org/v3 
  kind: IPPool 
  metadata: 
    name: ippool-ext-1 
  spec: 
    cidr: 172.19.0.0/24 
    natOutgoing: true 
EOF 

The last thing remaining is setting the MTU to 1648, which is added to the CNI configuration file of the 
Calico control daemon:  

{ 
    "name": "any_name", 
    "cniVersion": "0.1.0", 
    "type": "calico", 
    "mtu": 1648, 
    "ipam": { 
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        "type": "calico-ipam" 
    } 
} 

Since the argument –ip-autodetection-method is enabled in Calico, the configuration of the network is 
automatic. However, it is possible also to manually set the subnets and all IP addresses for every individual 
container network.  
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5. SECURITY AND AUTHENTICATION OF THE MOBILE NETWORK 
When a UE attempts to attach to the mobile network, it checks whether valid credentials are present in 

the HSS database. Through previously-explained procedures, the MME initiates attachment procedures of 
the UE to the HSS via the Diameter protocol. If the credentials do not match, then the device will be denied 
access. In order to successfully authenticate, the UE devices need a specifically programmed SIM card that 
supports MILENAGE algorithm.  

The UE devices used are Huawei P9 Lite phones (HUAWEI, 2018) VNS-L22 series. The phone supports 
4G network operation on multiple bands, namely: FDD band 1, 3, 5, 7, 8, 19, 28 and TDD band 40; 3G 
operation on bands 1, 5, 6, 8 and 19; as well as, 2G operation on GSM bands 850 MHz, 900 MHz, 1800 
MHz and 1900 MHz. For the purpose of successful establishment of a reliable connection, blank SIM cards 
are programmed.  

5.1.  Building USIM cards with MILENAGE encryption for authentication 
When embedding the information to the SIM cards, it is essential to take into account few parameters. 

Most important is the operator key (OP), which is used by the HSS for derivation of other keys and is kept 
as a secret by the service provider (operator). The encryption keys and parameters are represented in Table 
11. 

Table 11. SIM card programming values and keys 

SIM 
cards 

Algorith
m 

Ki OP SPN MCC MNC IMSI SQN 

SIM 1 Milenage 

8BAF473F
2F8FD094
87CCCBD
7097C6862 

11111111
11111111
11111111
11111111 

OpenAirI
nterface 

208 93 
20893
00000
00003 

000000000
004 

SIM 2 Milenage 

8BAF473F
2F8FD094
87CCCBD
7097C6862 

11111111
11111111
11111111
11111111 

OpenAirI
nterface 

208 93 
20893
00000
00004 

000000000
005 

SIM 3  Milenage 

8BAF473F
2F8FD094
87CCCBD
7097C6862 

11111111
11111111
11111111
11111111 

OpenAirI
nterface 

208 93 
20893
00000
00005 

000000000
006 

SIM 4 Milenage 

8BAF473F
2F8FD094
87CCCBD
7097C6862 

11111111
11111111
11111111
11111111 

OpenAirI
nterface 

208 93 
20893
00000
00006 

000000000
007 

 

As seen in Figure 56, within the choice for authentication algorithm, the Milenage option is selected.  
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Figure 56. SIM programming parameters 

After this process, the UE can securely authenticate and connect to the mobile network. For the purpose 
of programming a SIM card, a specific programming hardware is required. The procedure is detailed in the 
following subsection. 

5.1.1. Programming a USIM card for the OpenAirInterface5G network 
For establishing a secure and trustable communication between the Mobile/IoT platforms to the Internet, 

USIM blank cards are obtained and programmed for authentication of the devices to the core network. This 
subsection elucidates the appliance of a smart card reader with an appropriate kernel driver, a middle-ware 
for detection and usage of the cards and testing the diligence. The device used is a Blutronics BluDrive II 
model. The installation of the Chip/Smart Card Interface Devices (CCID) software driver in Linux is 
straightforward, including pcsclite and additional pcsc tools as middleware for testing, with which it is 
feasible to write on different types of smart cards. The procedure is explicated in Appendix P in detail. 

5.2.  Tunneling SCTP protocol into L2TP/VPN and advanced security 
control  

The L2TP tunneling protocol can be used to carry higher-level protocol encrypted traffic (such as VPN), 
but does not offer encryption itself. Since the mobile communication security architecture is based on 
Diameter authentication, the security vectors are being carried via UDP and SCTP, which also carry the 
GTP-U protocol tunnel instructions (see Figure 57). Paired with IPSec, L2TP can offer substantial security 
enhancement. However, this measure will introduce a slight overhead in the mobile traffic, but that can be 
considered as a desirable tradeoff for enhancing the security of critical and exposed devices.  

 

Figure 57. Tunneling encapsulation and packet modification 
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When a tunnel is established, the traffic is bidirectional. All the other higher-level protocols can be 
carried via the fixed tunnel. As a session is instituted, the default header size is adapted and requires 
alteration of the MTU. In this case, the MTU is set to 1648 bits, which is adequate for the current case. 
However, the MTU is also modified to up to 9000 bits for testing purposes, especially if IPSec is used and 
the traffic is encrypted or if additional tunnels are required. One disadvantage of a very large MTU value 
is the susceptibility to fragmentation attacks, and therefore it requires supplementary configuration for VRF 
on the Cisco router. It should also be noted that for proper communication, the MTU is adjusted properly 
at all interfaces: the eth0 physical network interface, Docker virtual bridge, OvS bridges as well as Calico 
and veth/gre interfaces.  
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6. EVALUATION  
The deployment of the mobile network requires only stability testing, which is represented in the 

following chapter. Since the aim of this research is to provide a suitable way of establishing a virtualized 
mobile network, the performance tests and optimization include several layers of analysis without delving 
in detailed tests or comparative methods. The tests are conducted consequently in accordance to the 
deployment progress of the infrastructure. The initial test phase incorporates defining the requirements for 
the hardware platform and its evaluation. After establishing the hardware-level procedurals, the higher-
level operations testing is taking place; namely, defining virtualized environment and assessing its 
performance scaling options. When the virtualized environment is set, and the underlying deployment is 
primed, the succeeding procedures that require attention are the connectivity and networking. In particular, 
the SDN models are proposed, and the remote communication between the eNB and EPC is defined together 
with layer-2 and layer-3 network exactitudes. Hereafter, it can be asserted that the mobile network is 
successfully deployed, and all the subsequent testing procedures will then coalesce approaches such as 
wireless radio-link optimizations, network-level tuning and improving the deployment stability for long-
term jobs; conclusively, the overall throughput and latency are assessed.  

6.1.  Testing the Access Stratum (AS) and the Non-Access Stratum (NAS) 
The tests of the mobile infrastructure can be divided into examinations of the AS (Access Stratum) and 

assessments of the NAS (Non-Access Stratum). The AS tests include checking the radio access and 
ensuring that the adjusted parameters are adequate for the particular scenario. The signal analyzer run at 
the eNB shows that when the UE connects to the Band3 FDD, a 16-QAM modulation is instigated. 
Depending on the requirements, the option for 64-QAM is also enabled. In this case, if the traffic increases 
and the radio access doesn’t provide the sufficient resources, the signal will be 64-QAM modulated to 
increase the throughput. When the uplink signal is saturated, the eNB will try to stabilize the broadcasted 
gain in order to alleviate the connection. This can be clearly observed from the two figures in Appendix Q, 
subsequently; the constellation of the 16-QAM becomes stabilized over time.   

As previously stated, when the UE selects the frequency of the eNB and requests an attachment 
procedure initiation, it asks the MME for channel assignment, authentication commencement, obtaining an 
IP address from the S/PGW, bearer designation, etc. This is denoted in the Appendix R. When the HSS 
daemon is started, the MME connects through the S/PGW and to the HSS. At this point, the mobile network 
is in idle state, waiting for potential UE devices to authenticate to the EPC. In the UE, the APN (Access 
Point Name) needs to be set analogously to the one registered in the HSS, specifically: oai.ipv4, where the 
Mobile Country Code and the Mobile Network Code should correspond to the one embedded in the SIM 
card (208 and 93, respectively). Also, the SPN (Service Provider Name) is set to as OpenAirInterface, since 
that is the name registered in the HSS database and programmed into the SIM cards. When the SIM card is 
inserted into the UE device, the phone authenticates automatically on the mobile network. Using the open-
source software Network Cell Info Lite (WILYSIS, 2018), the connection to the eNB can be metered (see 
Figure 58). 



121 
 

  

Figure 58. Huawei P9 Lite connected to the OpenAirInterface5G network 

The observation indicates clearly that the signal from the UE to the eNB has an exceptional quality with 
Reference Signal-to-Signal Noise Ratio (RSSNR) as minimal as 3.3dB and Reference Signal Received 
Quality (RSRQ) of -5dB. The overall Reference Signal Received Power (RSRP) is -64dBM in room 
conditions. According to this signal strength, the channel estimation can be calculated and thus adjusted 
accordingly for the particular conditions. In Figure 59, the normal function of a UE attached to the eNB can 
be ascertained. In this case, the serving cell maintains a stable connection without any mobility of the UE 
and thus, the RSRP signal power is situated around -65dBm. For eliminating biased results, the cell is set 
to only support 4G LTE connections, without the possibility to connect to 3G UMTS.  
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Figure 59. Normal operation of the UE while connected on the OpenAirInterface5G network 

However, in case of mobility (linear distancing from the eNB); as depicted in Figure 60, the UE registers 
signal power drop in time domain. Alternatively, in the case of severe obstruction, the signal drops 
exponentially in time domain and then again rises exponentially fast when the obstruction of the line-of-
sight (LoS) is resolved. It is also crucial to note that the signal power drop is much higher when the UE 
increases the distance from the eNB rather than as in the obstruction case. As shown in the Figure 60 on 
the left, with the higher distances from the eNB, the signal to the UE reaches unacceptable levels of low 
RSRQ quality. The signal strength drops drastically from around -70dBm to less than 100dBm. 
Consequently, the eNB will try to address the situation and push the minimal reference signal received 
power threshold, so it can broadcast with slightly higher power to reach the UE, but when the threshold 
reaches 0, then the UE is too far from any possibility of being reached from the eNB. Situationally, the eNB 
is forced to drop the connection and de-attach the UE. As long as the signal power is at least marginally 
above the acceptable RSRQ quality levels, the connection will be maintained; in other words, the 
connection is preserved as long as the link to the base station is at “one line” of the phone’s signal meter. 
In the second case, the eNB will continue broadcasting normally when obstruction is faced, but the received 
signal power will drop slightly (in the current case, from -63dBm to around -71dBm), which doesn’t affect 
the connection and the phone’s signal power meter will still indicate full signal strength link. Contextually, 
the eNB will not then re-adjust the power thresholds, nor will it upsurge the radiating power.  
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Figure 60. Signal power drop due to linear increasing of distance from the eNB and due to obstruction of line-of-sight, 
correspondingly 

In addition to the AS evaluation, testing the NAS can take various dimensions and forms. Most of the 
possible tests in the EPC can be of IP character, testing the network traffic for particular traits (congestion, 
jitter, latency, bandwidth, routing) etc. The most important traits of the Non-Access Stratum is the ability 
to serve substantial amount of users through the eNB and offer suitable QoS, while providing good user 
experience. For the users, the most important factors are usually the bandwidth and the latency. When video 
calls are established it is important that the video quality is adequate so the communicating sides can enjoy 
good conversation, and the latency should be as minimal as possible for the voice exchange to be 
satisfactory and clear without delay. To test the throughput and the latency/jitter, two methods are applied: 
testing via external servers by using speedtest.net (SPEEDTEST, 2018) and testing using the open-source 
iperf3 tool (IPERF, 2018). The SpeedTest results are showing an overall communication capabilities of the 
network with the outside world and accessing locations externally.  

In the Figure 61, it can be observed that the tests yield a network throughput of approximately 16 Mbps 
at the DL and 3 – 8 Mbps UL. The latency is varying from 12 to 25ms with jitter of ~5ms. The latency 
deviation is due to different geographical test locations and server distances, which indicates that the 
communication with these values can be flawless in video calls, browsing the internet or even online 
gaming. It can be noted that the IP address of the UE is 192.188.0.2. This address belongs to the network 
previously-assigned by the S/PGW (192.188.0.0/24). The S/PGW has an IP address 192.188.0.1 and it can 
be used as a point to set up a server for exclusive testing of the mobile network performance, without any 
impact on the calculations from the outside world and the Internet.   
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Figure 61. SpeedTest results for the OpenAirInterface5G network, issued from the Huawei P9 Lite UE 

For testing of the mobile network locally, the tool iperf3 is used. One instance is initiated at the UE, and 
the server is running at the EPC listening on the S/PGW interface gtp0 with IP 192.188.0.1 (see Appendix 
S). Iperf3 measures the throughput in one direction, from the client requests towards the server responses 
at the UE and from the server responses to the client requests at the EPC. The packets are sent via 
TCP/SCTP protocols and the measurements give the results depicted in Appendix T for the UE and in 
Appendix U for the EPC server side. After running iPerf for 10 minutes, with packet transmission interval 
of 1 second, the results are similar to the ones obtained from the SpeedTest observations (see Figure 62).  

 

Figure 62. Diagram from iPerf3 observations 
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According to the diagram, the average packet size transmitted through the network is 950.26 KB, or 
0.95 MB. The average speed is 7874.28 Kbit/s, which in both directions is 15.7 Mbit/s (similar to the 
SpeedTest results). The standard deviation in packet size is 141.9 KB and the standard deviation in speed 
is proportional and correlated to the packet size, or specifically 1225 Kbit/s. By comparing the two results, 
it can be stated that the performance of the network are not only conditioned by the OpenAirInterface5G 
system itself, but also many other factors are impacting the performance. The biggest constraint is the 
underlying hardware on which the mobile network is situated. If the CPU unit is stronger and has more 
cores available, then the frequency of transmission can be scaled to higher frequency bands, the sampling 
rate increased and with higher channel bandwidth of i.e. 25 MHz; as a result, the performance would be 
much higher. This suggests that the future virtualized mobile 5G networks will be directly related to the 
performance of the datacenters and the underlying hardware, as well as the availability of the resources and 
the simplicity of the deployment that can facilitate scaling.  

6.2.  EURECOM MIMO OpenAir Sounder (EMOS) for testing MIMO 
propagation 

To test the MIMO propagation, the Eurecom MIMO Openair Sounder (EMOS) is utilized. As a part of 
the OpenAirInterface5G platform which allows real-time MIMO channel measurements synchronously 
over multiple users moving at vehicular speed, EMOS consists of a base station (BS) that continuously 
sends out a signaling frame, and one or more users that receive the frames to estimate the channel. The 
EMOS is using an OFDM modulated sounding sequence. The duration of one transmit frame is 2.667ms 
and it consists of a synchronization symbol (SCH), a broadcast data channel (BCH) comprising 7 OFDM 
symbols, a guard interval, and 48 pilot symbols used for channel estimation (see Figure 63). The pilot 
symbols are taken from a pseudo-random QPSK sequence defined in the frequency domain. The subcarriers 
of the pilot symbols are multiplexed over the four transmit antennas to ensure orthogonality in the spatial 
domain. The BCH contains the frame number of the transmitted frame that is used for synchronization 
among the UEs (EURECOM, 2018).  

 

Figure 63. Frame structure of the OFDM sounding sequence (EURECOM, 2018) 

Each UE first synchronizes to the BS using the SCH. It then tries to decode the data in the BCH. If the 
BCH can be decoded successfully, the channel estimation procedure is started. The channel estimation 
procedure consists of two steps. Firstly, the pilot symbols are de-rotated with respect to the first pilot symbol 
to reduce the phase-shift noise generated by the dual-RF CardBus/PCMCIA card. Secondly, the pilot 
symbols are averaged to increase the measurement SNR. The estimated MIMO channel is finally stored to 
disk. In order to conduct multi-user measurements, all the UEs need to be frame-synchronized to the BS. 
This is achieved by storing the frame number encoded in the BCH along with the measured channel at the 
UEs. This way, the measured channels can be aligned for later evaluations. The frame number is also used 
to synchronize the data acquisition between UEs. One measurement run (file) starts every 22.500 frames 
(60 sec) and is exactly 18.750 frames (50 sec) long (EURECOM, 2018).  

To initialize the EMOS sounder, the lte-softmodem is compiled with the option EMOS=1 and the real-
time measurements are stored to a file (both for the UE and the eNB). The channel estimates are also 
deposited if the softmodem operation is compiled with the flag –DEMOS_CHANNEL=1. With the real-
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time data, it is feasible to apply machine learning and A.I techniques in order to obtain most optimal channel 
estimation model.  

6.3.  ITTI analyzer 
OpenAirInterface5G supports implementation of MAC interface for Wireshark using UDP sockets, 

which allows Wireshark to separate MAC, RLC, PDCP and RRC packets. For the S1AP and GTP packets, 
there is no particular requirement for configuration, however the initiation of PCAP files is accordingly 
feasible. To properly set up the Wireshark, it is needed to adjust the heuristics in the preferences menu to 
correspond to UDP protocol, MAC-LTE, RLC-LTE and PDCP-LTE. The interfaces are then captured by 
the filters: s1ap or lte_rrc or mac-lte or rlc-lte or pdcp-lte. The L2 PDUs are transmitted to the local 
interface and a LTE packet dissection is saved as “oai_l2l3.pcap” file locally or in VCD format as 
“oai_l2l3.vcd”.  

The itti_analyzer tool is used to analyze the exchanges between RRC<->S1AP, RRC<->PDCP, PDCP<-
>S1 in case there are problems within the domain of the mobile network and a surgical packet analysis is 
required. This is enabled when compiling the lte-softmodem using the flag ITTI_ENABLED (EURECOM, 
2017).  
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7. VIRTUALIZATION AND DEPLOYMENT IN CLOUD 
Hitherto, the deployment of the virtualized constituents of the OpenAirInterface5G mobile infrastructure 

are explicated in terms of deployment on top of OpenStack cloud. For full cloud integration, the 
OpenAirInterface5G needs to have its functionality translated so that OpenStack can understand the 
communication machineries. Since OpenAirInterface5G utilizes tunneling protocols as well as 
encapsulation from various protocols into TCP/SCTP and UDP, the communication can experience 
downgrade when the EPC is deployed on top of the cloud. Additionally, earlier versions of OpenStack do 
not support SCTP traffic to the deployed instances, which necessitates tunneling by default. Tunneling can 
increase the overall latency in the network traffic and can sometimes be an unreliable method of networking. 
By avoiding tunneling, the OpenAirInterface5G infrastructure can remove a layer of complexity and also a 
point of failure; this can be performed by integration of the virtual network function of OpenAirInterface5G 
into OpenStack using Heat orchestration (OPENSTACK, 2018) [OpenStack Heat Orchestration].  

7.1.  Deploying OpenAirInterface5G EPC core in OpenStack using Heat 
templates 

Heat is the main project in the OpenStack Orchestration program. It implements an orchestration engine 
to launch multiple composite cloud applications based on templates in the form of text files that can be 
treated like code. A native Heat template format is evolving, but Heat also endeavors to provide 
compatibility with the AWS CloudFormation template format, so that many existing CloudFormation 
templates can be launched on OpenStack. Heat provides both an OpenStack-native ReST API and a 
CloudFormation-compatible Query API. A Heat template describes the infrastructure for a cloud 
application in a text file that is readable and writable by humans, and can be checked into version control, 
diffed, &c. Infrastructure resources that can be described include: servers, floating IPs, volumes, security 
groups, users, etc. Heat also provides an autoscaling service that integrates with the Telemetry service of 
OpenStack, so a scaling group can be included as a resource in a template. Templates can also specify the 
relationships between resources. This enables Heat to call out to the OpenStack APIs to create all of the 
desired infrastructure in the correct order to completely launch the application. Heat manages the whole 
lifecycle of the application - when a change to the infrastructure is desired, the template can be modified 
and used to update the existing stack. Heat knows how to make the necessary changes. It will delete all of 
the resources when the application is removed. Heat primarily manages infrastructure, but the templates 
integrate also with software configuration management tools such as Puppet and Chef (OPENSTACK, 
2018) [OpenStack Heat orchestration] in order to enable automation. 

For this purpose, an OpenStack Heat template is built (included in the Appendix V), in conjunction with 
the work of Swisscom Innovations and the OpenAirInterface5G open-source community (SWISSCOM, 
2018). The template creates a router, a floating IP, an internal network, volumes, security groups, ports and 
instances in OpenStack. The EPC can be placed everywhere in the Internet even behind NATs, and there is 
no requirement for a second external network in OpenStack, so in principle any public OpenStack cloud 
can be used to deploy the core. In addition, S1 traffic between eNB and MME/SPGW is encrypted and 
eNBs are authenticated (OPENAIRINTERFACE, 2018).  

Before deploying the template with Heat, a custom Ubuntu image is built. Since the heat template uses 
OS::Heat::SoftwareDeployment, the base image for the instances needs to have os-collect-config/heat-
config/os-apply-config tools installed:  

sudo apt-get install python-pip  
sudo pip install virtualenv  
virtualenv ~/dib-virtualenv  
. ~/dib-virtualenv/bin/activate  
pip install diskimage-builder  
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mkdir custom-image  
cd custom-image  
git clone https://git.openstack.org/openstack/tripleo-image-elements.git  
git clone https://git.openstack.org/openstack/heat-templates.git  
export ELEMENTS_PATH=tripleo-image-elements/elements:heat-templates/hot/software-
config/elements  
diskimage-builder/bin/disk-image-create vm ubuntu os-collect-config os-refresh-config 
os-apply-config heat-config heat-config-script -o ubuntu-xenial-os-config.qcow2  

The QCOW2 image is then implemented in the OpenStack Alto cloud using the Glance module:  

glance image-create --disk-format qcow2 --file ubuntu-$DIB_RELEASE-os-config.qcow2 
ubuntu-$DIB_RELEASE-os-config  

After the template initiates the network core, the MME, S/PGW and HSS need to be started manually 
in order to have the core network running and ready for the eNB to attach to it.  

7.2.  Using Kubernetes for orchestration of the container resources remotely 
in the cloud 

The OpenAirInterface5G components can be separated and deployed in a form of microservices 
architecture, in a cluster. To achieve that, the previously clarified method of compiling the 
OpenAirInterface5G EPC modules need to be separately executed in distinct containers. Rationally, two to 
three containers can be built with two variations: MME+S/PGW in one container and the HSS in a separate 
container; MME, S/PGW and HSS all in separate containers. The constituents do not necessarily need to 
be in the same container network, but for the matter of expediency and simplicity, they are set as services 
and deployed in a cluster mode, which is the crucial for the microservices architecture. With Kubernetes, 
the container network is served using the Flannel SDN unit. Flannel performs an IP-in-IP connectivity and 
creates a network overlay, which as previously shown, adds a slight overhead in the networking latency 
and computational resource demand. To address this concern, the Kubernetes daemon has the Flannel SDN 
replaced with Calico. Consequently, the container network has a full Layer-3 networking enabled and can 
communicate to the outside world without any overhead caused by additional network overlays.   

In addition to Kubenetes, Calico’s driver is also integrated with the OpenStack’s Neutron networking 
module. The Calico plugin is certified by Mirantis (which is the same version of OpenStack installed), it is 
available for implementation from the Fuel Plugins Catalog. Installation of the driver is straightforward:  

fuel plugins --install calico-fuel-plugin-<version>.noarch.rpm  
 

Subsequently, the OpenStack environment is re-deployed for the settings to take effect. At the Fuel 
master node, in the Neutron networking tab the setting “Use Calico Virtual Networking” is selected. All 
the other configuration settings are preserved, since the OpenStack is the functional cloud infrastructure at 
the OsloMet University and the VLAN/IP settings must remain unchanged. In Figure 64, the process of 
communication between the master node and the deployed remote workloads is performed with Calico 
through OvS virtual bridges. The eth0 interface of the physical network card at the master node has a virtual 
bridge which establishes direct Layer-2 communication. The OvS bridge can then be used for relaying the 
routed Layer-3 traffic or as a reference point for L2TP tunneling to the OpenStack cloud.  
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Figure 64. Using the Calico networking driver for OpenStack and integration with Neutron 

It should be noted that in order to have fully-operation cluster network, all the Calico functions should 
work properly. On the OpenStack controller nodes, the BGP BIRD route reflector establishes sessions to 
all the compute nodes and the Neutron service is running and has initialized the Calico ML2 mechanism 
driver for inter-VM connectivity. On each compute node, the Calico Felix agent is correctly configured and 
running, which can enable further establishing of BGP sessions to the route reflector on the controller nodes. 
In this case, the Open vSwitch driver works in coordination with the Calico driver, and doesn’t have to be 
removed. Calico can also route IPv6 traffic, and since the datacenter is connected also via IPv6, an IP 
address range is deducted to the OpenStack network for IPv6 networking. In conclusion, the remote 
workloads of the eNB constituents (a single eNB container or C-RAN splits into RRU and BBU) can 
communicate with the EPC in the cloud using the BGP protocol, securely. The MME can only be accessed 
by the eNB and the container mesh in the EPC cluster, but nothing else. This applies also to the HSS and 
S/PGW. With such isolation, the security of the whole infrastructure introduces additional layers of 
abstraction and is drastically increased.  

To install the aforementioned elements, a YAML file oai.yml is formed. Each module belongs to a 
different Pod, which is part of a distinct Namespace. All the namespaces form a single Daemon set, in the 
case if the MME, HSS and S/PGW are compiled and run in daemon mode. The process is exactly analogous 
to the one described previously, about deploying Kubernetes microservices application where each EPC 
component is implemented in a single container instead in separate. In this case, the control over the 
comprising elements is more detailed, where each daemon set has a detailed control over the deployed Pods. 
The EPC thus is instantiated in microservices mode on the instance running on OvS router 128.39.121.19 
in the OpenStack cloud, getting an IP address 128.39.121.27 and a private IP 10.0.0.27 (see Figure 65).  
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Figure 65. Deployed Kubernetes EPC cluster on top of OpenStack cloud 
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8. DISCUSSION  

The main goal every operator targets to achieve is user satisfaction and good technology experience. 
With the purpose of providing the declared qualities, the service provider must ensure that the deployed 
infrastructure is robust and reliable, with minimal to no downtime although offering high level of 
performance. To facilitate these excellences, every observable impediment needs to be addressed and 
resolved. In this case, several repercussions surfaced and required special attention.  

Unambiguously, one of the biggest downside of the OpenAirInterface5G network are the special 
requirements for real-time operation. Any processing fluctuations at the host in terms of CPU vacillations 
can be detrimental to the stability of the network. The eNB runs very sensitive processes and therefore, any 
discrepancy in the CPU frequency can lead to misapprehending behavior. As pointed out, the CPU scaling 
and power control are disabled for the unit to operate at maximum performance. However, some recent 
events in the cyber-security domain have led Intel to produce patches for vulnerabilities that encompassed 
all current CPU architectures. In particular words, the patches for the Spectre/Meltdown vulnerabilities 
(COLDEWEY, Devin, 2018) have a substantially negative impact on the performance of the CPU units, 
and generally thus it drastically affects the function of the currently installed OpenAirInterface5G network. 
The patches decrease the CPU processing efficiency up to 30% if the units are older than 2 years. For 
addressing this issue, all recent Linux updates regarding security patching are removed and earlier version 
of Ubuntu 16 is retained. Also, the eNB operation requires very strong CPU units with as more cores as 
possible. Testing a full MIMO propagation with multiple eNBs and users can be difficult if the underlying 
host is not rich in resources and the technology is not innovative.  

Furthermore, the OpenAirInterface5G mobile network requires mapping of GTP-U modules from the 
Linux kernel and indeed requires the presence of such modules. Deployment of the core network in the 
cloud can be challenging if the modules are missing. Most often, the OpenStack Linux images for the VM 
instances are being created without the GTP modules, and thus the running of the core network is 
impossible. To tackle this issue, custom Linux images are produced and the GTP modules included within 
the scope. The same issues may persist even with the usage of containers, because the containers are 
mapping modules from the Linux kernel when running an application. Without the appropriate kernel 
modules and libraries, the application will be unable to run. Given that the host operating system is resolute, 
the upside of the containerized environment opens endless possibilities for manipulation of the mobile 
network constituents in terms of scaling, resource localization, upgrades and continuous integration 
approaches. With fully-functional splits, a clustered environment can be easily scaled; i.e., Kubernetes can 
assign as many replicas as desired for the particular components. For example, the HSS database can be 
scaled up to massive clusters in case where the mobile network becomes oversaturated with UE requests. 
The scaled cluster can then load-balance between requests and increase the database replicas in order to 
serve the growing requests coming from the users. This minor action can have a substantial impact on the 
performance of the virtualized mobile network. In addition to this, if the HSS database resides on a SSD or 
NVMe disk; with their very high access and writing speeds, the mobile network performance can avoid 
bottlenecks in terms of I/O tailbacks that can impact the performance severely in case if the database is 
situated on a standard HDD disk. When the container clusters are auto-scaled, usually the low performance 
hard disks can be the culprit for downtime and degraded operation due to very low read/write speeds. For 
comparison, a standard 7200rpm HDD disk has a read/write speed of ~80-150 MB/s, which is a theoretical 
value. In practice, those speeds are much slower especially when i.e. 4K video is being recorded or 
streamed. With speeds of ~0.8-0.9 MB/s for read/write operations of 4K video, the bottlenecks are too 
obvious to be ignored. Disregarding the fact that the network speed can go up to 20 MB/s, the disk 
performance will not be able to keep up with the data transfer through the network. The database access 
can then be severely restricted and the users can experience very bad performance over the mobile network, 
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i.e. when playing VR games online. On the other hand, if the database is placed on a SSD disk, the read/write 
speeds that can be achieved in that case can vary from ~150-250 MB/s. This exceeds the overall requirement 
for serving users a 4K video streamline for any purpose and the end user experience will be greatly 
enhanced.  

According to the results from the tests, the operation of the network is also bottlenecked by the USB 
connection of the USRP eNB, coupled with the local 100Mbps Ethernet link provided to the EPC (which 
is not fiber), as well as firewalls, external gateways and redistributing routes through various routing 
protocols. A resolution for this issue would encompass utilization of a better software-defined radio 
peripheral such as the USRP X310 (ETTUS RESEARCH, 2018) [USRP X310 High-performance 
Software-Defined Radio (SDR)], which is the PCI-Express version of the hardware. Through the PCI-e 
lane, the speeds of accessing the hardware would be much higher in comparison to the USB bus. Given this 
headroom, the USRP X310 implements two daughterboards with 160 MHz channel bandwidth each, 
allowing much higher sampling rates and higher speeds.  

One factor that plays a crucial role in the impediment of the experimentation is the environment in which 
the network is tested; the experiments are being subjected to interference from the commercial mobile 
operators, and without a proper isolated Faraday room, the UL (Uplink) channel varies vigorously, giving 
test results always differently (Figure 61). This is due to the usage of band 3 without lawful regulation, 
which commercial operators use for existing networks and mobile access. If an isolated environment is 
provided, then the test results can be more reliable and straightforward, without any disturbances and 
external influences. However, besides these obstacles, the mobile network is established successfully and 
operates in a stable manner.  
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9. CONCLUSION 

In this thesis the concepts of virtualization of a mobile network are introduced and providing a network 
slice is hence attained; vast amount of devices and users can be served more efficiently by scaling the 
network functions thus. Many of the emerging devices on the Internet will require specific sets of 
parameters and network resources, which can be divided fairly and according to the regulations of the 
service provider. Expected fields that are interested in the current developments are: the commercial users, 
industry, medical sphere, Internet of Things realm, self-driving cars, law enforcement and military, etc. 
With the exponential rise of the interest in connectivity, the represented concept of virtualization can 
prominently contend with the inward challenges; explicitly, by utilizing the potential of Calico’s policy-
based networking, establishing container isolation and thus network slices on-demand is absolutely 
achievable while the focus on the security is being maintained. Indeed, the establishment of a portable 
softwareized mobile infrastructure is achieved and the opportunities it invites are discussed accordingly. 

To also conclude the practicability of deployment of a portable virtualized mobile infrastructure, initially 
the shortcomings of such exertion are highlighted. Not only that the particular desirability is achieved, but 
additional alleviating contrivances are instituted. Without orchestration and automation, the utilization of 
such setup can be exceptionally challenging and complex in vast environs; by using Kubernetes or 
OpenStack Heat, the difficulty of realizing the coveted action is substantially reduced. This refers to the 
repeatability of deployment, which by utilizing the power of containerization and immutable distributions, 
enables the user to straightforwardly re-deploy the virtualized groundwork in the same state as when it was 
created initially. Despite the inadequacies, the vast benefit offered with utilization of the power of open-
source software and its availability empowers the accomplishment of the initial stage of 5G virtualization; 
presenting the opportunity of paving a new way for implementing the succeeding technologies. Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) are the key driving concepts of 
establishing a successful base and amalgamation of the virtualized environments. Using proper 
orchestration tools, the control and monitoring over the softwareized infrastructure can be unsmilingly 
alleviated, countenancing automation mechanisms to take control over the life of the setup. Crucially, the 
benefit the virtualization offers has multiple dimensions, as in terms of value for the society, but also 
pruning to gains for the whole humanity as a civilization. With reduction of the physical hardware and 
virtualization of the constituents, the overall power consumption of the service providers will be 
diminished, which can help tackling the problem with the climate changes caused by the humans and 
specifically data-center operations. The impact can be reduced further with adequate optimization of the 
Software-defined networks and how much resources the future 5G infrastructure will use.  

9.1. Future work 
Adaptable Network Slicing is a concept that follows after the accomplishment of this work. With 

successful isolation of different network modules, it is then feasible to establish various services for 
numerous verticals. For example, critical infrastructure can be completely isolated from the IoT platforms, 
and then merged again when the requirements are demanded. The adaptability refers to the flexible mode 
of assignment of network slices using orchestration. With this, the future of the 5G networking relies on 
self-organizing entities and artificial intelligence for prediction of such necessities. In order for this to be 
achieved, the OpenAirInterface5G community works intensively on creating an environment that can 
support splitting of the workloads into few entities. Namely, the concept of Centralized/Cloud – Radio 
Access Network (C-RAN) splits indicates the necessity to split the eNB operation into Baseband Units 
(BBU) and multiple RRU (Remote Radio Units). With this mode of operation, a single eNB base station 
can then serve multiple verticals and provide various slices with a single hardware entity. In particular, the 
central processing of the eNB will be able to accommodate multiple RRUs, which are dedicated for 
processing of the distributed antennas. The antennas will then be the only elements accessible by the UEs, 
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while the eNB resides in the cloud close to the EPC. Logically, the only delay constraint that can be 
confronted in this situation is the one incurred by the radio propagation, because the eNB communicates 
with the EPC with a direct link in a same datacenter or a distributed cloud sited in close proximity to the 
datacenter where the EPC is residing.  

In the future, the scaling of the 5G infrastructure can become arduous and yield massive dimensions due 
to the requirement of the ever-growing demand for resources and devices that will inhabit the ecosphere of 
the Internet connectivity. The emergence of IoT (Internet of Things) devices, mMTC (Massive Machine 
Type Communication), interworking with sensor networks, satellite systems, Wi-Fi and more, will induce 
huge amounts of traffic that converges ultimately fast in time domain. Information exchange in that 
situation is transpiring very fast and the requirement for scaling up the infrastructure has to be automated. 
The requisites for this solution will impose necessity for smart monitoring systems of the infrastructure, 
which can collect data for the particular requirements for scaling. Accordingly, the self-organizing system 
powered by artificial intelligence can then vigorously scale the network, or migrate the resources to the 
position where they are mostly required in a particular moment. In any case, the impending operations in 
that domain will require more than human-only intervention, which primes to further prospects for 
development and research of cutting-edge technologies and methods.   
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APPENDIX  
 

Appendix A. YAML configuration file for deploying a Kubernetes pod 

apiVersion: v1 
kind: Pod 
metadata: 
  name: db 
  labels: 
    name: sql 
    app: hsscluster 
 
spec: 
      containers: 
      - image: [the desired container] 
        name: database 
     replicas: 3 
        ports: 
        - name: sql 
          containerPort: 27017 
 
        volumeMounts: 
          - name: sql-storage 
            mountPath: /data/db 
 
      volumes: 
          - name: sql-storage 
            hostPath: 
              path: /data/db 

 

Appendix B. Router Cisco 2800 configuration 

brunos-gw>en 
Password: 
brunos-gw#sh run 
Building configuration... 
 
Current configuration : 3257 bytes 
! 
version 12.4 
service timestamps debug datetime msec 
service timestamps log datetime msec 
no service password-encryption 
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! 
hostname brunos-gw 
! 
boot-start-marker 
boot-end-marker 
! 
enable secret 5 $1$4iRB$vYhCHqJ555OHSP3lDvQWG/ 
! 
aaa new-model 
! 
! 
! 
aaa session-id common 
! 
resource policy 
! 
ip cef 
! 
! 
no ip dhcp use vrf connected 
! 
ip dhcp pool bruno 
   import all 
   network 192.168.10.0 255.255.255.0 
   default-router 192.168.10.1 
   dns-server 158.36.161.20 158.36.161.21 
! 
ip dhcp pool sidd 
   import all 
   network 192.168.20.0 255.255.255.0 
   default-router 192.168.20.1 
   dns-server 158.36.161.20 158.36.161.21 
! 
! 
ip domain name hioa.no 
ip name-server 158.36.161.20 
ip name-server 158.36.161.21 
ip ssh version 2 
! 
! 
! 
voice-card 0 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
username bruno privilege 15 secret 5 $1$q29P$9u4CcYzM5yutCq55bpWZN1 
! 
! 
! 
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! 
! 
! 
! 
interface FastEthernet0/0 
 ip address 158.36.118.16 255.255.254.0 
 ip nat outside 
 no ip virtual-reassembly 
 duplex auto 
 speed auto 
 ipv6 address 2001:700:700:6::16/23 
 ipv6 enable 
 ipv6 nd ra suppress 
! 
interface FastEthernet0/1 
 ip address 192.168.0.1 255.255.255.0 
 ip nat inside 
 no ip virtual-reassembly 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1.10 
 encapsulation dot1Q 10 
 ip address 192.168.10.1 255.255.255.0 
 ip nat inside 
 no ip virtual-reassembly 
! 
interface FastEthernet0/1.20 
 encapsulation dot1Q 20 
 ip address 192.168.20.1 255.255.255.0 
 ip nat inside 
 no ip virtual-reassembly 
! 
interface Serial0/2/0 
 no ip address 
 shutdown 
 no fair-queue 
 clock rate 125000 
! 
interface Serial0/2/1 
 no ip address 
 shutdown 
 clock rate 125000 
! 
router ospf 1 
 log-adjacency-changes 
 redistribute connected subnets 
 redistribute static subnets 
 network 158.36.0.0 0.0.255.255 area 0 
 network 192.168.0.0 0.0.0.255 area 0 
 network 192.168.10.0 0.0.0.255 area 0 
 network 192.168.20.0 0.0.0.255 area 0 
 default-information originate 
! 
ip route 0.0.0.0 0.0.0.0 FastEthernet0/0 
! 
! 
ip http server 
no ip http secure-server 
ip nat inside source list 101 interface FastEthernet0/0 overload 
ip nat inside source static tcp 192.168.10.4 2020 interface FastEthernet0/0 2020 
ip nat inside source static tcp 192.168.10.4 80 interface FastEthernet0/0 80 
ip nat inside source static tcp 192.168.10.3 2021 interface FastEthernet0/0 2021 
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ip nat inside source static tcp 192.168.10.3 15900 interface FastEthernet0/0 15900 
ip nat inside source static udp 192.168.10.3 15900 interface FastEthernet0/0 15900 
ip nat inside source static tcp 192.168.10.4 25900 interface FastEthernet0/0 25900 
ip nat inside source static tcp 192.168.20.4 2222 interface FastEthernet0/0 2222 
ip nat inside source static udp 192.169.10.4 25900 interface FastEthernet0/0 25900 
ip nat inside source static tcp 192.168.10.5 2022 interface FastEthernet0/0 2022 
ip nat inside source static tcp 192.168.10.5 35900 interface FastEthernet0/0 35900 
ip nat inside source static udp 192.168.10.5 35900 interface FastEthernet0/0 35900 
! 
access-list 101 permit ip 192.168.0.0 0.0.0.255 any 
access-list 101 permit ip 192.168.10.0 0.0.0.255 any 
access-list 101 permit ip 192.168.20.0 0.0.0.255 any 
! 
! 
! 
! 
! 
! 
control-plane 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
line con 0 
line aux 0 
line vty 0 4 
 transport input ssh 
! 
scheduler allocate 20000 1000 
end 

 

 

Appendix C. Cisco Switch 2960 configuration  

Switch# 
Switch# 
Switch#sh run 
Building configuration... 
 
Current configuration : 2712 bytes 
! 
version 12.2 
no service pad 
service timestamps debug uptime 
service timestamps log uptime 
no service password-encryption 
! 
hostname Switch 
! 
enable password dukenukem89 
! 
no aaa new-model 
system mtu routing 1500 
ip subnet-zero 
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! 
! 
! 
! 
no file verify auto 
spanning-tree mode pvst 
spanning-tree extend system-id 
! 
vlan internal allocation policy ascending 
! 
interface FastEthernet0/1 
 switchport access vlan 10 
 switchport trunk allowed vlan 1-99 
 switchport mode trunk 
! 
interface FastEthernet0/2 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/3 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/4 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/5 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/6 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/7 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/8 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/9 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/10 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/11 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/12 
 switchport access vlan 10 
 switchport mode access 
! 
interface FastEthernet0/13 
 switchport access vlan 20 
 switchport mode access 
! 
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interface FastEthernet0/14 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/15 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/16 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/17 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/18 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/19 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/20 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/21 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/22 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/23 
 switchport access vlan 20 
 switchport mode access 
! 
interface FastEthernet0/24 
 switchport access vlan 20 
 switchport mode access 
! 
interface GigabitEthernet0/1 
 switchport access vlan 10 
 switchport mode access 
! 
interface GigabitEthernet0/2 
 switchport access vlan 20 
 switchport mode access 
! 
interface Vlan1 
 ip address 192.168.0.2 255.255.255.0 
 no ip route-cache 
! 
ip default-gateway 192.168.0.1 
ip http server 
! 
control-plane 
! 
! 
line con 0 
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line vty 0 4 
 password !Zzgn5J8rtyiG*J$VHh@5@# 
 login 
line vty 5 15 
 password !Zzgn5J8rtyiG*J$VHh@5@# 
 login 
! 
end 

 

 

Appendix D. Calico configuration for database access policy 

cat << EOF | calicoctl apply -f - 
- apiVersion: v1 
  kind: profile 
  metadata: 
    name: database 
    labels: 
      role: database 
  spec: 
    ingress: 
    - action: allow 
      protocol: tcp 
      source: 
        selector: role == 'frontend' 
      destination: 
        ports: 
        -  3306 
    - action: allow 
      source: 
        selector: role == 'database' 
    egress: 
    - action: allow 
      destination: 
        selector: role == 'database' 
- apiVersion: v1 
  kind: profile 
  metadata: 
    name: frontend 
    labels: 
      role: frontend 
  spec: 
    egress: 
    - action: allow 
      protocol: tcp 
      destination: 
        selector: role == 'database' 
        ports: 
        -  3306 
EOF 

 

 

Appendix E. Calico global policy through label selection  

cat << EOF | calicoctl apply -f - 
- apiVersion: v1 
  kind: profile 
  metadata: 
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    name: database 
    labels: 
      role: database 
- apiVersion: v1 
  kind: profile 
  metadata: 
    name: frontend 
    labels: 
      role: frontend 
EOF 

 

 

Appendix F. Calico global policy network isolation with ingress and egress rules 

cat << EOF | calicoctl create -f - 
- apiVersion: v1 
  kind: policy 
  metadata: 
    name: database 
  spec: 
    order: 0 
    selector: role == 'database' 
    ingress: 
    - action: allow 
      protocol: tcp 
      source: 
        selector: role == 'frontend' 
      destination: 
        ports: 
        -  3306 
    - action: allow 
      source: 
        selector: role == 'database' 
    egress: 
    - action: allow 
      destination: 
        selector: role == 'database' 
- apiVersion: v1 
  kind: policy 
  metadata: 
    name: frontend 
  spec: 
    order: 0 
    selector: role == 'frontend' 
    egress: 
    - action: allow 
      protocol: tcp 
      destination: 
        selector: role == 'database' 
        ports: 
        -  3306 
EOF 

 

Appendix G. i7z CPU state capture 
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Appendix H. Script for building OvS virtual bridges, Docker container network and auto-
configuration of interfaces 

 

#!/bin/bash 
# 
# This script will install OVS, purge existing configuration (if any), install all 
# necessary applications, set up bridges, tunnels and link the docker bridge that's 
created 
# automatically to the OVS bridge that is set up afterwards. This will enable 
communication 
# between containers on different hosts using OVS overlay. 
# 
# First, set up the remote IP of the host you want to create a tunnel to: 
 
REMOTE_IP=192.168.10.5 
 
# Install bridgeutils and OVS: 
  echo "Installing necessary applications and OpenVSwitch..." 
apt-get update && apt-get install bridge-utils libvirt-bin openvswitch-switch -y 
  sleep 3 
  echo "Clearing existing configuration..." 
 
# First, clear all possible existing configuration (virtual interfaces, bridges etc.) 
ovs-vsctl del-br br-int 
ip link delete ifconfig |grep veth-* |cut -d " " -f1 
ip link delete veth0 
ip link delete veth1 
ip link delete virbr0 
 
# Create OpenVSwitch tunnel between two hosts, for containers to communicate over 
# different physical subnets. The following variable is the docker bridge, which can 
be 
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# also another bridge you create manually. Therefore, it should be changed adequately 
to 
# correspond to the bridge you like OVS to create a tunnel for. 
  echo "Creating Docker network "oainet" on the subnet 172.19.0.0/24..." 
  sleep 4 
docker network create -d bridge --attachable --subnet 172.19.0.0/24 --gateway 
172.19.0.1 oainet 
  sleep 3 
DOCKER="$(ifconfig |grep br-* |cut -d " " -f1)" 
  echo "Initializing new bridge 'br-int'..." 
  sleep 3 
ovs-vsctl add-br br-int 
ip link add veth0 type veth peer name veth1 
ovs-vsctl add-port br-int veth1 
  echo "Linking the port of the new Docker bridge with the OVS bridge..." 
  sleep 4 
brctl addif ${DOCKER} veth0 
  echo "Setting up the virtual ethernet interfaces..." 
ip link set veth1 up 
ip link set veth0 up 
  sleep 2 
# Then add the virtual tunnel bridge: 
  echo "Adding virtual tunnel bridge gre0 and connecting to remote gre on IP 
$REMOTE_IP" 
ovs-vsctl add-port br-int gre0 -- \ 
  set interface gre0 type=gre options:remote_ip=$REMOTE_IP 
  sleep 3 
  echo "Setting virtual ethernet interfaces MTU 1648..." 
   ip link set veth0 mtu 1648 up 
   ip link set veth1 mtu 1648 up 
   ip link set ${DOCKER} mtu 1648 up 
  sleep 2 
  echo "Done!" 
  echo "Try to ping other containers on the other host through the same 172.19.0.0/24 
subnet." 
 
# The 192.168.10.5 is the remote IP of the host where the other OVS 
# virtual network is located. For example, at the 192.168.10.5 host, 
# you add the same commands, with the difference of the remote ip, that 
# will be the address of this current host. 

 

Appendix I. HSS configuration file 

################################################################################ 
# Licensed to the OpenAirInterface (OAI) Software Alliance under one or more 
# contributor license agreements.  See the NOTICE file distributed with 
# this work for additional information regarding copyright ownership. 
# The OpenAirInterface Software Alliance licenses this file to You under 
# the Apache License, Version 2.0  (the "License"); you may not use this file 
# except in compliance with the License. 
# You may obtain a copy of the License at 
# 
#      http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
#------------------------------------------------------------------------------- 
# For more information about the OpenAirInterface (OAI) Software Alliance: 
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#      contact@openairinterface.org 
################################################################################ 
HSS : 
{ 
## MySQL mandatory options 
MYSQL_server = "127.0.0.1"; 
MYSQL_user   = "root"; 
MYSQL_pass   = "linux"; 
MYSQL_db     = "oai_db"; 
 
## HSS options 
# OPERATOR_key = "1006020f0a478bf6b699f15c062e42b3"; # OP key for oai_db.sql 
OPERATOR_key = "11111111111111111111111111111111"; 
 
RANDOM = "true"; 
 
## Freediameter options 
FD_conf = "/usr/local/etc/oai/freeDiameter/hss_fd.conf"; 
}; 

 

Appendix J. MME configuration file  

################################################################################ 
# Licensed to the OpenAirInterface (OAI) Software Alliance under one or more 
# contributor license agreements.  See the NOTICE file distributed with 
# this work for additional information regarding copyright ownership. 
# The OpenAirInterface Software Alliance licenses this file to You under 
# the Apache License, Version 2.0  (the "License"); you may not use this file 
# except in compliance with the License. 
# You may obtain a copy of the License at 
# 
#      http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
#------------------------------------------------------------------------------- 
# For more information about the OpenAirInterface (OAI) Software Alliance: 
#      contact@openairinterface.org 
################################################################################ 
 
MME : 
{ 
    RUN_MODE                                  = "TEST";                         # 
ALLOWED VALUES: "TEST", "OTHER" 
    REALM                                     = "openair4G.eur";                # YOUR 
REALM HERE 
    # Define the limits of the system in terms of served eNB and served UE. 
    # When the limits will be reached, overload procedure will take place. 
    MAXENB                                    = 2; 
    MAXUE                                     = 16; 
    RELATIVE_CAPACITY                         = 10; 
 
    EMERGENCY_ATTACH_SUPPORTED                     = "no"; 
    UNAUTHENTICATED_IMSI_SUPPORTED                 = "no"; 
 
    # EPS network feature support 
    EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1      = "no";    # DO 
NOT CHANGE 
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    EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES_IN_S1_MODE = "no";    # DO 
NOT CHANGE 
    EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC            = "no";    # DO 
NOT CHANGE 
    EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST             = "no";    # DO 
NOT CHANGE 
 
    # Display statistics about whole system (expressed in seconds) 
    MME_STATISTIC_TIMER                       = 10; 
 
    IP_CAPABILITY = "IPV4V6";                                                   # 
UNUSED, TODO 
 
 
    INTERTASK_INTERFACE : 
    { 
        # max queue size per task 
        ITTI_QUEUE_SIZE            = 2000000; 
    }; 
 
    S6A : 
    { 
        S6A_CONF                   = "/usr/local/etc/oai/freeDiameter/mme_fd.conf"; # 
YOUR MME freeDiameter config file path 
        HSS_HOSTNAME               = "hss";                                     # THE 
HSS HOSTNAME 
    }; 
 
    # ------- SCTP definitions 
    SCTP : 
    { 
        # Number of streams to use in input/output 
        SCTP_INSTREAMS  = 8; 
        SCTP_OUTSTREAMS = 8; 
    }; 
 
    # ------- S1AP definitions 
    S1AP : 
    { 
        # outcome drop timer value (seconds) 
        S1AP_OUTCOME_TIMER = 10; 
    }; 
 
    # ------- MME served GUMMEIs 
    # MME code DEFAULT  size = 8 bits 
    # MME GROUP ID size = 16 bits 
    GUMMEI_LIST = ( 
         {MCC="208" ; MNC="93"; MME_GID="4" ; MME_CODE="1"; }                   # YOUR 
GUMMEI CONFIG HERE 
    ); 
 
    # ------- MME served TAIs 
    # TA (mcc.mnc:tracking area code) DEFAULT = 208.34:1 
    # max values = 999.999:65535 
    # maximum of 16 TAIs, comma separated 
# !!! Actually use only one PLMN 
    TAI_LIST = ( 
         {MCC="208" ; MNC="93";  TAC = "15"; },                                 # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "14"; },                                 # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "13"; },                                 # YOUR 
TAI CONFIG HERE 
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         {MCC="208" ; MNC="93";  TAC = "12"; },                                 # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "11"; },                                 # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "10"; },                                 # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "9"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "8"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "7"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "6"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "5"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "4"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "3"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "2"; },                                  # YOUR 
TAI CONFIG HERE 
         {MCC="208" ; MNC="93";  TAC = "1"; }                                   # YOUR 
TAI CONFIG HERE 
    ); 
 
 
    NAS : 
    { 
        # 3GPP TS 33.401 section 7.2.4.3 Procedures for NAS algorithm selection 
        # decreasing preference goes from left to right 
        ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = [ "EIA2" , "EIA1" , "EIA0" ]; 
        ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = [ "EEA0" , "EEA1" , "EEA2" ]; 
 
        # EMM TIMERS 
        # T3402 start: 
        # At attach failure and the attempt counter is equal to 5. 
        # At tracking area updating failure and the attempt counter is equal to 5. 
        # T3402 stop: 
        # ATTACH REQUEST sent, TRACKING AREA REQUEST sent. 
        # On expiry: 
        # Initiation of the attach procedure, if still required or TAU procedure 
        # attached for emergency bearer services. 
        T3402                                 =  1                              # in 
minutes (default is 12 minutes) 
 
        # T3412 start: 
        # In EMM-REGISTERED, when EMM-CONNECTED mode is left. 
        # T3412 stop: 
        # When entering state EMM-DEREGISTERED or when entering EMM-CONNECTED mode. 
        # On expiry: 
        # Initiation of the periodic TAU procedure if the UE is not attached for 
        # emergency bearer services. Implicit detach from network if the UE is 
        # attached for emergency bearer services. 
        T3412                                 =  54                             # in 
minutes (default is 54 minutes, network dependent) 
 
        # ESM TIMERS 
        T3485                                 =  8                              # 
UNUSED in seconds (default is 8s) 
        T3486                                 =  8                              # 
UNUSED in seconds (default is 8s) 
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        T3489                                 =  4                              # 
UNUSED in seconds (default is 4s) 
        T3495                                 =  8                              # 
UNUSED in seconds (default is 8s) 
    }; 
 
    NETWORK_INTERFACES : 
    { 
        # MME binded interface for S1-C or S1-MME  communication (S1AP), can be 
ethernet interface, virtual ethernet interface, we don't advise wireless interfaces 
        MME_INTERFACE_NAME_FOR_S1_MME         = "eth0";                        # YOUR 
NETWORK CONFIG HERE 
        MME_IPV4_ADDRESS_FOR_S1_MME           = "172.19.0.2/24";            # YOUR 
NETWORK CONFIG HERE 
 
        # MME binded interface for S11 communication (GTPV2-C) 
        MME_INTERFACE_NAME_FOR_S11_MME        = "eth0:11";                      # YOUR 
NETWORK CONFIG HERE 
        MME_IPV4_ADDRESS_FOR_S11_MME          = "192.171.11.1/24";              # YOUR 
NETWORK CONFIG HERE 
        MME_PORT_FOR_S11_MME                  = 2123;                           # YOUR 
NETWORK CONFIG HERE 
    }; 
 
    LOGGING : 
    { 
        # OUTPUT choice in { "CONSOLE", "`path to file`", "`IPv4@`:`TCP port num`"} 
        # `path to file` must start with '.' or '/' 
        # if TCP stream choice, then you can easily dump the traffic on the remote or 
local host: nc -l `TCP port num` > received.txt 
        OUTPUT            = "CONSOLE"; 
 
        # THREAD_SAFE choice in { "yes", "no" } means use of thread safe intermediate 
buffer then a single thread pick each message log one 
        # by one to flush it to the chosen output 
        THREAD_SAFE       = "no"; 
 
        # COLOR choice in { "yes", "no" } means use of ANSI styling codes or no 
        COLOR             = "yes";                                              # TODO 
 
        # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR", "WARNING", 
"NOTICE", "INFO", "DEBUG", "TRACE"} 
SCTP_LOG_LEVEL    = "TRACE"; 
        S11_LOG_LEVEL     = "TRACE"; 
        GTPV2C_LOG_LEVEL  = "TRACE"; 
        UDP_LOG_LEVEL     = "TRACE"; 
        S1AP_LOG_LEVEL    = "TRACE"; 
        NAS_LOG_LEVEL     = "TRACE"; 
        MME_APP_LOG_LEVEL = "TRACE"; 
        S6A_LOG_LEVEL     = "TRACE"; 
        UTIL_LOG_LEVEL    = "TRACE"; 
        MSC_LOG_LEVEL     = "ERROR"; 
        ITTI_LOG_LEVEL    = "ERROR"; 
 
        # ASN1 VERBOSITY: none, info, annoying 
        # for S1AP protocol 
        ASN1_VERBOSITY    = "none"; 
    }; 
}; 
 
S-GW : 
{ 
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    # S-GW binded interface for S11 communication (GTPV2-C), if none selected the ITTI 
message interface is used 
    SGW_IPV4_ADDRESS_FOR_S11                = "192.171.11.2/24";            # YOUR 
NETWORK CONFIG HERE 
 
}; 

 

Appendix K. S/PGW configuration file 

 

################################################################################ 
# Licensed to the OpenAirInterface (OAI) Software Alliance under one or more 
# contributor license agreements.  See the NOTICE file distributed with 
# this work for additional information regarding copyright ownership. 
# The OpenAirInterface Software Alliance licenses this file to You under 
# the Apache License, Version 2.0  (the "License"); you may not use this file 
# except in compliance with the License. 
# You may obtain a copy of the License at 
# 
#      http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
#------------------------------------------------------------------------------- 
# For more information about the OpenAirInterface (OAI) Software Alliance: 
#      contact@openairinterface.org 
################################################################################ 
S-GW : 
{ 
    NETWORK_INTERFACES : 
    { 
        # S-GW binded interface for S11 communication (GTPV2-C), if none selected the 
ITTI message interface is used 
        SGW_INTERFACE_NAME_FOR_S11              = "eth0:21";                    # YOUR 
NETWORK CONFIG HERE 
        SGW_IPV4_ADDRESS_FOR_S11                = "192.171.11.2/24";            # YOUR 
NETWORK CONFIG HERE 
 
        # S-GW binded interface for S1-U communication (GTPV1-U) can be ethernet 
interface, virtual ethernet interface, we don't advise wireless interfaces 
        SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP    = "eth0";                       # YOUR 
NETWORK CONFIG HERE, USE "lo" if S-GW run on eNB host 
        SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP      = "172.19.0.2/24";           # YOUR 
NETWORK CONFIG HERE 
        SGW_IPV4_PORT_FOR_S1U_S12_S4_UP         = 2152;                         # 
PREFER NOT CHANGE UNLESS YOU KNOW WHAT YOU ARE DOING 
 
        # S-GW binded interface for S5 or S8 communication, not implemented, so leave 
it to none 
        SGW_INTERFACE_NAME_FOR_S5_S8_UP         = "none";                       # DO 
NOT CHANGE (NOT IMPLEMENTED YET) 
        SGW_IPV4_ADDRESS_FOR_S5_S8_UP           = "0.0.0.0/24";                 # DO 
NOT CHANGE (NOT IMPLEMENTED YET) 
    }; 
 
    INTERTASK_INTERFACE : 
    { 
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        # max queue size per task 
        ITTI_QUEUE_SIZE            = 2000000; 
    }; 
 
    LOGGING : 
    { 
        # OUTPUT choice in { "CONSOLE", "`path to file`", "`IPv4@`:`TCP port num`"} 
        # `path to file` must start with '.' or '/' 
        # if TCP stream choice, then you can easily dump the traffic on the remote or 
local host: nc -l `TCP port num` > received.txt 
        OUTPUT            = "CONSOLE"; 
 
        # THREAD_SAFE choice in { "yes", "no" } means use of thread safe intermediate 
buffer then a single thread pick each message log one 
        # by one to flush it to the chosen output 
        THREAD_SAFE       = "no"; 
 
        # COLOR choice in { "yes", "no" } means use of ANSI styling codes or no 
        COLOR             = "yes";                                              # TODO 
 
        # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR", "WARNING", 
"NOTICE", "INFO", "DEBUG", "TRACE"} 
        UDP_LOG_LEVEL      = "TRACE"; 
        GTPV1U_LOG_LEVEL   = "TRACE"; 
        GTPV2C_LOG_LEVEL   = "TRACE"; 
        SPGW_APP_LOG_LEVEL = "TRACE"; 
        S11_LOG_LEVEL      = "TRACE"; 
    }; 
}; 
 
P-GW = 
{ 
    NETWORK_INTERFACES : 
    { 
        # P-GW binded interface for S5 or S8 communication, not implemented, so leave 
it to none 
        PGW_INTERFACE_NAME_FOR_S5_S8          = "none";                         # DO 
NOT CHANGE (NOT IMPLEMENTED YET) 
        PGW_IPV4_ADDRESS_FOR_S5_S8            = "0.0.0.0/24";                   # DO 
NOT CHANGE (NOT IMPLEMENTED YET) 
 
        # P-GW binded interface for SGI (egress/ingress internet traffic) 
        PGW_INTERFACE_NAME_FOR_SGI            = "eth0";                         # YOUR 
NETWORK CONFIG HERE 
        PGW_IPV4_ADDRESS_FOR_SGI              = "172.19.0.2/24";             # YOUR 
NETWORK CONFIG HERE 
        PGW_MASQUERADE_SGI                    = "yes";                          # YOUR 
NETWORK CONFIG HERE 
        UE_TCP_MSS_CLAMPING                   = "no" 
    }; 
 
    # Pool of UE assigned IP addresses 
    IP_ADDRESS_POOL : 
{ 
        IPV4_LIST = ( 
                      "192.188.0.0/24"                                         # YOUR 
NETWORK CONFIG HERE 
                    ); 
    }; 
 
    # DNS address communicated to UEs 
    DEFAULT_DNS_IPV4_ADDRESS     = "192.168.12.100";                            # YOUR 
NETWORK CONFIG HERE 
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    DEFAULT_DNS_SEC_IPV4_ADDRESS = "8.8.8.8";                            # YOUR 
NETWORK CONFIG HERE 
 
    # Non standard feature, normally should be set to "no", but you may need to set to 
yes for UE that do not explicitly request a PDN address through NAS signalling 
    FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS = "yes"; 
    UE_MTU = 1500; 
}; 

 

Appendix L. eNB configuration file  

 

Active_eNBs = ( "eNB_Eurecom_LTEBox"); 
# Asn1_verbosity, choice in: none, info, annoying 
Asn1_verbosity = "none"; 
 
eNBs = 
( 
 { 
    ////////// Identification parameters: 
    eNB_ID    =  0xe00; 
 
    cell_type =  "CELL_MACRO_ENB"; 
 
    eNB_name  =  "eNB_Eurecom_LTEBox"; 
 
    // Tracking area code, 0x0000 and 0xfffe are reserved values 
    tracking_area_code  =  "1"; 
 
    mobile_country_code =  "208"; 
 
    mobile_network_code =  "93"; 
 
       ////////// Physical parameters: 
 
    component_carriers = ( 
      { 
        node_function                                         = "eNodeB_3GPP"; 
        node_timing                                           = "synch_to_ext_device" 
        node_synch_ref                                        = 0; 
        frame_type                                            = "FDD"; 
        tdd_config                                            = 3; 
        tdd_config_s                                          = 0; 
        prefix_type                                           = "NORMAL"; 
        eutra_band                                            = 3; 
        downlink_frequency                                    = 1865000000L; 
        uplink_frequency_offset                               = -95000000; 
        Nid_cell                                              = 0; 
        N_RB_DL                                               = 25; 
        Nid_cell_mbsfn                                        = 0; 
        nb_antennas_tx                                        = 2; 
        nb_antennas_rx                                        = 2; 
        nb_antenna_ports                                     = 2; 
        tx_gain                                               = 90; 
        rx_gain                                               = 105; 
        prach_root                                            = 0; 
        prach_config_index                                    = 0; 
        prach_high_speed                                      = "DISABLE"; 
        prach_zero_correlation                                = 1; 
        prach_freq_offset                                     = 2; 
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        pucch_delta_shift                                     = 1; 
        pucch_nRB_CQI                                         = 1; 
        pucch_nCS_AN                                          = 0; 
        pucch_n1_AN                                           = 32; 
        pdsch_referenceSignalPower                            = -24; 
        pdsch_p_b                                             = 0; 
        pusch_n_SB                                            = 1; 
        pusch_enable64QAM                                     = "DISABLE"; 
        pusch_hoppingMode                                     = "interSubFrame"; 
        pusch_hoppingOffset                                   = 0; 
        pusch_groupHoppingEnabled                             = "ENABLE"; 
        pusch_groupAssignment                                 = 0; 
        pusch_sequenceHoppingEnabled                          = "DISABLE"; 
        pusch_nDMRS1                                          = 1; 
        phich_duration                                        = "NORMAL"; 
        phich_resource                                        = "ONESIXTH"; 
        srs_enable                                            = "DISABLE"; 
        srs_BandwidthConfig                                = 2; 
        srs_SubframeConfig                                 = 0; 
        srs_ackNackST                                      = "DISABLE"; 
        srs_MaxUpPts                                       = "DISABLE"; 
 
        pusch_p0_Nominal                                   = -90; 
        pusch_alpha                                        = "AL1"; 
        pucch_p0_Nominal                                   = -96; 
        msg3_delta_Preamble                                = 6; 
        pucch_deltaF_Format1                               = "deltaF2"; 
        pucch_deltaF_Format1b                              = "deltaF3"; 
        pucch_deltaF_Format2                               = "deltaF0"; 
        pucch_deltaF_Format2a                              = "deltaF0"; 
        pucch_deltaF_Format2b                         = "deltaF0"; 
 
        rach_numberOfRA_Preambles                          = 64; 
        rach_preamblesGroupAConfig                         = "DISABLE"; 
        /* 
        rach_sizeOfRA_PreamblesGroupA                      = ; 
        rach_messageSizeGroupA                             = ; 
        rach_messagePowerOffsetGroupB                      = ; 
        */ 
        rach_powerRampingStep                              = 4; 
        rach_preambleInitialReceivedTargetPower            = -104; 
        rach_preambleTransMax                              = 10; 
        rach_raResponseWindowSize                          = 10; 
        rach_macContentionResolutionTimer                  = 48; 
        rach_maxHARQ_Msg3Tx                                = 4; 
 
        pcch_default_PagingCycle                           = 128; 
        pcch_nB                                            = "oneT"; 
        bcch_modificationPeriodCoeff                          = 2; 
        ue_TimersAndConstants_t300                            = 1000; 
        ue_TimersAndConstants_t301                            = 1000; 
        ue_TimersAndConstants_t310                            = 1000; 
        ue_TimersAndConstants_t311                            = 10000; 
        ue_TimersAndConstants_n310                            = 20; 
        ue_TimersAndConstants_n311                            = 1; 
        ue_TransmissionMode                                   = 1; 
        } 
    ); 
 
 
    srb1_parameters : 
    { 
        # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350, ... 500] 
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        timer_poll_retransmit    = 80; 
 
        # timer_reordering = (ms) [0,5, ... 100, 110, 120, ... ,200] 
        timer_reordering         = 35; 
 
        # timer_reordering = (ms) [0,5, ... 250, 300, 350, ... ,500] 
        timer_status_prohibit    = 0; 
 
        # poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity(>10000)] 
        poll_pdu                 =  4; 
 
        # poll_byte = (kB) 
[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinity(>10000)] 
        poll_byte                =  99999; 
 
        # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32] 
        max_retx_threshold       =  4; 
    } 
 
    # ------- SCTP definitions 
    SCTP : 
    { 
        # Number of streams to use in input/output 
        SCTP_INSTREAMS  = 2; 
        SCTP_OUTSTREAMS = 2; 
    }; 
 
    ////////// MME parameters: 
    mme_ip_address      = ( { ipv4       = "172.19.0.2"; 
                              ipv6       = "192:168:30::17"; 
                              active     = "yes"; 
                              preference = "ipv4"; 
                            } 
                          ); 
 
    NETWORK_INTERFACES : 
    { 
        ENB_INTERFACE_NAME_FOR_S1_MME            = "eth1"; 
        ENB_IPV4_ADDRESS_FOR_S1_MME              = "172.19.0.3/24"; 
 
        ENB_INTERFACE_NAME_FOR_S1U               = "eth1"; 
        ENB_IPV4_ADDRESS_FOR_S1U                 = "172.19.0.3/24"; 
        ENB_PORT_FOR_S1U                         = 2152; # Spec 2152 
    }; 
 
    log_config : 
    { 
        global_log_level                      ="info"; 
        global_log_verbosity                  ="medium"; 
        hw_log_level                          ="info"; 
        hw_log_verbosity                      ="medium"; 
        phy_log_level                         ="info"; 
        phy_log_verbosity                     ="medium"; 
        mac_log_level                         ="info"; 
        mac_log_verbosity                     ="high"; 
        rlc_log_level                         ="info"; 
        rlc_log_verbosity                     ="medium"; 
        pdcp_log_level                        ="info"; 
        pdcp_log_verbosity                    ="medium"; 
        rrc_log_level                         ="info"; 
        rrc_log_verbosity                     ="medium"; 
   }; 
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  } 

 

Appendix M. PDN table in the HSS database 

 

 

Appendix N. Users table in the HSS database 
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Appendix O. eNB configuration file 

 

Active_eNBs = ( "eNB_Eurecom_LTEBox"); 
# Asn1_verbosity, choice in: none, info, annoying 
Asn1_verbosity = "none"; 
 
eNBs = 
( 
 { 
    ////////// Identification parameters: 
    eNB_ID    =  0xe00; 
 
    cell_type =  "CELL_MACRO_ENB"; 
 
    eNB_name  =  "eNB_Eurecom_LTEBox"; 
 
    // Tracking area code, 0x0000 and 0xfffe are reserved values 
    tracking_area_code  =  "1"; 
 
    mobile_country_code =  "208"; 
 
    mobile_network_code =  "93"; 
 
       ////////// Physical parameters: 
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    component_carriers = ( 
      { 
        node_function                                         = "eNodeB_3GPP"; 
        node_timing                                           = "synch_to_ext_device" 
        node_synch_ref                                        = 0; 
        frame_type                                            = "FDD"; 
        tdd_config                                            = 3; 
        tdd_config_s                                          = 0; 
        prefix_type                                           = "NORMAL"; 
        eutra_band                                            = 3; 
        downlink_frequency                                    = 1865000000L; 
        uplink_frequency_offset                               = -95000000; 
        Nid_cell                                              = 0; 
        N_RB_DL                                               = 25; 
        Nid_cell_mbsfn                                        = 0; 
        nb_antennas_tx                                        = 2; 
        nb_antennas_rx                                        = 2; 
        nb_antenna_ports                                     = 2; 
        tx_gain                                               = 90; 
        rx_gain                                               = 105; 
        prach_root                                            = 0; 
        prach_config_index                                    = 0; 
        prach_high_speed                                      = "DISABLE"; 
        prach_zero_correlation                                = 1; 
        prach_freq_offset                                     = 2; 
        pucch_delta_shift                                     = 1; 
        pucch_nRB_CQI                                         = 1; 
        pucch_nCS_AN                                          = 0; 
        pucch_n1_AN                                           = 32; 
        pdsch_referenceSignalPower                            = -24; 
        pdsch_p_b                                             = 0; 
        pusch_n_SB                                            = 1; 
        pusch_enable64QAM                                     = "DISABLE"; 
        pusch_hoppingMode                                     = "interSubFrame"; 
        pusch_hoppingOffset                                   = 0; 
        pusch_groupHoppingEnabled                             = "ENABLE"; 
        pusch_groupAssignment                                 = 0; 
        pusch_sequenceHoppingEnabled                          = "DISABLE"; 
        pusch_nDMRS1                                          = 1; 
        phich_duration                                        = "NORMAL"; 
        phich_resource                                        = "ONESIXTH"; 
        srs_enable                                            = "DISABLE"; 
        srs_BandwidthConfig                                = 2; 
        srs_SubframeConfig                                 = 0; 
        srs_ackNackST                                      = "DISABLE"; 
        srs_MaxUpPts                                       = "DISABLE"; 
 
        pusch_p0_Nominal                                   = -90; 
        pusch_alpha                                        = "AL1"; 
        pucch_p0_Nominal                                   = -96; 
        msg3_delta_Preamble                                = 6; 
        pucch_deltaF_Format1                               = "deltaF2"; 
        pucch_deltaF_Format1b                              = "deltaF3"; 
        pucch_deltaF_Format2                               = "deltaF0"; 
        pucch_deltaF_Format2a                              = "deltaF0"; 
        pucch_deltaF_Format2b                         = "deltaF0"; 
 
        rach_numberOfRA_Preambles                          = 64; 
        rach_preamblesGroupAConfig                         = "DISABLE"; 
        /* 
        rach_sizeOfRA_PreamblesGroupA                      = ; 
        rach_messageSizeGroupA                             = ; 
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        rach_messagePowerOffsetGroupB                      = ; 
        */ 
        rach_powerRampingStep                              = 4; 
        rach_preambleInitialReceivedTargetPower            = -104; 
        rach_preambleTransMax                              = 10; 
        rach_raResponseWindowSize                          = 10; 
        rach_macContentionResolutionTimer                  = 48; 
        rach_maxHARQ_Msg3Tx                                = 4; 
 
        pcch_default_PagingCycle                           = 128; 
        pcch_nB                                            = "oneT"; 
        bcch_modificationPeriodCoeff                          = 2; 
        ue_TimersAndConstants_t300                            = 1000; 
        ue_TimersAndConstants_t301                            = 1000; 
        ue_TimersAndConstants_t310                            = 1000; 
        ue_TimersAndConstants_t311                            = 10000; 
        ue_TimersAndConstants_n310                            = 20; 
        ue_TimersAndConstants_n311                            = 1; 
        ue_TransmissionMode                                   = 1; 
        } 
    ); 
 
 
    srb1_parameters : 
    { 
        # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350, ... 500] 
        timer_poll_retransmit    = 80; 
 
        # timer_reordering = (ms) [0,5, ... 100, 110, 120, ... ,200] 
        timer_reordering         = 35; 
 
        # timer_reordering = (ms) [0,5, ... 250, 300, 350, ... ,500] 
        timer_status_prohibit    = 0; 
 
        # poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity(>10000)] 
        poll_pdu                 =  4; 
 
        # poll_byte = (kB) 
[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinity(>10000)] 
        poll_byte                =  99999; 
 
        # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32] 
        max_retx_threshold       =  4; 
    } 
 
    # ------- SCTP definitions 
    SCTP : 
    { 
        # Number of streams to use in input/output 
        SCTP_INSTREAMS  = 2; 
        SCTP_OUTSTREAMS = 2; 
    }; 
 
    ////////// MME parameters: 
    mme_ip_address      = ( { ipv4       = "172.19.0.2"; 
                              ipv6       = "192:168:30::17"; 
                              active     = "yes"; 
                              preference = "ipv4"; 
                            } 
                          ); 
 
    NETWORK_INTERFACES : 
    { 
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        ENB_INTERFACE_NAME_FOR_S1_MME            = "eth1"; 
        ENB_IPV4_ADDRESS_FOR_S1_MME              = "172.19.0.3/24"; 
 
        ENB_INTERFACE_NAME_FOR_S1U               = "eth1"; 
        ENB_IPV4_ADDRESS_FOR_S1U                 = "172.19.0.3/24"; 
        ENB_PORT_FOR_S1U                         = 2152; # Spec 2152 
    }; 
 
    log_config : 
    { 
        global_log_level                      ="info"; 
        global_log_verbosity                  ="medium"; 
        hw_log_level                          ="info"; 
        hw_log_verbosity                      ="medium"; 
        phy_log_level                         ="info"; 
        phy_log_verbosity                     ="medium"; 
        mac_log_level                         ="info"; 
        mac_log_verbosity                     ="high"; 
        rlc_log_level                         ="info"; 
        rlc_log_verbosity                     ="medium"; 
        pdcp_log_level                        ="info"; 
        pdcp_log_verbosity                    ="medium"; 
        rrc_log_level                         ="info"; 
        rrc_log_verbosity                     ="medium"; 
   }; 
 
  } 
); 

               
Appendix P. USIM cards programming procedure 

 

1. First, some librarires are required for installation: 

libusb-dev; libusb++-0.1-4c2, and the libccid package is installed: apt-get install libccid  

2. The pcsc-lite package is installed: apt-get install pcscd   
3. At this point, since the pcscd service is running, the libpcsclite1 is installed: apt-get install 

libpcsclite1  
4. libpcsclite-dev is installed: apt-get install libpcsclite-dev  
5. Additional tools installed:   

 libpcsc-perl: apt-get install libpcsc-perl  

 pcsctools: apt-get install pcsc-tools. PCSC-tools provide several appealing applications 
for Blutronics Bludrive II  

6. CCID installation:  

 cd ~/src and wget https://alioth.debian.org/frs/download.php/file/4140/ccid-
1.4.20.tar.bz2 && tar -xjf ccid-1.4.20.tar.bz2 && cd ccid-1.4.20 

7. Installation configuration: At this point, there are some options that can be issued to customize the 
installation. An important example is the one which forces the CCID driver to use udev events so 
that pcscd will not poll the USB bus every second.  

./configure   

--bindir=                      

--disable-FEATURE                
--dvidir=                         
--enable-maintainer-mode          
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--exec-prefix=                    
--libexecdir=                     
--program-prefix=                 
--sysconfdir=  
--build=                          
--disable-libtool-lock           
--enable-bundle=                 
--enable-serialconfdir=          
--help                           
--localedir=                     
--program-suffix=                
--version  
--cache-file=                     
--disable-libusb                 
--enable-ccidtwindir=            
--enable-shared                  
--help=                          
--localstatedir=                 
--program-transform-name=        
--with-gnu-ld  
--config-cache                   
--disable-multi-thread           
--enable-composite-as-multislot   
--enable-silent-rules            
--host=                          
--mandir=                        
--psdir=                          
--without-PACKAGE--datadir=                      
--disable-option-checking        
--enable-dependency-tracking     
--enable-static                  
--htmldir=                       
--no-create                      
--quiet                           
--with-PACKAGE--datarootdir=                 
--disable-pcsclite              
--enable-embedded                
--enable-syslog                  
--includedir=                    
--oldincludedir=                 
--sbindir=                        
--with-pic  
--disable-class                  
--disable-silent-rules           
--enable-fast-install            
--enable-twinserial              
--infodir=                       
--pdfdir=                        
--sharedstatedir=                 
--with-sysroot=  
--disable-dependency-tracking    
--docdir=                        
--enable-FEATURE                 
--enable-usbdropdir=  
--libdir=   
--prefix=  
--srcdir=  

 

8. Installation of the CCID driver:  
make –j4  
make install 

9. Udev rules are copied to /etc/udev/rules.d   
10. Since a rule for altering usb auto-suspend kernel configuration exists in the configuration and Pcsc 

is supposed to use usb auto-suspend for CCID devices only, which is enabled: sudo cp 
src/92_pcscd_ccid.rules /etc/udev/rules.d/ 

11. Middleware installation: sudo apt-get install libpcsclite1 pcscd pcsc-tools 
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12. Detect the card reader/writer run the pcscd daemon with debug option, in foreground: sudo pcscd 
-d -a –f  

13. On another terminal the following command is run: pcsc_scan  
That gives the following output: PC/SC device scannerV 1.4.22 (c) 2001-2011, Ludovic 
Rousseau <ludovic.rousseau@free.fr>Compiled with PC/SC lite version: 1.8.10 Using 
reader plug 'n play mechanism. Scanning present readers...0: BLUTRONICS BLUDRIVE 
II CCID (62657374) 00 00Tue Sep 1 21:27:43 2015Reader 0: BLUTRONICS BLUDRIVE II 
CCID (62657374) 00 00Card state: Card inserted, ATR: 3B 7D 94 00 00 55 55 53 0A 
74 86 93 0B 24 7C 4D 54 68ATR: 3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C 4D 54 
68+ TS = 3B --> Direct Convention+ T0 = 7D, Y(1): 0111, K: 13 (historical 
bytes)TA(1) = 94 --> Fi=512, Di=8, 64 cycles/ETU62500 bits/s at 4 MHz, fMax for 
Fi = 5 MHz => 78125 bits/sTB(1) = 00 --> VPP is not electrically connectedTC(1) = 
00 --> Extra guard time: 0+ Historical bytes: 55 55 53 0A 74 86 93 0B 24 7C 4D 54 
68Category indicator byte: 55 (proprietary format)Possibly identified card (using 
/usr/share/pcsc/smartcard_list.txt):3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C 
4D 54 68SIM from sysmocom sysmoSIM-GR2 
 

Appendix Q. Radio measurements of the attached UE to the eNB 
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Appendix R. HSS, S/PGW and MME real-time operation insight 
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Appendix S. Starting iperf3 server on the gtp0 interface of the S/PGW 
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Appendix T. iPerf3 UE side results 
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Appendix U. iPerf3 EPC side results  

 

 

Appendix V. OpenStack Heat template for deploying core network EPC  

heat_template_version: 2015-04-30 
 
description: > 
  Heat Orchestration Template (HOT) to deploy OpenAir Core Network vEPC. 
  Networks, security groups, volumes, ports and instances get created by 
heat, 
  latest openair core network code is compiled on the build instance and 
  deployed to the SPGW/MME/HSS instances. Once the stack is created, it 
  provides the SSH commandline to access the vEPC. 
 
### STACK INPUTS 
parameters: 
  key: 
    type: string 
    label: SSH Keypair 
    description: Name of the SSH keypair for logging in into instances 
    constraints: 
    - custom_constraint: nova.keypair 
    default: "OAI-Admin" 
  image: 
    type: string 
    label: Ubuntu Image 
    description: Name of the Ubuntu image (needs os-*-config installed) 
    constraints: 
    - custom_constraint: glance.image 
    default: "ubuntu-trusty-os-config" 
  extnet: 
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    type: string 
    label: External Network 
    description: Name of the external network containing 2 free floating IPs 
    default: "Lab3-Internet" 
  base_url:  
    type: string  
    label: Base URL 
    description: Base URL to fetch kernel config and database dump from 
    default: "https://inostack.vptt.ch" 
  run_flavor: 
    type: string 
    label: Run Flavor 
    description: Flavor to use for normal instances 
    constraints: 
    - custom_constraint: nova.flavor 
    default: "m1.tiny" 
  build_flavor: 
    type: string 
    label: Build Flavor 
    description: Flavor to use for the building instance 
    constraints: 
    - custom_constraint: nova.flavor 
    default: "m1.medium" 
  run_vol_size: 
    type: number 
    label: Run Volume Size 
    description: Volume size in GB to use for normal instances 
    default: 5 
    constraints: 
    - range: { min: 5, max: 10 } 
  build_vol_size: 
    type: number 
    label: Build Volume Size 
    description: Volume size in GB to use for the building instance 
    default: 20 
    constraints: 
    - range: { min: 20, max: 50 } 
  hss_name: 
    type: string 
    label: HSS Hostname 
    description: Hostname of the HSS instance 
    constraints: 
    - length: { min: 3, max: 10 } 
      description: Hostnameg name must be between 3 and 10 characters 
    - allowed_pattern: "[a-z0-9]*" 
      description: Hostname contains only lowercase characters and numbers 
    default: hss 
  mme_name: 
    type: string 
    label: MME Hostname 
    description: Hostname of the MME instance 
    constraints: 
    - length: { min: 3, max: 10 } 
      description: Hostname name must be between 3 and 10 characters 
    - allowed_pattern: "[a-z0-9]*" 
      description: Hostname contains only lowercase characters and numbers 
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    default: mme 
  spgw_name: 
    type: string 
    label: SPGW Hostname 
    description: Hostname of the SPGW instance 
    constraints: 
    - length: { min: 3, max: 10 } 
      description: Hostname name must be between 3 and 10 characters 
    - allowed_pattern: "[a-z0-9]*" 
      description: Hostname contains only lowercase characters and numbers 
    default: spgw  
  build_name: 
    type: string 
    label: Build Hostname 
    description: Hostname of the build instance 
    constraints: 
    - length: { min: 3, max: 10 } 
      description: Hostname name must be between 3 and 10 characters 
    - allowed_pattern: "[a-z0-9]*" 
      description: Hostname contains only lowercase characters and numbers 
    default: build 
  dns1: 
    type: string 
    label: Internal Network DNS 1 
    description: Upstream DNS server 1 
    default: "8.8.8.8" 
  dns2: 
    type: string 
    label: Internal Network DNS 2 
    description: Upstream DNS server 2 
    default: "8.8.4.4" 
  int_cidr:  
    type: string 
    label: Internal Network CIDR 
    description: Internal network IPv4 Adressing in CIDR notation 
    default: 172.16.0.0/24 
  enb_cidr: 
    type: string 
    label: eNB (VPN) CIDR 
    description: eNB (VPN) network IPv4 Adressing in CIDR notation 
    default: 172.31.0.0/24 
  realm: 
    type: string 
    label: Realm 
    description: Realm (depends on database and hostnames used) 
    default: inostack 
  enb_count: 
    type: number 
    label: eNB Count 
    description: Number of eNBs to support (power of 2) 
    default: 4 
    constraints: 
    - allowed_values: 
      - 2 
      - 4 
      - 8 
      - 16 
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  enb_start: 
    type: number 
    label: eNB Start Address 
    description: Start address of eNBs in eNB VPN network 
    default: 10 
    constraints: 
      - range: { min: 10, max: 230 } 
  enb_hostname_prefix: 
    type: string 
    label: Hostname Prefix for eNBs 
    description: Hostname prefix for eNBs 
    constraints: 
    - length: { min: 3, max: 9 } 
      description: Hostname prefix must be between 3 and 9 characters 
    - allowed_pattern: "[a-z]*" 
      description: Hostname prefix contains only lowercase characters 
    default: enb 
  spgw_kernel_version: 
    type: string 
    label: SPWG Kernel Version 
    description: Kernel version to use for SPGW instance (>=4.7) 
    default: 4.7.7 
  ue_dns: 
    type: string 
    label: UE DNS 
    description: DNS pushed to UEs 
    default: 8.8.8.8 
  ue_cidr: 
    type: string 
    label: UE CIDR 
    description: UE address pool in CIDR notation 
    default: 10.10.10.0/24 
  ue_mtu: 
    type: number 
    label: UE MTU 
    description: MTU pushed to UEs 
    default: 1500 
    constraints: 
    - range: { min: 1000, max: 8000 } 
  db_file: 
    type: string 
    label: HSS DB File 
    description: SQL dump file for HSS database to download from base_url 
    default: oai_db_swisscom_ino.sql 
  db_pass: 
    type: string 
    label: HSS DB Password 
    description: Password for the HSS database (user hssadmin) 
    hidden: true 
    default: change_me 
  operator_key: 
    type: string 
    label: Operator Key 
    description: Operator Key to use (depends on DB) 
    default: "11111111111111111111111111111111" 
    constraints: 
    - length: { min: 32, max: 32 } 
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      description: Operator key is 32 digits 
    - allowed_pattern: "[0-9]*" 
      description: Operator key is 32 digits 
  mcc: 
    type: number 
    label: MCC 
    description: MCC to use (depends on DB) 
    default: 228 
  mnc: 
    type: number 
    label: MNC 
    description: MNC to use (depends on DB) 
    default: 88 
  mme_gid: 
    type: number 
    label: MME_GID 
    description: MME_GID to use (depends on DB) 
    default: 32768 
  mme_code: 
    type: number 
    label: MME_CODE 
    description: MME_CODE to use (depends on DB) 
    default: 1 
  tac: 
    type: number 
    label: TAC 
    description: TAC to use (depends on DB) 
    default: 1 
  ca_country: 
    type: string 
    label: CA Country 
    description: Country for Certificates 
    default: CH 
  ca_state: 
    type: string 
    label: CA State 
    description: State for Certificates 
    default: Bern 
  ca_city: 
    type: string 
    label: CA City 
    description: City for Certificates 
    default: Bern 
  ca_company: 
    type: string 
    label: CA Company 
    description: Company for Certificates 
    default: Swisscom 
  ca_unit: 
    type: string 
    label: CA Unit 
    description: Organisational unit for Certificates 
    default: INO 
  ca_email: 
    type: string 
    label: CA Email 
    description: Email Address for Certificates 
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    default: Daniel.Balsiger@swisscom.com 
  ssh_pub: 
    type: string 
    label: SSH Public Key 
    description: SSH public key for instance interconnect 
    default: "ssh-rsa 
AAAAB3NzaC1yc2EAAAADAQABAAABAQC6WwxDHQKgvVTqzC2S4+apYFmVTTI3N1+kTnOJZ5+K/Po9D
3Uq89LY2hdRUNcBvOIDW1lGJHLoodyR/W6UaLvT1eTG1le72yCpcliq/nuDc6eUex2Mqz3CMBqWhg
3L+21yme0vlT3w0S+uhkiq8s95OMCYMc60bSTHN/RqLB1o8dsLAqix6W5lDxcwVpl8V7viBTvZBUS
qTHKA0AXJ4uQDdBqHZY9iUcyyKVzcEaOnd4RdAJPAD+au3dKlpfEdKQjxHTV41QM+VkuImQUMe5MQ
7gU4DbHj7YSA3fJhki3jwFHMzFNbYulUgwBdNCFVTcGdQEUib6dXW8LOH59FmUut" 
  ssh_priv: 
    type: string 
    label: SSH Private Key 
    description: SSH private key for instance interconnect 
    hidden: true 
    default: > 
      -----BEGIN RSA PRIVATE KEY----- 
      MIIEowIBAAKCAQEAulsMQx0CoL1U6swtkuPmqWBZlU0yNzdfpE5ziWefivz6PQ91 
      KvPS2NoXUVDXAbziA1tZRiRy6KHckf1ulGi709XkxtZXu9sgqXJYqv57g3OnlHsd 
      jKs9wjAaloYNy/ttcpntL5U98NEvroZIqvLPeTjAmDHOtG0kxzf0aiwdaPHbCwKo 
      seluZQ8XMFaZfFe74gU72QVEqkxygNAFyeLkA3Qah2WPYlHMsilc3BGjp3eEXQCT 
      wA/mrt3SpaXxHSkI8R01eNUDPlZLiJkFDHuTEO4FOA2x4+2EgN3yYZIt48BRzMxT 
      W2LpVIMAXTQhVU3BnUBFIm+nV1vCzh+fRZlLrQIDAQABAoIBACnu8OxtK7k1wVTw 
      StUB2VaFqsLQ0xrfp/LWAGOL4LeqwzhYMRpQMULAmHygvzDR6t2sgYMqEn1MZtCn 
      AWn9wz4gpFElzComXcwjQdaAWxSyQqRDq9uKcOQwZNs4IQSkd/VQs7GAWKbGu37/ 
      Enz9FDiHz7avhn7NDHiTm7kEYj3JxBCw9QnpuljFu7BZlg1S4eK/rGz7in1hLo62 
      gDfGcDgUgmlJ1aG1rYP2bETsXe0necHDOvQe6rlmdTsX89y+q4QxqYGEGdjCoFZZ 
      F0mEPbS9//9GS+rER5tuSi3bD3k73zg1+e8lHAjlAR3hNmT3JKOEHB0kmTAJyrpL 
      +Gl9WIECgYEA4ekwnl3wT2p2eqmhqC+MoMcUpOtAaoA2ShG3CHcp/U6VcWIMBe7o 
      KMaJcfLp3zerAeyzRfR7t1E83alIQb9cRRd1pbhLjM60d+n6HwT0//4SBiShfQ/m 
      K7Ch1zOaB4h8O8qWDT9Uz6b0AMJA9S6BZ2We3iOT5ysS6MPOwgQAbCECgYEA0y0n 
      4zgq1YFE+56xXAt8/BKqv9nbtNfKganXTXMah+oz546CVUJDPL3z99Zp1w3rUvlJ 
      JH2wbnqvcPCuCvFdCPXpowkN5EWUTUrjeYohDXDZPaJ1pYZXeMKFyVgzZFeP+UKK 
      82gxY5O+kC1I0b2J2u0gxm74huSgBIRx54ZqDg0CgYEAhQsT+vBPyjVkuTCVZ7s5 
      Eqar3cQ+F3qSfmSYan/jVq6lDDU153ifeQQThewNF8xtBaEkoxoskfVh5xj+2Nmd 
      uYLrYkF7HN3PIp/FEeeVcf1rF/sSr9hhMXHAnkBhgfY7U+snG34ksHYeVSQRpVNS 
      GlaajTBetlGDvVkztscsiIECgYBTd0KPtVCAyLIqPaPePJAu1XX1lDcZeD0LGMUH 
      UJpI5BGV0SbEagdHR9DYwT9eB5teVTdKm/8S+5zCJ+6yVomuE/w/O0HpWnLuRc44 
      6JZ9yH+ks8SKItoJ2eClHx5Y5575Jwrif+kdcXTdaXihpaeKBzVwGMZUEqMIhgy7 
      NM5QNQKBgAT80nwpu/KJasbPd/5vlnWKkk9wW1pJJJyGvyrHvQkHYSJmrGNhci+X 
      geZreHUVqcR4VeRP14D71+zIT04r4jcio9deNBRYXdWuAhKVfvEh5iOXfuaBF24e 
      m4y0viefFNyys5/BQI0kpCtJirvAtlsQg8ig+2ALnCk5rLNbgui4 
      -----END RSA PRIVATE KEY----- 
 
### ORDER OF INPUTS 
parameter_groups: 
- label: "Passwords and Keys" 
  parameters: 
  - db_pass 
  - ssh_pub 
  - ssh_priv 
  - key 
- label: "Cloud Networks, Flavors, Images and Volumes" 
  parameters:  
  - extnet 
  - int_cidr 
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  - dns1 
  - dns2 
  - image 
  - run_flavor 
  - run_vol_size 
  - build_flavor 
  - build_vol_size 
- label: "FQDNs, Realm, SPGW kernel, HSS Database and EPC Configuration" 
  parameters: 
  - base_url 
  - spgw_kernel_version 
  - realm 
  - spgw_name 
  - mme_name 
  - hss_name 
  - build_name 
  - db_file 
  - operator_key 
  - mcc 
  - mnc 
  - mme_gid 
  - mme_code 
  - tac 
- label: "eNB and UE Settings" 
  parameters: 
  - ue_cidr 
  - ue_dns 
  - ue_mtu 
  - enb_cidr 
  - enb_count 
  - enb_start 
  - enb_hostname_prefix 
- label: "Certificate Settings" 
  parameters: 
  - ca_country 
  - ca_state 
  - ca_city 
  - ca_company 
  - ca_unit 
  - ca_email 
 
### STACK RESOURCES 
resources: 
### NETWORKS & ROUTERS 
  internal_net: 
    type: OS::Neutron::Net 
    properties: 
      name: OAI-InternalNet 
 
  internal_subnet: 
    type: OS::Neutron::Subnet 
    depends_on: internal_net 
    properties: 
      name: OAI-InternalSubnet 
      ip_version: 4 
      network_id: { get_resource: internal_net } 
      dns_nameservers: 
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        - { get_param: dns1 } 
        - { get_param: dns2 } 
      cidr: { get_param: int_cidr } 
 
  router: 
    type: OS::Neutron::Router 
    properties: 
      name: OAI-Router 
 
  router_interface: 
    type: OS::Neutron::RouterInterface 
    depends_on: [ internal_subnet, internal_net, router ] 
    properties: 
      subnet: { get_resource: internal_subnet } 
      router: { get_resource: router } 
 
  router_gateway: 
    type: OS::Neutron::RouterGateway 
    depends_on: router 
    properties: 
      network: { get_param: extnet } 
      router_id: { get_resource: router } 
 
  floating_ip: 
    type: OS::Neutron::FloatingIP 
    depends_on: [ internal_subnet, spgw_port, router_interface ] 
    properties: 
      floating_network: { get_param: extnet } 
      port_id: { get_resource: spgw_port } 
 
### VOLUMES 
  build_vol: 
    type: OS::Cinder::Volume 
    properties: 
      name: { get_param: build_name } 
      size: { get_param: build_vol_size } 
      image: { get_param: image } 
 
  hss_vol: 
    type: OS::Cinder::Volume 
    properties: 
      name: { get_param: hss_name } 
      size: { get_param: run_vol_size } 
      image: { get_param: image } 
 
  mme_vol: 
    type: OS::Cinder::Volume 
    properties: 
      name: { get_param: mme_name } 
      size: { get_param: run_vol_size } 
      image: { get_param: image } 
 
  spgw_vol: 
    type: OS::Cinder::Volume 
    properties: 
      name: { get_param: spgw_name } 
      size: { get_param: run_vol_size } 
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      image: { get_param: image } 
 
### PORTS 
  build_port: 
    type: OS::Neutron::Port 
    depends_on: [ build_secgroup, internal_subnet ] 
    properties: 
      network_id: { get_resource: internal_net } 
      fixed_ips: 
        - subnet_id: { get_resource: internal_subnet } 
      security_groups: [{ get_resource: build_secgroup }] 
 
  spgw_port: 
    type: OS::Neutron::Port 
    depends_on: [ spgw_secgroup, internal_subnet ] 
    properties: 
      network_id: { get_resource: internal_net } 
      fixed_ips: 
        - subnet_id: { get_resource: internal_subnet } 
      security_groups: [{ get_resource: spgw_secgroup }] 
 
  hss_port: 
    type: OS::Neutron::Port 
    depends_on: [ hss_secgroup, internal_subnet ] 
    properties: 
      network_id: { get_resource: internal_net } 
      fixed_ips: 
        - subnet_id: { get_resource: internal_subnet } 
      security_groups: [{ get_resource: hss_secgroup }]    
 
  mme_port: 
    type: OS::Neutron::Port 
    depends_on: [ mme_secgroup, internal_subnet ] 
    properties: 
      network_id: { get_resource: internal_net } 
      fixed_ips: 
        - subnet_id: { get_resource: internal_subnet } 
      security_groups: [{ get_resource: mme_secgroup }] 
 
### SECURITY GROUPS 
  spgw_secgroup: 
    type: OS::Neutron::SecurityGroup 
    properties: 
      description: Add security group rules for SPGW instance 
      name: { get_param: spgw_name } 
      rules: 
        - remote_ip_prefix: 0.0.0.0/0 
 
  build_secgroup: 
    type: OS::Neutron::SecurityGroup 
    properties: 
      description: Add security group rules for build instance 
      name: { get_param: build_name } 
      rules: 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: tcp 
          port_range_min: 22 
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          port_range_max: 22 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: icmp 
 
  hss_secgroup: 
    type: OS::Neutron::SecurityGroup 
    properties: 
      description: Add security group rules for HSS instance 
      name: { get_param: hss_name } 
      rules: 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: tcp 
          port_range_min: 22 
          port_range_max: 22 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: icmp 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: 132 
   
  mme_secgroup: 
    type: OS::Neutron::SecurityGroup 
    properties: 
      description: Add security group rules for MME instance 
      name: { get_param: mme_name } 
      rules: 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: tcp 
          port_range_min: 22 
          port_range_max: 22 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: icmp 
        - remote_ip_prefix: 0.0.0.0/0 
          protocol: 132 
 
### INSTANCES 
 
  build_vm: 
    type: OS::Nova::Server 
    depends_on: [ build_port, build_vol, router_interface ] 
    properties: 
      name: { get_param: build_name } 
      flavor: { get_param: build_flavor } 
      key_name: { get_param: key } 
      block_device_mapping: [{ device_name: "vda", volume_id : { get_resource 
: build_vol }, delete_on_termination : "true" }] 
      networks: 
        - port: { get_resource: build_port } 
      user_data_format: SOFTWARE_CONFIG 
      user_data: | 
        #!/bin/bash 
        echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts 
 
  spgw_vm: 
    type: OS::Nova::Server 
    depends_on: [ spgw_port, spgw_vol, router_interface ] 
    properties: 
      name: { get_param: spgw_name } 
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      flavor: { get_param: run_flavor } 
      key_name: { get_param: key } 
      block_device_mapping: [{ device_name: "vda", volume_id : { get_resource 
: spgw_vol }, delete_on_termination : "true" }] 
      networks: 
        - port: { get_resource: spgw_port } 
      user_data_format: SOFTWARE_CONFIG 
      user_data: | 
        #!/bin/bash 
        echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts 
 
  hss_vm: 
    type: OS::Nova::Server 
    depends_on: [ hss_port, hss_vol, router_interface ] 
    properties: 
      name: { get_param: hss_name } 
      flavor: { get_param: run_flavor } 
      key_name: { get_param: key } 
      block_device_mapping: [{ device_name: "vda", volume_id : { get_resource 
: hss_vol }, delete_on_termination : "true" }] 
      networks: 
      - port: { get_resource: hss_port } 
      user_data_format: SOFTWARE_CONFIG 
      user_data: | 
        #!/bin/bash 
        echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts 
 
  mme_vm: 
    type: OS::Nova::Server 
    depends_on: [ mme_port, mme_vol, router_interface ] 
    properties: 
      name: { get_param: mme_name } 
      flavor: { get_param: run_flavor } 
      key_name: { get_param: key } 
      block_device_mapping: [{ device_name: "vda", volume_id : { get_resource 
: mme_vol }, delete_on_termination : "true" }] 
      networks: 
        - port: { get_resource: mme_port } 
      user_data_format: SOFTWARE_CONFIG 
      user_data: | 
        #!/bin/bash 
        echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts 
 
### SOFTWARE CONFIGURATIONS 
  etc_hosts: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm, spgw_vm, build_vm ] 
    properties: 
      group: script 
      inputs: 
      - name: realm 
        default: { get_param: realm } 
      - name: hss_name 
        default: { get_param: hss_name } 
      - name: mme_name 
        default: { get_param: mme_name } 
      - name: spgw_name 
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        default: { get_param: spgw_name } 
      - name: build_name 
        default: { get_param: build_name } 
      - name: hss_ip 
        default: { get_attr: [ hss_vm, first_address ] } 
      - name: mme_ip 
        default: { get_attr: [ mme_vm, first_address ] } 
      - name: spgw_ip 
        default: { get_attr: [ spgw_vm, first_address ] } 
      - name: build_ip 
        default: { get_attr: [ build_vm, first_address ] } 
      - name: enb_cidr 
        default: { get_param: enb_cidr } 
      - name: enb_count 
        default: { get_param: enb_count } 
      - name: enb_start 
        default: { get_param: enb_start } 
      - name: enb_hostname_prefix 
        default: { get_param: enb_hostname_prefix } 
      config: | 
        #!/bin/bash 
        if [ ! -f /etc/hosts.orig ] ; then cp /etc/hosts /etc/hosts.orig ; fi 
        logger "$0: Creating /etc/hosts..." 
        cat > /etc/hosts << __EOF 
        # this file is generated by heat with os-*-config 
        127.0.0.1 localhost 
 
        $spgw_ip $spgw_name.$realm $spgw_name 
        $mme_ip $mme_name.$realm $mme_name 
        $hss_ip $hss_name.$realm $hss_name 
        $spgw_ip $spgw_name.$realm $spgw_name 
        $build_ip $build_name.$realm $build_name 
 
        # this is since we have no DNS for opnfv.vptt.ch 
        195.176.209.235 opnfv.vptt.ch opnfv 
 
        __EOF 
        i=0 
        while [ $i -lt $(expr $enb_count) ] ; do 
          host_part=$(expr $enb_start + $i) 
          echo ${enb_cidr%.*}.$host_part $enb_hostname_prefix$i.$realm 
$enb_hostname_prefix$i >> /etc/hosts 
          i=$(expr $i + 1) 
        done 
        cat >> /etc/hosts << __EOF 
 
        __EOF 
 
  ssh_keys: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm, spgw_vm, build_vm ] 
    properties: 
      inputs: 
      - name: ssh_priv 
        default: { get_param: ssh_priv } 
      - name: ssh_pub 
        default: { get_param: ssh_pub } 
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      group: script 
      config: | 
        #!/bin/bash 
        logger "$0: Creating SSH keys..." 
        mkdir -p /root/.ssh 
        echo $ssh_priv > /root/.ssh/id_rsa 
        sed -e 's|-----BEGIN RSA PRIVATE KEY-----|-----BEGIN_RSA_PRIVATE_KEY-
----|' \ 
            -e 's|-----END RSA PRIVATE KEY-----|-----END_RSA_PRIVATE_KEY-----
|' \ 
            -e 's| |\n|g' \ 
            -e 's|-----BEGIN_RSA_PRIVATE_KEY-----|-----BEGIN RSA PRIVATE KEY-
----|' \ 
            -e 's|-----END_RSA_PRIVATE_KEY-----|-----END RSA PRIVATE KEY-----
|' \ 
            -i /root/.ssh/id_rsa 
        echo $ssh_pub > /root/.ssh/id_rsa.pub 
        echo $ssh_pub > /root/.ssh/authorized_keys 
        chmod 0644 /root/.ssh/id_rsa.pub 
        chmod 0600 /root/.ssh/id_rsa 
        chmod 0644 /root/.ssh/authorized_keys 
        cat > /root/.ssh/config << __EOF 
        StrictHostKeyChecking no 
        UserKnownHostsFile /dev/null 
        __EOF 
 
  vpn_server: 
    type: OS::Heat::SoftwareConfig 
    depends_on: spgw_vm 
    properties: 
      group: script 
      inputs: 
      - name: mme_name 
        default: { get_param: mme_name } 
      - name: spgw_name 
        default: { get_param: spgw_name } 
      - name: enb_cidr 
        default: { get_param: enb_cidr } 
      - name: enb_cidr 
        default: { get_param: enb_cidr } 
      - name: enb_count 
        default: { get_param: enb_count } 
      - name: enb_start 
        default: { get_param: enb_start } 
      - name: enb_hostname_prefix 
        default: { get_param: enb_hostname_prefix } 
      - name: realm 
        default: { get_param: realm } 
      - name: ca_country 
        default: { get_param: ca_country } 
      - name: ca_state 
        default: { get_param: ca_state } 
      - name: ca_city 
        default: { get_param: ca_city } 
      - name: ca_company 
        default: { get_param: ca_company } 
      - name: ca_unit 
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        default: { get_param: ca_unit } 
      - name: ca_email 
        default: { get_param: ca_email } 
      config: | 
        #!/bin/bash 
        logger "$0: Creating /etc/openvpn/clients.txt" 
        mkdir -p /etc/openvpn 
        touch /etc/openvpn/clients.txt 
        echo $mme_name,${enb_cidr%.*}.2 > /etc/openvpn/clients.txt 
        i=0 
        net=$enb_cidr 
        while [ $i -lt $(expr $enb_count) ] ; do 
          host_part=$(expr $enb_start + $i) 
          echo $enb_hostname_prefix$i,${net%.*}.$host_part >> 
/etc/openvpn/clients.txt 
          i=$(expr $i + 1) 
        done 
        logger "$0: Installing openvpn and creating VPN keys..." 
        DEBIAN_FRONTEND=noninteractive apt-get install -q -y openvpn easy-rsa 
        mkdir -p /etc/openvpn/easy-rsa 
        cp -R /usr/share/easy-rsa/* /etc/openvpn/easy-rsa 
        mkdir -p /etc/openvpn/easy-rsa/keys 
        cd /etc/openvpn/easy-rsa 
        export EASY_RSA="${EASY_RSA:-.}" 
        source ./vars 
        export KEY_COUNTRY="$ca_country" 
        export KEY_PROVINCE="$ca_state" 
        export KEY_CITY="$ca_city" 
        export KEY_ORG="$ca_company" 
        export KEY_EMAIL="$ca_email" 
        export KEY_OU="$ca_unit" 
        export KEY_NAME="VPN_CA" 
        ./clean-all 
        "$EASY_RSA/pkitool" --initca 
        export KEY_NAME=$spgw_name 
        "$EASY_RSA/pkitool" --server $spgw_name 
        ./build-dh 
        openvpn --genkey --secret keys/hmac.key 
        for client in $(cat /etc/openvpn/clients.txt) ; do 
          export KEY_NAME=${client%,*} 
          "$EASY_RSA/pkitool" ${client%,*} 
        done 
        cd - 
        logger "$0: Creating /etc/openvpn/server.conf..." 
        cat > /etc/openvpn/server.conf << __EOF 
        daemon 
        proto udp 
        port 1194 
        dev tun 
        ca /etc/openvpn/easy-rsa/keys/ca.crt 
        cert /etc/openvpn/easy-rsa/keys/$spgw_name.crt 
        key /etc/openvpn/easy-rsa/keys/$spgw_name.key 
        dh /etc/openvpn/easy-rsa/keys/dh2048.pem 
        tls-auth /etc/openvpn/easy-rsa/keys/hmac.key 0 
        server ${net%/*} 255.255.255.0 
        topology subnet 
        client-to-client 
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        ifconfig-pool-persist /etc/openvpn/clients.txt 
        keepalive 10 120 
        cipher AES-128-CBC 
        comp-lzo 
        user nobody 
        group nogroup 
        persist-key 
        persist-tun 
        verb 3 
        __EOF 
        logger "$0: Starting VPN server..." 
        systemctl enable openvpn@server.service 
        systemctl restart openvpn@server.service 
        service openvpn restart 
 
  vpn_client: 
    type: OS::Heat::SoftwareConfig 
    depends_on: mme_vm 
    properties: 
      group: script 
      inputs: 
      - name: spgw_name 
        default: { get_param: spgw_name } 
      - name: client_name 
        default: { get_param: mme_name } 
      - name: server_ip 
        default: { get_attr: [ spgw_vm, first_address ] } 
      config: | 
        #!/bin/bash 
        logger "$0: Installing VPN client..." 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install openvpn 
        cat > /etc/openvpn/client.conf << __EOF 
        daemon 
        client 
        proto udp 
        dev tun 
        nobind 
        remote $server_ip 1194 
        ca /etc/openvpn/keys/ca.crt 
        cert /etc/openvpn/keys/$client_name.crt 
        key /etc/openvpn/keys/$client_name.key 
        tls-auth /etc/openvpn/keys/hmac.key 1 
        ns-cert-type server 
        cipher AES-128-CBC 
        comp-lzo 
        user nobody 
        group nogroup 
        persist-key 
        persist-tun 
        verb 3 
        mute 20 
        __EOF 
        cd /tmp 
        ssh $spgw_name "tar -c /etc/openvpn/easy-rsa/keys" | dd of=keys.tar 
        tar -xvf keys.tar 
        mv etc/openvpn/easy-rsa/keys . 
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        install -v -d -m 0700 -o root -g root /etc/openvpn/keys 
        install -v -m 0400  -o root -g root keys/ca.crt 
/etc/openvpn/keys/ca.crt 
        install -v -m 0400  -o root -g root keys/hmac.key 
/etc/openvpn/keys/hmac.key 
        install -v -m 0400  -o root -g root keys/$client_name.crt 
/etc/openvpn/keys/$client_name.crt 
        install -v -m 0400  -o root -g root keys/$client_name.key 
/etc/openvpn/keys/$client_name.key 
        rm etc keys keys.tar -rf 
        systemctl enable openvpn@client.service 
        systemctl restart openvpn@client.service 
        service openvpn restart 
 
  update_system: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm, spgw_vm, build_vm ] 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        logger "$0: Updating system..." 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y update 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y dist-upgrade 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y autoremove 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y autoclean 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y clean 
        logger "$0: Installing git screen and curl..." 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y install curl screen git 
 
  compile_kernel: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      inputs: 
      - name: spgw_kernel_version 
        default: { get_param: spgw_kernel_version } 
      - name: base_url 
        default: { get_param: base_url } 
      config: | 
        #!/bin/bash 
        cd /usr/src 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y install xz-utils build-
essential wget libncurses5-dev libssl-dev bc 
        DEBIAN_FRONTEND=noninteractive apt-get -q -y build-dep linux-image-
$(uname -r) 
        wget https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-
$spgw_kernel_version.tar.xz 
        tar -xf linux-$spgw_kernel_version.tar.xz 
        curl -s -O $base_url/config-$spgw_kernel_version-gtp 
        cp config-$spgw_kernel_version-gtp linux-$spgw_kernel_version/.config 
        cd linux-$spgw_kernel_version 
        make oldconfig 
        make -j`nproc` 
        make INSTALL_MOD_STRIP=1 modules_install 
        make install 
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        cd /root 
        # should reboot to use new kernel. Hangs on ubuntu14 
        #shutdown -r +1 
        #sleep 55 
 
  create_freediameter_certs: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      inputs: 
      - name: realm 
        default: { get_param: realm } 
      - name: mme_name 
        default: { get_param: mme_name } 
      - name: hss_name 
        default: { get_param: hss_name } 
      - name: ca_country 
        default: { get_param: ca_country } 
      - name: ca_state 
        default: { get_param: ca_state } 
      - name: ca_city 
        default: { get_param: ca_city } 
      - name: ca_company 
        default: { get_param: ca_company } 
      - name: ca_unit 
        default: { get_param: ca_unit } 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install openssl 
        certs_dir=/root/certs 
        make_one_cert() { 
          name=$1 
          openssl genrsa -out $name.key.pem 1024 
          openssl req -new -batch -out $name.csr.pem -key $name.key.pem -subj 
/CN=$name.$realm/C=$ca_country/ST=$ca_state/L=$ca_city/O=$ca_company/OU=$ca_u
nit 
          openssl ca -cert cacert.pem -keyfile cakey.pem -in $name.csr.pem -
out $name.cert.pem -outdir . -batch 
        } 
        mkdir -p $certs_dir 
        cd $certs_dir 
        mkdir -p $certs_dir/demoCA/ 
        touch $certs_dir/demoCA/index.txt 
        echo 01 > $certs_dir/demoCA/serial 
        openssl req -new -batch -x509 -days 3650 -nodes -newkey rsa:1024 -out 
cacert.pem -keyout cakey.pem -subj 
/CN=$realm/C=$ca_country/ST=$ca_state/L=$ca_city/O=$ca_company/OU=$ca_unit 
        make_one_cert $hss_name 
        make_one_cert $mme_name 
 
  eurecom_certs: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
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        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install openssl 
        if [ ! -f /etc/ssl/certs/ca-certificates.crt.bak ] ; then cp 
/etc/ssl/certs/ca-certificates.crt{,.bak} ; fi 
        echo -n | openssl s_client -showcerts -connect gitlab.eurecom.fr:443 
2>/dev/null | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' >> 
/etc/ssl/certs/ca-certificates.crt 
 
  compile_nettle: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf 
automake build-essential libgmp-dev wget 
        cd /tmp 
        rm -rf /tmp/nettle-2.5.tar.gz /tmp/nettle-2.5 
        wget https://ftp.gnu.org/gnu/nettle/nettle-2.5.tar.gz 
        tar -xzf /tmp/nettle-2.5.tar.gz 
        cd /tmp/nettle-2.5 
        ./configure --disable-openssl --enable-shared --prefix=/usr/local 
        make 
        make check 
        make install 
        cd /tmp 
        rm -rf /tmp/nettle-2.5.tar.gz /tmp/nettle-2.5 
        ldconfig 
 
  compile_gnutls: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q purge libgnutls-dev 
'libgnutlsxx2?' 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install libtasn1-6-dev 
libp11-kit-dev libtspi-dev libidn11-dev wget 
        cd /tmp 
        rm -rf /tmp/gnutls-3.1.23.tar.xz* /tmp/gnutls-3.1.23 
        wget ftp://ftp.gnutls.org/gcrypt/gnutls/v3.1/gnutls-3.1.23.tar.xz 
        tar -xJf /tmp/gnutls-3.1.23.tar.xz 
        cd /tmp/gnutls-3.1.23 
        ./configure --prefix=/usr/local 
        make 
        make install 
        cd /tmp 
        rm -rf /tmp/gnutls-3.1.23 /tmp/gnutls-3.1.23.tar.xz 
        ldconfig 
 
  compile_freediameter: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 



191 
 

      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf 
automake bison flex build-essential cmake libsctp-dev libidn11-dev libgcrypt-
dev 
        cd /tmp 
        rm -rf /tmp/freediameter 
        git clone https://gitlab.eurecom.fr/oai/freediameter.git -b eurecom-
1.2.0 
        cd /tmp/freediameter 
        mkdir build 
        cd build 
        cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local ../ 
        make 
        make install 
        cd /tmp 
        rm -rf /tmp/freediameter 
        ldconfig 
 
  compile_asn1c: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf 
automake bison flex build-essential libtool 
        cd /tmp 
        rm -rf /tmp/asn1c 
        git clone https://gitlab.eurecom.fr/oai/asn1c.git 
        cd /tmp/asn1c 
        ./configure --prefix=/usr/local 
        make 
        make install 
        cd /tmp 
        rm -rf /tmp/asn1c 
 
  compile_libgtpnl: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf 
automake bison flex build-essential libtool libmnl-dev 
        cd /tmp 
        rm -rf /tmp/libgtpnl 
        git clone git://git.osmocom.org/libgtpnl 
        cd /tmp/libgtpnl 
        autoreconf -fi 
        ./configure --prefix=/usr/local 
        make 
        make install 
        cd /tmp 
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        rm -rf /tmp/libgtpnl 
        ldconfig 
 
  compile_openair_cn: 
    type: OS::Heat::SoftwareConfig 
    depends_on: build_vm 
    properties: 
      group: script 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf 
automake bison flex build-essential cmake libsctp-dev libconfig8-dev libgmp-
dev libsctp-dev libssl-dev libxml2-dev mscgen openssl mariadb-client 
libmysqlclient-dev check 
        cd /tmp 
        rm -rf openair-cn 
        git clone https://gitlab.eurecom.fr/oai/openair-cn.git 
        cd /tmp/openair-cn/SCRIPTS 
        ./build_mme --clean 
        ./build_mme --clean --daemon 
        ./build_spgw --clean 
        ./build_spgw --clean --daemon 
        ./build_hss --clean 
        ./build_hss --clean --daemon 
 
  mme_conf: 
    type: OS::Heat::SoftwareConfig 
    depends_on: mme_vm 
    properties: 
      group: script 
      inputs: 
      - name: hss_name 
        default: { get_param: hss_name } 
      - name: mme_name 
        default: { get_param: mme_name } 
      - name: realm 
        default: { get_param: realm } 
      - name: enb_count 
        default: { get_param: enb_count } 
      - name: int_cidr 
        default: { get_param: int_cidr } 
      - name: enb_cidr 
        default: { get_param: enb_cidr } 
      - name: mcc 
        default: { get_param: mcc } 
      - name: mnc 
        default: { get_param: mnc } 
      - name: tac 
        default: { get_param: tac } 
      - name: mme_gid 
        default: { get_param: mme_gid } 
      - name: mme_code 
        default: { get_param: mme_code } 
      - name: spgw_ip 
        default: { get_attr: [ spgw_vm, first_address ] } 
      - name: mme_ip 
        default: { get_attr: [ mme_vm, first_address ] } 
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      - name: hss_ip 
        default: { get_attr: [ hss_vm, first_address ] } 
      config: | 
        #!/bin/bash 
        logger "$0: Creating MME configuration..." 
        mkdir -p /etc/oai 
        intnet=$int_cidr 
        enbnet=$enb_cidr 
        cat > /etc/oai/mme.conf <<__EOF 
        MME : 
        { 
          REALM                                  = "$realm"; 
          MAXENB                                 = $enb_count; 
          MAXUE                                  = 16; 
          RELATIVE_CAPACITY                      = 10; 
          EMERGENCY_ATTACH_SUPPORTED             = "no"; 
          UNAUTHENTICATED_IMSI_SUPPORTED         = "no"; 
          EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1      = 
"no"; 
          EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES_IN_S1_MODE = 
"no"; 
          EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC            = 
"no"; 
          EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST             = 
"no"; 
          IP_CAPABILITY                                                    = 
"IPV4V6"; 
          MME_STATISTIC_TIMER                    = 10; 
          INTERTASK_INTERFACE : 
          { 
            ITTI_QUEUE_SIZE                      = 2000000; 
          }; 
          S6A : 
          { 
            S6A_CONF                             = "/etc/oai/mme_fd.conf"; 
            HSS_HOSTNAME                         = "$hss_name"; 
          }; 
          SCTP : 
          { 
            SCTP_INSTREAMS                       = 8; 
            SCTP_OUTSTREAMS                      = 8; 
          }; 
          S1AP : 
          { 
            S1AP_OUTCOME_TIMER                   = 10; 
          }; 
          GUMMEI_LIST = ( 
            { MCC="$mcc" ; MNC="$mnc"; MME_GID="$mme_gid" ; 
MME_CODE="$mme_code"; } 
          ); 
          TAI_LIST = ( 
            { MCC="$mcc" ; MNC="$mnc"; TAC="$tac"; } 
          ); 
          NAS : 
          { 
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            ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = [ "EIA2" , "EIA1" , 
"EIA0" ]; 

            ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = [ "EEA0" , "EEA1" , 
"EEA2" ]; 
            T3402                                = 1  #in minutes 
            T3412                                = 54 #in minutes 
            T3422                                = 6 
            T3450                                = 6 
            T3460                                = 6 
            T3470                                = 6 
            T3485                                = 8 
            T3486                                = 8 
            T3489                                = 4 
            T3495                                = 8 
          }; 
          LOGGING : 
          { 
            OUTPUT                               = "CONSOLE"; 
            COLOR                                = "no"; 
            SCTP_LOG_LEVEL                       = "TRACE"; 
            S1AP_LOG_LEVEL                       = "TRACE"; 
            NAS_LOG_LEVEL                        = "TRACE"; 
            MME_APP_LOG_LEVEL                    = "TRACE"; 
            S6A_LOG_LEVEL                        = "TRACE"; 
            UTIL_LOG_LEVEL                       = "TRACE"; 
            MSC_LOG_LEVEL                        = "ERROR"; 
            ITTI_LOG_LEVEL                       = "ERROR"; 
            ASN1_VERBOSITY                       = "none"; 
          }; 
          NETWORK_INTERFACES : 
          { 
            MME_INTERFACE_NAME_FOR_S1_MME        = "eth0"; 
            MME_IPV4_ADDRESS_FOR_S1_MME          = 
"${enbnet%.*}.2/${enbnet#*/}"; 
            MME_INTERFACE_NAME_FOR_S11_MME       = "eth0"; 
            MME_IPV4_ADDRESS_FOR_S11_MME         = "$mme_ip/${intnet#*/}"; 
            MME_PORT_FOR_S11_MME                 = 2123; 
          }; 
        }; 
        S-GW : 
        { 
          SGW_IPV4_ADDRESS_FOR_S11                = "$spgw_ip/${intnet#*/}"; 
        }; 
        __EOF 
        cat > /etc/oai/mme_fd.conf << __EOF 
        Identity       = "$mme_name.$realm"; 
        Realm          = "$realm"; 
        TLS_Cred       = "/etc/oai/$mme_name.cert.pem", 
"/etc/oai/$mme_name.key.pem"; 
        TLS_CA         = "/etc/oai/cacert.pem"; 
        AppServThreads = 4; 
        SCTP_streams   = 8; 
        LoadExtension  = "dict_nas_mipv6.fdx"; 
        LoadExtension  = "dict_s6a.fdx"; 
        No_TCP; 
        No_IPv6; 
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        NoRelay; 
        ConnectPeer= "$hss_name.$realm" { ConnectTo = "$hss_ip"; No_IPv6; 
No_TLS; port = 3868; realm = "$realm";}; 
        __EOF 
 
  spgw_conf: 
    type: OS::Heat::SoftwareConfig 
    depends_on: spgw_vm 
    properties: 
      group: script 
      inputs: 
      - name: ue_cidr 
        default: { get_param: ue_cidr } 
      - name: ue_dns 
        default: { get_param: ue_dns } 
      - name: ue_mtu 
        default: { get_param: ue_mtu } 
      - name: int_cidr 
        default: { get_param: int_cidr } 
      - name: enb_cidr 
        default: { get_param: enb_cidr } 
      - name: spgw_ip 
        default: { get_attr: [ spgw_vm, first_address ] } 
      config: | 
        #!/bin/bash 
        logger "$0: Creating SPGW configuration..." 
        mkdir -p /etc/oai 
        intnet=$int_cidr 
        enbnet=$enb_cidr 
        cat > /etc/oai/spgw.conf << __EOF 
        S-GW : 
        { 
          NETWORK_INTERFACES : 
          { 
            SGW_INTERFACE_NAME_FOR_S11               = "eth0"; 
            SGW_IPV4_ADDRESS_FOR_S11                 = 
"$spgw_ip/${intnet#*/}"; 
            SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP     = "tun0"; 
            SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP       = 
"${enbnet%.*}.1/${enbnet#*/}"; 
            SGW_IPV4_PORT_FOR_S1U_S12_S4_UP          = 2152; 
            SGW_INTERFACE_NAME_FOR_S5_S8_UP          = "none"; 
            SGW_IPV4_ADDRESS_FOR_S5_S8_UP            = "0.0.0.0/24"; 
          }; 
 
          INTERTASK_INTERFACE : 
          { 
            ITTI_QUEUE_SIZE                          = 2000000; 
          }; 
 
          LOGGING : 
          { 
            OUTPUT                                   = "CONSOLE"; 
            THREAD_SAFE                              = "yes"; 
            COLOR                                    = "no"; 
            UDP_LOG_LEVEL                            = "TRACE"; 
            GTPV1U_LOG_LEVEL                         = "TRACE"; 
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            GTPV2C_LOG_LEVEL                         = "TRACE"; 
            SPGW_APP_LOG_LEVEL                       = "TRACE"; 
            S11_LOG_LEVEL                            = "TRACE"; 
          }; 
        }; 
        P-GW = 
        { 
          NETWORK_INTERFACES : 
          { 
            PGW_INTERFACE_NAME_FOR_S5_S8             = "none"; 
            PGW_INTERFACE_NAME_FOR_SGI               = "eth0"; 
            PGW_MASQUERADE_SGI                       = "yes"; 
            UE_TCP_MSS_CLAMPING                      = "no"; 
          }; 
 
          IP_ADDRESS_POOL : 
          { 
            IPV4_LIST = ( 
                                                     "$ue_cidr" 
                        ); 
          }; 
 
          DEFAULT_DNS_IPV4_ADDRESS                   = "$ue_dns"; 
          DEFAULT_DNS_SEC_IPV4_ADDRESS               = "8.8.4.4"; 
          FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS  = "no"; 
          UE_MTU                                     = $ue_mtu; 
        }; 
        __EOF 
 
  hss_conf: 
    type: OS::Heat::SoftwareConfig 
    depends_on: hss_vm 
    properties: 
      group: script 
      inputs: 
      - name: db_pass 
        default: { get_param: db_pass } 
      - name: operator_key 
        default: { get_param: operator_key } 
      - name: hss_name 
        default: { get_param: hss_name } 
      - name: realm 
        default: { get_param: realm } 
      - name: hss_ip 
        default: { get_attr: [ hss_vm, first_address ] } 
      config: | 
        #!/bin/bash 
        logger "$0: Creating HSS configuration..." 
        mkdir -p /etc/oai 
        cat > /etc/oai/hss.conf << __EOF 
        HSS : 
        { 
          MYSQL_server = "127.0.0.1"; 
          MYSQL_user   = "hssadmin"; 
          MYSQL_pass   = "$db_pass"; 
          MYSQL_db     = "oai_db"; 
          OPERATOR_key = "$operator_key"; 
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          RANDOM       = "true"; 
          FD_conf      = "/etc/oai/hss_fd.conf"; 
        }; 
        __EOF 
        cat > /etc/oai/hss_fd.conf << __EOF 
        Identity       = "$hss_name.$realm"; 
        Realm          = "$realm"; 
        TLS_Cred       = "/etc/oai/$hss_name.cert.pem", 
"/etc/oai/$hss_name.key.pem"; 
        TLS_CA         = "/etc/oai/cacert.pem"; 
        AppServThreads = 4; 
        SCTP_streams   = 8; 
        ListenOn       = "$hss_ip"; 
        Port           = 3868; 
        SecPort        = 5868; 
        LoadExtension  = "acl_wl.fdx" : "/etc/oai/hss_acl.conf"; 
        LoadExtension  = "dict_nas_mipv6.fdx"; 
        LoadExtension  = "dict_s6a.fdx"; 
        No_TCP; 
        No_IPv6; 
        NoRelay; 
        __EOF 
        cat > /etc/oai/hss_acl.conf <<__EOF 
        ALLOW_OLD_TLS   *.$realm 
        __EOF 
 
  install_nettle: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm ] 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        scp -r $build_name:/usr/local/lib /tmp 
        install -v -m 0644 -o root -g root /tmp/lib/libnettle.so.4.4 
/tmp/lib/libhogweed.so.2.2 /usr/local/lib/ 
        ln -sfv libnettle.so.4.4 /usr/local/lib/libnettle.so.4 
        ln -sfv libnettle.so.4.4 /usr/local/lib/libnettle.so 
        ln -sfv libhogweed.so.2.2 /usr/local/lib/libhogweed.so.2 
        ln -sfv libhogweed.so.2.2 /usr/local/lib/libhogweed.so 
        ldconfig 
        rm /tmp/lib -rf 
 
  install_gnutls: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm ] 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        scp -r $build_name:/usr/local/lib /tmp 
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        install -v -m 0644 -o root -g root /tmp/lib/libgnutls.so.28.21.3 
/usr/local/lib/ 
        ln -sfv libgnutls.so.28.21.3 /usr/local/lib/libgnutls.so.28 
        ln -sfv libgnutls.so.28.21.3 /usr/local/lib/libgnutls.so 
        ldconfig 
        rm /tmp/lib -rf 
 
  install_freediameter: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm ] 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        scp -r $build_name:/usr/local/lib /tmp 
        install -v -m 0644 -o root -g root /tmp/lib/libfdcore.so.1.2.0 
/tmp/lib/libfdproto.so.1.2.0 /usr/local/lib/ 
        ln -sfv libfdproto.so.1.2.0 /usr/local/lib/libfdproto.so.6 
        ln -sfv libfdproto.so.6 /usr/local/lib/libfdproto.so 
        ln -sfv libfdcore.so.1.2.0 /usr/local/lib/libfdcore.so.6 
        ln -sfv libfdcore.so.6 /usr/local/lib/libfdcore.so 
        install -v -d -m 0755 -o root -g root /usr/local/lib/freeDiameter 
        install -v -m 0644 -o root -g root /tmp/lib/freeDiameter/* 
/usr/local/lib/freeDiameter 
        ldconfig 
        rm /tmp/lib -rf 
 
  install_libgtpnl: 
    type: OS::Heat::SoftwareConfig 
    depends_on: spgw_vm 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        scp -r $build_name:/usr/local/lib /tmp 
        install -v -m 0644 -o root -g root /tmp/lib/libgtpnl.so.0.0.0 
/usr/local/lib/ 
        ln -sfv libgtpnl.so.0.0.0 /usr/local/lib/libgtpnl.so.0 
        ln -sfv libgtpnl.so.0.0.0 /usr/local/lib/libgtpnl.so 
        ldconfig 
        rm /tmp/lib -rf 
 
  install_kernel: 
    type: OS::Heat::SoftwareConfig 
    depends_on: spgw_vm 
    properties: 
      group: script 
      inputs: 
      - name: spgw_kernel_version 
        default: { get_param: spgw_kernel_version } 
      - name: build_name 
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        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        #sleep 90 # wait for build to reboot  # we dont reboot on ubuntu14 
        scp $build_name:/boot/*$spgw_kernel_version* /tmp 
        install -o root -g root -m 0644 -v /tmp/*$spgw_kernel_version* /boot/ 
        rm /tmp/*$spgw_kernel_version* 
        ssh $build_name "tar -c /lib/modules/$spgw_kernel_version" | dd 
of=/tmp/modules.tar 
        cd /tmp 
        tar -xf modules.tar 
        cp -av lib/modules/$spgw_kernel_version /lib/modules 
        rm modules.tar lib -rf 
        update-initramfs -c -k $spgw_kernel_version 
        update-grub 
        # should reboot to use new kernel. Hangs on ubuntu14 
        #shutdown -r +1 
        #sleep 55 
 
  install_freediameter_certs: 
    type: OS::Heat::SoftwareConfig 
    depends_on: [ hss_vm, mme_vm ] 
    properties: 
      group: script 
      inputs: 
      - name: hostname 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        scp -r $build_name:/root/certs /tmp 
        install -v -m 0600 -o root -g root /tmp/certs/cacert.pem /etc/oai 
        install -v -m 0600 -o root -g root /tmp/certs/$hostname.key.pem 
/etc/oai 
        install -v -m 0600 -o root -g root /tmp/certs/$hostname.cert.pem 
/etc/oai 
        rm /tmp/certs -rf 
 
  install_database: 
    type: OS::Heat::SoftwareConfig 
    depends_on: hss_vm 
    properties: 
      group: script 
      inputs: 
      - name: db_file 
        default: { get_param: db_file } 
      - name: base_url 
        default: { get_param: base_url } 
      - name: db_pass 
        default: { get_param: db_pass } 
      config: | 
        #!/bin/bash 
        # this was the only way I found to let it work on xenial and trusty 
        function reply_mysql_server_questions() { 
          echo 
          echo 
          echo 
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        } 
        reply_mysql_server_questions | DEBIAN_FRONTEND=noninteractive apt-get 
-y -q install autoconf automake bison flex build-essential cmake libsctp-dev 
libconfig8-dev libgmp-dev libsctp-dev libssl-dev libxml2-dev mscgen openssl 
mariadb-server mariadb-client libmysqlclient-dev check 
        sleep 5 
        echo "CREATE DATABASE oai_db; GRANT ALL PRIVILEGES ON oai_db.* TO 
'hssadmin'@'localhost' IDENTIFIED BY '$db_pass';" | mysql -u root  
        cd /root 
        curl -s -O $base_url/$db_file 
        mysql -u hssadmin -p$db_pass -D oai_db < /root/$db_file 
 
  install_hss: 
    type: OS::Heat::SoftwareConfig 
    depends_on: hss_vm 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9 
libsctp1 libtspi1 libgmp10 
        scp $build_name:/usr/local/bin/oai_hss /tmp 
        scp $build_name:/usr/sbin/oai_hssd /tmp 
        install -v -m 0755 -o root -g root /tmp/oai_hss /tmp/oai_hssd 
/usr/local/sbin 
        rm /tmp/oai_hss* 
 
  install_mme: 
    type: OS::Heat::SoftwareConfig 
    depends_on: mme_vm 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
        DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9 
libsctp1 libtspi1 libgmp10 
        scp $build_name:/usr/local/bin/mme /tmp 
        scp $build_name:/usr/sbin/mmed /tmp 
        install -v -m 0755 -o root -g root /tmp/mme /tmp/mmed /usr/local/sbin 
        rm /tmp/mme* 
 
  install_spgw: 
    type: OS::Heat::SoftwareConfig 
    depends_on: spgw_vm 
    properties: 
      group: script 
      inputs: 
      - name: build_name 
        default: { get_param: build_name } 
      config: | 
        #!/bin/bash 
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        DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9 
libmnl0 
        scp $build_name:/usr/local/bin/spgw /tmp 
        scp $build_name:/usr/sbin/spgwd /tmp 
        install -v -m 0755 -o root -g root /tmp/spgw /tmp/spgwd 
/usr/local/sbin 
        rm /tmp/spgw* 
 
### BUILD DEPLOYMENTS 
  create_etc_hosts_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: etc_hosts 
    properties: 
      config: 
        get_resource: etc_hosts 
      server: 
        get_resource: build_vm 
 
  update_system_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_build, update_system ] 
    properties: 
      config: 
        get_resource: update_system 
      server: 
        get_resource: build_vm 
 
  ssh_keys_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_build, update_system_build, ssh_keys ] 
    properties: 
      config: 
        get_resource: ssh_keys 
      server: 
        get_resource: build_vm 
 
  compile_kernel_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_build, compile_kernel ] 
    properties: 
      config: 
        get_resource: compile_kernel 
      server: 
        get_resource: build_vm 
 
  eurecom_certs_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_kernel_build, eurecom_certs ] 
    properties: 
      config: 
        get_resource: eurecom_certs 
      server: 
        get_resource: build_vm 
 
  create_freediameter_certs_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_kernel_build, create_freediameter_certs ] 
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    properties: 
      config: 
        get_resource: create_freediameter_certs 
      server: 
        get_resource: build_vm 
 
  compile_libgtpnl_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_kernel_build, compile_libgtpnl ] 
    properties: 
      config: 
        get_resource: compile_libgtpnl 
      server: 
        get_resource: build_vm 
 
  compile_nettle_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_kernel_build, compile_nettle ] 
    properties: 
      config: 
        get_resource: compile_nettle 
      server: 
        get_resource: build_vm 
 
  compile_gnutls_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_nettle_build, compile_gnutls ] 
    properties: 
      config: 
        get_resource: compile_gnutls 
      server: 
        get_resource: build_vm 
 
  compile_freediameter_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_nettle_build, compile_gnutls_build, 
eurecom_certs_build, compile_freediameter ] 
    properties: 
      config: 
        get_resource: compile_freediameter 
      server: 
        get_resource: build_vm 
 
  compile_asn1c_build: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ compile_freediameter_build, eurecom_certs_build, 
compile_asn1c ] 
    properties: 
      config: 
        get_resource: compile_asn1c 
      server: 
        get_resource: build_vm 
 
  compile_openair_cn_build: 
    type: OS::Heat::SoftwareDeployment 
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    depends_on: [ compile_freediameter_build, compile_libgtpnl_build, 
compile_asn1c_build, create_freediameter_certs_build, eurecom_certs_build, 
compile_openair_cn ] 
    properties: 
      config: 
        get_resource: compile_openair_cn 
      server: 
        get_resource: build_vm 
 
### HSS DEPLOYMENTS 
  create_etc_hosts_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: etc_hosts 
    properties: 
      config: 
        get_resource: etc_hosts 
      server: 
        get_resource: hss_vm 
 
  update_system_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_hss, update_system ] 
    properties: 
      config: 
        get_resource: update_system 
      server: 
        get_resource: hss_vm 
 
  create_hss_conf: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_hss, update_system_hss, hss_conf ] 
    properties: 
      config: 
        get_resource: hss_conf 
      server: 
        get_resource: hss_vm 
 
  ssh_keys_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_build, update_system_build, ssh_keys ] 
    properties: 
      config: 
        get_resource: ssh_keys 
      server: 
        get_resource: hss_vm 
 
  install_database_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_hss, create_hss_conf, install_database ] 
    properties: 
      config: 
        get_resource: install_database 
      server: 
        get_resource: hss_vm 
 
  install_nettle_hss: 
    type: OS::Heat::SoftwareDeployment 
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    depends_on: [ ssh_keys_hss, ssh_keys_build, compile_openair_cn_build, 
install_nettle ] 
    properties: 
      config: 
        get_resource: install_nettle 
      server: 
        get_resource: hss_vm 
 
  install_gnutls_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_hss, ssh_keys_build, compile_openair_cn_build, 
install_nettle_hss, install_gnutls ] 
    properties: 
      config: 
        get_resource: install_gnutls 
      server: 
        get_resource: hss_vm 
 
  install_freediameter_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_hss, ssh_keys_build, compile_openair_cn_build, 
install_nettle_hss, install_gnutls_hss, install_freediameter ] 
    properties: 
      config: 
        get_resource: install_freediameter 
      server: 
        get_resource: hss_vm 
 
  install_freediameter_certs_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_freediameter_hss, create_hss_conf, install_freediameter_certs ] 
    properties: 
      config: 
        get_resource: install_freediameter_certs 
      server: 
        get_resource: hss_vm 
      input_values: 
        hostname: { get_param: hss_name } 
 
  deploy_hss: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_hss, ssh_keys_build, compile_openair_cn_build, 
install_freediameter_certs_hss, install_database_hss, install_hss ] 
    properties: 
      config: 
        get_resource: install_hss 
      server: 
        get_resource: hss_vm 
 
### MME DEPLOYMENTS 
  create_etc_hosts_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: etc_hosts 
    properties: 
      config: 
        get_resource: etc_hosts 
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      server: 
        get_resource: mme_vm 
 
  update_system_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_mme, update_system ] 
    properties: 
      config: 
        get_resource: update_system 
      server: 
        get_resource: mme_vm 
 
  create_mme_conf: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_mme, update_system_mme, mme_conf ] 
    properties: 
      config: 
        get_resource: mme_conf 
      server: 
        get_resource: mme_vm 
 
  ssh_keys_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_mme, update_system_mme, ssh_keys ] 
    properties: 
      config: 
        get_resource: ssh_keys 
      server: 
        get_resource: mme_vm 
 
  vpn_client_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_spgw, vpn_server_spgw, vpn_client ] 
    properties: 
      config: 
        get_resource: vpn_client 
      server: 
        get_resource: mme_vm 
      input_values: 
        client_name: { get_param: mme_name } 
 
  install_nettle_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_nettle ] 
    properties: 
      config: 
        get_resource: install_nettle 
      server: 
        get_resource: mme_vm 
 
  install_gnutls_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_nettle_mme, install_gnutls ] 
    properties: 
      config: 
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        get_resource: install_gnutls 
      server: 
        get_resource: mme_vm 
 
  install_freediameter_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_nettle_mme, install_gnutls_mme, install_freediameter ] 
    properties: 
      config: 
        get_resource: install_freediameter 
      server: 
        get_resource: mme_vm 
 
  install_freediameter_certs_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_freediameter_mme, create_mme_conf, install_freediameter_certs ] 
    properties: 
      config: 
        get_resource: install_freediameter_certs 
      server: 
        get_resource: mme_vm 
      input_values: 
        hostname: { get_param: mme_name } 
 
  deploy_mme: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_mme, ssh_keys_build, compile_openair_cn_build, 
install_freediameter_mme, install_freediameter_certs_mme, create_mme_conf, 
vpn_client_mme, install_mme ] 
    properties: 
      config: 
        get_resource: install_mme 
      server: 
        get_resource: mme_vm 
 
### SPGW DEPLOYMENTS 
  create_etc_hosts_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: etc_hosts 
    properties: 
      config: 
        get_resource: etc_hosts 
      server: 
        get_resource: spgw_vm 
 
  update_system_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_spgw, update_system ] 
    properties: 
      config: 
        get_resource: update_system 
      server: 
        get_resource: spgw_vm 
 
  create_spgw_conf: 
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    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_spgw, update_system_spgw, spgw_conf ] 
    properties: 
      config: 
        get_resource: spgw_conf 
      server: 
        get_resource: spgw_vm 
 
  vpn_server_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_spgw, update_system_spgw, vpn_server ] 
    properties: 
      config: 
        get_resource: vpn_server 
      server: 
        get_resource: spgw_vm 
 
  ssh_keys_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ create_etc_hosts_spgw, update_system_spgw, ssh_keys ] 
    properties: 
      config: 
        get_resource: ssh_keys 
      server: 
        get_resource: spgw_vm 
 
  install_kernel_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_spgw, ssh_keys_build, compile_kernel_build, 
install_kernel ] 
    properties: 
      config: 
        get_resource: install_kernel 
      server: 
        get_resource: spgw_vm 
 
  install_libgtpnl_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_spgw, ssh_keys_build, compile_openair_cn_build, 
install_kernel_spgw, install_libgtpnl ] 
    properties: 
      config: 
        get_resource: install_libgtpnl 
      server: 
        get_resource: spgw_vm 
 
  deploy_spgw: 
    type: OS::Heat::SoftwareDeployment 
    depends_on: [ ssh_keys_spgw, ssh_keys_build, create_spgw_conf, 
install_libgtpnl_spgw, vpn_server_spgw, compile_openair_cn_build, 
install_kernel_spgw, install_spgw ] 
    properties: 
      config: 
        get_resource: install_spgw 
      server: 
        get_resource: spgw_vm 
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### STACK OUTPUTS 
outputs: 
  public_ip: 
    description: Floating IP address of SPGW instance in external network 
    value: { get_attr: [ floating_ip, floating_ip_address ] } 
  ssh_spgw: 
    description: SSH connect string for SPWG host 
    value: 
      str_replace: 
        template: | 
          ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o 
UserKnownHostsFile=/dev/null -o User=ubuntu $floating_ip 
        params: 
          $floating_ip : { get_attr: [ floating_ip, floating_ip_address ] } 
  ssh_hss: 
    description: SSH connect string for HSS host 
    value: 
      str_replace: 
        template: | 
          ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o 
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o 
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null 
-o User=ubuntu -q $floating_ip nc -q0 $hss_name 22" $floating_ip 
        params: 
          $floating_ip : { get_attr: [ floating_ip, floating_ip_address ] } 
          $hss_name: { get_param: hss_name } 
  ssh_mme: 
    description: SSH connect string for MME host 
    value: 
      str_replace: 
        template: | 
          ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o 
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o 
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null 
-o User=ubuntu -q $floating_ip nc -q0 $mme_name 22" $floating_ip 
        params: 
          $floating_ip : { get_attr: [ floating_ip, floating_ip_address ] } 
          $mme_name: { get_param: mme_name } 
  ssh_build: 
    description: SSH connect string for Build host 
    value: 
      str_replace: 
        template: | 
          ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o 
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o 
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null 
-o User=ubuntu -q $floating_ip nc -q0 $build_name 22" $floating_ip 
        params: 
          $floating_ip : { get_attr: [ floating_ip, floating_ip_address ] } 
          $build_name: { get_param: build_name } 

 


