
Oslo, 2018

Towards 5G Mobile Networks with
OpenAirInterface5G Virtualization

Master's thesis

Bruno Dzogovic

01.05.2018

2

Towards 5G mobile networks with
OpenAirInterface5G virtualization

University of Oslo, Mathematics and Natural Sciences -
Department of Informatics

Programme: Network and System Administration

Bruno Dzogovic, M.Sc. Mentor: Prof. Dr. Thanh van Do
Head Cloud Network Engineer, Telenor Group, Telenor Research
5G Networks Research Assistant Oslo Metropolitan University
Oslo Metropolitan University Oslo, Norway
Oslo, Norway thanh-van.do@telenor.com
+47 465 61 964
bruno.dzogovic@hioa.no
bruno.dzogovic@gmail.com

3

TABLE OF CONTENTS
1. Introduction ... 6

1.1. Motivation ... 6

1.1. Problem statement ... 7

1.1. Methodology ... 8

1.2. Organization of the thesis ... 8

2. Background ... 10

2.1. 4G LTE (Long-term evolution) ... 10

2.1.1. Architecture and components of LTE ... 13

A. Protocol architecture in LTE ... 15

B. Interfaces ... 19

C. Quality of Service (QoS) and EPS bearers ... 22

2.1.2. The E-UTRAN radio network ... 24

A. Transport network ... 25

B. Physical, transport and logical channels ... 25

2.1.3. Diversity processing .. 36

2.1.4. Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency
Division Multiple Access (OFDMA) for the downlink channel in LTE .. 37

A. Measurements based on constellations and Error Vector Magnitude (EVM) metrics 45

2.1.5. Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink channel ... 55

2.1.6. Multiple-antenna techniques ... 56

A. Smart antennas .. 57

B. Adaptive Beamforming ... 58

C. Antenna Diversity (Spatial Diversity) ... 59

D. Spatial multiplexing (SMX) .. 60

E. Space-Division Multiple Access (SDMA) .. 60

F. MIMO (Multiple-Input Multiple-Output) ... 61

G. Multi-beam antennas for 5G radio .. 63

H. Evolution of the antenna systems .. 63

2.1.7. Security architecture of 4G LTE ... 64

A. Authentication and key agreement protocol (AKA) ... 65

B. DIAMETER protocol in LTE ... 67

C. Protection of Signaling and User data ... 70

D. EPS cryptographic algorithms .. 70

2.2. LTE-Advanced and LTE-Advanced Pro as a step before 5G ... 72

4

2.3. Virtualization and cloud computing .. 73

2.3.1. OpenStack cloud platform .. 74

2.4. Multi-platform containers and their role in service deployment and software-defined
networking .. 76

2.4.1. Docker ... 76

A. Docker-Compose .. 77

B. Docker Cloud .. 78

C. Docker Hub ... 78

D. Docker networking .. 78

E. Docker storage .. 79

2.4.2. Etcd ... 79

A. Layer-4 Etcd gateway ... 79

B. Role-based access control (RBAC) ... 80

2.4.3. Kubernetes .. 80

A. Master components: .. 81

B. Node Server Components: .. 83

C. Kubernetes Work Units: .. 84

D. Controller units: .. 84

E. Namespaces: ... 85

2.4.4. Orchestration of Docker containers with Kubernetes ... 86

2.4.5. Security of application containers, secret storage and managing secrets 86

2.4.6. Automation with Puppet and Terraform (Infrastructure-as-a-Code) 88

2.5. The role of NFV and SDN in the evolution towards 5G ... 88

2.5.1. Mobility meets virtualization .. 89

2.5.2. SDN and NFV solutions, network overlay and underlay .. 91

A. Calico .. 91

B. Open vSwitch (OvS) ... 94

2.6. Hardware for establishing a base station (software-defined radio) ... 95

2.6.1. USRP N200 – Network series ... 96

2.6.2. USRP B200/B210 – Bus series ... 96

3. Description of Open Air Interface .. 98

3.1. OpenAirInterface5G as EURECOM project and its aims ... 98

3.2. Architecture of OpenAirInterface5G .. 99

3.2.1. Built-in emulation platform .. 101

3.3. OpenAirInterface5G as an open-source solution is a driver towards 5G 101

4. Description of the establishment of the mobile network .. 103

5

4.1. Containerizing the infrastructure modules in Docker containers .. 105

4.1.1. Containerizing the EPC elements for the network core (HSS, MME, S/PGW) 106

4.1.2. Containerizing the eNB base-station and regulating the wireless radio propagation
parameters 108

4.2. Connecting the eNB with the EPC through container network .. 113

5. Security and authentication of the mobile network ... 117

5.1. Building USIM cards with MILENAGE encryption for authentication 117

5.1.1. Programming a USIM card for the OpenAirInterface5G network 118

5.2. Tunneling SCTP protocol into L2TP/VPN and advanced security control 118

6. Evaluation ... 120

6.1. Testing the Access Stratum (AS) and the Non-Access Stratum (NAS) 120

6.2. EURECOM MIMO OpenAir Sounder (EMOS) for testing MIMO propagation 125

6.3. ITTI analyzer .. 126

7. Virtualization and deployment in Cloud ... 127

7.1. Deploying OpenAirInterface5G EPC core in OpenStack using Heat templates 127

7.2. Using Kubernetes for orchestration of the container resources remotely in the cloud 128

8. Discussion ... 131

9. Conclusion .. 133

9.1. Future work ... 133

References ... 135

Appendix ... 144

6

1. INTRODUCTION
Mobile communications encompass most of modern-day life, including professional, personal and even

enterprise applications. In order to enable adequate connectivity and optimized user experience, the telecom
operators or communication service providers as they call themselves nowadays, are constantly introducing
new and emerging technologies which fit to the different environments. Indeed, different technologies and
different configuration are applied in order to achieve satisfactory level of quality of service.

1.1. Motivation
The main objectives of a sound mobile infrastructure are not only to provide appropriate quality of

service for good user experience, and to offer high service availability to the user but also to ensure
economic affordability. The latter objective is in direct conflict with the two first ones and quite often
mobile operators would have to find a good balance between them. This is unfortunately not a trivial task
since the number of users and the demand of bit rates are changing dynamically depending on the situation
such as the required bit rate at a football station during a soccer game could be hundred times more than at
regular daily situation. A static over dimensioning of resources in this case will lead to higher costs and
consequently higher subscription for the users while a static configuration based on normal traffic will result
to loss of service for a certain number of users in peak traffic situation. Consequently, a much more flexible
network solution with dynamic resource allocation is urgently needed (UDDENFELDT, Jan, 2017).

Furthermore, with the advent of the Internet of Things the mission of the mobile infrastructure will be
no longer to be confined to serving human-to-human communication but also to serving device-to-device
or machine-to-machine communication. This constitutes a considerable challenge due the number of
devices and also to their heterogeneous demands in terms of bit rate, latency, packet frequency, mobility,
etc. which current 4G mobile technologies are not capable of dealing with. Again, the demand for new
technologies supporting heterogeneous traffic demands is getting urgent.

To meet the urging needs mentioned above, activities on 5G specifications have been started and the
concept of network slicing has been proposed.

According to 3GPP specification TS 23.501 V1.3.0 (3GPP, 2017)

“A Network Slice is defined as a logical network that provides specific network capabilities and network
characteristics”.

“Network slices may differ for supported features and network functions optimizations. The operator
may deploy multiple Network Slice instances delivering exactly the same features but for different groups
of UEs, e.g. as they deliver a different committed service and/or because they may be dedicated to a
customer”.

“A single UE can simultaneously be served by one or more Network Slice instances via a 5G-AN. A
single UE may be served by at most eight Network Slices at a time. The AMF instance serving the UE
logically belongs to each of the Network Slice instances serving the UE, i.e. this AMF instance is common
to the Network Slice instances serving a UE”.

The 5GPPP in the white paper “View on 5G Architecture” (5GPPP, 2016) has a more business oriented
of 5G and network slicing as follows:

“In responding to the requirements of these services and application, the 5G system aims to provide a
flexible platform to enable new business cases and models to integrate vertical industries, such as,
automotive, manufacturing, and entertainment. On this basis, network slicing emerges as a promising
future-proof framework to adhere by the technological and business needs of different industries”.

7

“The vision of network slicing will therefore satisfy the demand of vertical sectors that request dedicated
telecommunication services by providing “customer-facing” on-demand network slice requirement
descriptions to operators”.

At first glance the two mentioned definitions seem to complement each other but a thorough review
reveals conflicting requirements. Indeed, mobile operators are aiming at providing different network slices
with different network functions optimizations and features which fit the demands of a vertical sectors such
as automotive, manufacturing, and entertainment. However, the realization of this objective relies on the
assumption that a vertical sector uses only one type of devices and a network slice with specific network
functions and features can meet their requirements. This is unfortunately not always the case. For example,
in health care, there is a need of all three types of devices as follows:

- eMBB (Enhanced Mobile Broadband) devices that have high requirements for bandwidth, such as
high definition (HD) videos, virtual reality (VR), and augmented reality (AR).

- uRLLC (Ultra-reliable and Low-latency Communications) devices that requires high reliability and
low latency.

- mMTC (Massive Machine Type) that have high requirements for connection density, such as smart
city and smart agriculture.

It is hence uncertain whether three types of network slices are required for Health Care vertical or a
unique network slice capable of accommodating all the three types of devices is the best solution. One
major objective of this Master thesis work is to contribute to the clarification of the concept of network
slice via introducing the concepts of softwareization and virtualization of the network function (vNF) of
the mobile network infrastructure. With virtualization, the mobile setups should offer high potential for
scalability, immutability, ease of operation and deployment simplification while paving the way towards
the next generation 5G networks. In the end, the main principles upon which the future generation networks
will be based on, are the software-defined networking (SDN) and virtualization of the network function
(vNF) – key values for empowering the utilization of the network slicing concept.

1.1. Problem statement
To experiment, test and verify the network slice concept, it is necessary to have a 5G mobile network

which is open for configuration and management such that network slices can be configured and instantiated
dynamically. The most straightforward solution is to approach a commercial mobile equipment
manufacturer such as Ericsson, Nokia, Huawei, etc. This option is challenging because it is not simple for
a university to establish a deal with a commercial player, at the same time as a commercial solution may
not be sufficiently open to carry our experiments. Another solution is therefore required.

It is hence decided to attempt building a distinct 5G mobile network. Indeed, if the objective is to test
and verify the network slice concept and not the advanced radio access technologies, it is sufficient to build
an early and primitive version of 5G mobile network consisting of only virtual Network Functions (vNF)
connected together by SDN courses. Although quite exciting, this alternative solution is relatively
precarious and may prove entirely unachievable.

The main problem addressed by the Master thesis is to demonstrate that it is possible to build an earlier
version of 5G mobile network comprising of simply virtual Network Functions (vNF) connected together
by SDN lanes by using an open source 4G/LTE mobile software.

To address the main problem, the following subproblems shall be considered:

Subproblem 1: Uncertainties about the quality and maturity of open source 4G/LTE software:

8

 There are currently a few open-source 4G/LTE software, namely OpenAirInterface5G and
OpenLTE

 However, it is quite uncertain that they are able to function properly and form an operational 4G
LTE network.

 It is hence necessary to verify that there exists a reliable and operational open source 4G/LTE
software.

Subproblem 2: Difficulties in the virtualization of the open 4G/LTE software:

 Even if the open source 4G/LTE is functioning properly on commercial off-the-shelf (COTS)
it may not work at all when being executed in virtual environments.

 It is hereafter necessary to verify that the open source 4G/LTE software can be virtualized
properly.

Subproblem 3: Challenges in the cloudification aspect of the open 4G/LTE software:

 Even if the open source 4G/LTE could be virtualized, it is still unsure that its cloudification
can function properly due to introduced overheads, propagation delays as well as unpredictable
factors.

 It is henceforth necessary to experiment and verify that the open source 4G/LTE software can
be cloudified.

1.1. Methodology
To solve the problem stated in the previous section the methodology adopted in this Master thesis work

is a qualitative one, aiming to provide solutions to the subproblems consisting of the following research
components:

 Verification of the quality and maturity of the open source 4G/LTE software.

 Verification of the virtualization of the open source 4G/LTE software.

 Verification of the cloudification of the open source 4G/LTE software.

For each research component an experimental research method is adopted and it consists of the
following steps:

 Defining the objectives of the experiment

 Identifying the research Problem

 Conducting the Experiment

 Analysis and Conclusions

1.2. Organization of the thesis
The Master thesis is organized as follows:

 Chapter 1: Introduction gives an overview of the development in the mobile network
technologies and an explanation of the motivation of the thesis work. The problem statement
and the used methodology are also described thoroughly.

 Chapter 2: Background summarizes all the background knowledge and information that are
necessary to read and understand this thesis.

 Chapter 3: Description of OpenAirInterface5G provides a thorough description of the
OpenAirInterface5G, the open source 4G/LTE software used in this Master thesis work.

 Chapter 4: Description of the establishment of the mobile network

 Chapter 5: Security and authentication of the mobile network

9

 Chapter 6: Evaluation

 Chapter 7: Virtualization and Deployment in Cloud

 Chapter 8: Discussion

 Chapter 9: Conclusion

10

2. BACKGROUND
In this chapter, the crucial particularities that elucidate the essential traits of the next-generation mobile

networks will be presented. In other words, the 4G LTE existing technology is the prime bridge to the
evolution towards 5G networks. As it will later be explained in the further chapters, the softwareization and
virtualization of the 4G LTE hardware is the main aspect, which will enable the next-generation networks
to accommodate larger number of expected devices that indeed includes the IoT, sensor, M2M (Machine-
to-Machine) communication devices as well as the existing and emerging mobile technologies. Through
concepts of network slicing, containerization, service replication, network function virtualization and
cloudification, the next-generation networks will provide extensive functionality and robustness of
connectivity over longer period of time. However, in order to comprehend the implementation of the open-
source solutions that underlie the development of 5G networks, the rudiments of the prevailing 4G LTE
technology need to be explicated thus. Principally, the most essential elements to fathom are the LTE
constituents, such as i.e. the access channels whose tedious tweaking is of utmost significance to render the
production network operational and stable. The understanding of the LTE architecture is indispensable, and
therefore, in the following chapter it is explained in detail, together with access techniques, antenna
technologies, routing algorithms and security characteristics of the 4th Generation networks.

Furthermore, the chapter encompasses a description of all necessities required for achieving
cloudification, virtualization and automation of the mobile network and its deployment. The fundamental
open-source solutions are thus being introduced, that include cutting-edge technologies such as: Docker
container technology, Kubernetes orchestration of containers, OpenStack cloud platform, as well as
software-defined networking solutions as: Calico and Open vSwitch, which in conjunction with Docker
and Linux networking shall provide Network Function Virtualization. The chapter is consequently closed
with the description of the hardware used for the experiments, specifically the software-defined radio
platform that defines the access stratum of the mobile network.

2.1. 4G LTE (Long-term evolution)
LTE, Long Term Evolution, the successor to UMTS and HSPA is the latest way of deployment of high

speed cellular services. In its first forms it was a 3G or also referred as a 3.99G technology, but with
supplementary accompaniments the technology satisfied the requirements for a 4G standard. In this form it
was referred to as LTE-Advanced. There has been a rapid increase in the use of data carried by cellular
services, and this increase will only become larger in what has been termed the "data explosion". To
accommodate for this and the augmented demands for bigger data communication speeds and lesser latency,
additional expansion of the cellular technology is essential. The UMTS cellular technology advancement
has been labelled LTE - Long Term Evolution. The idea is that 4G LTE enables much higher speeds to be
achieved along with much lower packet latency (a rising demand for many services nowadays), and that
3GPP LTE enables cellular communications services to move forward to meet the needs for cellular
technology in the future. The use of LTE also provided the data capabilities that were required before the
full launch of the 4G standard known as LTE-Advanced. To better understand the progression of the mobile
technologies, the 3GPP (3rd Generation Partnership Project) introduces different releases. The releases start
from Phase 1, which refers to the initial phase GSM deployment in 1987. The latest 3GPP Release 16, also
known as “5G phase 2” (3GPP, 2017), is started on 22nd of March 2017 and is still in development in the
time of writing of this thesis. Each release is a step further on in the evolution of the mobile technology.
Purposefully, the Release 15 and 16 represent phase 1 and 2, consequently, where the initial proposals for
the deployment of 5G infrastructure are discussed. The fifth generation of mobile networks, factually,
represents an evolved LTE network. As with the preceding technologies, the 5G model exploits the existing
traits of the LTE in a new manner, which should gracefully improve the performance and usability of the
network. Analogously, there are minor and major changes on different architecture layers, especially the

11

access stratum and the eNB (evolved NodeB), which are represented through adaptive measures and
simplify the infrastructure further (3GPP, 2017).

Although there are major step changes between LTE and its 3G predecessors, it is nevertheless looked
upon as an evolution of the UMTS / 3GPP 3G standards. Consequently, it uses a different form of radio
interface, using OFDMA / SC-FDMA instead of CDMA access techniques, there are many similarities with
the earlier forms of 3G architecture and there is scope for much re-use. In deciding what is LTE and how
does it differ from other cellular systems, a preview at the specifications for the system can provide the
desirable answers. LTE enables further evolution of functionality, increased speeds, and general improved
performance, as observed in Table 1 (SAUTER, Martin, 2014).

Table 1. Comparison of LTE features with the earlier standards

 WCDMA
(UMTS)

HSPA/
HSDPA/
HSPUPA

HSPA+ LTE

Max downlink speed (bps) 14 M 28 M 100M 14 M

Max uplink speed (bps) 128K 5.7 M 11 M 50 M
Latency round trip time (ms) 150 ms 100 ms 50ms (max) ~10 ms

3GPP releases Rel 99 / 4 Rel 5 / 6 Rel 7 Rel 8

Year of initial roll out
2003 / 4

2005 / 6 HSDPA
2007 / 8 HSUPA

2008 / 9 2009 / 10

Access type CDMA CDMA CDMA OFDMA / SC - CDMA

Additionally, LTE is an all IP-based network, supporting both IPv4 and IPv6. Originally there was also
no basic delivery for voice application. Although Voice over LTE (VoLTE) was complemented, GSMA is
decided to be the standard for this purpose. Also, as a temporary solution, techniques including circuit
switched fallback (CSFB) are used. LTE has introduced several new technologies in comparison to the
aforementioned cellular systems. They allow LTE to function more cost-effectively relating to the spectrum
utilization, and also to provide the much higher data rates that are being demanded (SAUTER, Martin,
2014):

 OFDM (Orthogonal Frequency Division Multiplex): OFDM technology has been introduced
into LTE because it empowers high data rates to be conducted efficiently while still providing a
high degree of pliability to reflections and interference. The access schemes differ between the
uplink and downlink: OFDMA (Orthogonal Frequency Division Multiple Access is used in the
downlink; while SC-FDMA (Single Carrier - Frequency Division Multiple Access) is used in the
uplink. SC-FDMA is used in view of the fact that its peak to average power ratio is small and the
more constant power enables high RF power amplifier efficiency in the mobile handsets - an
important factor for battery power equipment.

 MIMO (Multiple Input Multiple Output): One of the main problems that previous
telecommunications systems have encountered is that of multiple signals arising from the many
reflections that are encountered. By using MIMO, these additional signal paths can be used to
advantage and are able to be used to increase the throughput.

When using MIMO, it is necessary to use multiple antennas to enable the different paths to be
distinguished. Accordingly, schemes using 2 x 2, 4 x 2, or 4 x 4 antenna matrices can be used.
While it is relatively easy to add further antennas to a base station, the same is not true of mobile
handsets, where the dimensions of the user equipment limit the number of antennas which should

12

be place at least a half wavelength apart. These properties are discussed in a greater detail in the
further chapters.

 SAE (System Architecture Evolution): With the very high data rate and low latency requirements
for 3G LTE, it is necessary to evolve the system architecture to enable the improved performance
to be achieved. One change is that a number of the functions previously handled by the core network
have been transferred out to the periphery. This provides a much "flatter" form of network
architecture. In this way latency times can be reduced, and data can be routed more directly to its
destination.

The speed in LTE is increased by the upsurge of narrowband carriers without changing the parameters
of the actual narrowband channels. Few bandwidths are dedicated for the LTE standard: from 1.25 MHz
up to 20 MHz. In order to accommodate the needs of the subscribers, the UE (User Equipment) vendors
should produce devices that support those bandwidths. The usage of the particular bandwidth depends on
the band utilized (for example band 3, from 1710-1785 MHz for uplink channel and 1805-1880 MHz for
the downlink channel, according to the European standards). For example, with adequate signal conditions
in a 20-MHz carrier, data speeds beyond 100 Mbit/s can be achieved. To separate the uplink and downlink
channels, LTE uses FDD (Frequency Division Duplexing) in most European countries. Some countries
have adopted the TDD (Time Division Duplexing), due to the conditions and therefore, the air interfaces
of both versions differ significantly. Accordingly, the usage of some LTE devices can be restricted between
these areas due to these differences. To address this drawback, the vendors are issuing devices with an air
interface that can support the both operational modes, with exclusion of some UE that support either FDD
or TDD-capable transmissions. However, the devices must be capable of backwards-compatibility, which
means they have to be capable for supporting GSM, GPRS, EDGE and UMTS as well. In the core network
of LTE, the interfaces and protocols are established to support sessions and routing of various traffic type
and amalgamated movement between the technologies, when the user is roaming between areas served by
different air interfaces. Since the LTE is completely IP-based, that trait can be regarded as a major change
with regard the previous standards. The 3G UMTS network core is based on traditional circuit-switched
packet core for voice, SMS and other services, inherited from GSM. Unlike that, the core network of LTE
is completely IP-based, which significantly simplifies the design and reduces the costs for implementation.
Analogously, that represents an easier way for management, maintenance and organization of the network
infrastructure (SAUTER, Martin, 2014).

The Long-Term Evolution defines particular bands of operation on different continents, which is decided
by the World Radio Conference (WRC). Table 2 represents the European bands on which LTE operates.

Table 2. European LTE frequencies (ETSI, 2017)

Band
Duplex
mode

f
(MHz)

Uplink
(MHz)

Downlink
(MHZ)

Duplex
spacing
(MHz)

Channel
bandwidths (MHz)

1 FDD 2100 1920 – 1980 2110 – 2170 190 5, 10, 15, 20

3 FDD 1800 1710 – 1785 1805 – 1880 95 1.4, 3, 5, 10, 15, 20

7 FDD 2600 2500 – 2570 2620 – 2690 120 5, 10, 15, 20

8 FDD 900 880-915 2110-2170 400 5, 10, 15, 20

20 FDD 800 832 – 862 791 – 821 −41 5, 10, 15, 20

28 FDD 700 703-748 758-803 55 3, 5, 10, 15, 20

32 FDD 1500 N/A 1452-1496 N/A 5, 10, 15, 20

38 TDD 2600 2570 – 2620 N/A 5, 10, 15, 20

13

Another key concept and issue in LTE is the latency, which ranges from 50 – 100ms delay for the
control-plane (the network core), and approximately 5ms delay for the user-plane. However, in practice
even though LTE has low air interface delays, measurements reveal that core network delays compromise
the overall round-trip time design requirement. LTE's break-before-make handover implementation causes
a data interruption at each handover of 40ms at the median level (LAURIDSEN, Mads et al., 2017, pp.156
- 162). The overall delay in 4G LTE networks is the main entity that needs to be addressed in order to
establish the evolution towards 5G. For that purpose, the 3GPP has introduced improvements at the physical
and MAC layer in Release 14 and 15 (C. S. ARENAS, John et al., 2017).

2.1.1. Architecture and components of LTE
The LTE network architecture resembles the 3G UTRAN network, thereby the term E-UTRAN

(Evolved Universal Terrestrial Radio Access Network). As portrayed in the Figure 1, the components of
the E-UTRAN network are connected to the evolved packet core (EPC). The constituents of the EPC are
routing the traffic from the physical E-UTRAN plane to the Internet, where each of them has a special
dedicated role. Principally, the architecture of the 4G LTE Evolved Packet Core is very similar to the 3G
UMTS and 2G GSM, with the difference that it is simplified and separated into radio network part and core
network part (COX, C., 2014). The LTE network is divided in two layers of abstraction: Access stratum
(AS) (3GPP, 2017) and Non-Access stratum (NAS) (3GPP, 2015). As the names indicate, the Access stratum
enables the UEs to establish a successful connection through the radio equipment, which is also called radio
access network. On the other side, the Non-Access stratum is the abstraction layer that defines the
communication between the UE and the core network in a transparent manner. Examples of NAS messages
are Update or Attach messages, Authentication messages, Service requests etc. (ALI-YAHIYA, Tara,
2011).

Figure 1. Components of the Evolved Packet Core

The first component is the Home Subscriber Server (HSS), which is in fact a MySQL database
containing the users. Accessing the database is regulated with the DIAMETER protocol (FAJARDO, V. et
al., 2012), which provides Authentication, Authorization and Accounting (AAA). The S6a is the
DIAMETER IP interface through which the MME communicates with the HSS database. The HSS has all

14

the user parameters required for successful authentication of the UE (User Equipment), i.e. mobile phone,
with the EPC. The most important parameters are (COX, C., 2014):

 The International Mobile Subscriber Identity (IMSI), which is a unique identifier of a subscriber.
The IMSI has the Mobile Country Code (MCC) and Mobile Network Code (MNC), which
identifies the user when roaming abroad in order to locate the home network and contact the HSS.
The IMSI code is embedded into the SIM card.

 Authentication information for generating encryption keys each session

 Circuit-switched service features as the Mobile Subscriber Integrated Service Digital Network
(MSISDN or known as a telephone number). This service allows the subscriber to utilize the GSM
and UMTS networks for voice calls, instead of using IP-based LTE.

 Packet-switched service features as the Access Point Names (APNs). This refers to the PDN
(Packet Data Network) that the subscribers are going to use in order to access the IP network
through the Packet Gateway (P-GW).

 IMS-specific information

 The ID of the particular MSC (Mobile Switching Center, that is a protocol of GSM and UMTS)
for correct routing of circuit-switched calls and SMS messages

 The ID of the SGSN (Serving GPRS Support Node) or MME (Mobility Management Entity). This
is used in case there are changes in the user’s profile, so the updates can be pushed to the other
network elements.

The next element of the EPC is the Packet Data Network Gateway (P-GW). This gateway enables the
EPC to communicate to the outside world through SGi interface. The SGi interface is utilized by the P-GW
for communication with external devices or other packet data networks, operator’s servers, the Internet or
some IP multimedia subsystem. As previously stated, the packet data network is identified by APN (Access
Point Name), found in the HSS database. An operator can define few APN names for different purposes,
for example: one access point name for accessing the Internet and another one for accessing IP multimedia
subsystem. Those APNs are saved as entries in the mobile device, which should automatically connect to
the default packet data network, such as the Internet (COX, C., 2014).

The Serving Gateway (S-GW) is another type of router that forwards data between the eNB base station
and the P-GW. One network usually contains multiple S-GWs, which have the role of tracking the mobile
devices in certain geographical region. Every device that is attached to a base station is assigned to a certain
S-GW but can also change the router if it roams to another geographical region with different eNB and
dedicated S-GW (COX, C., 2014). In the radio network plane, the S-GW terminates the S1-UP GTP (GPRS
Tunneling Protocol) tunnels, and on the core network plane, it terminates the S5-UP GTP tunnels to the
gateway to the outside world. The S1 and S5 tunnels are independent and are interchanged by requirement.
For example, when there is a handover to an eNB under the control of the same MME and S-GW, only the
S1 tunnel needs to be modified to redirect the user’s stream to and from the new base station. On the other
hand, if the connection is handed over to an eNB that is under the control of another MME and S-GW, the
S5 tunnel has to be modified as well (SAUTER, Martin, 2014). The tunnel generation and modification are
controlled by the MME, which informs the S-GW via the S11 interface (Figure 1). In fact, the S11 interface
utilizes the same GTP-C control protocol from GSM and UMTS by presenting new messages. UDP
protocol is utilized as a transport protocol instead of SCTP, and the IP protocol is used in the network layer
(SAUTER, Martin, 2014).

The Mobility Management Entity (MME) is the most complex component of the EPC. It controls the
high-level operation of the mobile devices. Namely, the MME handles the users and the eNBs at the core
network. Bigger networks utilize multiple MMEs to handle the bigger load and to enable redundancy and
fault-tolerance. Since the MME is not responsible for the air interface operations, the signaling it exchanges

15

with the radio network is referred to as Non-Access Stratum (NAS) signaling. The following tasks are the
main obligations of MME (SAUTER, Martin, 2014):

 The MME handles the user authentication with the core network. Since it communicates directly
with the HSS via the S6a interface, the user authentication requests are forwarded from the eNB
through the S1 interface to MME and then the MME proceeds with the DIAMETER protocol. If
successful, the MME forwards encryption keys to the eNB so that further signaling exchange
encryption proceeds over the radio network.

 Another task that MME has is the establishment of bearers. Since it is not directly implicated in the
exchange of user data packets between mobile devices and the Internet, the MME establishes IP
tunnels between the eNB and other EPC components as the P-GW. This includes selection of a
gateway router to the Internet if there is more than one gateway available.

 Non-Access Stratum mobility management. A mobile device that can find itself idle for some time
(usually 10-30 seconds) is released from the radio network. The device can roam between different
eNBs in a same Tracking Area (TA), without notifying the network in order to save battery capacity
and signaling overhead. In case when new data packets from the Internet arrive at the device while
in this state, the MME sends paging messages to all base stations that are part of the current
Tracking Area of the mobile device. Once the device responds to the paging, the bearers are
reinitialized.

 If there is no support for X2 interface, the MME aids the forwarding of handover messages between
the two involved base stations. The MME is also responsible for establishing and modification of
the user data IP tunnel after a handover, in case different core network routers are selected.

 The MME dictates interworking with other radio networks. This refers to devices that reach the
limit of the LTE coverage area and roam into areas that are covered by GSM or UMTS. In this
case, the eNB decides to hand over the device to the GSM or UMTS networks or instructs it to
perform a cell change to suitable cell. During this process, the MME communicates with the GSM
or UMTS network to manage the transfer of the device successfully.

 SMS and voice support are managed by MME in LTE. Since LTE is IP-based network, still the
SMS and voice services are in high demand. The MME maps these services to the UMTS and GSM
circuit-switched core networks. To perform this, the MME initializes a number of different
interfaces (S5, S6a, S11 and SGs).

When compared to GPRS and UMTS, the tasks of MMEs are the same as those of the SGSN. The major
difference between the two entities is that while the SGSN is also responsible for forwarding the user data
between the core network and the radio network, the MME deals only with the signaling tasks described
above and leaves the user data to the Serving Gateway (S-GW), which is described in the next section
(SAUTER, Martin, 2014).

A. Protocol architecture in LTE
Generally, in an LTE network, the protocols can be divided into two groups: Control-plane protocols

and User-plane protocols. The control-plane protocols are handling Access Stratum (AS) radio-specific
functionalities, whereas the user-plane protocols define three main tasks: handling IP packets, radio link
control and MAC-layer particularities (ALI-YAHIYA, Tara, 2011).

Control plane protocols
As represented in Figure 2, the greyed part of the stack represents the Access Stratum protocols. The

AS interacts with the Non-Access Stratum (NAS), also referred to as “upper layers”. Among other
functions, the NAS control protocol handle Public Land Mobile Network (PLMN) selection, tracking area
update, paging, authentication and Evolved Packet System (EPS) bearer establishment, modification and

16

release. The applicable AS-related procedures largely depend on the Radio Resource Control (RRC) state
of the User Equipment (UE), which can be either RRC_IDLE or RRC_CONNECTED. A UE in RRC_IDLE
performs cell selection and reselection – in other words, it decides on which cell to camp. The cell
(re)selection process takes into account the priority of each applicable frequency of each applicable Radio
Access Technology (RAT), the radio link quality and the cell status (i.e. whether a cell is barred or
reserved). An RRC_IDLE UE monitors a paging channel to detect incoming calls, and also acquires system
information. The System Information (SI) mainly consists of parameters by which the network (E-UTRAN)
can control the cell (re)selection process. In RRC_CONNECTED, the E-UTRAN allocates radio resources
to the UE in order to facilitate the transfer of unicast data via shared data channels. To support this operation,
the UE monitors an associated control channel used to indicate the dynamic allocation of the shared
transmission resource in time and frequency. The UE provides the network with reports of its buffer status
and of the downlink channel quality, as well as neighborhood cell measurement information to enable E-
UTRAN to select the most appropriate cell for the UE. These measurement reports include cells using other
frequencies or RATs. The UE also receives SI, consisting mainly of information required to use the
transmission channels. To extend its battery lifetime, a UE in RRC_CONNECTED may be configured with
a Discontinuous Reception (DRX) cycle. RRC, as specified in the figure, is the protocol by which the E-
UTRAN controls the UE behavior in RRC_CONNECTED. RRC also includes the control signaling
applicable for a UE in RRC_IDLE, namely paging and SI, which altogether defines the connection control
in LTE (VELDE, Himke van der, 2011, pp.57-86).

Figure 2. LTE Control plane protocol stack

The more important entities for establishment and connection detachment in LTE are the constituents
that carry system information, namely the carried System Information Blocks (SIBs) (VELDE, Himke van
der, 2011, pp.57-86). They constitute functionality-related parameters required for a successful
communication between the UE and the NAS:

 Master Information Block (MIB): Includes limited number of the most frequently transmitted
parameters, which are essential for a UE’s initial access to the network

 System Information Block Type 1 (SIB1): Contains parameters needed to determine if a cell
is suitable for cell selection, as well as information about the time-domain scheduling of other
SIBs.

 System Information Block Type 2 (SIB2): Includes common and shared channel information.

 SIB3-SIB8: Include parameters used to control intra-frequency, inter-frequency and inter-RAT
cell reselection.

 SIB9: Used to signal the name of a Home eNodeB (HeNB).

17

 SIB10-SIB12: Include the Earthquake and Tsunami Warning Service (ETWS) notifications and
Commercial Mobile Alert System (CMAS) warning messages

 SIB13: Includes MBMS (Multimedia Broadcast Multicast Service) related control information.

The way connections are established in LTE are described in Figure 3, where the RRC connection
involves establishment of SRB1 and the transfer of the initial uplink NAS message (the SRB0-2 are the
signaling radio bearers, which are used for the transfer of RRC and NAS signaling messages and elucidated
in the succeeding subsection. The same signaling radio bearers carry also information about the previously-
explained channels assignment). The NAS message triggers the establishment of the S1 connection, which
initiates a subsequent step during which E-UTRAN activates Access Stratum security and starts the
following SRB2 (VELDE, Himke van der, 2011, pp.57-86).

Figure 3. RACH procedure connection establishment in LTE

User plane protocols
The user-plane Layer-2 architecture incorporates three sublayers as shown in the encapsulation in Figure

4:

 Packet Data Convergence Protocol (PDCP): This protocol resides on the physical Layer 1
and processes RRC messages in the control plane and IP packets in the user plane. In accordance
to the radio bearer, the main functions of the PDCP layer are header compression, security
(integrity protection and ciphering), also support for encoding and retransmission during
handovers. For radio bearers which are configured to use PDCP layer, there is one PDCP entity
per radio bearer. The PDCP layer manages data streams in the user plane as well as in the control
plane, only for the radio bearers using either a Dedicated Control Channel (DCCH) or a
Dedicated Transport Channel (DTCH). The architecture of the PDCP layer differs for user plane
data and control plane data. Two different types of PDCP PDU are defined in LTE: PDCP Data
PDUs and PDCP Control PDUs. The PDCP Data PDUs are used for both control and user plane

18

data, whereas PDCP Control PDUs are only used to transport the feedback information for
header compression and for PDCP status reports, which are used in case of handover.
(FISCHER, P. et al., 2011, pp.87-120).

 Radio Link Control (RLC): This protocol is situated on Layer-2 and the main functions it
performs are segmentation and reassembly of upper layer packets in order to adapt them to the
size which can actually be transmitted over the radio interface. For radio bearers which need
error-free transmission, the RLC layer also performs retransmission to recover out-of-order
reception due to Hybrid Automatic Repeat Request (HARQ) operation in the lower layer. One
RLC entity exists per radio bearer. The RLC layer is located between the PDCP layer and the
MAC layer (Figure 4). It communicates with the PDCP layer through a Service Access Point
(SAP), and with the MAC layer via logical channels. The RLC layer reformats PDCP PDUs in
order to fit them into the size indicated by the MAC layer; that is, the RLC transmitter segments
and/or concatenates the PDCP PDUs, and the RLC receiver then reassembles the RLC PDUs to
reconstruct the PDCP PDUs. Additionally, the RLC reorders the RLC PDUs if they are received
out of sequence due to the HARQ operation performed in the MAC layer. This is the key
difference from UMTS, where the HARQ reordering is performed in the MAC layer. The
advantage of HARQ reordering in RLC is that no additional SN and reception buffer are
required for the HARQ reordering and RLC-level ARQ related operations. The functions of the
RLC layer are performed by RLC entities. An RLC entity is configured in one of three data
transmission modes: Transparent Mode (TM), Unacknowledged Mode (UM) and
Acknowledged Mode (AM). In AM, special functions are defined to support retransmission.
When UM or AM is used, the choice between the two modes is made by the eNB during the
RRC radio bearer setup procedure, based on the QoS requirements of the EPS bearer
(FISCHER, P. et al., 2011, pp.87-120).

 Media Access Control (MAC): The Layer-2/3 MAC is analogous to the TCP/IP MAC layer,
which in LTE actually performs multiplexing of data from different radio bearers. Therefore,
there is only one MAC entity per UE. By deciding the amount of data that can be transmitted
from each radio bearer and instructing the RLC layer as to the size of packets to provide, the
MAC layer aims to achieve the negotiated Quality of Service (QoS) for each radio bearer. For
the uplink (UL), this process includes reporting to the eNB the amount of buffered data for
transmission. Specifically, the MAC layer consists of a HARQ entity, a
multiplexing/demultiplexing entity, a logical channel prioritization entity, a random access
control entity and a controller which performs various control functions. The MAC layer
conducts multiplexing and demultiplexing between logical and transport channels as well as
transport channels by constructing MAC PDUs, known as Transport Blocks (TBs), from MAC
SDUs received through the aforementioned logical channels. Afterwards, the MAC layer in the
receiving side recovers MAC SDUs from MAC PDUs received through transport channels. To
elucidate the HARQ entity, its responsibility for the transmission and receiving of HARQ
operations is explicated; indicating, that the transmit HARQ operation includes (re)transmission
of TBs and reception and processing of ACK/NACK signaling. The receive HARQ operation
includes reception of TBs, combining of the received data and generation of ACK/NACK
signaling. In order to enable continuous transmission while previous TBs are being decoded, up
to eight HARQ processes in parallel are used to support multiprocess ‘Stop-And-Wait’ (SAW)
HARQ operation. SAW operation means that upon transmission of a TB, a transmitter stops
further transmission and waits for feedback from the receiver. When a NACK is received, or
when a certain time elapses without receiving any feedback, the transmitter retransmits the TB.
Such a simple SAW HARQ operation cannot on its own utilize the transmission resources
during the period between the first transmission and the retransmission. Therefore, multiprocess

19

HARQ interlaces several independent SAW processes in time so that all the transmission
resources can be used. Each HARQ process is responsible for a separate SAW operation and
manages a separate buffer (FISCHER, P. et al., 2011, pp.87-120). The MAC layer is comprised
of various logical, transport and physical channels which are detailed in the incoming section.

Figure 4. LTE User plane protocol stack

B. Interfaces
LTE defines various interfaces for communication between the different constituents, as shown in Figure

1. Namely, there are several significant interfaces that are residing in the EPC among which the most
important is the S1 which defines the communication between the eNB and the EPC through the MME, as
well as communication between base-stations:

 S1 interface – The S1 interface is split into two interfaces, one for the control plane and the
other for the user plane. At the control plane (see Figure 2), the S1 is based on the SCTP (Stream
Control Transmission Protocol) protocol (PALAT, S. and Godin, P., 2011, pp.25-55).
SCTP is constructed to carry Public Switched Telephone Network (PSTN) signaling messages
over IP networks, but is also efficient in variety of other applications. SCTP is a reliable
transport protocol operating on top of a connectionless packet network such as IP. It offers the
following services to its users: acknowledged error-free non-duplicated transfer of user data,
data fragmentation to conform to discovered path MTU size, sequenced delivery of user
messages within multiple streams, with an option for order-of-arrival delivery of individual user
messages, optional bundling of multiple user messages into a single SCTP packet, and network-
level fault tolerance through supporting of multi-homing at either or both ends of an association.
SCTP delivers some of the equivalent properties of UDP and TCP: it is message-oriented like
UDP and guarantees a reliable, in-sequence transport of messages with congestion control like
TCP. SCTP differs by that it provides multi-homing and redundant paths to increase resilience
and reliability. SCTP applications acquiesce their data to be transferred in messages (groups of
bytes) to the SCTP transport layer. SCTP groups messages and control information into distinct
portions (data chunks and control chunks), each identified by a chunk header. The protocol can
fragment a message into a number of data chunks, but each data chunk contains data from only
one user message. SCTP bundles the chunks into SCTP packets. The SCTP packet, which is
submitted to the Internet Protocol, consists of a packet header, SCTP control chunks (when
necessary), followed by SCTP data chunks (when available). One can characterize SCTP as

20

message-oriented, meaning it transports a sequence of messages (each being a group of bytes),
rather than transporting an unbroken stream of bytes as does TCP. As in UDP, in SCTP a sender
sends a message in one procedure, and that particular message is conceded to the receiving
application process in a single action. Contrary to that, TCP is a stream-oriented protocol,
transferring streams of bytes steadfastly and in organized manner. However, TCP does not
inform the receiver about the number of times the sender application called on the TCP transport
passing it groups of bytes to be sent out. At the sender, TCP simply affixes more bytes to a
queue of bytes anticipating to be sent over the network, rather than maintaining a queue of
individual distinct outbound messages which must be conserved per se. SCTP is referred to as
‘multi-streaming’ due to the aptitude for transmission of several independent streams of chunks
in parallel; for example, transmitting web page images together with the web page text.
Practically, SCTP encompasses pairing several connections into a single SCTP association,
operating on messages (or chunks) rather than bytes. TCP preserves byte order in the stream by
including a byte sequence number with each segment. SCTP, on the other hand, assigns a
sequence number or a message-id to each message sent in a stream. This allows independent
ordering of messages in different streams. However, message ordering is optional in SCTP; a
receiving application may choose to process messages in the order of receipt instead of in the
order of sending (IETF, 2007) [SCTP – Stream Control Transmission Protocol standard].
A further simplification in LTE (compared to the UMTS Iu interface, for example) is the direct
mapping of the S1-AP (S1 Application Protocol) on top of SCTP which results in a simplified
protocol stack with no intermediate connection management protocol. The individual
connections are directly handled at the application layer. Multiplexing takes place between S1-
AP and SCTP whereby each stream of an SCTP association is multiplexed with the signaling
traffic of multiple individual connections. Another point of flexibility that comes with LTE lies
in the lower layer protocols for which fully optionality has been left regarding the choice of the
IP version and the choice of the data link layer (PALAT, S. and Godin, P., 2011, pp.25-55). On
the user plane, the S1 interface is based on the GTP-U (GPRS Tunneling Protocol-User plane)
and UDP, inherited from the UMTS networks. One of the advantages of using GTP-U is its
inherent facility to identify tunnels and also facilitate intra-3GPP mobility. The IP version
number and the data link layer have been left fully operational, as for the control plane stack. A
transport bearer is identified by the GTP tunnel endpoints and the IP address (source Tunneling
End ID (TEID), destination TEID, source IP address, destination IP address). The S-GW
(Service Gateway) sends downlink packets of a given bearer to the eNB IP address (received in
S1-AP) associated to that particular bearer. Similarly, the eNB sends upstream packets of a
given bearer to the EPC IP address (received in S1-AP) associated to that particular bearer. The
initialization of S1-MME control plane interface starts with the identification of the MMEs to
which the eNB must connect, followed by the setting up of the Transport Network Layer (TNL).
Only one SCTP association is established between one eNB and one MME, but with multiple
pairs of streams for avoiding head-of-line blocking. When a UE is associated to a specific MME,
a context is created and saved for the particular UE in the MME. This particular MME is selected
by the NAS Node Selection Function (NSSF) in the first eNB from which the UE entered the
pool. When the UE becomes active under the coverage of a particular eNB in the pool area, the
MME provides the UE context information to this eNB using the
‘INITIAL_CONTEXT_SETUP_REQUEST’ message, which allows the eNB in turn to create
a context and manage the UE while it is in active mode. Besides these functionalities, the S1
interface also enables load-balancing of the traffic that reaches the MME from the eNB and the
UEs attached to it. Bearer management is initiated via S1 with the
BEARER_SETUP_REQUEST and BEARER_SETUP_RESPONSE messages. When a

21

handover process starts, the S1 interface communicates with the X2 interface in order to acquire
information about the UE that is subject to the handover from the current to the next eNB
(PALAT, S. and Godin, P., 2011, pp.25-55).

 S3 interface - S3 is a GTP signaling-only interface, used between the Serving GPRS Support
Node (SGSN) and the Mobility Management Entities (MME) to support inter-system
mobility. In other words, the S3 interface serves as a control interface between the MME and
2G/3G SGSNs (3GPP, 2010) [Specification TS 29.303 v9.1.0: Stage 3, Release 9].

 S5/S8 interfaces – The communication between the Service Gateway (SGW) and the Packet
Gateway (PGW) is defined via the S5/S8 interfaces. Technically, the S5 is identical as S8
interface with the difference that S8 is used when roaming between different operators while S5
is network internal. The S5 / S8 interface will exist in two flavors one based on Gn/GTP (SGSN-
GGSN) and the other will use the IETF specified Proxy Mobile IP (PMIP) for mobility control
with additional mechanism to handle QoS. The motivation for the PMIP flavor of S5/S8 has
mainly come from WiMAX/CDMA2000 operators and vendors interested in inter-working with
E-UTRAN, GERAN or UTRAN, or re-using the 3GPP EPS specified mechanism also for intra
WiMAX / CDMA2000 mobility. It has been agreed in 3GPP that the usage of PMIP or GTP on
S5 and S8 should not impact RAN behavior or impact the terminals. The usage of PMIP or GTP
on S5/S8 will not be visible over the S1 interface or in the terminal. In the non-roaming case,
the S-GW and P-GW functions can be performed in one physical node. The S5/S8 is a many-
to-many interface (3GPP, 2010) [Specification TS 23.402 v 9.5.0 Release 9].

 S6a interface – Handles the DIAMETER authentication procedure (IETF, 2003) [RFC3588
standard] from the MME towards the HSS database of UEs that request attachment procedures
on the specific eNB (3GPP, 2015) [3GPP specification 29.272].

 S10 interface - This is a control interface between the MMEs which will be very similar to the
S3 interface between the SGSN and MME. The interface is based on Gn/GTP-C
(SGSNSGSN) with additional functionality and is a many-to-many interface (3GPP, 2010)
[Specification TS 29.303 v9.1.0: Stage 3, Release 9].

 S11 interface – Establishes communication between the MME and the S-GW. The interface is
based on Gn/GTP-Control (GTP-C) with some additional functions for paging coordination,
mobility compared to the legacy Gn/GTP-C (SGSN-GGSN) interface (3GPP, 2015)
[Specification 29.274: EPS; eGPRS, GTPv2-C, stage 3].

 X2 interface – Interconnects two eNBs. The protocol stack at which X2 resides is the same as
the S1 interface; specifically, it uses the SCTP protocol to establish a communication between
two or eNodeBs. This way, the succeeding eNB receives signaling information from the
preceding eNB for a UE that is roaming and is subject to a handover from the latter to the former.
The exchange of load information between eNBs is of key importance in the flat architecture
used in LTE, as there is no central Radio Resource Management (RRM) node as in the case of
UMTS with the Radio Network Controller (RNC). The exchange information can be of a load-
balancing character or interference coordination (PALAT, S. and Godin, P., 2011, pp.25-55).

 SGi/Gi interfaces – The SGi interface connects the PGW to an external network (PDN), and
the Gi interface connects the GGSN to an external network (PDN). The interface is based on
the IP packet (user data/payload/data plane). It also enables exchange of signaling and routing
redistribution (OSPF, BGP, RIP routing etc.). The interface can connect to the
RADIUS/DIAMETER servers if the service is used. The implementation of SGi and Gi
interfaces in real topology network combine all IP various packets in one routing table (virtual
router or routing instance). It is possible to enable dynamic routing protocols such as OSPF,
RIP, ISIS, BGP or EIGRP etc., for advertising PGW/GGSN IP address to external networks.
Usually the PGW/GGSN can enable minimum basic OSPF routing and also enable redundancy

22

mechanism such as VRRP (Virtual Router Redundancy Protocol) (CISCO, 2017) for multiple
nodes (3GPP, 2010) [Specification 29.061: Release 9; v9.3.0].

C. Quality of Service (QoS) and EPS bearers
In a real scenario, the UE runs multiple applications simultaneously, which may require different Quality

of Service parameters. For example, one can use the UE for engaging in a VoIP call while at the same time
browsing the Internet or downloading a file. The VoIP call requires lower latency and jitter, whereas the
file transfer needs much lower packet loss rate. To support the different requirements for QoS factors,
bearers are being established that can be associated with a particular QoS feature. Bearers can be classified
into two categories: Minimum Guaranteed Bit Rate (GBR) bearers and Non-GBR bearers. The former ones
are used for applications such as VoIP and have associated a GBR value for which dedicated transmission
resources are permanently allocated at bearer establishment. If there are resources available, then higher bit
rates than the defined GBR may be allowed for the particular bearer. The Non-GBR bearers do not guarantee
any particular bit rate. Accordingly, they can be used for FTP applications, web browsing and similar
appliances. For these bearers, no bandwidth resources are allocated permanently to the bearer (PALAT, S.
and Godin, P., 2011, pp.25-55).

In the Access Stratum (AS), the eNB sets the bearers up and ensures that the adequate QoS parameters
are assigned to each. A bearer has a Class Identifier (QCI) and an Allocation and Retention Priority (ARP)
associated. The QCI is characterized by priority, packet delay budget and acceptable packet loss rate. The
QCI label for a bearer determines the way it is handled in the eNB. The CQIs are standardized and thus the
vendors can all have the same understanding of the underlying service characteristics and thus provide the
corresponding treatment, including queue management, conditioning and policy strategy. This ensures that
the LTE operator can expect uniform traffic handling behavior throughout the network regardless of the
manufacturers of the eNB equipment (see Table 3) (PALAT, S. and Godin, P., 2011, pp.25-55).

Table 3. Standardized QoS Class Identifiers (QCI) for LTE (PALAT, S. and Godin, P., 2011, pp.25-55)

QCI
Resource
type

Priority
Packet
delay
budget (ms)

Packet
error loss
rate

Example services

1 GBR 2 100 10-2 Conversational voice

2 GBR 4 150 10-3 Conversational video (live
streaming)

3 GBR 5 300 10-6 Non-conversational video (buffered
streaming)

4 GBR 3 50 10-3 Real-time gaming

5 Non-GBR 1 100 10-6 IMS signaling

6 Non-GBR 7 100 10-3 Voice, video (live streaming),
interactive gaming

7 Non-GBR 6 300 10-6 Video (buffered streaming)

8 Non-GBR 8 300 10-6 TCP based (e.g. WWW, e-mail)
chat, FTP, p2p file sharing,
progressive video call etc.

9 Non-GBR 9 300 10-6

The priority and packet delay budget from the QCI label determine the RLC mode configuration, and
how the scheduler in the MAC handles packets sent over the bearer (e.g. in terms of scheduling policy,
queue management policy and rate shaping policy). The ARP of a bearer is used for call admission control

23

(for example, to decide whether or not the requested bearer should be established in case of radio
congestion. It also governs the prioritization of the bearer for pre-emption with respect to a new bearer
establishment request. Once successfully established, a bearer’s ARP does not have any impact on the
bearer-level packet forwarding treatment. Such packet forwarding treatment should be explicitly
determined by the other bearer-level QoS parameters such as QCI, GBR and MBR (PALAT, S. and Godin,
P., 2011, pp.25-55).

As shown in Figure 5, an EPS bearer has to cross multiple interfaces (the S5/S8 interface from the P-
GW to the S-GW, the S1 interface from the S-GW to the eNB and the radio interface (LTE-Uu) from the
eNB to the UE. Across each interface, the EPS bearer is mapped onto a lower layer bearer, each with its
own bearer identity. Each node must keep track of the binding between the bearer IDs across its different
interfaces. An S5/S8 bearer transports the packets of an EPS bearer between a P-GW and an S-GW. The S-
GW stores a one-to-one mapping between a S1 bearer and a S5/S8 bearer. The bearer is identified by the
GTP tunnel ID across both interfaces. A S1 bearer transports the packets of an EPS bearer between the S-
GW and the eNB. A radio bearer transports the packets of an EPS bearer between a UE and an eNB. An E-
UTRAN Radio Access Bearer (E-RAB) refers to the concatenation of an S1 bearer and the corresponding
radio bearer. An eNB stores one-to-one mapping between a radio bearer ID and a S1 bearer to create the
mapping between the two (PALAT, S. and Godin, P., 2011, pp.25-55).

Figure 5. Overall EPS bearer service architecture

IP packets mapped to the same EPS bearer receive the same bearer-level packet forwarding treatment
(scheduling policy, queue management policy, rate shaping policy, RLC configuration). Providing different
bearer-level QoS thus requires that a separate EPS bearer is established for each QoS flow, and use IP
packets must be filtered into the different EPS bearers. Packet filtering into different bearers is based on
Traffic Flow Templates (TFTs). The TFTs use IP header information such as source and destination IP
addresses and Transmission Control Protocol (TCP) port numbers to filter packets such as VoIP from web
browsing traffic, so that each can be sent down the respective bearer with appropriate QoS. An Uplink TFT
(UL TFT) associated with each bearer in the UE, filters IP packets to EPS bearers in the uplink direction.
A Downlink TFT (DL TFT) in the P-GW is a similar set of downlink packet filters. As part of the procedure
by which a UE attaches to the network, the IE is assigned an IP address by the PGW and at least one bearer
is established, called the default bearer, and it remains established through the lifetime of the PDN
connection, in order to provide the UE with always-on IP connectivity to that PDN. The initial bearer-level
QoS parameter values of the default bearer are assigned by the MME, based on subscription data retrieved

24

from the HSS. The PCEF may change these values in interaction with the PCRF or according to local
configuration. Additional bearers called dedicated bearers can also be established at any time during or after
completion of the attach procedure. A dedicated bearer can be either GBR or Non-GBR (the default bearer
always has to be a non-GBR bearer since it is permanently established). The distinction between default
and dedicated bearers should be transparent to the access network (i.e. E-UTRA). Each bearer has an
associated QoS, and if more than one bearer is established for a given UE, Then each bearer must also be
associated with appropriate TFTs. These dedicated bearers could be established by the network, based for
example on a trigger from the IMS domain, or they could be requested by the UE. The dedicated bearers
for a UE may be provided by one or more P-GWs. The bearer-level QoS parameter values for dedicated
bearers are received by the P-GW from the PCRF and forwarded to the S-GW. The MME only transparently
forwards those values received from the S-GW over the S11 interface to the E-UTRAN (PALAT, S. and
Godin, P., 2011, pp.25-55).

2.1.2. The E-UTRAN radio network
The E-UTRAN system is depicted in Figure 6. It handles the radio communication between the mobile

device and the evolved packet core and just has one part, the evolved Node B (eNB). Each eNB is a base
station that controls the mobiles in one or more cells. A mobile communicates with just one base station
and one cell at a time, so there is no equivalent of the soft handover state from UMTS. The base station that
is communicating with a mobile is known as its serving eNB. The eNB has two main functions. Firstly, the
eNB sends radio transmissions to all its mobiles on the downlink and receives transmissions from them on
the uplink, using the analogue and digital signal processing functions of the LTE air interface. Secondly,
the eNB controls the low-level operation of all its mobiles, by sending them signaling messages such as
handover commands that relate to those radio transmissions. In carrying out these functions, the eNB
combines the earlier functions of the Node B and the radio network controller, to reduce the latency that
arises when the mobile exchanges information with the network. Each base station is connected to the EPC
with the S1 interface. It can also be connected to nearby base stations by the X2 interface, which is used
for signaling and packet forwarding during handover (COX, C., 2014).

Figure 6. Architecture of the E-UTRAN radio access network

25

The architecture of the Evolved UMTS terrestrial radio access network is same as the 3G UMTS radio
access network (Figure 6). The X2 interfaces serve for eNB to eNB communication and are optional.
Nearby base-stations only need to communicate to each other because of handovers, and distant base
stations do not need to interact at all. Another reason the X2 interface is optional is because one X2
communication can be carried via two S1 instances in a slower manner, due to the signaling through the
EPC. X2 interfaces can be configured automatically via self-optimization parameter functions (COX, C.,
2014).

A. Transport network
In a usual scenario, the S1 and X2 interfaces do not represent direct physical connections. As represented

in Figure 7, the information is routed across an underlying IP transport network (which is usually optical).
In reality, the base stations and the components have their IP addresses, which enables them to communicate
between each other, and therefore the X2 and S1 are best understood as logical connections through which
the devices exchange information (COX, C., 2014).

Figure 7. Architecture of the E-UTRAN transport network

B. Physical, transport and logical channels
In order to understand the structure in later stages of the virtualized OpenAirInterface5G LTE network,

some elementary concepts of currently-employed LTE channels are described. Each channel has parameters
that need to be set up for the network to run properly. In case of misconfiguration of some parameters of a
channel, then the stability of the access stratum will suffer. The channels are divided in three categories,
and they represent a base from which a UE establishes connection to the network. To be able to transmit
data across the air interface, LTE defines various channels. These channels are employed to differentiate
the different types of data and transport it through the radio access network. Namely, the different channels
allow interfacing to the higher layers within the LTE protocol stack and logically define the segregation of
the data. To efficiently support various QoS classes of services, LTE adopts a hierarchical channel structure.

26

There are three different channel types defined in LTE—logical channels, transport channels, and physical
channels, each associated with a service access point (SAP) between different layers. These channels are
used by the lower layers of the protocol stack to provide services to the higher layers (GHOSH, A. et al.,
2011):

 Physical channels: Each physical channel corresponds to a set of resource elements in the time-
frequency grid that carry information from higher layers. The basic entities that make a physical
channel are resource elements and resource blocks. A resource element is a single subcarrier over
one OFDM symbol, and typically this could carry one (or two with spatial multiplexing) modulated
symbol(s). A resource block is a collection of resource elements and in the frequency domain this
represents the smallest quanta of resources that can be allocated (GHOSH, A. et al., 2011).

 Transport channels: The transport channels are used by the PHY to offer services to the MAC.
A transport channel is basically characterized by how and with what characteristics data is
transferred over the radio interface, that is, the channel coding scheme, the modulation scheme,
and antenna mapping. Compared to UTRA/HSPA, the number of transport channels in LTE is
reduced since no dedicated channels are present (GHOSH, A. et al., 2011).

 Logical channels: Logical channels are used by the MAC to provide services to the RLC. Each
logical channel is defined based on the type of information it carries. In LTE, there are two
categories of logical channels depending on the service they provide: logical control channels and
logical traffic channels (GHOSH, A. et al., 2011).

Each channel categories can be found separately on the uplink (UL) and the downlink (DL). On the
downlink, LTE has a variety of channels, each offering different functionality (see Figure 8).

Figure 8. LTE Downlink channels

Starting from the physical channels, the differences are pointed out with regard the different
requirements and operation:

 Physical Broadcast Channel (PBCH): This physical channel carries system information for UEs
requiring accessing the network. It only carries what is termed Master Information Block, MIB,

27

messages. The modulation scheme is always QPSK and the information bits are coded, and rate
matched. The bits are then scrambled using a scrambling sequence specific to the cell to prevent
confusion with data from other cells. The MIB message on the PBCH is mapped onto the central
72 subcarriers or six central resource blocks regardless of the overall system bandwidth. A PBCH
message is repeated every 40ms, i.e. one TTI of PBCH includes four radio frames. The PBCH
transmissions has 14 information bits, 10 spare bits, and 16 CRC bits (POOLE, I., 2017).

 Physical Downlink Shared Channel (PDSCH): As the name implies, The PDSCH channel is the
main data bearing channel which is allocated to users on a dynamic and opportunistic basis. The
PDCH is also used to transmit broadcast information not transmitted on the PBCH which include
System Information Blocks (SIB) and paging & RRC signaling messages. PDSCH is also used to
transfer application data. There are two types of messages being transmitted through the PDSCH
channel:

- Paging messages. These are broadcast using PDSCH channel. LTE UE in RRC IDLE mode
monitor PDCCH for paging indications. Based on trigger, it will decode the paging
message carried in PDSCH RBs.

- Downlink RRC Signaling messages. These are carried by PDSCH. Signaling Radio Bearers
(SRB) will use PDSCH. Every connection usually will have its own set of SRB (POOLE,
I., 2017).

 Physical Control Format Indicator Channel (PCFICH): This channel is used at the starting of
each 1ms subframe. It provides information about number of symbols used for PDCCH
transmission. The signaling values for PCFICH depends upon channel bandwidth. The same is
mentioned in the following Table 4 for different LTE channel bandwidths.

Table 4. PCFICH values for different channel bandwidths (RF WIRELESS WORLD, 2012)

 Channel Bandwidth
 1.4 MHz 3MHz 5MHz 10 MHz 15 MHz 20 MHz

PCFICH values 2, 3, 4 1, 2, 3

As denoted, 1.4MHz requires more time domain symbols compared to other channel bandwidths
due to less carriers in frequency domain. Signaling value depends on eNodeB RRM (Radio
Resource Management). It is directly connected to the number of active connections. Hence
PDCCH signaling increases parallelly with the number of active connections (RF WIRELESS
WORLD, 2012).

28

Figure 9. PCFICH subframe (RF WIRELESS WORLD, 2012)

From the Figure 9 it can be perceived that LTE PCFICH channel occupies 16 REs (Resource
Elements) in first OFDMA symbol of each 1ms frame. PCFICH uses QPSK modulation and hence
16 REs will occupy 32 bits. This 16REs are divided into 4 quadruplets. The position of which in
first OFDMA symbol depends on Channel BW and Physical layer cell identity.

As mentioned, each quadruplet is mapped to REG (Resource Element Group) with subcarrier
index k = k' and is as per following equation:

�� = (��� ���
��

2
) ∙ (����������2 ������)

The rest of three quadruplets are mapped to REGs spaces at intervals of (NDL-RB/2) * (Nsc per
RB /2) from the first quadruplet and each other. This way LTE PCFICH channel information is
spread across entire subframe as shown. The PCFICH carries CFI (Control Format Indicator) which
has a value ranging from 1 to 3. This CFI is coded to occupy complete PCFICH capacity of 32 bits
(RF WIRELESS WORLD, 2012).

Actual value = signaled value + 1 (for 1.4 MHz BW)

Actual value = signaled value (for all the channel BWs)

 Physical Multicast Channel (PMCH): This channel defines the physical layer structure to carry
Multimedia Broadcast and Multicast Services (MBMS). This control channel occupies the first 1,
2, or 3 OFDM symbols in a subframe extending over the entire system bandwidth. For PMCH
channel QPSK, 16QAM, 64QAM modulations are used. It carries MCH. Multicast Channel (MCH)
characterized by:

o requirement to be broadcast in the entire coverage area of the cell
- support for MBSFN combining of MBMS transmission on multiple cells
- support for semi-static resource allocation e.g. with a time frame of a long cyclic prefix

In Downlink, MTCH logical channel can be mapped to DL-SCH and MCH transport channels
(RF WIRELESS WORLD, 2012).

29

 Physical Downlink Control Channel (PDCCH): The main purpose of this physical channel is to
carry mainly scheduling information of different types:

- Downlink resource scheduling
- Uplink power control instructions
- Uplink resource grant
- Indication for paging or system information

The PDCCH contains a message known as the Downlink Control Information, DCI which

carries the control information for a particular UE or group of UEs. The DCI format has several
different types which are defined with different sizes. The different format types include: Type 0,
1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, and 4 (POOLE, I., 2017).

 Physical Hybrid ARQ Indicator Channel (PHICH): As the name indicates, this channel is used
to report the Hybrid ARQ status. It carries the HARQ ACK/NACK signal indicating whether a
transport block has been correctly received. The HARQ indicator is 1 bit long - "0" indicates ACK,
and "1" indicates NACK. The PHICH is transmitted within the control region of the subframe and
is typically only transmitted within the first symbol. If the radio link is poor, then the PHICH is
extended to a number symbols for robustness (POOLE, I., 2017).

The transport channels are used by the PHY to offer services to the MAC layer. There are four LTE
downlink transport channels (POOLE, I., 2017) (GHOSH, A. et al., 2011):

 Broadcast Channel (BCH): A downlink channel associated with the BCCH logical channel and is
used to broadcast system information over the entire coverage area of the cell. It has a fixed
transport format defined by the specifications (GHOSH, A. et al., 2011).

 Downlink Shared Channel (DL-SCH): Used for transmitting the downlink data, including both
control and traffic data, and thus it is associated with both logical control and logical traffic
channels. It supports H-ARQ, dynamic link adaption, dynamic and semi-persistent resource
allocation, UE discontinuous reception, and multicast/broadcast transmission. The concept of
shared channel transmission originates from HSDPA, which uses the High-Speed Downlink Shared
Channel (HS-DSCH) to multiplex traffic and control information among different UEs. By sharing
the radio resource among different UEs the DL-SCH is able to maximize the throughput by
allocating the resources to the optimum UEs (GHOSH, A. et al., 2011).

 Paging Channel (PCH): Associated with the PCCH logical channel. It is mapped to dynamically
allocate physical resources and is needed for broadcast over the entire cell coverage area. It is
transmitted on the Physical Downlink Shared Channel (PDSCH) and supports UE discontinuous
reception (GHOSH, A. et al., 2011).

 Multicast Channel (MCH): Associated with MCCH and MTCH logical channels for the
multicast/broadcast service. It supports Multicast/Broadcast Single Frequency Network (MBSFN)
transmission, which transmits the same information on the same radio resource from multiple
synchronized base stations to multiple UEs (GHOSH, A. et al., 2011).

LTE defines seven logical downlink channels:

 Broadcast Control Channel (BCCH): A downlink common channel used to broadcast system
control information to the mobile terminals in the cell, including downlink system bandwidth,
antenna configuration, and reference signal power. Due to the large amount of information carried

30

on the BCCH, it is mapped to two different transport channels: The Broadcast Channel (BCH) and
the Downlink Shared Channel (DL-SCH) (GHOSH, A. et al., 2011).

 Multicast Control Channel (MCCH): A point-to-multipoint downlink channel used for
transmitting control information to UEs in the cell. It is only used by UEs that receive
multicast/broadcast services (GHOSH, A. et al., 2011).

 Paging Control Channel (PCCH): A downlink channel that transfers paging information to
registered UEs in the cell, for example, in case of a mobile-terminated communication session
(GHOSH, A. et al., 2011).

 Common Control Channel (CCCH): A bi-directional channel for transmitting control information
between the network and UEs when no RRC connection is available, implying the UE is not
attached to the network such as in the idle state. Most commonly the CCCH is used during the
random-access procedure (GHOSH, A. et al., 2011).

 Dedicated Control Channel (DCCH): A point-to-point, bi-directional channel that transmits
dedicated control information between a UE and the network. This channel is used when the RRC
connection is available, that is, the UE is attached to the network (GHOSH, A. et al., 2011).

 Dedicated Traffic Channel (DTCH): A point-to-point channel, dedicated to one UE for the transfer
of user information. A DTCH can exist in both uplink and downlink channels (GHOSH, A. et al.,
2011).

 Multicast Traffic Channel (MTCH): A point-to-multipoint downlink channel for transmitting
traffic data from the network to the UE. This channel is only used by UEs that receive MBMS. It
is associated with the multicast/broadcast service (GHOSH, A. et al., 2011).

The Figure 10 depicts the classification of the channels instituted at the uplink. The logical channels will
be omitted, because they are also found in the downlink.

Figure 10. LTE Uplink channels

As on Figure 10, LTE defines three physical channels:

31

 Physical Uplink Control Channel (PUCCH): It carries uplink control information including
Channel Quality Indicators (CQI), ACK/NAKs for H-ARQ in response to downlink transmission,
and uplink scheduling requests. This LTE channel is used to carry UCI (Uplink Control
Information). UCI can also be transported using PUSCH channel. An LTE UE can never transmit
both PUCCH and PUSCH during the same subframe. If UE has application data OR RRC signaling,
then UCI is carried over PUSCH. If UE does not have any application data OR RRC signaling,
then UCI is carried over PUCCH (GHOSH, A. et al., 2011).

As a stand-alone uplink physical channel, the PUCCH control signaling channel consists the
following:

- HARQ ACK/NACK
- CQI-channel quality indicators
- MIMO feedback - RI (Rank Indicator), PMI (Precoding Matrix Indicator)
- scheduling requests for uplink transmission
- BPSK or QPSK used for PUCCH modulation

Figure 11. PUCCH subframe structure (RF WIRELESS WORLD, 2012)

PUCCH consists of 1 RB/transmission at one end of the system bandwidth which is followed
by another RB in the following slot (at opposite end of the channel spectrum). This makes use of
frequency diversity with 2dB estimated gain. A PUCCH Control Region encompasses every two
such RBs (see Figure 11 and Table 5).

Table 5. Composition of the PUCCH control region (RF WIRELESS WORLD, 2012)

System BW in MHz 1.25 2.5 5 10 15 20
PUCCH control region 1 2 4 8 12 16
No. of resource blocks 2 4 8 16 24 32

The standard specifies 6 LTE PUCCH formats as mentioned in the Table 6 below. As stated,
PUCCH format 2a and 2b are not applicable for extended CP.

Table 6. LTE PUCCH formats (RF WIRELESS WORLD, 2012)

32

LTE PUCCH
Format

Modulation
index

No. of bits per
subframe

No. of Res
occupied
(Normal CP)

No. of Res
occupied
(Extended CP)

1 / / 48+48=96 OR 48+36=84
1a BPSK 1 48+48=96 OR 48+36=84
1b QPSK 2 48+48=96 OR 48+36=84
2 QPSK 20 120
2a QPSK+BPSK 21 120 Not applicable
2b QPSK+BPSK 22 120 Not applicable

The LTE PUCCH channel is distributed 2 RBs at the edges of channel BW (Table 7). Each
PUCCH transmission occupy 1 RB on each side of the channel bandwidth. These two RBs are
distributed across two-time slots. RB numbering for PUCCH starts on outside edges and increases
inwards (RF WIRELESS WORLD, 2012).

PUCCH has RBs allocated at the edge of channel BW to avoid fragmenting.

Table 7. Information carried by PUCCH format (RF WIRELESS WORLD, 2012)

LTE
PUCCH
format

No. of
bits per
subframe

Normal CP Extended CP

1 / Scheduling request
1a 1 1 x HARQ-ACK OR 1 x HARQ-ACK +SR
1b 2 2 x HARQ-ACK OR 2 x HARQ-ACK +SR
2 20 CQI CQI OR HARQ-ACK+CQI
2a 21 1 x HARQ-ACK + CQI /
2b 22 2 x HARQ-ACK + CQI /

 Physical Uplink Shared Channel (PUSCH): Carries user data and higher layer signaling. It
corresponds to the UL-SCH transport channel (GHOSH, A. et al., 2011). Namely, the channel is
used to carry RRC signaling messages, UCI (uplink Control Information) and application data.
Uplink RRC messages are carried using PUSCH. SRB use PUSCH and each connection will have
its unique SRB. The LTE PUSCH channel contains user information data and carries both user data
as well as control signal data. Control information carried, can be MIMO related parameters and
transport format indicators. The control data information is multiplexed with the user information
before DFT spreading module in the uplink SC-FDMA physical layer. PUSCH supports QPSK,
16QAM and 64QAM (optional). The LTE eNodeB selects suitable modulation based on adaptation
algorithm. UCI is transmitted using PUSCH instead of PUCCH when there is RRC and application
data to be transferred at the same time instant (RF WIRELESS WORLD, 2012).

33

Figure 12. PUSCH channel frame structure (RF WIRELESS WORLD, 2012)

As according to Figure 12, modulation type is conveyed to UE using PDCCH DCI format-0.
This CI also signals RB allocation and TB size. LTE PUSCH channel uses QPSK when TTI
bundling is enabled. If eNodeB directs UE to use 64QAM, but if UE does not support it, then
16QAM modulation type is selected (RF WIRELESS WORLD, 2012).

 Physical Random-Access Channel (PRACH): This channel carries the random-access preamble
sent by UEs (GHOSH, A. et al., 2011). As shown a random-access preamble includes a CP, a
sequence and a guard time (RF WIRELESS WORLD, 2012). There are 4 different RA (random
access) preamble formats defined in LTE FDD specifications. The same have been mentioned in
the Table 8 below. It consists of different preamble and CP duration to accommodate different cell
sizes. The preamble format to be used in a specific cell is informed to the UE using PRACH
configuration index. This is broadcasted in SIB-2. PRACH configuration index also indicates SFN
and subframes. This gives the exact position of random access preamble.

Table 8. Random-access preamble formats (RF WIRELESS WORLD, 2012)

LTE PRACH
preamble format

CP
length

Sequence
length

Guard
time

Total
length

Guard
time
equiv. dist.

Typical
max. cell
range

0 0.10ms 0.8ms 0.10ms 1ms 30Km 15Km
1 0.68ms 0.8ms 0.52ms 2ms 156km 78km
2 0.2ms 1.6ms 0.2ms 2ms 60Km 30Km
3 0.68ms 1.6ms 0.72ms 3ms 216Km 108Km

The preamble uses subcarrier spacing of 1.25 KHz instead of 15 KHz. As represented in Figure
13 and Figure 14, the random-access preamble occupies 1, 2 or 3 subframes in the time domain (1,
2, 3 ms) and 839 subcarriers in frequency domain (1.05 MHz). There is a 15 KHz guard band on
both the sides and hence it uses total of 1.08MHz (equal to 6 RBs). The position of LTE random
access preamble is defined by PRACH frequency offset parameter carried in SIB-2 (RF
WIRELESS WORLD, 2012).

34

Figure 13. Position of PRACH in uplink frame (RF WIRELESS WORLD, 2012)

There is a maximum of one random access preamble in a subframe but more than one UEs can
use it. Multiple UEs using same preamble resource allocations are differentiated by their unique
preamble sequences. Accordingly, maximum of 64 preamble sequences are divided into group-A
and group-B. LTE UE selects the sequence from these two groups based on size of uplink packet
and radio conditions. This helps eNodeB to calculate PUSCH resources needed for UE uplink
transfer. Sequences in Group-A are used for smaller size packets or larger size packets in poor radio
conditions. Sequences in Group-B are used for larger size packets in good radio conditions (RF
WIRELESS WORLD, 2012).

Figure 14. Structure of random access preamble (RF WIRELESS WORLD, 2012)

At the transport uplink layer, LTE has two dedicated channels: RACH and UL-SCH.

 Random Access Channel (RACH): This is the first message from UE to eNB when the device
powers on. Even though the name designations for the channel are different in all cellular
technology (CDMA, GSM, WCDMA, LTE) there is a specific signal that performs the same
function. In CDMA, it is appointed as 'Access Probe', while in GSM it is known as 'Channel
Request', and in WCDMA / LTE referred to as 'RACH'. From the aspect of eNB, seemingly the
signal is received from the UE in almost random character (i.e. in Random timing, Random
Frequency and in Random Identification) because it doesn’t have information when a user turns on
the UE (Therefore, it is not completely random, as there is a certain range of agreement between
UE and Network about the timing, frequency location and possible identification. However, in large
scale it appears randomly). In terms of Radio Access Network implementation, handling RACH is
one of the most challenging jobs. The RACH channel is shared, and therefore, there is a high
probability that two or more devices transmit simultaneously. This can lead to transmission

35

collisions in the medium and the access to the network can be restricted accordingly. In GSM for
example, the upper limit of number of devices transmitting in one RACH timeslot is not specified.
If there are collisions, then the device waits for random period before re-transmitting a RACH
signal again (COX, C., 2014). The parameters for RACH access procedure include: access slots,
preamble scrambling code, preamble signatures, and spreading factor for data part, available
signatures and subchannels for each Access Service Class (ASC) and power control information.
The Physical channel information for PRACH is broadcasted in SIB5/6 and the fast-changing cell
parameters such as uplink interference levels used for open loop power control and dynamic
persistence value are broadcasted in SIB7. RACH access procedure follows slotted-ALOHA
approach with fast acquisition indication combined with power ramping in steps (KUMAR, S.,
2017).

Maximum of 16 different PRACHs can be offered in a cell, in FDD, the various PRACHs are

distinguished either by employing different preamble scrambling codes or by using common
scrambling code with different signatures and subchannels. Within a single PRACH, a partitioning
of the resources between the maximum 8 ASC is possible, thereby providing a means of access
prioritization between ASCs by allocating more resources to high priority classes than to low
priority classes. SC 0 is assigned highest priority and ASC 7 is assigned lowest priority. SC 0 shall
be used to make emergency calls which has more priority. The available 15 access slots are split
between 12 RACH subchannels. The RACH transmission consists of two parts, namely preamble
transmission and message part transmission. The preamble part is 4096 chips, transmitted with
spreading factor 256 and uses one of 16 access signatures and fits into one access slot. ASC is
defined by an identifier � that defines a certain partition of the PRACH resources and is associated
with persistence value �(�). The persistence value for �(0) is always set to one and is associated
with ASC 0. The persistence values for others are calculated from signaling. These persistence
values control the RACH transmissions. To start a RACH procedure, the UE selects a random
number �, between 0 and 1 and if � ≤ �(�), the physical layer PRACH procedure is initiated else
it is deferred by 10 ms and then the procedure is started again. Once the UE PRACH procedure is
initiated, then the real transmission takes place (KUMAR, S., 2017).

As described above, the preamble part transmission starts first. The UE picks one access

signature of those available for the given ASC and an initial preamble power level based on the
received primary CPICH power level and transmits by picking randomly one slot out of the next
set of access slots belonging to one of the PRACH subchannels associated with the relevant ASC.
The UE then waits for the proper access indicator sent by the network on the downlink Acquisition
Indicator Channel (AICH) access slot which is paired with the uplink access slot on which the
preamble was sent. There are 3 scenarios possible (KUMAR, S., 2017):

a) If the Acquisition Indication (AI) received is a positive acknowledgement, then UE

sends the data after a predefined amount of with a power level which is calculated from
the level used to send the last preamble (KUMAR, S., 2017).

b) IF the AI received is a negative acknowledgement, the UE stops with the transmission
and hands back control to the MAC layer. After a back off period, the UE will regain
access according to the MAC procedure based on persistence probabilities (KUMAR,
S., 2017).

c) If no acknowledgement is received, then it is considered that network did not receive the
preamble. If the maximum number of preambles that can be sent during a physical layer
PRACH procedure is not exceeded, the terminal sends another preamble by increasing

36

the power in steps. The ability of the UE to increase its output power, in terms of steps
to a specific value is called as open loop power control. RACH follows open loop power
control (KUMAR, S., 2017)

 Uplink Shared Channel (UL-SCH): The UL-SCH is used to transmit RRC signaling and
application data. UCI can be added during physical layer processing before mapping on PUSCH
physical channel. TBs belong to UL-SCH has variable size. The physical-layer model for Uplink
Shared Channel transmission is described based on the corresponding physical layer processing
chain. It should be noted that, in case PUSCH, the scheduling decision is partly made at the network
side, if there is no blind decoding it is fully done at the network side. The uplink transmission
control in the UE then configures the uplink physical-layer processing, based on uplink transport-
format and resource-assignment information received on the downlink. As in Figure 15, the
processing steps that are relevant for the physical-layer model, e.g. in the sense that they are
configurable by higher layers, are highlighted in blue (3GPP, 2007-2012). After the UL-SCH
passes through the modules as shown in the figure, UL-SCH code word is formed. This code word
is modulated and later used to generate SC-FDMA signal. UL-SCH codeword is transmitted during
1ms subframe.

Figure 15. Physical-layer model for UL-SCH transmission (3GPP, 2007-2012)

2.1.3. Diversity processing
The methods which improve the robustness and reliability of a message signal by implementing two or

more communication channels with various characteristics are denoted as a diversity scheme (AVIAT
NETWORKS, 2017). Specifically, diversity techniques are used for tackling fading and co-channel
interference and avoiding error bursts. In other words, a same signal can be transmitted in multiple versions,
and then received and combined at the receiver. A redundant forward error correction code can be
implemented, and different parts of the message can be transmitted over different channels. The diversity
techniques are utilizing the multipath propagation, which is a known problem in wireless systems and
discussed accordingly in the following chapters; which results in a diversity gain, measured in decibels
(dB). There are several diversity techniques (MOLISCH, A. F., 2011):

37

 Time diversity – Multiple versions of a single signal are transmitted at different time intervals,
which adds a redundant forward error correction code (FEC) and the message is spread in terms of
bit-interleaving before it is sent. This aids avoidance of error bursts and simplifies the error
correction procedure.

 Frequency diversity – Refers to the application of various frequency manipulation techniques for
reaching improved spectral efficiency (an example for frequency diversity technique is OFDM –
Orthogonal Frequency Division Multiplexing).

 Space diversity – Also known as antenna diversity, refers to the spatial utilization and combining
of antennas in order to achieve better spectral efficiency. For example, such techniques involve the
MIMO (Multiple-Input-Multiple-Output), beamforming or space-time coding.

 Polarization diversity – When multiple versions of a same signal are transmitted and received
through antennas with different polarization.

 Multiuser diversity – In multiuser diversity techniques, there are methods such as opportunistic user
scheduling that selects the best user candidate as a receiver, according to the qualities of each
channel between the transmitter and each receiver. The channel quality information is then spread
by the receiving user to the transmitter using restrictive levels of resolution, after which the
transmitter (base station) can process the multiuser diversity.

 Cooperative diversity – Widely implemented in Distributed Antenna Systems (DAS) and attains
antenna diversity gain by means of the cooperation amongst antennas belonging to each node
(YEO, Y. et al., 2018).

2.1.4. Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal
Frequency Division Multiple Access (OFDMA) for the downlink channel in
LTE

The Orthogonal Frequency Division Multiple Access technique is based on the Orthogonal Frequency
Division Multiplexing (OFDM). Namely, OFDM (3GPP, 2017) [according to 3GPP Specification 25.892]
is one of the most prominent advances in access techniques. It enables bigger transmission rates with a
significant equalization and detection convolutions. High transmission is accomplished through modulating
a set of narrowband orthogonal subcarriers. An OFDM block is created as shown in Figure 16. The sequence
of L-modulated symbols, x0, x1, . . ., xL−1, are converted into L parallel streams before taking the N -point
Inverse Fast Fourier Transform (IFFT) (COCHRAN, W.T. et al., 1967) of each. The possible mismatch
between L and N is overcome by zero padding the remaining N − L inputs of the IFFT block. Next, the N
outputs, s0, s1, . . ., sN−1 are converted back to a serial stream before adding the Cyclic Prefix (CP). Finally,
the resulting OFDM block is converted to its analog form prior to sending it over the channel (TAHA, A-
E. M. et al., 2012).

38

Figure 16. OFDM modulation with IFFT

With this architecture, an OFDM block can resist the Inter-Carrier Interference (ICI) by empowering
orthogonal subcarriers, that is, as a result of using the IFFT (Inverse Fast Fourier Transform). It is also
efficient in extenuating the channel time dispersion by introducing the CP (Cyclic Prefix). Truthfully, the
insertion of the CP is a generally used method to produce a so-called guard period between consecutive
OFDM symbols. The CP is basically a reiteration of the vestige of the preceding OFDM symbol. The span
of this reiteration is made long enough to surpass the channel delay spread, hence extenuating the channel
delay spread instigates Inter-Symbol-Interference (ISI). Additionally, the detection process becomes a
circular convolution process which augments the signal detection capabilities and abridges the equalization
procedure. OFDM Demodulation overturns the above-mentioned procedures. After converting the received
signal back into the digital domain, the CP is detached. Following that, the signal is transformed into a
parallel N data streams before performing an N -point FFT (Fast Fourier Transform) (COCHRAN, W.T. et
al., 1967). Finally, the sequence is returned into a serial one. These steps are represented in Figure 17.

Figure 17. OFDM demodulation

Despite the many advantages of OFDM, actual implementations incurred some challenges. The most
famous one is the high Peak-to-Average Power Ratio (PAPR) problem (GAMAGE, H. et al., 2016).
Principally, high PAPR, which results from the coherent addition of the modulated subcarriers, reduces the
efficiency of the power amplifier. The high PAPR also sophisticates the Analog to Digital (ADC) and
Digital to Analog (DAC) conversion processes. While these two disadvantages can be overcome at the base

39

station side, they form a serious challenge to the battery-powered Mobile Station (MS). Consequently,
3GPP replaced OFDM at the uplink in their IMT-Advanced proposal by SC-FDMA (TAHA, A-E. M. et
al., 2012).

OFDM is employed in all modern wireless technologies, such as: IEEE 802.11 Wi-Fi, IEEE 802.16
WiMAX, 3G/UMTS, 4G/LTE, IEEE 802.15.3a Ultra-Wideband (UWB) Wireless PAN, IEEE 802.20
Mobile Broadband Access Technology (MBWA) as well as satellite systems as DVB-RCS Digital Video
Broadcast – Return Channel via Satellite, Flash-OFDM cellular systems etc. Also, some wireline
technologies are exploiting the benefits of OFDM, such as: ADSL and VDSL broadband access via POTS
copper wiring, MoCA (Multimedia over Coax Alliance) networking, PLC Power Line Communication etc.
For the purpose of more data services, a system has to provide high spectral efficiency or better spectrum
utilization. Another trait that should be pointed out is resiliency to interference, where a system needs to
enable excellent performance in unregulated and regulated frequency bands. The multi-path problem
(CISCO, 2008) degrades a signal in such way that when a radio frequency (RF) signal is transmitted towards
the receiver, the general behavior of the RF signal is to grow wider as it is transmitted further. As in Figure
18, on its way, the RF signal encounters objects that reflect, refract, diffract, absorb, scatter or interfere with
the signal (BIEHLE, G., 2016). When an RF signal is reflected off an object, multiple wavefronts are
created. As a result of these new duplicate wavefronts, there are multiple wavefronts that reach the receiver.

Figure 18. Laws of Reflection, Refraction, Diffraction, Absorption and Scattering (BIEHLE, G., 2016)

Multipath propagation occurs when RF signals take different paths from a source to a destination. A part
of the signal arrives at the destination while another part bounces off an obstruction, then proceeds to the
destination. As a result of the reflection, parts of the signal encounter delay and travel a longer path to the
destination. Multipath can be defined as the combination of the original signal plus the duplicate wavefronts
that result from reflection of the waves off obstacles between the transmitter and the receiver. Multipath
distortion is a form of RF interference that occurs when a radio signal has more than one path between the
receiver and the transmitter. This occurs in cells with metallic or other RF-reflective surfaces, such as
furniture, walls, or coated glass (CISCO, 2008).

For example, as in Figure 19, the multi-path problem reflects on a Bluetooth transmitting and receiving
systems (KEITHLEY INSTRUMENTS, 2008). With a symbol rate of 1 MSymbols/s, it is noticeable that
Bluetooth uses a single carrier to transmit a single symbol at a time. This case is analogous to the 2G - GSM
and CDMA systems. For that purpose, to increase the data throughput, the symbol rate has to be increased.
With the cumulative symbol rate, parallelly the Multi-path distortion will intensify. For comparative
incidence, in contrast to Bluetooth, W-CDMA uses 3.16 MSymbols/sec. If the Multi-path effect is fervent,

40

then a solution would be to reduce the symbol rate by a third, or namely to 300kSymbols/s. This will reduce
the data throughput as well, which is not a favored setting.

Figure 19. The Multi-path problem (KEITHLEY INSTRUMENTS, 2008)

To tackle the problem of the directly-proportional relation between the symbol rate and Multi-path
effect, a solution is to increase the number of carriers from a single one to multiple. The modern
technologies such as Wi-Fi, WiMAX or LTE use multiple carriers to provide access to multiple users
simultaneously and deliver robust connection in dense environments or locations obstructed by numerous
physical objects (Figure 20).

Figure 20. 802.11a-g Wi-Fi multiple carriers with 312.5 KHz sub-spacing

In order to calculate the data rate, it is required to multiply the symbol rate by the number of sub-carriers
and the coded bits divided by the subcarriers, all of which is multiplied by ¾ the coding rate. Specifically:

(�� ∙ �)(
��

�
)

�

�
�� , where �� is the symbol rate, � is the number of subcarriers,

��

�
 is the number of coded bits

per sub-carrier and �� is the coding rate. For example, 802.11a-g Wi-Fi uses 250 kbps symbol rate, 48 data
sub-carriers, from which 6 coded bits per sub-carrier, which gives the actual data rate of 54 Mbps. A
standard Wi-Fi symbol is 4us (useful symbol duration), composed of 3.2us IFFT and 0.8us long guard
interval. If using a short guard interval of 0.4us then the total symbol time is 3.6us. The subcarrier spacing
is equal to the reciprocal of symbol time. Since the useful symbol duration is 3.2us IFFT then the reciprocal

of symbol duration would be
� �����

�.������� ���
 = 312500 cycles/sec, which is 312.5 KHz spacing (ROHLING,

Hermann, 2011) .

41

OFDM subcarrier spacing creates "nulls", canceling out inter-carrier interference (ICI) without the need
for guard bands or expensive bandpass filters. OFDM divides a given channel into many narrower
subcarriers. The spacing is such that the subcarriers are orthogonal (GOLDBLATT, Robert, 1987), so they
won’t interfere with one another despite the lack of guard bands between them. This comes about by having
the subcarrier spacing equal to the reciprocal of symbol time. All subcarriers have a complete number of
sine wave cycles that upon demodulation will sum to zero. This indicates that the spacing of the subcarriers
is directly associated to the useful symbol time, or specifically, the amount of time the transmitter spends
performing IFFT. Because of this relationship, the resulting synchronization frequency response curves
from each subcarrier create signal nulls in the adjacent subcarrier frequencies thus preventing inter-carrier
interference (ICI) (GARCIA, M. and Oberli, C., 2009). OFDM is a form of frequency division multiplexing
(FDD), which typically requires guard bands between carriers and specialized hardware with bandpass
filters to remove interference. OFDM eliminates the need for these which increases spectral efficiency and
reduces cost and complexity of the system since all functions can be completed with digital signal
processing (DSP) (ELKHODR, M. et al., 2017). As shown in Figure 21, Each 20 MHz channel, whether
it's 802.11a/g/n/ac, is composed of 64 subcarriers spaced 312.5 KHz apart. This spacing is chosen because
64-point FFT sampling is used. 802.11a/g for example, employs 48 subcarriers for data, 4 for pilot, and 12
as null subcarriers. 802.11n/ac use 52 subcarriers for data, 4 for pilot, and 8 as null (ROHLING, Hermann,
2011) (ANDREW, A., 2015).

Figure 21. OFDM subcarriers in 802.11a-g Wi-Fi (ANDREW, A., 2015)

Another advantage of OFDM is that by using a reduced symbol rate of 250,000 symbols per second, the
negative effects of multipath distortion are reduced. Since each symbol occupies more time, there is more
resilience to delay spread which is caused by multipath when signal reflections cause multiple copies of the
same transmitted symbol to arrive at the receiver at slightly different times. In contrast to the OFDM symbol
rate, the 802.11b DSSS and Bluetooth both have over 1M symbols per second, where DSSS has 11M
symbols per second if the 'chipping' rate is considered (ROHLING, Hermann, 2011) (ANDREW, A., 2015).

However, multipath also has a negative effect on OFDM, especially when clients are mobile
(ANDREW, A., 2015). The orthogonality of the subcarriers can be lost when movement and multipath are
present because signal delays (the delay spread) affect the reciprocal relationship of the subcarriers and the
useful symbol time (IFFT). Without proper orthogonality between subcarriers, inter-carrier interference
(ICI) would result from this doppler shifting. The solution for this, is to include a cyclic prefix (CP) with
each symbol, which is part of the guard interval that allows channel estimation and equalization. Thus,
contrary to popular belief, the guard interval is actually not empty airtime but actively used for cyclic

42

prefixing to allow proper OFDM operation in a multipath environment . One of the primary reasons for
using OFDM as a modulation format within LTE (and many other wireless systems for that matter) is its
resilience to multipath delays and spread. However, it is still necessary to implement methods of adding
resilience to the system. This helps overcome the inter-symbol interference (ISI) that results from this. In
areas where inter-symbol interference is expected, it can be avoided by inserting a guard period into the
timing at the beginning of each data symbol. It is then possible to copy a section from the end of the symbol
to the beginning. As previously mentioned, this is known as the cyclic prefix (CP). The receiver can then
sample the waveform at the optimum time and avoid any inter-symbol interference caused by reflections
that are delayed by times-up to the length of the cyclic prefix, CP. The length of the cyclic prefix is
important. If it is not long enough then it will not counteract the multipath reflection delay spread. If it is
too long, then it will reduce the data throughput capacity. For LTE, the standard length of the cyclic prefix
has been chosen to be 4.69 µs. This enables the system to accommodate path variations of up to 1.4 km.
With the symbol length in LTE set to 66.7 µs. The symbol length is defined by the fact that for OFDM
systems the symbol length is equal to the reciprocal of the carrier spacing so that orthogonality is achieved.
With a carrier spacing of 15 kHz, this gives the symbol length of 66.7 µs (ROHLING, Hermann, 2011)
(ANDREW, A., 2015).

Despite the slower symbol rate, there are much higher data rates due to the increase in carriers being
modulated by an order of magnitude, from 1 (DSSS) to 48 (OFDM in 802.11a/g) and 52 (OFDM in
802.11n/ac) per 20 MHz channel. Therefore, a serial data stream is taken, and parallel data transmission is
performed across the frequency domain. The sub-carriers are spaced at regular intervals called “sub-carrier
frequency spacing” or offset (∆�). The sub-carrier frequency relative to the center frequency is �∆�, where
� is the sub-carrier number (Figure 22).

Figure 22. OFDM sub-carrier spacing (KEITHLEY INSTRUMENTS, 2008)

There are two types of frame structure in the LTE standard, Type 1 and Type 2. Type 1 uses Frequency
Division Duplexing (uplink and downlink separated by frequency), and TDD uses Time Division
Duplexing (uplink and downlink separated in time). FDD is the dominant frame structure used in most of
the LTE deployments (3GPP, 2017).

43

Figure 23. An FDD frame for 1.4 MHz channel and normal CP (3GPP, 2017)

According to Figure 23, a resource block (RB) is the smallest unit of resources that can be allocated to
a user. The resource block is 180 kHz wide in frequency and 1 slot long in time. In frequency, resource
blocks are either 12 x 15 kHz subcarriers or 24 x 7.5 kHz subcarriers wide. The number of subcarriers used
per resource block for most channels and signals is 12 subcarriers. Frequency units can be expressed in
number of subcarriers or resource blocks. For instance, a 5 MHz downlink signal could be described as 25
resource blocks wide or 301 subcarriers wide (DC subcarrier is not included in a resource block). The
underlying data carrier for an LTE frame is the resource element (RE). The resource element, which is 1
subcarrier x 1 symbol, is the smallest discrete part of the frame and contains a single complex value
representing data from a physical channel or signal (3GPP, 2017).

In FDD mode, the UL and DL frames are both 10ms long and are divided by frequency (Figure 24) or
by time (Figure 25).

Figure 24. LTE frame Type-1 (FDD)

Figure 25. LTE frame Type-2 (TDD) (3GPP, 2017)

For full-duplex FDD, uplink and downlink frames are separated by frequency and are transmitted
continuously and synchronously. For half-duplex FDD, the only difference is that a UE cannot receive
while transmitting. The base station can specify a time offset (in PDCCH) to be applied to the uplink frame
relative to the downlink frame. In TDD mode, the uplink and downlink subframes are transmitted on the
same frequency and are multiplexed in the time domain. The locations of the uplink, downlink, and special
subframes are determined by the uplink-downlink configuration. There are seven possible configurations
given in the standard (3GPP, 2017).

44

The OFDM signal used in LTE comprises maximum of 2048 different sub-carriers, having a spacing of
15 kHz. Although it is mandatory for the devices to have capability to be able to receive all 2048 sub-
carriers, not all need to be transmitted by the base station which only needs to be able to support the
transmission of 72 sub-carriers. In this way all mobiles will be able to talk to any base station. Since the
bandwidths defined by the LTE standard are 1.4, 3, 5, 10, 15, and 20 MHz, the Table 9 shows how many
subcarriers and resource blocks there are in each bandwidth for uplink and downlink (3GPP, 2017).

Table 9. Frequency measures (3GPP, 2017)

Bandwidth
Resource
Blocks

Subcarriers
(downlink)

Subcarriers
(uplink)

1.4 MHz 6 73 72
3 MHz 15 181 180
5 MHz 25 301 300
10 MHz 50 601 600
15 MHz 75 901 900
20 MHz 100 1201 1200

As described before, uplink user transmissions consist of uplink user data (PUSCH), random-access
requests (PRACH), user control channels (PUCCH), and sounding reference signals (SRS). FDD and TDD
uplink transmissions have the same physical channels and signals. The only difference is that TDD frames
include a special subframe, part of which can be used for SRS and PRACH uplink transmissions (Figure
25). The following figure stands as an example for User 1 that has a PUSCH allocation of [RB 20, slots 4-
5], and User 2 that has a PUCCH allocation of [subframe 2, PUCCH index 0]. User 3 has been given an
SRS allocation of subcarrier 94 to 135 in subframe 2, and User 4 is transmitting in a PRACH allocation. A
user cannot transmit both PUCCH and PUSCH data in the same slot (3GPP, 2017).

45

Figure 26. LTE uplink subframes 2-3; Bandwidth: 5 MHz = 300 subcarriers = 25 RB; Normal CP, PUCCH Type 2, 15
KHz subcarrier spacing (3GPP, 2017)

Within the OFDM signal it is possible to choose between three types of modulation for the LTE signal:

a) QPSK (= 4QAM) 2 bits per symbol

b) 16QAM 4 bits per symbol

c) 64QAM 6 bits per symbol

The exact LTE modulation format is chosen depending upon the prevailing conditions. The lower forms
of modulation, (QPSK) do not require such a large signal to noise ratio but are not able to send the data as
fast. Only when there is a sufficient signal to noise ratio can the higher order modulation format be used
(ADRIO COMMUNICATIONS LTD., 2017).

A. Measurements based on constellations and Error Vector Magnitude (EVM) metrics
To measure the efficiency of the OFDM system, it is required to comprehend the concepts of parallel

symbol transmissions in OFDM, as described previously. In Figure 27, the symbol that undergoes an
inverse Fast Fourier Transform is coupled in I and Q components that form the waveforms, which is called
serial symbol transmission. However, OFDM utilizes the efficiency of parallel symbol transmission with
coupling multiple symbols using inverse Fast Fourier Transform, that results also in modulated I and Q
waveforms. In this case, multiple carriers will transmit multiple symbols in parallel and the carriers may
have modulations, such as: BPSK, QPSK, 16QAM, 64QAM etc.

46

Figure 27. From symbol to waveform (serial and parallel symbol transmissions)

Quadrature Amplitude Modulation (QAM) is a form of modulation which is widely used for modulating
data signals onto a carrier used for radio communications. It is widely used because it offers advantages
over other forms of data modulation such as PSK, although many forms of data modulation operate
alongside each other (ADRIO COMMUNICATIONS LTD., 2017).

Quadrature Amplitude Modulation, QAM is a signal in which two carriers shifted in phase by 90 degrees
are modulated and the resultant output consists of both amplitude and phase variations. Since both
amplitude and phase variations are present, it may also be considered as a mixture of amplitude and phase
modulation. A motivation for the use of quadrature amplitude modulation comes from the fact that a straight
amplitude modulated signal, i.e. double sideband even with a suppressed carrier, and occupies twice the
bandwidth of the modulating signal. This is very wasteful of the available frequency spectrum. QAM
restores the balance by placing two independent double sideband suppressed carrier signals in the same
spectrum, as one ordinary double sideband suppressed carrier signal. Quadrature amplitude modulation,
QAM, when used for digital transmission for radio communications applications can carry higher data rates
than ordinary amplitude modulated schemes and phase modulated schemes. As with phase shift keying
(PSK), etc., the number of points at which the signal can rest, i.e. the number of points on the constellation
is indicated in the modulation format description, e.g. 16QAM uses a 16-point constellation. When using
QAM, the constellation points are normally arranged in a square grid with equal vertical and horizontal
spacing and as a result the most common forms of QAM use a constellation with the number of points equal
to a power of 2 i.e. 4, 16, 64 etc. By using higher order modulation formats, i.e. more points on the
constellation, it is possible to transmit more bits per symbol. However, the points are closer together and
they are therefore more susceptible to noise and data errors. Normally a QAM constellation is square and
therefore the most common forms of QAM 16QAM, 64QAM and 256QAM. The advantage of moving to
the higher order formats is that there are more points within the constellation and therefore it is possible to
transmit more bits per symbol. The downside is that the constellation points are closer together and therefore
the link is more susceptible to noise. As a result, higher order versions of QAM are only used when there
is a sufficiently high signal to noise ratio. To provide an example of how QAM operates, the constellation
diagram in Figure 28 shows the values associated with the different states for a 16QAM signal. From this
it can be seen that a continuous bit stream may be grouped into fours and represented as a sequence (ADRIO
COMMUNICATIONS LTD., 2017).

47

Figure 28. 16QAM modulation constellation

Although QAM appears to increase the efficiency of transmission for radio communications systems by
utilizing both amplitude and phase variations, it has a number of drawbacks. The first is that it is more
susceptible to noise because the states are closer together so that a lower level of noise is needed to move
the signal to a different decision point. Receivers for use with phase or frequency modulation are both able
to use limiting amplifiers that are able to remove any amplitude noise and thereby improve the noise
reliance. This is not the case with QAM. The second limitation is also associated with the amplitude
component of the signal. When a phase or frequency modulated signal is amplified in a radio transmitter,
there is no need to use linear amplifiers, whereas when using QAM that contains an amplitude component,
linearity must be maintained. Unfortunately, linear amplifiers are less efficient and consume more power,
and this makes them less attractive for mobile applications (ADRIO COMMUNICATIONS LTD., 2017).

To measure the efficiency of the eNB base station, a constellation diagram is formed within a signal
analyzer which inspects the radio access network. A constellation diagram is a representation of a digital
modulation scheme in the complex plane, in the particular case a 16QAM modulation scheme. If the
constellation does not look linear, it is due to excess or shortage of gain at the I or Q components of the
modulated signal. That indicates the necessity to adjust the gains of the particular channel properly. In such
case, the constellation offset can be observed at the signal analyzer (Figure 29).

Figure 29. Origin offset example of 16-QAM constellation (KEITHLEY INSTRUMENTS, 2008)

The I and Q components of the signal are forming a correlation angle of 90˚, which when summed forms
the modulated signal (Figure 30).

48

Figure 30. Digital modulation of a signal (KEITHLEY INSTRUMENTS, 2008)

The amplitude of the signal is represented as the length of A, that is ��� + �� (Pythagorean Theorem).

And the phase (angle �) is �����(
�

�
). If the signal is represented on a complex plane, it would look as in

Figure 31, that is �(�) = ����(2���(�) + �, where �� is the signal frequency.

Figure 31. Representation of signal on complex plane (KEITHLEY INSTRUMENTS, 2008)

The Error Vector Magnitude (EVM) is a metric of performance that derives the relationships among
signal-to-noise ratio (SNR) and the bit error rate (BER). Namely, “Error Vector Magnitude (EVM) is a
performance metric for assessing the quality of communication. EVM expresses the difference between the
expected complex voltage of a demodulated symbol and the value of the actual received symbol” (SHAFIK,
R. A. et al., 2006).

Bit Error Rate (BER) is a used performance metric which describes the probability of error in terms of
number of 28 mistaken bits per bit transmitted. BER is a direct effect of channel noise for Gaussian noise
channel models. For fading channels, BER performance of any communication system is worse and can be
directly related to that of the Gaussian noise channel performance. Considering M-ary modulation with
coherent detection in Gaussian noise channel and perfect recovery of the carrier frequency and phase, it can
be shown that (SHAFIK, R. A. et al., 2006):

49

�� =
2(1 −

1
�

)

log� �
� ���

3log� �

�� − 1
�

2��

��
�

, where L is the number of levels in each dimension of the M-ary modulation system, �� is the energy

per bit and
��

�
 is the noise power spectral density. Q is the Gaussian co-error function and is given by:

�(�) = �
1

√2�

�

�

�
���

� ��

Assuming raised cosine pulses with sampling at data rate, the error rate in terms of signal to noise ratio
would then be:

�� =
2(1 −

1
�

)

log� �
� ���

3log� �

�� − 1
�

2��

�� log� �
�

, where
��

��
 is the signal-to-noise ratio for the M-ary modulation system and raised cosine, pulse shaping

at data rate. Therefore, the BER performance in terms of SNR is defined and used as a main tool for many
adaptive systems. Consequently, the EVM (Error Vector Magnitude) measurements are performed on the
vector signal analyzers, real-time analyzers or other instruments that capture a time record and internally
perform a FFT to enable frequency domain analysis. Signals are down-converted before EVM calculations
are made. Since different modulation systems such as: BPSK, 4-QAM, 16-QAM etc., have different
amplitude levels, to calculate and compare EVM measurements effectively some normalization is typically
carried out. The normalization is derived such that the mean square amplitude of all possible symbols in
the constellation of any modulation scheme equals one. Thus, EVM is defined as the root-mean-square
(RMS) value of the difference between a collection of measured symbols and ideal symbols. These
differences are averaged over a given, typically large number of symbols and are often shown as a percent
of the average power per symbols of the constellation. Therefore, EVM can be given as:

������ =

1
�

∑ ��� − ��,��
��

���

1
�

∑ ���,��
��

���

, where �� is the normalized nth symbol in the stream of measured symbols, ��,� is the ideal normalized

constellation point of the nth symbol and N is the number of unique symbols in the constellation. The
expression cannot be replaced by their unnormalized value, since the normalization constant for the
measured constellation and the ideal constellation are not the same. The normalization scaling factor for
ideal symbol is represented by:

|�| = �
1

��
�

= �
�

��

, where �� is the total power of the measured constellation of T symbols. For RMS voltage levels of
inphase and quadrature components, �� and �� and for T>>N, it can be shown that �� is expressed as:

50

�� = � ����,��
�

+ ���,��
�

� (�)

�

���

The normalization factor for ideal case can be directly measured from N unique ideal constellation points
as:

|��| = �
�

∑ ����,��
�

+ ���,��
�

��
���

Accordingly, the EVM per root-mean-square can be extended by:

������ = �

1
�

∑ ��� − ��,��
�

+ ��� − ��,��
��

���

1
�

∑ ���,��
�

+ ���,��
��

���

�

, where �� = ����
�|�| is the normalized in-phase voltage for measured symbols and ��,�����,��|��| is the

normalized in-phase voltage for ideal symbols in the constellation, �� = ����
�|�| is the normalized

quadrature voltage for measured symbols and ��,�����,��|��| is the normalized quadrature voltage for ideal

symbols in the constellation. This definition is used as a standard definition for the EVM according to the
IEEE 802.11a – 1999 (SHAFIK, R. A. et al., 2006).

To represent the EVM into percentage or dB, it is converted accordingly:

���(%) = �
������

����������
∙ 100%

And

���(��) = 10log�� �
������

����������
�

, where P is the RMS power.

The measurements taken from a signal analyzer would represent the EVM as a ratio of measured
amplitude to intended amplitude in percentage (Figure 32), denoted by the red line. The blue line indicates
the measured signal and the black line is the intended signal. The angle � the black and blue lines form is
the phase error, or IQ Error Phase. If the portion of this image is imagined to be one quadrant of the (x,y)
axis at a signal analyzer constellation, then the unit circle is depicted by the purple dashed line. At this
point, the distance that we obtain from the dashed line and the red dot is the actual magnitude error, or more
specifically IQ Error Magnitude.

51

Figure 32. EVM ratio of measured amplitude to intended amplitude

 When error occurs, the signal analyzer would then simply indicate the constellation imbalance as in
Figure 33 and Figure 34.

Figure 33. Quadrature error examples - QPSK constellations (KEITHLEY INSTRUMENTS, 2008)

52

Figure 34. Modular imbalances examples - QPSK constellations (KEITHLEY INSTRUMENTS, 2008)

If the signal is subdued to the effects of gain imbalances, then the constellation imperfections are clearly
indicated at the signal analyzer plot. For example, since Quadrature Amplitude Modulation is the widely
used modulation scheme in this work, the power amplifier nonlinearity can contribute to EVM as shown in
Figure 35.

Figure 35. EVM due to power amplifier nonlinearity

Another factor is the Inter Symbol Interference (ISI), which can contribute to have symbols received at
delayed intervals, and thus the constellation would appear as in Figure 36.

53

Figure 36. Inter Symbol Interference in case of 16-QAM constellations

Finally, the constellation display at the signal analyzer is an actual composite of all OFDM sub-carrier
symbols, for particular frequency (Figure 37) and at a particular time (Figure 38), accordingly.

Figure 37. Constellation display - a composite of all OFDM sub-carrier symbols with a particular frequency f

54

Figure 38. Constellation display - a composite of all OFDM sub-carrier symbols at a particular time t

OFDM as a modulation technique is not a multi-user, because all sub-carriers in a channel are used to
facilitate a single link. To expand the functionality to multiple users, OFDMA (Orthogonal Frequency
Division Multiple Access) assigns different number of sub-carriers to different users in a similar fashion as
in CDMA. The parallel multi-symbol transmission described in Figure 27 is assigned logical number per
sub-channel. The transmission on both DL and UL channels is performed in bursts, which defines a single
OFDMA symbol number. As shown in Figure 39 and Figure 40, the physical sub-channels are changed per
each symbol, using a PN sequence (3GPP, 2017).

Figure 39. Dynamic symbol mapping in OFDMA

55

Figure 40. PN sequence for each physical sub-channel

2.1.5. Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink
channel

Similar to OFDMA, SC-FDMA divides the transmission bandwidth into multiple parallel sub-carriers
maintaining the orthogonality of the subcarriers by the addition of the cyclic prefix (CP) as a guard interval.
However, in SC-FDMA the data symbols are not directly assigned to each subcarrier independently like in
OFDMA. Instead, the signal which is assigned to each subcarrier is a linear combination of all modulated
data symbols transmitted at the same time instantaneously. For the LTE uplink, a different concept is used
for the access technique. Although still using a form of OFDMA technology, the implementation is called
Single Carrier Frequency Division Multiple Access (SC-FDMA). One of the key parameters that affects all
mobiles is that of battery life. Even though battery performance is improving all the time, it is still necessary
to ensure that the mobiles use as little battery power as possible. With the RF power amplifier that transmits
the radio frequency signal via the antenna to the base station being the highest power item within the mobile,
it is necessary that it operates in as efficient mode as possible. This can be significantly affected by the form
of radio frequency modulation and signal format. Signals that have a high peak to average ratio and require
linear amplification do not lend themselves to the use of efficient RF power amplifiers. As a result it is
necessary to employ a mode of transmission that has as near a constant power level when operating.
Unfortunately, OFDM has a high peak-to-average ratio. While this is not a problem for the base station
where power is not a particular problem, it is unacceptable for the mobile. As a result, LTE uses a
modulation scheme known as SC-FDMA - Single Carrier Frequency Division Multiplex which is a hybrid
format. This combines the low peak to average ratio offered by single-carrier systems with the multipath
interference resilience and flexible subcarrier frequency allocation that OFDM provides (ADRIO
COMMUNICATIONS LTD., 2017). The difference between OFDMA and SC-FDMA is depicted in Figure
41.

56

Figure 41. LTE uses SC-FDMA at the uplink (UL)

2.1.6. Multiple-antenna techniques
The wireless technologies, including LTE, utilize the cutting-edge radio antenna technologies in order

to achieve maximal throughput, better spectral efficiency and accommodate much higher number of users.
Besides the technology advances, there are various antenna techniques used for increasing the efficiency of
the radio system. Multiple antennas can be used to achieve a multiplexing gain, a diversity gain, or an
antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference
ratio of wireless systems, correspondingly. The field of multiple-antenna systems, often called multiple-
input multiple-output (MIMO) systems, is a major subject of research and is evolving rapidly. For an
optimal level of quality of service, not only high bit rates are needed, but also a good error performance
(MOLISCH, A. F., 2011). However, the disruptive characteristics of wireless channels, mainly caused by
multipath signal propagation (due to reflections and diffraction) and fading effects, make it challenging to
accomplish both of these goals at the same time. Particularly, given a fixed bandwidth, there is always an
essential compromise between bandwidth efficiency (high bit rates) and power efficiency (small error
rates). Conventional single-antenna transmission techniques aiming at an optimal wireless system
performance, operate in the time domain and/or in the frequency domain. Specifically, channel coding and
modulation (i.e. OFDM) are ordinarily used to permeate the negative effects of multipath fading. However,
regarding the ever-growing demands of wireless services, the antenna technologies are advancing very fast.
In fact, when using multiple antennas, the previously vacant spatial domain can be exploited. The immense
potential of using multiple antennas for wireless communications has only become clear during the last
decade. At the end of the 1990s, multiple-antenna techniques were shown to provide an innovative method
for achieving both higher bit rates and smaller error rates. In addition to this, multiple antennas can also be
utilized in order to alleviate co-channel interference, which is additional major source of disruption in all
wireless communication systems. Altogether, multiple-antenna techniques form a key technology for
modern wireless communications (MIETZNER, J. et al., 2009).

To accommodate the exponentially-higher expected number of connected devices after 2020, the 5G
radio systems have massive advancements in antenna technologies, as well as techniques used to back their
operation. Since there is no particular definition about the structure of a 5G wireless communication system
at this point, it can be acknowledged that an evolution of the present radio technologies is taking place, of
which, Massive MIMO (ARAÚJO, D. C. et al., 2016, pp.1938-1946) and Millimeter wave (TOKGOZ, K.
K. et al., 2018, pp.168-170) technologies are considered to be the key radio progressions for 5G wireless
communications. Traditionally, the antenna in mobile communication systems is a passive element and is
separated from the RF transceivers. For massive MIMO, at either lower microwave band or millimeter

57

wave band, the active antenna will be seamlessly integrated with RF transceivers and even with RoF or
ADC (DAC) and E/O (O/E). Therefore, the antenna for 5G wireless communications will have distinct
characteristics compared to traditional antennas (WEI, H. et al., 2014).

A. Smart antennas
The initial usage of smart antennas dates back in the beginning of the 20th century, which was mostly

directed towards military appliances and intelligence gathering. The first commercial applications of smart
antennas start with the rapid growth of cellular technologies in the 1980s. Since then, the remaining wireless
technologies are acting as an active driver for the development of the smart antennas in the 1990s, namely
satellite broadcasting systems, indoor wireless networks, fixed and mobile wireless systems etc. The
resulting efforts thus have produced techniques such as MIMO (Multiple-Input Multiple-Output) as well as
implementation of access techniques (as OFDMA or SDMA), where multiple antennas are used for
enhancing the spectrum and accommodating larger number of users. A smart antenna is comprised of an
antenna array, combined with signal processing in both space and time. Spatial processing enables multiple
degrees of freedom in the system design, which can increase the global performance of the system. The
concept of antenna arrays is not new and is widely implemented in radar and aerospace technology through
the last century (CHRYSSOMALLIS, M., 2000, pp.129-136).

The smart antenna works in the manner of propagation of each path differently for each different antenna
element. This allows collection of elements to distinguish individual paths to within a certain resolution.
Therefore, smart antenna transmitters can encode different streams of data onto different paths or linear
combination of paths, which increases the data rate and provides diversity gain. Also, this procedure
automates the placement of the antenna in that way that the smart antenna adapts electronically to the
environment (ANKIT, D. P., 2013). There are three antenna groups:

 Phased antenna array systems - A phased array antenna is comprised of numerous radiating
elements, each containing a phase shifter. Beams are formed by shifting the phase of the signal
emitted from each radiating element, in order to provide constructive/destructive interference, as
well as to steer the beams in the anticipated direction. This type of antenna array system is widely
used in radar technologies.

 Switched beam systems – Switched-beam antennas have several fixed beam patterns. This approach
is not very flexible, but its simplicity allows unsophisticated deployments. Switched-beam smart
antenna systems are shown to either increase the capacity or extend the radio coverage by
increasing the carrier-to-interference ratio (CIR), consisting of a multiple narrow-beam directional
antenna along with a beam-selection algorithm. Switched-beam smart antennas offer a potentially
more desirable solution than adaptive antenna arrays since they are based on well-known
technology, require no complicated beam-forming (combining) network, and require no significant
changes to the existing cellular infrastructure. Switched-beam antennas are based on the retro-
targeting concept (STÜBER, G. L., 1996). The choice of the triggered receive beam is constructed
on the received signal-strength indicator (RSSI) [and also the supervisory audio tone (SAT) for the
advanced mobile phone systems (AMPS)]. Forward-channel transmissions (BS’s–MS’s) are over
the best received beam, i.e., the same beam is used for both reception and transmission. Beam
forming is accomplished by using physically directive antenna elements to create aperture and,
thus, gain (HO, M-J. et al., 1998, pp.10-19)

 Adaptive antenna array systems - These type of antenna systems allow the beam to be continually
steered (directed) to any direction, in order to allow for the maximum signal to be received and the
interference minimized. Adaptive antenna arrays have been successfully used in TDMA mobile
wireless systems to mitigate rapid dispersive fading, suppress cochannel interference, and,
therefore, improve communication capacity. For systems with flat fading, the direct matrix

58

inversion (DMI), or the diagonal loading DMI (DMI/DL) algorithm for antenna diversity can be
used to enhance desired signal reception and suppress interference effectively. The DMI/DL
algorithm, can be also used for spatial-temporal equalization in TDMA systems to suppress both
inter-symbol and cochannel interference. The use of adaptive antenna arrays in the OFDM systems
suppresses cochannel interference. The difficulty of adaptive antenna arrays for OFDM systems
stems from the fast change of parameters for the MMSE-DC because OFDM systems have much
longer symbol duration than that of single carrier or TDMA systems. Hence, the parameter
estimation approaches for TDMA systems are not applicable to OFDM systems (LI, Y. and
Sollenberger, N. R., 1999, pp.217-229).

B. Adaptive Beamforming
Beamforming, also known as spatial filtering, is a signal processing technique used in sensor arrays for

directional signal transmission or reception (GOLBON-HAGHIGHI, M. H., 2016, pp.163-199). This is
realized by coalescing components in an antenna array in such a way that signals at specific angles
experience constructive interference while others experience destructive interference. Beamforming can be
used at both the transmitting and receiving sides in order to achieve spatial selectivity. The improvement
compared with omnidirectional reception/transmission is known as the directivity of the array (FORENZA,
A. et al., 2005, pp.3188-3192). In other words, using beamforming technique, it is possible to direct the
radiation towards the user device in order to achieve better connectivity and lower transmission error rate
(Figure 42).

Figure 42. Omnidirectional radiation pattern and Beamforming

Smart antennas are widely used for wireless communications due to their ability to increase the coverage
and capacity of communication systems. Utilization of an adaptive algorithm is one of the core technologies
of smart antenna. Adaptive beamforming can receive signal from a certain direction by adjusting the array
weight vector to enhance the desired signal and suppress the interference and noise (YANG, Y. Z. a. X.,
2016, pp.522-525). Adaptive beamforming is a key technology of smart antenna; the core is to obtain the
optimum weights of the antenna array by some adaptive beamforming algorithms, and finally adjust the
main lobe to focus on the arriving direction of the desired signal, as well as suppress the interfering signal.
By these ways, the antenna can receive the interesting signal efficiently. In practical application, the speed
of convergence, complexity, and robustness are the main factors to be considered when choosing an
adaptive beamforming algorithm (YONG-JIANG, S. et al., 2012, pp.1-3).

59

C. Antenna Diversity (Spatial Diversity)
The base station is the most complex element in any wireless system, because it is responsible for various

processing, including the diversity schemes, combining, modulation, coding, error correction etc. These
functions instigate high power consumption. In the subsequent chapters, it will be disclosed that the
virtualization of the base station function and the radio access network, entail high-power computing
devices to placate the immense demand for computing resources. In addition to diversity processing
algorithms, there are numerous antenna diversity techniques that can be applied for accomplishing
improvement and augmenting the consistency of a wireless link. Practically, in urban and indoor settings,
no clear line-of-sight (LOS) between the transmitter and the receiver exists (DOBKIN, D. M., 2011).
Instead, the signal is reflected by multiple paths before being received. Therefore, the multi-path effects
can induce phase shifts, time delays, attenuations, and distortions that can detrimentally interfere between
each other at the aperture of the receiving antenna. Correspondingly to the increased demand for processing
power, an antenna diversity technique needs additional hardware integration to accommodate the
peculiarity of such scenario.

Antenna diversity is particularly effective at extenuating multipath conditions. This is due to multiple
antennas offering a receiver several observations of a single signal. Each antenna will confront a diverse
interference scenery. Thus, if one antenna is facing a deep fade, it is probable that another antenna has an
adequate signal. Collectively, a system of such scopes can deliver a robust link. While this is principally
observed in receiving systems (diversity reception) (TATARINSKIY, S. N. et al., 2006, pp.1014-1014),
the equivalent is also demonstrated valuable for transmitting systems (transmit diversity) (LOZANO, A.
and Jindal, N., 2010, pp.186-197) as well.

For example, to alleviate the effects of multipath fading, multiple-antenna diversity systems engage
multiple antennas and a digital central receiver using diversity combiner. The multiple-antenna adherences
are handled at distinct receivers and sent to a central receiver. The central receiver combines all the
individual receiver information to form universal information on which symbol was transmitted. A
multiple-antenna diversity scheme can be represented by course-resolution information or high-resolution
information. The exact diversity scheme that functions by course-resolution information is designated for
the case of non-coherent frequency-shift keying in slow Rayleigh fading and additive Gaussian noise. This
technique is more cost effective and can be used instead of high-resolution scheme without noticeable loss
in performance which simplifies receiver design and construction (AZIZ, A. M., 2009, pp.1-10).

Antenna diversity can be achieved in multiple ways, in accordance to the situation and the environment;
also, the expected interference, which can direct designers to implement one method or combine several
for signal quality improvement:

Spatial diversity – Implementation with multiple physically-separated antennas with same properties. In
some situations, a space of separation on the order of a wavelength is sufficient, but sometimes the antennas
need to be distanced more from each other. Sectorization of a cell in the mobile network is an example of
a separation of antennas kilometers apart, that is a mechanism for combatting co-channel interference and
spectrum reuse (HANLEN, L. and Fu, M., 2006, pp.133-142).

Pattern diversity – Colocation of multiple antennas with different radiation patterns. This type of
diversity includes usually directional antennas that are separated by short distances. The benefit in this case
is that the directional antennas can achieve higher gain than omnidirectional antennas (YANG, S. L. S. et
al., 2008, pp.71-79).

Polarization diversity – Combining pairs of antennas with different polarization radiating patterns
(horizontal or vertical, left-hand or right-hand circular polarization) (KADIR, M. F. A. et al., 2008, pp.128-
131).

60

Transmit/Receive diversity – Two separate collocated antennas for transmission and receiving. This
configuration omits the necessity for duplexer and protect sensitive receiver components from the high
power used to transmit (DIGHE, P. A. et al., 2003, pp.694-703).

Adaptive arrays – A situation where a single antenna with active elements can be used, which can change
the radiation pattern in accordance to the requirements of the environment conditions. Phase shifters and
attenuators are used within active electronically scanned arrays (AESAs), to provide an instantaneous scan
ability as well as radiation pattern and polarization control. An example is a radar antenna, which can switch
to different modes of operation (searching, tracking, mapping or jamming countermeasures) (SRAR, J. A.
et al., 2010).

D. Spatial multiplexing (SMX)
Spatial multiplexing, as the name indicates, is a transmission technique used in MIMO (Multiple-Input-

Multiple-Output) wireless systems for transmission of impartial and separately encoded data signals, so-
called streams, from each of the multiple transmit antennas. Therefore, the space dimension is reused
(multiplexed), multiple times. To take advantage of the additional throughput capability, MIMO utilizes
several sets of antennas. In many MIMO systems, just two are used, but there is no reason why further
antennas cannot be employed and this increases the throughput. In any case for MIMO spatial multiplexing,
the number of receive antennas must be equal to or greater than the number of transmit antennas (LOZANO,
A. and Jindal, N., 2010, pp.186-197).

E. Space-Division Multiple Access (SDMA)
SDMA is an access technique, similar to OFDM, with the difference that SDMA creates parallel spatial

pipes next to higher capacity pipes through spatial multiplexing and/or diversity. This can enable superior
performance in radio systems that require multiple-access. Combined with techniques such as
beamforming, the SDMA can allow the base station to save power and avoid wasting energy on
transmissions when there are no reachable mobile units, which can also minimize interference. Instead of
receiving signals coming from all directions including noise and interference signals, the receiving antenna
can collect adapted signal from the smart transmitting antennas at the base station; which using phased
array technologies, radiates an adapted pattern according to the requirements for the corresponding user
devices. The radiation pattern of the base station is adapted to each UE to obtain highest gain in the direction
of the given user with utilization of phased array techniques. In GSM cellular networks, the base station
can acquire the distance (but not direction) of a mobile phone by use of a technique called "timing advance"
(TA) (HUNT, A. et al., 2016, pp.643-647). The base transceiver station (BTS) can determine how far the
mobile station (MS) is by interpreting the reported TA. This information, along with other parameters, can
then be used to power down the BTS or MS, if a power control feature is implemented in the network. The
power control in either BTS or MS is implemented in most modern networks, especially on the MS, as this
ensures a better battery life for the MS. This is also why having a BTS close to the user results in less
exposure to electromagnetic radiation. This is why one may be safer to have a BTS close to them as their
MS will be powered down as much as possible. For example, there is more power being transmitted from
the MS than what one would receive from the BTS even if they were 6 meters away from a BTS mast.
However, this estimation might not consider all the Mobile stations that a particular BTS is supporting with
EM radiation at any given time (HARTMANN, C., 2017). In the same manner, 5th generation mobile
networks will be focused in utilizing the given position of the MS in relation to BTS in order to focus all
MS Radio frequency power to the BTS direction and vice versa, thus enabling power savings for the Mobile
Operator, reducing MS SAR index, reducing the EM field around base stations since beam forming will
concentrate RF power when it will be used rather than spread uniformly around the BTS, reducing health
and safety concerns, enhancing spectral efficiency, and decreased MS battery consumption
(TELECOMPAPER, 2013).

61

F. MIMO (Multiple-Input Multiple-Output)
One of the best advantages of LTE systems is that they employ the power of multiple-antenna

transmission. As stated previously, the combining of antennas can not only increase the throughput of the
system but also minimize transmission error as well as cope with the multipath problem. There are two
different scenarios where MIMO is used, specifically: Single-User MIMO (SU-MIMO) or Multi-User
MIMO (MU-MIMO), although a common set of concepts captures the essential MIMO benefits in both
cases. Single-User MIMO was established in the first version of LTE, whereas the Multi-User MIMO starts
with the deployment of LTE Releases 9 and 10 (SÄLZER, T. et al., 2011, pp.249-277), and is the concept
of research focus in this thesis.

Figure 43. A MIMO system with N-transmit and M-receive antennas, giving an MxN channel matrix with MN links

While traditional wireless communications such as Single-Input Single-Output (SISO) exploit time or
frequency domain pre-processing and decoding of the transmitted and received data respectively, the use
of additional antenna elements at either the base station (eNB) or UE side, opens an extra spatial dimension
to signal precoding and detection. Space-time processing methods exploit this dimension with the aim of
improving the link’s performance in terms of one or more possible metrics, such as the error rate,
communication data rate, coverage area and spectral efficiency. Depending on the availability of multiple
antennas at the transmitter and/or the receiver, such techniques are classified as Single-Input Multiple-
Output (SIMO), Multiple-Input Single-Output (MISO) or MIMO. Thus, in the scenario of multi-antenna-
enabled base station communicating with a single antenna UIE, the uplink and downlink are referred to as
SIMO and MISO respectively. When a multiple-antenna terminal is involved, a full MIMO link may be
obtained, although the term MIMO is sometimes also used in its widest sense, thus including SIMO and
MISO as special cases. While a point-to-point multiple-antenna link between a base station and a UE is
referred to as Single-User MIMO (SU-MIMO), Multi-User MIMO (MU-MIMO) features several UEs
communicating simultaneously with a common base station using the same frequency and time domain
resources. By extension, considering a multicellular context, neighboring base stations sharing their
antennas in virtual MIMO fashion to communicate with the same set of UEs in different cells comes under
the term Coordinated MultiPoint (CoMP) transmission/reception. This latter scenario is not supported in
the first versions of LTE but is included in LTE-Advanced (SÄLZER, T. et al., 2011, pp.249-277).

Massive-MIMO for 5G
Massive MIMO is the currently most compelling sub-6 GHz physical-layer technology for future

wireless access. The main concept is to use large antenna arrays at base stations to simultaneously serve

62

many autonomous terminals. The rich and unique propagation signatures of the terminals are exploited with
smart processing at the array to achieve superior capacity. Massive MIMO splendidly offers two most
desirable benefits (LARSSON, E. G. and Van der Perre, L., 2017):

a) Excellent spectral efficiency, achieved by spatial multiplexing of many terminals in the same
time-frequency resource. Efficient multiplexing requires channels to different terminals to be
sufficiently different, which has been shown to hold, theoretically and experimentally, in diverse
propagation environments. Specifically, it is known that Massive MIMO works as well in line-of-
sight as in rich scattering (LARSSON, E. G. and Van der Perre, L., 2017).

b) Superior energy efficiency, by virtue of the array gain, that permits a reduction of radiated power.
Moreover, the ability to achieve excellent performance while operating with low-accuracy signals
and linear processing further enables considerable savings (LARSSON, E. G. and Van der Perre,
L., 2017).

The key technological characteristics of Massive MIMO are:

a) Fully digital processing; each antenna has its own RF and digital baseband chain. Signals from all
antennas at each base station are processed coherently together. Core advantages of fully digital
processing include the avoidance of specific assumptions on propagation channel, the possibility
to measure the complete channel response on the uplink and respond fast to changes in the channel.
Interestingly, recent assessments show that the full digital processing may not only offer superior
performance but also better energy efficiency, a trend which may be reinforced by the ongoing
development of tailored low-power circuits (LARSSON, E. G. and Van der Perre, L., 2017).

b) The reliance on reciprocity of propagation and TDD operation, enabling downlink channels to
be estimated from uplink pilots, and obviating the need for prior or structural knowledge of the
propagation channel (LARSSON, E. G. and Van der Perre, L., 2017).

c) Computationally inexpensive precoding/decoding algorithms, taking the form of maximum-
ratio (known also as conjugate beamforming) or zero-forcing processing. Massive MIMO functions
equally well with single-carrier transmission and OFDM. Notably, conjugate beamforming with
OFDM is equivalent to time-reversal in a single-carrier system (LARSSON, E. G. and Van der
Perre, L., 2017).

d) Array gain, resulting, in principle, in a closed-loop link budget enhancement proportional to the
number of base station antennas (LARSSON, E. G. and Van der Perre, L., 2017).

e) Channel hardening, which effectively removes the effects of fast fading. Operationally, each
terminal-base station link becomes a scalar channel whose gain stabilizes to a deterministic and
frequency-independent constant. This greatly simplifies resource allocation problems (LARSSON,
E. G. and Van der Perre, L., 2017).

f) The provision of uniformly good quality of service to all terminals in a cell - facilitated by the
link budget improvement offered by the array gain, and the interference suppression capability
offered by the spatial resolution of the array. Typical baseline power control algorithms achieve
max-min fairness among the terminals (LARSSON, E. G. and Van der Perre, L., 2017).

g) Autonomous operation of the base stations, with no sharing of payload data or channel state
information with other cells, and no requirements of accurate time synchronization (LARSSON, E.
G. and Van der Perre, L., 2017).

h) The possibility to reduce accuracy and resolution of transceiver frontends, and the digital
processing and number representations in computations (LARSSON, E. G. and Van der Perre, L.,
2017).

The attractive properties of propagation -- penetration of solid objects and diffractive behavior -- and
the maturity of hardware renders Massive MIMO primarily a below-6 GHz technology for radio access.

63

This is also the region where spectrum is most valuable. Arrays have attractive form factors even for large
numbers of antennas: in the 3.5 GHz TDD band, a half-wavelength-spaced rectangular array with 200 dual-
polarized elements is about 0.6 x 0.3 meters large; in practice, larger antenna spacing may be desired and
is easily afforded. However, systems operating at higher frequencies up to millimeter-waves may also
benefit from the application of Massive MIMO, especially when these systems would need to support multi-
user access in potentially non-Line-of-Sight scenarios (LARSSON, E. G. and Van der Perre, L., 2017).

G. Multi-beam antennas for 5G radio
Using the previously-mentioned traits, the 5G radio is expected to utilize the same techniques in order

to achieve better global efficiency. With the demanding system requirements for the fifth-generation (5G)
wireless communications and the severe spectrum shortage at conventional cellular frequencies, multi-
beam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research
interest and have been actively investigated. They represent the key antenna technology for supporting a
high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and
energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical
infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost
the 5G (HONG, W. et al., 2017, pp.6231-6249).

The idea behind 5G is to increase transmission bit rates by using frequency bands higher than those of
existing frequency bands and widening the signal bandwidth. However, as radio propagation loss increases
in high frequency bands, the application of massive-element antennas each consisting of more than 100
antenna elements has been studied as 5G multi-antenna technology (SUYAMA, S. et al., 2016, pp.29-39).
Application of a massive-element antenna makes it possible to compensate for the radio propagation loss
by adaptively controlling antenna directivity and increase bit rate by the spatial multiplexing of signals. A
basic 5G architecture proposed model, consisting of C/U separation by Phantom cell concept is comprised
of multiple instances of small cell (or quasi-macro cell) in an overlay configuration. In this particular
scheme, the macro cell uses the Ultra High Frequency band (UHF) (0.3-3 GHz) employed by the existing
system while overlaid small cells use higher frequency band, namely, the low Super High Frequency band
(SHF) from 3-6GHz, high SHF band (6-30 GHz), and Extremely High Frequency band (EHF) from 30-300
GHz. This model establishes a connection link for the Control Plane (C-plane) that handles control signals
via the macro cell and a connection link specifically for the User Plane (U-plane) that handles user data via
overlaid cells, i.e., C/U split connections. Another operation that is supported is the introduction of Massive-
element antennas in high-frequency band cells. To achieve higher bit rates than 10Gbps requires bandwidths
of several 100 MHz. Particularly, to resolve this issue, massive-elements antennas are introduced in high
frequency bands. When using a flat antenna array with a uniform antenna spacing as a massive-element
antenna in the 20 GHz band, and when setting the element spacing to half the wavelength (7.5 mm), it
becomes possible to mount 256 elements in an area approximately of 12 cm2. Generally, for the same area,
the number of elements that can be mounted can be significantly increased when using higher frequency
bands with shorter wavelengths. A massive-element antenna can be used to generate sharp beams by
controlling the amplitude and phase of transmitted and received signals from each element (beamforming)
(SUYAMA, S. et al., 2016, pp.29-39).

H. Evolution of the antenna systems
The development of new types of antennas can be granted mostly to the availability of 3D printing

technologies. The 3D printing enables usage of various meta-materials that have not been previously tested,
and currently, they can yield some unprecedented performance for the actual antennas that they are used
for. Metamaterials are made by arranging naturally occurring materials in a specific pattern that produces
an electromagnetic response that is not found in nature. The periodic structures created are at scales that are
smaller than the wavelengths of the phenomena they influence and can create materials with negative

64

indexes that control electromagnetic energy in ways that cannot be done with natural materials. In
traditional active electronically scanned arrays (AESA), phase shifters embedded in control circuitry steer
the beam direction. Metamaterial-based AESAs can steer the beam without phase shifters, which reduces
system complexity, eliminates a source of power loss and simplifies waste-heat dissipation. There are a
couple of companies using unique metamaterial structures developed for this application. For example, as
represented in the October 2016 issue of Microwave Journal (ELSALLAL, M. W. et al., 2016), The MITRE
Corporation is investigating a new generation of 3D printing to realize the complex geometries of wideband
phased array and metamaterial designs using commercial, low-cost, compact, desktop printers. Samples of
the 3D printed plastic and conductive ink printed at room temperature were characterized over frequency.
The polylactic acid (PLA) dielectric constant and loss tangent are found to be stable up to 18 GHz. The
PLA internal architecture was varied to achieve lower effective dissipation factors, which extends
usefulness to high frequency applications. Micro-strip line samples were fabricated with simulated and
measured insertion loss data validating the high conductivity through mm-Wave frequencies. A 3D printed
monopole Wi-Fi antenna was built and tested, showing good performance and agreement with simulations
(HINDLE, P., 2018).

2.1.7. Security architecture of 4G LTE
The communication networks should provide adequate level of security in terms of services, and

therefore, a suitable cost-to-benefit ratio of deployment is taken into consideration. A complete security of
a system is impossible, and the focus of establishing a secure environment should be directed towards
minimizing the potential vulnerabilities of the network, since attackers tend to exploit those in order to
achieve a goal. Accordingly, a system is secure as its least reliable security asset. The least secure entities
in a mobile network are the access stratum (the radio network) and the mobile terminals (UE). The main
features of a secure network are as follows: Confidentiality, Integrity and Non-repudiation. To reach the
particular goals, a mobile network should fulfill some requirements for mechanisms such as:
Authentication, Access control and Network availability. The wireless/mobile networks also implement the
security features of the fixed networks, with particular modification of some protocols and methods that are
adjusted to correspond to the requirements of the nature of the networks (BOUDRIGA, N., 2010).

The security architecture in LTE can be categorized for both Non-Access Stratum (NAS) layer security
and Access Stratum (AS) layer security (see Figure 44). The NAS security is carried out for NAS messages
and belongs to the domain of UE and MME. Accordingly, the NAS message communication between the
UE and MME is protected and ciphered with additional NAS security header. Conversely, the AS security
is carried out for the RRC and user-plane data, and belongs in the sphere of the UE and eNB. The ciphering
and integrity protection are being carried out by the PDCP layer in the UE and eNB side. The RRC messages
have their integrity protected and ciphered, and the user-plane data is only being ciphered.

Figure 44. Security distribution in LTE

The Evolved Packet System (EPS) is designed to interwork with legacy systems, and has thus adopted
the security mechanisms from 3G UMTS for the sake of backward-compatibility; but however, many new
extensions and enhancements are introduced (FOSBERG, D. et al., 2013). In LTE, after the UE has been

65

identified, the MME fetches authentication data from the home network. Then, the MME triggers the
authentication and key agreement protocol (AKA) with the UE, which is the actual DIAMETER service.
After this protocol is finalized, the MME and the UE share a secret key KASME (ASME refers to Access
Security Management Entity). The management entity in the EPS system is the actual MME. At this point,
the MME and UE can derive further keys from the KASME. For confidentiality and integrity protection of the
signaling data between the MME and UE derived keys are being used. Additional key is being derived and
thus transported to the eNB. Furthermore, three more keys are subsequently being derived, both at the eNB
and in the UE. Two of these keys are then used for confidentiality and integrity protection of the signaling
data between the eNB and the UE (AS security in Figure 44). The third key is used for confidentiality
protection of the U-plane data between the UE and eNB, which is the NAS security part. Besides the
security of signaling and UP data originated or terminated by the UE, there is also confidentiality and
integrity protection for the signaling and user data being transported over the interface between the eNB
and the EPC, namely the S1-MME interface. The signaling data is transported over the S1-U interface,
between the UE and the S-GW. As a cryptographic measurement for protection applied to the S1 interfaces,
the IPsec mechanism (IETF, 2011) [Standard RFC6071] is employed. Additionally, the X2 interface is
being protected by IPSec with keys that are not specific to the UE where cryptographic protection is utilized
(FOSBERG, D. et al., 2013).

A. Authentication and key agreement protocol (AKA)
In LTE, the authentication is based on the AKA procedure. The key agreement and exchange is a crucial

process, which enables secure access of the users to the network core (EPC). The AKA procedure is a
crucial process of the Diameter service, which takes place via the S6a interface between the MME and the
HSS. The EPS AKA procedure is combination of a procedure for generation EPS authentication vectors
(AVs) in the HSS upon request from MME, a procedure to mutually authenticate and establish a new shared
key between the serving network (SN) and the UE and a procedure to distribute authentication data inside
and between serving networks. The MME invokes the procedure by requesting EPS AVs from the HSS.
The Authentication Information Request shall include the IMSI (International Mobile Subscriber Identity
– used to identify the user or acellular network and is a unique identification associated with all cellular
networks), the SN id (Serving Network ID – refers to the network accessed by the UE) of the requesting
MME, and an indication that the authentication information is requested for EPS. The SN id is required for
the computation of KASME in the HSS. Upon the receipt of the Authentication Information Request from
the MME, the HSS may have pre-computed AVs available and retrieve them from the HSS database, or it
may compute them on demand. The HSS sends an Authentication Information Answer back to the MME
that contains an ordered array of n EPS AVs (1 . . . n). If n > 1, the EPS AVs are ordered based on sequence
number. The 3GPP specification TS 33.401 (3GPP, 2015) [specification TS 33.401] recommends n = 1, so
that only one AV is sent at a time, because the need for frequently contacting the HSS for fresh AVs has
been reduced in EPS through the availability of the local master key KASME, which is not exposed in a
way similar to Ciphering Key in 3G (CK) and Integrity Key in 3G (IK) in UMTS and, hence, does not need
to be renewed very often. Based on the local master key, and keys derived from it, an MME can offer secure
services even when links to the HE are unavailable. Furthermore, pre-computed AVs are no longer usable
when the user moves to a different SN owing to the binding of the local master key KASME to the SN id.
However, pre-computation may still be useful when the next request for AVs is likely to be issued by an
MME in the same SN, which may be the case, for example, for a user in his home network. Each EPS AV
is good for one run of the AKA procedure between the MME and the USIM (FOSBERG, D. et al., 2013).

The purpose of this procedure is the authentication of the user and the establishment of a new local
master key KASME between the MME and the UE, and, furthermore, the verification of the freshness of
the AV and authentication of its origin (the user’s home network) by the USIM. KASME is used in
subsequent procedures for deriving further keys for the protection of the user plane (UP), RRC signaling

66

and NAS signaling. The MME invokes the procedure by selecting the next unused EPS AV from the ordered
array of EPS AVs in the MME database (if there is more than one). If the MME has no EPS AV, it requests
one from the HSS. The MME then sends the random challenge RAND and the authentication token for
network authentication AUTN from the selected EPS AV to the ME, which forwards it to the USIM. The
MME also generates a key set identifier in EPS (eKSI) and includes it in the Authentication Request. When
a user moves around, the MME serving the UE may change. When the UE then sends an Attach Request,
or a Tracking Area Update Request [TS23.401], the UE will, in general, use its temporary identity, the
GUTI, in order to protect the confidentiality of its permanent identity, the IMSI. But the new MME is not
able to make sense of the GUTI, so it has only two choices: request the permanent identity from the UE and
break identity confidentiality in this way, or ask the old MME, which issued the GUTI, to translate the
GUTI to the user’s IMSI. The old MME will also send back authentication data to the new MME. Exactly
what kind of authentication data is allowed to be exchanged between old and new MME depends on whether
the two MMEs reside in the same or in different SNs (FOSBERG, D. et al., 2013).

When two parties engage in security-related communication, for example when running an
authentication protocol or exchanging encrypted data, they need an agreed set of security parameters, such
as cryptographic keys and algorithm identifiers, for the communication to be successful. Such a set of
security parameters is called a security context. There are different types of security context depending on
the type of communication, and the state the communicating parties are in. Additionally, entities may store
security context data locally even when not engaged in communication. The distinction between locally
stored security context data and security context shared between two communicating parties for the purpose
of running a security protocol is useful in principle, but it is a bit academic and not much adhered to in
practice. As the potential for confusion is low, the common practice is being followed and declared only in
terms of security contexts. Several different types of security context have been defined for EPS so as to
have shorthand notations available for the various sets of security parameters used in particular situations
(FOSBERG, D. et al., 2013).

There are several security contexts for LTE, among which few will be elucidated for clarification. One
example is the EPS security context that is comprised of EPS NAS security context and EPS AS security
context, or specifically contexts for the Non-Access Stratum and the Access Stratum. The EPS NAS
security context is used for protecting the NAS of EPS between the UE and the MME, and it may even
exist when the UE is in de-registered state. This context consists of KASME with the associated key set
identifier eKSI, the UE security capabilities and the NAS uplink and downlink COUNT values. These
counters are relevant also for security as they are used as input parameters to key derivations in certain state
and mobility transitions and, in conjunction with integrity protection, for preventing message replay.
Separate pairs of NAS COUNT-values are used for each EPS NAS security context. The EPS NAS security
context is called full if it additionally contains the keys KNASint and KNASenc (‘NAS keys’ for short) and
the identifiers of the selected NAS integrity and encryption algorithms, otherwise it is called partial. An
EPS security context containing a full or partial EPS NAS security context is also called full or partial,
respectively. However, both KNASint and KNASenc can be derived from the KASME when the NAS
integrity and encryption algorithms are known. Thus, they need not necessarily be stored in the memory
(FOSBERG, D. et al., 2013).

The EPS AS security context is used for the AS of EPS between the UE and the eNB, and it only exists
when cryptographically protected radio bearers are established and is otherwise void. For an EPS AS
security context to exist, the UE needs to be in connected state. This context consists of the cryptographic
keys at AS level (i.e. between the UE and the eNB) with their identifiers, the NH, the Next Hop Chaining
Counter parameter (NCC) used for NH access key derivation (see Section 9.4), the identifiers of the selected
AS level cryptographic algorithms for integrity protection of RRC and (in the context of relay nodes) UP,
and ciphering of RRC and UP, and the counters used for replay protection (FOSBERG, D. et al., 2013).

67

When the USIM is enhanced for EPS, a part of the EPS native security context is stored on the USIM
under certain conditions. When the USIM is not enhanced for EPS, the nonvolatile part of the ME memory
takes on an equivalent role and stores that part of the EPS native security context. The idea is that, in both
cases, an EPS native security context shall be kept even when the UE de-registers or is switched off. When
the UE registers again and goes to connected state, the EPS native security context can be retrieved from
storage and used to protect the initial NAS message. By re-using the stored context, a new run of EPS AKA
can be avoided. A mapped context is never stored on the USIM. A mapped EPS security context is kept in
a transition to idle state, and, if available, is used to protect the initial NAS message when the UE transitions
back to connected state. A mapped EPS security context is deleted when the UE de-registers (FOSBERG,
D. et al., 2013).

B. DIAMETER protocol in LTE
In 1980, the signaling protocol SS7 was introduced by the International Telecommunications Union to

control telephone call sessions through point-to-point connectivity. Only after scalability and management
issues became apparent, the need for centralized management was clear and a new network entity called
the signal transfer point was introduced to manage, connect and route SS7 traffic. SIP, the communication
protocol to support voice calls over the Internet, has similar origins. Originally SIP was intended to connect
network entities point-to-point, which lasted a while until management, interoperability and routing
requirements evolved and the session border controller was introduced in 2003 to handle and solve SIP
management issues. Beginning in the 1970s, the data plane was also initially designed on point-to-point
connections. Few people imagined that there would be so many connections, and much data and signaling
traffic to render this architecture obsolete. But, as we know, data and signaling traffic increased, which
expedited the need for switches, routers and load balancers to support signaling traffic management and
scaling. When Diameter was first introduced by the Internet Engineering Task Force (IETF), it included
the concepts of Diameter agents that can proxy, route and balance Diameter traffic to provide scalability
and management requirements (IETF, 2003) [Diameter base protocol standard]. However, when the 3GPP
promoted Diameter as the foundation for signaling in IMS and EPC architectures, it left Diameter Agents
out, perhaps thinking that the introduction of a distributed architecture would avoid the need for Diameter
signaling management (RUSSELL, Travis, 2016).

Unlike legacy signaling protocols, which were predominately circuit-switch based, Diameter protocol
is always packet based and uses TCP or SCTP as a transport protocol to enhance reliability. However, TCP
creates twice as much network traffic due to the need to ACK all messages (meaning every message must
send a receipt message). Sending a receipt automatically doubles the number of signaling messages. As
clearly seen, the move to an all-IP network significantly increases the amount of signaling. Although the
move from circuit switch to packet switch will bring many other advantages, it generates tons more data
traffic, and data is one of the major forces behind growth in signaling. Operators need to confront the blitz
of signaling from a multitude of fronts never seen before and must be managed before damage is caused to
their networks. LTE introduced a major change to the overall 2G GSM architecture and thus, network
elements were consolidated to only support IP transport. Everything from the radio to the packet core runs
over IP transport. The protocols used in the network were changed as well, with SS7 being replaced by
Diameter (for authentication, authorization and accounting) and the Session Initiation Protocol (SIP). SIP
provides the signaling for voice and multimedia in the network, replacing SS7 ISUP call control. However,
3GPP decided against simple VoIP as the means of supporting voice and standardized on IP Multimedia
Subsystem (IMS) as the architecture for the SIP network. Voice over LTE (VoLTE) requires IMS to support
voice in 4G networks (RUSSELL, Travis, 2016).

68

DIAMETER is an evolution from the older protocol named RADIUS (Remote Authentication Dial-In
User Service), originally developed to support PPP connections. RADIUS managed authentication,
authorization and accounting (AAA) over these dial-up connections. Networks have evolved majorly over
the years, and RADIUS became too limited for modern-day services, especially in the modern
mobile/wireless networks. Since the RADIUS protocol is acronym, Diameter is not. The name emerged
from an engineering joke, starting from the point that Diameter is twice the protocol RADIUS is,
analogously to the mathematical terms for calculation of radius and diameter of a circle. Disregarding that
fact, the real distinction between these two protocols is in their functionality. Namely, RADIUS was not
able to provide fail-over procedures. There is no means for servers to communicate that they are going out
of service, or for the orderly termination of sessions for any reason. When an error emerges in RADIUS,
there are no existing procedures for attempts of rectification of the error. The session simply fails, which is
unacceptable for many modern-day services. Also, RADIUS assumes that security is managed in the back
office building systems rather than in the network. This stems from the notion that network connections
between service providers can be trusted. In today’s world, security must be implemented at all levels, using
layered security architecture; starting from the transmission level and up to the application level. One of
the issues in SS7 is the lack of authentication at the transport layer (between networks). This is resolved, as
stated previously, by using IPSec. Diameter, on the contrary, supports the use of encryption at the transport
layer. This is as important in today’s implementations where Diameter is replacing SS7 Mobile Application
Part (MAP) applications in the 4G LTE wireless networks. RADIUS uses the UDP protocol as its transport,
which is very unreliable. As previously stated, Diameter is based on the SCTP, which is a congregation of
the UDP and TCP protocols with connection control (RUSSELL, Travis, 2016).

DIAMETER is the most complicated AAA protocol existing (RUSSELL, Travis, 2016), and herein the
brief explanation that follows is a synopsis of the rationale. Diameter is an agent-based protocol, which is
designed as Peer-to-Peer (P2P) architecture. There are two constituents upon the architecture is built on: a
Diameter node (the client) and a Diameter agent (the server). It is possible also to implement few Diameter
agents (RUSSELL, Travis, 2016):

 Relay Agent (DRA) – Used to forward messages to the appropriate destination in dependence to
the information contained in the message. The relay agent can aggregate requests from different
realms (regions/FQDN) to a specific realm. That eliminates the onerous configurations of network
access servers for every Diameter server alteration.

 Proxy Agent – Can be used to forward messages with a difference from the relay agent that it can
modify the message composition and deliver value-added services; administer rules on different
messages or perform various managerial processes for a particular realm.

 Redirect Agent – Represents a centralized configuration repository for other Diameter nodes.
When a message is received, the agent checks the routing table and returns a response message
together with redirection information to the original sender. This is useful for other Diameter nodes,
since a local routing table can then be omitted on all the nodes individually and they can look up
for a redirect agent instead.

 Translation Agent – It is a special agent that converts message from one AAA protocol to another.
The translation agent is useful when operators need to integrate a user database of two application
domains, while keeping the original AAA protocols. Another case where the translation agent is
useful would be a situation of migration to Diameter protocol from another establishment, where it
can provide backward compatibility for smoother migration.

The summary of the agents is represented in Figure 45:

69

Figure 45. DIAMETER agents

A Diameter message is the elementary unit used to deliver a notification or issue a command to other
Diameter nodes. The Diameter protocols defines several type of messages that are identified by their
function (command code). A Diameter packet format is given in Figure 46.

Figure 46. DIAMETER packet format

70

Diameter works on the principle of peer discovery: the Diameter agent needs to broadcast which
application it supports, along with the provided security level. Thus, it can be decided how the Diameter
clients can depend on the desired Diameter application, security level, and realm info to look up suitable
first-hop Diameter nodes to which they can forward Diameter messages. The Diameter node maintains a
peer table in which host addresses are stored, as well as other information (status, security-related
information etc.). Also there is a peer routing table maintained, which contains four important columns that
require extra attention for message routing: Realm name, Application name, Action to be taken for the
target message and Reference to an entry in the Peer Table. After the peer is discovered, the following
procedure is to establish a connection with that peer. Here, the AKA procedure takes place, which in
Diameter is initiated via the SCTP protocol. Due to the fact that Diameter is a peer-to-peer based protocol,
multiple connections per node may exist; this inclines on the existence of a session, or a logical connection
between two Diameter nodes that has multiple connections. Each session in Diameter is associated with a
client-generated Session-ID that is globally and generally exclusive. As indicated in Figure 45, a Diameter
session is established in the request-response paradigm as in the case with other client-server
communication models.

C. Protection of Signaling and User data
Protecting communication over the air and inside the network is important so that confidentiality of

information can be assured and attacks on the communication channels can be more easily mitigated.
Evolved Packet System (EPS) has two layers of security for signaling: the first layer is between User
Equipment (UE) and the base stations, and the second layer is between UE and the core network. The user
plane data packets are protected between UE and base stations and further in the network in hop-by-hop
manner. In this chapter, we describe in detail how the communication between UE and network and inside
the network is protected. Long Term Evolution (LTE) has separate signaling and user planes. The signaling
plane is further divided into signaling between UE and base stations (i.e. Access Stratum, AS) and between
UE and core network (i.e. Non-Access Stratum, NAS). Signaling protection consists of ciphering and
integrity protection with replay protection; for the user plane (data) on the air interface only ciphering is
provided, with the exception of the Un air interface between a relay node and a Donor evolved NodeB
(DeNB) (RUSSELL, Travis, 2016).

D. EPS cryptographic algorithms
One principle that has been used in the design of EPS security is that of algorithm agility: the system

should be flexible in the sense that new algorithms can be introduced and outdated ones can be removed,
both without major hassle. Therefore, it is expected that in the future new algorithms would appear in EPS,
but they are potentially not even invented at the time of writing and hence naturally not yet discussed in
this chapter. The need for better algorithm agility has stemmed from experiences with 2G and 3G systems
where new algorithms have been introduced and one algorithm (A5/2) has also been removed from the 3rd
Generation Partnership Project (3GPP) system. A general principle for any standardized mechanisms
(including non-security-related ones) is that options should only be introduced if they serve a clear benefit
for the system as a whole. If the difference between one option and another is more like a matter of taste,
or if the benefit of each option over the others materializes only in a small minority of all circumstances,
options should not be introduced because they complicate the system, add development cost and put the
interoperability at risk. Hence, the number of different algorithms should be kept small and introduction or
removal of algorithms should be done only after it is clear that such action adds value to the system as a
whole (RUSSELL, Travis, 2016).

There are four types of cryptographic algorithms used in LTE:

 Null algorithms - When the protection needs to be explicitly turned ‘off’ instead of just not
‘on’. The start of no-protection has to be done explicitly, it is simplest from the system point of

71

view to use procedures for starting no-protection similar to those that are used for starting
protection. Bear in mind here that the start of protection needs to be done explicitly as well,
mainly for synchronization reasons. Thus, instead of choosing a proper algorithm to be put in
place in order to start protection, we choose a Null algorithm to be put in place to start no-
protection. Indeed, a Null algorithm is not a cryptographic algorithm; in fact it is not really an
algorithm at all. A way of realizing a Null algorithm is to do some very simple operation, just
in order to make it explicit that a Null algorithm has indeed been in use. This is the option that
has been chosen for the Null integrity algorithm in EPS: regardless of the message content or
key or any other parameter, a 32-bit string of all zeros is appended to the message as the result
of applying the Null integrity algorithm (RUSSELL, Travis, 2016).

 Ciphering algorithms - The encryption mechanisms used in EPS are very similar to those used
in 3G. There are many differences between EPS and 3G in how keys are generated and managed
but, once the correct key is in place, the usage of the key is very similar in these systems. This
is fortunate in the sense that it allows terminals to use some internal components for both Long
Term Evolution (LTE) and 3G. The both levels of security, the NAS and AS can have the same
encryption algorithm. It would be easy to draw the conclusion that the same set of algorithms
that is in use for 3G would also be a good choice for EPS. Presented the opportunity in a new
system, the EPS adopts new elevated approaches. The two 3G algorithms are, at the time of
writing, UEA1 (UMTS Encryption Algorithm) based on KASUMI and UEA2 based on SNOW
3G. It is notable that the leading general-purpose algorithm Advanced Encryption Standard
(AES) is not among the two. Briefly, AES was not ready yet when KASUMI-based UEA1 was
chosen, while SNOW 3G-based UEA2 was the preferred choice as the base algorithm, over
AES, because its design was more different from that of KASUMI.
To use the AES algorithm, it is possible to adopt another approach, since the AKA protocol
does not require standardization of the cryptographic algorithms. As for the purpose of this
project, the MILENAGE set is employed, which is developed accordingly to the [TS35.205];
[TS35.206]; [TS35.207] and [TS305.208] 3GPP specifications (3GPP, 2017) (RUSSELL,
Travis, 2016). The MILENAGE algorithms use a core function of a block cipher, in which both
block size and key size are 128 bits. For instance, the (basic form of) the AES algorithm can be
used as the core function (RUSSELL, Travis, 2016).

 Integrity protection algorithms - Many of the facts explained for the background of EPS
ciphering algorithms also apply to integrity algorithms. The integrity protection mechanisms
are similar in both 3G and LTE, although there are big differences in key management. Each
integrity algorithm applies as such to both AS-level and NAS-level protection. In order to have
a good security margin against progress in cryptanalysis, two different algorithms are in place
from the beginning of EPS. From an implementation point of view, especially for terminals, it
would be good to have algorithms that are usable also for some other purposes. There is a typical
practice of using the same core cryptographic functions for both ciphering and integrity
purposes. This practice is also mainly due to re-usability benefits, and there are no cryptographic
reasons behind it. However, no heavy arguments were found that would have spoken against
such a practice, so it was decided that the two integrity algorithms that are supported from the
start are based on AES and SNOW 3G (RUSSELL, Travis, 2016).

 Key derivation algorithms - The EPS key hierarchy is significantly more complex than that of
3G or GSM. One consequence is that there has to be a standardized way to derive keys from
each other. From the security point of view, it is crucial that the derivation is one-way: it should
not be possible to use physically less protected keys on the lower layers of the hierarchy to get
information about the physically more protected keys that are higher up in the hierarchy. In
addition, two keys derived from the same key should be independent. Notably, the difference in

72

the physical protection refers rather to the network side; on the UE side there are fewer
differences. Although 3G access security did not require defining a standardized Key Derivation
Function (KDF), it has been needed for other 3GPP features. Most notably, the Generic
Bootstrapping Architecture (GBA) includes the derivation of new keys as one of its core
features. EPS key derivation re-uses the standard KDF of GBA. The core of the KDF is the
cryptographic hash function SHA-256. It is used in the keyed HMAC (Keyed-Hash Message
Authentication Code) mode [RFC2104], where the key for HMAC is the ‘mother’ key from
which the lower layer key is derived. The other input parameter for HMAC is called the
message, a name motivated by the primary use of HMAC for message integrity purposes
(RUSSELL, Travis, 2016).

2.2. LTE-Advanced and LTE-Advanced Pro as a step before 5G
In LTE-Advanced focus is on higher capacity: The driving force to further develop LTE towards LTE–

Advanced – LTE. Release 10 was to provide higher bitrates in a cost efficient way and, at the same time,
completely fulfil the requirements set by ITU for IMT Advanced, also referred to as 4G. In this thesis, the
latest implementation of the Release 10 and forward is used for the research, where the experiments
incorporate software-defined solutions that include LTE-A attributes. Namely, the aim of the LTE-A
features is:

 Increased peak data rate, DL 3 Gbps, UL 1.5 Gbps

 Higher spectral efficiency, from a maximum of 16bps/Hz in R8 to 30 bps/Hz in R10

 Increased number of simultaneously active subscribers

 Improved performance at cell edges, e.g. for DL 2x2 MIMO at least 2.40 bps/Hz/cell.

LTE-A starts with the 3GPP Release 10 in 2011, powered with new functionalities such as Carrier
Aggregation (CA), enhanced use of multi-antenna techniques and support for Relay Nodes (RN). The most
straightforward way to increase capacity is to add more bandwidth. Since it is important to keep backward
compatibility with R8 and R9 mobiles the increase in bandwidth in LTE-Advanced is provided through
aggregation of R8/R9 carriers. Carrier aggregation can be used for both FDD and TDD. Each aggregated
carrier is referred to as a component carrier. The component carrier can have a bandwidth of 1.4, 3, 5, 10,
15 or 20 MHz and a maximum of five component carriers can be aggregated. Hence the maximum
bandwidth is 100 MHz. The number of aggregated carriers can be different in DL and UL, however the
number of UL component carriers is never larger than the number of DL component carriers. The individual
component carriers can also be of different bandwidths. In LTE-Advanced, the possibility for efficient
heterogeneous network planning – i.e. a mix of large and small cells - is increased by introduction of Relay
Nodes (RNs). The Relay Nodes are low power base stations that will provide enhanced coverage and
capacity at cell edges, and hot-spot areas and it can also be used to connect to remote areas without fiber
connection. The Relay Node is connected to the Donor eNB (DeNB) via a radio interface, Un, which is a
modification of the E-UTRAN air interface Uu. Hence in the Donor cell the radio resources are shared
between UEs served directly by the DeNB and the Relay Nodes. When the Uu and Un use different
frequencies the Relay Node is referred to as a Type 1a RN, for Type 1 RN Uu and Un utilize the same
frequencies, see figure 7. In the latter case there is a high risk for self-interference in the Relay Node, when
receiving on Uu and transmitting on Un at the same time (or vice versa). This can be avoided through time
sharing between Uu and Un, or having different locations of the transmitter and receiver. The RN will to a
large extent support the same functionalities as the eNB – however the DeNB will be responsible for MME
selection (3GPP, 2011) [Release 10 specification 36.912].

One of the imperative advantages of LTE Advanced is the capability to utilize advanced topology
networks; optimized heterogeneous networks with a mix of macrocells with low-power nodes such as

73

picocells, femtocells and new relay nodes (3GPP, 2011) [Release 10 specification 36.912]. LTE-Advanced
exploits these capabilities for application of smaller cells and bringing the services closer to the end user,
while ensuring fairness and quality of experience. LTE Advanced also introduces multicarrier for usage of
ultra-wide bandwidth, namely up to 100 MHz of channel bandwidth that can support very high data rates.
In the research phase, various suggestions have been studied as candidates for LTE Advanced (LTE-A)
technologies. The proposals (3GPP, 2011) [Release 10 specification 36.912] are represented as:

 Support for relay node base stations

 Coordinated multipoint (CoMP) transmission and reception

 UE Dual TX antenna solutions for SU-MIMO and diversity MIMO, commonly referred to as
2x2 MIMO

 Scalable system bandwidth exceeding 20 MHz, up to 100 MHz

 Carrier aggregation of contiguous and non-contiguous spectrum allocations

 Local area optimization of air interface

 Nomadic / Local Area network and mobility solutions

 Flexible spectrum usage

 Cognitive radio

 Automatic and autonomous network configuration and operation

 Support of autonomous network and device test, measurement tied to network management
and optimization

 Enhanced precoding and forward error correction

 Interference management and suppression

 Asymmetric bandwidth assignment for FDD

 Hybrid OFDMA and SC-FDMA in uplink

 UL/DL inter eNB coordinated MIMO

 SONs, Self-Organizing Networks methodologies

Within the range of system development, LTE-Advanced and WiMAX 2 can employ up to 8x8 MIMO
configuration and 128 QAM in downlink direction. Particularly, that will enable a 100 MHz aggregated
channel bandwidth, and approximately 3.3 Gbit peak download rates per sector of the base station under
ideal conditions. Advanced network architectures combined with distributed and collaborative smart
antenna technologies provide several years road map of commercial enhancements (3GPP, 2011) [Release
10 specification 36.912].

2.3. Virtualization and cloud computing
A key concept for the progression towards 5G networks are the cloud computing and virtualization

paradigms. Virtualization offers many advantages in the present, which are being exploited for the benefit
of developing the 5G evolution initiative. In other words, the existing hardware deployed to serve the 4G
LTE and LTE-Advanced infrastructures is being emulated into software and virtualized, i.e. adapted to
operate on a generic computing machine (a PC or a server). From there, a congregated research is being
carried out in order to achieve automation of deployment and portability of emulated mobile network
platforms. As an attempt to move the manual configuration into automated solution, the networking
industry formulates the concepts of network virtualization (NV), network function virtualization (NFV) and
the software-defined networking (SDN). Factually, the three concepts serve the purpose of network
configuration automation and scalability in order to support virtualized and cloud environments. Another
reason those software-defined schemes exist is explicit increment of networking agility, as well as
simplifying service and application delivery methods. Therefore, the concept of network mobility can be
solved with the option for programmability. Additionally, those three concepts are independent from each

74

other and can be implemented individually, without the impairment of their function. Namely, virtualization
refers to the “process of abstracting computing resources such that multiple applications can share a single
physical hardware” (VAEZI, Mojtaba and Zhang, Ying, 2017).

As denoted, the virtualization refers mostly to server virtualization, where a particular physical server
has an abstraction formed and is decomposed into virtual entities. The virtual constituents are assembled
into a hypervisor which is in fact the virtualization software (like KVM, VirtualBox or VMware). The
virtual constituents are in actual fact a virtual CPU, virtual RAM, and virtual NIC etc. Besides the
represented entities, the storage can also be virtualized. This allows alleviated sharing of resources between
users. Subsequently, a network can be virtualized as well, which encompasses creating virtual links,
subnetworks, gateways and layer-2 bridges, etc. Since the server virtualization exists for an extensive period
of time, numerous virtualization software is available. There are some major benefits the virtualization has
brought into the world of computation management. With the improvement of availability, the servers are
more user-friendly and available to supply bigger number of consumers efficiently. The users can create
virtual machines and migrate the operations they perform in the form of images and run the same image in
another environment. This inclines on the fact that virtualization also improves mobility, which is a very
important factor. Another improvement is the improvement in the efficiency if exploitation of the hardware.
A single virtual machine performs segmentation and is able to run a distinct operating system than the one
at which the virtualization software is running. This allows the users to execute different software on
different platforms, and at the same time distributing the resources of the physical machine more efficiently.
Additionally, storage aggregation augments the global manageability of storage and delivers improved
distribution of storage resources. At the same time, the capability of backup in the virtual environment is a
big advantage. In case of failure, the servers can be configured to automatically migrate the data to another
machine, without compromising the work they perform at the given moment, which in fact will also prevent
data loss (VAEZI, Mojtaba and Zhang, Ying, 2017).

2.3.1. OpenStack cloud platform
Cloud computing has attracted considerable attention over the past few years. It offers the possibility to

move an infrastructure to a platform where the requirement for hardware is no longer obligatory, but instead
invest for uptime. With an interface that enables increasing and decreasing the number of virtual machines
in a cloud, one builds a cluster that can adapt the number of servers to actual user demand, thereby both
decreasing cost and evading saturated servers. A dedicated virtual machine (VM) model is not working
when it comes to compute-intensive applications. Yet while considering Docker containers is a feasible
idea, avoiding "noisy neighbor" problems that are common on shared infrastructure with SaaS offerings
and performance problems for stateful applications like databases, is very desirable. OpenStack is a set of
software tools for building and managing cloud computing platforms for public and private clouds. Backed
by some of the biggest companies in software development and hosting, as well as thousands of individual
community members, many regard OpenStack as the future of cloud computing. OpenStack is managed by
the OpenStack Foundation, a non-profit organization that practices both development and community-
building around the project. OpenStack allows users to deploy virtual machines and other instances that
handle different tasks for managing a cloud environment, continuously. The horizontal scaling is eased,
which means that tasks that benefit from running concurrently can easily serve more or fewer users
simultaneously by just running up more instances. For example, a mobile application that needs to
communicate with a remote server might be able to divide the work of communicating with each user across
many different instances, all communicating with one another but scaling quickly and easily as the
application gains more users. And most importantly, it is open source software, which means that anyone
who chooses to can access the source code, make any changes or modifications they need, and freely share
the changes back out to the community at large. It also means that OpenStack has the benefit of thousands

75

of developers all over the world working in tandem to develop the strongest, most robust, and most secure
product that they can (OPENSTACK, 2017).

The cloud provides computing for end users in a remote environment, where the actual software runs as
a service on reliable and scalable servers rather than on each end-user’s computer. Cloud computing can
refer to a lot of different entities, but typically the industry discusses about running different items "as a
service" - software, platforms, and infrastructure. OpenStack falls into the latter category and is considered
Infrastructure as a Service (IaaS). Providing infrastructure means that OpenStack makes it easy for users to
quickly add new instance, upon which other cloud components can run. Typically, the infrastructure then
runs a "platform" upon which a developer can create software applications that are delivered to the end
users. OpenStack is comprised of many different dynamic parts. Because of its open nature, anyone can
add additional components to help it meet the demands. One of the advantages that OpenStack brings is
that it helps prevent vendor lock-in to the underlying software and hardware. This is made possible by
managing the resources through OpenStack, instead of using the vendor’s part directly. This means that a
vendor’s component can potentially be replaced with another vendor’s easily. The drawback of this
approach is that OpenStack only supports common required features for all kinds of supported modules and
may miss some features specific to a vendor’s constituents. On the other hand, it should not go unnoticed
that, due to the lack of an accepted standard for cloud platforms, using OpenStack implies a type of lock-
in to OpenStack itself, with no guarantee of portability to a different cloud framework (OPENSTACK,
2017).

However, disregarding the type of cloud infrastructure employed, there are several repercussions that
need to be addressed when it comes to implementation of the future 5G networks. Since the main goals of
5G are to improve capacity, reliability and energy efficiency, while reducing latency and massively
increasing connection density; a crucial part of 5G is the empowerment of real-time application support.
The given applications such as self-driving cars, robotics, medical appliances or online-gaming, require as
lower network latency as possible. In the case of the present cloud technologies, the orientation towards
latency minimization is instead diverted to providing service reliability and robustness. The focus of next
generation mobile communication is to provide seamless communication for machines and devices
building the Internet-of-Things (IoT) along with personal communication. New applications such as tactile
Internet, high-resolution video streaming, tele-medicine, tele-surgery, smart transportation, and real-time
control dictate new specifications for throughput, reliability, end-to-end (E2E) latency, and network
robustness. Additionally, intermittent or always-on type connectivity is required for machine-type
communication (MTC) serving diverse applications including sensing and monitoring, autonomous
cars, smart homes, moving robots and manufacturing industries. Several emerging technologies including
wearable devices, virtual/augmented reality, and full immersive experience (3D) are shaping the demeanor
of human end users, and they have special requirements for user satisfaction. Therefore, these use cases of
the next generation network push the specifications of 5G in multiple aspects such as data rate, latency,
reliability, device/network energy efficiency, traffic volume density, mobility, and connection density.
Current fourth generation (4G) networks are not capable of fulfilling all the technical requirements for these
services (PARVEZ, I. et al., 2017).

One secret behind the manipulation with latency and service reliability is the situating of the core
network and the way it is accessed by the eNB. Although, there are major advancements in the radio-access
entity, coding, modulation and access techniques, the main goal of this thesis is to allude on the importance
of the concepts of cloud computing merged with Software-Defined Networking and virtualizing of a
Network Function. Consequently, the current cloud infrastructures are clustered in existing datacenters,
where the virtualized core network can be deployed. Analogously, the eNB processing should reside on the
premises of the core network, which can directly impact the performance at which UE is accessing the NAS

76

(Non-Access Stratum). This concept is known as Virtualized cloud Radio Access Network (C-RAN). A C-
RAN over passive optical network (PON) architecture is introduced called virtualized-CRAN (V-CRAN),
which can dynamically associate any radio unit (RU) to any digital unit (DU) so that several RUs can be
coordinated by the same DU, and the concept of virtualized BS (V-BS) that can jointly transmit common
signals from multiple RUs to a user. This concept of splitting the core network (CN) into multiple entities
allow for greater granular control and flexibility of computation resources placement and scaling
(PARVEZ, I. et al., 2017). Given that the splits are deployed in a distributed cloud, the computational units
for the eNB should be executed in the vicinity of the cloudified mobile core network. This will allow a
direct communication between the eNB and the core network, specifically referred to as Edge computing
(FARRIS, I. et al., 2017, pp.1-13).

2.4. Multi-platform containers and their role in service deployment and
software-defined networking

To allow the deployment of splits and granular control over the core network constituents as well as the
virtualized eNB application, a virtualization concept of containers is necessary to be apprehended. The old
way of deploying applications was to install the applications on a host using the operating system package
manager. This had the disadvantage of entangling the applications’ executables, configuration, libraries,
and lifecycles with each other and with the host OS. One could build immutable virtual-machine images to
achieve predictable rollouts and rollbacks, but VMs are heavyweight and non-portable. The new way is to
deploy containers based on operating-system-level virtualization rather than hardware virtualization. These
containers are isolated from each other and from the host: they have their own filesystems, they cannot see
each other’s’ processes, and their computational resource usage can be bounded. They are easier to build
than VMs, and because they are decoupled from the underlying infrastructure and from the host filesystem,
they are portable across clouds and OS distributions. Because containers are small and fast, one application
can be packed in each container image. This one-to-one application-to-image relationship unlocks the full
benefits of containers. With containers, immutable container images can be created at build/release time
rather than deployment time, since each application doesn’t need to be composed with the rest of the
application stack, nor married to the production infrastructure environment. Generating container images
at build/release time enables a consistent environment to be carried from development into production.
Similarly, containers are vastly more transparent than VMs, which facilitates monitoring and management.
This is especially true when the containers’ process lifecycles are managed by the infrastructure rather than
hidden by a process supervisor inside the container. Finally, with a single application per container,
managing the containers becomes tantamount to managing deployment of the application (KUBERNETES,
2017). Containers, among virtual machines, are the prevalent entities used for establishing the mobile
network. Specifically, as an open-source solution, Docker is being tested and used in conjunction with other
automation tools such as Kubernetes and Docker-compose. It is shown that with using Docker containers,
even the performance of high-performance computing platforms (HPC) remain uncompromised while the
portability is being preserved. This is mostly due to the instantaneous access to faster library imports and
access to the OS kernel (HALE, J. S. et al., 2017, pp.40-50).

2.4.1. Docker
The tool Docker is a very powerful open-source tool for software containerization. Docker introduces

containers that can wrap a piece of software in a complete filesystem which contains everything needed to
run: code, runtime, system tools, and system libraries - anything that can be installed on a server. This
guarantees that the software will always be executed in the exact form, disregarding the environment (see
Figure 47).

77

Figure 47. Containers and virtual machines have similar resource isolation and allocation benefits, but a different

architectural approach allows containers to be more portable and efficient

Containers running on a single machine share the same OS kernel; they start instantly and use less RAM.
Images are constructed from layered filesystems and share common files, making disk usage and image
downloads much more efficient. A Linux container is a virtualization instance in which the kernel of an
operating system enables multiple isolated user-space instances in a Linux operating system. Also, Docker
supports containerization on a Windows operating system. One can build and run Windows-based
containers, or also run previously-created containers with a Linux image base, on a Windows OS or even
MAC (DOCKER, INC., 2017).

Unlike virtual machines (VMs), containers do not need to run a complete operating system (OS) image
for each instance. Instead, containers are able to run separate instances of an application within a single
shared OS. This new feature gives developers the flexibility to build once and move applications without
the need to rewrite or redeploy their code, which makes up for faster integration and access to analytics,
big data and services. As noted from Figure 47, virtual machines include the application, the necessary
binaries and libraries, and an entire guest operating system, all of which can amount to tens of GBs. On the
contrary, containers include the application and all its dependencies - but share the kernel with other
containers, running as isolated processes in user space on the host operating system. Docker containers are
not tied to any specific infrastructure: they run on any computer, on any infrastructure, and in any cloud
(DOCKER, INC., 2017). Docker offers a wide palette of features, tools and plugins to expand the
functionality and ease the management of deployed containers. Some of the more important appliances are
described as follows:

A. Docker-Compose
Compose is a tool for defining and running multi-container Docker applications. With Compose, a

YAML file is used to configure the application’s services. Then, with a single command, all the services
are created and started from the particular configuration. It is useful when an application is dissected into
multiple containers and deployed on a host. Compose has traditionally been focused on development and
testing workflows, which is the basis for Continuous-Integration/Continuous Delivery (CI/CD) paradigms
(DOCKER, INC., 2018).

78

B. Docker Cloud
The Docker Cloud provides a hosted registry service with build and testing facilities for Dockerized

application images; tools to aid the set up and management of host infrastructure; and application lifecycle
features to automate deploying (and redeploying) services created from images. The Docker Cloud is used
as a registry in the project for saving the built container images of the mobile network infrastructure, under
the repository “brunodzogovic” for the current project (DOCKER, 2018) [repository:
https://hub.docker.com/u/brunodzogovic/]. Docker Cloud uses the hosted Docker Cloud Registry, which
allows publishing Dockerized images on the internet either publicly or privately. Docker Cloud can also
store pre-built images, or link to a source code so it can build the code into Docker images, and optionally
test the resulting images before pushing them to a repository. Before anything is performed with the images,
they need a place to be initially run. Docker Cloud allows linking to the existing infrastructure or cloud
services provider, so the new nodes can be automatically provisioned. Once the nodes are set up, one can
deploy images directly from Docker Cloud repositories (DOCKER, INC., 2018).

C. Docker Hub
The registry service which allows linking code to repositories is called Docker Hub. It provides a

centralized resource for container image discovery, distribution and change management, user and team
collaboration, and workflow automation throughout the development pipeline (DOCKER, INC., 2018). A
“Docker ID” is created (“brunodzogovic” in this case) [repository:
https://hub.docker.com/u/brunodzogovic/], which allows setting up a repository to push the built images.
Besides repositories, the Docker Hub provides also automated builds and automated creation of images
when changes are made to the source code in the repository, webhooks, workgroups and integration with
GitHub and Bitbucket workflows (DOCKER, INC., 2018).

D. Docker networking
The most important concept of Docker is connecting containers together in a fully-operational network

stacks. The networking in Docker is modular and pluggable, using drivers. Several drivers exist by default,
and provide core networking functionality:

 Bridge: The default network driver. If a driver is not specified, this is the type of network that the
Docker daemon will create. Bridge networks are usually used when applications run in standalone
containers that need to communicate.

 Host: For standalone containers, one can remove network isolation between the container and the
Docker host, and use the host’s networking directly. The “host” driver is only available for swarm
services on Docker 17.06 and higher.

 Overlay: Overlay networks connect multiple Docker daemons together and enable swarm services
to communicate with each other, for example with VXLAN. Overlay networks are also used to
facilitate communication between a swarm service and a standalone container, or between two
standalone containers on different Docker daemons. This strategy removes the need to do OS-level
routing between these containers.

 MACVLAN: MACVLAN networks allow assigning a MAC address to a container, making it
appear as a physical device on the existing network. The Docker daemon routes traffic to containers
by their MAC addresses. Using the MACVLAN driver is sometimes the best choice when dealing
with legacy applications that expect to be directly connected to the physical network, rather than
routed through the Docker host’s network stack.

 IPVLAN: The IPVLAN driver offers a very similar functionality as the MACVLAN driver, with
one major exception of using L3 multiplexing/demultiplexing among slave nodes. This property

79

makes the master device share the L2 with its slave devices. IPVLAN has two modes of operation
- L2 and L3. For a given master device, one can select one of these two modes and all slaves on
that master will operate in the same (selected) mode. The RX mode is almost identical except that
in L3 mode the slaves will not receive any multicast / broadcast traffic. L3 mode is more restrictive
since routing is controlled from the other (mostly) default namespace.

 None: For this container, disable all networking. Usually used in conjunction with a custom
network driver. ‘None’ is not available for swarm services.

 Network plugins: It is feasible to install and use third-party network plugins with Docker, such as
Calico or Open vSwitch. These plugins are available from the Docker Store or from third-party
vendors.

E. Docker storage
It is possible to store data within the writable layer of a container, but there are some downsides: The

data doesn’t persist when that container is no longer running, and it can be difficult to extract the data out
of the container if another process needs it. A container’s writable layer is tightly coupled to the host
machine where the container is running. It is thus not simple to move the data elsewhere. Writing into a
container’s writable layer requires a storage driver to manage the filesystem. The storage driver provides a
union filesystem, using the Linux kernel. This extra abstraction reduces performance as compared to using
data volumes, which write directly to the host filesystem (DOCKER, INC., 2018).

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind
mounts, or tmpfs volumes. Usually, volumes are almost always the right choice. Volumes are stored in a
part of the host filesystem which is managed by Docker (/var/lib/docker/volumes/ on Linux). Non-Docker
processes should not modify this part of the filesystem. Volumes are the best way to persist data in Docker.
Bind mounts may be stored anywhere on the host system. They may even be important system files or
directories. Non-Docker processes on the Docker host or a Docker container can modify them at any time.
Tmpfs mounts are stored in the host system’s memory only and are never written to the host system’s
filesystem (DOCKER, INC., 2018). In order to solve the storage persistence issue, a third-party solution
may be implemented, such as etcd (COREOS, 2018).

2.4.2. Etcd
Etcd stands for “/etc distributed” key value store, that is an open-source distributed key value store

which provides shared configuration and service discovery for Linux Container clusters. Etcd runs on each
machine in a cluster and gracefully handles leader election during network partitions and the loss of the
current leader. Application containers running on a cluster can read and write data into etcd. Common
examples are storing database connection details, cache settings, feature flags, etc. Etcd is the essence on
top of which Kubernetes is built, and therefore, Kubernetes leverages the etcd distributed key-value store.
It takes care of storing and replicating data used by Kubernetes across the entire cluster, and thanks to the
Raft consensus algorithm (ONGARO, D. and Ousterhout, J., 2014), etcd can recover from hardware failure
and network partitions (COREOS, 2018).

A. Layer-4 Etcd gateway
Etcd L4 gateway is a simple TCP proxy that forwards network data to the etcd cluster. The gateway is

stateless and transparent; it neither inspects client requests nor interferes with cluster responses. The
gateway supports multiple etcd server endpoints and works on a simple round-robin policy. It only routes
to available endpoints and hides failures from its clients. Other retry policies, such as weighted round-robin,
are supported. Every application that accesses etcd must first have the address of an etcd cluster client
endpoint. If multiple applications on the same server access the same etcd cluster, every application still

80

needs to know the advertised client endpoints of the etcd cluster. If the etcd cluster is reconfigured to have
different endpoints, every application may also need to update its endpoint list. This wide-scale
reconfiguration is both tedious and error prone. Etcd gateway solves this problem by serving as a stable
local endpoint. A typical etcd gateway configuration has each machine running a gateway listening on a
local address and every etcd application connecting to its local gateway. The consequence is only that the
gateway needs to update its endpoints instead of updating each and every application. In summary, to
automatically propagate cluster endpoint changes, the etcd gateway runs on every machine serving multiple
applications accessing the same etcd cluster (COREOS, 2018).

Clusters are usually built from a large collection of machines with the ability to run any workload at any
given time. In order for a cluster to perform at high levels of efficiency, the workloads should be distributed
appropriately across all machines in the cluster. Then clusters need a way of coordinating with each other.
For example, a job scheduler needs to notify a machine that it has work to do. Once that work has been
completed machines may need to communicate that fact to some other component in the cluster. A
distributed system needs a reliable coordination mechanism, and therefore, it is important that this
communication happens in an apt and reliable manner to keep everything running efficiently. Essentially,
something has to manage the state of the cluster, which is the actual etcd that is matter of discussion
(COREOS, 2018).

B. Role-based access control (RBAC)
Etcd has its own authentication features and a role-based access control. Etcd defines one special user

root and one special role root. The root user, which has full access to etcd, must be created before activating
authentication. The idea behind the root user is for administrative purposes: managing roles and ordinary
users. The root user must have the root role and is allowed to change anything inside etcd. The role root
may be granted to any user, in addition to the root user. A user with the root role has both global read-write
access and permission to update the cluster's authentication configuration. Furthermore, the root role grants
privileges for general cluster maintenance, including modifying cluster membership, defragmenting the
store, and taking snapshots. If an etcd server is launched with the option --client-cert-auth=true, the field
of Common Name (CN) in the client's TLS certificate will be used as an etcd user. In this case, the common
name authenticates the user and the client does not need a password.

2.4.3. Kubernetes
One of the orchestrating solutions that are used is Kubernetes (KUBERNETES, 2017). Kubernetes is a

powerful system, developed by Google, for managing containerized applications in a clustered
environment. It aims to provide better ways of managing related, distributed components across varied
infrastructure. Kubernetes, at its basic level, is a system for managing containerized applications across a
cluster of nodes. In many ways, Kubernetes was designed to address the disconnection between the way
that modern, clustered infrastructure is designed, and some of the assumptions that most applications and
services have about their environments. Most clustering technologies strive to provide a uniform platform
for application deployment. The user should not have to care much about where work is scheduled. The
unit of work presented to the user is at the "service" level and can be accomplished by any of the member
nodes. However, in many cases, it does matter what the underlying infrastructure looks like. When scaling
an application, the administrator cares that the various instances of a service are not all being assigned to
the same host. On the other hand, many distributed applications built with scaling in mind are comprised
of smaller component services. These services must be scheduled on the same host as related components
if they are going to be configured in a trivial way. This becomes even more important when they rely on
specific networking conditions to communicate appropriately. While it is possible with most clustering
software to make these types of scheduling decisions, running at the level of individual services is not
perfect. Applications comprised of different services should still be managed as a single application in most

81

cases. Kubernetes provides a layer over the infrastructure to allow for this type of management. Even though
Kubernetes provides a lot of functionality, there are always new scenarios that would benefit from new
features. Application-specific workflows can be streamlined to accelerate developer velocity. Ad hoc
orchestration that is acceptable initially often requires robust automation at scale. This is why Kubernetes
was also designed to serve as a platform for building an ecosystem of components and tools to make it
easier to deploy, scale, and manage applications. Labels empower users to organize their resources however
they please. Annotations enable users to decorate resources with custom information to facilitate their
workflows and provide an easy way for management tools to checkpoint state. Additionally, the Kubernetes
control plane is built upon the same APIs that are available to developers and users. Users can write their
own controllers, such as schedulers, with their own APIs that can be targeted by a general-
purpose command-line tool. This design has enabled a number of other systems to build atop Kubernetes
(KUBERNETES, 2017).

Main features of Kubernetes are:

 Self-healing - Restarts containers that fail, replaces and reschedules containers when nodes die,
kills containers that don't respond to user-defined health check, and doesn't advertise them to clients
until they are ready to serve.

 Horizontal scaling – Scaling an application up and down with a simple command, with a UI, or
automatically based on CPU usage. This feature can be further upgraded for automatic scaling
based on metrics taken from the network, CPU/Disk utilization and other metrics.

 Automatic bin-packing - Automatically places containers based on their resource requirements
and other constraints, while not sacrificing availability. This stands for mixing critical and best-
effort workloads to drive up usage and save even more resources.

 Automated rollouts and rollbacks - Kubernetes progressively rolls out changes to the deployed
application or its configuration, while monitoring its health to ensure that it doesn't kill all the other
instances at the same time. If unpredictable events take place, Kubernetes will roll back the change
automatically.

 Service discovery and load balancing – Is a very important feature that annuls the need to modify
a running application to use an unfamiliar service discovery mechanism. Kubernetes gives
containers their own IP addresses and a single DNS name for a set of containers and can load-
balance across them.

 Secret and configuration management – An excellent security property that allows deploying
and updating secrets and application configuration without rebuilding the image and without
exposing secrets in the stack configuration.

 Storage orchestration - Automatically mount the storage system by choice, whether from local
storage, a public cloud provider such as GCP or AWS, or a network storage system such as NFS,
iSCSI, Gluster, Ceph, Cinder, or Flocker.

 Batch execution - In addition to services, Kubernetes can manage batch and CI workloads,
replacing containers that fail, if desired.

A. Master components:
Infrastructure-level systems like CoreOS strive to create a uniform environment where each host is

disposable and interchangeable. Kubernetes, on the other hand, operates with a certain level of host
specialization. The controlling services in a Kubernetes cluster are called the master, or control plane,
components. These operate as the main management contact points for administrators and provide many
cluster-wide systems for the relatively dumb worker nodes. These services can be installed on a single
machine or distributed across multiple machines. The servers running these components have a number of

82

unique services that are used to manage the cluster’s workload and direct communications across the system
(KUBERNETES, 2017).

 Etcd - Kubernetes uses etcd to store configuration data that can be used by each of the nodes in the
cluster. This can be used for service discovery and represents the state of the cluster that each
component can reference to configure or reconfigure themselves. By providing a simple
HTTP/JSON API, the interface for setting or retrieving values is very straightforward.

 API Server - This is the main management point of the entire cluster, as it allows a user to configure
many of Kubernetes’ workloads and organizational units. It also is responsible for making sure that
the etcd store and the service details of deployed containers are in agreement. It acts as the bridge
between various components to maintain cluster health and disseminate information and
commands. • Controller Manager Service - The controller manager service is a general service that
has many responsibilities. It is responsible for a number of controllers that regulate the state of the
cluster and perform routine tasks. For instance, the replication controller ensures that the number
of replicas defined for a service matches the number currently deployed on the cluster. The details
of these operations are written to etcd, where the controller manager watches for changes through
the API server.

 Scheduler Service - The process that assigns workloads to specific nodes in the cluster is the
scheduler. This is used to read in a service’s operating requirements, analyze the current
infrastructure environment, and place the work on an acceptable node or nodes. The scheduler is
responsible for tracking resource utilization on each host to make sure that workloads are not
scheduled in excess of the available resources. The scheduler must know the total resources
available on each server, as well as the resources allocated to existing workloads assigned on each
server.

 Kube-controller manager - Runs controllers, which are the background threads that handle
routine tasks in the cluster. Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process. These controllers
include:

- Node Controller: Responsible for noticing and responding when nodes go down.
- Replication Controller: Responsible for maintaining the correct number of pods for every

replication controller object in the system.
- Endpoints Controller: Populates the Endpoints object (that is, joins Services & Pods).
- Service Account & Token Controllers: Create default accounts and API access tokens for

new namespaces.

 Cloud-controller manager - runs controllers that interact with the underlying cloud providers. The
cloud-controller-manager binary is an alpha feature introduced in Kubernetes release 1.6. Cloud-
controller-manager runs cloud-provider-specific controller loops only. One must disable these
controller loops in the kube-controller-manager. It is possible to disable the controller loops by
setting the --cloud-provider flag to external when starting the kube-controller-manager. Cloud-
controller-manager allows cloud vendors code and the Kubernetes core to evolve independent of
each other. In prior releases, the core Kubernetes code was dependent upon cloud-provider-specific
code for functionality. In future releases, code specific to cloud vendors should be maintained by
the cloud vendor themselves and linked to cloud-controller-manager while running Kubernetes.
The following controllers have cloud provider dependencies:

- Node Controller: For checking the cloud provider to determine if a node has been deleted
in the cloud after it stops responding

- Route Controller: For setting up routes in the underlying cloud infrastructure
- Service Controller: For creating, updating and deleting cloud provider load balancers

83

- Volume Controller: For creating, attaching, and mounting volumes, and interacting with
the cloud provider to orchestrate volumes

 Addons – Represent pods and services that implement cluster features. The pods may be managed
by Deployments, ReplicationControllers, and so on. “Namespaced” addon objects are created in
the kube-system namespace. Addon manager creates and maintains addon resources.

 DNS - While the other addons are not strictly required, all Kubernetes clusters should have cluster
DNS, as many examples rely on it. Cluster DNS is a DNS server, in addition to the other DNS
server(s) in the given environment, which serves DNS records for Kubernetes services. Containers
started by Kubernetes automatically include this DNS server in their DNS searches.

 Web UI (Dashboard) – Is a general purpose, web-based UI for Kubernetes clusters. It allows users
to manage and troubleshoot applications running in the cluster, as well as the cluster itself.

 Container resource monitoring – Records generic time-series metrics about containers in a
central database and provides a UI for browsing that data.

 Cluster-level logging – A mechanism that handles saving container logs to a central log store with
search/browsing interface.

B. Node Server Components:
In Kubernetes, servers that perform work are known as nodes. Node servers have a few requirements

that are necessary to communicate with the master components, configure the networking for containers,
and run the actual workloads assigned to them (KUBERNETES, 2017).

 Docker running on a dedicated subnet - The first requirement of each individual node server is
docker. The docker service is used to run encapsulated application containers in a relatively isolated
but lightweight operating environment. Each unit of work is, at its basic level, implemented as a
series container that must be deployed. One key assumption that Kubernetes makes is that a
dedicated subnet is available to each node server. This is not the case with many standard clustered
deployments. For instance, with CoreOS, a separate networking fabric called flannel is needed for
this purpose. Docker must be configured to use this so that it can expose ports in the correct fashion.
Also, Calico can be used in conjunction with Flannel for network overlay, which is supported in
Kubernetes as a plugin called “Canal”.

 Kubelet Service - The main contact point for each node with the cluster group is through a small
service called kubelet. This service is responsible for relaying information to and from the control
plane services, as well as interacting with the etcd store to read configuration details or write new
values. The kubelet service communicates with the master components to receive commands and
work. Work is received in the form of a "manifest" which defines the workload and the operating
parameters. The kubelet process then assumes responsibility for maintaining the state of the work
on the node server.

 Proxy Service - To deal with individual host subnetting and to make services available to external
parties, a small proxy service is run on each node server. This process forwards requests to the
correct containers, can do primitive load balancing, and is generally responsible for making sure
the networking environment is predictable and accessible, but isolated.

 Rkt – Is an experimental container platform, supported as an alternative to Docker.

 Supervisord – A lightweight process monitor and control system that can be used to keep kubelet
and Docker running.

 Fluentd – A daemon that helps provide cluster-level logging.

84

C. Kubernetes Work Units:
While containers are the used to deploy applications, the workloads that define each type of work are

specific to Kubernetes. We will go over the different types of "work" that can be assigned below
(KUBERNETES, 2017):

 Pods - A pod is the basic unit that Kubernetes deals with. Containers themselves are not assigned
to hosts. Instead, closely related containers are grouped together in a pod. A pod generally
represents one or more containers that should be controlled as a single "application". This
association leads all the involved containers to be scheduled on the same host. They are managed
as a unit and they share an environment. This means that they can share volumes and IP space, and
can be deployed and scaled as a single application. One can and should generally think of pods as
a single virtual computer to best conceptualize how the resources and scheduling should work. The
general design of pods usually consists of the main container that satisfies the general purpose of
the pod, and optionally some helper containers that facilitate related tasks. These are programs that
benefit from being run and managed in their own container but are heavily tied to the main
application. Horizontal scaling is generally discouraged on the pod level because there are other
units more suited for the task.

 Services - We have been using the term "service" throughout this guide in a very loose fashion, but
Kubernetes actually has a very specific definition for the word when describing work units. A
service, when described this way, is a unit that acts as a basic load balancer and ambassador for
other containers. A service groups together logical collection of pods that perform the same
function to present them as a single entity. This allows deployment of a service unit that is aware
of all of the backend containers to pass traffic to. External applications only need to worry about a
single access point but benefit from a scalable backend or at least a backend that can be swapped
out when necessary. A service’s IP address remains stable, abstracting any changes to the pod IP
addresses that can happen as nodes die or pods are rescheduled. Services are an interface to a group
of containers so that consumers do not have to worry about anything beyond a single access
location. By deploying a service, one easily gains discover-ability and can simplify the container
designs.

D. Controller units:
 Replication Controllers - A more complex version of a pod is a replicated pod. These are handled

by a type of work unit known as a replication controller. A replication controller is a framework
for defining pods that are meant to be horizontally scaled. Essentially, the work unit is a nested
unit. A template is provided, which is basically a complete pod definition. This is wrapped with
additional details about the replication work that should be done. The replication controller is
delegated responsibility over maintaining a desired number of copies. This means that if a container
temporarily goes down, the replication controller might start up another container. If the first
container comes back online, the controller will kill off one of the containers. • Labels - A
Kubernetes organizational concept outside of the work-based units is labeling. A label is basically
an arbitrary tag that can be placed on the above work units to mark them as a part of a group. These
can then be selected for management purposes and action targeting. Labels are fundamental to how
both services and replication controllers function. To get a list of backend servers that a service
should pass traffic to, it usually selects containers based on label.

 Replica sets - ReplicaSet is the next-generation Replication Controller. The only difference
between a ReplicaSet and a Replication Controller at this point is the selector support. ReplicaSet
supports the new set-based selector requirements, whereas a Replication Controller only supports
equality-based selector requirements. A ReplicaSet ensures that a specified number of pod replicas

85

are running at any given time. However, a Deployment is a higher-level concept that manages
ReplicaSets and provides declarative updates to pods along with a lot of other useful features.
Therefore, it is recommended to utilize Deployments instead of directly using ReplicaSets, unless
a particular custom update orchestration is required, or no updates are required at all.

 Deployments - A Deployment controller provides declarative updates for Pods and ReplicaSets. A
desired state is described in a Deployment object, and the Deployment controller changes the actual
state to the desired state at a controlled rate. One can define Deployments to create new ReplicaSets,
or to remove existing Deployments and adopt all their resources with new Deployments.

 Stateful sets - Manages the deployment and scaling of a set of Pods and provides guarantees about
the ordering and uniqueness of these Pods. Like a Deployment, a StatefulSet manages Pods that
are based on an identical container spec. Unlike a Deployment, a StatefulSet maintains a sticky
identity for each of their Pods. These pods are created from the same spec but are not
interchangeable: each has a persistent identifier that it maintains across any rescheduling. A
StatefulSet operates under the same pattern as any other Controller. One defines the desired state
in a StatefulSet object, and the StatefulSet controller makes any necessary updates to achieve that
from the current state.

 Daemon sets - A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are
added to the cluster, Pods are added to them. As nodes are removed from the cluster, those Pods
are garbage collected. Deleting a DaemonSet will clean up the Pods it created. Some typical uses
of a DaemonSet are: running a cluster storage daemon, such as glusterd, ceph, on each node;
running a logs collection daemon on every node, such as fluentd or logstash; running a node
monitoring daemon on every node, such as Prometheus Node Exporter, collectd, Datadog agent,
New Relic agent, or Ganglia gmond. In a simple case, one DaemonSet, covering all nodes, would
be used for each type of daemon. A more complex setup might use multiple DaemonSets for a
single type of daemon, but with different flags and/or different memory and cpu requests for
different hardware types.

 Garbage collection - The role of the Kubernetes garbage collector is to delete certain objects that
once had an owner, but no longer have an owner. Some Kubernetes objects are owners of other
objects. For example, a ReplicaSet is the owner of a set of Pods.

 Jobs - A job creates one or more pods and ensures that a specified number of them successfully
terminate. As pods successfully complete, the job tracks the successful completions. When a
specified number of successful completions is reached, the job itself is complete. Deleting a Job
will clean up the pods it created. A simple case is to create one Job object to reliably run one Pod
to completion. The Job object will start a new Pod if the first pod fails or is removed (for example
due to a node hardware failure or a node reboot). A Job can also be used to run multiple pods in
parallel.

 Cron jobs - One Cron job object is like one line of a crontab (cron table) file. It runs a job
periodically on a given schedule, written in Cron format.

E. Namespaces:
Kubernetes introduces namespaces as a concept of organizing the components of the management in a

single namespace (as in Figure 48). Namespace represent an isolated area that can contain pods, replication
controllers and services that are isolated within it. This allow having services and pods with the same names
without experiencing conflicts between the namespaces on a same physical Kubernetes cluster (Figure 48)
(KUBERNETES, 2017).

86

Figure 48. Kubernetes namespaces

2.4.4. Orchestration of Docker containers with Kubernetes
Container Orchestration refers to the automated arrangement, coordination, and management of

software containers. When the applications becomes dissected into splits, it encompasses an architecture
known as microservices (DIGITALOCEAN, 2018). A single-container deployment refers to deploying an
application in one container image. However, if the specific application (or infrastructure) has multiple
functional splits, it is possible to dissect the deployment into multiple containers. The formed containers
can be easily organized into clusters of containers and deployed then remotely using orchestrator such as
Kubernetes (KUBERNETES, 2017).

For example, to deploy an application in a Kubernetes Pod, it is necessary to create a YAML file (see
Appendix A). The execution of the file will create a replicated database cluster, based on SQL and in much
replicas as designated into the YAML configuration (in this case 3). To create the particular pod, a single
command only is required: kubectl create –f db-pod.yml, where the db-pod.yml is the name of the YAML
file. To deploy any other application, the same method can be adopted. The kubectl daemon will initialize
all the necessary pods and run the specific Docker containers in them. The simplicity of using Kubernetes
for cluster management of a microservices deployment is thus unprecedented. With conjunction of few
open-source solutions mentioned in the following chapters and subchapters, Kubernetes can solve all the
predicaments in terms of service discovery, load balancing, secrets/configuration/storage management,
health checks, auto-scaling/restart/healing of containers and nodes and provide the desirable zero-downtime
deployments.

2.4.5. Security of application containers, secret storage and managing secrets
It is known that the container technology may suffer from security predicaments as much as any other

system. The image-oriented nature of containers represents a conundrum by itself. As it is the case with any
software, containerized deployments can suffer of vulnerabilities. For example, a Docker container can
have a backdoor installed and if it is available for implementation from a public repository (i.e. Docker
Hub), it is very easy to deploy an insecure application without having a notion about it. One solution is
image scanning for vulnerabilities, which is usually manual process or an Enterprise feature that is adopted
by companies such as Docker, IBM, Google, etc. (TAK, B. et al., 2017).

87

To resolve the security issue on a network and application level, a multi-layer security approach is
adopted (network-level security with Pfsense firewall (PFSENSE, 2018) and Cisco ACL, container-level
security with policy-based networking and secret storage, as well as application-level security with
provided authentication using SIM cards). Since the containers need to communicate between each other,
exchange tokens, security-related data, encrypted passwords or database access; a policy-based approach
is defined via SDN (Software-Defined Networking) entities, explained later. Moreover, since the mobile
network utilizes the DIAMETER authentication protocol, a secret management system is required. For that
purpose, the open-source tool vault is employed, which is a tool for securely accessing secrets. A secret is
anything that a specific access control is preferred for, such as API keys, passwords, or certificates. Vault
provides a unified interface to any secret, while providing tight access control and recording a detailed audit
log. A modern system requires access to a multitude of secrets: database credentials, API keys for external
services, credentials for service-oriented architecture communication, etc. Understanding who is accessing
what secret is already very difficult and platform-specific. Adding on key rolling, secure storage, and
detailed audit logs is almost impossible without a custom solution, which is the actual main function of
Vault (HASHICORP, 2018).

The key features of Vault are:

 Secure Secret Storage: Arbitrary key/value secrets can be stored in Vault. Vault encrypts these
secrets prior to writing them to persistent storage, so gaining access to the raw storage isn't enough
to access the given secrets. Vault can write to disk to Consul etc.

 Dynamic Secrets: Vault can generate secrets on-demand for some systems, such as AWS or SQL
databases. For example, when an application needs to access an S3 bucket, it asks Vault for
credentials, and Vault will generate an AWS keypair with valid permissions on demand. After
creating these dynamic secrets, Vault will also automatically revoke them after the lease is up.

 Data Encryption: Vault can encrypt and decrypt data without storing it. This allows security teams
to define encryption parameters and developers to store encrypted data in a location such as SQL
without having to design their own encryption methods.

 Leasing and Renewal: All secrets in Vault have a lease associated with them. At the end of the
lease, Vault will automatically revoke that secret. Clients are able to renew leases via built-in renew
APIs.

 Revocation: Vault has built-in support for secret revocation. Vault can revoke not only single
secrets, but a tree of secrets, for example all secrets read by a specific user, or all secrets of a
particular type. Revocation assists in key rolling as well as locking down systems in the case of an
intrusion.

Vault is not tied to any specific configuration management system. One can read secrets from
configuration management, but it is also possible to use the API directly to read secrets from applications.
This means that configuration management requires fewer secrets, and in many cases doesn’t ever have to
persist the secrets to disk. Vault encrypts the data onto physical storage and requires multiple keys to read
it. If an attacker were to gain access to the physical encrypted storage, it could not be read without multiple
keys, which are generally distributed to multiple individuals. This is known as unsealing and happens once
whenever the Vault service starts. For an unsealed Vault, every interaction is logged in via the audit devices.
Even erroneous requests (invalid access tokens, for example) are logged. To access any data, an access
token is required. This token is usually associated with an identity coming from a system such as GitHub,
LDAP, etc. This identity is also written to the audit log. Access tokens can be given fine-grained control
over what secrets can be accessed. It is rare to have a single key that can access all secrets. This makes it
easier to have fine-grained access for consumers of Vault. In addition to being able to store secrets, Vault

88

can be used to encrypt/decrypt data that is stored elsewhere. The primary use of this is to allow applications
to encrypt their data while still storing it in the primary data store (HASHICORP, 2018).

2.4.6. Automation with Puppet and Terraform (Infrastructure-as-a-Code)
In order to establish a platform for automation, it is essential to introduce some state-of-the-art DevOps

practices of the modern system administration paradigm. Many open-source technologies exist, that are
able to accommodate any kind of infrastructures, while establishing a solid base for automation of
deployment and configuration management. Some of the solutions that are represented thus are: Puppet
(PUPPET, 2018), Terraform (HASHICORP, 2018) and earlier, Kubernetes (KUBERNETES, 2017) as an
orchestrator.

Configuration management tools install and manage software on a machine that already exists.
Terraform is not a configuration management tool, and it allows existing tooling to focus on their strengths:
bootstrapping and initializing resources. Using provisioners, Terraform enables any configuration
management tool (such as Puppet) to be used to setup a resource once it has been created. Terraform focuses
on the higher-level abstraction of the datacenter and associated services, without sacrificing the ability to
use configuration management tools to do what they do best. It also embraces the same codification that is
responsible for the success of those tools, making entire infrastructure deployments easy and reliable
(HASHICORP, 2018). Terraform is a tool for building, changing, and versioning infrastructure safely and
efficiently. Terraform can manage existing and popular service providers as well as custom in-house
solutions. Configuration files describe to Terraform the components needed to run a single application or
an entire datacenter. Terraform generates an execution plan describing what it will perform in order to reach
the desired state, and then executes it to build the described infrastructure. As the configuration changes,
Terraform is able to determine what changed and create incremental execution plans which can be applied.
The infrastructure Terraform can manage includes low-level components such as compute instances,
storage, and networking, as well as high-level components such as DNS entries, SaaS features, etc.
Complex changesets can be applied to the infrastructure with minimal human interaction. With the
previously mentioned execution plan and resource graph, it is possible to know exactly what Terraform will
change and in what order, avoiding many possible human errors.

In the particular research, Software Defined Networking (SDN) is the prevalent area of operation, as it
provides more control and allows the network to better support the applications running on top. Most SDN
implementations have a control layer and infrastructure layer. Terraform can be used to codify the
configuration for software defined networks. This configuration can then be used by Terraform to
automatically setup and modify settings by interfacing with the control layer. This allows configuration to
be versioned and changes to be automated. As an example, AWS VPC is one of the most commonly used
SDN implementations and can be configured by Terraform (HASHICORP, 2018).

2.5. The role of NFV and SDN in the evolution towards 5G
Usually, the concepts of Software-Defined Network (SDN) and virtual Network Function (vNF) are

being misunderstood and mistaken for each other. However, the definitions for both terms are acutely
different. Software-Defined Networking is “The physical separation of the network control plane from the
forwarding plane, and where a control plane controls several devices”
(OPENNETWORKFOUNDATION , 2018), whereas Network functions virtualization (NFV) is “the
concept of replacing dedicated network appliances - such as routers and firewalls - with software running
on commercial off-the-shelf (COTS) servers” (ADVA OPTICAL NETWORKING, 2018). The both
paradigms have a similar common goal, which is to transform the way communication service providers
(CSPs) architect networks and deliver network services. Network operations are transformed as network
function software, that is dynamically instantiated in various locations in the network as needed, without
requiring the installation of new equipment.

89

As stated previously, the Long-Term Evolution (LTE) is constituted of two entities: UMTS-RAN and

EPC, namely, the 3G Universal Mobile Telecommunication Service - Radio Access Network and the
Evolved Packet Core. The EPC contains the HSS (Home Subscriber Server), which is in fact a database for
the users; the PGW (Packet Data Gateway) that routes the data communication via IP network and interfaces
SGW (Service Gateway) with the Internet. The SGW is responsible for routing the traffic of calls and other
services from the eNB to the PGW, which is dictated by the MME (Mobile Management Entity). The
dedicated hardware for the LTE network serves the purpose of the functionality it is dedicated for. Adding
additional hardware in the core network adds to the complexity of the system, as well as the cost. When it
comes to accommodation of larger number of users, the peak times are handled by duplicating the entities.
Such process will lead to incremental complexity of the core network and linear increase of costs for
providing the adequate hardware equipment. As the number of users is predicted to increase with the
emergence of the next-generation networks, the hardware-based 4G LTE equipment is no longer apposite
to correspond to the requirements, because the expenditures will remain constant while the revenues per
subscriber will gradually decrease. This introduces the necessity for the Software-Defined Networking
(SDN) paradigm and Network Function Virtualization (NFV). The proposed methodologies offer various
scenario improvements, while enabling combinations that are usually not feasible with the existing
hardware only. In fact, moving the EPC to the cloud helps achieve cost reduction for the benefit of enlarging
revenues margin (TAWBEH, Ali et al., 2017).

A crucial requirement for telecom network infrastructure is the compatibility with cloud or computing

architecture as a flexible and cost-effective service platform. With the fact that the NFV and SDN are
enabling the hardware equipment emulation into the cloud, technical issues from a networking standpoint
emerge. The desirable outcome for introducing peculiar 5G network slices, should encompass automated
and scalable management of cloud-based NFV infrastructure; as well as the possibility for improvement of
the particular performance of the current infrastructure, in terms of latency, throughput and reasonable
applicability of the model parallelly to the given scenario.

2.5.1. Mobility meets virtualization
In a 5G world, the capacity and latency are the most critical units that need to be taken into consideration.

One of the appliances that the technology will be based on, is the Distributed Cloud. A Distributed Cloud
represents arranging a data center at the edge domain, like central office or a base station. All services that
are included in this domain are taking a virtual form, which will enable ease of access, reduction of latency,
exponential reduction of hardware cost for implementation etc. Taking all these instruments into
consideration will contemplate a logical need for orchestration machinery as well as analytics and
monitoring solutions that are of frivolous manner. Evidently, this machinery shall be comprised of location
and even personality-based AI objects, that will automatically evaluate, monitor, troubleshoot, organize
and manage the infrastructure. This network intelligence is a complex assortment of Software Defined
Networking (SDN), Network Virtualization Function (NFV), Artificial Intelligence and machine learning
combined with immutable infrastructure (UDDENFELDT, Jan, 2017).

To establish these modules, a precise automation method is required. Immutable infrastructure provides
stability, efficiency, and fidelity to applications through automation and the use of successful patterns from
programming. No rigorous or standardized definition of immutable infrastructure exists yet, but the basic
conception is that one creates and operates an infrastructure using the programming concept of
immutability: once something is instantiated, it is never changed. Instead, it is replaced with another
instance to make changes or ensure proper behavior. Immutable Infrastructure builds on processes from the
nature and how it maintains advanced biological systems (STELLA, Josh, 2015). The primary mechanism

90

of fidelity in humans is the constant destruction and replacement of subcomponents. It triggers the immune
system, which destroys cells to maintain health and it motivates the growth system, which allows different
subsystems to mature over time through destruction and replacement. The individual human being
maintains a sense of self and intention, while the underlying components are constantly replaced. Systems
managed using II patterns are analogous (BERNSTEIN, Ben, 2015). The reimbursements of immutable
infrastructure are manifold if applied appropriately to an application and have effusively automated
deployment and recovery methods for any infrastructure:

• Simplifying operations. With fully-automated deployment methods, it is possible to replace old
components with new versions to guarantee that systems are never far in time from their initial “known-
good” state. Maintaining a fleet of instances becomes considerably simpler with II since there is no need to
track the changes that occur with mutable maintenance methods.

• Continuous deployments, fewer failures. With II, it is known what is running and how it behaves,
deploying updates can become mundane and continuous, with fewer failures transpiring in production. All
change is tracked by the source control and Continuous Integration/Continuous Deployment processes.

• Reduces errors and threats. Services are built atop a complex stack of hardware and software, and
events usually take wrong occurrence over time. By automating replacement instead of maintaining
instances, instances are regularly and repeatedly regenerated. This reduces configuration drift, vulnerability
surface, and level of effort to keep Service Level Agreements. Many of the maintenance fire drills in
mutable systems are taken care of naturally.

• Complete cloud rebooting. With Immutable Infrastructure, the running components are familiar, and
with fully automated recovery methods for the services in place, cloud reboots of the underlying instances
should be handled gracefully and with minimal, if any, application interruption.

The concept of immutable infrastructure is an emerging IT strategy enabled using Docker and containers
(BRYZEK, Michael, 2014). Docker can empower the 5G networking components to behave just like the
organs in the human body, where a single malfunctioning organ can be replaced with adjacent one from a
donor that has a corresponding genetic sequence at the 6th chromosome (the Human Leukocyte Antigen).
The advanced idea that is researched is beyond the replacement of the organs, where an intelligent system
will decide to automatically perform the replacement of the modules, adjusting network performance, create
a temporary solution for a peculiar problem. For example, one of the main modules deducted for the
successful 5G operation is the Air Interface that is the SDN / NFV module of the 5G network, to facilitate
successful service delivery to the end users (INFLUXDATA, 2017). The Air Interface can be easily
incorporated into containers, and furthermore in form of a microservice architecture (that opens even
additional potentials). From this point, the prospects are interminable. At a soccer match, tens of thousands
of viewers can record the event with presumably HD or even 4K imaging devices. Due to the popularity of
the social networks, many of the experiences tend to be shared with the acquaintances. The only possible
way is using the mobile infrastructure at that point. A current LTE network supports [real] 10s of Mbit/s
traffic speed, which will allow the user to send the video content on Facebook or upload on YouTube.
Simultaneous uploads from most of the viewers will bottleneck the neighboring base stations with the GBs
of content intended for sharing. In a 5G scenario, using the immutable infrastructure, the Air Interface
containers can be delivered to a Distributed Cloud in the vicinity of the soccer match. This action can be
performed automatically using genetic algorithms for prediction and identification of bigger demands for
the network, where the NFV module will receive instructions to integrate itself within the Distributed Cloud
and replicate to enable load-balancing and high availability for other services that require resources at the
same moment (interconnected train sensors, self-driving car sensors, IoT devices, wearable gadgets etc.).
This way, the end-to-end service delivery would be uninterrupted, perfected, while lowest possible latency

91

is ensured, altogether approximately less than 1ms. This can scale up to a situation where surgeons can
perform remote surgeries over long distances using automated hardware and robotics, that will get as much
resources as required due to priority, all in the same area where the soccer match is taking place.

2.5.2. SDN and NFV solutions, network overlay and underlay
To successfully connect remote workloads, a networking solution that can manage L3 and L2 operations

is required, namely routing and switching. The actual devices that can perform these operations are
hardware routers and switches. For the particular requirements of the mobile network infrastructure, the
hardware usage feasibility is limited for a simple reason, which is virtualization of the networking function.
Specifically, a physical router cannot be virtualized without usage of a software-defined network. For the
deployment of the mobile network and connecting the eNB base station to the virtualized Evolved Packet
Core, the most appropriated SDN options are selected and consequently described. Each of these
technologies have their own distinct features that can contribute to establishing a secure, trustable and fault-
tolerant next-generation virtualized mobile infrastructure.

A. Calico
Calico provides secure network connectivity for containers and virtual machine workloads. It [calico]

creates and manages a flat layer 3 network, assigning each workload a fully routable IP address. Workloads
can communicate without IP encapsulation or network address translation for bare metal performance,
easier troubleshooting, and better interoperability. In environments that require an overlay, Calico uses IP-
in-IP tunneling or can work with other overlay networking such as Flannel. Calico also provides dynamic
enforcement of network security rules. Using simple policy language, it is possible to achieve fine-grained
control over communications between containers, virtual machine workloads, and bare metal host
endpoints. Proven in production at scale, Calico features integrations with Kubernetes, OpenShift, Docker,
Mesos, DC/OS, and OpenStack (TIGERA INC., 2017).

The Calico's control plane design is reflected upon the design of the Internet itself, which serves billions
of endpoints around the world, and represents the largest network ever built. Scaling the cloud to millions
of workloads should be easy, and therefore, Calico borrows proven IP routing technology to connect
containers (and VMs) to one another and to underlying infrastructure. Accordingly, security policy rules
are distributed with conventionality to cloud techniques pioneered by web-scale operators such as Google.
Making use of the same raft consensus algorithm found in systems like Kubernetes, a consistent, fast
convergence times are achieved (typically a few milliseconds, even at scale) with high levels of fault
tolerance. Sometimes, an overlay network (encapsulating packets inside an extra IP header) is necessary.
Often, though, it just adds unnecessary overhead, resulting in multiple layers of nested packets, impacting
performance and complicating troubleshooting. It would thus be immensely desirable if the virtual
networking solution adapts to the underlying infrastructure, using an overlay only when required.
Subsequently, in most environments, Calico simply routes packets from the workload onto the underlying
IP network without any extra headers. Where an overlay is needed – for example when crossing availability
zone boundaries in public cloud – it can use lightweight encapsulation including IP-in-IP and VxLAN or
MACVLAN. Project Calico even supports both IPv4 and IPv6 networks. Moreover, Calico can be
integrated with all the major cloud platforms, including OpenStack’s Neutron, AWS, GCE, orchestrators
like Kubernetes, Mesos, Docker container solution serving as CNI (Container Networking Interface) etc.
In terms of reliability, Calico is a widely-deployed SDN solution. For example, Japan empowers Calico
with Kubernetes on top of OpenStack to deliver the Yahoo services with enterprise-grade performance and
reliability (TIGERA INC., 2017).

Calico security principles
With Calico as a Docker network plugin, Calico uses an identically named profile to represent each

Docker network. This profile is applied to each container in that network and the profile is used by Calico

92

to configure access policy for that container. The Calico network plugin will automatically create the
associated profile if it does not exist when the container is attached to the network. By default, the profile
contains rules that allow full egress traffic but allow ingress traffic only from containers within the same
network and no other source. Custom policy for a network can be configured by creating in advance, or
editing, the profile associated with the Docker network (TIGERA INC., 2017).

There are two approaches by which the policy that defines the Docker network can be modified:

a) Modify the profile policy rules - This policy is applied directly to each container in the associated
Docker network. This approach is simple, but not very flexible, as the profile must describe the full
set of rules that apply to the containers in the network.

b) Assign labels to the profile and define global selector-based policy - The (Calico-specific) labels
are assigned to containers in the associated Docker network. The globally defined policy uses
selectors to determine which subset of the policy is applied to each container based on their labels.
This approach provides a powerful way to group together all of the particular network Policy,
makes it easy to reuse policy in different networks, and makes it easier to define policy that extends
across different orchestration systems that use Calico.

Managing Calico policy for a network
In both cases a Calico-Docker network is created and the “calicoctl” tool is used to achieve the required

isolation. The following example denotes an isolation between a set of database containers and frontend
containers:

 Frontend containers can only access the Database containers over TCP to port 3306. At this point,
it is assumed that no other connectivity is allowed to/from the frontend.

 Database containers have no isolation between themselves (to handle synchronization within a
cluster). This could be improved by locking down the port ranges and protocols, but for brevity a
full access between database containers is allowed.

a) Policy applied directly by the profile
In the following example the policy for containers is applied in both networks with using profiles. Each

network has associated an identically named profile that consists of a set of labels and policy rules. The
labels and policy rules are set for each of the two network profiles to provide the required isolation.
Moreover, Docker networks are created by the following commands:

docker network create --driver calico --ipam-driver calico-ipam database
docker network create --driver calico --ipam-driver calico-ipam frontend

After the creation of the networks, the profiles are added for each of the networks. The labels are set on
each profile indicating the network role, and in this case frontend or database. Each profile also includes a
set of ingress and egress rules and actions, where each rule can filter packets based on a variety of source
or destination attributes (which includes selector-based filtering using label selection). The labels and rules
are applied directly to each container in the corresponding network. The labels themselves are arbitrary
key/value pairs, and their current purpose at this point is to use the key role showing the network role and
a value of either frontend or database. Correspondingly, a profile will have the following form in YAML
structure (see Appendix D) (TIGERA INC., 2017).

The profiles provide the required isolation between the frontend and database containers. This works as
follows:

 Containers in the “database” Docker network are assigned the “database” Calico profile.

93

 Containers in the “frontend” Docker network are assigned the “frontend” Calico profile.

 Each container in the “database” network inherits the label role = database from its profile.

 Each container in the “frontend” network inherits the label role = frontend from its profile.

 The “database” profile applies ingress and egress policy:

- An ingress rule to allow TCP traffic to port 3306 from endpoints that have the label role =
frontend (i.e. from frontend containers since they are the only ones with the label role =
frontend)

- An ingress and egress rule to allow all traffic from and to endpoints that have the label role
= database (i.e. from database containers).

 The “frontend” profile applies a single egress rule to allow all TCP traffic to port 3306 on endpoints
that have the label role = database (i.e. to database containers)

a) Global policy applied through label selection
The same example can be demonstrated using global selector-based policy. In this case, the network

profiles are used to apply labels (as in the previous example), but additionally define a set of global policy
resources that use selectors to determine which subset of the policy applies to each container based on the
labels applied by the profile. After the creation of the Docker networks, the profiles for each of the networks
are created accordingly (see Appendix E) (TIGERA INC., 2017).

The labels on each profile indicate the network role, and in this case frontend or database. The labels
are applied directly to each container in the corresponding network. As with the previous example, the
key role indicating the network role and a value of either frontend or database is used. Unlike the previous,
no policy rules are defined within the profile. To enable the required network isolation, the global policy is
created (policy resources are defined globally, and like profile includes a set of ingress and egress rules and
actions, where each rule can filter packets based on a variety of source or destination attributes, which
includes selector-based filtering using label selection). Each policy resource also has a “main” selector that
is used to determine which endpoints the policy is applied to base on the labels applied by the network
profiles (refer to Appendix F) (TIGERA INC., 2017).

Implementing Calico as a solution for securing host interfaces
It is feasible to use Calico for securing the host’s network interfaces (as opposed to those of any

container/VM workloads that are present on the host). The host endpoints are distinguishable by workload
endpoints by the role they play. The former are the physical host network endpoints, while the latter are
referring to the ones of the virtual machines and containers. Calico supports the same rich security policy
model for host endpoints that it supports for workload endpoints. Host endpoints can have labels, and their
labels are in the same “namespace” as those of workload endpoints. This allows security rules for either
type of endpoint to refer to the other type (or a mix of the two) using labels and selectors. Calico does not
support setting IPs or policing MAC addresses for host interfaces, it assumes that the interfaces are
configured by the underlying network fabric (this option is tested further on using VxLAN and MACVLAN
for performance improvement and avoiding network overlay when possible). Calico distinguishes workload
endpoints from host endpoints by a configurable prefix. Unless there is a host interfaces whose name
matches the default for that prefix (cali), changing the same would not be required. In a positive case, it can
be configured accordingly. Interfaces that start with a value listed in InterfacePrefix are assumed to be
workload interfaces. Others are treated as host interfaces. Calico blocks all traffic to/from workload
interfaces by default; allowing traffic only if the interface is known and policy is in place. However, for
host endpoints, Calico is more lenient; it only polices traffic to/from interfaces that it’s been explicitly

94

informed about. Traffic to/from other interfaces is neglected. As of Calico v2.1.0, Calico applies host
endpoint security policy both to traffic that is terminated locally, and to traffic that is forwarded between
host endpoints. Previously, policy was only applied to traffic that was terminated locally. The change allows
Calico to be used to secure a NAT gateway or router. Calico supports selector-based policy as normal when
running on a gateway or router allowing for rich, dynamic security policy based on the labels attached to
the workloads, as represented in Figure 49 (TIGERA INC., 2017).

Figure 49. Organization of Calico security endpoints to protect physical hosts

B. Open vSwitch (OvS)
Open vSwitch (Figure 50) is a production quality, multilayer virtual switch licensed under the open

source Apache 2.0 license. It is designed to enable massive network automation through programmatic
extension, while still supporting standard management interfaces and protocols (e.g. NetFlow, sFlow,
IPFIX, RSPAN, CLI, LACP, 802.1ag). In addition, it is designed to support distribution across multiple
physical servers similar to VMware's vNetwork distributed vswitch or Cisco's Nexus 1000V. Open vSwitch
can operate both as a soft switch running within the hypervisor, and as the control stack for switching
silicon. It has been ported to multiple virtualization platforms and switching chipsets. It is the default switch
in XenServer 6.0, the Xen Cloud Platform and also supports Xen, KVM, Proxmox VE and VirtualBox. It
has also been integrated into many virtual management systems including OpenStack, openQRM,
OpenNebula and oVirt. The kernel datapath is distributed with Linux, and packages are available for
Ubuntu, Debian, Fedora and openSUSE. Open vSwitch is also supported on FreeBSD and NetBSD
(OPENVSWITCH, 2018).

95

Figure 50. Open vSwitch architecture (OPENVSWITCH, 2018)

For this thesis, the Open vSwitch will serve as a translator to the OpenStack cloud, where the GTP-U
mobile network protocol should interwork with the IP layer-3 Neutron entity via L2TP tunnels.
Consequently, Open vSwitch can enable container-to-container communication, disregarding the host that
accommodates the containers. In union with Calico L3 routing with BGP, Open vSwitch will accommodate
remote workloads from the EPC to the eNB, with full-duplex communication and very low latency.

2.6. Hardware for establishing a base station (software-defined radio)
The hardware used for the experiments is the Universal Software Radio Peripheral (USRP) that is a

range of software-defined radios designed and sold by Ettus Research (ETTUS, 2018) and its parent
company, National Instruments. Developed by a team led by Matt Ettus, the USRP product family is
envisioned to be a comparatively inexpensive hardware platform for software radio, and is commonly used
by research labs, universities, and hobbyists. Most USRPs connect to a host computer through a high-speed
link, which the host-based software uses to control the USRP hardware and transmit/receive data. Some
USRP models also integrate the general functionality of a host computer with an embedded processor that
allows the USRP device to operate in a stand-alone fashion. The USRP family was designed for
accessibility, and many of the products are open source hardware. The board schematics for select USRP
models are freely available for download; all USRP products are controlled with the open source UHD
driver, which is free and open source software. USRPs are commonly used with the GNU Radio software
suite to create complex software-defined radio systems (ETTUS, 2018).

The USRP product family includes a variety of models that use a similar architecture. A motherboard
provides the following subsystems: clock generation and synchronization, FPGA (Field-Programmable
Gate Array), ADCs (Analog-to-Digital Converters), DACs (Digital-to-Analog Converters), host processor
interface, and power regulation. These are the basic components that are required for baseband processing
of signals. A modular front-end, called a daughterboard, is used for analog operations such as up/down-
conversion, filtering, and another signal conditioning. This modularity permits the USRP to serve
applications that operate between DC and 6 GHz. In stock configuration, the FPGA performs several DSP
operations, which ultimately provide translation from real signals in the analog domain to lower-rate,
complex, baseband signals in the digital domain. In most use-cases, these complex samples are transferred
to/from applications running on a host processor, which perform DSP operations. The code for the FPGA
is open-source and can be modified to allow high-speed, low-latency operations to occur in the FPGA. The
USRP software defined radio products are designed for RF applications from DC to 6 GHz, including
multiple antenna (MIMO) systems. Example application areas include white spaces, mobile phones, public

96

safety, spectrum monitoring, radio networking, cognitive radio, satellite navigation, and amateur radio
(ETTUS, 2018).

2.6.1. USRP N200 – Network series
The USRP N200 series provides high-bandwidth, high-dynamic range processing capability. The

product architecture includes a Xilinx® Spartan® 3A-DSP 1800 FPGA, 100 MS/s dual ADC, 400 MS/s
dual DAC and Gigabit Ethernet connectivity to stream data to host processors. A modular design allows
the USRP N200 to operate from DC to 6 GHz. An expansion port allows multiple USRP N200 series
devices to be synchronized and used in a MIMO configuration. An optional GPSDO module can also be
used to discipline the USRP N200 reference clock to within 0.01 ppm of the worldwide GPS standard. The
USRP N200 can stream up to 50 MS/s to and from host applications, and users can implement custom
functions in the FPGA fabric, or in the on-board 32-bit RISC softcore. The FPGA offers the potential to
process up to 100 MHz of RF bandwidth in both the transmit and receive directions. The FPGA firmware
can be reloaded through the Gigabit Ethernet interface (ETTUS, 2018).

The USRP hardware driver (UHD) is the device driver provided by Ettus Research for use with the
USRP product family. It supports Linux, MacOS, and Windows platforms. Several frameworks including
GNU Radio, LabVIEW, MATLAB and Simulink use UHD. The functionality provided by UHD can also
be accessed directly with the UHD API, which provides native support for C++. Any other language that
can import C++ functions can also use UHD. This is accomplished in Python through SWIG, for example.
UHD provides portability across the USRP product family. Applications developed for a specific USRP
model will support other USRP models if proper consideration is given to sample rates and other parameters
(ETTUS, 2018).

Several software frameworks support UHD:

 GNU Radio as a Free/Libre toolkit that can be used to develop software-defined radios. This
framework uses a combination of C++ and Python to optimize DSP performance while providing
an easy-to-use application programming environment. GNU Radio Companion is a graphical
programming environment provided with GNU Radio.

 National Instruments NI USRP 292x series, which is functionally equivalent to the Ettus Research
USRP N210. NI also offers LabVIEW support for this device with the NI-USRP Driver
(NATIONALINSTRUMENTS, 2018).

 USRP N210 and USRP2 are supported by MATLAB and Simulink. This package includes plug-
ins and several examples for use with both the devices.

 Many users develop with their own, custom frameworks. In this case, the USRP device can be
accessed with the UHD API. There are also examples provided with UHD that show how to use
the API (ETTUS, 2018) [USRP hardware driver and manual].

2.6.2. USRP B200/B210 – Bus series
The USRP B210 provides a fully integrated, single-board, Universal Software Radio Peripheral

(USRP™) platform with continuous frequency coverage from 70 MHz – 6 GHz. Designed for low-cost
experimentation, it combines the AD9361 RFIC direct-conversion transceiver providing up to 56MHz of
real-time bandwidth, an open and reprogrammable Spartan6 FPGA, and fast SuperSpeed USB 3.0
connectivity with convenient bus-power. Full support for the USRP Hardware Driver™ (UHD) software
allows developing with GNU Radio, prototype a custom GSM base station with OpenBTS, and seamless
transition code from the USRP B210 to higher performance, industry-ready USRP platforms. An enclosure
accessory kit is available to users of green PCB devices (revision 6 or later) to assemble a protective steel
case. Experiments with the USRP B210 across a wide range of applications include: FM and TV broadcast,
cellular, GPS, WiFi, ISM, and more. Users can immediately begin prototyping in GNURadio and

97

participate in the open-source SDR community. Full support by the UHD software allows seamless code
reuse from existing designs, compatibility with open-source applications like HDSDR and OpenBTS, and
an upgrade path to industry-ready USRP systems to meet application requirements (ETTUS, 2018).

The integrated RF frontend on the USRP B210 is designed with the new Analog Devices AD9361, a
single-chip direct-conversion transceiver, capable of streaming up to 56 MHz of real-time RF bandwidth.
The B210 uses both signal chains of the AD9361, providing coherent MIMO capability. Onboard signal
processing and control of the AD9361 is performed by a Spartan6 XC6SLX150 FPGA connected to a host
PC using SuperSpeed USB 3.0. The USRP B210 real time throughput is benchmarked at 61.44MS/s
quadrature, providing the full 56 MHz of instantaneous RF bandwidth to the host PC for additional
processing using GNU Radio or applications that use the UHD API (ETTUS, 2018).

B200 differs from B210 by only the fact that it doesn’t support full-duplex MIMO operation (4 antennas)
but only 2, from which one is used for Rx and the other for Tx.

98

3. DESCRIPTION OF OPEN AIR INTERFACE
OpenAirInterface5G is a project developed by EURECOM, a French graduate school and a research

center in communication systems based in the international science park of Sophia Antipolis within the new
Campus SophiaTech, which brings together renowned universities such as TELECOM ParisTech and other
European Universities such as the Polytechnic University of Turin, Aalto University (formerly Helsinki
University of Technology), Munich University of Technology and the Norwegian University of Science
and Technology. EURECOM benefits from a strong interaction with the industry through its specific
administrative structure: Economic Interest Group (consortium type of structure), which brings together
international companies such as: Orange, ST Microelectronics, BMW Group Research & Technology,
Symantec, Monaco Telecom, SAP, IABG. The Principality of Monaco is an institutional member which
joined the consortium at the beginning of 2013. Thanks to its strong ties set up with the industry,
EURECOM was awarded the "Institut Carnot" label jointly with the Institut Telecom in 2006. The Carnot
Label was designed to develop and professionalize cooperative research. It encourages the implementation
of research projects in public research centers that work together with socioeconomic actors, especially
companies (EURECOM, 2017).

3.1. OpenAirInterface5G as EURECOM project and its aims
The OpenAirInterface5GTM Software Alliance (OSA) is a non-profit consortium fostering a community

of industrial as well as academic contributors for open source software and hardware development for the
core network (EPC), access network and user equipment (EUTRAN) of 3GPP cellular networks. The
Alliance sponsors the initial work of EURECOM to create OpenAirInterface5GTM towards development of
5G Cellular Stack on Commercial Off-The-Shelf (COTS) hardware. The current generation of
hardware/software for radio access network (RAN) consist of large numbers of proprietary elements that
stifle innovation and increase the cost for the operators to deploy new services/application in an ever-
changing fast paced cellular network. Open source software running on general purpose processors (such
as x86, ARM) can greatly simplify network access, reduce cost, increase flexibility, improve innovation
speed and accelerate time-to-market for introduction of new services. There is already a movement going
on within the industry on the development of Software Defined Networking (SDN) concepts to open the
proprietary interfaces to control the RAN hardware/software. At the same time, open-source has made a
very significant impact in the extremities of current networks, namely in the terminals due to the Android
ecosystem and in cloud infrastructure due, in part, to the OpenStack ecosystem (OAI, 2017).

An open source implementation of fully real-time stack (eNB, UE and core network) on general purpose
processors when combined with SDN, Network Function Virtualization (NFV) and OpenStack and bring
significant efficiency in RAN design from both innovation and cost perspective. OSA currently provides a
standard-compliant implementation of a subset of Release 10 LTE for UE, eNB, MME, HSS, SGw and
PGw on standard Linux-based computing equipment (Intel x86 PC/ARM architectures). The software is
freely distributed by the Alliance under the terms stipulated by the OSA license model. It can be used in
conjunction with standard RF laboratory equipment available in many labs (i.e. National Instruments/Ettus
USRP and PXIe platforms) in addition to custom RF hardware provided by EURECOM to implement these
functions to a sufficient degree to allow for real-time interoperation with commercial devices. Some
industrial users have already been working on OpenAirInterface5GTM (OAI)-based systems integrated with
commercially-deployable remote radio-head equipment and have provided demonstrations at major
industrial tradeshows (Mobile World Congress Asia 2014, Mobile World Congress Barcelona in 2013,
IMIC 2013). The primary future objective is to provide an open-source reference implementation which
follows the 3GPP standardization process starting from Rel-13 and the evolutionary path towards 5G and
that is freely-available for experimentation on commodity laboratory equipment (OAI, 2017).

99

3.2. Architecture of OpenAirInterface5G
OpenAirInterface5GTM (OAI) wireless technology platform is a flexible solution towards an open LTE

ecosystem. The peculiar platform offers an open-source software-based implementation of the LTE system
spanning the full protocol stack of 3GPP standard both in E-UTRAN and EPC. It can be used to build and
customize a LTE base station (OAI eNB), a user equipment (OAI UE) and a core network (OAI EPC) on a
PC. The OAI eNB can be connected either to a commercial UEs or OAI UEs to test different configurations
and network setups and monitor the network and mobile device in real-time. In addition, OAI UE can be
connected to eNB test equipment (CMW500) and some trials have been successively run with commercial
eNB in December 2016 (OAI, 2017).

OAI is based on a PC hosted software radio frontend architecture. With OAI, the transceiver
functionality is realized via a software radio front end connected to a host computer for processing. OAI is
written in standard C for several real-time Linux variants optimized for IntelTM x86 and ARMTM processors
and released as free software under the OAI License Model. OAI provides a rich development environment
with a range of built-in tools such as highly realistic emulation modes, soft monitoring and debugging tools,
protocol analyzer, performance profiler, and configurable logging system for all layers and channels (OAI,
2017).

When the matter of speech is building an open cellular ecosystem for supple and low-cost 4G/5G
deployment and researches, OAI objects at the following points (OAI, 2017):

 Open and integrated development environment under the control of the experimenters;

 On the network side: Fully software-based network functions offering flexibility to architect,
instantiate, and reconfigure the network components (at the edge, core, or cloud using the same or
different addressing space);

 On UE side: Fully software-based UE functions which can be used by modem designers with
upgrading and/or developing LTE and 5G advanced features

 Playground for commercial handsets as well as application, service, and content providers;

 Rapid prototyping of 3GPP compliant and non-compliant use-cases as well as new concepts
towards 5G systems ranging from M2M/IoT and software-defined networking to cloud-RAN and
massive MIMO.

Currently, the OAI platform includes a full software implementation of 4th generation mobile cellular
systems compliant with 3GPP LTE standards in C under real-time Linux optimized for x86. At the Physical
layer, it provides the following features (OAI, 2017):

 LTE release 8.6 compliant, with a subset of release 10;

 FDD and TDD configurations in 5, 10, and 20 MHz bandwidth;

 Transmission mode: 1 (SISO), and 2, 4, 5, and 6 (MIMO 2×2);

 CQI/PMI reporting;

 All DL channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH;

 All UL channels are supported: PRACH, PUSCH, PUCCH, SRS, DRS;

 HARQ support (UL and DL);

 Highly optimized base band processing (including turbo decoder). With AVX2 optimization, a full
software solution would fit with an average of 1×86 core per eNB instance (64QAM in downlink,
16QAM in uplink, 20MHz, SISO).

For the E-UTRAN protocol stack, it provides (OAI, 2017):

 LTE release 8.6 compliant and a subset of release 10 features;

100

 Implements the MAC, RLC, PDCP and RRC layers;

 protocol service for all Rel8 Channels and Rel10 eMBMS (MCH, MCCH, MTCH);

 Channel-aware proportional fair scheduling;

 Fully reconfigurable protocol stack;

 Integrity check and encryption using the AES and Sonw3G algorithms;

 Support of RRC measurement with measurement gap;

 Standard S1AP and GTP-U interfaces to the Core Network;

 IPv4 and IPv6 support.

Evolved packet core network features (OAI, 2017):

 MME, SGW, PGW and HSS implementations. OAI reuses standards compliant stacks of GTPv1u
and GTPv2c application protocols from the open-source software implementation of EPC called
nwEPC;

 NAS integrity and encryption using the AES and Snow3G algorithms;

 UE procedures handling: attach, authentication, service access, radio bearer establishment;

 Transparent access to the IP network (no external Serving Gateway nor PDN Gateway are
necessary). Configurable access point name, IP range, DNS and E-RAB QoS;

 IPv4 and IPv6 support.

Figure 51. Architecture of OpenAirInterface5G

Figure 51 shows a schematic of the implemented LTE protocol stack in OAI. OAI can be used in the
context of a rich software development environment including Aeroflex-Geisler LEON / GRLIB, RTOS
either RTAI or RT-PREEMPT, Linux, GNU, Wireshark, control and monitoring tools, message and time
analyser, low level logging system, traffic generator, profiling tools and soft scope. It also provides tools
for protocol validation, performance evaluation and pre-deployment system test. Several interoperability
tests have been successfully performed (OAI, 2017):

 OAI eNB with the commercial LTE-enabled mobile devices, namely Huawei E392, E398u-1,
Bandrich 500 as well as with commercial 3rd party EPC prototypes.

 OAI-UE with test equipment CMW500 and commercial enodeB (Ericsson on com4Innov network)
with commercial EPC.

OAI platform can be used in several different configurations involving commercial components to
varying degrees (OAI, 2017):

101

 Commercial UE ↔ Commercial eNB + OAI EPC

 Commercial UE ↔ OAI eNB + Commercial EPC

 Commercial UE ↔ OAI eNB + OAI EPC

 OAI UE ↔ OAI eNB + OAI EPC

 OAI UE ↔ OAI eNB + Commercial EPC

 OAI UE ↔ Commercial eNB + Commercial EPC

3.2.1. Built-in emulation platform
Apart from real-time operation of the software modem on the hardware targets described above, the full

protocol stack can be run in a controlled laboratory environment for realistic system validation and
performance evaluation (see Figure 52). The platform is designed to represent the behavior of the wireless
access technology in a real network setting, while obeying the temporal frame parameters of the air-
interface. The platform targets large-scale repeatable experimentation in a controlled laboratory
environment with various realistic test-cases and can be used for integration, performance evaluation and
testing (OAI, 2017).

Figure 52. Emulation platform of the OpenAirInterface5G (OAI, 2017)

3.3. OpenAirInterface5G as an open-source solution is a driver towards 5G
OpenAirInterface5G (OAI) Software Alliance broadly focuses on the evolution of 3GPP Cellular stack

(eNB + UE + Core Network) on general purpose processor architectures (Intel/ARM) with the goal of
establishing generic interfaces with 3rd party RF platforms like EURECOM Express MIMO, National
Instruments/Ettus Research USRP, Nuand BladeRF, SoDeRa Lime SDR platforms. The alliance also
ensures that several projects conducted within the framework of the alliance are capable of running on
Commercial-Off-The-Shelf (COTS) hardware platforms, for example Intel x86 and ARM. The Alliance
engages itself in projects that enhances the core software (eNB/UE and Core Network) with the goal of
running it across several platforms, while at the same time evolving towards future 3GPP standards. Since,
the evolution of 5G is still under discussion within academia/industry, we plan to identify different areas in
which different members of the alliance create projects. The projects are created with the goal of furthering

102

these strategic areas within the alliance and making sure the output of the project is merged back with the
main repository at some point (OPENAIRINTERFACE, 2018).

103

4. DESCRIPTION OF THE ESTABLISHMENT OF THE MOBILE
NETWORK

The mobile network resides in the domain of a distinct Cisco 2800 router inside the OsloMet network
158.36.118.0/23 (see Appendix B), which can be accessed through SSH (a FQDN: brunos-gw.hioa.no).
The particular firmware version of the router only allows usage of Diffie-Hellman key exchange procedure,
and thus the SSH command has to include -oKexAlgorithms=+diffie-hellman-group1-sha1
bruno@158.36.118.16 flag, in order to successfully log in to the router. To access the other OsloMet
network 128.39.120.0/23, the datacenters are connected through direct fiber link. The OpenStack cloud of
the OsloMet University is located at the address 128.39.120.13, where the master node can be accessed for
the management of the OpenStack cloud named “Alto”, and therefore, it is reachable from the Internet
(cloud.cs.hioa.no).

The router redistributes existing routes from the 158.36.118.0/23 network into private segments of
192.168.10.0/24 for VLAN10 and 192.168.20.0/24 for VLAN20, respectively. The OSPF routing protocol
is used and the FastEthernet0/0 interface is initialized as a relaying point to the external network. Since the
option “redistribute connected subnets” and “redistribute static subnets” is being used, the Cisco router
assigns itself as a distinct AS (Autonomous System) with its own routing area, where the existing subnetted
OsloMet subnets are redistributed in the inside NAT, beyond the router. At the FastEthernet0/0 interface
on the router, the option “IP Virtual Reassembly” (VFR) is disabled. This feature adds additional security
layer for the mobile network that is situated in the NAT domain. Accordingly, the VFR option requires
modification of the IP packets, and therefore, later the value of the MTU is modified at each physical and
virtual interface, which can interfere with the operation of the mobile network. Later, the VFR security
layer will be implemented to protect the mobile networks, after the adequate TCP/SCTP packet size is
defined. VFR is responsible for detecting and preventing the following types of fragment attacks:

 Tiny Fragment Attack - In this type of attack, the attacker makes the fragment size small enough
to force Layer 4 (TCP and User Datagram Protocol (UDP)) header fields into the second
fragment. Thus, the ACL rules that have been configured for those fields will not match. VFR
drops all tiny fragments, and an alert message such as follows is logged to the syslog server:
"VFR-3-TINY_FRAGMENTS."

 Overlapping Fragment Attack - In this type of attack, the attacker can overwrite the fragment
offset in the noninitial IP fragment packets. When the firewall reassembles the IP fragments, it
might create wrong IP packets, causing the memory to overflow or the system to crash. VFR
drops all fragments within a fragment chain if an overlap fragment is detected, and an alert
message such as follows is logged to the syslog server: "VFR-3-OVERLAP_FRAGMENT."

 Buffer Overflow Attack - In this type of denial-of-service (DoS) attack, the attacker can
continuously send a large number of incomplete IP fragments, causing the firewall to lose time
and memory while trying to reassemble the fake packets. To avoid buffer overflow and control
memory usage, a maximum threshold for the number of IP datagrams that are being reassembled
and the number of fragments per datagram is configured. (Both of these parameters can be
specified via the IP virtual-reassembly command.) When the maximum number of datagrams
that can be reassembled at any given time is reached, all subsequent fragments are dropped, and
an alert message such as the following is logged to the syslog server: "VFR-
4_FRAG_TABLE_OVERFLOW." When the maximum number of fragments per datagram is
reached, subsequent fragments will be dropped, and an alert message such as the following is
logged to the syslog server: "VFR-4_TOO_MANY_FRAGMENTS." In addition to configuring
the maximum threshold values, each IP datagram is associated with a managed timer. If the IP

104

datagram does not receive all of the fragments within the specified time, the timer will expire
and the IP datagram (and all of its fragments) will be dropped.

As shown in Figure 53, the router defines two dot1Q encapsulation VLAN segments at two different
virtual interfaces. The first interface is FastEthernet0/1.10 and the second FastEthernet0/1.20, for VLAN10
and VLAN20, respectively. The addressing space is assigned appropriately for the both interfaces, namely:
192.168.10.0/24 and 192.168.20.0/24, accordingly. The access to the subnets is regulated with access-list
command that allows connection to the particular subnets.

From this point, the router is connected to a Cisco 2960 switch, that defines the VLANs and ports for
the particular hosts that are situated in the local networks (see Appendix C). The switch defines two VLANs,
namely 10 and 20. The VLAN10 is subnetted for the usage of the OpenAirInterface5G project and hosts a
networked USRP N210 device with IP address 192.168.10.2 on the GigabitEthernet0/1 port, under the
virtual interface FastEthernet0/1.10 from the router, as a default gateway to the Virtual LAN. Analogously,
for the VLAN20, the separate USRP N210 device is connected to the GigabitEthernet0/2 port and shares
the address space of the other hosts that reside in the 192.168.20.0/24 subnet.

The first port from the switch serves as a trunk port, that carries all the traffic from both VLANs to the
router, has an IP address 192.168.0.2, and belongs to the routing domain of the router’s physical interface
192.168.0.1. The same port from the switch serves as a management port and can be accessed from the
LAN through telnet. The initial Fast-Ethernet switch will be replaced with HP ProCurve 2910al-24G switch
(HEWLETT-PACKARD, 2018), which is a switch that is comprised of 24 gigabit ports and 4 SFP fiber
ports for increased data rates.

Figure 53. Architecture of the OpenAirInterface5G core network and eNB base station

105

As indicated in Figure 53, the local network hosts 3 machines that are physical computers. The first host
is the 192.168.10.4 PC that runs the EPC network core from OpenAirInterface5G, which is accessible from
the base station PC that is 192.168.10.3, and runs the LTE eNB SoftModem from OpenAirInterface5G. The
PC is Intel NUC5i5MYHE portable box personal computer with 16GB DDR3 1600MHz RAM, Intel Core
i5-5300U CPU with 3M cache and up to 2.9GHz frequency, running Linux Ubuntu 16.04 operating system
on a M.2 SSD disk for a swift access to the HSS database and avoidance of possible bottlenecks.

The eNB is the current USRP B210, which connects through USB3.0 connection and allows mobile
devices to access the EPC network core through the routing domain of the LAN 192.168.10.0/24. The eNB
PC hardware is based on HP architecture with an Intel Core i7-4770 CPU 3.4GHz Haswell architecture (4-
core, 8 threads), 16GB DDR3 RAM, and a normal HDD disk. Each mobile device is equipped with
programmed SIM card that is performed on the Laptop (Windows) or on the PC 192.168.10.4, that runs
Linux Ubuntu 16.04 operating system. With the appropriate credentials set in the EPC, the UE can access
the database and successfully authenticate in the mobile network.

It is of utmost importance to note that the eNB and EPC run in Docker containers, allowing
unprecedented flexibility. Further on, this type of sub-virtualized infrastructure will enable remote and
automated provisioning into the OpenStack cloud, using an orchestrator such as Kubernetes or using
OpenStack Heat template. Both PCs are running Calico SDN networking segment, with a custom policy
defined for a granular access to the EPC elements, especially the database of the HSS module (see Appendix
D, Appendix E and Appendix F). Calico is integrated with the Docker networking portion, and interworks
with Open vSwitch to create tunnel for routing GTP-U traffic remotely. Containerized deployment allows
immutability, which is a very useful feature if one prefers to maintain the form of an unfixed infrastructure.
It allows ease of scaling and most importantly, enables rolling updates of the deployment without downtime.

4.1. Containerizing the infrastructure modules in Docker containers
In order to proceed with the packaging of the infrastructure into Docker containers (Dockerizing), the

host machines need to meet several requirements. Particularly, since the mobile network processing is of
real-time nature, it is of utmost importance to implement a Linux low-latency kernel. Thus, the low-latency
4.8 kernel version is adopted on the Ubuntu 16.04 operating system:

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.8/linux-headers-4.8.0-040800-
lowlatency_4.8.0-040800.201610022031_amd64.deb

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.8/linux-image-4.8.0-040800-
lowlatency_4.8.0-040800.201610022031_amd64.deb

sudo dpkg -i linux-headers-4.8.0-040800-lowlatency_4.8.0-
040800.201610022031_amd64.deb

sudo dpkg -i linux-image-4.8.0-040800-lowlatency_4.8.0-
040800.201610022031_amd64.deb

Moreover, the hardware-level power management features can impede with the real-time operation,
which thus need to be disabled; explicitly, all the possible properties related to power management in BIOS
are disabled: sleep states, C-states, P-states and CPU frequency scaling, which is the Intel SpeedStep. The
hyperthreading should be disabled as well, but it may not interfere with some operations, since it is also
required for running full-duplex MIMO eNB process. To test the stability of the CPU frequency
fluctuations, the command: watch |grep \”cpu MHz\” /proc/cpuinfo gives details about the EPC host.
In the Linux boot options, particularly in the /etc/default/grub, the lines intel_pstate=disable and
GRUB_CMDLINE_LINUX_DEFAULT=”quiet intel_pstate=disable processor.max_cstate=1
intel_idle.max_cstate=0 idle=poll” are added. The grub boot loader is updated with update-grub. In the
end of the /etc/modprobe.d/blacklist.conf the power-clamping is blacklisted (with the addition of a single

106

line blacklist intel_powerclamp), since it can cause CPU frequency discrepancies. To check the CPU
frequency stability, the i7z application is used (see Appendix G).

To facilitate maximum performance from the PCs, it is required to install cpufrequtils, which needs to
have a line added in /etc/default/cpufrequitls as follows: GOVERNOR=”performance”. The on-demand
daemon needs to be thus disabled, for the configuration to take effect after restart: update-rc.d ondemand
disable and /etc/init.d/cpufrequtils restart. Moreover, all the wireless or Bluetooth interfaces that are
integrated in the machines need to be completely disabled. This will ensure that CPU scaling will be
disabled, since most CPUs are mapping computation flags to the kernel on-demand. In this case, everything
will be diverted towards maximum performance and the CPU utilization will be 100%.

 As a precondition, the both Linux Ubuntu 16.04 machines need to run Docker. The Docker daemon is
installed via the official Docker website. To build the image with Dockerfile, the application has to be
containerized by packaging it from the appropriate Git repository into the Docker 14.04 image. This way,
a cross-OS operation is demonstrated, since the host OS is Ubuntu 16.04 and the Docker base image is
Ubuntu 14.04.

4.1.1. Containerizing the EPC elements for the network core (HSS, MME,
S/PGW)

The host that hosts the EPC container is named networkcore with an IP address 192.168.10.4. The realm
that’s required for the OpenAirInterface5G network is referred to as openair4g.eur and thus he FQDN name
for the EPC should be epc.openair4g.eur that resolves to the IP address of the host: 192.168.10.4, or the
Docker container that will run in the 172.19.0.0/24 network (172.19.0.2).

The HSS and the MME certificates are arranged to last until 2018 August, and can be renewed using the
HSS script certificate-generator, found in /openair-cn/scripts in the container. The network elements are
configurable just like when installing the EPC in the operating system directly. The Docker bridge, as well
as the other interfaces should have increased MTU (from 1500 to at least 1648) to support successful
connection via SCTP and TCP/UDP between the modules. Since the EPC container runs on a different host
from the eNB container, a L3 routing is necessary that is configured with the Calico SDN networking with
a configured BGP router for reducing complexity and easier network troubleshooting and scaling. Since
mobile networks use RIP routing protocol, the BGP is based on path-vector protocol that is a version of the
Bellman-Ford algorithm also used in RIP. Another advantage is the support for MPLS termination and
support of various traffic that can be routed to remote workloads in the cloud.

According to those traits, a script is built to manually initialize the Docker network named “oainet” and
add virtual OvS interfaces with virtual bridges using the Linux bridge-utils, while assigning custom MTU
values and specific IP addresses and networks (see Appendix H). After the initialization of the OvS and
creating a tunnel to a remote IP address, for running the Evolved Packet Core container, the following
command should be issued:

docker run -d -it --net=oainet --name=oai_epc --restart=unless-stopped --expose=1-
9000 -h=epc --privileged=true --cap-add=ALL -v /dev:/dev -v /lib/modules:/lib/modules
brunodzogovic/oai_epc

Accordingly, all the FQDN names need to be set in order for the modules to communicate between each
other on the localhost inside the container:

127.0.0.1 localhost
127.0.1.1 mme.openair4g.eur mme
127.0.1.1 hss.openair4g.eur hss
127.0.1.1 spgw.openair4g.eur spgw
127.0.0.1 epc.openair4g.eur epc

107

The Dockerfile that is created is comprised of procedures for cloning the OpenAirInterface5G Git
repository and installing the necessary components. The creation of the Docker image can be also
performed manually, and for the convenience of elucidation, the steps are described subsequently.

As an initial phase, the installation of SSL certificates is initiated via automated scripts:

cd ~/openair-cn/SCRIPTS
./check_hss_s6a_certificate /usr/local/etc/oai/freeDiameter/ hss.openair4G.eur
./check_mme_s6a_certificate /usr/local/etc/oai/freeDiameter/ epc.openair4G.eur

The scripts are checking for the validity or existence of already-installed SSL certificates, and proceeds
with generating new ones using OpenSSL.

With the certificates installed, the setup of the HSS, MME and S/PGW follows:

cd ~/openair-cn
cd SCRIPTS
./build_hss –c
./run_hss -i ~/openair-cn/SRC/OAI_HSS/db/oai_db.sql #Run only once to install database
cd ~/openair-cn/SCRIPTS
./build_mme -c
cd ~/openair-cn
cd SCRIPTS
./build_spgw –c

With the EPC constituents built inside the container, a directory is created in
/usr/local/etc/oai/freeDiameter and the configuration files moved accordingly:

mkdir -p /usr/local/etc/oai/freeDiameter
cp ~/openair-cn/ETC/mme.conf /usr/local/etc/oai
cp ~/openair-cn/ETC/hss.conf /usr/local/etc/oai
cp ~/openair-cn/ETC/spgw.conf /usr/local/etc/oai
cp ~/openair-cn/ETC/acl.conf /usr/local/etc/oai/freeDiameter
cp ~/openair-cn/ETC/mme_fd.conf /usr/local/etc/oai/freeDiameter
cp ~/openair-cn/ETC/hss_fd.conf /usr/local/etc/oai/freeDiameter

The HSS, MME and S/PGW configuration files are adjusted to correspond to the particular deployment
and network parameters (see Appendix I, Appendix J and Appendix K, correspondingly). In the
/usr/local/etc/oai/freeDiameter/hss_fd.conf configuration files for the Diameter authentication server, it is
essential to set up the proper FQDN identity and the realm that is previously assigned:

Identity = "hss.openair4G.eur";
Realm = "openair4G.eur";

The equivalent action applies for the mme_fd.conf configuration file in the same directory, since MME
is responsible for the Diameter authentication procedure establishment:

Identity = "epc.openair4G.eur";
Realm = "openair4G.eur";
ConnectPeer= "hss.openair4G.eur" { ConnectTo = "127.0.0.1"; No_SCTP ; No_IPv6;
Prefer_TCP; No_TLS; port = 3868; realm = "openair4G.eur";};

Executable scripts are located at /openair-cn/SCRIPTS, only start the necessary services (apache and
MySQL database):

/start_service.sh

and afterwards, the EPC can be run accordingly:

./run_hss

108

./run_mme -i

./run_spgw -i

With this, the EPC is functional and running. The last phase is to commit the changes and finalize the
Docker image, so it can be tagged accordingly and pushed to the public/private repository:

docker commit –a “Bruno Dzogovic” –m “latest EPC version committed”
brunodzogovic/oai_epc:latest
docker push brunodzogovic/oai_epc:latest

This action will push the EPC image to the https://hub.docker.com/r/brunodzogovic/oai_epc/ repository.

Accessing the HSS database is available on the localhost or the container's IP address:
http://172.19.0.2/phpmyadmin in which the required user parameters are being stored (phone number,
security settings etc). In the database, there are few tables: the PDN information, Users table, APN and
PGW tables (refer to the examples in Appendix M and Appendix N). PGW and APN tables contain the
address of the Packet gateway location that is 172.19.0.1 (the container network gateway). The APN is the
name of the network realm, which is oaiipv4 (designating that IPv4 is used for routing). This information
is used in the UE to assign a Packet Data Network name which the mobile data will use to access the 4G
network. In order to access the network, the focus is moved to the Docker networking portion. As explained
before, Docker offers several options for networking from which the automatic one is the usage of the
Docker Bridge. The Calico network driver offers two modes of operation: integration as a driver in the
Docker networking, or using as a standalone SDN. In this case, both options are employed, since Calico
acts not only as an inter-container communication solution, but also as a backbone networking, offering
BGP connection as an ASBR (Autonomous System Boundary Router); with the support of MPLS, Calico
can serve massively-scaled workloads on the network Layer 3. Another option is to use the Docker's
MACVLAN driver, which will enable L2 connection and more reliable connection between the EPC and
eNB+RRH using MAC addresses instead of IP (especially if the containers are running in clustered mode
with Kubernetes or Swarm). If VxLAN is employed, then the SCTP+UDP are going to be encapsulated in
L2TP, creating a network overlay and add a slight but unnoticeable overhead. On the other side, that will
provide additional layer of security between the network core and the eNB.

4.1.2. Containerizing the eNB base-station and regulating the wireless radio
propagation parameters

Similarly to the procedure explained in the previous subchapter about containerizing the EPC modules,
the eNB is built in a Docker container image based on Linux Ubuntu 14.04, while running on a host
operating system Ubuntu 16.04. The FQDN for the eNB PC is designated as 192.168.10.5 bs.openair4g.eur.
In a Dockerfile or after running the eNB container, it is necessary to install required software and clone the
OpenAirInterface5G Git repository for the eNB:

apt-get update
apt-get install software-properties-common git wget psmisc –y
GIT_SSL_NO_VERIFY=true git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git
cd openairinterface5g
git checkout develop
git pull
source oaienv

Following the cloning of the Git repository, the eNB is built using the USRP option, since the given
hardware is the USRP B210:

cd cmake_targets
./build_oai -w USRP –I –x –c --eNB

109

#verify that USRP is working
uhd_usrp_probe

To run the eNB with specifically designated parameters, the configuration file that is located in
$OPENAIR_DIR/targets/PROJECTS/GENERIC-LTE-EPC/CONFenb.band3.tm1.usrpb210.conf is set for
the Band 3. Since computational resources are limited on a PC, the higher frequencies require much agile
CPU, and therefore, instead of Band 7, the Band 3 is chosen (see Appendix L).

cd cmake_targets/lte_build_oai/build
sudo -E ./lte-softmodem -O $OPENAIR_DIR/targets/PROJECTS/GENERIC-LTE-
EPC/CONF/enb.band3.tm1.usrpb210.conf –d
sudo -E ./lte-softmodem -h #(to see help options)

With Docker, the changes are committed, the image tagged as a latest version and pushed to the
https://hub.docker.com/r/brunodzogovic/oai5g_enb/ repository:

docker commit –a “Bruno Dzogovic” –m “latest eNB version committed”
brunodzogovic/oai5g_enb:latest
docker push brunodzogovic/oai5g_enb:latest

The radio configuration adjustment in this stage is a tedious task because the eNB operation is delicate
and the UE attachment procedure depends on numerous parameters. The frequency selection, according to
the Band 3, refers to the 1.8 GHz spectrum that is the 1865 MHz for the downlink channel and 1770 MHz
for the uplink channel, with 95 MHz duplex spacing. The frame type chosen is FDD and the channel
bandwidth is set to 5 MHz, since increment of the bandwidth demands a superior CPU and will cause
increased error rate. There are two practicable preferences of operation, specifically: SISO (using one Tx
transmission and one Rx receiving antenna), as well as full-duplex MIMO using 2 antennas for Rx and 2
antennas for Tx. Given the implementation of MIMO, the Tx and Rx gains are calculated to 90 dBm and
105 dBm, respectively. Any altered levels may instigate discrepancies at the uplink channel and decreased
system stability, which will cause the UE to detach or the MME to crash.

Most important factor to be taken into consideration is the RACH (Random Access Channel) structure.
In order to stabilize the function of a UE through the network, it is essential to institute a ground base
substances for power control of the random access channels (PRACH). Initially, since the base station is
transmitting in a limited manner (inside a single room), the distance between the UE and the eNB is varying
between 1m and 5m. Consequently, as an initial starting point, the average free-space path loss is calculated
(FSPL). For the downlink channel, the values are taken for transmission at 1m average, since the obstruction
of transmission is zero (direct line of sight to the eNB):

����(��) = 10 log�� �
����

�
�

�
= 20 log�� �

����

�
� = 20 log�� �

��∙�.���∙(�.���∙���)

������
� =

20 log�� 0.07817513847 = −22,13���,

For 1m distance from the eNB and where:

� = 0.001��

� = 1865��� = 1.865�10���

� = ����� �� ���ℎ� = 299792��/�

Analogously, the calculations are applied for the Uplink channel at 1770 MHz. This step will ensure
that the radio propagation does not extend out of the building premises, since the transmission at band 3
has a greater range than transmission at higher frequencies. This is very important because the radio

110

propagation should not interfere with the commercial infrastructure due to strict law restrictions for
transmission at commercial radio bands.

Following the calculation of free-space path loss of the radio waves, it is thus necessary to compute the
optimal channel configuration. For a comparative reference, in wired communications the amount of power
being sent from the transmitter reaches the receiver without ample variation. However, in wireless
communications, the energy drop at the receiving point may be immense, which requires higher power
amplifiers for increasing the power of transmission. The solution might seem simple but it doesn’t come
without repercussions. If the distance between the UE and the eNB is reasonable, then it is reasonable to
increase the power of the signal transmission. However, if the distance is very close then the receiver will
be oversaturated. Handling this situation can be simple in fixed conditions. Specifically, if the distance
between the transmitter and receiver does not change and the channel conditions (air humidity,
precipitation, obstructions) remain fixed, a manual setup would work. On the contrary, the distance between
the receiver and transmitter and channel conditions are subjects to a frequent variation, which requires for
a dynamic power control mechanism usually referred to as Closed Loop Power Control. The dynamic
approach takes few stages into consideration; namely, after initial transmission of the signal towards the
receiver, it [the receiver] measures the power of the received signal. Afterwards, if the measured signal
power is too low, the receiver sends an “increase the power” command to the transmitter. Also, if the
received signal power measured is too strong, it would send a “decrease the power” command (3GPP, 2009)
[3GPP Specification TS 36.213].

In reality, the resolution of this case is much more complex. For example, many times the transmitter
and the receiver are not in such state. When the UE is being turned on, it has to send an initial message in
the first signal. This moment is very important, since the signal transmitted might have too low power and
the base station would not detect it. If the transmitted signal power from the UE is very high, then it can
interfere with other UE units. To address this issue, a more granular approach is being utilized. Given the
fact that the eNB is transmitting a certain reference signal with fixed power value, the information about
that value is being advertised through the network. Besides that, the network also advertises the information
about the maximum allowed power that a single UE can transmit. When the UE receives this information,
it decodes the reference signal coming from the eNB and measures the power. Accordingly, UE measures
the FSPL and correspondingly to the allowed power, it can fathom with how much power it should
categorically transmit. This model of power determination process is referred to as Open Loop Power
Control. To initiate the Open Loop Power Control, the PRACH power should be determined, which is being
carried by SIB messages (see Figure 54) (3GPP, 2009) [3GPP Specification TS 36.213].

111

Figure 54. PRACH Open Loop Power Control

Furthermore, there are several entities that need to be calculated in order to establish efficient power
control (3GPP, 2009) [3GPP Specification TS 36.213]. Particularly:

������ = ���{�����, ��������_��������_������_����� + ��} [���]

����(�) = ���������, ����_������ + 10 log��(����) + �������
(�) + �(�) ∙ �� + �(�)� [���]

������(�) = ���������, ��_����� + �� + ℎ�����, ������ + ∆������
(�) + �(�)� [���]

������(�) = ���������, 10 log��(������(�)) + �������
(�) + �(�) ∙ �� + ∆��(�) + �(�)� [���]

��(�) = ����� − �10 log���������(�)� + �������
(�) + �(�) ∙ �� + ∆��(�) + �(�)� [��]

 The power of the channel per subframe - i suggests that the channel powers are premeditated and set
for each subframe. According to the first formula, the scheming takes the minimum value (smaller value)
between the P_CMAX and the subsequent calculation, meaning that if the formula gives the value smaller
than P_CMAX; the channel power for a subframe - i will become the value given by the formula. On the
other hand, if the formula gives the value greater than the P_CMAX, the power of the channel becomes the
actual P_CMAX value. In any case, the power of the channel cannot exceed the value of P_CMAX.
According to these calculations, the manufacturers of the UE need to ensure that the devices do not transmit
any power greater than these particular power values (3GPP, 2009) [3GPP Specification TS 36.213].

The PUSCH power control has a subframe number i and a variable j that can be either 1 or 0. The
MPUSCH(i) represents the number of resource blocks allocated for the UE. The P0_PUSCH(j) is the P0_PUSCH
nominal uplink power plus the P0_UE_PUSCH power, where the two for j=0, 1 come from higher layer (the
SIB2 messaging). The P0_PUSCH nominal power comes from p0-NominalPUSCH header in the SIB2 message
and the P0_UE_PUSCH comes from the p0-UE-PUSCH header in the SIB2 message as an initiator for RRC
connection setup and reconfiguration. The alpha(j), for j= 0, 1 can has values of {0, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1}. The PL variable refers to the calculated Path Loss, which also comes from higher layer filtered

112

RSRP (Reference Signal Power) in the configuration file, and is defined in the SIB2 message (3GPP, 2009)
[3GPP Specification TS 36.213].

The PUCCH power control also has the i – subframe number and the j variable that can be 0 or 1. The
P0_PUCCH is the P0 PUCCH nominal power plus the P0 UE PUCCH power, where they are set from higher
layer, or specifically the SIB2 message for RRC connection setup and/or reconfiguration. The delta format
defines the modulation scheme at the PUCCH control, which can be 1 – no modulation scheme; 1a – BPSK
modulation with 1 bit per subframe; 1b – QPSK modulation with 2 bits per subframe; 2 – QPSK with 20
bits per subframe; 2a – QPSK+BPSK modulation with 21 bits per subframe; 2b – QPSK+QPSK with 22
bits per subframe; 3 – QPSK modulation with 48 bits per subframe and delta 4 and delta 5 (3GPP, 2009)
[3GPP Specification TS 36.213].

To determine the RACH preamble, the initial message established from the UE to the eNB when the
device turns on is accordingly expounded. The Random Access Channel (RACH) assignment procedure is
the most important entity, which can conclude the formation of the configuration file used in the operation
of the eNB (refer to Appendix O for detailed insight into the eNB configuration). The RACH process
achieves UL synchronization between the UE and eNB and obtains resources for Message 3 (i.e. RRC
Connection Request), therein the importance for the Random Access Channel because synchronization
between transmitter and receiver is the ultimate objective. The synchronization is achieved via special
synchronization channel that broadcasts to all UEs and transmits synchronization messages at a certain
interval. According to that, the synchronization process happens only when there is an instant necessity and
should be dedicated to only a specific UE. The RACH procedure happens in case of an initial access from
RRC_IDLE or with RRC connection re-establishment procedure. Moreover, it is initialized in case of
handover or DL/UL data arrival during RRC_CONNECTED when the synchronization status is “non-
synchronized”. The RACH procedure is also used for positioning purposes when timing advance is needed
for UE positioning. There are two types of RACH procedures: Contention-based and Contention-free
RACH. When a UE transmits a RACH preamble, it can give out a particular pattern that is called
‘signature’. In each LTE cell, there are 64 possible preamble signatures from which the UE selects
randomly. This alludes on the possibility of selecting two identical signatures simultaneously, which can
induce collisions. In the Contention-based RACH procedure, multiple UEs may select the same signature
that are being resolved later by the network in a contention resolution step. The other possibility is
restricting the selection of a signature in a time domain, which means that the UE gets information from
the network at which time which particular preamble signature to use. The network knows when the UE
will send the RACH even before the UE sends it, because the network informs the UE about the time when
it is supposed to transmit the RACH. The selection of a PRACH preamble is denoted in the Table 10, which
contains the pre-calculated values for a given configuration index and corresponding preamble format and
subframe number (3GPP, 2009) [3GPP Specification TS 36.213]:

Table 10. PRACH configuration index (3GPP, 2009) [3GPP Specification TS 36.213]

PRACH
configuration

index

Preamble
format

System
frame

number

Subframe
number

PRACH
configuration

index

Preamble
format

System
frame

number

Subframe
number

0 0 Even 1 32 2 Even 1
1 0 Even 4 33 2 Even 4
2 0 Even 7 34 2 Even 7
3 0 Any 1 35 2 Any 1
4 0 Any 4 36 2 Any 4
5 0 Any 7 37 2 Any 7
6 0 Any 1, 6 38 2 Any 1, 6
7 0 Any 2, 7 39 2 Any 2, 7
8 0 Any 3, 8 40 2 Any 3, 8

113

9 0 Any 1, 4, 7 41 2 Any 1, 4, 7
10 0 Any 2, 5, 8 42 2 Any 2, 5, 8
11 0 Any 3, 6, 9 43 2 Any 3, 6, 9
12 0 Any 0, 2, 4, 6, 8 44 2 Any 0, 2, 4, 6, 8
13 0 Any 1, 3, 5, 7, 9 45 2 Any 1, 3, 5, 7, 9
14 0 Any 0, 1, 2, 3, 4,

5, 6, 7, 8, 9
46 N/A N/A N/A

15 0 Even 9 47 2 Even 9
16 1 Even 1 48 3 Even 1
17 1 Even 4 49 3 Even 4
18 1 Even 7 50 3 Even 7
19 1 Any 1 51 3 Any 1
20 1 Any 4 52 3 Any 4
21 1 Any 7 53 3 Any 7
22 1 Any 1, 6 54 3 Any 1, 6
23 1 Any 2, 7 55 3 Any 2, 7
24 1 Any 3, 8 56 3 Any 3, 8
25 1 Any 1, 4, 7 57 3 Any 1, 4, 7
26 1 Any 2, 5, 8 58 3 Any 2, 5, 8
27 1 Any 3, 6, 9 59 3 Any 3, 6, 9
28 1 Any 0, 2, 4, 6, 8 60 N/A N/A N/A
29 1 Any 1, 3, 5, 7, 9 61 N/A N/A N/A
30 N/A N/A N/A 62 N/A N/A N/A
31 1 Even 9 63 3 Even 9

4.2. Connecting the eNB with the EPC through container network
After completion of the radio configuration, the remaining step is to interconnect the two remote

workloads: the eNB container and EPC container. As previously stated, they belong to a same Docker
network named as “oainet” and take the address space of the 172.19.0.0/24 network (see Figure 55). To
separate the workloads on Layer-2, a virtual switch with OvS is initialized. The virtual bridges that are
created are used as reference points for assigning an autonomous system with Calico, instead of using the
eth0 interface. This allows for further expansion of access control and policy-based networking. Because
Kubernetes is being used for provisioning the infrastructure in microservices architecture, the default
Flannel SDN is replaced by Calico. An environment variable is set in a .cfg file and Calico is initialized via
Kubernetes addon:

NETWORKING_OPTION=Calico
kubeadm init
Flannelkubectl create - f http://docs.projectcalico.org/v2.0/getting-
started/kubernetes/installation/hosted/kubeadm/calico.yaml

114

Figure 55. Direct container-to-container communication using OvS

Calico allows isolation of a Kubernetes namespace. Since the EPC can run in multiple replicas in a same
or different namespace, Calico can ensure that a specific namespace policy will isolate some constituents
from remote access and guarantee that only the eNB container can access the EPC container, given that
their IP addresses and MAC addresses are fixed:

kubectl create ns policy-oai
kubectl run --namespace=policy-oai oai_epc --replicas=2 --image=oai_epc
kubectl expose --namespace=policy-oai deployment oai_epc --ports=1-9000

By enabling isolation for the current policy of the namespace, Calico will prevent connections to the
pods in that particular namespace:

kubectl create -f - <<EOF
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: default-deny
 namespace: policy-oai
spec:
 podSelector:
 matchLabels: {}
EOF

When allowing access to the oai_epc service using a network policy, incoming connections from our
access Pod will be allowed only, but not from anywhere else:

kubectl create -f - <<EOF
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: access-oai_epc
 namespace: policy-oai
spec:
 podSelector:
 matchLabels:
 run: oai_epc
 ingress:

115

 - from:
 - podSelector:
 matchLabels:
 run: access
EOF

At this point, the container environment is secured with a simple Calico policy. To proceed further, the
networking model is premeditated. Since the physical router uses the OSPF protocol, Calico will need to
redistribute its physical routes into the SDN BGP autonomous system. For this purpose, there are several
factors that need to be taken into consideration. First and foremost, the AS (Autonomous System) has a
number which is used by the BGP agent on a Calico node when it has not been explicitly specified. In
practice, all the Calico nodes use the same AS number for the matter of simplicity. Moreover, the node-to-
node mesh is enabled by default, which provides a mechanism for automatic configuring peering between
all Calico nodes. This is useful for smaller deployments, but when the infrastructure is scaled, then the full
node-to-node mesh is disabled and explicit BGP peers are configured for the Calico nodes. With a simple
command, the status of the peerings on Calico nodes can be checked:

sudo calicoctl node status

Calico process is running.

IPv4 BGP status
+--------------+-------------------+-------+----------+-------------+
| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
+--------------+-------------------+-------+----------+-------------+
172.19.0.2	node-to-node mesh	up	23:30:04	Established
172.19.0.3	node-to-node mesh	up	23:30:27	Established
10.20.30.40	global	start	10:16:13	Connect
192.10.0.0	node specific	start	10:28:46	Connect
+--------------+-------------------+-------+----------+-------------+

IPv6 BGP status
+--------------+-------------------+-------+----------+-------------+
| PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
+--------------+-------------------+-------+----------+-------------+
| aa:bb::ff | node-to-node mesh | up | 23:17:26 | Established |
+--------------+-------------------+-------+----------+-------------+

The IP pools need an external connectivity for OSPF route redistribution, and therefore, the NAT option
is turned on:

calicoctl get ipPool

cat << EOF | calicoctl apply -f -
- apiVersion: projectcalico.org/v3
 kind: IPPool
 metadata:
 name: ippool-ext-1
 spec:
 cidr: 172.19.0.0/24
 natOutgoing: true
EOF

The last thing remaining is setting the MTU to 1648, which is added to the CNI configuration file of the
Calico control daemon:

{
 "name": "any_name",
 "cniVersion": "0.1.0",
 "type": "calico",
 "mtu": 1648,
 "ipam": {

116

 "type": "calico-ipam"
 }
}

Since the argument –ip-autodetection-method is enabled in Calico, the configuration of the network is
automatic. However, it is possible also to manually set the subnets and all IP addresses for every individual
container network.

117

5. SECURITY AND AUTHENTICATION OF THE MOBILE NETWORK
When a UE attempts to attach to the mobile network, it checks whether valid credentials are present in

the HSS database. Through previously-explained procedures, the MME initiates attachment procedures of
the UE to the HSS via the Diameter protocol. If the credentials do not match, then the device will be denied
access. In order to successfully authenticate, the UE devices need a specifically programmed SIM card that
supports MILENAGE algorithm.

The UE devices used are Huawei P9 Lite phones (HUAWEI, 2018) VNS-L22 series. The phone supports
4G network operation on multiple bands, namely: FDD band 1, 3, 5, 7, 8, 19, 28 and TDD band 40; 3G
operation on bands 1, 5, 6, 8 and 19; as well as, 2G operation on GSM bands 850 MHz, 900 MHz, 1800
MHz and 1900 MHz. For the purpose of successful establishment of a reliable connection, blank SIM cards
are programmed.

5.1. Building USIM cards with MILENAGE encryption for authentication
When embedding the information to the SIM cards, it is essential to take into account few parameters.

Most important is the operator key (OP), which is used by the HSS for derivation of other keys and is kept
as a secret by the service provider (operator). The encryption keys and parameters are represented in Table
11.

Table 11. SIM card programming values and keys

SIM
cards

Algorith
m

Ki OP SPN MCC MNC IMSI SQN

SIM 1 Milenage

8BAF473F
2F8FD094
87CCCBD
7097C6862

11111111
11111111
11111111
11111111

OpenAirI
nterface

208 93
20893
00000
00003

000000000
004

SIM 2 Milenage

8BAF473F
2F8FD094
87CCCBD
7097C6862

11111111
11111111
11111111
11111111

OpenAirI
nterface

208 93
20893
00000
00004

000000000
005

SIM 3 Milenage

8BAF473F
2F8FD094
87CCCBD
7097C6862

11111111
11111111
11111111
11111111

OpenAirI
nterface

208 93
20893
00000
00005

000000000
006

SIM 4 Milenage

8BAF473F
2F8FD094
87CCCBD
7097C6862

11111111
11111111
11111111
11111111

OpenAirI
nterface

208 93
20893
00000
00006

000000000
007

As seen in Figure 56, within the choice for authentication algorithm, the Milenage option is selected.

118

Figure 56. SIM programming parameters

After this process, the UE can securely authenticate and connect to the mobile network. For the purpose
of programming a SIM card, a specific programming hardware is required. The procedure is detailed in the
following subsection.

5.1.1. Programming a USIM card for the OpenAirInterface5G network
For establishing a secure and trustable communication between the Mobile/IoT platforms to the Internet,

USIM blank cards are obtained and programmed for authentication of the devices to the core network. This
subsection elucidates the appliance of a smart card reader with an appropriate kernel driver, a middle-ware
for detection and usage of the cards and testing the diligence. The device used is a Blutronics BluDrive II
model. The installation of the Chip/Smart Card Interface Devices (CCID) software driver in Linux is
straightforward, including pcsclite and additional pcsc tools as middleware for testing, with which it is
feasible to write on different types of smart cards. The procedure is explicated in Appendix P in detail.

5.2. Tunneling SCTP protocol into L2TP/VPN and advanced security
control

The L2TP tunneling protocol can be used to carry higher-level protocol encrypted traffic (such as VPN),
but does not offer encryption itself. Since the mobile communication security architecture is based on
Diameter authentication, the security vectors are being carried via UDP and SCTP, which also carry the
GTP-U protocol tunnel instructions (see Figure 57). Paired with IPSec, L2TP can offer substantial security
enhancement. However, this measure will introduce a slight overhead in the mobile traffic, but that can be
considered as a desirable tradeoff for enhancing the security of critical and exposed devices.

Figure 57. Tunneling encapsulation and packet modification

119

When a tunnel is established, the traffic is bidirectional. All the other higher-level protocols can be
carried via the fixed tunnel. As a session is instituted, the default header size is adapted and requires
alteration of the MTU. In this case, the MTU is set to 1648 bits, which is adequate for the current case.
However, the MTU is also modified to up to 9000 bits for testing purposes, especially if IPSec is used and
the traffic is encrypted or if additional tunnels are required. One disadvantage of a very large MTU value
is the susceptibility to fragmentation attacks, and therefore it requires supplementary configuration for VRF
on the Cisco router. It should also be noted that for proper communication, the MTU is adjusted properly
at all interfaces: the eth0 physical network interface, Docker virtual bridge, OvS bridges as well as Calico
and veth/gre interfaces.

120

6. EVALUATION
The deployment of the mobile network requires only stability testing, which is represented in the

following chapter. Since the aim of this research is to provide a suitable way of establishing a virtualized
mobile network, the performance tests and optimization include several layers of analysis without delving
in detailed tests or comparative methods. The tests are conducted consequently in accordance to the
deployment progress of the infrastructure. The initial test phase incorporates defining the requirements for
the hardware platform and its evaluation. After establishing the hardware-level procedurals, the higher-
level operations testing is taking place; namely, defining virtualized environment and assessing its
performance scaling options. When the virtualized environment is set, and the underlying deployment is
primed, the succeeding procedures that require attention are the connectivity and networking. In particular,
the SDN models are proposed, and the remote communication between the eNB and EPC is defined together
with layer-2 and layer-3 network exactitudes. Hereafter, it can be asserted that the mobile network is
successfully deployed, and all the subsequent testing procedures will then coalesce approaches such as
wireless radio-link optimizations, network-level tuning and improving the deployment stability for long-
term jobs; conclusively, the overall throughput and latency are assessed.

6.1. Testing the Access Stratum (AS) and the Non-Access Stratum (NAS)
The tests of the mobile infrastructure can be divided into examinations of the AS (Access Stratum) and

assessments of the NAS (Non-Access Stratum). The AS tests include checking the radio access and
ensuring that the adjusted parameters are adequate for the particular scenario. The signal analyzer run at
the eNB shows that when the UE connects to the Band3 FDD, a 16-QAM modulation is instigated.
Depending on the requirements, the option for 64-QAM is also enabled. In this case, if the traffic increases
and the radio access doesn’t provide the sufficient resources, the signal will be 64-QAM modulated to
increase the throughput. When the uplink signal is saturated, the eNB will try to stabilize the broadcasted
gain in order to alleviate the connection. This can be clearly observed from the two figures in Appendix Q,
subsequently; the constellation of the 16-QAM becomes stabilized over time.

As previously stated, when the UE selects the frequency of the eNB and requests an attachment
procedure initiation, it asks the MME for channel assignment, authentication commencement, obtaining an
IP address from the S/PGW, bearer designation, etc. This is denoted in the Appendix R. When the HSS
daemon is started, the MME connects through the S/PGW and to the HSS. At this point, the mobile network
is in idle state, waiting for potential UE devices to authenticate to the EPC. In the UE, the APN (Access
Point Name) needs to be set analogously to the one registered in the HSS, specifically: oai.ipv4, where the
Mobile Country Code and the Mobile Network Code should correspond to the one embedded in the SIM
card (208 and 93, respectively). Also, the SPN (Service Provider Name) is set to as OpenAirInterface, since
that is the name registered in the HSS database and programmed into the SIM cards. When the SIM card is
inserted into the UE device, the phone authenticates automatically on the mobile network. Using the open-
source software Network Cell Info Lite (WILYSIS, 2018), the connection to the eNB can be metered (see
Figure 58).

121

Figure 58. Huawei P9 Lite connected to the OpenAirInterface5G network

The observation indicates clearly that the signal from the UE to the eNB has an exceptional quality with
Reference Signal-to-Signal Noise Ratio (RSSNR) as minimal as 3.3dB and Reference Signal Received
Quality (RSRQ) of -5dB. The overall Reference Signal Received Power (RSRP) is -64dBM in room
conditions. According to this signal strength, the channel estimation can be calculated and thus adjusted
accordingly for the particular conditions. In Figure 59, the normal function of a UE attached to the eNB can
be ascertained. In this case, the serving cell maintains a stable connection without any mobility of the UE
and thus, the RSRP signal power is situated around -65dBm. For eliminating biased results, the cell is set
to only support 4G LTE connections, without the possibility to connect to 3G UMTS.

122

Figure 59. Normal operation of the UE while connected on the OpenAirInterface5G network

However, in case of mobility (linear distancing from the eNB); as depicted in Figure 60, the UE registers
signal power drop in time domain. Alternatively, in the case of severe obstruction, the signal drops
exponentially in time domain and then again rises exponentially fast when the obstruction of the line-of-
sight (LoS) is resolved. It is also crucial to note that the signal power drop is much higher when the UE
increases the distance from the eNB rather than as in the obstruction case. As shown in the Figure 60 on
the left, with the higher distances from the eNB, the signal to the UE reaches unacceptable levels of low
RSRQ quality. The signal strength drops drastically from around -70dBm to less than 100dBm.
Consequently, the eNB will try to address the situation and push the minimal reference signal received
power threshold, so it can broadcast with slightly higher power to reach the UE, but when the threshold
reaches 0, then the UE is too far from any possibility of being reached from the eNB. Situationally, the eNB
is forced to drop the connection and de-attach the UE. As long as the signal power is at least marginally
above the acceptable RSRQ quality levels, the connection will be maintained; in other words, the
connection is preserved as long as the link to the base station is at “one line” of the phone’s signal meter.
In the second case, the eNB will continue broadcasting normally when obstruction is faced, but the received
signal power will drop slightly (in the current case, from -63dBm to around -71dBm), which doesn’t affect
the connection and the phone’s signal power meter will still indicate full signal strength link. Contextually,
the eNB will not then re-adjust the power thresholds, nor will it upsurge the radiating power.

123

Figure 60. Signal power drop due to linear increasing of distance from the eNB and due to obstruction of line-of-sight,
correspondingly

In addition to the AS evaluation, testing the NAS can take various dimensions and forms. Most of the
possible tests in the EPC can be of IP character, testing the network traffic for particular traits (congestion,
jitter, latency, bandwidth, routing) etc. The most important traits of the Non-Access Stratum is the ability
to serve substantial amount of users through the eNB and offer suitable QoS, while providing good user
experience. For the users, the most important factors are usually the bandwidth and the latency. When video
calls are established it is important that the video quality is adequate so the communicating sides can enjoy
good conversation, and the latency should be as minimal as possible for the voice exchange to be
satisfactory and clear without delay. To test the throughput and the latency/jitter, two methods are applied:
testing via external servers by using speedtest.net (SPEEDTEST, 2018) and testing using the open-source
iperf3 tool (IPERF, 2018). The SpeedTest results are showing an overall communication capabilities of the
network with the outside world and accessing locations externally.

In the Figure 61, it can be observed that the tests yield a network throughput of approximately 16 Mbps
at the DL and 3 – 8 Mbps UL. The latency is varying from 12 to 25ms with jitter of ~5ms. The latency
deviation is due to different geographical test locations and server distances, which indicates that the
communication with these values can be flawless in video calls, browsing the internet or even online
gaming. It can be noted that the IP address of the UE is 192.188.0.2. This address belongs to the network
previously-assigned by the S/PGW (192.188.0.0/24). The S/PGW has an IP address 192.188.0.1 and it can
be used as a point to set up a server for exclusive testing of the mobile network performance, without any
impact on the calculations from the outside world and the Internet.

124

Figure 61. SpeedTest results for the OpenAirInterface5G network, issued from the Huawei P9 Lite UE

For testing of the mobile network locally, the tool iperf3 is used. One instance is initiated at the UE, and
the server is running at the EPC listening on the S/PGW interface gtp0 with IP 192.188.0.1 (see Appendix
S). Iperf3 measures the throughput in one direction, from the client requests towards the server responses
at the UE and from the server responses to the client requests at the EPC. The packets are sent via
TCP/SCTP protocols and the measurements give the results depicted in Appendix T for the UE and in
Appendix U for the EPC server side. After running iPerf for 10 minutes, with packet transmission interval
of 1 second, the results are similar to the ones obtained from the SpeedTest observations (see Figure 62).

Figure 62. Diagram from iPerf3 observations

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Packet size (KB) Speed (Kbits/s)

STD Deviation (Packet Size) STD Deviation (Speed)

125

According to the diagram, the average packet size transmitted through the network is 950.26 KB, or
0.95 MB. The average speed is 7874.28 Kbit/s, which in both directions is 15.7 Mbit/s (similar to the
SpeedTest results). The standard deviation in packet size is 141.9 KB and the standard deviation in speed
is proportional and correlated to the packet size, or specifically 1225 Kbit/s. By comparing the two results,
it can be stated that the performance of the network are not only conditioned by the OpenAirInterface5G
system itself, but also many other factors are impacting the performance. The biggest constraint is the
underlying hardware on which the mobile network is situated. If the CPU unit is stronger and has more
cores available, then the frequency of transmission can be scaled to higher frequency bands, the sampling
rate increased and with higher channel bandwidth of i.e. 25 MHz; as a result, the performance would be
much higher. This suggests that the future virtualized mobile 5G networks will be directly related to the
performance of the datacenters and the underlying hardware, as well as the availability of the resources and
the simplicity of the deployment that can facilitate scaling.

6.2. EURECOM MIMO OpenAir Sounder (EMOS) for testing MIMO
propagation

To test the MIMO propagation, the Eurecom MIMO Openair Sounder (EMOS) is utilized. As a part of
the OpenAirInterface5G platform which allows real-time MIMO channel measurements synchronously
over multiple users moving at vehicular speed, EMOS consists of a base station (BS) that continuously
sends out a signaling frame, and one or more users that receive the frames to estimate the channel. The
EMOS is using an OFDM modulated sounding sequence. The duration of one transmit frame is 2.667ms
and it consists of a synchronization symbol (SCH), a broadcast data channel (BCH) comprising 7 OFDM
symbols, a guard interval, and 48 pilot symbols used for channel estimation (see Figure 63). The pilot
symbols are taken from a pseudo-random QPSK sequence defined in the frequency domain. The subcarriers
of the pilot symbols are multiplexed over the four transmit antennas to ensure orthogonality in the spatial
domain. The BCH contains the frame number of the transmitted frame that is used for synchronization
among the UEs (EURECOM, 2018).

Figure 63. Frame structure of the OFDM sounding sequence (EURECOM, 2018)

Each UE first synchronizes to the BS using the SCH. It then tries to decode the data in the BCH. If the
BCH can be decoded successfully, the channel estimation procedure is started. The channel estimation
procedure consists of two steps. Firstly, the pilot symbols are de-rotated with respect to the first pilot symbol
to reduce the phase-shift noise generated by the dual-RF CardBus/PCMCIA card. Secondly, the pilot
symbols are averaged to increase the measurement SNR. The estimated MIMO channel is finally stored to
disk. In order to conduct multi-user measurements, all the UEs need to be frame-synchronized to the BS.
This is achieved by storing the frame number encoded in the BCH along with the measured channel at the
UEs. This way, the measured channels can be aligned for later evaluations. The frame number is also used
to synchronize the data acquisition between UEs. One measurement run (file) starts every 22.500 frames
(60 sec) and is exactly 18.750 frames (50 sec) long (EURECOM, 2018).

To initialize the EMOS sounder, the lte-softmodem is compiled with the option EMOS=1 and the real-
time measurements are stored to a file (both for the UE and the eNB). The channel estimates are also
deposited if the softmodem operation is compiled with the flag –DEMOS_CHANNEL=1. With the real-

126

time data, it is feasible to apply machine learning and A.I techniques in order to obtain most optimal channel
estimation model.

6.3. ITTI analyzer
OpenAirInterface5G supports implementation of MAC interface for Wireshark using UDP sockets,

which allows Wireshark to separate MAC, RLC, PDCP and RRC packets. For the S1AP and GTP packets,
there is no particular requirement for configuration, however the initiation of PCAP files is accordingly
feasible. To properly set up the Wireshark, it is needed to adjust the heuristics in the preferences menu to
correspond to UDP protocol, MAC-LTE, RLC-LTE and PDCP-LTE. The interfaces are then captured by
the filters: s1ap or lte_rrc or mac-lte or rlc-lte or pdcp-lte. The L2 PDUs are transmitted to the local
interface and a LTE packet dissection is saved as “oai_l2l3.pcap” file locally or in VCD format as
“oai_l2l3.vcd”.

The itti_analyzer tool is used to analyze the exchanges between RRC<->S1AP, RRC<->PDCP, PDCP<-
>S1 in case there are problems within the domain of the mobile network and a surgical packet analysis is
required. This is enabled when compiling the lte-softmodem using the flag ITTI_ENABLED (EURECOM,
2017).

127

7. VIRTUALIZATION AND DEPLOYMENT IN CLOUD
Hitherto, the deployment of the virtualized constituents of the OpenAirInterface5G mobile infrastructure

are explicated in terms of deployment on top of OpenStack cloud. For full cloud integration, the
OpenAirInterface5G needs to have its functionality translated so that OpenStack can understand the
communication machineries. Since OpenAirInterface5G utilizes tunneling protocols as well as
encapsulation from various protocols into TCP/SCTP and UDP, the communication can experience
downgrade when the EPC is deployed on top of the cloud. Additionally, earlier versions of OpenStack do
not support SCTP traffic to the deployed instances, which necessitates tunneling by default. Tunneling can
increase the overall latency in the network traffic and can sometimes be an unreliable method of networking.
By avoiding tunneling, the OpenAirInterface5G infrastructure can remove a layer of complexity and also a
point of failure; this can be performed by integration of the virtual network function of OpenAirInterface5G
into OpenStack using Heat orchestration (OPENSTACK, 2018) [OpenStack Heat Orchestration].

7.1. Deploying OpenAirInterface5G EPC core in OpenStack using Heat
templates

Heat is the main project in the OpenStack Orchestration program. It implements an orchestration engine
to launch multiple composite cloud applications based on templates in the form of text files that can be
treated like code. A native Heat template format is evolving, but Heat also endeavors to provide
compatibility with the AWS CloudFormation template format, so that many existing CloudFormation
templates can be launched on OpenStack. Heat provides both an OpenStack-native ReST API and a
CloudFormation-compatible Query API. A Heat template describes the infrastructure for a cloud
application in a text file that is readable and writable by humans, and can be checked into version control,
diffed, &c. Infrastructure resources that can be described include: servers, floating IPs, volumes, security
groups, users, etc. Heat also provides an autoscaling service that integrates with the Telemetry service of
OpenStack, so a scaling group can be included as a resource in a template. Templates can also specify the
relationships between resources. This enables Heat to call out to the OpenStack APIs to create all of the
desired infrastructure in the correct order to completely launch the application. Heat manages the whole
lifecycle of the application - when a change to the infrastructure is desired, the template can be modified
and used to update the existing stack. Heat knows how to make the necessary changes. It will delete all of
the resources when the application is removed. Heat primarily manages infrastructure, but the templates
integrate also with software configuration management tools such as Puppet and Chef (OPENSTACK,
2018) [OpenStack Heat orchestration] in order to enable automation.

For this purpose, an OpenStack Heat template is built (included in the Appendix V), in conjunction with
the work of Swisscom Innovations and the OpenAirInterface5G open-source community (SWISSCOM,
2018). The template creates a router, a floating IP, an internal network, volumes, security groups, ports and
instances in OpenStack. The EPC can be placed everywhere in the Internet even behind NATs, and there is
no requirement for a second external network in OpenStack, so in principle any public OpenStack cloud
can be used to deploy the core. In addition, S1 traffic between eNB and MME/SPGW is encrypted and
eNBs are authenticated (OPENAIRINTERFACE, 2018).

Before deploying the template with Heat, a custom Ubuntu image is built. Since the heat template uses
OS::Heat::SoftwareDeployment, the base image for the instances needs to have os-collect-config/heat-
config/os-apply-config tools installed:

sudo apt-get install python-pip
sudo pip install virtualenv
virtualenv ~/dib-virtualenv
. ~/dib-virtualenv/bin/activate
pip install diskimage-builder

128

mkdir custom-image
cd custom-image
git clone https://git.openstack.org/openstack/tripleo-image-elements.git
git clone https://git.openstack.org/openstack/heat-templates.git
export ELEMENTS_PATH=tripleo-image-elements/elements:heat-templates/hot/software-
config/elements
diskimage-builder/bin/disk-image-create vm ubuntu os-collect-config os-refresh-config
os-apply-config heat-config heat-config-script -o ubuntu-xenial-os-config.qcow2

The QCOW2 image is then implemented in the OpenStack Alto cloud using the Glance module:

glance image-create --disk-format qcow2 --file ubuntu-$DIB_RELEASE-os-config.qcow2
ubuntu-$DIB_RELEASE-os-config

After the template initiates the network core, the MME, S/PGW and HSS need to be started manually
in order to have the core network running and ready for the eNB to attach to it.

7.2. Using Kubernetes for orchestration of the container resources remotely
in the cloud

The OpenAirInterface5G components can be separated and deployed in a form of microservices
architecture, in a cluster. To achieve that, the previously clarified method of compiling the
OpenAirInterface5G EPC modules need to be separately executed in distinct containers. Rationally, two to
three containers can be built with two variations: MME+S/PGW in one container and the HSS in a separate
container; MME, S/PGW and HSS all in separate containers. The constituents do not necessarily need to
be in the same container network, but for the matter of expediency and simplicity, they are set as services
and deployed in a cluster mode, which is the crucial for the microservices architecture. With Kubernetes,
the container network is served using the Flannel SDN unit. Flannel performs an IP-in-IP connectivity and
creates a network overlay, which as previously shown, adds a slight overhead in the networking latency
and computational resource demand. To address this concern, the Kubernetes daemon has the Flannel SDN
replaced with Calico. Consequently, the container network has a full Layer-3 networking enabled and can
communicate to the outside world without any overhead caused by additional network overlays.

In addition to Kubenetes, Calico’s driver is also integrated with the OpenStack’s Neutron networking
module. The Calico plugin is certified by Mirantis (which is the same version of OpenStack installed), it is
available for implementation from the Fuel Plugins Catalog. Installation of the driver is straightforward:

fuel plugins --install calico-fuel-plugin-<version>.noarch.rpm

Subsequently, the OpenStack environment is re-deployed for the settings to take effect. At the Fuel
master node, in the Neutron networking tab the setting “Use Calico Virtual Networking” is selected. All
the other configuration settings are preserved, since the OpenStack is the functional cloud infrastructure at
the OsloMet University and the VLAN/IP settings must remain unchanged. In Figure 64, the process of
communication between the master node and the deployed remote workloads is performed with Calico
through OvS virtual bridges. The eth0 interface of the physical network card at the master node has a virtual
bridge which establishes direct Layer-2 communication. The OvS bridge can then be used for relaying the
routed Layer-3 traffic or as a reference point for L2TP tunneling to the OpenStack cloud.

129

Figure 64. Using the Calico networking driver for OpenStack and integration with Neutron

It should be noted that in order to have fully-operation cluster network, all the Calico functions should
work properly. On the OpenStack controller nodes, the BGP BIRD route reflector establishes sessions to
all the compute nodes and the Neutron service is running and has initialized the Calico ML2 mechanism
driver for inter-VM connectivity. On each compute node, the Calico Felix agent is correctly configured and
running, which can enable further establishing of BGP sessions to the route reflector on the controller nodes.
In this case, the Open vSwitch driver works in coordination with the Calico driver, and doesn’t have to be
removed. Calico can also route IPv6 traffic, and since the datacenter is connected also via IPv6, an IP
address range is deducted to the OpenStack network for IPv6 networking. In conclusion, the remote
workloads of the eNB constituents (a single eNB container or C-RAN splits into RRU and BBU) can
communicate with the EPC in the cloud using the BGP protocol, securely. The MME can only be accessed
by the eNB and the container mesh in the EPC cluster, but nothing else. This applies also to the HSS and
S/PGW. With such isolation, the security of the whole infrastructure introduces additional layers of
abstraction and is drastically increased.

To install the aforementioned elements, a YAML file oai.yml is formed. Each module belongs to a
different Pod, which is part of a distinct Namespace. All the namespaces form a single Daemon set, in the
case if the MME, HSS and S/PGW are compiled and run in daemon mode. The process is exactly analogous
to the one described previously, about deploying Kubernetes microservices application where each EPC
component is implemented in a single container instead in separate. In this case, the control over the
comprising elements is more detailed, where each daemon set has a detailed control over the deployed Pods.
The EPC thus is instantiated in microservices mode on the instance running on OvS router 128.39.121.19
in the OpenStack cloud, getting an IP address 128.39.121.27 and a private IP 10.0.0.27 (see Figure 65).

130

Figure 65. Deployed Kubernetes EPC cluster on top of OpenStack cloud

131

8. DISCUSSION

The main goal every operator targets to achieve is user satisfaction and good technology experience.
With the purpose of providing the declared qualities, the service provider must ensure that the deployed
infrastructure is robust and reliable, with minimal to no downtime although offering high level of
performance. To facilitate these excellences, every observable impediment needs to be addressed and
resolved. In this case, several repercussions surfaced and required special attention.

Unambiguously, one of the biggest downside of the OpenAirInterface5G network are the special
requirements for real-time operation. Any processing fluctuations at the host in terms of CPU vacillations
can be detrimental to the stability of the network. The eNB runs very sensitive processes and therefore, any
discrepancy in the CPU frequency can lead to misapprehending behavior. As pointed out, the CPU scaling
and power control are disabled for the unit to operate at maximum performance. However, some recent
events in the cyber-security domain have led Intel to produce patches for vulnerabilities that encompassed
all current CPU architectures. In particular words, the patches for the Spectre/Meltdown vulnerabilities
(COLDEWEY, Devin, 2018) have a substantially negative impact on the performance of the CPU units,
and generally thus it drastically affects the function of the currently installed OpenAirInterface5G network.
The patches decrease the CPU processing efficiency up to 30% if the units are older than 2 years. For
addressing this issue, all recent Linux updates regarding security patching are removed and earlier version
of Ubuntu 16 is retained. Also, the eNB operation requires very strong CPU units with as more cores as
possible. Testing a full MIMO propagation with multiple eNBs and users can be difficult if the underlying
host is not rich in resources and the technology is not innovative.

Furthermore, the OpenAirInterface5G mobile network requires mapping of GTP-U modules from the
Linux kernel and indeed requires the presence of such modules. Deployment of the core network in the
cloud can be challenging if the modules are missing. Most often, the OpenStack Linux images for the VM
instances are being created without the GTP modules, and thus the running of the core network is
impossible. To tackle this issue, custom Linux images are produced and the GTP modules included within
the scope. The same issues may persist even with the usage of containers, because the containers are
mapping modules from the Linux kernel when running an application. Without the appropriate kernel
modules and libraries, the application will be unable to run. Given that the host operating system is resolute,
the upside of the containerized environment opens endless possibilities for manipulation of the mobile
network constituents in terms of scaling, resource localization, upgrades and continuous integration
approaches. With fully-functional splits, a clustered environment can be easily scaled; i.e., Kubernetes can
assign as many replicas as desired for the particular components. For example, the HSS database can be
scaled up to massive clusters in case where the mobile network becomes oversaturated with UE requests.
The scaled cluster can then load-balance between requests and increase the database replicas in order to
serve the growing requests coming from the users. This minor action can have a substantial impact on the
performance of the virtualized mobile network. In addition to this, if the HSS database resides on a SSD or
NVMe disk; with their very high access and writing speeds, the mobile network performance can avoid
bottlenecks in terms of I/O tailbacks that can impact the performance severely in case if the database is
situated on a standard HDD disk. When the container clusters are auto-scaled, usually the low performance
hard disks can be the culprit for downtime and degraded operation due to very low read/write speeds. For
comparison, a standard 7200rpm HDD disk has a read/write speed of ~80-150 MB/s, which is a theoretical
value. In practice, those speeds are much slower especially when i.e. 4K video is being recorded or
streamed. With speeds of ~0.8-0.9 MB/s for read/write operations of 4K video, the bottlenecks are too
obvious to be ignored. Disregarding the fact that the network speed can go up to 20 MB/s, the disk
performance will not be able to keep up with the data transfer through the network. The database access
can then be severely restricted and the users can experience very bad performance over the mobile network,

132

i.e. when playing VR games online. On the other hand, if the database is placed on a SSD disk, the read/write
speeds that can be achieved in that case can vary from ~150-250 MB/s. This exceeds the overall requirement
for serving users a 4K video streamline for any purpose and the end user experience will be greatly
enhanced.

According to the results from the tests, the operation of the network is also bottlenecked by the USB
connection of the USRP eNB, coupled with the local 100Mbps Ethernet link provided to the EPC (which
is not fiber), as well as firewalls, external gateways and redistributing routes through various routing
protocols. A resolution for this issue would encompass utilization of a better software-defined radio
peripheral such as the USRP X310 (ETTUS RESEARCH, 2018) [USRP X310 High-performance
Software-Defined Radio (SDR)], which is the PCI-Express version of the hardware. Through the PCI-e
lane, the speeds of accessing the hardware would be much higher in comparison to the USB bus. Given this
headroom, the USRP X310 implements two daughterboards with 160 MHz channel bandwidth each,
allowing much higher sampling rates and higher speeds.

One factor that plays a crucial role in the impediment of the experimentation is the environment in which
the network is tested; the experiments are being subjected to interference from the commercial mobile
operators, and without a proper isolated Faraday room, the UL (Uplink) channel varies vigorously, giving
test results always differently (Figure 61). This is due to the usage of band 3 without lawful regulation,
which commercial operators use for existing networks and mobile access. If an isolated environment is
provided, then the test results can be more reliable and straightforward, without any disturbances and
external influences. However, besides these obstacles, the mobile network is established successfully and
operates in a stable manner.

133

9. CONCLUSION

In this thesis the concepts of virtualization of a mobile network are introduced and providing a network
slice is hence attained; vast amount of devices and users can be served more efficiently by scaling the
network functions thus. Many of the emerging devices on the Internet will require specific sets of
parameters and network resources, which can be divided fairly and according to the regulations of the
service provider. Expected fields that are interested in the current developments are: the commercial users,
industry, medical sphere, Internet of Things realm, self-driving cars, law enforcement and military, etc.
With the exponential rise of the interest in connectivity, the represented concept of virtualization can
prominently contend with the inward challenges; explicitly, by utilizing the potential of Calico’s policy-
based networking, establishing container isolation and thus network slices on-demand is absolutely
achievable while the focus on the security is being maintained. Indeed, the establishment of a portable
softwareized mobile infrastructure is achieved and the opportunities it invites are discussed accordingly.

To also conclude the practicability of deployment of a portable virtualized mobile infrastructure, initially
the shortcomings of such exertion are highlighted. Not only that the particular desirability is achieved, but
additional alleviating contrivances are instituted. Without orchestration and automation, the utilization of
such setup can be exceptionally challenging and complex in vast environs; by using Kubernetes or
OpenStack Heat, the difficulty of realizing the coveted action is substantially reduced. This refers to the
repeatability of deployment, which by utilizing the power of containerization and immutable distributions,
enables the user to straightforwardly re-deploy the virtualized groundwork in the same state as when it was
created initially. Despite the inadequacies, the vast benefit offered with utilization of the power of open-
source software and its availability empowers the accomplishment of the initial stage of 5G virtualization;
presenting the opportunity of paving a new way for implementing the succeeding technologies. Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) are the key driving concepts of
establishing a successful base and amalgamation of the virtualized environments. Using proper
orchestration tools, the control and monitoring over the softwareized infrastructure can be unsmilingly
alleviated, countenancing automation mechanisms to take control over the life of the setup. Crucially, the
benefit the virtualization offers has multiple dimensions, as in terms of value for the society, but also
pruning to gains for the whole humanity as a civilization. With reduction of the physical hardware and
virtualization of the constituents, the overall power consumption of the service providers will be
diminished, which can help tackling the problem with the climate changes caused by the humans and
specifically data-center operations. The impact can be reduced further with adequate optimization of the
Software-defined networks and how much resources the future 5G infrastructure will use.

9.1. Future work
Adaptable Network Slicing is a concept that follows after the accomplishment of this work. With

successful isolation of different network modules, it is then feasible to establish various services for
numerous verticals. For example, critical infrastructure can be completely isolated from the IoT platforms,
and then merged again when the requirements are demanded. The adaptability refers to the flexible mode
of assignment of network slices using orchestration. With this, the future of the 5G networking relies on
self-organizing entities and artificial intelligence for prediction of such necessities. In order for this to be
achieved, the OpenAirInterface5G community works intensively on creating an environment that can
support splitting of the workloads into few entities. Namely, the concept of Centralized/Cloud – Radio
Access Network (C-RAN) splits indicates the necessity to split the eNB operation into Baseband Units
(BBU) and multiple RRU (Remote Radio Units). With this mode of operation, a single eNB base station
can then serve multiple verticals and provide various slices with a single hardware entity. In particular, the
central processing of the eNB will be able to accommodate multiple RRUs, which are dedicated for
processing of the distributed antennas. The antennas will then be the only elements accessible by the UEs,

134

while the eNB resides in the cloud close to the EPC. Logically, the only delay constraint that can be
confronted in this situation is the one incurred by the radio propagation, because the eNB communicates
with the EPC with a direct link in a same datacenter or a distributed cloud sited in close proximity to the
datacenter where the EPC is residing.

In the future, the scaling of the 5G infrastructure can become arduous and yield massive dimensions due
to the requirement of the ever-growing demand for resources and devices that will inhabit the ecosphere of
the Internet connectivity. The emergence of IoT (Internet of Things) devices, mMTC (Massive Machine
Type Communication), interworking with sensor networks, satellite systems, Wi-Fi and more, will induce
huge amounts of traffic that converges ultimately fast in time domain. Information exchange in that
situation is transpiring very fast and the requirement for scaling up the infrastructure has to be automated.
The requisites for this solution will impose necessity for smart monitoring systems of the infrastructure,
which can collect data for the particular requirements for scaling. Accordingly, the self-organizing system
powered by artificial intelligence can then vigorously scale the network, or migrate the resources to the
position where they are mostly required in a particular moment. In any case, the impending operations in
that domain will require more than human-only intervention, which primes to further prospects for
development and research of cutting-edge technologies and methods.

135

REFERENCES
3GPP. 2007-2012. Specification 36.302: Services provided by the physical layer, v8.0.0. Valbonne: 3rd

Generation Partnership Project.

3GPP. 2009. Specificaiton TS 36.213: E-UTRA Physical Layer Procedures. [online]. [Accessed 2017].
Available from World Wide Web:
<http://www.etsi.org/deliver/etsi_ts/136200_136299/136213/08.08.00_60/ts_136213v080800p.pdf>

3GPP. 2010. Specification 23.402: Architecture enhancements for non-3GPP accesses (Release 9).
[online].

3GPP. 2010. Specification 29.061: Group Core Network and Terminals; Interworking Between the
Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN);
Release 9; v9.3.0. [online].

3GPP. 2010. Specification 29.303 v9.1.0: 3GPP; Technical Specification Group Core Network and
Terminals; Domain Name System Procedures; Stage 3, Release 9. [online].

3GPP. 2011. Specification 36.912: LTE-Advanced; 3GPP Release 10. [online].

3GPP. 2013. LTE-Advanced. [online]. [Accessed March 2018]. Available from World Wide Web:
<http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced>

3GPP. 2015. Specification 24.301: Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS); Stage 3. Valbonne: 3rd Generation Partnership Project.

3GPP. 2015. Specification 29.272: Evolved Packet System (EPS); Mobility Management Entity (MME)
and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol. [online].

3GPP. 2015. Specification 29.274: 3GPP Evolved Packet System (EPS); Evolved General Packet Radio
Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3. [online].

3GPP. 2015. Specification 33.401: 3GPP System Architecture Evolution (SAE); Security architecture.
[online].

3GPP. 2017. 3GPP. [online]. [Accessed 24 November 2017]. Available from World Wide Web:
<http://www.3gpp.org>

3GPP. 2017. 3rd Generation Partnership Project: Release 16. [online]. [Accessed December 2017].
Available from World Wide Web: <http://www.3gpp.org/release-16>

3GPP. 2017. Specification 23.110: Digital cellular telecommunications system (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS); LTE; Universal Mobile Telecommunications
System (UMTS) access stratum; Services and functions (3GPP TS 23.110 version 14). Valbonne: 3rd
Generation Partnership Project.

3GPP. 2017. Specification 23.501: System architecture for the 5G system; v1.3.0. Valbonne: 3rd
Generation Partnership Project.

3GPP. 2017. Specification 25.892: Feasibility study for Orthogonal Frequency Division Multiplexing
(OFDM) for UTRAN enhancement. Valbonne: 3rd Generation Partnership Project.

3GPP. 2017. Specification 36.201: Evolved Universal Radio Access (E-UTRA); LTE physical layer;
General description. Valbona: 3rd Generation Partnership Project.

136

5GPPP. 2016. View on 5G Architecture. [online]. Available from World Wide Web: <https://5g-
ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-WP-For-public-consultation.pdf>

ADRIO COMMUNICATIONS LTD. 2017. Radio-Electronics (LTE OFDM, OFDMA, SC-FDMA and
Modulation). [online]. [Accessed February 2018]. Available from World Wide Web: <http://www.radio-
electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-ofdm-ofdma-scfdma.php>

ADRIO COMMUNICATIONS LTD. 2017. Radio-Electronics (Quadrature Amplitude Modulation).
[online]. [Accessed February 2018]. Available from World Wide Web: <http://www.radio-
electronics.com/info/rf-technology-design/quadrature-amplitude-modulation-qam/what-is-qam-
tutorial.php>

ADVA OPTICAL NETWORKING. 2018. Network Function Virtualization. [online]. [Accessed
February 2018]. Available from World Wide Web:
<https://www.advaoptical.com/en/products/technology/what-is-nfv>

ALI-YAHIYA, Tara. 2011. Understanding LTE and its Performance. New York: Springer-Verlag.

ANDREW, A. 2015. Revolution Wi-Fi. [online]. [Accessed March 2018]. Available from World Wide
Web: <http://www.revolutionwifi.net/revolutionwifi/2015/3/how-ofdm-subcarriers-work>

ANKIT, D. P. 2013. Multiple Antenna & Diversity: Smart Antennas. International Journal of Scientific
and Research Publications. 3(4).

ARAÚJO, D. C., T. MAKSYMYK, A. L. F. DE ALMEIDA et al. 2016. Massive MIMO: Survey and
Future Research Topics. IET Communications. 10(15), pp.1938-1946.

AVIAT NETWORKS. 2017. Diversity Scheme. [online]. [Accessed February 2018]. Available from
World Wide Web: <http://aviatnetworks.com/tag/diversity-scheme/>

AZIZ, A. M. 2009. A multiple-antenna diversity scheme for reception of fading signals in noise. New
Cairo: IEEE National Radio Science Conference, pp.1-10.

BERNSTEIN, Ben. 2015. Twistlock. [online]. [Accessed 22 May 2017]. Available from World Wide
Web: <https://www.twistlock.com/2015/08/06/immutable-infrastructure-containers-and-security/>

BIEHLE, G. 2016. The MCAT Physics Book. West Hollywood: Nova Press.

BOUDRIGA, N. 2010. Security of Mobile Communicaitons. Boca Raton, FL: CRC Press.

BRYZEK, Michael. 2014. Immutable Infrastructure with Docker and EC2. [online]. [Accessed 22 May
2017]. Available from World Wide Web: <https://www.youtube.com/watch?v=GaHzdqFithc>

C. S. ARENAS, John, Torsten DUDDA, and Laetitia FALCONETTI. 2017. Ultra-low Latency in Next
Generation LTE Radio Access. In: SCC 2017; 11th International ITG Conference on Systems,
Communications and Coding; Proceedings of. Hamburg: VDE.

CHANG, Zheng, Zhenyu ZHOU, Sheng ZHOU et al. 2016. Towards Service-oriented 5G: Virtualizing
the Networks for Everything-as-a-Service. [online]. [Accessed May 2017]. Available from World Wide
Web: <https://arxiv.org/pdf/1604.01739.pdf>

CHRYSSOMALLIS, M. 2000. Smart Antennas. IEEE Antennas and Propagation Magazine. 42(3),
pp.129-136.

137

CISCO. 2008. Multipath and Diversity. [online]. [Accessed February 2017]. Available from World
Wide Web: <https://www.cisco.com/c/en/us/support/docs/wireless-mobility/wireless-lan-wlan/27147-
multipath.html>

CISCO. 2017. Configuraiton of Virtual Router Redundancy Protocl (VRRP) on ISA500 Series Integrate
Security Applications. [online]. [Accessed March 2018]. Available from World Wide Web:
<https://supportforums.cisco.com/t5/small-business-support-documents/configuration-of-virtual-router-
redundancy-protocol-vrrp-on/ta-p/3171571>

COCHRAN, W.T., J.W. COOLEY, D.L. FAVIN et al. 1967. What is Fast Fourier Transform. In:
Proceedings of the IEEE. IEEE.

COLDEWEY, Devin. 2018. Tech Crunch. [online]. [Accessed March 2018]. Available from World
Wide Web: <https://techcrunch.com/2018/03/15/intel-announces-hardware-fixes-for-spectre-and-
meltdown-on-upcoming-chips/>

COREOS. 2018. CoreOS - Etcd. [online]. [Accessed February 2018]. Available from World Wide Web:
<https://coreos.com/etcd/docs/latest/getting-started-with-etcd.html>

COX, C. 2014. An Introduction to LTE - LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile
Communications. United Kingdom: John Wiley & Sons Ltd.

DIGHE, P. A., R. K. MALLIK, and S. S. JAMUAR. 2003. Analysis of Transmit-Receive Diversity in
Rayleigh Fading. IEEE Transactions on Communications. 51(4), pp.694-703.

DIGITALOCEAN. 2018. Deploying and Scaling Microservices in Kubernetes. [online]. [Accessed
March 2018]. Available from World Wide Web:
<https://www.digitalocean.com/community/tutorials/webinar-series-deploying-and-scaling-
microservices-in-kubernetes>

DOBKIN, D. M. 2011. RF Engineering for Wireless Networks: Hardware, Antennas and Propagation.
San Diego, California: Elsevier.

DOCKER. 2018. Docker Hub: Repository - Bruno Dzogovic. [online]. [Accessed March 2018].
Available from World Wide Web: <https://hub.docker.com/u/brunodzogovic/>

DOCKER, INC. 2017. Docker. [online]. [Accessed 20 October 2017]. Available from World Wide
Web: <http://www.docker.com/>

DOCKER, INC. 2018. Docker Cloud. [online]. [Accessed March 2018]. Available from World Wide
Web: <https://docs.docker.com/docker-cloud/>

DOCKER, INC. 2018. Docker Hub. [online]. [Accessed March 2018]. Available from World Wide
Web: <https://docs.docker.com/docker-hub/>

DOCKER, INC. 2018. Docker Storage. [online]. [Accessed March 2018]. Available from World Wide
Web: <https://docs.docker.com/storage/>

DOCKER, INC. 2018. Overview of Docker Compose. [online]. [Accessed March 2018]. Available from
World Wide Web: <https://docs.docker.com/compose/overview/>

ELKHODR, M., Q. F. HASSAN, and S. SHAHRESTANI. 2017. Networks of the Future: Architectures,
Technologies, and Implementations. USA: Chapman & Hall/CRC Press.

138

ELSALLAL, M. W., I. HOOD AND MCMICAHEL, and T. BUSBEE. 2016. 3D Printed Material
Characterization for Complex Phased Arrays and Metamaterials. Microwave Journal. 59(10).

ETSI. 2017. The European Regulatory Environment for Radio Equipment and Spectrum, a brochure.
[online].

ETTUS. 2018. Ettus Research. [online]. [Accessed March 2018]. Available from World Wide Web:
<https://www.ettus.com/>

ETTUS. 2018. USRP Hardware Driver and USRP Manual. [online]. [Accessed March 2018]. Available
from World Wide Web: <https://files.ettus.com/manual/page_coding.html>

ETTUS RESEARCH. 2018. USRP X310 High-performance Software-Defined Radio (SDR). [online].
[Accessed March 2018]. Available from World Wide Web: <https://www.ettus.com/product/details/X310-
KIT>

EURECOM. 2017. EURECOM. [online]. [Accessed October 2017]. Available from World Wide Web:
<www.eurecom.fr/en>

EURECOM. 2017. Gitlab. [online]. [Accessed February 2018]. Available from World Wide Web:
<https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/IttiAnalyzer>

EURECOM. 2018. Eurecom: MIMO Channel Sounder (EMOS). [online]. [Accessed March 2018].
Available from World Wide Web: <http://openairinterface.eurecom.fr/mimo-channel-sounder-emos>

FAJARDO, V., J. ARKKO, J. LOUGHNEY, and G. ZORN. 2012. RFC6733 - Diameter Base Protocol.
Internet Engineering Task Force.

FARRIS, I., T. TALEB, H. FLINCK, and A. IERA. 2017. Providing ultra‐short latency to user‐centric
5G applications at the mobile network edge. Transactions on Emerging Telecommunications Technologies
(ETT). e3169(Special Issue Article), pp.1-13.

FISCHER, P., S. YI, S. CHUN, and Y. LEE. 2011. LTE User Plane Protocols. In: S. SESIA, I. TOUFIK,
and M. BAKER, (eds). LTE - The UMTS Long-Term Evolution: From Theory to Practice, Chichester, UK:
John WIley & Sons, Ltd., pp.87-120.

FORENZA, A., A. PANDHARIPANDE, H. KIM, and R. W. HEATH. 2005. Adaptive MIMO
transmission scheme: exploiting the spatial selectivity of wireless channels. 2005 IEEE 61st Vehicular
Technology Conference, pp.3188-3192.

FOSBERG, D., G. HORN, W-D. MOELLER, and V. NIEMI. 2013. LTE Security. Chichester, UK: John
WIley & Sons, Ltd.

GAMAGE, H., N. RAJATHEVA, and M. LATVA-AHO. 2016. High PAPR Sequence Scrambling for
Reducing OFDM Peak-to-Average Power Ratio. In: European Wireless 2016; 22th European Wireless
Conference; Proceedings of. Oulu, Finland: VDE.

GARCIA, M. and C. OBERLI. 2009. Intercarrier Interference in OFDM: A General Model for
Transmissions in Mobile Environments with Imperfect Synchronization. EURASIP Journal on Wireless
Communications and Networking.

GHOSH, A., J. G. ANDREWS, R. MUHAMED, and J. ZHANG. 2011. Fundamentals of LTE. Prentice
Hall Press Upper Saddle River, NJ, USA.

139

GOLBON-HAGHIGHI, M. H. 2016. Beamforming in Wireless Networks. In: H. K. BIZAKI, (ed).
Towards 5G Wireless Networks - A Physical Layer Perspective, London: InTech Open Ltd., pp.163-199.

GOLDBLATT, Robert. 1987. Orthogonality and Spacetime Geometry. New York: Springer-Verlag.

HALE, J. S., L. LI, C. N. RICHARDSON, and G. N. WELLS. 2017. Containers for Portable, Productive,
and Performant Scientific Computing. Computing in Science & Engineering. 19(6), pp.40-50.

HANLEN, L. and M. FU. 2006. Wireless communication systems with-spatial diversity: a volumetric
model. IEEE Transactions on Wireless Communications. 5(1), pp.133-142.

HARTMANN, C. 2017. Radio Resource Management in Cellular F/TDMA Smart Antenna Systems.
Munich, Germany : Herbert Utz Verlag Gmbh.

HASHICORP. 2018. Terraform. [online]. [Accessed February 2018]. Available from World Wide Web:
<https://www.terraform.io/intro/vs/chef-puppet.html>

HASHICORP. 2018. Vault. [online]. [Accessed March 2018]. Available from World Wide Web:
<https://www.vaultproject.io>

HEWLETT-PACKARD. 2018. HP ProCurve Enterprise 2900 Switch Series. [online]. [Accessed March
2018]. Available from World Wide Web:
<https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c01840758>

HINDLE, P. 2018. Microwave Journal. [online]. [Accessed 25 February 2018]. Available from World
Wide Web: <http://www.microwavejournal.com/articles/29572-antenna-technologies-for-the-
future?page=1>

HONG, W., Z. H. JIANG, C. YU et al. 2017. Multibeam Antenna Technologies for 5G Wireless
Communications. IEEE Transactions on Antennas and Propagation. 65(12), pp.6231-6249.

HO, M-J., G. L. STUBER, and M. D. AUSTIN. 1998. Performance of Switcherd-Beam Smart Antennas
for Cellular Radio Systems. IEEE transactions on Vehicular Technology. 47(1), pp.10-19.

HUAWEI. 2018. Huawei P9 Lite Phone. [online]. [Accessed April 2018]. Available from World Wide
Web: <https://consumer.huawei.com/en/phones/p9-lite/>

HUNT, A., A. DEGABRIELE, A. ROTH et al. 2016. Effects of channel environment on timing advance
for mobile device positioning in long-term evolution networks. Pacific Grove, CA: 50th Asilomar
Conference on Signals, Systems and Computers, pp.643-647.

IETF. 2003. Diameter Base Protocol standard. [online].

IETF. 2007. SCTP - Stream Control Transmission Protocol. [online].

IETF. 2011. Standard RFC6071: IP Security (IPSec) and Internet Key Exchange (IKE) document
roadmap. [online].

INFLUXDATA. 2017. InfluxData. [online]. [Accessed 22 May 2017]. Available from World Wide
Web: <https://www.influxdata.com/project/5g-test-network-and-influxdb/>

IPERF. 2018. iPerf3. [online]. [Accessed April 2018]. Available from World Wide Web:
<https://iperf.fr/>

140

KADIR, M. F. A., M. K. SUAIDI, M. Z. A. ABD AZIZ et al. 2008. Polarization Diversity in Wireless
MIMO Systems. Putrajaya: 2008 6th National Conference on Telecommunication Technologies and 2008
2nd Malaysia Conference on Photonics, pp.128-131.

KEITHLEY INSTRUMENTS. 2008. The Multi-Path Problem. [online]. [Accessed February 2017].
Available from World Wide Web: <www.keithley.com>

KUBERNETES. 2017. Kubernetes. [online]. [Accessed 20 October 2017]. Available from World Wide
Web: <https://kubernetes.io>

KUMAR, S. 2017. 3G4G Wireless Resource Center. [online]. [Accessed February 2017]. Available
from World Wide Web: <http://www.3g4g.co.uk/Tutorial/SK/sk_rach_procedure.html>

LARSSON, E. G. and L. VAN DER PERRE. 2017. Massive MIMO for 5G. IEEE 5G Tech Focus. 1(1),
pp.(online: https://5g.ieee.org/tech-focus/march-2017/massive-mimo-for-5g).

LAURIDSEN, Mads, Lucas CHAVARRIA GIMENEZ, Ignacio RODRIGUEZ et al. 2017. From LTE
to 5G for Connected Mobility. IEEE Communications Magazine. 55(3), pp.156 - 162.

LI, Y. and N. R. SOLLENBERGER. 1999. Adaptive Antenna Array Systems for OFDM Systems with
Cochannel Interference. IEEE Transactions on Communications. 47(2), pp.217-229.

LOZANO, A. and N. JINDAL. 2010. Transmit Diversity vs. Spatial Multiplexing in Modern MIMO
Systems. IEEE Transactions of Wireless Communications. 9(1), pp.186-197.

MIETZNER, J., R. SCHOBER, L. LAMPE et al. 2009. Multiple-Antenna Techniques for Wireless for
Wireless Communications - A Comprehensive Literature Survey. IEEE Communications Surveys and
Tutorials. 11(2).

MOLISCH, A. F. 2011. Wireless Communications. United Kingdom: John Wiley & Sons Ltd.

NATIONALINSTRUMENTS. 2018. National Instruments. [online]. [Accessed March 2018].
Available from World Wide Web: <http://www.ni.com/en-no.html>

OAI. 2017. OpenAirInterface. [online]. [Accessed October 2017]. Available from World Wide Web:
<www.openairinterface.org>

ONGARO, D. and J. OUSTERHOUT. 2014. In Search of an Understandable Consesus Algorithm.
Philadelphia, USA: Proceedings of USENIX ATC ’14.

OPENAIRINTERFACE. 2018. OpenAirInterface: 5G Software Alliance for Democartising Wireless
Innovation. [online]. [Accessed March 2018]. Available from World Wide Web:
<http://www.openairinterface.org/>

OPENNETWORKFOUNDATION. 2018. Software-Defined Networking. [online]. [Accessed February
2018]. Available from World Wide Web: <https://www.opennetworking.org/sdn-definition/>

OPENSTACK. 2017. OpenStack. [online]. [Accessed October 2017]. Available from World Wide Web:
<https://www.openstack.org/>

OPENSTACK. 2018. OpenStack Heat. [online]. [Accessed April 2018]. Available from World Wide
Web: <https://wiki.openstack.org/wiki/Heat>

OPENVSWITCH. 2018. Open vSwith. [online]. [Accessed March 2018]. Available from World Wide
Web: <https://www.openvswitch.org/>

141

PALAT, S. and P. GODIN. 2011. Network Architecture. In: S. SESIA, I. TOUFIK, and M. BAKER,
(eds). LTE - The UMTS Long-Term Evolution: From Theory to Practice, Chichester, UK: John Wiley &
Sons, Ltd., pp.25-55.

PARVEZ, I., A. RAHMATI, I. GUVENC et al. 2017. Arxiv.org: A Survery on Low Latency Towards
5G: RAN, Core Network and Cachin Solutions. [online]. [Accessed March 2018]. Available from World
Wide Web: <https://arxiv.org/pdf/1708.02562.pdf>

PFSENSE. 2018. Pfsense Open-Source Security. [online]. [Accessed March 2018]. Available from
World Wide Web: <https://www.pfsense.org/>

POOLE, I. 2017. Radio Electronics. [online]. [Accessed February 2017]. Available from World Wide
Web: <http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/physical-
logical-transport-channels.php>

PUPPET. 2018. Puppet. [online]. [Accessed February 2018]. Available from World Wide Web:
<https://puppet.com/>

RF WIRELESS WORLD. 2012. Physical Control Format Indicator Channel (PCFICH). [online].
[Accessed February 2017]. Available from World Wide Web: <http://www.rfwireless-
world.com/Terminology/LTE-PCFICH-Physical-Control-Format-Indicator-Channel.html>

RF WIRELESS WORLD. 2012. Physical Random Access Channel (PRACH). [online]. [Accessed
February 2017]. Available from World Wide Web: <http://www.rfwireless-world.com/Terminology/LTE-
PRACH-Physical-Random-Access-Channel.html>

RF WIRELESS WORLD. 2012. Physical Uplink Control Channel (PUCCH). [online]. [Accessed
February 2017]. Available from World Wide Web: <http://www.rfwireless-world.com/Terminology/LTE-
PUCCH-Physical-Uplink-Control-Channel.html>

RF WIRELESS WORLD. 2012. Physical Uplink Shared Channel (PUSCH). [online]. [Accessed
February 2017]. Available from World Wide Web: <http://www.rfwireless-world.com/Terminology/LTE-
PUSCH-Physical-Uplink-Shared-Channel.html>

RF WIRELESS WORLD. 2012. Physucal Multicast Channel (PMCH). [online]. [Accessed Februrary
2017]. Available from World Wide Web: <http://www.rfwireless-world.com/Terminology/LTE-PMCH-
Physical-Multicast-Channel.html>

ROHLING, Hermann. 2011. OFDM - Concepts for Future Communication Systems. Berlin: Springer-
Verlag Berlin Heidelberg.

RUSSELL, Travis. 2016. LTE Signaling with DIAMETER. United States: McGraw-Hill Education.

SÄLZER, T., D. GESBERT, C. VAN RENSBURG et al. 2011. Multiple Antenna Techniques. In: S.
SESIA, I. TOUFIK, and M. BAKER, (eds). LTE - The UMTS Lont-Term Evolution: From Theory to
Practice, Chichester, UK: John Wiley & Sons, Ltd., pp.249-277.

SAUTER, Martin. 2014. From GSM to LTE-Advanced - An Introduction to Mobile Networks and Mobile
Broadband. Chichester: John Wiley & Sons, Ltd.

SHAFIK, R. A., S. RAHMAN, R. AHM. ISLAM, and N. S. ASHRAF. 2006. On the Error Vector
Magnitude as a Performance Metric and Comparative Analysis. Peshawar, Pakistan: 2nd International
Conference on Emerging Technologies, IEEE-ICET.

142

SPEEDTEST. 2018. Speed Test. [online]. [Accessed April 2018]. Available from World Wide Web:
<http://www.speedtest.net/>

SRAR, J. A., K. S. CHUNG, and A. MANSOUR. 2010. Adaptive array beamforming using a combined
LMS-LMS algorithm. Big Sky, MT: 2010 IEEE Aerospace Conference.

STELLA, Josh. 2015. O'Riley.com. [online]. [Accessed 22 May 2017]. Available from World Wide
Web: <https://www.oreilly.com/ideas/an-introduction-to-immutable-infrastructure>

STÜBER, G. L. 1996. Principles of Mobile Communications. New York, USA: Springer-Science &
Business Media.

SUYAMA, S., T. OKUYAMA, Y. INOUE, and Y. KISHIYAMA. 2016. 5G Multi-antenna Technology.
NTT DOCOMO Technical Journal. 17(4), pp.29-39.

SWISSCOM. 2018. Swisscom Innovation Lab. [online]. [Accessed April 2018]. Available from World
Wide Web: <https://www.swisscom.ch/en/business/enterprise/themen/digital-business/smart-
enterprise/innovation.html>

TAHA, A-E. M., N. A. ALI, and H. S. HASSANEIN. 2012. LTE, LTE-Advanced and WiMAX.
Chichester: John Wiley & Sons, Ltd.

TAK, B., C. ISCI, S. DURI et al. 2017. Understanding Security Implicaitons of Using Containers in the
Cloud. Santa Clara, CA, USA: USENIX Annual Technical COnference (USENIX ATC '17).

TATARINSKIY, S. N., M. V. KAVUN, and D. N. TREMBACH. 2006. Diversity Reception System.
Sevastopol, Crimea: 16th International Crimean Microwave and Telecommunication Technology, pp.1014-
1014.

TAWBEH, Ali, Haidar SAFA, and Ahmad, R. AND DHAINI. 2017. A Hybrid SDN/NFV Architecture
for Future LTE Networks. Paris: IEEE International Conference on Communications (ICC).

TELECOMPAPER. 2013. Telecompaper: Samsung develops core 5G technology. [online]. [Accessed
March 2018]. Available from World Wide Web: <https://www.telecompaper.com/news/samsung-
develops-core-5g-technology--942840>

TIGERA INC. 2017. Calico. [online]. [Accessed October 2017]. Available from World Wide Web:
<https://projectcalico.org/>

TOKGOZ, K. K., S. MAKI, J. PANG et al. 2018. A 120Gb/s 16QAM CMOS millimeter-wave wireless
transceiver. In: Solid - State Circuits Conference (ISSCC), 2018 IEEE International. San Francisco, USA:
IEEE, pp.168-170.

UDDENFELDT, Jan. 2017. Keynote: Five Trends Enabled by 5G That Will Change Networking
Forever. [online]. [Accessed 22 May 2017]. Available from World Wide Web:
<https://youtu.be/ljQgxQzZPZ0>

VAEZI, Mojtaba and Ying ZHANG. 2017. Cloud Mobile Networks. In: From RAN to EPC, Cham,
Switzerland: Springer International Publishing AG, pp.11-31.

VELDE, Himke van der. 2011. Control Plane Protocols. In: S. SESIA, I. TOUFIK, and M. BAKER,
(eds). LTE - The UMTS Long-Term Evolution: From theory to practice, Chichester, UK: John Wiley &
Sons Ltd., pp.57-86.

143

WEI, H., C-K. C. T. TZUANG, and Y. FAN. 2014. New antenna technology for 5G wireless
communications. IEEE: China Communications. 11(11).

WILYSIS. 2018. Network Cell Info Lite. [online]. [Accessed April 2018]. Available from World Wide
Web: <http://wilysis.com/networkcellinfo>

YANG, Y. Z. a. X. 2016. A Novel Adaptive Beamforming Algorithm for Smart Antenna System. Wuxi:
12th International Conference on Computational Intelligence and Security (CIS), pp.522-525.

YANG, S. L. S., K. M. LUK, H. W. LAI et al. 2008. A dual-polarized antenna with pattern diversity.
IEEE Antennas and Propagation Magazine. 50(6), pp.71-79.

YEO, Y., H. LEE, and Y. YOU. 2018. Distributed Antenna System. US9859982B2.

YONG-JIANG, S., Q. DONG-DONG, R. JIA-REN et al. 2012. Research on adaptive beamforming
algorithm. Hangzhou: International Conference on Image Analysis and Signal Processing, pp.1-3.

144

APPENDIX

Appendix A. YAML configuration file for deploying a Kubernetes pod

apiVersion: v1
kind: Pod
metadata:
 name: db
 labels:
 name: sql
 app: hsscluster

spec:
 containers:
 - image: [the desired container]
 name: database
 replicas: 3
 ports:
 - name: sql
 containerPort: 27017

 volumeMounts:
 - name: sql-storage
 mountPath: /data/db

 volumes:
 - name: sql-storage
 hostPath:
 path: /data/db

Appendix B. Router Cisco 2800 configuration

brunos-gw>en
Password:
brunos-gw#sh run
Building configuration...

Current configuration : 3257 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption

145

!
hostname brunos-gw
!
boot-start-marker
boot-end-marker
!
enable secret 5 $1$4iRB$vYhCHqJ555OHSP3lDvQWG/
!
aaa new-model
!
!
!
aaa session-id common
!
resource policy
!
ip cef
!
!
no ip dhcp use vrf connected
!
ip dhcp pool bruno
 import all
 network 192.168.10.0 255.255.255.0
 default-router 192.168.10.1
 dns-server 158.36.161.20 158.36.161.21
!
ip dhcp pool sidd
 import all
 network 192.168.20.0 255.255.255.0
 default-router 192.168.20.1
 dns-server 158.36.161.20 158.36.161.21
!
!
ip domain name hioa.no
ip name-server 158.36.161.20
ip name-server 158.36.161.21
ip ssh version 2
!
!
!
voice-card 0
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
username bruno privilege 15 secret 5 1q29P$9u4CcYzM5yutCq55bpWZN1
!
!
!

146

!
!
!
!
interface FastEthernet0/0
 ip address 158.36.118.16 255.255.254.0
 ip nat outside
 no ip virtual-reassembly
 duplex auto
 speed auto
 ipv6 address 2001:700:700:6::16/23
 ipv6 enable
 ipv6 nd ra suppress
!
interface FastEthernet0/1
 ip address 192.168.0.1 255.255.255.0
 ip nat inside
 no ip virtual-reassembly
 duplex auto
 speed auto
!
interface FastEthernet0/1.10
 encapsulation dot1Q 10
 ip address 192.168.10.1 255.255.255.0
 ip nat inside
 no ip virtual-reassembly
!
interface FastEthernet0/1.20
 encapsulation dot1Q 20
 ip address 192.168.20.1 255.255.255.0
 ip nat inside
 no ip virtual-reassembly
!
interface Serial0/2/0
 no ip address
 shutdown
 no fair-queue
 clock rate 125000
!
interface Serial0/2/1
 no ip address
 shutdown
 clock rate 125000
!
router ospf 1
 log-adjacency-changes
 redistribute connected subnets
 redistribute static subnets
 network 158.36.0.0 0.0.255.255 area 0
 network 192.168.0.0 0.0.0.255 area 0
 network 192.168.10.0 0.0.0.255 area 0
 network 192.168.20.0 0.0.0.255 area 0
 default-information originate
!
ip route 0.0.0.0 0.0.0.0 FastEthernet0/0
!
!
ip http server
no ip http secure-server
ip nat inside source list 101 interface FastEthernet0/0 overload
ip nat inside source static tcp 192.168.10.4 2020 interface FastEthernet0/0 2020
ip nat inside source static tcp 192.168.10.4 80 interface FastEthernet0/0 80
ip nat inside source static tcp 192.168.10.3 2021 interface FastEthernet0/0 2021

147

ip nat inside source static tcp 192.168.10.3 15900 interface FastEthernet0/0 15900
ip nat inside source static udp 192.168.10.3 15900 interface FastEthernet0/0 15900
ip nat inside source static tcp 192.168.10.4 25900 interface FastEthernet0/0 25900
ip nat inside source static tcp 192.168.20.4 2222 interface FastEthernet0/0 2222
ip nat inside source static udp 192.169.10.4 25900 interface FastEthernet0/0 25900
ip nat inside source static tcp 192.168.10.5 2022 interface FastEthernet0/0 2022
ip nat inside source static tcp 192.168.10.5 35900 interface FastEthernet0/0 35900
ip nat inside source static udp 192.168.10.5 35900 interface FastEthernet0/0 35900
!
access-list 101 permit ip 192.168.0.0 0.0.0.255 any
access-list 101 permit ip 192.168.10.0 0.0.0.255 any
access-list 101 permit ip 192.168.20.0 0.0.0.255 any
!
!
!
!
!
!
control-plane
!
!
!
!
!
!
!
!
!
!
line con 0
line aux 0
line vty 0 4
 transport input ssh
!
scheduler allocate 20000 1000
end

Appendix C. Cisco Switch 2960 configuration

Switch#
Switch#
Switch#sh run
Building configuration...

Current configuration : 2712 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Switch
!
enable password dukenukem89
!
no aaa new-model
system mtu routing 1500
ip subnet-zero

148

!
!
!
!
no file verify auto
spanning-tree mode pvst
spanning-tree extend system-id
!
vlan internal allocation policy ascending
!
interface FastEthernet0/1
 switchport access vlan 10
 switchport trunk allowed vlan 1-99
 switchport mode trunk
!
interface FastEthernet0/2
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/3
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/4
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/5
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/6
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/7
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/8
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/9
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/10
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/11
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/12
 switchport access vlan 10
 switchport mode access
!
interface FastEthernet0/13
 switchport access vlan 20
 switchport mode access
!

149

interface FastEthernet0/14
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/15
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/16
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/17
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/18
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/19
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/20
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/21
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/22
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/23
 switchport access vlan 20
 switchport mode access
!
interface FastEthernet0/24
 switchport access vlan 20
 switchport mode access
!
interface GigabitEthernet0/1
 switchport access vlan 10
 switchport mode access
!
interface GigabitEthernet0/2
 switchport access vlan 20
 switchport mode access
!
interface Vlan1
 ip address 192.168.0.2 255.255.255.0
 no ip route-cache
!
ip default-gateway 192.168.0.1
ip http server
!
control-plane
!
!
line con 0

150

line vty 0 4
 password !Zzgn5J8rtyiG*J$VHh@5@#
 login
line vty 5 15
 password !Zzgn5J8rtyiG*J$VHh@5@#
 login
!
end

Appendix D. Calico configuration for database access policy

cat << EOF | calicoctl apply -f -
- apiVersion: v1
 kind: profile
 metadata:
 name: database
 labels:
 role: database
 spec:
 ingress:
 - action: allow
 protocol: tcp
 source:
 selector: role == 'frontend'
 destination:
 ports:
 - 3306
 - action: allow
 source:
 selector: role == 'database'
 egress:
 - action: allow
 destination:
 selector: role == 'database'
- apiVersion: v1
 kind: profile
 metadata:
 name: frontend
 labels:
 role: frontend
 spec:
 egress:
 - action: allow
 protocol: tcp
 destination:
 selector: role == 'database'
 ports:
 - 3306
EOF

Appendix E. Calico global policy through label selection

cat << EOF | calicoctl apply -f -
- apiVersion: v1
 kind: profile
 metadata:

151

 name: database
 labels:
 role: database
- apiVersion: v1
 kind: profile
 metadata:
 name: frontend
 labels:
 role: frontend
EOF

Appendix F. Calico global policy network isolation with ingress and egress rules

cat << EOF | calicoctl create -f -
- apiVersion: v1
 kind: policy
 metadata:
 name: database
 spec:
 order: 0
 selector: role == 'database'
 ingress:
 - action: allow
 protocol: tcp
 source:
 selector: role == 'frontend'
 destination:
 ports:
 - 3306
 - action: allow
 source:
 selector: role == 'database'
 egress:
 - action: allow
 destination:
 selector: role == 'database'
- apiVersion: v1
 kind: policy
 metadata:
 name: frontend
 spec:
 order: 0
 selector: role == 'frontend'
 egress:
 - action: allow
 protocol: tcp
 destination:
 selector: role == 'database'
 ports:
 - 3306
EOF

Appendix G. i7z CPU state capture

152

Appendix H. Script for building OvS virtual bridges, Docker container network and auto-
configuration of interfaces

#!/bin/bash

This script will install OVS, purge existing configuration (if any), install all
necessary applications, set up bridges, tunnels and link the docker bridge that's
created
automatically to the OVS bridge that is set up afterwards. This will enable
communication
between containers on different hosts using OVS overlay.

First, set up the remote IP of the host you want to create a tunnel to:

REMOTE_IP=192.168.10.5

Install bridgeutils and OVS:
 echo "Installing necessary applications and OpenVSwitch..."
apt-get update && apt-get install bridge-utils libvirt-bin openvswitch-switch -y
 sleep 3
 echo "Clearing existing configuration..."

First, clear all possible existing configuration (virtual interfaces, bridges etc.)
ovs-vsctl del-br br-int
ip link delete ifconfig |grep veth-* |cut -d " " -f1
ip link delete veth0
ip link delete veth1
ip link delete virbr0

Create OpenVSwitch tunnel between two hosts, for containers to communicate over
different physical subnets. The following variable is the docker bridge, which can
be

153

also another bridge you create manually. Therefore, it should be changed adequately
to
correspond to the bridge you like OVS to create a tunnel for.
 echo "Creating Docker network "oainet" on the subnet 172.19.0.0/24..."
 sleep 4
docker network create -d bridge --attachable --subnet 172.19.0.0/24 --gateway
172.19.0.1 oainet
 sleep 3
DOCKER="$(ifconfig |grep br-* |cut -d " " -f1)"
 echo "Initializing new bridge 'br-int'..."
 sleep 3
ovs-vsctl add-br br-int
ip link add veth0 type veth peer name veth1
ovs-vsctl add-port br-int veth1
 echo "Linking the port of the new Docker bridge with the OVS bridge..."
 sleep 4
brctl addif ${DOCKER} veth0
 echo "Setting up the virtual ethernet interfaces..."
ip link set veth1 up
ip link set veth0 up
 sleep 2
Then add the virtual tunnel bridge:
 echo "Adding virtual tunnel bridge gre0 and connecting to remote gre on IP
$REMOTE_IP"
ovs-vsctl add-port br-int gre0 -- \
 set interface gre0 type=gre options:remote_ip=$REMOTE_IP
 sleep 3
 echo "Setting virtual ethernet interfaces MTU 1648..."
 ip link set veth0 mtu 1648 up
 ip link set veth1 mtu 1648 up
 ip link set ${DOCKER} mtu 1648 up
 sleep 2
 echo "Done!"
 echo "Try to ping other containers on the other host through the same 172.19.0.0/24
subnet."

The 192.168.10.5 is the remote IP of the host where the other OVS
virtual network is located. For example, at the 192.168.10.5 host,
you add the same commands, with the difference of the remote ip, that
will be the address of this current host.

Appendix I. HSS configuration file

Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The OpenAirInterface Software Alliance licenses this file to You under
the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#---
For more information about the OpenAirInterface (OAI) Software Alliance:

154

contact@openairinterface.org

HSS :
{
MySQL mandatory options
MYSQL_server = "127.0.0.1";
MYSQL_user = "root";
MYSQL_pass = "linux";
MYSQL_db = "oai_db";

HSS options
OPERATOR_key = "1006020f0a478bf6b699f15c062e42b3"; # OP key for oai_db.sql
OPERATOR_key = "11111111111111111111111111111111";

RANDOM = "true";

Freediameter options
FD_conf = "/usr/local/etc/oai/freeDiameter/hss_fd.conf";
};

Appendix J. MME configuration file

Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The OpenAirInterface Software Alliance licenses this file to You under
the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#---
For more information about the OpenAirInterface (OAI) Software Alliance:
contact@openairinterface.org

MME :
{
 RUN_MODE = "TEST"; #
ALLOWED VALUES: "TEST", "OTHER"
 REALM = "openair4G.eur"; # YOUR
REALM HERE
 # Define the limits of the system in terms of served eNB and served UE.
 # When the limits will be reached, overload procedure will take place.
 MAXENB = 2;
 MAXUE = 16;
 RELATIVE_CAPACITY = 10;

 EMERGENCY_ATTACH_SUPPORTED = "no";
 UNAUTHENTICATED_IMSI_SUPPORTED = "no";

 # EPS network feature support
 EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1 = "no"; # DO
NOT CHANGE

155

 EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES_IN_S1_MODE = "no"; # DO
NOT CHANGE
 EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC = "no"; # DO
NOT CHANGE
 EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST = "no"; # DO
NOT CHANGE

 # Display statistics about whole system (expressed in seconds)
 MME_STATISTIC_TIMER = 10;

 IP_CAPABILITY = "IPV4V6"; #
UNUSED, TODO

 INTERTASK_INTERFACE :
 {
 # max queue size per task
 ITTI_QUEUE_SIZE = 2000000;
 };

 S6A :
 {
 S6A_CONF = "/usr/local/etc/oai/freeDiameter/mme_fd.conf"; #
YOUR MME freeDiameter config file path
 HSS_HOSTNAME = "hss"; # THE
HSS HOSTNAME
 };

 # ------- SCTP definitions
 SCTP :
 {
 # Number of streams to use in input/output
 SCTP_INSTREAMS = 8;
 SCTP_OUTSTREAMS = 8;
 };

 # ------- S1AP definitions
 S1AP :
 {
 # outcome drop timer value (seconds)
 S1AP_OUTCOME_TIMER = 10;
 };

 # ------- MME served GUMMEIs
 # MME code DEFAULT size = 8 bits
 # MME GROUP ID size = 16 bits
 GUMMEI_LIST = (
 {MCC="208" ; MNC="93"; MME_GID="4" ; MME_CODE="1"; } # YOUR
GUMMEI CONFIG HERE
);

 # ------- MME served TAIs
 # TA (mcc.mnc:tracking area code) DEFAULT = 208.34:1
 # max values = 999.999:65535
 # maximum of 16 TAIs, comma separated
!!! Actually use only one PLMN
 TAI_LIST = (
 {MCC="208" ; MNC="93"; TAC = "15"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "14"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "13"; }, # YOUR
TAI CONFIG HERE

156

 {MCC="208" ; MNC="93"; TAC = "12"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "11"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "10"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "9"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "8"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "7"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "6"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "5"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "4"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "3"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "2"; }, # YOUR
TAI CONFIG HERE
 {MCC="208" ; MNC="93"; TAC = "1"; } # YOUR
TAI CONFIG HERE
);

 NAS :
 {
 # 3GPP TS 33.401 section 7.2.4.3 Procedures for NAS algorithm selection
 # decreasing preference goes from left to right
 ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = ["EIA2" , "EIA1" , "EIA0"];
 ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = ["EEA0" , "EEA1" , "EEA2"];

 # EMM TIMERS
 # T3402 start:
 # At attach failure and the attempt counter is equal to 5.
 # At tracking area updating failure and the attempt counter is equal to 5.
 # T3402 stop:
 # ATTACH REQUEST sent, TRACKING AREA REQUEST sent.
 # On expiry:
 # Initiation of the attach procedure, if still required or TAU procedure
 # attached for emergency bearer services.
 T3402 = 1 # in
minutes (default is 12 minutes)

 # T3412 start:
 # In EMM-REGISTERED, when EMM-CONNECTED mode is left.
 # T3412 stop:
 # When entering state EMM-DEREGISTERED or when entering EMM-CONNECTED mode.
 # On expiry:
 # Initiation of the periodic TAU procedure if the UE is not attached for
 # emergency bearer services. Implicit detach from network if the UE is
 # attached for emergency bearer services.
 T3412 = 54 # in
minutes (default is 54 minutes, network dependent)

 # ESM TIMERS
 T3485 = 8 #
UNUSED in seconds (default is 8s)
 T3486 = 8 #
UNUSED in seconds (default is 8s)

157

 T3489 = 4 #
UNUSED in seconds (default is 4s)
 T3495 = 8 #
UNUSED in seconds (default is 8s)
 };

 NETWORK_INTERFACES :
 {
 # MME binded interface for S1-C or S1-MME communication (S1AP), can be
ethernet interface, virtual ethernet interface, we don't advise wireless interfaces
 MME_INTERFACE_NAME_FOR_S1_MME = "eth0"; # YOUR
NETWORK CONFIG HERE
 MME_IPV4_ADDRESS_FOR_S1_MME = "172.19.0.2/24"; # YOUR
NETWORK CONFIG HERE

 # MME binded interface for S11 communication (GTPV2-C)
 MME_INTERFACE_NAME_FOR_S11_MME = "eth0:11"; # YOUR
NETWORK CONFIG HERE
 MME_IPV4_ADDRESS_FOR_S11_MME = "192.171.11.1/24"; # YOUR
NETWORK CONFIG HERE
 MME_PORT_FOR_S11_MME = 2123; # YOUR
NETWORK CONFIG HERE
 };

 LOGGING :
 {
 # OUTPUT choice in { "CONSOLE", "`path to file`", "`IPv4@`:`TCP port num`"}
 # `path to file` must start with '.' or '/'
 # if TCP stream choice, then you can easily dump the traffic on the remote or
local host: nc -l `TCP port num` > received.txt
 OUTPUT = "CONSOLE";

 # THREAD_SAFE choice in { "yes", "no" } means use of thread safe intermediate
buffer then a single thread pick each message log one
 # by one to flush it to the chosen output
 THREAD_SAFE = "no";

 # COLOR choice in { "yes", "no" } means use of ANSI styling codes or no
 COLOR = "yes"; # TODO

 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR", "WARNING",
"NOTICE", "INFO", "DEBUG", "TRACE"}
SCTP_LOG_LEVEL = "TRACE";
 S11_LOG_LEVEL = "TRACE";
 GTPV2C_LOG_LEVEL = "TRACE";
 UDP_LOG_LEVEL = "TRACE";
 S1AP_LOG_LEVEL = "TRACE";
 NAS_LOG_LEVEL = "TRACE";
 MME_APP_LOG_LEVEL = "TRACE";
 S6A_LOG_LEVEL = "TRACE";
 UTIL_LOG_LEVEL = "TRACE";
 MSC_LOG_LEVEL = "ERROR";
 ITTI_LOG_LEVEL = "ERROR";

 # ASN1 VERBOSITY: none, info, annoying
 # for S1AP protocol
 ASN1_VERBOSITY = "none";
 };
};

S-GW :
{

158

 # S-GW binded interface for S11 communication (GTPV2-C), if none selected the ITTI
message interface is used
 SGW_IPV4_ADDRESS_FOR_S11 = "192.171.11.2/24"; # YOUR
NETWORK CONFIG HERE

};

Appendix K. S/PGW configuration file

Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The OpenAirInterface Software Alliance licenses this file to You under
the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#---
For more information about the OpenAirInterface (OAI) Software Alliance:
contact@openairinterface.org

S-GW :
{
 NETWORK_INTERFACES :
 {
 # S-GW binded interface for S11 communication (GTPV2-C), if none selected the
ITTI message interface is used
 SGW_INTERFACE_NAME_FOR_S11 = "eth0:21"; # YOUR
NETWORK CONFIG HERE
 SGW_IPV4_ADDRESS_FOR_S11 = "192.171.11.2/24"; # YOUR
NETWORK CONFIG HERE

 # S-GW binded interface for S1-U communication (GTPV1-U) can be ethernet
interface, virtual ethernet interface, we don't advise wireless interfaces
 SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP = "eth0"; # YOUR
NETWORK CONFIG HERE, USE "lo" if S-GW run on eNB host
 SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP = "172.19.0.2/24"; # YOUR
NETWORK CONFIG HERE
 SGW_IPV4_PORT_FOR_S1U_S12_S4_UP = 2152; #
PREFER NOT CHANGE UNLESS YOU KNOW WHAT YOU ARE DOING

 # S-GW binded interface for S5 or S8 communication, not implemented, so leave
it to none
 SGW_INTERFACE_NAME_FOR_S5_S8_UP = "none"; # DO
NOT CHANGE (NOT IMPLEMENTED YET)
 SGW_IPV4_ADDRESS_FOR_S5_S8_UP = "0.0.0.0/24"; # DO
NOT CHANGE (NOT IMPLEMENTED YET)
 };

 INTERTASK_INTERFACE :
 {

159

 # max queue size per task
 ITTI_QUEUE_SIZE = 2000000;
 };

 LOGGING :
 {
 # OUTPUT choice in { "CONSOLE", "`path to file`", "`IPv4@`:`TCP port num`"}
 # `path to file` must start with '.' or '/'
 # if TCP stream choice, then you can easily dump the traffic on the remote or
local host: nc -l `TCP port num` > received.txt
 OUTPUT = "CONSOLE";

 # THREAD_SAFE choice in { "yes", "no" } means use of thread safe intermediate
buffer then a single thread pick each message log one
 # by one to flush it to the chosen output
 THREAD_SAFE = "no";

 # COLOR choice in { "yes", "no" } means use of ANSI styling codes or no
 COLOR = "yes"; # TODO

 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR", "WARNING",
"NOTICE", "INFO", "DEBUG", "TRACE"}
 UDP_LOG_LEVEL = "TRACE";
 GTPV1U_LOG_LEVEL = "TRACE";
 GTPV2C_LOG_LEVEL = "TRACE";
 SPGW_APP_LOG_LEVEL = "TRACE";
 S11_LOG_LEVEL = "TRACE";
 };
};

P-GW =
{
 NETWORK_INTERFACES :
 {
 # P-GW binded interface for S5 or S8 communication, not implemented, so leave
it to none
 PGW_INTERFACE_NAME_FOR_S5_S8 = "none"; # DO
NOT CHANGE (NOT IMPLEMENTED YET)
 PGW_IPV4_ADDRESS_FOR_S5_S8 = "0.0.0.0/24"; # DO
NOT CHANGE (NOT IMPLEMENTED YET)

 # P-GW binded interface for SGI (egress/ingress internet traffic)
 PGW_INTERFACE_NAME_FOR_SGI = "eth0"; # YOUR
NETWORK CONFIG HERE
 PGW_IPV4_ADDRESS_FOR_SGI = "172.19.0.2/24"; # YOUR
NETWORK CONFIG HERE
 PGW_MASQUERADE_SGI = "yes"; # YOUR
NETWORK CONFIG HERE
 UE_TCP_MSS_CLAMPING = "no"
 };

 # Pool of UE assigned IP addresses
 IP_ADDRESS_POOL :
{
 IPV4_LIST = (
 "192.188.0.0/24" # YOUR
NETWORK CONFIG HERE
);
 };

 # DNS address communicated to UEs
 DEFAULT_DNS_IPV4_ADDRESS = "192.168.12.100"; # YOUR
NETWORK CONFIG HERE

160

 DEFAULT_DNS_SEC_IPV4_ADDRESS = "8.8.8.8"; # YOUR
NETWORK CONFIG HERE

 # Non standard feature, normally should be set to "no", but you may need to set to
yes for UE that do not explicitly request a PDN address through NAS signalling
 FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS = "yes";
 UE_MTU = 1500;
};

Appendix L. eNB configuration file

Active_eNBs = ("eNB_Eurecom_LTEBox");
Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";

eNBs =
(
 {
 ////////// Identification parameters:
 eNB_ID = 0xe00;

 cell_type = "CELL_MACRO_ENB";

 eNB_name = "eNB_Eurecom_LTEBox";

 // Tracking area code, 0x0000 and 0xfffe are reserved values
 tracking_area_code = "1";

 mobile_country_code = "208";

 mobile_network_code = "93";

 ////////// Physical parameters:

 component_carriers = (
 {
 node_function = "eNodeB_3GPP";
 node_timing = "synch_to_ext_device"
 node_synch_ref = 0;
 frame_type = "FDD";
 tdd_config = 3;
 tdd_config_s = 0;
 prefix_type = "NORMAL";
 eutra_band = 3;
 downlink_frequency = 1865000000L;
 uplink_frequency_offset = -95000000;
 Nid_cell = 0;
 N_RB_DL = 25;
 Nid_cell_mbsfn = 0;
 nb_antennas_tx = 2;
 nb_antennas_rx = 2;
 nb_antenna_ports = 2;
 tx_gain = 90;
 rx_gain = 105;
 prach_root = 0;
 prach_config_index = 0;
 prach_high_speed = "DISABLE";
 prach_zero_correlation = 1;
 prach_freq_offset = 2;

161

 pucch_delta_shift = 1;
 pucch_nRB_CQI = 1;
 pucch_nCS_AN = 0;
 pucch_n1_AN = 32;
 pdsch_referenceSignalPower = -24;
 pdsch_p_b = 0;
 pusch_n_SB = 1;
 pusch_enable64QAM = "DISABLE";
 pusch_hoppingMode = "interSubFrame";
 pusch_hoppingOffset = 0;
 pusch_groupHoppingEnabled = "ENABLE";
 pusch_groupAssignment = 0;
 pusch_sequenceHoppingEnabled = "DISABLE";
 pusch_nDMRS1 = 1;
 phich_duration = "NORMAL";
 phich_resource = "ONESIXTH";
 srs_enable = "DISABLE";
 srs_BandwidthConfig = 2;
 srs_SubframeConfig = 0;
 srs_ackNackST = "DISABLE";
 srs_MaxUpPts = "DISABLE";

 pusch_p0_Nominal = -90;
 pusch_alpha = "AL1";
 pucch_p0_Nominal = -96;
 msg3_delta_Preamble = 6;
 pucch_deltaF_Format1 = "deltaF2";
 pucch_deltaF_Format1b = "deltaF3";
 pucch_deltaF_Format2 = "deltaF0";
 pucch_deltaF_Format2a = "deltaF0";
 pucch_deltaF_Format2b = "deltaF0";

 rach_numberOfRA_Preambles = 64;
 rach_preamblesGroupAConfig = "DISABLE";
 /*
 rach_sizeOfRA_PreamblesGroupA = ;
 rach_messageSizeGroupA = ;
 rach_messagePowerOffsetGroupB = ;
 */
 rach_powerRampingStep = 4;
 rach_preambleInitialReceivedTargetPower = -104;
 rach_preambleTransMax = 10;
 rach_raResponseWindowSize = 10;
 rach_macContentionResolutionTimer = 48;
 rach_maxHARQ_Msg3Tx = 4;

 pcch_default_PagingCycle = 128;
 pcch_nB = "oneT";
 bcch_modificationPeriodCoeff = 2;
 ue_TimersAndConstants_t300 = 1000;
 ue_TimersAndConstants_t301 = 1000;
 ue_TimersAndConstants_t310 = 1000;
 ue_TimersAndConstants_t311 = 10000;
 ue_TimersAndConstants_n310 = 20;
 ue_TimersAndConstants_n311 = 1;
 ue_TransmissionMode = 1;
 }
);

 srb1_parameters :
 {
 # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350, ... 500]

162

 timer_poll_retransmit = 80;

 # timer_reordering = (ms) [0,5, ... 100, 110, 120, ... ,200]
 timer_reordering = 35;

 # timer_reordering = (ms) [0,5, ... 250, 300, 350, ... ,500]
 timer_status_prohibit = 0;

 # poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity(>10000)]
 poll_pdu = 4;

 # poll_byte = (kB)
[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinity(>10000)]
 poll_byte = 99999;

 # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32]
 max_retx_threshold = 4;
 }

 # ------- SCTP definitions
 SCTP :
 {
 # Number of streams to use in input/output
 SCTP_INSTREAMS = 2;
 SCTP_OUTSTREAMS = 2;
 };

 ////////// MME parameters:
 mme_ip_address = ({ ipv4 = "172.19.0.2";
 ipv6 = "192:168:30::17";
 active = "yes";
 preference = "ipv4";
 }
);

 NETWORK_INTERFACES :
 {
 ENB_INTERFACE_NAME_FOR_S1_MME = "eth1";
 ENB_IPV4_ADDRESS_FOR_S1_MME = "172.19.0.3/24";

 ENB_INTERFACE_NAME_FOR_S1U = "eth1";
 ENB_IPV4_ADDRESS_FOR_S1U = "172.19.0.3/24";
 ENB_PORT_FOR_S1U = 2152; # Spec 2152
 };

 log_config :
 {
 global_log_level ="info";
 global_log_verbosity ="medium";
 hw_log_level ="info";
 hw_log_verbosity ="medium";
 phy_log_level ="info";
 phy_log_verbosity ="medium";
 mac_log_level ="info";
 mac_log_verbosity ="high";
 rlc_log_level ="info";
 rlc_log_verbosity ="medium";
 pdcp_log_level ="info";
 pdcp_log_verbosity ="medium";
 rrc_log_level ="info";
 rrc_log_verbosity ="medium";
 };

163

 }

Appendix M. PDN table in the HSS database

Appendix N. Users table in the HSS database

164

Appendix O. eNB configuration file

Active_eNBs = ("eNB_Eurecom_LTEBox");
Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";

eNBs =
(
 {
 ////////// Identification parameters:
 eNB_ID = 0xe00;

 cell_type = "CELL_MACRO_ENB";

 eNB_name = "eNB_Eurecom_LTEBox";

 // Tracking area code, 0x0000 and 0xfffe are reserved values
 tracking_area_code = "1";

 mobile_country_code = "208";

 mobile_network_code = "93";

 ////////// Physical parameters:

165

 component_carriers = (
 {
 node_function = "eNodeB_3GPP";
 node_timing = "synch_to_ext_device"
 node_synch_ref = 0;
 frame_type = "FDD";
 tdd_config = 3;
 tdd_config_s = 0;
 prefix_type = "NORMAL";
 eutra_band = 3;
 downlink_frequency = 1865000000L;
 uplink_frequency_offset = -95000000;
 Nid_cell = 0;
 N_RB_DL = 25;
 Nid_cell_mbsfn = 0;
 nb_antennas_tx = 2;
 nb_antennas_rx = 2;
 nb_antenna_ports = 2;
 tx_gain = 90;
 rx_gain = 105;
 prach_root = 0;
 prach_config_index = 0;
 prach_high_speed = "DISABLE";
 prach_zero_correlation = 1;
 prach_freq_offset = 2;
 pucch_delta_shift = 1;
 pucch_nRB_CQI = 1;
 pucch_nCS_AN = 0;
 pucch_n1_AN = 32;
 pdsch_referenceSignalPower = -24;
 pdsch_p_b = 0;
 pusch_n_SB = 1;
 pusch_enable64QAM = "DISABLE";
 pusch_hoppingMode = "interSubFrame";
 pusch_hoppingOffset = 0;
 pusch_groupHoppingEnabled = "ENABLE";
 pusch_groupAssignment = 0;
 pusch_sequenceHoppingEnabled = "DISABLE";
 pusch_nDMRS1 = 1;
 phich_duration = "NORMAL";
 phich_resource = "ONESIXTH";
 srs_enable = "DISABLE";
 srs_BandwidthConfig = 2;
 srs_SubframeConfig = 0;
 srs_ackNackST = "DISABLE";
 srs_MaxUpPts = "DISABLE";

 pusch_p0_Nominal = -90;
 pusch_alpha = "AL1";
 pucch_p0_Nominal = -96;
 msg3_delta_Preamble = 6;
 pucch_deltaF_Format1 = "deltaF2";
 pucch_deltaF_Format1b = "deltaF3";
 pucch_deltaF_Format2 = "deltaF0";
 pucch_deltaF_Format2a = "deltaF0";
 pucch_deltaF_Format2b = "deltaF0";

 rach_numberOfRA_Preambles = 64;
 rach_preamblesGroupAConfig = "DISABLE";
 /*
 rach_sizeOfRA_PreamblesGroupA = ;
 rach_messageSizeGroupA = ;

166

 rach_messagePowerOffsetGroupB = ;
 */
 rach_powerRampingStep = 4;
 rach_preambleInitialReceivedTargetPower = -104;
 rach_preambleTransMax = 10;
 rach_raResponseWindowSize = 10;
 rach_macContentionResolutionTimer = 48;
 rach_maxHARQ_Msg3Tx = 4;

 pcch_default_PagingCycle = 128;
 pcch_nB = "oneT";
 bcch_modificationPeriodCoeff = 2;
 ue_TimersAndConstants_t300 = 1000;
 ue_TimersAndConstants_t301 = 1000;
 ue_TimersAndConstants_t310 = 1000;
 ue_TimersAndConstants_t311 = 10000;
 ue_TimersAndConstants_n310 = 20;
 ue_TimersAndConstants_n311 = 1;
 ue_TransmissionMode = 1;
 }
);

 srb1_parameters :
 {
 # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350, ... 500]
 timer_poll_retransmit = 80;

 # timer_reordering = (ms) [0,5, ... 100, 110, 120, ... ,200]
 timer_reordering = 35;

 # timer_reordering = (ms) [0,5, ... 250, 300, 350, ... ,500]
 timer_status_prohibit = 0;

 # poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity(>10000)]
 poll_pdu = 4;

 # poll_byte = (kB)
[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinity(>10000)]
 poll_byte = 99999;

 # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32]
 max_retx_threshold = 4;
 }

 # ------- SCTP definitions
 SCTP :
 {
 # Number of streams to use in input/output
 SCTP_INSTREAMS = 2;
 SCTP_OUTSTREAMS = 2;
 };

 ////////// MME parameters:
 mme_ip_address = ({ ipv4 = "172.19.0.2";
 ipv6 = "192:168:30::17";
 active = "yes";
 preference = "ipv4";
 }
);

 NETWORK_INTERFACES :
 {

167

 ENB_INTERFACE_NAME_FOR_S1_MME = "eth1";
 ENB_IPV4_ADDRESS_FOR_S1_MME = "172.19.0.3/24";

 ENB_INTERFACE_NAME_FOR_S1U = "eth1";
 ENB_IPV4_ADDRESS_FOR_S1U = "172.19.0.3/24";
 ENB_PORT_FOR_S1U = 2152; # Spec 2152
 };

 log_config :
 {
 global_log_level ="info";
 global_log_verbosity ="medium";
 hw_log_level ="info";
 hw_log_verbosity ="medium";
 phy_log_level ="info";
 phy_log_verbosity ="medium";
 mac_log_level ="info";
 mac_log_verbosity ="high";
 rlc_log_level ="info";
 rlc_log_verbosity ="medium";
 pdcp_log_level ="info";
 pdcp_log_verbosity ="medium";
 rrc_log_level ="info";
 rrc_log_verbosity ="medium";
 };

 }
);

Appendix P. USIM cards programming procedure

1. First, some librarires are required for installation:

libusb-dev; libusb++-0.1-4c2, and the libccid package is installed: apt-get install libccid

2. The pcsc-lite package is installed: apt-get install pcscd
3. At this point, since the pcscd service is running, the libpcsclite1 is installed: apt-get install

libpcsclite1
4. libpcsclite-dev is installed: apt-get install libpcsclite-dev
5. Additional tools installed:

 libpcsc-perl: apt-get install libpcsc-perl

 pcsctools: apt-get install pcsc-tools. PCSC-tools provide several appealing applications
for Blutronics Bludrive II

6. CCID installation:

 cd ~/src and wget https://alioth.debian.org/frs/download.php/file/4140/ccid-
1.4.20.tar.bz2 && tar -xjf ccid-1.4.20.tar.bz2 && cd ccid-1.4.20

7. Installation configuration: At this point, there are some options that can be issued to customize the
installation. An important example is the one which forces the CCID driver to use udev events so
that pcscd will not poll the USB bus every second.

./configure

--bindir=

--disable-FEATURE
--dvidir=
--enable-maintainer-mode

168

--exec-prefix=
--libexecdir=
--program-prefix=
--sysconfdir=
--build=
--disable-libtool-lock
--enable-bundle=
--enable-serialconfdir=
--help
--localedir=
--program-suffix=
--version
--cache-file=
--disable-libusb
--enable-ccidtwindir=
--enable-shared
--help=
--localstatedir=
--program-transform-name=
--with-gnu-ld
--config-cache
--disable-multi-thread
--enable-composite-as-multislot
--enable-silent-rules
--host=
--mandir=
--psdir=
--without-PACKAGE--datadir=
--disable-option-checking
--enable-dependency-tracking
--enable-static
--htmldir=
--no-create
--quiet
--with-PACKAGE--datarootdir=
--disable-pcsclite
--enable-embedded
--enable-syslog
--includedir=
--oldincludedir=
--sbindir=
--with-pic
--disable-class
--disable-silent-rules
--enable-fast-install
--enable-twinserial
--infodir=
--pdfdir=
--sharedstatedir=
--with-sysroot=
--disable-dependency-tracking
--docdir=
--enable-FEATURE
--enable-usbdropdir=
--libdir=
--prefix=
--srcdir=

8. Installation of the CCID driver:
make –j4
make install

9. Udev rules are copied to /etc/udev/rules.d
10. Since a rule for altering usb auto-suspend kernel configuration exists in the configuration and Pcsc

is supposed to use usb auto-suspend for CCID devices only, which is enabled: sudo cp
src/92_pcscd_ccid.rules /etc/udev/rules.d/

11. Middleware installation: sudo apt-get install libpcsclite1 pcscd pcsc-tools

169

12. Detect the card reader/writer run the pcscd daemon with debug option, in foreground: sudo pcscd
-d -a –f

13. On another terminal the following command is run: pcsc_scan
That gives the following output: PC/SC device scannerV 1.4.22 (c) 2001-2011, Ludovic
Rousseau <ludovic.rousseau@free.fr>Compiled with PC/SC lite version: 1.8.10 Using
reader plug 'n play mechanism. Scanning present readers...0: BLUTRONICS BLUDRIVE
II CCID (62657374) 00 00Tue Sep 1 21:27:43 2015Reader 0: BLUTRONICS BLUDRIVE II
CCID (62657374) 00 00Card state: Card inserted, ATR: 3B 7D 94 00 00 55 55 53 0A
74 86 93 0B 24 7C 4D 54 68ATR: 3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C 4D 54
68+ TS = 3B --> Direct Convention+ T0 = 7D, Y(1): 0111, K: 13 (historical
bytes)TA(1) = 94 --> Fi=512, Di=8, 64 cycles/ETU62500 bits/s at 4 MHz, fMax for
Fi = 5 MHz => 78125 bits/sTB(1) = 00 --> VPP is not electrically connectedTC(1) =
00 --> Extra guard time: 0+ Historical bytes: 55 55 53 0A 74 86 93 0B 24 7C 4D 54
68Category indicator byte: 55 (proprietary format)Possibly identified card (using
/usr/share/pcsc/smartcard_list.txt):3B 7D 94 00 00 55 55 53 0A 74 86 93 0B 24 7C
4D 54 68SIM from sysmocom sysmoSIM-GR2

Appendix Q. Radio measurements of the attached UE to the eNB

170

Appendix R. HSS, S/PGW and MME real-time operation insight

171

Appendix S. Starting iperf3 server on the gtp0 interface of the S/PGW

172

Appendix T. iPerf3 UE side results

173

Appendix U. iPerf3 EPC side results

Appendix V. OpenStack Heat template for deploying core network EPC

heat_template_version: 2015-04-30

description: >
 Heat Orchestration Template (HOT) to deploy OpenAir Core Network vEPC.
 Networks, security groups, volumes, ports and instances get created by
heat,
 latest openair core network code is compiled on the build instance and
 deployed to the SPGW/MME/HSS instances. Once the stack is created, it
 provides the SSH commandline to access the vEPC.

STACK INPUTS
parameters:
 key:
 type: string
 label: SSH Keypair
 description: Name of the SSH keypair for logging in into instances
 constraints:
 - custom_constraint: nova.keypair
 default: "OAI-Admin"
 image:
 type: string
 label: Ubuntu Image
 description: Name of the Ubuntu image (needs os-*-config installed)
 constraints:
 - custom_constraint: glance.image
 default: "ubuntu-trusty-os-config"
 extnet:

174

 type: string
 label: External Network
 description: Name of the external network containing 2 free floating IPs
 default: "Lab3-Internet"
 base_url:
 type: string
 label: Base URL
 description: Base URL to fetch kernel config and database dump from
 default: "https://inostack.vptt.ch"
 run_flavor:
 type: string
 label: Run Flavor
 description: Flavor to use for normal instances
 constraints:
 - custom_constraint: nova.flavor
 default: "m1.tiny"
 build_flavor:
 type: string
 label: Build Flavor
 description: Flavor to use for the building instance
 constraints:
 - custom_constraint: nova.flavor
 default: "m1.medium"
 run_vol_size:
 type: number
 label: Run Volume Size
 description: Volume size in GB to use for normal instances
 default: 5
 constraints:
 - range: { min: 5, max: 10 }
 build_vol_size:
 type: number
 label: Build Volume Size
 description: Volume size in GB to use for the building instance
 default: 20
 constraints:
 - range: { min: 20, max: 50 }
 hss_name:
 type: string
 label: HSS Hostname
 description: Hostname of the HSS instance
 constraints:
 - length: { min: 3, max: 10 }
 description: Hostnameg name must be between 3 and 10 characters
 - allowed_pattern: "[a-z0-9]*"
 description: Hostname contains only lowercase characters and numbers
 default: hss
 mme_name:
 type: string
 label: MME Hostname
 description: Hostname of the MME instance
 constraints:
 - length: { min: 3, max: 10 }
 description: Hostname name must be between 3 and 10 characters
 - allowed_pattern: "[a-z0-9]*"
 description: Hostname contains only lowercase characters and numbers

175

 default: mme
 spgw_name:
 type: string
 label: SPGW Hostname
 description: Hostname of the SPGW instance
 constraints:
 - length: { min: 3, max: 10 }
 description: Hostname name must be between 3 and 10 characters
 - allowed_pattern: "[a-z0-9]*"
 description: Hostname contains only lowercase characters and numbers
 default: spgw
 build_name:
 type: string
 label: Build Hostname
 description: Hostname of the build instance
 constraints:
 - length: { min: 3, max: 10 }
 description: Hostname name must be between 3 and 10 characters
 - allowed_pattern: "[a-z0-9]*"
 description: Hostname contains only lowercase characters and numbers
 default: build
 dns1:
 type: string
 label: Internal Network DNS 1
 description: Upstream DNS server 1
 default: "8.8.8.8"
 dns2:
 type: string
 label: Internal Network DNS 2
 description: Upstream DNS server 2
 default: "8.8.4.4"
 int_cidr:
 type: string
 label: Internal Network CIDR
 description: Internal network IPv4 Adressing in CIDR notation
 default: 172.16.0.0/24
 enb_cidr:
 type: string
 label: eNB (VPN) CIDR
 description: eNB (VPN) network IPv4 Adressing in CIDR notation
 default: 172.31.0.0/24
 realm:
 type: string
 label: Realm
 description: Realm (depends on database and hostnames used)
 default: inostack
 enb_count:
 type: number
 label: eNB Count
 description: Number of eNBs to support (power of 2)
 default: 4
 constraints:
 - allowed_values:
 - 2
 - 4
 - 8
 - 16

176

 enb_start:
 type: number
 label: eNB Start Address
 description: Start address of eNBs in eNB VPN network
 default: 10
 constraints:
 - range: { min: 10, max: 230 }
 enb_hostname_prefix:
 type: string
 label: Hostname Prefix for eNBs
 description: Hostname prefix for eNBs
 constraints:
 - length: { min: 3, max: 9 }
 description: Hostname prefix must be between 3 and 9 characters
 - allowed_pattern: "[a-z]*"
 description: Hostname prefix contains only lowercase characters
 default: enb
 spgw_kernel_version:
 type: string
 label: SPWG Kernel Version
 description: Kernel version to use for SPGW instance (>=4.7)
 default: 4.7.7
 ue_dns:
 type: string
 label: UE DNS
 description: DNS pushed to UEs
 default: 8.8.8.8
 ue_cidr:
 type: string
 label: UE CIDR
 description: UE address pool in CIDR notation
 default: 10.10.10.0/24
 ue_mtu:
 type: number
 label: UE MTU
 description: MTU pushed to UEs
 default: 1500
 constraints:
 - range: { min: 1000, max: 8000 }
 db_file:
 type: string
 label: HSS DB File
 description: SQL dump file for HSS database to download from base_url
 default: oai_db_swisscom_ino.sql
 db_pass:
 type: string
 label: HSS DB Password
 description: Password for the HSS database (user hssadmin)
 hidden: true
 default: change_me
 operator_key:
 type: string
 label: Operator Key
 description: Operator Key to use (depends on DB)
 default: "11111111111111111111111111111111"
 constraints:
 - length: { min: 32, max: 32 }

177

 description: Operator key is 32 digits
 - allowed_pattern: "[0-9]*"
 description: Operator key is 32 digits
 mcc:
 type: number
 label: MCC
 description: MCC to use (depends on DB)
 default: 228
 mnc:
 type: number
 label: MNC
 description: MNC to use (depends on DB)
 default: 88
 mme_gid:
 type: number
 label: MME_GID
 description: MME_GID to use (depends on DB)
 default: 32768
 mme_code:
 type: number
 label: MME_CODE
 description: MME_CODE to use (depends on DB)
 default: 1
 tac:
 type: number
 label: TAC
 description: TAC to use (depends on DB)
 default: 1
 ca_country:
 type: string
 label: CA Country
 description: Country for Certificates
 default: CH
 ca_state:
 type: string
 label: CA State
 description: State for Certificates
 default: Bern
 ca_city:
 type: string
 label: CA City
 description: City for Certificates
 default: Bern
 ca_company:
 type: string
 label: CA Company
 description: Company for Certificates
 default: Swisscom
 ca_unit:
 type: string
 label: CA Unit
 description: Organisational unit for Certificates
 default: INO
 ca_email:
 type: string
 label: CA Email
 description: Email Address for Certificates

178

 default: Daniel.Balsiger@swisscom.com
 ssh_pub:
 type: string
 label: SSH Public Key
 description: SSH public key for instance interconnect
 default: "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC6WwxDHQKgvVTqzC2S4+apYFmVTTI3N1+kTnOJZ5+K/Po9D
3Uq89LY2hdRUNcBvOIDW1lGJHLoodyR/W6UaLvT1eTG1le72yCpcliq/nuDc6eUex2Mqz3CMBqWhg
3L+21yme0vlT3w0S+uhkiq8s95OMCYMc60bSTHN/RqLB1o8dsLAqix6W5lDxcwVpl8V7viBTvZBUS
qTHKA0AXJ4uQDdBqHZY9iUcyyKVzcEaOnd4RdAJPAD+au3dKlpfEdKQjxHTV41QM+VkuImQUMe5MQ
7gU4DbHj7YSA3fJhki3jwFHMzFNbYulUgwBdNCFVTcGdQEUib6dXW8LOH59FmUut"
 ssh_priv:
 type: string
 label: SSH Private Key
 description: SSH private key for instance interconnect
 hidden: true
 default: >
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAulsMQx0CoL1U6swtkuPmqWBZlU0yNzdfpE5ziWefivz6PQ91
 KvPS2NoXUVDXAbziA1tZRiRy6KHckf1ulGi709XkxtZXu9sgqXJYqv57g3OnlHsd
 jKs9wjAaloYNy/ttcpntL5U98NEvroZIqvLPeTjAmDHOtG0kxzf0aiwdaPHbCwKo
 seluZQ8XMFaZfFe74gU72QVEqkxygNAFyeLkA3Qah2WPYlHMsilc3BGjp3eEXQCT
 wA/mrt3SpaXxHSkI8R01eNUDPlZLiJkFDHuTEO4FOA2x4+2EgN3yYZIt48BRzMxT
 W2LpVIMAXTQhVU3BnUBFIm+nV1vCzh+fRZlLrQIDAQABAoIBACnu8OxtK7k1wVTw
 StUB2VaFqsLQ0xrfp/LWAGOL4LeqwzhYMRpQMULAmHygvzDR6t2sgYMqEn1MZtCn
 AWn9wz4gpFElzComXcwjQdaAWxSyQqRDq9uKcOQwZNs4IQSkd/VQs7GAWKbGu37/
 Enz9FDiHz7avhn7NDHiTm7kEYj3JxBCw9QnpuljFu7BZlg1S4eK/rGz7in1hLo62
 gDfGcDgUgmlJ1aG1rYP2bETsXe0necHDOvQe6rlmdTsX89y+q4QxqYGEGdjCoFZZ
 F0mEPbS9//9GS+rER5tuSi3bD3k73zg1+e8lHAjlAR3hNmT3JKOEHB0kmTAJyrpL
 +Gl9WIECgYEA4ekwnl3wT2p2eqmhqC+MoMcUpOtAaoA2ShG3CHcp/U6VcWIMBe7o
 KMaJcfLp3zerAeyzRfR7t1E83alIQb9cRRd1pbhLjM60d+n6HwT0//4SBiShfQ/m
 K7Ch1zOaB4h8O8qWDT9Uz6b0AMJA9S6BZ2We3iOT5ysS6MPOwgQAbCECgYEA0y0n
 4zgq1YFE+56xXAt8/BKqv9nbtNfKganXTXMah+oz546CVUJDPL3z99Zp1w3rUvlJ
 JH2wbnqvcPCuCvFdCPXpowkN5EWUTUrjeYohDXDZPaJ1pYZXeMKFyVgzZFeP+UKK
 82gxY5O+kC1I0b2J2u0gxm74huSgBIRx54ZqDg0CgYEAhQsT+vBPyjVkuTCVZ7s5
 Eqar3cQ+F3qSfmSYan/jVq6lDDU153ifeQQThewNF8xtBaEkoxoskfVh5xj+2Nmd
 uYLrYkF7HN3PIp/FEeeVcf1rF/sSr9hhMXHAnkBhgfY7U+snG34ksHYeVSQRpVNS
 GlaajTBetlGDvVkztscsiIECgYBTd0KPtVCAyLIqPaPePJAu1XX1lDcZeD0LGMUH
 UJpI5BGV0SbEagdHR9DYwT9eB5teVTdKm/8S+5zCJ+6yVomuE/w/O0HpWnLuRc44
 6JZ9yH+ks8SKItoJ2eClHx5Y5575Jwrif+kdcXTdaXihpaeKBzVwGMZUEqMIhgy7
 NM5QNQKBgAT80nwpu/KJasbPd/5vlnWKkk9wW1pJJJyGvyrHvQkHYSJmrGNhci+X
 geZreHUVqcR4VeRP14D71+zIT04r4jcio9deNBRYXdWuAhKVfvEh5iOXfuaBF24e
 m4y0viefFNyys5/BQI0kpCtJirvAtlsQg8ig+2ALnCk5rLNbgui4
 -----END RSA PRIVATE KEY-----

ORDER OF INPUTS
parameter_groups:
- label: "Passwords and Keys"
 parameters:
 - db_pass
 - ssh_pub
 - ssh_priv
 - key
- label: "Cloud Networks, Flavors, Images and Volumes"
 parameters:
 - extnet
 - int_cidr

179

 - dns1
 - dns2
 - image
 - run_flavor
 - run_vol_size
 - build_flavor
 - build_vol_size
- label: "FQDNs, Realm, SPGW kernel, HSS Database and EPC Configuration"
 parameters:
 - base_url
 - spgw_kernel_version
 - realm
 - spgw_name
 - mme_name
 - hss_name
 - build_name
 - db_file
 - operator_key
 - mcc
 - mnc
 - mme_gid
 - mme_code
 - tac
- label: "eNB and UE Settings"
 parameters:
 - ue_cidr
 - ue_dns
 - ue_mtu
 - enb_cidr
 - enb_count
 - enb_start
 - enb_hostname_prefix
- label: "Certificate Settings"
 parameters:
 - ca_country
 - ca_state
 - ca_city
 - ca_company
 - ca_unit
 - ca_email

STACK RESOURCES
resources:
NETWORKS & ROUTERS
 internal_net:
 type: OS::Neutron::Net
 properties:
 name: OAI-InternalNet

 internal_subnet:
 type: OS::Neutron::Subnet
 depends_on: internal_net
 properties:
 name: OAI-InternalSubnet
 ip_version: 4
 network_id: { get_resource: internal_net }
 dns_nameservers:

180

 - { get_param: dns1 }
 - { get_param: dns2 }
 cidr: { get_param: int_cidr }

 router:
 type: OS::Neutron::Router
 properties:
 name: OAI-Router

 router_interface:
 type: OS::Neutron::RouterInterface
 depends_on: [internal_subnet, internal_net, router]
 properties:
 subnet: { get_resource: internal_subnet }
 router: { get_resource: router }

 router_gateway:
 type: OS::Neutron::RouterGateway
 depends_on: router
 properties:
 network: { get_param: extnet }
 router_id: { get_resource: router }

 floating_ip:
 type: OS::Neutron::FloatingIP
 depends_on: [internal_subnet, spgw_port, router_interface]
 properties:
 floating_network: { get_param: extnet }
 port_id: { get_resource: spgw_port }

VOLUMES
 build_vol:
 type: OS::Cinder::Volume
 properties:
 name: { get_param: build_name }
 size: { get_param: build_vol_size }
 image: { get_param: image }

 hss_vol:
 type: OS::Cinder::Volume
 properties:
 name: { get_param: hss_name }
 size: { get_param: run_vol_size }
 image: { get_param: image }

 mme_vol:
 type: OS::Cinder::Volume
 properties:
 name: { get_param: mme_name }
 size: { get_param: run_vol_size }
 image: { get_param: image }

 spgw_vol:
 type: OS::Cinder::Volume
 properties:
 name: { get_param: spgw_name }
 size: { get_param: run_vol_size }

181

 image: { get_param: image }

PORTS
 build_port:
 type: OS::Neutron::Port
 depends_on: [build_secgroup, internal_subnet]
 properties:
 network_id: { get_resource: internal_net }
 fixed_ips:
 - subnet_id: { get_resource: internal_subnet }
 security_groups: [{ get_resource: build_secgroup }]

 spgw_port:
 type: OS::Neutron::Port
 depends_on: [spgw_secgroup, internal_subnet]
 properties:
 network_id: { get_resource: internal_net }
 fixed_ips:
 - subnet_id: { get_resource: internal_subnet }
 security_groups: [{ get_resource: spgw_secgroup }]

 hss_port:
 type: OS::Neutron::Port
 depends_on: [hss_secgroup, internal_subnet]
 properties:
 network_id: { get_resource: internal_net }
 fixed_ips:
 - subnet_id: { get_resource: internal_subnet }
 security_groups: [{ get_resource: hss_secgroup }]

 mme_port:
 type: OS::Neutron::Port
 depends_on: [mme_secgroup, internal_subnet]
 properties:
 network_id: { get_resource: internal_net }
 fixed_ips:
 - subnet_id: { get_resource: internal_subnet }
 security_groups: [{ get_resource: mme_secgroup }]

SECURITY GROUPS
 spgw_secgroup:
 type: OS::Neutron::SecurityGroup
 properties:
 description: Add security group rules for SPGW instance
 name: { get_param: spgw_name }
 rules:
 - remote_ip_prefix: 0.0.0.0/0

 build_secgroup:
 type: OS::Neutron::SecurityGroup
 properties:
 description: Add security group rules for build instance
 name: { get_param: build_name }
 rules:
 - remote_ip_prefix: 0.0.0.0/0
 protocol: tcp
 port_range_min: 22

182

 port_range_max: 22
 - remote_ip_prefix: 0.0.0.0/0
 protocol: icmp

 hss_secgroup:
 type: OS::Neutron::SecurityGroup
 properties:
 description: Add security group rules for HSS instance
 name: { get_param: hss_name }
 rules:
 - remote_ip_prefix: 0.0.0.0/0
 protocol: tcp
 port_range_min: 22
 port_range_max: 22
 - remote_ip_prefix: 0.0.0.0/0
 protocol: icmp
 - remote_ip_prefix: 0.0.0.0/0
 protocol: 132

 mme_secgroup:
 type: OS::Neutron::SecurityGroup
 properties:
 description: Add security group rules for MME instance
 name: { get_param: mme_name }
 rules:
 - remote_ip_prefix: 0.0.0.0/0
 protocol: tcp
 port_range_min: 22
 port_range_max: 22
 - remote_ip_prefix: 0.0.0.0/0
 protocol: icmp
 - remote_ip_prefix: 0.0.0.0/0
 protocol: 132

INSTANCES

 build_vm:
 type: OS::Nova::Server
 depends_on: [build_port, build_vol, router_interface]
 properties:
 name: { get_param: build_name }
 flavor: { get_param: build_flavor }
 key_name: { get_param: key }
 block_device_mapping: [{ device_name: "vda", volume_id : { get_resource
: build_vol }, delete_on_termination : "true" }]
 networks:
 - port: { get_resource: build_port }
 user_data_format: SOFTWARE_CONFIG
 user_data: |
 #!/bin/bash
 echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts

 spgw_vm:
 type: OS::Nova::Server
 depends_on: [spgw_port, spgw_vol, router_interface]
 properties:
 name: { get_param: spgw_name }

183

 flavor: { get_param: run_flavor }
 key_name: { get_param: key }
 block_device_mapping: [{ device_name: "vda", volume_id : { get_resource
: spgw_vol }, delete_on_termination : "true" }]
 networks:
 - port: { get_resource: spgw_port }
 user_data_format: SOFTWARE_CONFIG
 user_data: |
 #!/bin/bash
 echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts

 hss_vm:
 type: OS::Nova::Server
 depends_on: [hss_port, hss_vol, router_interface]
 properties:
 name: { get_param: hss_name }
 flavor: { get_param: run_flavor }
 key_name: { get_param: key }
 block_device_mapping: [{ device_name: "vda", volume_id : { get_resource
: hss_vol }, delete_on_termination : "true" }]
 networks:
 - port: { get_resource: hss_port }
 user_data_format: SOFTWARE_CONFIG
 user_data: |
 #!/bin/bash
 echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts

 mme_vm:
 type: OS::Nova::Server
 depends_on: [mme_port, mme_vol, router_interface]
 properties:
 name: { get_param: mme_name }
 flavor: { get_param: run_flavor }
 key_name: { get_param: key }
 block_device_mapping: [{ device_name: "vda", volume_id : { get_resource
: mme_vol }, delete_on_termination : "true" }]
 networks:
 - port: { get_resource: mme_port }
 user_data_format: SOFTWARE_CONFIG
 user_data: |
 #!/bin/bash
 echo "195.176.209.235 opnfv.vptt.ch opnfv" >> /etc/hosts

SOFTWARE CONFIGURATIONS
 etc_hosts:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm, spgw_vm, build_vm]
 properties:
 group: script
 inputs:
 - name: realm
 default: { get_param: realm }
 - name: hss_name
 default: { get_param: hss_name }
 - name: mme_name
 default: { get_param: mme_name }
 - name: spgw_name

184

 default: { get_param: spgw_name }
 - name: build_name
 default: { get_param: build_name }
 - name: hss_ip
 default: { get_attr: [hss_vm, first_address] }
 - name: mme_ip
 default: { get_attr: [mme_vm, first_address] }
 - name: spgw_ip
 default: { get_attr: [spgw_vm, first_address] }
 - name: build_ip
 default: { get_attr: [build_vm, first_address] }
 - name: enb_cidr
 default: { get_param: enb_cidr }
 - name: enb_count
 default: { get_param: enb_count }
 - name: enb_start
 default: { get_param: enb_start }
 - name: enb_hostname_prefix
 default: { get_param: enb_hostname_prefix }
 config: |
 #!/bin/bash
 if [! -f /etc/hosts.orig] ; then cp /etc/hosts /etc/hosts.orig ; fi
 logger "$0: Creating /etc/hosts..."
 cat > /etc/hosts << __EOF
 # this file is generated by heat with os-*-config
 127.0.0.1 localhost

 $spgw_ip $spgw_name.$realm $spgw_name
 $mme_ip $mme_name.$realm $mme_name
 $hss_ip $hss_name.$realm $hss_name
 $spgw_ip $spgw_name.$realm $spgw_name
 $build_ip $build_name.$realm $build_name

 # this is since we have no DNS for opnfv.vptt.ch
 195.176.209.235 opnfv.vptt.ch opnfv

 __EOF
 i=0
 while [$i -lt $(expr $enb_count)] ; do
 host_part=$(expr $enb_start + $i)
 echo ${enb_cidr%.*}.$host_part $enb_hostname_prefix$i.$realm
$enb_hostname_prefix$i >> /etc/hosts
 i=$(expr $i + 1)
 done
 cat >> /etc/hosts << __EOF

 __EOF

 ssh_keys:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm, spgw_vm, build_vm]
 properties:
 inputs:
 - name: ssh_priv
 default: { get_param: ssh_priv }
 - name: ssh_pub
 default: { get_param: ssh_pub }

185

 group: script
 config: |
 #!/bin/bash
 logger "$0: Creating SSH keys..."
 mkdir -p /root/.ssh
 echo $ssh_priv > /root/.ssh/id_rsa
 sed -e 's|-----BEGIN RSA PRIVATE KEY-----|-----BEGIN_RSA_PRIVATE_KEY-
----|' \
 -e 's|-----END RSA PRIVATE KEY-----|-----END_RSA_PRIVATE_KEY-----
|' \
 -e 's| |\n|g' \
 -e 's|-----BEGIN_RSA_PRIVATE_KEY-----|-----BEGIN RSA PRIVATE KEY-
----|' \
 -e 's|-----END_RSA_PRIVATE_KEY-----|-----END RSA PRIVATE KEY-----
|' \
 -i /root/.ssh/id_rsa
 echo $ssh_pub > /root/.ssh/id_rsa.pub
 echo $ssh_pub > /root/.ssh/authorized_keys
 chmod 0644 /root/.ssh/id_rsa.pub
 chmod 0600 /root/.ssh/id_rsa
 chmod 0644 /root/.ssh/authorized_keys
 cat > /root/.ssh/config << __EOF
 StrictHostKeyChecking no
 UserKnownHostsFile /dev/null
 __EOF

 vpn_server:
 type: OS::Heat::SoftwareConfig
 depends_on: spgw_vm
 properties:
 group: script
 inputs:
 - name: mme_name
 default: { get_param: mme_name }
 - name: spgw_name
 default: { get_param: spgw_name }
 - name: enb_cidr
 default: { get_param: enb_cidr }
 - name: enb_cidr
 default: { get_param: enb_cidr }
 - name: enb_count
 default: { get_param: enb_count }
 - name: enb_start
 default: { get_param: enb_start }
 - name: enb_hostname_prefix
 default: { get_param: enb_hostname_prefix }
 - name: realm
 default: { get_param: realm }
 - name: ca_country
 default: { get_param: ca_country }
 - name: ca_state
 default: { get_param: ca_state }
 - name: ca_city
 default: { get_param: ca_city }
 - name: ca_company
 default: { get_param: ca_company }
 - name: ca_unit

186

 default: { get_param: ca_unit }
 - name: ca_email
 default: { get_param: ca_email }
 config: |
 #!/bin/bash
 logger "$0: Creating /etc/openvpn/clients.txt"
 mkdir -p /etc/openvpn
 touch /etc/openvpn/clients.txt
 echo $mme_name,${enb_cidr%.*}.2 > /etc/openvpn/clients.txt
 i=0
 net=$enb_cidr
 while [$i -lt $(expr $enb_count)] ; do
 host_part=$(expr $enb_start + $i)
 echo $enb_hostname_prefix$i,${net%.*}.$host_part >>
/etc/openvpn/clients.txt
 i=$(expr $i + 1)
 done
 logger "$0: Installing openvpn and creating VPN keys..."
 DEBIAN_FRONTEND=noninteractive apt-get install -q -y openvpn easy-rsa
 mkdir -p /etc/openvpn/easy-rsa
 cp -R /usr/share/easy-rsa/* /etc/openvpn/easy-rsa
 mkdir -p /etc/openvpn/easy-rsa/keys
 cd /etc/openvpn/easy-rsa
 export EASY_RSA="${EASY_RSA:-.}"
 source ./vars
 export KEY_COUNTRY="$ca_country"
 export KEY_PROVINCE="$ca_state"
 export KEY_CITY="$ca_city"
 export KEY_ORG="$ca_company"
 export KEY_EMAIL="$ca_email"
 export KEY_OU="$ca_unit"
 export KEY_NAME="VPN_CA"
 ./clean-all
 "$EASY_RSA/pkitool" --initca
 export KEY_NAME=$spgw_name
 "$EASY_RSA/pkitool" --server $spgw_name
 ./build-dh
 openvpn --genkey --secret keys/hmac.key
 for client in $(cat /etc/openvpn/clients.txt) ; do
 export KEY_NAME=${client%,*}
 "$EASY_RSA/pkitool" ${client%,*}
 done
 cd -
 logger "$0: Creating /etc/openvpn/server.conf..."
 cat > /etc/openvpn/server.conf << __EOF
 daemon
 proto udp
 port 1194
 dev tun
 ca /etc/openvpn/easy-rsa/keys/ca.crt
 cert /etc/openvpn/easy-rsa/keys/$spgw_name.crt
 key /etc/openvpn/easy-rsa/keys/$spgw_name.key
 dh /etc/openvpn/easy-rsa/keys/dh2048.pem
 tls-auth /etc/openvpn/easy-rsa/keys/hmac.key 0
 server ${net%/*} 255.255.255.0
 topology subnet
 client-to-client

187

 ifconfig-pool-persist /etc/openvpn/clients.txt
 keepalive 10 120
 cipher AES-128-CBC
 comp-lzo
 user nobody
 group nogroup
 persist-key
 persist-tun
 verb 3
 __EOF
 logger "$0: Starting VPN server..."
 systemctl enable openvpn@server.service
 systemctl restart openvpn@server.service
 service openvpn restart

 vpn_client:
 type: OS::Heat::SoftwareConfig
 depends_on: mme_vm
 properties:
 group: script
 inputs:
 - name: spgw_name
 default: { get_param: spgw_name }
 - name: client_name
 default: { get_param: mme_name }
 - name: server_ip
 default: { get_attr: [spgw_vm, first_address] }
 config: |
 #!/bin/bash
 logger "$0: Installing VPN client..."
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install openvpn
 cat > /etc/openvpn/client.conf << __EOF
 daemon
 client
 proto udp
 dev tun
 nobind
 remote $server_ip 1194
 ca /etc/openvpn/keys/ca.crt
 cert /etc/openvpn/keys/$client_name.crt
 key /etc/openvpn/keys/$client_name.key
 tls-auth /etc/openvpn/keys/hmac.key 1
 ns-cert-type server
 cipher AES-128-CBC
 comp-lzo
 user nobody
 group nogroup
 persist-key
 persist-tun
 verb 3
 mute 20
 __EOF
 cd /tmp
 ssh $spgw_name "tar -c /etc/openvpn/easy-rsa/keys" | dd of=keys.tar
 tar -xvf keys.tar
 mv etc/openvpn/easy-rsa/keys .

188

 install -v -d -m 0700 -o root -g root /etc/openvpn/keys
 install -v -m 0400 -o root -g root keys/ca.crt
/etc/openvpn/keys/ca.crt
 install -v -m 0400 -o root -g root keys/hmac.key
/etc/openvpn/keys/hmac.key
 install -v -m 0400 -o root -g root keys/$client_name.crt
/etc/openvpn/keys/$client_name.crt
 install -v -m 0400 -o root -g root keys/$client_name.key
/etc/openvpn/keys/$client_name.key
 rm etc keys keys.tar -rf
 systemctl enable openvpn@client.service
 systemctl restart openvpn@client.service
 service openvpn restart

 update_system:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm, spgw_vm, build_vm]
 properties:
 group: script
 config: |
 #!/bin/bash
 logger "$0: Updating system..."
 DEBIAN_FRONTEND=noninteractive apt-get -q -y update
 DEBIAN_FRONTEND=noninteractive apt-get -q -y dist-upgrade
 DEBIAN_FRONTEND=noninteractive apt-get -q -y autoremove
 DEBIAN_FRONTEND=noninteractive apt-get -q -y autoclean
 DEBIAN_FRONTEND=noninteractive apt-get -q -y clean
 logger "$0: Installing git screen and curl..."
 DEBIAN_FRONTEND=noninteractive apt-get -q -y install curl screen git

 compile_kernel:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 inputs:
 - name: spgw_kernel_version
 default: { get_param: spgw_kernel_version }
 - name: base_url
 default: { get_param: base_url }
 config: |
 #!/bin/bash
 cd /usr/src
 DEBIAN_FRONTEND=noninteractive apt-get -q -y install xz-utils build-
essential wget libncurses5-dev libssl-dev bc
 DEBIAN_FRONTEND=noninteractive apt-get -q -y build-dep linux-image-
$(uname -r)
 wget https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-
$spgw_kernel_version.tar.xz
 tar -xf linux-$spgw_kernel_version.tar.xz
 curl -s -O $base_url/config-$spgw_kernel_version-gtp
 cp config-$spgw_kernel_version-gtp linux-$spgw_kernel_version/.config
 cd linux-$spgw_kernel_version
 make oldconfig
 make -j`nproc`
 make INSTALL_MOD_STRIP=1 modules_install
 make install

189

 cd /root
 # should reboot to use new kernel. Hangs on ubuntu14
 #shutdown -r +1
 #sleep 55

 create_freediameter_certs:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 inputs:
 - name: realm
 default: { get_param: realm }
 - name: mme_name
 default: { get_param: mme_name }
 - name: hss_name
 default: { get_param: hss_name }
 - name: ca_country
 default: { get_param: ca_country }
 - name: ca_state
 default: { get_param: ca_state }
 - name: ca_city
 default: { get_param: ca_city }
 - name: ca_company
 default: { get_param: ca_company }
 - name: ca_unit
 default: { get_param: ca_unit }
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install openssl
 certs_dir=/root/certs
 make_one_cert() {
 name=$1
 openssl genrsa -out $name.key.pem 1024
 openssl req -new -batch -out $name.csr.pem -key $name.key.pem -subj
/CN=$name.$realm/C=$ca_country/ST=$ca_state/L=$ca_city/O=$ca_company/OU=$ca_u
nit
 openssl ca -cert cacert.pem -keyfile cakey.pem -in $name.csr.pem -
out $name.cert.pem -outdir . -batch
 }
 mkdir -p $certs_dir
 cd $certs_dir
 mkdir -p $certs_dir/demoCA/
 touch $certs_dir/demoCA/index.txt
 echo 01 > $certs_dir/demoCA/serial
 openssl req -new -batch -x509 -days 3650 -nodes -newkey rsa:1024 -out
cacert.pem -keyout cakey.pem -subj
/CN=$realm/C=$ca_country/ST=$ca_state/L=$ca_city/O=$ca_company/OU=$ca_unit
 make_one_cert $hss_name
 make_one_cert $mme_name

 eurecom_certs:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |

190

 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install openssl
 if [! -f /etc/ssl/certs/ca-certificates.crt.bak] ; then cp
/etc/ssl/certs/ca-certificates.crt{,.bak} ; fi
 echo -n | openssl s_client -showcerts -connect gitlab.eurecom.fr:443
2>/dev/null | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' >>
/etc/ssl/certs/ca-certificates.crt

 compile_nettle:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf
automake build-essential libgmp-dev wget
 cd /tmp
 rm -rf /tmp/nettle-2.5.tar.gz /tmp/nettle-2.5
 wget https://ftp.gnu.org/gnu/nettle/nettle-2.5.tar.gz
 tar -xzf /tmp/nettle-2.5.tar.gz
 cd /tmp/nettle-2.5
 ./configure --disable-openssl --enable-shared --prefix=/usr/local
 make
 make check
 make install
 cd /tmp
 rm -rf /tmp/nettle-2.5.tar.gz /tmp/nettle-2.5
 ldconfig

 compile_gnutls:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q purge libgnutls-dev
'libgnutlsxx2?'
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install libtasn1-6-dev
libp11-kit-dev libtspi-dev libidn11-dev wget
 cd /tmp
 rm -rf /tmp/gnutls-3.1.23.tar.xz* /tmp/gnutls-3.1.23
 wget ftp://ftp.gnutls.org/gcrypt/gnutls/v3.1/gnutls-3.1.23.tar.xz
 tar -xJf /tmp/gnutls-3.1.23.tar.xz
 cd /tmp/gnutls-3.1.23
 ./configure --prefix=/usr/local
 make
 make install
 cd /tmp
 rm -rf /tmp/gnutls-3.1.23 /tmp/gnutls-3.1.23.tar.xz
 ldconfig

 compile_freediameter:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:

191

 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf
automake bison flex build-essential cmake libsctp-dev libidn11-dev libgcrypt-
dev
 cd /tmp
 rm -rf /tmp/freediameter
 git clone https://gitlab.eurecom.fr/oai/freediameter.git -b eurecom-
1.2.0
 cd /tmp/freediameter
 mkdir build
 cd build
 cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local ../
 make
 make install
 cd /tmp
 rm -rf /tmp/freediameter
 ldconfig

 compile_asn1c:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf
automake bison flex build-essential libtool
 cd /tmp
 rm -rf /tmp/asn1c
 git clone https://gitlab.eurecom.fr/oai/asn1c.git
 cd /tmp/asn1c
 ./configure --prefix=/usr/local
 make
 make install
 cd /tmp
 rm -rf /tmp/asn1c

 compile_libgtpnl:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf
automake bison flex build-essential libtool libmnl-dev
 cd /tmp
 rm -rf /tmp/libgtpnl
 git clone git://git.osmocom.org/libgtpnl
 cd /tmp/libgtpnl
 autoreconf -fi
 ./configure --prefix=/usr/local
 make
 make install
 cd /tmp

192

 rm -rf /tmp/libgtpnl
 ldconfig

 compile_openair_cn:
 type: OS::Heat::SoftwareConfig
 depends_on: build_vm
 properties:
 group: script
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install autoconf
automake bison flex build-essential cmake libsctp-dev libconfig8-dev libgmp-
dev libsctp-dev libssl-dev libxml2-dev mscgen openssl mariadb-client
libmysqlclient-dev check
 cd /tmp
 rm -rf openair-cn
 git clone https://gitlab.eurecom.fr/oai/openair-cn.git
 cd /tmp/openair-cn/SCRIPTS
 ./build_mme --clean
 ./build_mme --clean --daemon
 ./build_spgw --clean
 ./build_spgw --clean --daemon
 ./build_hss --clean
 ./build_hss --clean --daemon

 mme_conf:
 type: OS::Heat::SoftwareConfig
 depends_on: mme_vm
 properties:
 group: script
 inputs:
 - name: hss_name
 default: { get_param: hss_name }
 - name: mme_name
 default: { get_param: mme_name }
 - name: realm
 default: { get_param: realm }
 - name: enb_count
 default: { get_param: enb_count }
 - name: int_cidr
 default: { get_param: int_cidr }
 - name: enb_cidr
 default: { get_param: enb_cidr }
 - name: mcc
 default: { get_param: mcc }
 - name: mnc
 default: { get_param: mnc }
 - name: tac
 default: { get_param: tac }
 - name: mme_gid
 default: { get_param: mme_gid }
 - name: mme_code
 default: { get_param: mme_code }
 - name: spgw_ip
 default: { get_attr: [spgw_vm, first_address] }
 - name: mme_ip
 default: { get_attr: [mme_vm, first_address] }

193

 - name: hss_ip
 default: { get_attr: [hss_vm, first_address] }
 config: |
 #!/bin/bash
 logger "$0: Creating MME configuration..."
 mkdir -p /etc/oai
 intnet=$int_cidr
 enbnet=$enb_cidr
 cat > /etc/oai/mme.conf <<__EOF
 MME :
 {
 REALM = "$realm";
 MAXENB = $enb_count;
 MAXUE = 16;
 RELATIVE_CAPACITY = 10;
 EMERGENCY_ATTACH_SUPPORTED = "no";
 UNAUTHENTICATED_IMSI_SUPPORTED = "no";
 EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1 =
"no";
 EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES_IN_S1_MODE =
"no";
 EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC =
"no";
 EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST =
"no";
 IP_CAPABILITY =
"IPV4V6";
 MME_STATISTIC_TIMER = 10;
 INTERTASK_INTERFACE :
 {
 ITTI_QUEUE_SIZE = 2000000;
 };
 S6A :
 {
 S6A_CONF = "/etc/oai/mme_fd.conf";
 HSS_HOSTNAME = "$hss_name";
 };
 SCTP :
 {
 SCTP_INSTREAMS = 8;
 SCTP_OUTSTREAMS = 8;
 };
 S1AP :
 {
 S1AP_OUTCOME_TIMER = 10;
 };
 GUMMEI_LIST = (
 { MCC="$mcc" ; MNC="$mnc"; MME_GID="$mme_gid" ;
MME_CODE="$mme_code"; }
);
 TAI_LIST = (
 { MCC="$mcc" ; MNC="$mnc"; TAC="$tac"; }
);
 NAS :
 {

194

 ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = ["EIA2" , "EIA1" ,
"EIA0"];

 ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = ["EEA0" , "EEA1" ,
"EEA2"];
 T3402 = 1 #in minutes
 T3412 = 54 #in minutes
 T3422 = 6
 T3450 = 6
 T3460 = 6
 T3470 = 6
 T3485 = 8
 T3486 = 8
 T3489 = 4
 T3495 = 8
 };
 LOGGING :
 {
 OUTPUT = "CONSOLE";
 COLOR = "no";
 SCTP_LOG_LEVEL = "TRACE";
 S1AP_LOG_LEVEL = "TRACE";
 NAS_LOG_LEVEL = "TRACE";
 MME_APP_LOG_LEVEL = "TRACE";
 S6A_LOG_LEVEL = "TRACE";
 UTIL_LOG_LEVEL = "TRACE";
 MSC_LOG_LEVEL = "ERROR";
 ITTI_LOG_LEVEL = "ERROR";
 ASN1_VERBOSITY = "none";
 };
 NETWORK_INTERFACES :
 {
 MME_INTERFACE_NAME_FOR_S1_MME = "eth0";
 MME_IPV4_ADDRESS_FOR_S1_MME =
"${enbnet%.*}.2/${enbnet#*/}";
 MME_INTERFACE_NAME_FOR_S11_MME = "eth0";
 MME_IPV4_ADDRESS_FOR_S11_MME = "$mme_ip/${intnet#*/}";
 MME_PORT_FOR_S11_MME = 2123;
 };
 };
 S-GW :
 {
 SGW_IPV4_ADDRESS_FOR_S11 = "$spgw_ip/${intnet#*/}";
 };
 __EOF
 cat > /etc/oai/mme_fd.conf << __EOF
 Identity = "$mme_name.$realm";
 Realm = "$realm";
 TLS_Cred = "/etc/oai/$mme_name.cert.pem",
"/etc/oai/$mme_name.key.pem";
 TLS_CA = "/etc/oai/cacert.pem";
 AppServThreads = 4;
 SCTP_streams = 8;
 LoadExtension = "dict_nas_mipv6.fdx";
 LoadExtension = "dict_s6a.fdx";
 No_TCP;
 No_IPv6;

195

 NoRelay;
 ConnectPeer= "$hss_name.$realm" { ConnectTo = "$hss_ip"; No_IPv6;
No_TLS; port = 3868; realm = "$realm";};
 __EOF

 spgw_conf:
 type: OS::Heat::SoftwareConfig
 depends_on: spgw_vm
 properties:
 group: script
 inputs:
 - name: ue_cidr
 default: { get_param: ue_cidr }
 - name: ue_dns
 default: { get_param: ue_dns }
 - name: ue_mtu
 default: { get_param: ue_mtu }
 - name: int_cidr
 default: { get_param: int_cidr }
 - name: enb_cidr
 default: { get_param: enb_cidr }
 - name: spgw_ip
 default: { get_attr: [spgw_vm, first_address] }
 config: |
 #!/bin/bash
 logger "$0: Creating SPGW configuration..."
 mkdir -p /etc/oai
 intnet=$int_cidr
 enbnet=$enb_cidr
 cat > /etc/oai/spgw.conf << __EOF
 S-GW :
 {
 NETWORK_INTERFACES :
 {
 SGW_INTERFACE_NAME_FOR_S11 = "eth0";
 SGW_IPV4_ADDRESS_FOR_S11 =
"$spgw_ip/${intnet#*/}";
 SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP = "tun0";
 SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP =
"${enbnet%.*}.1/${enbnet#*/}";
 SGW_IPV4_PORT_FOR_S1U_S12_S4_UP = 2152;
 SGW_INTERFACE_NAME_FOR_S5_S8_UP = "none";
 SGW_IPV4_ADDRESS_FOR_S5_S8_UP = "0.0.0.0/24";
 };

 INTERTASK_INTERFACE :
 {
 ITTI_QUEUE_SIZE = 2000000;
 };

 LOGGING :
 {
 OUTPUT = "CONSOLE";
 THREAD_SAFE = "yes";
 COLOR = "no";
 UDP_LOG_LEVEL = "TRACE";
 GTPV1U_LOG_LEVEL = "TRACE";

196

 GTPV2C_LOG_LEVEL = "TRACE";
 SPGW_APP_LOG_LEVEL = "TRACE";
 S11_LOG_LEVEL = "TRACE";
 };
 };
 P-GW =
 {
 NETWORK_INTERFACES :
 {
 PGW_INTERFACE_NAME_FOR_S5_S8 = "none";
 PGW_INTERFACE_NAME_FOR_SGI = "eth0";
 PGW_MASQUERADE_SGI = "yes";
 UE_TCP_MSS_CLAMPING = "no";
 };

 IP_ADDRESS_POOL :
 {
 IPV4_LIST = (
 "$ue_cidr"
);
 };

 DEFAULT_DNS_IPV4_ADDRESS = "$ue_dns";
 DEFAULT_DNS_SEC_IPV4_ADDRESS = "8.8.4.4";
 FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS = "no";
 UE_MTU = $ue_mtu;
 };
 __EOF

 hss_conf:
 type: OS::Heat::SoftwareConfig
 depends_on: hss_vm
 properties:
 group: script
 inputs:
 - name: db_pass
 default: { get_param: db_pass }
 - name: operator_key
 default: { get_param: operator_key }
 - name: hss_name
 default: { get_param: hss_name }
 - name: realm
 default: { get_param: realm }
 - name: hss_ip
 default: { get_attr: [hss_vm, first_address] }
 config: |
 #!/bin/bash
 logger "$0: Creating HSS configuration..."
 mkdir -p /etc/oai
 cat > /etc/oai/hss.conf << __EOF
 HSS :
 {
 MYSQL_server = "127.0.0.1";
 MYSQL_user = "hssadmin";
 MYSQL_pass = "$db_pass";
 MYSQL_db = "oai_db";
 OPERATOR_key = "$operator_key";

197

 RANDOM = "true";
 FD_conf = "/etc/oai/hss_fd.conf";
 };
 __EOF
 cat > /etc/oai/hss_fd.conf << __EOF
 Identity = "$hss_name.$realm";
 Realm = "$realm";
 TLS_Cred = "/etc/oai/$hss_name.cert.pem",
"/etc/oai/$hss_name.key.pem";
 TLS_CA = "/etc/oai/cacert.pem";
 AppServThreads = 4;
 SCTP_streams = 8;
 ListenOn = "$hss_ip";
 Port = 3868;
 SecPort = 5868;
 LoadExtension = "acl_wl.fdx" : "/etc/oai/hss_acl.conf";
 LoadExtension = "dict_nas_mipv6.fdx";
 LoadExtension = "dict_s6a.fdx";
 No_TCP;
 No_IPv6;
 NoRelay;
 __EOF
 cat > /etc/oai/hss_acl.conf <<__EOF
 ALLOW_OLD_TLS *.$realm
 __EOF

 install_nettle:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm]
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 scp -r $build_name:/usr/local/lib /tmp
 install -v -m 0644 -o root -g root /tmp/lib/libnettle.so.4.4
/tmp/lib/libhogweed.so.2.2 /usr/local/lib/
 ln -sfv libnettle.so.4.4 /usr/local/lib/libnettle.so.4
 ln -sfv libnettle.so.4.4 /usr/local/lib/libnettle.so
 ln -sfv libhogweed.so.2.2 /usr/local/lib/libhogweed.so.2
 ln -sfv libhogweed.so.2.2 /usr/local/lib/libhogweed.so
 ldconfig
 rm /tmp/lib -rf

 install_gnutls:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm]
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 scp -r $build_name:/usr/local/lib /tmp

198

 install -v -m 0644 -o root -g root /tmp/lib/libgnutls.so.28.21.3
/usr/local/lib/
 ln -sfv libgnutls.so.28.21.3 /usr/local/lib/libgnutls.so.28
 ln -sfv libgnutls.so.28.21.3 /usr/local/lib/libgnutls.so
 ldconfig
 rm /tmp/lib -rf

 install_freediameter:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm]
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 scp -r $build_name:/usr/local/lib /tmp
 install -v -m 0644 -o root -g root /tmp/lib/libfdcore.so.1.2.0
/tmp/lib/libfdproto.so.1.2.0 /usr/local/lib/
 ln -sfv libfdproto.so.1.2.0 /usr/local/lib/libfdproto.so.6
 ln -sfv libfdproto.so.6 /usr/local/lib/libfdproto.so
 ln -sfv libfdcore.so.1.2.0 /usr/local/lib/libfdcore.so.6
 ln -sfv libfdcore.so.6 /usr/local/lib/libfdcore.so
 install -v -d -m 0755 -o root -g root /usr/local/lib/freeDiameter
 install -v -m 0644 -o root -g root /tmp/lib/freeDiameter/*
/usr/local/lib/freeDiameter
 ldconfig
 rm /tmp/lib -rf

 install_libgtpnl:
 type: OS::Heat::SoftwareConfig
 depends_on: spgw_vm
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 scp -r $build_name:/usr/local/lib /tmp
 install -v -m 0644 -o root -g root /tmp/lib/libgtpnl.so.0.0.0
/usr/local/lib/
 ln -sfv libgtpnl.so.0.0.0 /usr/local/lib/libgtpnl.so.0
 ln -sfv libgtpnl.so.0.0.0 /usr/local/lib/libgtpnl.so
 ldconfig
 rm /tmp/lib -rf

 install_kernel:
 type: OS::Heat::SoftwareConfig
 depends_on: spgw_vm
 properties:
 group: script
 inputs:
 - name: spgw_kernel_version
 default: { get_param: spgw_kernel_version }
 - name: build_name

199

 default: { get_param: build_name }
 config: |
 #!/bin/bash
 #sleep 90 # wait for build to reboot # we dont reboot on ubuntu14
 scp $build_name:/boot/*$spgw_kernel_version* /tmp
 install -o root -g root -m 0644 -v /tmp/*$spgw_kernel_version* /boot/
 rm /tmp/*$spgw_kernel_version*
 ssh $build_name "tar -c /lib/modules/$spgw_kernel_version" | dd
of=/tmp/modules.tar
 cd /tmp
 tar -xf modules.tar
 cp -av lib/modules/$spgw_kernel_version /lib/modules
 rm modules.tar lib -rf
 update-initramfs -c -k $spgw_kernel_version
 update-grub
 # should reboot to use new kernel. Hangs on ubuntu14
 #shutdown -r +1
 #sleep 55

 install_freediameter_certs:
 type: OS::Heat::SoftwareConfig
 depends_on: [hss_vm, mme_vm]
 properties:
 group: script
 inputs:
 - name: hostname
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 scp -r $build_name:/root/certs /tmp
 install -v -m 0600 -o root -g root /tmp/certs/cacert.pem /etc/oai
 install -v -m 0600 -o root -g root /tmp/certs/$hostname.key.pem
/etc/oai
 install -v -m 0600 -o root -g root /tmp/certs/$hostname.cert.pem
/etc/oai
 rm /tmp/certs -rf

 install_database:
 type: OS::Heat::SoftwareConfig
 depends_on: hss_vm
 properties:
 group: script
 inputs:
 - name: db_file
 default: { get_param: db_file }
 - name: base_url
 default: { get_param: base_url }
 - name: db_pass
 default: { get_param: db_pass }
 config: |
 #!/bin/bash
 # this was the only way I found to let it work on xenial and trusty
 function reply_mysql_server_questions() {
 echo
 echo
 echo

200

 }
 reply_mysql_server_questions | DEBIAN_FRONTEND=noninteractive apt-get
-y -q install autoconf automake bison flex build-essential cmake libsctp-dev
libconfig8-dev libgmp-dev libsctp-dev libssl-dev libxml2-dev mscgen openssl
mariadb-server mariadb-client libmysqlclient-dev check
 sleep 5
 echo "CREATE DATABASE oai_db; GRANT ALL PRIVILEGES ON oai_db.* TO
'hssadmin'@'localhost' IDENTIFIED BY '$db_pass';" | mysql -u root
 cd /root
 curl -s -O $base_url/$db_file
 mysql -u hssadmin -p$db_pass -D oai_db < /root/$db_file

 install_hss:
 type: OS::Heat::SoftwareConfig
 depends_on: hss_vm
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9
libsctp1 libtspi1 libgmp10
 scp $build_name:/usr/local/bin/oai_hss /tmp
 scp $build_name:/usr/sbin/oai_hssd /tmp
 install -v -m 0755 -o root -g root /tmp/oai_hss /tmp/oai_hssd
/usr/local/sbin
 rm /tmp/oai_hss*

 install_mme:
 type: OS::Heat::SoftwareConfig
 depends_on: mme_vm
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash
 DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9
libsctp1 libtspi1 libgmp10
 scp $build_name:/usr/local/bin/mme /tmp
 scp $build_name:/usr/sbin/mmed /tmp
 install -v -m 0755 -o root -g root /tmp/mme /tmp/mmed /usr/local/sbin
 rm /tmp/mme*

 install_spgw:
 type: OS::Heat::SoftwareConfig
 depends_on: spgw_vm
 properties:
 group: script
 inputs:
 - name: build_name
 default: { get_param: build_name }
 config: |
 #!/bin/bash

201

 DEBIAN_FRONTEND=noninteractive apt-get -y -q install libconfig9
libmnl0
 scp $build_name:/usr/local/bin/spgw /tmp
 scp $build_name:/usr/sbin/spgwd /tmp
 install -v -m 0755 -o root -g root /tmp/spgw /tmp/spgwd
/usr/local/sbin
 rm /tmp/spgw*

BUILD DEPLOYMENTS
 create_etc_hosts_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: etc_hosts
 properties:
 config:
 get_resource: etc_hosts
 server:
 get_resource: build_vm

 update_system_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_build, update_system]
 properties:
 config:
 get_resource: update_system
 server:
 get_resource: build_vm

 ssh_keys_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_build, update_system_build, ssh_keys]
 properties:
 config:
 get_resource: ssh_keys
 server:
 get_resource: build_vm

 compile_kernel_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_build, compile_kernel]
 properties:
 config:
 get_resource: compile_kernel
 server:
 get_resource: build_vm

 eurecom_certs_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_kernel_build, eurecom_certs]
 properties:
 config:
 get_resource: eurecom_certs
 server:
 get_resource: build_vm

 create_freediameter_certs_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_kernel_build, create_freediameter_certs]

202

 properties:
 config:
 get_resource: create_freediameter_certs
 server:
 get_resource: build_vm

 compile_libgtpnl_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_kernel_build, compile_libgtpnl]
 properties:
 config:
 get_resource: compile_libgtpnl
 server:
 get_resource: build_vm

 compile_nettle_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_kernel_build, compile_nettle]
 properties:
 config:
 get_resource: compile_nettle
 server:
 get_resource: build_vm

 compile_gnutls_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_nettle_build, compile_gnutls]
 properties:
 config:
 get_resource: compile_gnutls
 server:
 get_resource: build_vm

 compile_freediameter_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_nettle_build, compile_gnutls_build,
eurecom_certs_build, compile_freediameter]
 properties:
 config:
 get_resource: compile_freediameter
 server:
 get_resource: build_vm

 compile_asn1c_build:
 type: OS::Heat::SoftwareDeployment
 depends_on: [compile_freediameter_build, eurecom_certs_build,
compile_asn1c]
 properties:
 config:
 get_resource: compile_asn1c
 server:
 get_resource: build_vm

 compile_openair_cn_build:
 type: OS::Heat::SoftwareDeployment

203

 depends_on: [compile_freediameter_build, compile_libgtpnl_build,
compile_asn1c_build, create_freediameter_certs_build, eurecom_certs_build,
compile_openair_cn]
 properties:
 config:
 get_resource: compile_openair_cn
 server:
 get_resource: build_vm

HSS DEPLOYMENTS
 create_etc_hosts_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: etc_hosts
 properties:
 config:
 get_resource: etc_hosts
 server:
 get_resource: hss_vm

 update_system_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_hss, update_system]
 properties:
 config:
 get_resource: update_system
 server:
 get_resource: hss_vm

 create_hss_conf:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_hss, update_system_hss, hss_conf]
 properties:
 config:
 get_resource: hss_conf
 server:
 get_resource: hss_vm

 ssh_keys_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_build, update_system_build, ssh_keys]
 properties:
 config:
 get_resource: ssh_keys
 server:
 get_resource: hss_vm

 install_database_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_hss, create_hss_conf, install_database]
 properties:
 config:
 get_resource: install_database
 server:
 get_resource: hss_vm

 install_nettle_hss:
 type: OS::Heat::SoftwareDeployment

204

 depends_on: [ssh_keys_hss, ssh_keys_build, compile_openair_cn_build,
install_nettle]
 properties:
 config:
 get_resource: install_nettle
 server:
 get_resource: hss_vm

 install_gnutls_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_hss, ssh_keys_build, compile_openair_cn_build,
install_nettle_hss, install_gnutls]
 properties:
 config:
 get_resource: install_gnutls
 server:
 get_resource: hss_vm

 install_freediameter_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_hss, ssh_keys_build, compile_openair_cn_build,
install_nettle_hss, install_gnutls_hss, install_freediameter]
 properties:
 config:
 get_resource: install_freediameter
 server:
 get_resource: hss_vm

 install_freediameter_certs_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_freediameter_hss, create_hss_conf, install_freediameter_certs]
 properties:
 config:
 get_resource: install_freediameter_certs
 server:
 get_resource: hss_vm
 input_values:
 hostname: { get_param: hss_name }

 deploy_hss:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_hss, ssh_keys_build, compile_openair_cn_build,
install_freediameter_certs_hss, install_database_hss, install_hss]
 properties:
 config:
 get_resource: install_hss
 server:
 get_resource: hss_vm

MME DEPLOYMENTS
 create_etc_hosts_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: etc_hosts
 properties:
 config:
 get_resource: etc_hosts

205

 server:
 get_resource: mme_vm

 update_system_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_mme, update_system]
 properties:
 config:
 get_resource: update_system
 server:
 get_resource: mme_vm

 create_mme_conf:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_mme, update_system_mme, mme_conf]
 properties:
 config:
 get_resource: mme_conf
 server:
 get_resource: mme_vm

 ssh_keys_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_mme, update_system_mme, ssh_keys]
 properties:
 config:
 get_resource: ssh_keys
 server:
 get_resource: mme_vm

 vpn_client_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_spgw, vpn_server_spgw, vpn_client]
 properties:
 config:
 get_resource: vpn_client
 server:
 get_resource: mme_vm
 input_values:
 client_name: { get_param: mme_name }

 install_nettle_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_nettle]
 properties:
 config:
 get_resource: install_nettle
 server:
 get_resource: mme_vm

 install_gnutls_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_nettle_mme, install_gnutls]
 properties:
 config:

206

 get_resource: install_gnutls
 server:
 get_resource: mme_vm

 install_freediameter_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_nettle_mme, install_gnutls_mme, install_freediameter]
 properties:
 config:
 get_resource: install_freediameter
 server:
 get_resource: mme_vm

 install_freediameter_certs_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_freediameter_mme, create_mme_conf, install_freediameter_certs]
 properties:
 config:
 get_resource: install_freediameter_certs
 server:
 get_resource: mme_vm
 input_values:
 hostname: { get_param: mme_name }

 deploy_mme:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_mme, ssh_keys_build, compile_openair_cn_build,
install_freediameter_mme, install_freediameter_certs_mme, create_mme_conf,
vpn_client_mme, install_mme]
 properties:
 config:
 get_resource: install_mme
 server:
 get_resource: mme_vm

SPGW DEPLOYMENTS
 create_etc_hosts_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: etc_hosts
 properties:
 config:
 get_resource: etc_hosts
 server:
 get_resource: spgw_vm

 update_system_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_spgw, update_system]
 properties:
 config:
 get_resource: update_system
 server:
 get_resource: spgw_vm

 create_spgw_conf:

207

 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_spgw, update_system_spgw, spgw_conf]
 properties:
 config:
 get_resource: spgw_conf
 server:
 get_resource: spgw_vm

 vpn_server_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_spgw, update_system_spgw, vpn_server]
 properties:
 config:
 get_resource: vpn_server
 server:
 get_resource: spgw_vm

 ssh_keys_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [create_etc_hosts_spgw, update_system_spgw, ssh_keys]
 properties:
 config:
 get_resource: ssh_keys
 server:
 get_resource: spgw_vm

 install_kernel_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_spgw, ssh_keys_build, compile_kernel_build,
install_kernel]
 properties:
 config:
 get_resource: install_kernel
 server:
 get_resource: spgw_vm

 install_libgtpnl_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_spgw, ssh_keys_build, compile_openair_cn_build,
install_kernel_spgw, install_libgtpnl]
 properties:
 config:
 get_resource: install_libgtpnl
 server:
 get_resource: spgw_vm

 deploy_spgw:
 type: OS::Heat::SoftwareDeployment
 depends_on: [ssh_keys_spgw, ssh_keys_build, create_spgw_conf,
install_libgtpnl_spgw, vpn_server_spgw, compile_openair_cn_build,
install_kernel_spgw, install_spgw]
 properties:
 config:
 get_resource: install_spgw
 server:
 get_resource: spgw_vm

208

STACK OUTPUTS
outputs:
 public_ip:
 description: Floating IP address of SPGW instance in external network
 value: { get_attr: [floating_ip, floating_ip_address] }
 ssh_spgw:
 description: SSH connect string for SPWG host
 value:
 str_replace:
 template: |
 ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o
UserKnownHostsFile=/dev/null -o User=ubuntu $floating_ip
 params:
 $floating_ip : { get_attr: [floating_ip, floating_ip_address] }
 ssh_hss:
 description: SSH connect string for HSS host
 value:
 str_replace:
 template: |
 ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null
-o User=ubuntu -q $floating_ip nc -q0 $hss_name 22" $floating_ip
 params:
 $floating_ip : { get_attr: [floating_ip, floating_ip_address] }
 $hss_name: { get_param: hss_name }
 ssh_mme:
 description: SSH connect string for MME host
 value:
 str_replace:
 template: |
 ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null
-o User=ubuntu -q $floating_ip nc -q0 $mme_name 22" $floating_ip
 params:
 $floating_ip : { get_attr: [floating_ip, floating_ip_address] }
 $mme_name: { get_param: mme_name }
 ssh_build:
 description: SSH connect string for Build host
 value:
 str_replace:
 template: |
 ssh -o ForwardAgent=yes -o StrictHostKeyChecking=no -o
UserKnownHostsFile=/dev/null -o User=ubuntu -o ProxyCommand="ssh -o
ForwardAgent=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null
-o User=ubuntu -q $floating_ip nc -q0 $build_name 22" $floating_ip
 params:
 $floating_ip : { get_attr: [floating_ip, floating_ip_address] }
 $build_name: { get_param: build_name }

