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Abstract

Sleep apnea is a very common, yet severely under-diagnosed disorder characterized by
reoccurring periods of shallow or paused breathing during sleep. If a breathing disruption
causes the oxygen saturation in the blood to become too low, the brain will force an
awakening to resume normal breathing. These awakenings are often very brief, making it
unlikely for the sufferer to remember continuously waking up at night. The gold standard
for diagnosing sleep apnea is polysomnography, which is a sleep study requiring the subject
to spend the night in a laboratory with many physiological sensors attached to the body.
This process is very resource demanding, and also very tedious and uncomfortable for the
patients. Instead of providing alternatives to traditional polysomnography, our objective
is to allow people to perform the first step towards a sleep apnea diagnosis at home.
The core idea is to drastically reduce the cost and number of required sensors by utilizing
smartphones, low-cost consumer grade sensors, and data mining techniques. Nevertheless,
the realization of this idea assumes that the low-cost consumer grade sensors produce
signals of adequate quality.

In this thesis, we evaluate the signal quality of four respiratory effort sensors: a piezo-
electric effort belt (PZT) from BITalino, an impedance plethysmography (IP) sensor
from Shimmer, a respiratory inductance plethysmography (RIP) sensor (RespiBAN) from
biosignalsplux, and a strain-gauge sensor (FLOW) from SweetZpot. We use a RIP sensor
from NOX Medical as the gold standard. Instead of recreating the setting of traditional
polysomnography, we design a sixteen-minute signal capture procedure to simulate epochs
of disrupted breathing, which can be performed during wakefulness. With this procedure,
we capture data from a total of twelve (BITalino and Shimmer) and eleven (RespiBAN
and FLOW) external subjects, resulting in a total of 212 different signals for quality
evaluation. Our signal quality evaluation approach is based on the breath detection ac-
curacy metrics sensitivity, positive predictive value (PPV), and clean minute proportion
(CMP), along with the breath amplitude accuracy metric weighted absolute percentage
error (WAPE). These metrics are closely related to how apneic and hypopneic episodes
are scored by medical personnel, making it trivial to reason about their interpretation.

Our results show that false breaths are the primary concern affecting the breath detection
accuracy of BITalino, Shimmer, and RespiBAN. Respectively, the sensitivity of BITalino,
Shimmer, RespiBAN, and FLOW is 99.61%, 98.53%, 98.41%, and 98.91%. Their PPV
is 96.28%, 96.58%, 90.81%, and 98.81%. Their CMP is 60.93%, 71.72%, 49.50%, and
73.08%. Finally, their WAPE is 13.82%, 16.89%, 13.60%, and 8.75%. The supine (back)
position is consistently showing the overall best signal quality, and while both BITalino
and Shimmer show a correlation between signal quality and body mass index (BMI), the
supine position is less affected overall compared to the side position.
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Chapter 1

Introduction

1.1 Background and Motivation

Sleep apnea is a disorder characterized by reoccurring periods of shallow or paused breath-
ing during sleep. If a breathing disruption causes the oxygen content (oxygen saturation)
in the blood to become too low, the brain will force an awakening to resume normal
breathing. These awakenings are often very brief, making it unlikely for the sufferer to
remember continuously waking up at night. Repeated awakenings inhibit deep sleep,
resulting in daytime sleepiness and fatigue. If untreated, sleep apnea can lead to serious
health implications for the individual, and, in the worst case, even death if the person is
unable to wake up. Sleep apnea is linked to serious diseases such as diabetes, hypertension
(high blood pressure), heart disease, stroke, depression, and anxiety (Young et al. 2004),
(Punjabi 2008), and (Huang et al. 2008).

Sleep apnea is a very common, yet severely under-diagnosed sleep disorder. It is estimated
that around 25% of all middle-aged Norwegians are at high risk of having obstructive sleep
apnea (Hrubos-Strøm et al. 2011), yet approximately 70–80% of all cases are expected to
be undiagnosed (Punjabi 2008). Studies show that sleep apnea sufferers are about two
to three times more likely to be involved in traffic accidents because of the severe sleep
deprivation (McNicholas 2013). Without a recollection of the nightly awakenings, and the
primary symptom being daytime sleepiness, the disorder may easily remain unnoticed.
Feeling tired can be normal for many people for various reasons, and maybe even more so
for long-time sufferers of sleep apnea. A study by Van Dongen et al. (2003) suggests that
people, in general, are mostly unaware of being sleep deprived, which further substantiates
the claim that people often are unaware of having the disorder.

The gold standard and traditional approach of diagnosing sleep apnea is with the use of
polysomnography. Polysomnography is a sleep study which requires the subject to spend
the night in a sleep laboratory with a wide range of physiological sensors attached to
the body. This includes sensors for electroencephalography (EEG), electrocardiography
(ECG), electromyography (EMG), electrooculography (EOG), respiratory effort from the
chest (thorax) and abdomen, nasal airflow, and oxygen saturation (SpO2) (Tripathi 2008).
A sleep technologist is required to manually monitor the procedure and evaluate the
results. Sleeping in an artificial and unfamiliar environment with this many sensors
attached to the body can for many people feel very uncomfortable. As a result, the

1
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threshold for a potential patient to seek a diagnosis is high. In addition, this kind of
sleep study is very resource demanding as it requires both expensive equipment, a suited
laboratory, and trained medical personnel to manually monitor and analyze the results;
making it impossible to prescribe polysomnography for everybody at risk of having sleep
apnea. Portable monitoring devices have been developed to enable sleep monitoring
at home without the guidance of medical personnel. However, the number of sensors
attached to the body is usually not reduced too much, and the recorded signals still need
to be manually evaluated by an expert before an eventual diagnosis can be determined.
Additionally, these devices are usually priced way above what an average person can
afford to pay on their own.

Instead of providing alternatives to traditional polysomnography, our objective is to allow
people to perform the first step towards a sleep apnea diagnosis at home. The core idea
is to drastically reduce the cost and number of required sensors by utilizing smartphones,
low-cost consumer grade sensors (e.g., from BITalino or Shimmer), and data mining
techniques. A potential sleep apnea sufferer should be able to buy an arbitrary sensor of
their own choice and use that along with a smartphone to test for sleep apnea on their own.
The recorded data should be analyzed by data mining techniques to automatically detect
apnea events and then potentially recommend that the person should visit a physician.
Furthermore, a physician should be able to use the recorded data as a foundation to
better decide whether polysomnography should be performed or not.

For this to be realistic, a few requirements need to be fulfilled. Firstly, the equipment
needs to be affordable and easy to use. Secondly, the user should not be bound to any
specific equipment but rather be able to choose the specifics (e.g., what kind of sen-
sor/smartphone, etc.) on their own. Thirdly and most importantly, the produced signals
must be of adequate quality. Kristiansen et al. (2018) show that the quality of the signals
has a huge impact on the performance of the data mining classifiers for apnea detec-
tion. In this study, they use physiological data from two databases of different quality,
namely the Apnea-ECG and MIT-BIH databases from PhysioNet. The accuracy of the
data mining classifiers for all signal combinations is in the range 90.6%–96.6% for the
Apnea-ECG database and 58.2%–73.1% for the MIT-BIH database. Clearly illustrating
the importance of data quality.

1.2 Problem Statement

In contrast to certified medical grade equipment, consumer grade electronics are usually
significantly cheaper and lack formal testing. The resulting assumption is that the signal
produced by cheaper sensors are also analogously of lower quality as well. Even if we
accept this assumption, it does not mean that these kinds of sensors cannot be used at all
during an initial test for sleep apnea. Therefore, the overall problem statement tumbles
down to one enclosing question:

• Are cheaper consumer grade sensors good enough for an initial sleep apnea test?

The scope of this question is, however, too broad to fit in one thesis alone, so we have
to break it down further. There are many different types of sensors used for sleep apnea
monitoring, and each type captures very different kinds of data. As a result, any methods



1.3. Approach 3

used to assess the signal quality will also be very different. Therefore, we limit the focus
in this work to one kind of sensor, namely respiratory effort sensors. Respiratory effort
sensors monitor the movement (or effort) associated with breathing, and are often belts
strapped around the thorax and abdomen of the subject atop of clothing. This makes
these kinds of sensors very easy to use without the help of medical personnel. Thus, they
are a good candidate for our main objective. In addition, Kristiansen et al. (2018) show
that respiratory effort from either the thorax or abdomen alone provides a very good
classifier performance, with an accuracy of 92.9% and 72% for the abdominal signals
from the Apnea-ECG and MIT-BIH databases, respectively.

There have been conducted a few studies which assess the signal quality of different types
of respiratory effort sensors, e.g., (Vaughn and Clemmons 2012), (Cantineau et al. 1992),
(Brouillette et al. 1987), (Whyte et al. 1991), (Adams et al. 1993), and (Cohn et al. 1982).
However, the focus in these studies lies primarily on measuring the signal quality of a
given type of technology, and not specifically on the signal quality of cheaper consumer
grade equipment. There have been conducted studies in that regard for other types
of sensors, e.g., ECG sensors (Silva et al. 2015), but to the best of our knowledge not
specifically for respiratory effort sensors.

The gold standard sensor for measuring airflow is a pneumotachograph, which is usually
a mask placed over the mouth and nose (Berry et al. 2012). In related work, any quality
evaluation of respiratory effort sensors is most often conducted with a pneumotachograph
as the gold standard. Unfortunately, one of our limitations is that we do not have access
to a pneumotachograph, and, therefore, have to measure the signal quality using other
means.

The overall problem statement breaks down to how we can measure the signal quality of
respiratory effort sensors, which we address in the following questions:

1. Which metrics are appropriate?

2. In which setting should we capture the signal data?

3. How can we measure the signal quality with our limited set of resources?

4. How good are the BITalino sensors?

5. How good are the (medical grade) Shimmer sensors?

6. How good are the (medical grade) RespiBAN sensors?

7. How good are the FLOW sensors?

1.3 Approach

With respiratory effort sensors from BITalino, Shimmer, biosignalsplux (RespiBAN),
SweetZpot (FLOW), and NOX Medical at our disposal, we approach the problem state-
ment in three parts:
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• Determine how the signal quality of respiratory effort sensors can be measured in
relation to sleep apnea.

• Design and execute an experiment involving external subjects to measure the signal
quality of the target sensors.

• Evaluate the results of the experiment and signal quality of the target sensors.

The first part focuses on what a good signal quality represents and how we can measure
the quality of a respiratory effort signal (i.e., which metrics to use). It is important to
emphasize that the signal quality should be measured in relation to sleep apnea mon-
itoring. Respiratory effort sensors are used in a variety of other contexts as well, and
measuring an aspect of quality which is not linked to a sensor’s performance of sleep
apnea monitoring potentially yields a misleading result.

We have a total of four different types of respiratory effort sensors at our disposal: res-
piratory inductive plethysmography (RIP), piezoelectric belts (PZT), strain-gauge belts,
and impedance plethysmography (IP). The former three are belts strapped around the
thorax and abdomen, while the latter uses electrodes attached to the skin around the
thorax. Of these, only the RIP type is recommended by the American Academy of Sleep
Medicine (AASM) for sleep apnea monitoring (Berry et al. 2012). For our experiments,
we use a BITalino Plugged Kit BLE (BITalino 2018e) with PZT type belts, a Shimmer
ECG unit (Shimmer 2018b) with an IP type sensor, a biosignalsplux RespiBAN (biosig-
nalsplux 2018b) with a RIP type belt, a SweetZpot FLOW (SweetZpot 2018) with a
strain-gauge belt, and a NOX T3 (NOX Medical 2018a) with RIP type belts. These
are hereafter referred to as BITalino, Shimmer, RespiBAN, FLOW, and NOX, respec-
tively. We measure the signal quality of the BITalino, Shimmer, RespiBAN, and FLOW
sensors by comparing them to our gold standard signal, NOX (i.e., our alternative to a
pneumotachograph).

In the second part, we design an experiment to record data with these sensors from
various external subjects. This design involves how long each signal capture should be,
what positions the subject should undertake, and what actions the subject may perform
throughout the procedure. The goal is, in other words, to gather as many representative
signal captures as we need to make the results as reliable as possible. We derive the
number of required subjects by studying related work.

In the last part, we evaluate the results of the experiment and signal quality of the sensors
by analyzing the recorded signals. In addition to a summarized signal quality evaluation
of the sensors, we also evaluate if there exist any trends in the data as well, such as the
effect of body mass index (BMI).

1.4 Scope

The scope of this thesis covers how the signal quality of respiratory effort sensors can
be measured in relation to sleep apnea, and a signal quality evaluation of the BITalino,
Shimmer, RespiBAN, and FLOW sensors. Due to our limited time frame, we do not
analyze any correlation between the signal quality obtained using the metrics we describe
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to the accuracy of the data mining techniques used by Kristiansen et al. (2018). Such
an analysis would require capturing data from real sleep apnea sufferers and medical
personnel to annotate and score all episodes of disrupted sleep. Thus, this is instead a
part of future work.

Please note that we did not receive the RespiBAN and FLOW sensors until the very
end of this work. This means that the thesis is mostly concerned with the BITalino
and Shimmer sensors until the last part of Chapter 7. Additionally, the signals from
the RespiBAN and FLOW sensors are not collected from all the same subjects as the
BITalino and Shimmer signals.

1.5 Outline

This master’s thesis is structured as follows:

• Chapter 2 — Sleep Apnea
In this chapter, we present an overview of sleep apnea in general, with emphasis on
the physiological signals used to diagnose the disorder.

• Chapter 3 — Measuring Data Quality
This chapter gives an overview of how the quality of data can be measured, or more
precisely, quantified. The emphasis lies primarily on signals from respiratory effort
sensors, but the methods can be applied to other types of data as well.

• Chapter 4 — Requirement Analysis
This chapter presents a requirement analysis which includes what a good signal
quality represents in relation to sleep apnea, and different requirements for the
experiment design (e.g., number of subjects). Furthermore, we also give an overview
of the various sensor platforms we evaluate.

• Chapter 5 — Design
This chapter presents how we measure the quality of the sensors (i.e., metrics),
and the design of the experiment. The experiment design is based on preliminary
testing and includes how long each signal capture should be, what positions the
subject should undertake, and what actions the subject may perform throughout
the procedure.

• Chapter 6 — Implementation
In this chapter, we present our Python implementation of the metrics and the signal
preprocessing steps.

• Chapter 7 — Evaluation
In this chapter, we evaluate the result of the experiment and quality of the sensors
by analyzing the recorded signals. We also give a review of the metrics and a
comparison with related work.

• Chapter 8 — Conclusion
Finally, we conclude our findings, provide a critical assessment of the work and
methods, and discuss potential future work.





Chapter 2

Sleep Apnea

In this chapter, we present an overview of sleep apnea in general, with emphasis on
the physiological signals used to diagnose the disorder. We begin by describing the
characteristics of sleep apnea in Section 2.1, followed by a description of its different
variations in Section 2.2. The most common symptoms associated with the disorder
are given in Section 2.3. Next, how sleep apnea is diagnosed today, along with the
various types of physiological signals used during a diagnostic procedure are presented in
Section 2.4. Finally, we conclude the chapter in Section 2.5.

2.1 Characteristics

Sleep apnea is a disorder characterized by reoccurring periods of either shallow or paused
breathing during sleep. If a breathing disruption causes the oxygen content (oxygen
saturation) in the blood to become too low, the brain will force an awakening to resume
normal breathing. These awakenings are often very brief, making it unlikely for the
sufferer to remember continuously waking up at night. Repeated awakenings inhibit
deep sleep, resulting in daytime sleepiness and fatigue. Untreated sleep apnea can lead
to serious complications. Most notable is that it leads to daytime sleepiness, which in
turn results in a lower quality of life. Sleep apnea can also in more severe cases lead
to diabetes, hypertension (high blood pressure), heart disease, stroke, depression, and
anxiety (Young et al. 2004), (Punjabi 2008), and (Huang et al. 2008). In other words, a
proper sleep pattern is crucial for both physical as well as mental health.

Sleep apnea is a very common, yet severely under-diagnosed disorder. It is estimated that
around 25% of all middle-aged Norwegians are at high risk of having obstructive sleep
apnea (Hrubos-Strøm et al. 2011), yet approximately 70–80% of all cases are expected to
be undiagnosed (Punjabi 2008). Studies show that sleep apnea sufferers are about two
to three times more likely to be involved in traffic accidents because of the severe sleep
deprivation (McNicholas 2013). In conclusion, untreated sleep apnea can lead to serious
health implications, and in severe cases, even death. With numbers as high as these, it is
clear that sleep apnea has a severe impact on both the health of the individuals, as well
as society as a whole. Early diagnosis is crucial to reverse the course of the disorder.
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2.1.1 Types of Breathing Disruptions

A breathing disruption is classified as either an apnea or a hypopnea. An apnea (or
apneic event) refers to a complete cessation of breath, whereas a hypopnea (or hypopneic
event) refers to a period of shallow breathing. According to the scoring rules by the
American Academy of Sleep Medicine (AASM) (Berry et al. 2012), a breathing stop has
to be at least ten seconds in duration to be classified as an apnea. For a period of shallow
breathing to be considered a hypopnea, there has to be a minimum of 30% reduction in
airflow lasting a minimum of ten seconds, and either a ≥ 3% drop in oxygen saturation, or
an arousal. An arousal means that the patient has awoken for three to fourteen seconds
(i.e., an EEG signal shows waking activity).

2.2 Types of Sleep Apnea

There are three types of sleep apnea: Obstructive Sleep Apnea (OSA), Central Sleep
Apnea (CSA), and a combination of the two, often referred to as Mixed or Complex Sleep
Apnea. A brief description of these is given in the following subsections.

2.2.1 Obstructive Sleep Apnea

Obstructive Sleep Apnea (OSA) is the most common type of sleep apnea and is charac-
terized by a physical blockage of the upper airways during sleep (ASAA 2018b). When
the muscles supporting the upper airways relax too much, the airways collapse, which
obstructs breathing. The blockage may either be complete or partial, which corresponds
to apneic and hypopneic events, respectively. During an obstruction, the body will auto-
matically increase respiratory effort, which often results in loud snoring as air is forced
through the blockage. OSA can affect anyone and is not restricted to people of a certain
age, sex, weight, etc. On the other hand, OSA seems to be a little more prevalent in over-
weight, middle-aged males who sleep on their back. A very effective treatment for OSA
is continuous positive airway pressure (CPAP) (MayoClinic 2018a), which is a face mask
device generating positive airway pressure which keeps the airways open during sleep.
CPAP requires continuous use, and can, therefore, feel burdensome for many people. An
illustration of airway blockage is shown in Figure 2.1. In this particular illustration, the
tongue falls back into the throat, completely blocking the airways.

Risk Factors

The risk of OSA is directly linked to the muscle tone in the throat, and how narrow the
airways are. Weaker muscles are less able to support the soft tissue in the throat and keep
the airways open, while narrower airways increase the impact of obstructions. Several
physiological and environmental factors can influence these aspects, and thus, also the
risk of having OSA (Alaska Sleep Clinic 2015). As people age, they tend to lose muscle
tone and definition, resulting in weaker muscles in the throat. Alcohol is another factor
which can cause the muscles to relax too much, resulting in an obstruction. OSA is also
in many cases directly linked to obesity. Obese people are much more likely to have fatty
tissue built up in the throat and neck, which may result in narrower airways and more
tissue for the muscles to support. Another risk factor is genetic predisposition. Some
people may naturally have a larger tongue or more narrow airways.
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Figure 2.1: Illustration of obstructed airways (OSA) (M’henni 2010)

2.2.2 Central Sleep Apnea

In cases of Central Sleep Apnea (CSA), no physical blockage or obstruction are causing
the disorder (ASAA 2018a). Instead, it is the brain temporarily failing to signal the
muscles responsible for breathing, to breathe. When the oxygen saturation in the blood
becomes too low, the brain will force an awakening to restore normal oxygen levels. As
a result of the failed signaling, no apparent respiratory effort is present, and thus, only
apneic events can occur. It is believed that CSA cases constitute of less than 20% of all
sleep apnea cases, which makes it far less common compared to OSA. Since there is no
physical blockage in CSA cases, treatment with CPAP is generally less effective. Instead,
alternative treatments include the use of more expensive breathing machines, so-called
assisted ventilation devices (Sleep Apnea Guide 2018).

Risk Factors

CSA is very often a comorbid disorder (ASAA 2018a), which means that people who are
already very ill from other diseases are at higher risk of having CSA. This includes people
with heart disorders and people who have had strokes or brain tumors. In addition, people
who are male, over 65 years old, or using opioids, are also at higher risk of having CSA
(Alaska Sleep Clinic 2015).

2.2.3 Complex Sleep Apnea

Mixed or Complex Sleep Apnea occurs when a subject is exhibiting symptoms of both
OSA and CSA. This form of sleep apnea was first discovered by Morgenthaler et al. (2006),
which makes it a more recent discovery compared to OSA and CSA. In this study, they
observe that when some people with OSA receive CPAP treatment, they suddenly show
symptoms of CSA. The underlying cause, however, remains unknown. The scoring rules
by the AASM (Berry et al. 2012) also include a definition of mixed apneas. A mixed
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apneic event in adults is classified as an apnea which starts as a central apnea (i.e., no
respiratory effort), and then turns into an obstructive apnea. For example, the first ten
seconds of the event may show no respiratory effort at all (i.e., central), while the last ten
seconds do show respiratory effort (i.e., obstructive). For pediatric patients, the central
portion of the event may be located at either the start or end of the event.

2.3 Symptoms

As sleep apnea presents itself while the subject is sleeping, it may easily go unnoticed.
In fact, the most common symptom is daytime sleepiness. Feeling tired can be normal
for many people for various reasons, and maybe even more so for long-time sufferers
of sleep apnea. A study by Van Dongen et al. (2003) suggests that people, in general,
are mostly unaware of being sleep deprived, which further substantiates the claim that
people often are unaware of having the disorder. Obstructive sleep apnea is caused by an
obstruction of the airways, which very often results in loud snoring during sleep. Snoring
is, however, usually not noticed by the sufferers themselves, but more often by a bedside
partner. The first suspicion of having sleep apnea, therefore, often comes from a bedside
partner noticing either loud snoring, breathing stops, or shortness of breath. One must,
however, note that not everyone that snores has the disorder, nor does everyone with the
disorder snore (e.g., subjects suffering from CSA do not snore). Snoring is, nonetheless,
one of the most common first suspicions of having the disorder. Other symptoms of sleep
apnea include lack of concentration, hypertension (high blood pressure), memory loss,
mood swings, headaches, and night sweats (amongst others) (MayoClinic 2015). These
symptoms are often easily dismissible as other causes, for example, a poor lifestyle, and
as such, sleep apnea can be hard to suspect.

2.4 Diagnostic Tools

Sleep apnea does not leave any traces in the body that, afterward, can be detected and
directly linked to the disorder. This means that blood tests or other tests alike cannot
be used to diagnose sleep apnea. Instead, a sleep apnea diagnosis requires the subject
to undertake a sleep study. In other words, the nocturnal events associated with sleep
apnea have to be captured as they are happening at night, using various physiological
sensors. The severity of the disorder is often determined based on the average number
of apneic/hypopneic events recorded per hour, and this metric is known as the Apnea-
Hypopnea Index (AHI). In addition, the severity of the disorder is often accompanied by
other metrics as well, for example, the Oxygen Desaturation Index (ODI), and Respiratory
Disturbance Index (RDI). In this section, we give an overview of the different severity
ratings, physiological signals, and diagnostic tools used to diagnose sleep apnea.

2.4.1 Severity Rating

The most commonly used metrics for determining the severity of sleep apnea are defined
as follows:

The Apnea-Hypopnea Index (AHI) is scored as the average number of apneic and hypop-
neic events per hour of sleep. This metric is mandatory for the diagnosis of sleep apnea
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according to the AASM (Berry et al. 2012) and is, therefore, widely used. The score
of this metric is separated into four severity classes, none/minimal, mild, moderate, and
severe, which are classified as follows (Harvard 2011):

• None/Minimal: AHI < 5 per hour

• Mild: AHI ≥ 5, but < 15 per hour

• Moderate: AHI ≥ 15, but < 30 per hour

• Severe: AHI ≥ 30 per hour

The Oxygen Desaturation Index (ODI) is an optional metric scored as the average number
of oxygen desaturations per hour. According to the AASM (Berry et al. 2012), ODI is
defined as:

ODI = ≥ 3% arterial oxygen desaturations / hour (2.1)

The Respiratory Disturbance Index (RDI) is also optional and is defined by the AASM
(Berry et al. 2012) as a composite metric. RDI is scored as the AHI plus the number of
respiratory effort related arousals (RERAs) per hour:

RDI = AHI +RERA index (2.2)

2.4.2 Physiological Signals

There is a wide range of physiological signals that can be used to diagnose sleep apnea
(Tripathi 2008). In this section, we describe the most common ones, what they record,
and how they are used.

Respiratory Sensors

Respiratory sensors are one of the most essential kinds of sensors for sleep apnea moni-
toring. It is, after all, the presence disrupted breathing that defines sleep apnea. These
sensors are split into two different kinds, monitoring either airflow or respiratory effort.
Airflow sensors monitor the flow of air as inhaled and exhaled through the nose and
mouth. According to Berry et al. (2012), the gold standard sensor for monitoring airflow
is a pneumotachograph, which is usually a mask placed over the mouth and nose. There
are many types of pneumotachographs available, and one of which uses a turbine which
rotates by the force of airflow. A pneumotachograph, however, is often somewhat large
and bulky, which makes it unsuited for use in sleep studies. Other sensors monitoring
airflow include a nasal pressure transducer and an oronasal thermal sensor. Both of these
are recommended by the AASM (Berry et al. 2012) for apnea and hypopnea monitoring.
A nasal pressure transducer is a small tube placed just below the nostrils, which measures
airflow by the change in pressure of air as inhaled and exhaled through the nose. An
oronasal thermal sensor is a small thermal sensor placed between the nose and mouth,
which detects the presence of flow by the change of temperature as warmed air is exhaled.
This thermal sensor, however, is not proportional to the actual airflow, and thus only
detects the presence of flow.
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Figure 2.2: Respiratory signals during an obstructive apnea (Berry et al. 2012)

Respiratory effort sensors monitor the physical effort associated with respiration and
are mainly used to separate obstructive from central events. The gold standard for
monitoring respiratory effort is Esophageal Manometry, which is a tube inserted into
the esophagus (i.e., a tube inserted into the throat stretching down to the stomach)
(Berry et al. 2012). This kind of sensor is very uncomfortable and invasive for the
subjects, and thus rarely used in practice. Other kinds of sensors include respiratory
inductance plethysmography (RIP), piezoelectric belts (PZT), impedance plethysmography
(IP), polyvinylidene fluoride (PVDF), and strain gauges (amongst others). Only the RIP
and PVDF type sensors are recommended by the AASM (Berry et al. 2012). All of these
sensors are regarded as noninvasive and measure the expansion and contraction of the
thorax (chest) and abdomen associated with breathing. The RIP, PZT, PVDF, and strain
gauges sensors, are belts strapped around the thorax and abdomen of the subject (often
atop of clothing), whereas the IP sensor uses electrodes attached directly to the subject’s
skin. The advantage of RIP is that it measures the change of the total circumference
of the belt. Contrary, the sensor part of a PZT belt, for example, spans only a small
area of the full belt circumference, which means that it may or may not reflect the actual
circumference of the belt (e.g., it may become trapped by lying on the sensor). The RIP,
PZT, strain-gauges, and IP type sensors are described in more detail in Section 3.5.1.
Even though these kinds of sensors are mainly used for monitoring respiratory effort, they
can also be used to indirectly measure the inhaled and exhaled airflow/volume. It was
first documented by Konno and Mead (1967) that the sum of the movement from the
thorax and abdomen can be used to derive a semiquantitative estimate of lung volume.
As a result, the AASM also recommends the RIP and PVDF sensors to detect breathing
disruptions, and not only respiratory effort. We describe this in more detail in Section 3.5.

An example showing what these kinds of signals look like during an apneic event can be
seen in Figure 2.2. As illustrated, the signal from the thorax and abdomen (RIPthorax

and RIPabdomen) show a presence of respiratory effort during the event, which classifies
it as obstructive. If this event were of central type, the RIPthorax and RIPabdomen signals
would flatline during the event (i.e., show no respiratory effort).
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Pulse Oximetry

Another essential sensor is a pulse oximeter. A pulse oximeter is a small clip attached
to either the fingertip, toe, or earlobe, and is used to measure the oxygen saturation of
the blood. Apneic or hypopneic events are only significant when the oxygen saturation is
affected to a certain extent (i.e., ≥ 3% drop). The cells in the blood that carry oxygen are
known as hemoglobin. Oxygen saturation is a measure of the proportion of oxygenated
hemoglobin in the blood, and a value of 95–100% is considered normal for healthy peo-
ple. An oxygen saturation level of 90%, 89–80%, and below 80%, are considered mild,
moderate, and severe levels, respectively (Harvard 2011). A pulse oximeter consists of
two different wavelengths of light, red and infrared. Oxygenated and non-oxygenated
hemoglobin absorb these two wavelengths differently, and their ratio of absorption is
used to derive the oxygen saturation in the blood (HEW 2018). The oxygen saturation
derived from a pulse oximeter is referred to as SpO2 and is usually calculated as an aver-
age over a time window, which makes it a delayed signal. An example of this can be seen
in Figure 2.2, where the desaturation caused by the apneic event is first visible in the
SpO2 signal after the event is over. SpO2 is an indirect measure of oxygen saturation,
and the value of a direct measurement (e.g., by a blood sample) is referred to as SaO2.

In addition to measuring oxygen saturation, a pulse oximeter can also be used to measure
a wide range of other physiological signals. This includes, for example, the pulse rate,
blood pressure (Talke et al. 1990), and changes in blood volume (photoplethysmograph)
(Cannesson et al. 2008). Which of these signals a given pulse oximeter supports vary,
with SpO2 and pulse rate being the most commonly available signals.

Electroencephalography (EEG)

EEG measures the electrical activity of the brain using electrodes attached to the scalp
(MayoClinic 2014). The brain emits different types of electrical activity depending on
which state it is in, for example, delta waves (≤ 3 Hz) during deep sleep and beta waves
(≥ 12 Hz) during periods of concentration (Brainworks 2018). EEG is mainly used in
sleep apnea monitoring to determine when the subject is awake and asleep, which are
further used to detect arousal associated with hypopneic events. In fact, EEG is the only
reliable way of determining if the subject is asleep or awake. EEG is also used to detect
which stage of sleep the subject is in and how much time the subject spends in each stage
of sleep.

Electrocardiography (ECG)

ECG measures the electrical activity of the heart using electrodes attached around the
thorax (and sometimes other places) (MayoClinic 2018b). ECG captures heartbeats
represented by the waveform shown in Figure 2.3, from which many physiological features
can be extracted. For example, the heart rate (beats per minute) can be determined by
counting the number of QRS-complexes per minute. With respect to sleep apnea, it has
been reported that variations in the RR-interval are associated with apneic/hypopneic
episodes (Almazaydeh et al. 2012). The RR-interval is the time interval between two
consecutive R-peaks in the signal. In contrast to respiratory signals, the ECG signal does
not reflect any clear visual indications of apneic/hypopneic episodes. Such indications are
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Figure 2.3: Waveform of a heartbeat from ECG (Atkielski 2007)

more often derived from various physiological features such as the RR-interval or heart
rate (amongst others).

Electromyography (EMG)

EMG measures the electrical activity produced by muscles using electrodes attached to
the skin. During sleep studies, two types of EMG are often recorded, chin EMG, and limb
EMG (Tripathi 2008). Chin EMG is used to measure how the muscle tone of the throat
and chin changes throughout the night and between different stages of sleep (Houston
Sleep 2018). Limb EMG is often used to detect restless leg syndrome and periodic leg
movements of sleep (PLMS).

Electrooculography (EOG)

EOG measures the movement of the eyes. In sleep studies, EOG is often used in com-
bination with EEG to better determine the stage of sleep the subject is in (Estrada et
al. 2006). During Rapid Eye Movement (REM) sleep, the brain waves recorded by the
EEG are almost identical to that of wakefulness, which makes it hard to distinguish be-
tween the two. However, the eyes move sporadically and rapidly from side to side during
REM sleep (hence the name), and thus, EOG is used alongside EEG to better distinguish
between wakefulness and sleep.

Other Signals

In addition to the aforementioned signals, other important signals for use in sleep studies
include a microphone and a body position sensor. The sound recorded by the microphone
is used to determine if the subject is snoring, which can further be used to classify ob-
structive sleep apnea. A body position sensor is used because sleeping on the side rather
than on the back reduces the number of apneic/hypopneic events drastically for some
people (Katz and Dinner 1992) and (George et al. 1988). If, for example, a subject is
sleeping on the side throughout the sleep study, they may not receive a diagnosis even
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though they do suffer from sleep apnea (i.e., AHI is lower than it should be). Captur-
ing body position can, therefore, yield useful information for practitioners, for example,
indicating that the subject should undertake an additional session.

Sampling Rates

The recommended sampling rates for the aforementioned signals during a sleep study can
be seen in Table 2.1 (Tripathi 2008).

Signal Desirable Minimal

EEG 500 Hz 200 Hz

ECG 500 Hz 200 Hz

EMG 500 Hz 100 Hz

EOG 500 Hz 200 Hz

Airflow 100 Hz 25 Hz

Oximetry 25 Hz 10 Hz

Nasal Pressure 100 Hz 25 Hz

Esophageal Pressure 100 Hz 25 Hz

Body Position 1 Hz 1 Hz

Snoring Sounds 500 Hz 200 Hz

Rib Cage and Abdominal Movements 100 Hz 25 Hz

Table 2.1: Recommended sampling rates for the different signals (Tripathi 2008)

2.4.3 Types of Sleep Monitors

There is a wide range of different sleep monitors available for use in sleep studies, but
not all of them employ the same set of physiological sensors. Additionally, the setting in
which the sleep monitor is used also varies. For example, some monitors require being
used in a sleep laboratory with continuous oversight of a trained sleep technologist, while
others can be used at home without guidance. As a result, four different classes of sleep
monitors have been defined. A sleep monitor may be classified as either Type I, II, III,
or IV (CleveMed 2018), depending on what kind of sensors it employs and the setting in
which it is being used. There are multiple definitions of these types, and the definition
given by the Center for Medicare and Medical Services (CSM) is as follows:

• Type I
A Type I monitor is required to be used in a sleep laboratory and must be manually
monitored throughout the night by a sleep technologist. It must at least include
the following signals: EEG, EOG, ECG, chin EMG, limb EMG, respiratory effort
at thorax and abdomen, nasal airflow, and pulse oximetry.

• Type II
A Type II monitor can be performed outside of a sleep laboratory without the
oversight of a sleep technologist. The required signals are the same as for a Type I
monitor.



16 Chapter 2. Sleep Apnea

• Type III
A Type III monitor can be used at home without guidance and must include signals
for airflow and respiratory effort, ECG/heart rate, and oxygen saturation.

• Type IV
A Type IV monitor can be used at home without guidance. The required signals
are not strictly defined, but it must have a minimum of three different signals, and
these signals must allow for direct calculation of an AHI or RDI score (which is
either airflow or thoracobdominal movement).

2.4.4 Polysomnography

The traditional way of diagnosing sleep apnea is by performing a sleep study known as
polysomnography (which is a Type I monitor). Polysomnography requires the subject to
spend the night in a sleep laboratory with a wide range of different physiological sensors
attached to the body (see Figure 2.4). In addition, the recorded signals must be manually
monitored throughout the night by trained medical personnel. Typical polysomnography
includes signals for EEG, ECG, chin EMG, limb EMG, EOG, respiratory effort from the
thorax and abdomen, nasal airflow, pulse oximetry, body position, and a microphone for
snoring sounds (Tripathi 2008). Polysomnography is not specifically designed to diagnose
sleep apnea but is widely used for many different kinds of sleep disorders. Sleeping in an
artificial and unfamiliar environment with this many sensors attached to the body can
for many people feel uncomfortable. It is not uncommon for people to not be able to fall
asleep at all during polysomnography, which renders the results useless. In addition, this
kind of sleep study is very resource demanding as it requires both expensive equipment,
a suited laboratory, and trained medical personnel to manually monitor and analyze the
results.

2.4.5 Portable Devices

As polysomnography is both very impractical, resource demanding, and uncomfortable
for the subjects, a range of different portable devices have been developed. Portable
devices, however, often have a much more limited set of sensors compared to traditional
polysomnography. Some only have one sensor, whereas others have a few more. While
most of these devices can be used at home without the help of trained personnel, the
recorded signals often require being manually evaluated by trained personnel before an
eventual diagnosis can be made. Many of these portable devices provide the ability
to automatically score apneic/hypopneic events and calculate the severity rating of the
disorder. Automatic scoring cannot give a definitive diagnosis, but only an indication. A
few examples of portable devices are listed below.

• ApneaLink Plus
ApneaLink Plus is a portable type III sleep monitor designed to be used at home
without the help of trained personnel (ResMed 2018). It records signals for respi-
ratory effort from the thorax, oxygen saturation, heart rate, and nasal flow. The
included software scores apneic/hypopneic events automatically, along with provid-
ing a severity rating of the disorder.

• Shimmer
Shimmer is a portable physiological platform (Shimmer 2018a). There is a range
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Figure 2.4: Illustration of traditional polysomnography (NIH 2013)

of different sensor configurations available for Shimmer, with the most extensive
configuration including sensors for ECG, EMG, respiratory effort from the thorax,
and an accelerometer. Shimmer is not explicitly designed as a sleep monitor, but
it can be used as one. Due to the lack of nasal airflow and oxygen saturation, it is
classified as a type IV monitor.

• NOX T3
NOX T3 is a complete medical grade respiratory type III sleep monitor made by
NOX Medical (2018). The sensors supported by NOX T3 are dual thoracoabdomi-
nal respiratory effort belts (both RIP and PZT types), ECG, nasal pressure, pulse
oximeter, accelerometer, snore sensor, and more. This device is widely used in
hospitals and sleep centers for the diagnosis of sleep-related disorders around the
world. Apneic/hypopneic events are scored automatically by the included software,
and the AHI and ODI severity ratings are provided.

2.4.6 Questionnaires

As a part of the initial risk assessment evaluation for sleep apnea, several questionnaires
have been developed. The most commonly used ones are known as the Epworth Sleepiness
Scale (ESS) (Johns 1991), G.A.S.P. (Mazeika 2005), STOP-BANG (Shahid et al. 2011),
and Berlin (Ahmadi et al. 2008). The number of questions in these questionnaires vary
from five (in G.A.S.P.) to ten (in Berlin) and include questions on subjects such as overall
sleepiness, snoring, weight, age, neck size, witnessed apneic episodes, and hypertension
(amongst others). It has been shown that questionnaires are a useful method of assessing
the risk of having OSA, but may be suboptimal when applied to the general population
(Hrubos-Strøm et al. 2011).



18 Chapter 2. Sleep Apnea

2.5 Discussion and Conclusions

Sleep apnea is both hard to suspect, uncomfortable to diagnose, and very resource de-
manding. As a result, the threshold for a potential patient to perform the first step
towards a diagnosis is currently too high, which makes it a severely under-diagnosed dis-
order. The consequences sleep apnea has on both the individuals as well as society as a
whole, makes it crucial to decrease the number of undiagnosed cases. During sleep apnea
monitoring, the most important parameters of interest are:

• Airflow
The presence of airflow is the most important parameter with respect to sleep
apnea monitoring. Sleep apnea is, after all, characterized as a disruption of airflow.
Airflow can either be measured directly at the nose and mouth or indirectly by the
expansion/contraction of the thorax and abdomen.

• Respiratory Effort
To classify an event as either obstructive or central, recording respiratory effort is
required. The gold standard for monitoring respiratory effort is with esophageal
manometry, but the more widely used technique is to externally monitor the ex-
pansion/contraction of the thorax and abdomen (e.g., RIP belts).

• Sleep and Wakefulness
The only reliable way of knowing if a subject is asleep or awake is with the use
of an EEG. EOG is used alongside EEG to better distinguish between wakefulness
and REM sleep. These signals are further used to monitor arousals associated with
breathing disruptions.

• Effect of Airflow Disruption
Oxygen saturation and ECG are both used to measure the effect the loss of oxygen
has on the body, rather than the disruption of airflow directly.



Chapter 3

Measuring Data Quality

This chapter presents an overview of how the quality of data can be measured, or more
precisely, quantified. The emphasis lies primarily on signals from respiratory effort sen-
sors, but the methods can be applied to other types of data as well. We begin in Sec-
tion 3.1 with a brief introduction to what it means to measure the quality of data, along
with various types of measurement scales and data quality dimensions. We continue in
Section 3.2 with a brief presentation of what physiological time series data is, how the sig-
nals from different sensors can be synchronized, and which data quality dimensions that
are relevant for physiological time series data. In Section 3.3 we present some examples
of signal quality indicators for pulse oximeters and ECGs, followed by various commonly
used accuracy metrics in Section 3.4. Next, we describe respiratory effort sensors in more
detail in Section 3.5, and finally, conclude the chapter in Section 3.6.

3.1 Introduction

The definition of quality is given by the Oxford English Dictionary as the standard or
nature of something as measured against other things of a similar kind; the degree of
excellence possessed by a thing (OED 2018a). This definition shows that the need to
describe the quality of an entity (or some thing) is primarily derived from the desire to
answer two questions: (1) how such an entity compares to other related entities, and (2)
how the entity performs at a specific task. The entity may in our case be any kind of
data that can have quality, such as the data in a database, the signal from a physiological
sensor, etc. The answers to these two questions are not mutually exclusive. In fact, the
answer to the second question can also be used to answer the first question, however, not
the other way around. A metric can be defined as the unit of measurement, and in other
words, what is being measured. Quality in itself can, in fact, be considered a metric, but
without a clear and concise definition of precisely what is being measured, such a metric
does not yield any valuable information.

There are many ways to measure the quality of an entity, and a preliminary method is
often a subjective evaluation represented by metrics such as bad, ok, good, better, best.
The main drawback with subjective evaluations like these is that they in the best case
only yield very rough estimates to the above questions, lack a lot of information, and can
vary significantly from person to person and from situation to situation. For example,
given a physiological sensor with a quality rated as ok. It is impossible to know exactly
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how good the sensor may be, or even if it is good enough for a specific task. That kind
of information is just not available. The concept of quantifying the quality is used to
reduce this subjective influence while increasing the accuracy and amount of information
in the given metric. For example, in the case of physiological sensors, representing the
accuracy as ± 6% yields a lot more information compared to what ok does. It is clearly
defined exactly how accurate it is, and its accuracy can even be compared directly to
other sensors.

The important concept is, however, not quantification per se, but rather the scale of mea-
surement the given metric is based on. In other words, the measurement scale of a metric
defines how the metric can be compared and what mathematical operations it supports.
The different scales we discuss further are known as nominal, ordinal, interval, and ratio,
where each scale is an extension of the preceding scales. The supported mathematical
operations for comparability for these scales are given as equality/inequality (=, 6=), rank-
ordering (<,>), difference (+,−), and ratio (∗, /), respectively. The interval scale is, in
fact, the first of these scales that is quantitative because information about the difference
between each value is clearly defined. As the ratio scale extends the interval scale, it too
defines a quantitative measurement. The exact details of these measurement scales are
described in more detail in Section 3.1.1.

Merely representing the quality by a number is, however, not the same as quantifying the
quality. The quality can be represented by numerical symbols without giving meaning
to their numerical values. Take the school grades 1–6 as an example. One cannot say
definitively that the grade 4 is twice as good as the grade 2 because the grades are usually
given based on a teacher’s subjective evaluation. One knows which grade is considered
better, but not exactly how much better one grade is compared to another. In this specific
case, the measurement scale is ordinal because only the rank-order of the possible values
is defined. Defining exactly what measurement scale the metric is based on is, therefore,
required for the quality of two related entities to be comparable.

Defining quality itself as a metric is vague and imprecise because what quality means
depends very much on the situation and context in which it is defined. Additionally,
there needs to be something concretely defined to count if a quantitative measurement
is the goal. For example, a student’s performance on a simple math test is trivial to
quantify. One may simply use the number of correctly answered questions as the metric
for performance (or quality). This measurement is even ratio scaled because a student
with a score of 20 did twice as good as a student with a score of 10. A quantitative metric
for a student’s performance on an English essay, however, is not nearly as trivial to define.
One may define the number of grammar mistakes as the quantitative metric, but grammar
is yet only one (smaller) aspect of the overall quality of an essay. In this case, the overall
quality consists of multiple dimensions, where grammar may be one, content another,
and correct use of the genre a third. Regarding data quality, many different dimensions
can be defined. The quality of a database can, for example, be measured based on how
complete it is (i.e., how much information it is lacking), how accurate the data in the
database is, and how up-to-date the data in the database is. How precisely one is able to
define such dimensions determines what measurement scale the metric can be based on
and whether or not it is quantitative. Several top-level generic data quality dimensions
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have already been defined, which we describe further in Section 3.1.2.

To summarize, there are primarily two factors that contribute to how well the aforemen-
tioned questions can be answered. The first being the measurement scale of the metric,
which describes how one might compare the quality with other related entities. Second,
a precise definition of what is being measured (i.e., dimension/metric) is required to de-
termine an entity’s performance at a given task. A perfect metric can answer both of
these questions precisely; however, such a metric might not exist or may be infeasible to
achieve in certain situations.

3.1.1 Measurement Scales

The scale of a metric defines its comparability, and in other words, what mathematical
and statistical operations it supports. The measurement scales we describe further were
first introduced by Stevens (1946) as nominal, ordinal, interval, and ratio. There have
later been defined other scales as well, but these cover mostly edge cases and are not
relevant to our situation. The mathematical operations for comparability for these scales
include equality/inequality (=, 6=), rank-order (<,>), difference (+,−), and ratio (∗, /).
In addition, their support for statistical measures of central tendency also varies (e.g.,
mode, median, mean, etc.). These measurement scales are defined as follows:

Nominal The nominal scale is at the bottom of the measurement scales and contains
the least information regarding how two entities compare. When a metric is nominally
scaled, only the equality/inequality of the values can be compared. It does, in other words,
just support these mathematical operations for comparability: =, 6=. It is not possible
to determine which entity is better or which is worse at all. A nominal measurement is,
in other words, a measure of class and can only be used for classification purposes. The
supported measure of central tendency is, thus, only mode.

Ordinal The ordinal scale extends the nominal scale by adding information about the
rank-order of the possible values. The order becomes meaningful and which entity is
considered better is, thus, known. However, one still cannot know how much better one
value is compared to another because the difference between the values is yet unknown.
The only supported mathematical operations for comparability are: >,<,=, 6=. Taking
the grades A-F as an example. One knows that the grade A is better than the grade
B, but the difference between the grades A and B might be the same as the difference
between B and D for all one knows. An ordinal scaled measurement supports both mode
and median as measures of central tendency. Because the difference between the values
is missing, calculating the arithmetic mean or standard deviation are meaningless.

Interval The interval scale extends the ordinal scale by adding information about the
difference between the possible values. The interval scale is, in fact, the first of these
scales that defines a quantitative measurement. With an interval scale, the difference
between the values is clearly defined, but a clear definition of zero is, however, still
lacking. This means that one cannot take ratios and conclude that anything is twice as
good or bad as anything else. The supported mathematical operations for comparability
are: +,−, >,<,=, 6=. An example of this measurement scale is the degrees Celsius.
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The temperature change between 10℃ and 20℃ is the same as the temperature change
between 30℃ and 40℃ (i.e., 10℃ warmer in each case). However, the temperature 40℃
is not twice as hot as 20℃. If it were, then that would imply that 0℃ is the total absence
of temperature, which is not the case. An interval scaled measurement supports all
the aforementioned measures of central tendency along with the arithmetic mean and
standard deviation.

Ratio A ratio scaled measurement has the same properties as an interval scaled mea-
surement, but with the addition of having a clear definition of zero. This means that one
can take ratios and conclude that a sensor with an accuracy score of 10 is twice as accu-
rate as a sensor that only has a score of 5. The supported operations for comparability
of a ratio scaled metric are: ∗, /,+,−, >,<,=, 6=, and all the aforementioned measures
of central tendency are supported.

In other words, the ratio scale extends the interval scale, which in turn extends the ordinal
scale, which extends the nominal scale. As such, it becomes clear that the ratio scale
is the optimal scale in terms of properties, but it is, on the other hand, not possible to
design a metric which is ratio scaled in all situations. An example of this is with user
satisfaction, which is inherently subjective. Given a metric with the values Not Satisfied,
Quite Satisfied and Very Satisfied, it is clear which of these values that are considered
”better,” but not the difference between them. In conclusion, the quality of an entity
must at least be represented as an interval scaled metric to be considered quantitative.
The closer to a ratio scaled metric the better, but not all situations allow for it (or need
it).

To determine which measurement scale a given metric is based on, one can check what
transformation functions the measurement supports. A transformation function is a
mathematical function which transforms the values of the measurement to other values.
Such a function is supported if it does not change the measurement results according to
the given scale. All the scales support multiplication and division by a constant. This
changes the size of the units but does not alter the ratios, intervals, rank-orders, or the
classes of the measurements. If the scale supports addition or subtraction, it cannot
be ratio scaled because the values’ relative ratios would change. If the scale supports
squaring of the values, then it cannot be interval scaled. By squaring the values, the
interval between the values changes, but their rank-order, however, remains intact. If the
scale supports substituting one value for any other, then it cannot be ordinally scaled, as
that would change the rank-order of the values. The nominal scale is the only possibility
left should all the transformations fail.

3.1.2 Data Quality Dimensions

When quantifying or assessing the quality of data, it is common practice to separate
and evaluate multiple smaller dimensions of that data. A Data Quality (DQ) dimension
describes a feature of some data which can be measured, assessed, counted, etc. to
determine the quality of the data. In other words, a DQ dimension can be a feature
of a data item, a sensor signal, a record, a dataset or a database that can be measured
to understand its quality. Askham et al. (2013) have defined and published six generic
best practice dimensions for use in data quality assessment, known as Completeness,
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Uniqueness, Timeliness, Validity, Accuracy, and Consistency. The motivation behind
this work is mainly to reduce confusion and uncertainty amongst practitioners when
considering data quality. Previously, many practitioners have used different terms to
describe the same DQ dimension. For example, the terms Accuracy and Correctness
have often been used interchangeably to describe the same dimension. The standard
data quality dimensions are defined as follows:

Completeness The completeness dimension describes the proportion of the actual
stored data in relation to the potential 100% complete. In other words, completeness
measures the absence of missing data in percentage (e.g., blank, null, or empty values).
For example, given a database with the contact details of 200 employees where the e-mail
addresses of nineteen of these employees are missing. The completeness of this dataset
(of email addresses) is calculated to be 200−19

200
= 0.905, or in other words, 90.5% com-

plete. The general formula can be seen in Equation 3.1, where |entities| is the number
of entities representing the potential 100% complete, and |entitiesdataset| is the number
of entities in the dataset.

Completeness =
|entitiesdataset|
|entities| × 100% (3.1)

Uniqueness There should not be more instances of an entity in a given dataset than
what is present in the real world. If there only exists one instance of an entity in the
real world, then there should also just exist one instance of that entity per dataset. For
example, if a student is recorded as both Eissonhour and Eisenhower in the school’s
database, the uniqueness dimension is not perfectly fulfilled. Uniqueness is given as a
percentage and can be calculated after the formula in Equation 3.2, where |entitiesdataset|
is the number of entities in the dataset and |entitiesreal world| is the number of real-world
entities being described by the given dataset.

Uniqueness =
|entitiesreal world|
|entitiesdataset|

× 100% (3.2)

Timeliness The timeliness dimension describes how up-to-date the data is. How this
dimension is assessed varies between different contexts. It may be assessed by the pro-
portion of data that is up-to-date, or it can be assessed by how old an entity is (i.e.,
continuous). For example, it is not unlikely for a student to change their telephone num-
ber. Thus, timeliness can be represented by the proportion of telephone number records
in the dataset that are still up-to-date. The maximum age of an entity must be cho-
sen depending on the context, and one may, for example, regard the maximum age of a
student’s telephone number to be one year. A telephone number is then regarded as out-
of-date once it exceeds this age. The formula giving the proportion of up-to-date entities
is given in Equation 3.3, where |entitiesup to date| is the number of up-to-date entities, and
|entities| is the total number of entities in the dataset.

Timeliness =
|entitiesup to date|
|entities| × 100% (3.3)
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Validity The validity dimension describes the degree to which the data is valid (e.g.,
by conforming to the intended syntax). For example, should a date be encoded as
DD/MM/YYYY or MM/DD/YYYY ? Can a postal code be a negative number? Can the
heart rate of a human be negative? Validity is given as a percentage of how many of the
entities in the dataset that are regarded as valid. The formula is given in Equation 3.4,
where |entitiesvalid| is the number of valid entities, and |entities| is the total number of
entities in the dataset.

V alidity =
|entitiesvalid|
|entities| × 100% (3.4)

Accuracy The accuracy dimension describes the degree to which the recorded data
accurately describes the real world entities it represents. In other words, the accuracy of
an entity is the distance between what it is, and what it should be. For example, if the
real name of a person is Eissonhour and the entity is stored as Eisenhower, the accuracy
can be described as 60%. This is calculated using a domain-specific distance function. In
this example, the distance is calculated by using the Levenshtein edit distance function,
which represents the minimum number of changes required to transform one string into
another. For the Eissonhour/Eisenhower example, the edit distance is four. Since the
number of characters in the longest of the two strings is ten, the accuracy is calculated as
1− 4

10
= 60%. The accuracy may be represented as the proportion of accurate entities in a

dataset or as an aggregation of the domain-specific distance function. The formula for the
former is given in Equation 3.5, where |entitiesaccurate| is the number of accurate entities,
and |entities| is the total number of entities in the dataset. An example formula for the
latter is shown in Equation 3.6, where entities are all the entities in the dataset, truth
their corresponding ground truth counterparts, and d(x, y) a domain-specific distance
function.

Accuracy =
|entitiesaccurate|
|entities| × 100% (3.5)

n = |entities|

Accuracy =
1

n

n∑
i=0

d(entitiesi, truthi)× 100%
(3.6)

Consistency The consistency dimension describes the percentage of entities stored in
one dataset that are consistent with the same entities stored in another dataset. For ex-
ample, an organization may have multiple datasets, and the home address of an employee
should be equal to and stored in the same format across all these datasets. The general
formula is shown in Equation 3.7, where |entitiesconsistent| is the number of entities that
are deemed consistent across datasets, and |entities| is the total number of entities in the
given dataset.

Consistency =
|entitiesconsistent|
|entities| (3.7)
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Figure 3.1: Example of time series

3.2 Physiological Time Series

A time series is, simply put, any variable y with an added time dimension x. The variable
y changes value in relation to time, and in a time series, what the value of y is at a given
point in time is indexed by the time dimension x. Take outdoor temperature as an
example. The temperature may be 10℃ at 4 a.m. and 23℃ at 2 p.m. The temperature
is represented by the y variable and time by the x variable. Both temperature and time
are in reality continuous variables, which means that the number of values in the interval
between any two values is infinite. Recording continuous variables is infeasible to do,
and instead, discrete samples of both variables are captured, usually at equally spaced
points in time. This is referred to as sampling, and the rate/frequency of the sampling
is referred to as the sampling rate or sampling frequency. The sampling rate may be
expressed in Hertz, e.g., 20 Hz means 20 samples every second, or as an interval, e.g., one
sample every 50 milliseconds.

An example of a time series can be seen in Figure 3.1, with the discrete samples of the
recording of temperature over time in Figure 3.1a. In this example, each sample is taken
at a 30-minute interval. Because these are discrete samples of continuous variables, the
values between any two samples are lost. These missing values may be partially restored
through interpolation, which means guessing what the values may have been based on
the nearby samples. One simple form of interpolation is called linear interpolation, which
means to connect each adjacent sample with a straight line. An example of linear in-
terpolation can be seen in Figure 3.1b. There are other algorithms for interpolation as
well, for example, fitting a quadratic or cubic polynomial between each point. Interpo-
lation of higher order makes the line between each point smoother compared to linear
interpolation, and maybe more accurate depending on the type of data.

The signal from a physiological sensor, for example, an ECG, pulse oximeter, or a respi-
ratory effort belt, is just a time series like the example in Figure 3.1. The actual signal
from the sensors is represented by the y variable and the time at which the values are
recorded by the x variable. However, the nature of the signals varies from sensor type
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to sensor type. For example, capturing ECG data (i.e., heartbeats) requires a somewhat
high sampling rate. Even though a heartbeat may occur only once per second, a sampling
rate of 1 Hz is not nearly high enough to capture the shape of the heartbeat (also referred
to as the QRS-complex). Oxygen saturation, on the other hand, is a much slower process,
which means that a sampling rate of 1 Hz may be enough.

3.2.1 Synchronizing Signals

Before any two signals can be compared, they must be synchronized. There are mainly
two parts to synchronization: (1) the samples need to be captured at the same instant
in time, and (2) the sensors’ internal clocks must be synchronized. For example, given
two arbitrary sensors with a sampling rate of 10 Hz. If these sensors are not started at
exactly the same time, then none of the captured samples will ever be captured at the
same instant in time. Every sample from one signal may end up right between two samples
of the other signal. There is no way to perfectly synchronize the signals in software after
they are captured, and the precision is determined solely by the sampling rate. When
the sampling rate is 10 Hz, then the precision of the synchronization is within ±50ms.
Interpolation may be used to increase the precision to a certain extent by upsampling
the signals, but it will never be perfect. If the sensors, on the other hand, are started
at the exact same time, the signals are still not synchronized if their internal clocks are
not synchronized. In this case, a perfect synchronization can, in fact, be achieved in
software. Both signals’ y values are in this case already synchronized, and only their time
dimension (x values) needs to be adjusted.

Starting the signal capture of two sensors at the exact same time is impossible to do man-
ually. A perfect synchronization can, in other words, only be achieved through hardware
methods. Some sensors do have support for hardware synchronization, which means that
they exchange information about when to capture a sample, and synchronize their inter-
nal clocks. Hardware synchronization is, however, rarely supported, and especially not so
with sensors from different manufacturers. Synchronization through software techniques
is, therefore, the more common approach.

One way to perform synchronization in software is with the use of cross-correlation (Silva
et al. 2015). Cross-correlation measures the similarity (covariance) between two time se-
ries for every possible displacement of one relative to the other. After calculating the
similarity for every possible displacement, the displacement where the signals are most
similar (i.e., covariance is maximum) is assumed to be the correct point of synchroniza-
tion. The formula for cross-correlation is shown in Equation 3.8, where ŷ is the first
signal, y the other signal, and d∗ the displacement index of the synchronization point.

d∗ = arg max
d ∈ Z

(
+∞∑

i=−∞

ŷ[i]y[i+ d]) (3.8)

This particular definition of cross-correlation assumes that the sampling rates of the two
signals are equal. Although, it can quite easily be adjusted to work with signals of
different sampling rates as well by changing the indexing. The use of cross-correlation
for synchronization comes with a requirement. It assumes that the signals are indeed



3.2. Physiological Time Series 27

most similar at the correct synchronization point. In the presence of, for example, noise,
this may not be the case. Cross-correlation is, therefore, more suited for some signals
compared to others. ECG and respiratory signals, for example, have the advantage that
the heartbeats and breaths are somewhat distinct features of the signals. The oxygen
saturation signal from a pulse oximeter, on the other hand, has less distinct features to
base the synchronization on.

Equalize Sampling Rates

To equalize the sample rates of time series, one would either have to perform a down-
sampling, upsampling, or a combination of the two. An upsampling may be performed
by interpolating the signal, and then pick new samples from the interpolated values. To
avoid having to guess too many of the missing samples, it is often preferred to downsam-
ple rather than to upsample a signal. There are many ways to downsample a signal, and
one of the more simpler ways is to remove every nth sample from the signal. For example,
to downsample a 1000 Hz time series down to 500 Hz, one removes every other sample.
In cases where the original sampling rate is not divisible by the new sampling rate, a
new sample may need to be inserted between two existing samples, in which case taking
the mean value of the nearby samples is a common approach. Taking the minimum,
maximum, or sum are also common approaches, and the best method depends on the
type of signal. Downsampling is, however, often a part of a process known as decimation.
By just downsampling a signal, there may still be traces of higher frequency bands left
in the signal, which may cause aliasing (depending on the type of signal in question).
The process of decimation, therefore, often consists of filtering out the higher frequency
bands before the downsampling is performed.

3.2.2 Data Quality Dimensions

The standard DQ dimensions described in Section 3.1.2 are regarded as generic, and as
such, most likely need to be customized to fit the intended context. In addition, all
of the dimensions may not even be relevant in all situations. Some of the dimensions,
like uniqueness and consistency, are mostly tailored for the semantic of a dataset or a
database, and not so much for individual entities by themselves. In this project, we mainly
want to measure the quality of physiological time series data. As such, the standard DQ
dimensions relevance to physiological time series data are discussed further below.

Completeness In the context of physiological time series data, completeness can be
seen as the difference between the actual length of the time series in relation to its
intended length. For example, a user may be supposed to monitor respiratory signals for
eight hours, but the recording only contains six hours of data. In this case, the data can
be seen as 75% complete. In addition, the sensor may be taken off for a short period or
repositioned in the middle of the session, which may corrupt the data. In this case, that
data can either be seen as invalid or be removed. In case of the latter, the completeness
is affected. Another example is with the use of wireless sensors (e.g., Bluetooth), which
may cause the signal to drop or become weak at certain points. For instance, if the user
goes to the bathroom in the middle of the session, depending on the range of the signal,
the connection might drop. Now the question of whether this situation should impact
the calculated signal quality or not arises. One may argue that as the patient was awake
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during the incident, and sleep apnea is monitored, the right thing to do may be to exclude
the incident from the quality analysis altogether. This assumes, however, that a signal
drop associated with an event like that can be distinguished from a signal drop happening
as the patient is sleeping in bed (which should be taken into consideration).

Accuracy When measuring the accuracy of an entity, it needs to be compared against
its real-world counterpart. In the context of physiological time series data, the accuracy
of a signal is, simply put, the distance between it and either a ground truth (if available)
or a gold standard signal. Defining how the distance between different signals should
be calculated, however, is not a trivial task. The mere difference between the values of
the two signals is one option, but that requires that both signals are in the same units
of measurement to be meaningful. Moreover, the raw signal may contain parts that are
irrelevant for the performance of a sensor in a given context. A raw signal comparison
may, therefore, not reflect the sensor’s actual performance. We describe a number of
common statistical accuracy measures further in Section 3.4.

Validity The validity dimension can be used to represent which parts of a time series
that are deemed valid and invalid, or in other words, the proportion of time the signal is
valid. Determining what a valid signal is may seem trivial on the surface, but it can, in
fact, be rather obscure. In its essence, the validity of a signal comes down to what the
signal is expected to be (or behave) like in relation to what it actually is. For example, the
oxygen saturation in the blood is restricted to the range 0–100%. Although, an oxygen
saturation which is too low (e.g., less than 50%) is most certainly wrong if the patient
is indeed still alive and in a normal condition. Another example is a flat-lined pulse. If
a patient is alive, then a flat-lined pulse most certainly means that the signal is invalid.
In contrast to accuracy, the measure of validity can be a purely intra-signal measure.
Meaning that no additional ground truth/gold standard signal is required to measure the
validity of a signal. As a result, the validity dimension is very suited for giving real-time
quality feedback or indications to the user. Validity measures for sensor signals are also
referred to as signal quality indicators. We describe further what such indicators look
like and how they may be used, in Section 3.3.

Excluded Dimensions The Uniqueness, Timeliness, and Consistency dimensions are
not relevant when assessing the quality of individual time series. Since we want to assess
the quality of a given time series, and not how that time series is stored in a database,
it is irrelevant whether it is unique/consistent or not. Physiological time series data will
also not become out-of-date because it represents reality at the specific point in time in
which it was captured.

3.3 Signal Quality Indicators

The accuracy of a sensor is measured by the distance between what it is and what it
should be, based on a ground truth or gold standard signal. Validity, on the other
hand, is a measure of what the signal is expected to look (or behave) like in relation to
what it actually is. As a result, validity measures are rarely quantitative in the form
of knowing exactly how valid the signal might be. It is more often based on a boolean
threshold, either it is valid, or it is not. Validity measures are also known as signal quality
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indicators, which are various indicators in a signal that can be used to describe its validity.
Whenever the signal takes on unexpected values or behavior, then it is suspected to be
invalid. As mentioned, what a valid signal actually means is very dependent on the type
of sensor in question. Therefore, we describe in this section several examples of signal
quality indicators in the context of pulse oximetry and ECG signals. These examples are
originally described in a patent by Baker and Richards (2005), and a brief description is
given as follows:

Overlap Put shortly, a pulse oximeter uses two wavelengths of light, red and infrared,
to determine the oxygen saturation in the blood. Hemoglobin in the blood carrying oxy-
gen absorbs these wavelengths of light differently than hemoglobin not carrying oxygen,
and their ratio of absorption is used to derive the oxygen saturation level. The overlap
indicator determines the degree to which the signals from the two different wavelengths
overlap. Overlap is an indirect measure of the extent to which the two wavelengths
probe the same volume of tissue. If, for example, the sensor is misplaced or if there is
dust/hair on the sensor, then the two wavelengths may not probe the same tissue. The
more the various wavelengths differ, the more the quality is known to degrade. There are
many algorithms to calculate overlap, and an example is given in Equation 3.9, where
the summation can span from one to multiple seconds.

R =
In(Redmax/Redmin)

(IRmax/IRmin)

Overlap =

∑
min(IRt − IRmin, (Redt −Redmin)/R)∑

IRt − IRmin

(3.9)

Min-Max-Min The blood pressure between heartbeats is known as diastolic pressure,
whereas the blood pressure during a heartbeat is known as systolic pressure. During a
cardiac cycle (heartbeat), it is a known fact of the human physiology that it should take
less time for the blood pressure go from minimum (diastolic) to maximum (systolic), than
from maximum (systolic) and back to minimum (diastolic). If this is not the case for a
signal, then there has to be a quality problem. The min-max-min indicator represents
the time ratio between the duration of going from diastolic pressure to systolic pressure in
relation to going from systolic pressure and back to diastolic pressure. This indicator can
be calculated as shown in Equation 3.10, where systole is the time of systolic pressure
during a cardiac cycle, diastolestart is the time of diastolic pressure at the start of a
cardiac cycle, and diastoleend is the time of diastolic pressure at the end of a cardiac
cycle. If x is more than or equal to 1, then there is a quality problem.

x =
systole− diastolestart
diastoleend − systole

(3.10)

Path Length The path length indicator measures the frequency content of the signal
relative to the pulse rate. If the frequency content of the signal is higher than the pulse
rate, then that means that it is being affected by something other than the pulse itself.
A high frequency means that something is changing in the measurement, and if it is not
caused by the pulse rate, then it is most likely caused by physical movement of the sensor.
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It is known that physical movement is a common error source of pulse oximeters. An
example of how path length can be calculated is given in Equation 3.11.

PathLength =

Samples in Pulse−1∑
i=0

|IRt−i − IRt−i−1|

Pulsemax − Pulsemin

(3.11)

IR nAv This indicator measures the infrared (IR) light level of the sensor. A low in-
frared light level is often caused by misplacement or by placing the sensor over something
other than skin (e.g., dust/hair). After normalizing the light level for the specific light
source in the sensor, it can be determined if the light level is lower than it should be.

3.4 Accuracy Metrics

The accuracy dimension requires, as mentioned, a domain-specific distance function.
Defining such a function is not trivial for all types of data. In this section, we describe
some common statistical metrics and distance functions that can be used to determine
the accuracy of an entity.

3.4.1 Distance

A distance function d(x, y) is a function that satisfies the following requirements (Garcia-
Molina et al. 2008, pp. 1125–1126):

1. d(x, y) ≥ 0 for all points x and y

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) for any points x, y and z (triangle inequality)

That is, the distance from a point to itself is 0, and the distance between any
two different points is positive. The distance between points does not depend
on which way you travel (symmetry), and it never reduces the distance if you
force yourself to go through a particular third point (the triangle inequality).

One of the most common distance functions is known as the Euclidean distance (ibid.).
This distance function is a measure of distance between points in a Euclidean space,
or more simply put, an n-dimensional space. For a simple example, consider the 2-
dimensional space shown in Figure 3.2a. The two points in this diagram have the co-
ordinates (2,2) and (3,3), and their Euclidean distance is illustrated by the straight line
connecting the two points. One may notice that for 2-dimensional points, this distance is
actually the same as the length of the hypotenuse of a right-sided triangle following the
Pythagorean theorem. The formula for Euclidean distance can be seen in Equation 3.12,
where x and y are two points in an n-dimensional space.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.12)
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Figure 3.2: Difference between Manhattan and Euclidean distance

Another very common distance function is the Manhattan distance (ibid.). This distance
function is closely related to the Euclidean distance, and their difference can be seen in
Figure 3.2a and Figure 3.2b. The name Manhattan distance stems from how it relates to
traveling between the tall buildings in the streets of Manhattan (another common name
for this measure is the city block distance). The formula for the Manhattan distance can
be seen in Equation 3.13, where x and y are two points in an n-dimensional space.

d(x, y) =
n∑

i=1

|xi − yi| (3.13)

The difference between the Euclidean and the Manhattan distance functions relates to
how negative differences are handled. In the Manhattan distance, negative differences
are directly converted to positives by taking the absolute difference between the values.
In the Euclidean distance, negative differences are handled by squaring, which always
results in a positive value. This squaring, however, introduces a side effect such that the
differences are no longer in the same units as the original values. To convert the distances
back to the units of the input, the square root is applied.

More generally, these distance functions can be described by the formula shown in Equa-
tion 3.14, where x and y are two points in an n-dimensional space, and r is the order
of the distance function (ibid.). Using this formula, the Manhattan distance is of or-
der one, whereas the Euclidean distance is of order two. This definition of the distance
function is also known as the Lr-norm. An interesting property of this definition is
that as r → ∞, the magnitude of the largest distance gets so large that all other dis-
tances become negligible. In other words, as r → ∞, the result of d(x, y) becomes
max(|x1 − y1|, |x2 − y2|, ..., |xn − yn|).

d(x, y) = r

√√√√ n∑
i=1

|xi − yi|r (3.14)
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Mean Absolute Error and Root Mean Squared Error

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are two very
common statistical distance metrics which are closely related to the Manhattan and
Euclidean distance functions, respectively (Willmott and Matsuura 2005). The difference
is mainly that instead of taking the sum of distances, the mean of the distances is taken.
The formula for MAE and RMSE, on the form related to the formula for Lr-norm, is
shown in Equation 3.15. The order (r) is one for MAE, and two for RMSE.

d(x, y) =

r

√√√√ n∑
i=1

|xi − yi|r

n
(3.15)

There are, however, some semantic differences between MAE/RMSE and the Lr-norm
distance measure. MAE and RMSE are statistical measures used to measure the mean
error between the samples of a prediction model and the actual values. In other words, x
and y are not points in an n-dimensional space but usually samples over a time dimension.
An example of this is illustrated in Figure 3.3. Both MAE and RMSE calculates the
mean of the errors (shown in red) between a prediction model and the actual values. The
simplified formulas for MAE and RMSE can be seen in Equation 3.16 and Equation 3.17,
respectively, where ŷ are the predicted values of a model, y are the actual values, and n is
the number of samples (ibid.). Although not used in these formulas, both the predicted
(ŷ) and actual (y) values often have an associated time dimension as the x-axis.

MAE =

n∑
i=1

|ŷi − yi|

n
(3.16)

RMSE =

√√√√ n∑
i=1

|ŷi − yi|2

n
(3.17)

The difference between MAE and RMSE lies in the definition of how errors (or differences)
are penalized (ibid.). In MAE, errors of all sizes are weighted equally, meaning that an
error of four is twice as bad as an error of two. All errors are, in other words, penalized in
an additive fashion. For the RMSE metric, larger errors are penalized more than smaller
ones. An error of four is no longer twice as bad as an error of two, but actually four times
as bad (4

2

22
= 4). One or a few larger errors affect the score of RMSE much more compared

to MAE for the same input. Which of these metrics one should choose depends upon
whether errors should be penalized in an additive or exponential fashion. If all errors
should be weighted equally, then MAE is the better choice. The score of RMSE is always
equal to or more than the MAE score for the same input, and never lower. The only case
where they are equal is when the magnitude of all errors are equal.

Mean Percentage Error

Another common related metric is the Mean Percentage Error (MPE), and all of its
variations (Wikipedia 2018b). The difference between MPE and, for example, MAE or
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RMSE is that the raw errors are converted to percentages. The formula for MPE can
be seen in Equation 3.18, where ŷ are the predicted values of a model, y are the actual
values, and n is the number of samples. A variation of MPE (and more commonly used)
is the Mean Absolute Percentage Error (MAPE) (formula shown in Equation 3.19), with
the difference being that all errors are converted to positive values (Stellwagen 2011).
With MPE, negative and positive errors cancel out, which is prevented in MAPE.

MPE =
1

n

n∑
i=1

ŷi − yi
yi

× 100% (3.18)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣× 100% (3.19)

There are a few caveats worth mentioning in relation to both MPE and MAPE. The first
is that the penalty for errors where the actual value is lower is higher compared to when
the actual value is higher. For example, consider the predicted value five with the actual
value six. The error is, in this case, one, and the percentage error is 16.66% = 1

6
. Now

consider the predicted value 24 with the actual value 25. Again, the error is one, but the
percentage error is now 4% = 1

25
. As seen, the penalty of the error depends upon what

the actual value is. Another caveat of these metrics is that whenever the actual value is
zero, the percentage error becomes undefined.

An alternative to MPE and MAPE is the Weighted Absolute Percentage Error (WAPE)
(also known as the MAD/Mean Ratio) (Stellwagen 2011). Instead of calculating the
percentage errors relative to the actual value at the given point, all percentage errors are
calculated relative to the mean of all the actual values. This way, an error of one results
in the same percentage error no matter what the actual value may be. The formula for
WAPE can be seen in Equation 3.20, where ŷ are the predicted values of a model, y are
the actual values, y is the mean of the actual values, and n is the number of samples.
This metric is, in fact, the same as the MAE metric divided by the mean of the actual
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values (WAPE = MAE
y

). Mean Absolute Deviation, or MAD for short, is another name

for MAE, and hence why the WAPE metric is also known as the MAD/Mean Ratio.

WAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiy

∣∣∣∣× 100% (3.20)

Coefficient of Determination

The Coefficient of Determination (also known as r2 or R-squared) measures the pro-
portion of variation in one variable that can be described by another variable (Minitab
2017). The variance of a variable is a measure of the average squared distance of the
values from the variable’s mean. Take a variable with the values [1, 2, ..., 100] as an exam-
ple. The mean of this variable is 50.5, which means that the average distance from 50.5
is 25. This example demonstrates the average absolute difference from the mean. The
variance, however, is calculated as the squared difference, which might be a little harder
to conceptualize, but the logic is, nonetheless, transferable. The formula for variance can
be seen in Equation 3.21, where y is the variable, y is the mean, and n is the number
of samples. The coefficient of determination measures, as mentioned, the proportion of
variance in one variable that can be described by another variable. The squared difference
between two variables is the variation in one variable that is not described by the other
variable. In other words, this difference in relation to one of the variable’s variance is
the proportion of variance that is not described by the other variable. This means that
the rest of the proportion is described. The formula for r2 can be seen in Equation 3.22,
where y is the first variable, y its mean, and ŷ the other variable.

variance =

n∑
i=1

(yi − yi)2

n
(3.21)

r2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2
(3.22)

The first variable (y) is often the actual values of some measurement and ŷ the associated
predicted values. In this case, the coefficient of determination describes the accuracy of
the prediction in relation to the actual values. For example, an r2 score of 0.98 means
that the prediction ŷ has an accuracy of 98%. The name r2 stems from the fact that,
in some cases, the coefficient of determination equals the squared value of the Pearson
Correlation Coefficient (which is described in Section 3.4.2). One example of such a
case is when the prediction is derived from a least-squares regression based on the actual
values. The r2 score can, in some cases, be negative, which happens whenever the squared
difference between the two variables is larger than the variance in the first variable.

3.4.2 Correlation

All the distance metrics described above require both variables in question to be in the
same units of measurement. Take respiratory effort belts as an example. How tight such
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Figure 3.4: Example of how different values of Pearson’s r correspond to relationships
(Boigelot 2011)

a belt is fastened around a subject determines the baseline distraction value. If the belt
is fastened rather tight around the subject, it may record the amplitude of breathing in
the range of 60–70% distraction, and when it is fastened more loosely, it may record the
amplitude of the same breathing in the range of 20–30% distraction. The breathing may
be accurately captured in both cases, even though the unit of measurement is different.
Directly measuring the distance between the signal from both cases is, therefore, mean-
ingless. In cases like this, it may be more appropriate to measure accuracy based on the
relationship between the variables. If the relationship, for example, is perfectly linear,
then both variables can be converted to a common unit of measurement.

Pearson Correlation Coefficient

The Pearson Correlation Coefficient measures the strength of a linear relationship be-
tween two variables x and y (Kent State University 2018). If a perfect linear relationship
exists between the two variables, then it is possible to perfectly predict one variable from
the other using the linear equation yi = axi + b, where a and b are constants. The value
of this metric is often referred to as r, or Pearson’s r, and is calculated as the covariance
between two variables divided by the product of their standard deviations. The formula
can be seen in Equation 3.23, where x is the first variable, y is the second variable, and
x and y are their mean values, respectively. The result is a value between minus one and
one, where one means a perfect positive linear relationship, minus one means a perfect
negative linear relationship, and zero means no linear relationship. An example showing
how different linear relationships are scored can be seen in Figure 3.4.

r =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1

(xi − x)2(yi − y)2
(3.23)

The Pearson Correlation Coefficient does not assume the data to be normally distributed,
but if the data is highly skewed, then the correlation coefficient will also be highly skewed.
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Another factor worth considering is that the score is very much affected by outliers. One
or a few large outliers can, in fact, make an otherwise obvious relationship get a very low
r score, which may then be interpreted as no relationship.

Spearman’s Rank-Order Correlation Coefficient

The Spearman’s Rank-Order Correlation Coefficient (also known as rs) measures the
strength of a monotonic relationship between two variables (Spearman 1904). A mono-
tonic relationship is perfect if one variable always increases as the other increases, or
always decreases as the other increases. The degree of the increase or decrease is not
constant, but the direction remains monotonic. The formula for this measure is actually
the same as the formula for Pearson’s r (shown in Equation 3.23), but with one additional
step. Before the formula for Pearson’s r is applied, all values are transformed into their
corresponding rank-values. For example, consider a variable with the values [8, 7, 5, 9, 6].
The rank-order transformation of these values is [8, 7, 5, 9, 6] => [4, 3, 1, 5, 2]. The general
formula is shown in Equation 3.24, where x and y are two variables, and n is the number
of values. Rxi

is the rank of i-th x value, Rx is the mean of all the ranks in x, and the
same applies analogously to y.

rs =

n∑
i=1

(Rxi
−Rx)(Ryi −Ry)√

n∑
i=1

(Rxi
−Rx)2(Ryi −Ry)2

(3.24)

In contrast to Pearson’s r, the Spearman’s rs is robust against outliers. This is the case
because the actual values are never used, but only their rank-order. No matter how large
an outlier might be, its rank is still just one more compared the next largest value.

3.4.3 Classification

A binary classifier is a function which classifies an entity as belonging to one of two
classes. For example, a classifier may be a function which determines whether or not a
patient is positive or negative for a given disorder. The result of a binary classification has
four outcomes: (1) a sick patient may be correctly classified as positive for the disorder
(i.e., true positive), (2) a sick patient may be incorrectly classified as negative (i.e., false
negative), (3) a healthy patient may be correctly classified as healthy (i.e., true negative),
or (4) incorrectly classified as sick (i.e., false positive). In other words, the result is either
a true or false positive, or a true or false negative. To describe the accuracy of binary
classifiers, a number of metrics have been defined. These metrics are very commonly
used in both medicine as well as machine learning, and four of the most common ones
are defined as follows (Parikh et al. 2008):

The variables in the formulas for these metrics are given as the number of true positives
as TP, the number of false positives as FP, the number of true negatives as TN, and the
number of false negatives as FN.
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Sensitivity

The sensitivity metric describes the proportion of correctly classified positive entities
in relation to the number of entities that should have been classified as positive. For
example, given 20 patients that are positive for a given disorder. If fifteen of these are
correctly classified as positive, then the sensitivity metric for this classifier yields a score
of 75% = 15

20
. The general formula for sensitivity is given in Equation 3.25.

Sensitivity =
TP

TP + FN
(3.25)

Positive Predictive Value

The positive predictive value metric describes the proportion of correctly classified posi-
tive entities in relation to all positively classified entities. In other words, the proportion
of entities classified as positive that are true positives. For example, given 20 true pos-
itives and five false positives, the positive predictive value for a given classifier is given
as 80% = 20

20+5
. The general formula for positive predictive value can be seen in Equa-

tion 3.26.

Positive predictive value =
TP

TP + FP
(3.26)

Specificity

The specificity metric describes the proportion of correctly classified negative entities in
relation to all entities that are truly negative. For example, given 500 patients that are
negative for a given disorder. If 250 of these are correctly classified as negative, then the
specificity metric for a classifier yields a score of: 50% = 250

500
. The formula for specificity

can be seen in Equation 3.27.

Specificity =
TN

FP + TN
(3.27)

Negative Predictive Value

The negative predictive value metric describes the proportion of correctly classified nega-
tive entities in relation to all negatively classified entities. In other words, the proportion
of entities classified as negative that are true negatives. For example, given 20 true nega-
tives and five false negatives, the negative predictive value for a given classifier is given as
80% = 20

20+5
. The general formula for negative predictive value is shown in Equation 3.28.

Negative predictive value =
TN

FN + TN
(3.28)

3.4.4 Accuracy Measures in Related Literature

Many of the metrics described above are widely used in related literature to measure the
accuracy of physiological sensors. We present in this section a brief overview of how these
metrics are used, and on what types of data.
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Silva et al. (2015) measure the accuracy of an ECG sensor (BITalino) against a more
expensive gold standard (Philips PageWriter Trim III series ECG). Put shortly, they let an
expert manually annotate all the R-peaks (heartbeats) while using different algorithms to
detect R-peaks automatically for the two devices. Next, they use the manually annotated
R-peaks as ground truth for which they compare the automatically detected R-peaks
against. To compare the accuracy of the R-peak detection of both signals, they utilize
the positive predictive value metric (which they refer to as precision). In addition, they
also calculate the RMSE and coefficient of determination metrics.

Retory et al. (2016) measure the accuracy of a respiratory effort belt (RIP type, NOX T3
Sleep Monitor) with the signal from a pneumotachograph as the gold standard. They ex-
tract various respiratory features from both signals, such as tidal volume (Vt), inspiratory
time (Ti), and expiratory time (Te), and determine the accuracy of these features based
on the Spearman’s Rank-Order Correlation Coefficient (i.e., monotonic relationship).

Seppänen et al. (2013) measure the accuracy of a respiratory effort belt (RIP type) with
the signal from a spirometer as the gold standard. The metrics they utilize are the
RMSE and coefficient of determination. Their goal is, however, not to determine the
mere accuracy of the given sensor, but rather determine how much their noise filtering
algorithm improves the accuracy. In other words, the metric’s ability to yield information
about how good the sensor is, is not of concern, only its comparability. For example, it
is clear that an RMSE score of 22.8 is better than a score of 45.3, but not exactly how
much better (in relation to performance), or even how good each sensor might be.

Liu et al. (2013) measure the accuracy of a respiratory effort belt (piezoelectric type) with
a respiratory gas exchange system as the gold standard. The metrics they use include
MPE and RMSE. Again, their goal is not to determine the accuracy of the given sensor,
but rather determine how much their noise filtering algorithm improves the accuracy.

Cantineau et al. (1992) measure the accuracy of a respiratory effort belt (RIP type) with
the integrated signal from a pneumotachograph as the gold standard. After calibrating
the sensors (i.e., converting to the same unit of measure, milliliters), they calculate the
accuracy of the tidal volume (Vt) of each breath by using the MAE and MAPE metrics.

Brouillette et al. (1987) compare the breath detection accuracy between the respiratory
effort sensor types RIP and impedance plethysmography (IP). A reliable signal for airflow
is used as the gold standard. The metrics they use to compare the accuracy of the breath
detection are sensitivity and positive predictive value.

Whyte et al. (1991) measure the accuracy of respiratory effort belts (RIP type) by com-
paring the tidal volume (Vt) between the belts and the integrated signal from a pneumo-
tachograph. The metrics they utilize include the Pearson Correlation Coefficient.

Adams et al. (1993) compare the breath amplitude accuracy of three different respiratory
effort sensors (RIP, strain gauges, and impedance plethysmography), with the signal from
an integrated pneumotachograph as the gold standard. The metric they use is the mean
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difference of the breath amplitudes from the sensors and the gold standard. The mean
difference metric, also known as Mean Bias Error (MBE), is closely related to MAE, but
negative values are not converted to positives. This means that positive and negative
differences cancel out as the mean is calculated.

3.5 Respiratory Effort Sensors

For the remainder of this thesis, we focus primarily on respiratory effort sensors. In that
regard, this section gives an overview of the different sensor type technologies, physiolog-
ical features, and various noise filtering techniques for these kinds of sensors.

As mentioned, there are mainly two distinct types of apneic/hypopneic events, central
and obstructive (a combination is also possible). In the case of a central apneic event,
the patient is exerting no signs of respiratory effort at all. During an obstructive ap-
neic/hypopneic event, however, the breathing is physically obstructed while the patient
is still desperately trying to breathe (i.e., exerting respiratory effort). Respiratory effort
sensors are used to detect any signs of respiratory effort such that cases of central and
obstructive apneic/hypopneic events can be distinguished. The gold standard sensor for
detecting respiratory effort is Esophageal Manometry, which is a tube inserted into the
esophagus (i.e., a tube inserted into the throat stretching down to the stomach) (Berry
et al. 2012). This kind of sensor is very invasive and uncomfortable for the patients, and
is, therefore, rarely used in practice. Alternative sensors measuring the movement of the
thorax and abdomen are mostly used instead. There are, however, only two types of res-
piratory effort sensors, in addition to the esophageal manometry, that are recommended
by the American Academy of Sleep Medicine (AASM) (Berry et al. 2012). Namely Res-
piratory Inductance Plethysmography (RIP), and Polyvinylidene Fluoride (PVDF) type
sensors.

In addition to measuring respiratory effort, these kinds of sensors can also be used as
an indirect measure of tidal volume. Konno and Mead (1967) show that the respiratory
process can be described as a system with two degrees of freedom (2-DOF) of motion.
The sum of the movement from both the thorax and abdomen, after calibration, reflects
a semiquantitative estimate of tidal volume. The calculation of RIPsum is shown in
Equation 3.29, where a and b are constants determined as the result of a calibration
procedure. One should, however, note that even in clinical settings, calibration of the
belts is rarely performed, and hence the uncalibrated version of RIPsum is more widely
used (Berry and Wagner 2014). Consequently, the constants a and b are usually both set
to 0.5 so that the magnitude of the RIPsum signal is comparable to the magnitude of the
raw thoracic and abdominal signals. On a side note, RIPsum is only used as an example,
and the same description analogously applies to the PVDF counterpart PVDFsum (and
other counterparts).

RIPsum = a ·RIPthorax + b ·RIPabdomen (3.29)

As observed by Konno and Mead (1967), the respiratory process reduces from a system
with two degrees to one degree of freedom of motion, whenever the glottis (throat) is
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Figure 3.5: Apnea present in RIPsum but not in RIPabdomen nor RIPthorax (Berry
et al. 2012)

closed. This means that an increase in volume in the thorax is equal to the opposite loss
of volume in the abdomen, and vice versa. This observation is the foundation of their
presented isovolume calibration method. Put shortly, this calibration method involves
the subject holding their breath while trying to move as much air back and forth between
the abdomen and thorax. The relationship between the decrease and increase of volume
in the thorax and abdomen is then used to derive the a and b constants of Equation 3.29.

The respiratory effort signals captured separately from either the thorax or abdomen are
not recommended by AASM (Berry et al. 2012) for apnea monitoring. The RIPabdomen

and RIPthorax (also known as dual thoracobdominal RIP) signals are, on the other hand,
recommended for hypopnea monitoring (in addition to the RIPsum signal). The main
reason for this is clearly illustrated in Figure 3.5 where an apneic event is visible in the
RIPsum signal but neither in the RIPabdomen nor RIPthorax signals. What happens is that
the motion of the thorax and abdomen becomes asynchronous (paradoxical) during a
breathing obstruction, and respiratory effort is still recorded by the belts (i.e., 2-DOF
to 1-DOF). Any asynchronous behavior of the signals cancels out during the summation
(i.e., calculation of RIPsum), whereas any synchronous behavior (breaths) amplifies.

3.5.1 Sensor Types

There are many types of respiratory effort sensors available, and some of which include
respiratory inductance plethysmography (RIP), piezoelectric belts (PZT), impedance
plethysmography (IP), polyvinylidene fluoride (PVDF), and strain-gauge belts. However,
only two of these are recommended for sleep apnea monitoring by the AASM (Berry et
al. 2012). Namely the RIP and PVDF type belts. According to Vaughn and Clemmons
(2012), the reason why piezoelectric belts are not included in these recommendations is
that of the lack of formal testing, and not because of performance. For this thesis, we
only have the RIP, PZT, strain-gauge belts, and IP sensor types available, and thus,
solely focus on these.
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Abdominal coil

Figure 3.6: Outline of Respiratory Inductance Plethysmography (RIP) (Scilingo
et al. 2011)

Respiratory Inductance Plethysmography

Respiratory Inductance Plethysmography (RIP) (Cohn et al. 1982) uses an elastic belt
with an embedded coil wrapped up in the shape of a sinusoid or zig-zag pattern, stretch-
ing the whole circumference of the belt (see Figure 3.6). An alternating current is passing
through this coil, which generates a magnetic inductive field, and as the belt distraction
changes, so does the magnetic inductive field. The main advantage of this technology is
that because the coil spans the whole circumference of the belt, it is not prone to entrap-
ment. Even if a small part of the belt becomes trapped, the change in belt distraction is
still correctly captured. The signal reflects solely the distraction of the belt and not the
pressure/force of distraction or any other factors. Consequently, the signal reflects the
change of volume associated with respiration.

Piezoelectric Belts

Piezoelectric belts (PZT) (Pennock 1990) consist of an elastic belt with an attached piezo-
electric sensor. The sensor spans only a small area of the total belt circumference, which
can be seen in Figure 3.7. The piezoelectric sensor is capturing pressure changes caused
by changes to the distraction of the belt and does not directly reflect the circumference
of the belt. The result is that the signal captures the respiratory process by changes in
airflow rather than volume. The difference between volume and flow is described further
in Section 3.5.2. The advantage of piezoelectric belts compared to RIP is that they are
usually significantly cheaper. The main disadvantage is that the sensor part of the belt
is somewhat prone to entrapment. If the patient is lying on the sensor part, for example,
the belt may expand without the sensor detecting it. Until around the year 2007, piezo-
electric belts were widely used in many sleep centers (Berry et al. 2012) before the RIP
counterpart mostly replaced it after the recommendations from the AASM.

Impedance Plethysmography

The Impedance Plethysmography (IP) sensor utilizes multiple electrodes attached to the
patient’s thorax (Gupta 2011). A small high-frequency current is inflicted across the
thorax, which changes as the thorax expands and contracts. The movement associated
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Sensor part

Figure 3.7: Outline of piezoelectric belts (PZT) (sensor part in white)

with breathing results in a low-frequency wave in which the higher frequency current
rides on top of. The resulting signal then contains both the respiratory frequency band
and the higher (inflicted) frequency band. The use of electrodes may feel slightly more
uncomfortable for some people compared to the belts, but the advantage is that if the
patient is already hooked up to an ECG, a few electrodes can be dedicated to capturing
respiration instead. Plethysmography is defined as the change of volume (OED 2018b).
Therefore, an IP sensor (like the RIP) captures the respiratory process by changes in
volume.

Strain-gauge Belts

Strain-gauge belts consist of an elastic belt with an embedded conductive metal strip
(Wikipedia 2018c). As the thorax and abdomen expand or contract, the metal strip be-
comes longer and thinner, shorter and broader, resulting in changes in electrical resistance.
Because the electrical resistance reflects the current stretch of the belt, strain-gauge belts
capture the respiratory process as volume. These kinds of belts may use a conductive
metal strip stretching the whole circumference of the belt, but they more often span just
a smaller area like PZT belts.

3.5.2 Physiological Features

Many physiological features can be extracted from the signal of respiratory effort sensors,
with the main global feature being the breath. The shape of a breath is different depending
on if the sensor is capturing airflow or volume (see Figure 3.8). Each breath in the signal
also contains multiple internal features such as total breath duration (Ttot), inspiratory
time (Ti), expiratory time (Te), and tidal volume (Vt). As seen in Figure 3.8, tidal volume
cannot be directly extracted from an airflow signal. The airflow needs to be integrated to
volume before the tidal volume can be extracted. Other global features are also present in
the signal such as breath-to-breath time, respiration rate (i.e., the number of breaths per
minute (BPM)), and minute ventilation (i.e., the total volume of air inhaled and exhaled
during a minute).
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Figure 3.8: Waveform shape of airflow versus volume (McGill University 2018)

3.5.3 Signal Quality Indicators

Defining signal quality indicators for respiratory effort sensors are not trivial, and there
have to the best of our knowledge not been published any either. In contrast to, for
example, ECG sensors or pulse oximeters, effort sensors often only have one variable
available. For example, an ECG usually consists of multiple electrodes, all capturing the
same physiological process. If one of the electrodes suddenly deviates a lot from the rest
of the electrodes, then it is probably faulty. A pulse oximeter has both red light, infrared
light, and the pulse rate to base the quality on. If the relationship between these variables
deviates from the expected norm, then there is probably a quality problem (as presented
in Section 3.3).

With only one variable available, a comparison cannot be made, and the evaluation
has to be done based on how the variable alone is expected to behave. A respiratory
effort sensor is supposed to reflect any movement that is physically feasible. Physical
movement associated with breathing and respiratory effort are expected to lie in the
lower frequency bands, and any higher frequencies may, therefore, be seen as unexpected
behavior. However, unless the frequencies are overlapping the breathing and respiratory
effort components of the signal, then it can quite easily be filtered out and does, therefore,
not impose any quality problems. Anything that can be corrected is, in other words, not
of concern with respect to quality. Noise that is in the expected frequency spectrum (i.e.,
overlapping breathing and effort) may impose a quality problem but is also very hard to
identify.

By using both an abdominal and a thoracic effort sensor, two variables capturing the same
process are available. The difference between this scenario and, for example, an ECG is
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that different behavior is expected from time to time from the various sensors. As men-
tioned above, during an obstruction the breathing becomes asynchronous (paradoxical),
and this kind of asynchrony should not be regarded as a quality problem.

As a result, defining useful signal quality indicators for respiratory effort sensors are
challenging. A few indicators may, however, be defined for certain edge cases. For
example, if a sensor is taking on values very close to its minimum or maximum for a
duration of time, something is probably wrong. Another example may be to measure the
frequency spectrum in which breaths are expected to reside. This spectrum should be
the dominating part of the signal. Additionally, if breaths are absent from the signal for
a significant amount of time, something is probably wrong.

3.5.4 Accuracy Measures

The signal from a respiratory effort sensor can be described as X = XR +XN , where XR

is the respiratory component and XN is the noise component. The respiratory component
is nominally between 0.1–0.5 Hz, but there are some respiratory components outside this
range as well, for example, acute breathing or coughing (Keenan and Wilhelm 2005).
The noise component can further be separated into motion artifacts, background noise,
and hysteresis of the sensor, which is typically regarded as being present in the higher
frequency bands (Liu et al. 2013). The magnitude of the noise component represents
the accuracy of the sensor. The smaller the noise component, the more accurate the
respiratory component.

The distance between two sensors capturing the same respiratory process can be described
by the distance function d(X, Y ) shown in Equation 3.30, where X and Y are the two
signals. As shown, the distance between the two signals is the difference between their
noise components. If the Y signal is a ground truth signal, then its noise component is zero
and its respiratory component is, therefore, 100% correct. This means that the distance
between the two signals is the noise component (XN) of X alone, and its magnitude
reflects the accuracy of the signal. A ground truth is, however, not practical to acquire,
and so the Y signal is instead a signal from a gold standard sensor. In this case, the
assumption one has to make is that the noise component of the gold standard is as small
as it can be, such that it does not affect the extraction of XN too much.

d(X, Y ) = X − Y => (XR +XN)− (YR + YN) => XN − YN (3.30)

This is only a very simple description, and it might even be too oversimplified, but it
illustrates the concept. The ”problem” with respiratory effort sensors is that the unit
of measurement is never stable. The amplitude of the produced signal is dependent on
how tight the belts are fitted around the subject. Even after a calibration procedure, the
amplitude continues to vary in relation to movement, often due to belt slippage, body
position changes, etc. (Whyte et al. 1991). Consequently, the process of isolating the
noise component is much more convoluted in practice compared to the example above. As
such, the more practical way of measuring distance between respiratory effort sensors may
be to measure the distance of various physiological features (as presented in Section 3.5.2)
rather than the raw signals directly.



3.6. Discussion and Conclusions 45

3.5.5 Noise Filtering

The primary quality problem with respiratory effort sensors is the presence of motion
artifacts. The sensors are designed to capture the motion associated with breathing and
respiratory effort, but the side effect is that they capture any kind of motion. Measuring
respiration with a RIP belt while a person is running, for example, is almost impossible to
do. The traditional way of filtering noise from a respiratory effort signal is with the use of
a low-pass filter. With the respiratory component residing nominally between 0.1–0.5 Hz,
a cut-off frequency of 1–1.5 Hz is typically used (Keenan and Wilhelm 2005). The main
drawback with a low-pass filter is that it may also attenuate higher frequency respiratory
components, such as coughing or acute breathing. Many alternative filtering methods
have been proposed to improve the performance of respiratory effort sensors during mild
physical activity. For example, wavelet decomposition (Keenan and Wilhelm 2005), adap-
tive filtering (Keenan and Wilhelm 2005), noise discrimination (Retory et al. 2016), and
empirical mode decomposition (Liu et al. 2013). During sleep, however, physical move-
ment is not too much of concern. The signal may become corrupted by noise while the
patient is changing sleeping position, but the majority of the signal remains unaffected.
In the context of a traditional polysomnography sleep study, the recommended cut-off
frequencies for respiratory signals are 0.1 Hz for high-pass filters and 15 Hz for low-pass
filters (Tripathi 2008).

3.6 Discussion and Conclusions

Based on the background material presented in this chapter, we draw the following con-
clusions:

• There are three means of measuring the quality of physiological time series data,
namely by completeness, validity, and accuracy. These dimensions are summarized
as follows:

– Completeness
The completeness is the proportion of the actual length of a signal in relation
to its intended length. Completeness can, for example, be affected by packet
loss because of wireless transmission.

– Validity
The validity of a signal represents the proportion of time the signal is behaving
as expected. Validity is often threshold based, and whenever the signal takes
on unexpected values or behavior that exceeds this threshold, then it is deemed
invalid. As a result, validity can often be a purely intra-signal measure, which
makes it suitable for real-time quality feedback/indications.

– Accuracy
The accuracy of a signal is measured as the distance between it, and a ground
truth or gold standard signal. How distance is measured depends on the type
of data in question, which can, for example, be the raw signals or any extracted
features.

• It is challenging to define useful signal quality indicators for respiratory effort sen-
sors. As a result, the validity dimension may be excluded, which means that the
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completeness and accuracy dimensions are the only remaining dimensions for these
kinds of data.

• All the accuracy metrics presented in Section 3.4 are, in fact, ratio scaled metrics.
The reason is that they all have a clear definition of a zero point. A distance of zero
can be interpreted as no error. Moreover, a perfect relationship (correlation) and
a 100% accurate classifier, also analogously mean no error. Hence, ratio scaled.

• The best choice of accuracy metrics depends upon the nature of the data in question.
For example, a sensor’s ability to detect breaths can be regarded as a classification,
whereas a raw signal comparison is better measured as a distance.



Chapter 4

Requirement Analysis

The first goal of this thesis is to determine how the signal quality of respiratory effort
sensors can be measured in relation to sleep apnea monitoring. Once established, we
assess the signal quality of four different respiratory effort sensors through a quantitative
study with data from various external subjects. In this chapter, we explore what a
good signal quality means in the context of apnea monitoring, along with a requirement
analysis of the experiment and a description of the different sensor platforms.

We begin in Section 4.1 by exploring what the notion of a good quality signal from respi-
ratory effort sensors is in relation to sleep apnea monitoring. We continue in Section 4.2
by defining which requirements need to be fulfilled by a peak in the signal to be regarded
as a breath for the automatic breath detection algorithm, followed by requirements for
the experiment (e.g., setting, number of subjects, etc.) in Section 4.3. Next, we describe
the sensor platforms we assess in more detail in Section 4.4, before we summarize and
conclude the chapter in Section 4.5.

4.1 Sleep Apnea

When the signal quality of a sensor is to be determined, it is important to properly
define what a good signal quality represents. In the case of respiratory effort sensors, the
notion of what a good quality signal is varies significantly between different use cases. For
example, if the intention is to thoroughly measure the pulmonary function of a patient,
then an exact waveform is a requirement to accurately estimate respiratory parameters
such as inspiratory time (Ti), expiratory time (Te) and tidal volume (Vt). On the other
hand, if the goal is to solely estimate the respiration rate of a patient, neither an exact
waveform nor any of these parameters, are very important factors to consider. Thus, it
is essential that we analyze the sensor requirements in terms of sleep apnea monitoring
before we decide on how the signal quality of the sensors should be measured.

4.1.1 Apnea Detection

In the case of apnea detection (complete cessation of breath), the feature of interest is
solely the presence of gaps between two consecutive breaths, lasting a minimum of ten sec-
onds. Thus, the waveform shape and other parameters are, in fact, irrelevant in the case
of apnea detection. Given, for example, a respiration belt with a very non-deterministic
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Figure 4.2: Accurate breath detection — different waveforms

and arbitrary waveform (e.g., a lot of low-frequency noise and breath amplitude varia-
tions). Even if this sensor has a very inaccurate waveform and looks very different from
a gold standard, it could still be considered a good quality sensor for apnea detection.
This is, however, only as long as it is able to accurately make out every gap in the signal
(see Figure 4.1 and Figure 4.2). Although in reality, inaccurate breath detection is very
likely to influence the accuracy of gap detection, and as such, breath detection may be
the preferred metric after all. The main reason is that the noise component is gener-
ally independent of the respiratory component of the signal, and is, thus, likely to be
somewhat evenly distributed.

There is, in other words, a hierarchy of quality metrics, with the accuracy of gap detection
being the most fundamental. An exact waveform does indeed equal a perfectly accurate
detection of both breaths and gaps. However, a perfect breath detection is not intrinsic for
a perfect gap detection, nor is an exact waveform intrinsic for a perfect breath detection.
What this means is that if a sensor is able to perfectly detect gaps, neither improving its
waveform nor breath detection, will make it perform any better at detecting apneas.

The kinds of errors likely to be experienced in the case of apnea detection are a number of
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false breaths, missed breaths, or both. The breaths at the start and end of a gap can also
be slightly delayed, making the gap appear shorter or longer than it really is. The signal
quality of a sensor, therefore, needs to be determined relative to the tolerance for these
kinds of errors. For example, an adult’s respiration rate (RR) is typically in the range of
12–18 breaths per minute at rest. A breath lasting as long as five seconds is, therefore,
not uncommon. This means that in the worst case, a false breath can occur in the middle
of a 20-second gap, dividing it into two gaps of 7.5 seconds each. With a stable error
rate of one false breath per minute, the sensor would in the worst case, therefore, only
accurately detect gaps of 25 seconds or longer (although, not as one consecutive gap but
multiple smaller ones).

So how should the accuracy of a sensor’s ability to accurately detect breaths be deter-
mined? The näıve way is to directly compare the respiration rate (RR), which is measured
as the number of breaths per minute (BPM ), with the gold standard. By comparing the
number of breaths per minute, it becomes trivial to reason about the interpretation of
the error rate of a sensor (e.g., the error rate is 1–2 breaths per minute). The drawback
of comparing the respiration rate is that missed breaths and false breaths cancel out. For
example, given five false breaths and six missed breaths, the error rate is still only one
breath per minute. A solution is to match the breaths of a target sensor with the breaths
of a gold standard and then count the number of false positives/negatives. To determine
which breath from one signal corresponds to which breath from the other, we can define
that a breath is matched if its peak is between the start and end of a breath in the other
signal.

In a related study by Brouillette et al. (1987), they propose the use of sensitivity and pos-
itive predictive value (see Section 3.4.3). The sensitivity gives the proportion of correctly
identified breaths in relation to the total number of real breaths (as detected by the gold
standard). In other words, if a sensor does not miss any real breaths, then the sensitivity
would be 100%. The positive predictive value gives the proportion of correctly identified
breaths in relation to all detected breaths. To give an example of these, let there be an
extra false breath for each real breath detected by the target sensor. This would yield
a sensitivity of 100% and a positive predictive value of 50%. In regards to sleep apnea,
a low sensitivity and a high positive predictive value would indicate that false positive
apneic events are likely to occur (i.e., false gaps). Conversely, a high sensitivity and low
positive predictive value would indicate that false negatives are likely. An alternative or
additional approach to these can, for example, be to calculate the proportion of ”clean”
minutes in the signal. If it is a known fact that any minute that contains a false breath
cannot be trusted, any other minute would be clean, and the proportion of these minutes
would be the proportion of the signal that can be trusted. Let, for example, any minute
that contains one or more false breaths to be regarded as ”dirty.” Assuming that 90% of
the minutes in the signal are deemed ”clean,” this means that at least 90% of the signal
can be trusted in regards to apnea detection.

4.1.2 Hypopnea Detection

In the case of hypopneas, the feature of interest is a 30% (or more) reduction in airflow,
lasting a minimum of ten seconds. To be able to detect reductions of airflow accurately,
the breath amplitudes as recorded by a sensor need to be linear in relation to the thoracic
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or abdominal expansion. In other words, the breath amplitudes are linear in relation to
belt distraction for a good quality signal. High amplitude variations and different types of
relationships (such as monotonic or non-linear) affect the accuracy negatively. Accurate
breath detection is, however, a prerequisite before it is even reasonable to start measuring
the breath amplitude linearity.

When the breath amplitudes are linear in relation to the belt distraction, then a 30%
lower amplitude corresponds directly to a 30% reduction in airflow. If the relationship is
monotonic, however, a 30% lower amplitude could correspond to only a 15% reduction
in airflow. Even worse, if the relationship is non-linear, a 30% lower amplitude could
correspond to a 30% increase in airflow. Amplitude variations are also very important
to consider. Even if the relationship is linear, a high variation lowers the accuracy of
hypopnea detection considerably.

The measure of breath amplitude linearity should preferably yield an error rate as a
percentage, as that is how hypopneas are scored. This would result in a metric that is
rather trivial to interpret, e.g., an error rate of 5% means that the reported reduction
in airflow is within 5% of the actual reduction in airflow. In other words, a measure of
variation in a linear relationship. The way this can be done is to fit a linear regression
model to the breath amplitudes of the target sensor and the gold standard. The error
is then calculated as the distance from a point in the target sensor to the regression
line. The next issue is how to summarize these errors into an error rate which represents
the whole signal. In other words, should one take the mean, min/max, or some other
measure? The drawback of taking the min/max is that outliers profoundly influence the
result. In a study by Cantineau et al. (1992), they instead propose the use of accuracy
and precision, which is the mean difference and standard deviation, respectively.

4.1.3 Requirements

Based on the analysis above, we have identified the following requirements:

• The signal quality in relation to apneas should be based on breath detection accu-
racy.

• The signal quality in relation to hypopneas should be based on breath detection
accuracy and breath amplitude accuracy.

• The interpretation of the metrics should be trivial in relation to the sensor’s ability
to detect apneas/hypopneas.

Even though the gap detection accuracy of a sensor is the most fundamental quality
parameter for apnea detection, it is irrelevant for the detection of hypopneas. Given that
OSA sufferers usually experience both apneic and hypopneic events, we focus on breath
detection accuracy instead. We illustrate what we mean by ”The interpretation of the
metrics should be trivial in relation to the sensor’s ability to detect apneas/hypopneas”
with an example. Given a metric about the strength of a linear relationship which yields a
score of 0–1 where 0 means no relationship and 1 means perfect relationship. If a sensor
gets a score of 0.86, one has simply no means of knowing how good it is at detecting
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hypopneas. All one can say is that it is probably better than a sensor with a score of for
example 0.67. To know how much better it is though, the measurement scale (i.e., ordinal,
interval, ratio) must also be known. If one, on the other hand, has a breath amplitude
error of 5%, one knows that the sensor can at least correctly identify hypopneas with a
35% decrease in airflow (i.e., real airflow reduction is 35%, but the sensor detects a value
in the range of 30%–40%).

4.2 Breath Detection

To speed up the process of scoring and extracting breaths from the recorded signals, we
implement an automatic breath detection script used to aid the manual process. In this
section, we define specific requirements for this breath detection script. Breath detection
in a respiratory signal is by definition the same as peak detection, constrained by physical
limitations. A peak is commonly defined as a value or period of a time series that is higher
than its immediate neighbors. How much higher it has to be is, on the other hand, often
user defined in relation to the given context. Whereas a peak can be as short as two
milliseconds in duration, a breath cannot. Thus, we have to assert that the duration
of each peak is within the minimum and maximum duration of a breath. What the
minimum and maximum duration of a breath are, depends upon the range of respiration
rates we want to support. For example, with a range of 5–100 breaths per minute, the
minimum breath duration is 0.6 seconds, and the maximum is twelve seconds. Therefore,
we need to define a duration interval in which each breath should be, to more accurately
distinguish real breaths from noise and motion artifacts.

For a peak to be regarded as a breath, we define the following requirements:

• It must last between 0.6 and twelve seconds (duration).

• The amplitude of the peak must be at least 10% of the mean breath amplitude.

• Breaths cannot overlap.

Although a respiration rate of 100 breaths per minute is unlikely during regular sleep,
such a breathing rate can indeed occur for shorter periods of time (e.g., a few seconds).
An increased respiration rate is, in fact, very common after apneic/hypopneic events as
the subject may be gasping for air. Likewise, longer breaths can happen as a result of, for
example, an obstruction during exhalation. Moreover, some additional padding can also
be useful depending on whether we want to prioritize detecting real breaths or avoiding
false breaths. The threshold of 10% is set based on the scoring rules by the AASM
(Berry et al. 2012). A period is considered an apnea (rather than a hypopnea) if the
signal excursion (breath amplitude) is below 10% of the baseline throughout the event.
The amplitude of a generic peak is commonly measured based on its y-value. However,
if the signal is suffering from baseline wander, the peak’s y-value may just as well be
negative. The amplitude of a breath should, therefore, be measured as the difference
between the peak and the start/end of the breath. We elaborate further on the details of
this in Section 5.1.2. There are also additional requirements that can be set, for example,
inspiration and expiration time. In other words, there are physical limitations to how
fast an inspiration/expiration can happen. However, in the presence of noise, the peak of
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a breath can be shifted, which can make a real breath (as detected by a sensor) violate
such requirements. Automatic breath detection is, in other words, not trivial to do with
noisy data.

4.3 Experiment Design

4.3.1 Privacy Declaration

Whenever external subjects are to be involved in an experiment, a concern for privacy
arises. The data we collect from the subjects in this study are gender, age, weight, height,
and the respiratory data from the sensors. None of these attributes are regarded as sen-
sitive because a single person cannot be identified based on these attributes alone, which
means that they are not covered by the Norwegian law, personopplysningsloven (Lovdata
2000). Regardless, we require all participants to sign a written consent, accepting that
we can use the data in this work, as well as in potential future work. All the gath-
ered data are also pseudo-anonymized and stored securely according to the guidelines by
Datatilsynet (2015).

4.3.2 Representativeness

Signal capture sessions performed overnight while the subjects are asleep, including both
healthy as well as sleep apnea patients, are with no doubt the most representative sessions
for sleep apnea monitoring. The main reason is that there are certain events and charac-
teristics of these kinds of sessions that are very likely to influence the results of the signal
quality evaluation. For example, given a sensor which simply cannot flatline. In other
words, when a subject stops breathing, the sensor starts to act weirdly and produces
events that can be regarded as breaths. If breathing stops are not included in the signal
capture procedure, such an issue will not be discovered. These longer overnight sessions,
however, require significantly more work, both with respect to execution as well as to
subject recruitment, compared to shorter sessions that can be performed in a laboratory
during wakefulness. A decent quantity of signal captures is also essential to be able to
generalize about the results (i.e., such that the results represent the majority of cases).
As such, shorter sessions that can be performed in a laboratory during wakefulness are
preferred.

As previously stated, apneic events are described as periods with no breathing, lasting a
minimum of ten seconds, whereas hypopneic events are defined as periods with shallow
breathing, lasting a minimum of ten seconds. Additionally, periods of deep breathing are
something that commonly happens after an apneic/hypopneic event, as the subject may
be gasping for air. To simulate overnight sessions during wakefulness in a laboratory,
all of these events should be included in the signal capture procedure. Apart from the
characteristics directly related to sleep apnea, the subject would also be lying in bed and
possibly changing sleeping position throughout the night. This behavior might just as
well affect the signal from the sensors, and hence should be included in the signal capture
procedure as well.

To make these shorter sessions as representative as possible with respect to sleep apnea
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monitoring, we define the following requirements:

• A signal capture must include:

– Breathing stops.

– A period of shallow breathing.

– A period of deep breathing.

– Multiple sleeping positions.

• The subject must be lying in bed.

In the case of traditional polysomnography, the subjects are often very restricted regard-
ing movement and position changes. However, position changes can indeed occur with
the use of less restrictive equipment and are, thus, a requirement for our signal capture
procedure. For more details regarding the relevancy of different body positions, see Sec-
tion 5.3.1. Another factor that might be obvious is the duration of the captures. If a
sensor’s signal quality degrades over time, the results of shorter sessions are indeed bi-
ased. The choice of signal capture duration is discussed further in Section 5.3.2, with the
results of the preliminary testing in mind (Section 5.2).

4.3.3 Quantitative Study

For the experiment results to be regarded as useful, they must be generalizable. In other
words, the results must be valid for and represent the majority of cases. To be able to
do so, the sample size (number of subjects and signal captures) must be big enough to
capture the general case. Additionally, variation amongst the subjects is also vital, such
as gender, age, height, and weight. The required sample size varies significantly between
different situations and contexts. More subjects are regarded as better, however, too
many become infeasible in our limited time frame.

To better be able to reason about the minimum number of subjects we should include
in our experiment, we study how many subjects are included in related work. In some
related work, the number of subjects involved is often somewhere in the range 3–13,
however, with some deviations. See Table 4.1 for an overview of the number of subjects
used in some of the related work. Based on this information, a number of 5–10 subjects
is a sufficient minimum requirement for our experiment.

4.4 Platforms

We have a total of five different platforms available for this thesis: BITalino, Shimmer,
RespiBAN, FLOW, and NOX T3. The former four are our target sensors which we
measure the signal quality of, whereas the NOX T3 is our gold standard. In this section,
we give a brief description of all of these platforms, including their available sensors.
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Study # of subjects

(Katz and Dinner 1992) 3

(Pennock 1990) 4

(Whyte et al. 1991) 8

(Wu et al. 2009) 10

(Seppänen et al. 2013) 10

(George et al. 1988) 11

(Kogan et al. 2016) 12

(Cantineau et al. 1992) 13

(Adams et al. 1993) 20

(Brouillette et al. 1987) 28

(Retory et al. 2016) 30

(Liu et al. 2013) 105

Table 4.1: Overview of the number of subjects included in related studies

4.4.1 BITalino

BITalino is a product and an open source platform designed for people who wish to
learn and prototype their own wearables (BITalino 2018a). They currently supply three
different kits for the BITalino platform, each with various form factors and included
sensors. There is a wide range of sensors included in these kits, such as ECG, EEG,
EMG, EDA, and an accelerometer. Additional sensors can also be purchased separately,
for instance, pulse oximeters and respiratory effort belts (both PZT and RIP type belts).
The kits are currently priced between 150–200 Euros, and BITalino’s vision is to make
BIO-signals available to anyone at a low cost. The BITalino device itself has six analog
input channels available, which means that six different sensors can be used at once per
device. Four of these inputs have a 10bit resolution, while two of the inputs have a 6bit
resolution. Each of these inputs supports a sampling rate of 1 Hz, 10 Hz, 100 Hz, or 1000
Hz. The device is battery-powered and transmits data wirelessly over Bluetooth, but it
does not have any on-board storage. In other words, the device is portable but requires
an additional device such as a smartphone or a computer to persist the data. We must
emphasize that the BITalino platform is not certified as medical grade equipment, nor
designed to be used for medical diagnosis or in a medical setting. It is intended to be
affordable to make BIO-signals available to anyone.

In our experiments, we use a BITalino Plugged Kit BLE (BITalino 2018e) with piezo-
electric type respiratory effort belts (PZT) (BITalino 2018b). These belts are affordable
with a price of about 95 Euros per belt, making them suited for personal consumers.
As described in Section 3.5.1, a piezoelectric respiratory effort belt captures the inhaled
and exhaled airflow through the change of force (due to stretching of the belt) around
the abdomen and thorax. The sensor part of these belts span only a small area of the
belts, and hence the force captured by the sensor may or may not reflect the actual
change of circumference around the subject. The sensor part of the belts may become
trapped (e.g., by lying on the sensor), while the non-sensor part stretches independently.
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RIP type respiratory effort belts do not have this issue, as the sensor part of these belts
span the whole circumference. RIP type belts are, however, significantly more expensive
compared to their PZT counterparts, with the RIP belt available for BITalino priced at
about 750 Euros (BITalino 2018c). Consequently, RIP type belts may be less suited for
personal consumers.

The BITalino platform is intended for developers and people who want to make their
own wearables. As such, data acquisition is usually done through a custom-made appli-
cation with its provided software development kit (SDK). BITalino provides SDKs for a
wide range of programming languages and platforms, such as Android, iOS, Java, C#,
Python, and MATLAB. Additionally, BITalino also provides a ready-made acquisition
software called OpenSignals, which is available for Windows, Mac, Linux, and Android.
However, the Android version does currently only support real-time visualization, and
the acquired data cannot be stored for later retrieval. Moreover, the desktop versions of
the OpenSignals software require a custom Bluetooth dongle to work with the BITalino
kits equipped with a Bluetooth Low Energy (BLE) type module, which is the type we
are using. Fortunately, a custom-made Android acquisition application has already been
created by Gjøby (2016). This application supports both network streaming of the ac-
quired data as well as storing it locally to a file. We, therefore, use this application along
with an Android device (Google Pixel) to record data from the BITalino sensors in our
experiments.

4.4.2 Shimmer

Shimmer is an open source wearable sensor platform which includes sensors such as ECG,
EMG, EDA, accelerometer, gyroscope, and altimeter (Shimmer 2018a). The device is
battery-powered and can either transmit data wirelessly over Bluetooth or store it locally
to its on-board storage. The Shimmer engineering team are highly focused on quality
of the sensors, which results in a higher quality product, but consequently also a higher
price. The Shimmer ECG unit costs about 500 Euros, making it slightly more expensive
than the BITalino platform. In contrast to BITalino, Shimmer is, in fact, certified as
medical grade equipment due to its quality focus (after the ISO 9001 and ISO 13485
standards) (Shimmer 2018a).

Shimmer does currently not offer respiratory effort belts, but respiratory effort is cap-
tured using an ECG unit. In other words, the sensor capturing respiratory effort is of
type impedance plethysmography (IP) (see Section 3.5.1), which means that it uses ECG
leads (electrodes) attached directly to the subject’s skin. Electrodes may feel a little
uncomfortable for some people and can be a little harder to fit correctly without guid-
ance from trained personnel. Additionally, the IP type sensor is regarded as being more
affected by noise, baseline wander, and motion artifacts; at least compared to RIP type
belts (Brouillette et al. 1987).

As Shimmer is an open platform, various SDKs are provided for a wide range of pro-
gramming languages and platforms, for example, LabView, MATLAB, and Python. In
addition, Shimmer also provides a ready-made data acquisition software called Consen-
sys, which is available for Windows. Consensys can be used to configure the Shimmer
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device, stream data, and visualize the data in real-time. After the device is correctly con-
figured, it can also record data directly to its on-board storage, making it independent
of other equipment (smartphone, PC, etc.). For our experiments, we use the Consensys
application to configure and manage the device, while we record the data to the device’s
on-board storage.

4.4.3 NOX T3

NOX T3 is a complete medical grade portable respiratory sleep monitor made by NOX
Medical (2018). It sports a slim form factor, battery-powered device, with on-board
internal storage. The sensors supported by NOX T3 include dual thoracoabdominal
respiratory effort belts (both RIP and PZT types), ECG, nasal pressure, pulse oximeter,
accelerometer, snore sensor, and more. NOX T3 is widely used in hospitals and sleep
centers for the diagnosis of sleep-related disorders around the world. NOX T3 is priced
at around 55 000 NOK, making it too expensive for personal consumers. It is our gold
standard device in which we compare the other sensors against for the experiments we
are conducting.

NOX T3 is a proprietary platform, which means that only the software supplied by NOX
Medical themselves are supported, and no SDKs are available. The provided software is
called Noxturnal, which is only available for Windows (NOX Medical 2018b). Noxturnal
can be used to configure the device and download and analyze the recordings. The
recordings can also both be annotated, scored, and organized/stored from within the
software itself. We, however, use it only to export the raw data so that we can compare
it to the other sensors. A limitation of the Noxturnal software is that only recordings
that are longer than about seven minutes are supported. Shorter recordings cannot be
downloaded, and are, thus, lost.

For our experiments, the only sensors we use with the NOX T3 are RIP type dual
thoracobdominal respiratory effort belts.

4.4.4 RespiBAN

RespiBAN is a configuration of the biosignalsplux platform, and this platform is designed
for researchers to collect and analyze reliable high-definition BIO-signals (biosignalsplux
2018a). BITalino and biosignalsplux are, in fact, two different platforms made by the same
company (PLUX 2018). As a result, most of the available sensors for both platforms are
the same, their SDK interface is the same, and both platforms support the OpenSignals
software. While BITalino is designed as a do-it-yourself platform, biosignalsplux is de-
signed as a ready-to-use platform with a high focus on quality, which consequently also
results in a significantly higher price. In contrast to BITalino, the sampling rate of the
biosignalsplux device can be freely set to anything up to 4000 Hz, and the analog sig-
nal resolution is 16bit. It is also battery-powered and transmits the recorded data over
Bluetooth. Due to the quality focus, biosignalsplux is, in fact, certified as medical grade
equipment (after ISO 13485) (BITalino 2018d). However, the producer gives the following
disclaimer concerning both BITalino and biosignalsplux: PLUX’s products are intended
for use in life science education and research applications; they are not medical devices
nor are they intended for medical diagnosis.
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The biosignalsplux configuration we use in our experiments is a RespiBAN Researcher
(biosignalsplux 2018b). This particular configuration is priced at about 1 250 Euros.
Moreover, it is specifically tailored for respiratory monitoring and is, therefore, a little
more restricted compared to the generic configurations. The sensors are hardwired to the
device, and it includes a single RIP respiratory effort belt and a triaxial accelerometer.
The maximum sampling rate is limited to 1000 Hz (instead of 4000 Hz), but the analog
resolution remains at 16bit. Like with BITalino, we record the data from this device
using the Android application by Gjøby (2016).

4.4.5 FLOW

The FLOW sensor is a newly developed affordable respiratory effort belt from SweetZpot
(SweetZpot 2018), priced at about 200 Euros. The sensor captures both respiratory effort
using strain-gauges and also the heart rate when the belt is worn directly on the skin.
It is not intended to be used as a medical diagnostic tool, but rather during physical
activity such as cycling, rowing, singing, and the like. The device is battery-powered
and transmits the recorded data over Bluetooth to a smartphone. For our experiments,
we use the supplied Android application called RawDataMonitor which captures the raw
respiratory data with a sampling rate of 10 Hz.

4.5 Discussion and Conclusions

To summarize, we have a total of four different types of respiratory effort sensor at our
disposal: RIP, PZT, strain-gauge, and IP type sensors. Our gold standard, NOX T3, uses
RIP type dual thoracoabdominal belts, BITalino uses PZT type dual thoracoabdominal
belts, RespiBAN uses a single RIP belt, FLOW uses a single strain-gauge belt, and
Shimmer uses an IP type sensor. Of the target sensors, BITalino and FLOW are the
most affordable platforms, whereas Shimmer and RespiBAN are more expensive and
certified as medical grade equipment.

Regarding the signal quality metrics and experiment design, we have identified the fol-
lowing requirements:

• Metric requirements:

– The signal quality in relation to apneas should be based on breath detection
accuracy.

– The signal quality in relation to hypopneas should be based on breath detection
accuracy and breath amplitude accuracy.

– The interpretation of the metrics should be trivial in relation to the sensor’s
ability to detect apneas/hypopneas.

• For a peak to be regarded as a breath for the automatic algorithm, we define the
following requirements:

– It should last between 0.6 and twelve seconds (duration).

– The amplitude of the peak should be at least 10% of the mean breath ampli-
tude.
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– Breaths cannot overlap.

• Experiment design requirements:

– A signal capture must include:

∗ Breathing stops.

∗ A period of shallow breathing.

∗ A period of deep breathing.

∗ Multiple sleeping positions.

– The subject must be lying in bed.

– A minimum of 5–10 subjects should be included.



Chapter 5

Design

This chapter presents the design of the signal quality measurement process for respira-
tory effort sensors. This design involves two main parts: (1) the design of the signal
quality measurement process itself, and (2) the design of the script for the signal capture
procedure. The design of the signal quality measurement process involves the choice of
comparison methods and parameters (i.e., metrics) based on the requirements from Chap-
ter 4, as well as any signal preprocessing steps that may be needed. The design of the
signal capture procedure script defines how the data from the sensors are acquired. This
includes, for example, how long each signal capture should be, what positions the subject
should undertake, and what actions the subject may perform throughout the procedure.
The goal is, in other words, to gather as many representative captures as necessary to
make the results as reliable as possible.

We begin in Section 5.1 by defining the design of the signal quality measurement process.
This includes any preprocessing steps of the raw signals, feature extraction, and the
quality metrics themselves. Next, we describe a number of preliminary tests along with
their results in Section 5.2, before we define the script for the signal capture procedure
in Section 5.3. The design of this script is based on the results of the preliminary tests,
and the choice of setting and number of subjects are based on the requirements from
Chapter 4, and also anchored in related studies. Finally, we summarize and conclude the
chapter in Section 5.4.

5.1 Signal Quality Measurement

5.1.1 Preprocessing

Before the signal quality metrics can be calculated, certain preprocessing steps of the raw
signals must be performed. This includes, for example, synchronization, resampling, and
standardization/normalization. In this section, we elaborate on the details of these signal
preprocessing steps.

The RIPsum Signal

As described in Section 3.5, any behavior that is synchronously captured by both the
thoracic and abdominal signals is amplified during the calculation of the RIPsum signal,
while anything else either cancels out or diminishes. In other words, the amplitude
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Figure 5.1: Raw versus integrated signal

of breaths should increase, while noise is expected to decrease (unless present in both
signals), which in turn results in a higher signal-to-noise ratio. Hence, it might turn
out that the signal quality from the abdomen and thorax is quite poor separately, yet
still very good combined. We, therefore, in addition to the raw abdominal and thoracic
signals, also calculate and measure the signal quality of the RIPsum signal. Calibration
of the belts is rarely done in practice, and so we use the uncalibrated version of the
RIPsum signal. We derive the RIPsum signal from the raw thoracic and abdominal signals
using the formula in Equation 5.1 before any preprocessing is applied. Since the unit of
measurement is very different between the different sensors anyway (i.e., maintaining the
magnitude is unnecessary), the a and b constants are both set to 1. On a side note, as
the Shimmer sensor only captures thoracic and not abdominal effort, it is not possible to
derive the RIPsum signal from this sensor.

RIPsum = a ·RIPthorax + b ·RIPabdomen (5.1)

Airflow Integration

The piezoelectric sensor type belt (PZT) used by BITalino captures airflow rather than
lung volume (tidal volume), which is captured by both the NOX (RIP) and the Shimmer
(IP) sensors. Airflow and tidal volume are both instances of the same physiological
process, although from slightly different perspectives. For the signals to be comparable,
they need to be transformed into the same unit of measure. As we are interested in breath
amplitude for the quality metrics, the unit of tidal volume is what we need. Therefore,
we calculate the cumulative integral of the signal produced by the BITalino sensors to
transform it from flow to volume. An example can be seen in Figure 5.1, where one may
notice how much better the integrated signal resembles the gold standard compared to
the raw airflow signal.

One must note that the integration of airflow is not 100% accurate, as it is only an ap-
proximation. Furthermore, any noise, and especially baseline wander, have a remarkable
effect on the integrated result. Any baseline wander present in the signal accumulates and
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amplifies as a result of the integration. There are methods that can be used to reduce the
presence of baseline wander, such as a high-pass filter or by means of fitting a low-order
polynomial (detrending), which we describe further below.

There are multiple integral approximation algorithms available, and two popular ones
are the Trapezoidal Rule and Simpson’s Rule. Their precision varies somewhat, with the
Simpson’s Rule being regarded as more accurate. The Trapezoidal Rule yields an exact
answer for polynomials of the first degree, the Simpson’s Rule yields an exact answer
for polynomials of the third degree or less, and both give an approximation for anything
else. In the case of respiratory effort signals, the captured data from the sensors are
discrete samples rather than continuous polynomials. This means that the Trapezoidal
Rule calculates the result as if linear interpolation is applied to each sample, whereas the
Simpson’s Rule as if either quadratic or cubic interpolation is applied. As the sampling
rate of the signals is rather high, the produced waveforms of the cumulative integration
from both methods are almost indistinguishable. Which one of them we choose does,
therefore, not matter too much. There is, however, a drawback with the Simpson’s Rule
as it requires an even number of intervals (i.e., an odd number of samples). This means
that if we are to use the Simpson’s Rule, the result would be downsampled to half its
sampling rate as we can only cumulatively integrate every other sample. Due to this fact
and the little difference in accuracy, we have decided to use the Trapezoidal Rule for the
cumulative integration of airflow.

Reducing Baseline Wander

The baseline of a respiratory effort signal capturing tidal volume is the value on the y-
axis in which a breath starts and ends. When this value increases or decreases between
breaths, the baseline wanders. This is not restricted to different breaths only. Baseline
wander can just as well affect a single breath, in which case the breath’s start and end
y-value differ. Although, this definition does assume that the subject is inhaling and
exhaling precisely the same volume every time, which means that in reality, there will
be some variations that are not caused by baseline wander. Baseline wander is more
generally described as a trend, and thus, the correction of baseline wander is commonly
referred to as detrending.

A high-pass filter can be used to correct or improve baseline wander, as it is essentially
just low-frequency noise in the signal. The drawback of a high-pass filter is that it might
just as well attenuate parts of the respiratory component itself if the cut-off frequency is
not chosen properly. An alternative to a high-pass filter is to fit a low-order polynomial
to the signal (i.e., finding the trend), and then subtract it from the signal (detrending).
This technique is rather simple and leaves the respiratory component mostly intact. An
example can be seen in Figure 5.2, where the ”raw” signal is the result of an integrated
airflow signal, which is corrected by subtracting a fitted polynomial of degree 8. This
method, however, is less effective when the baseline wander frequency is close to the
respiratory component itself (i.e., sharp turns, etc.). In such cases, a high-pass filter
might be the better option.

Because integration is so affected by baseline wander, we need a method to correct it. We
have decided to use the method of subtracting a fitted low-order polynomial whenever it
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Figure 5.2: Example of heavy baseline wander corrected by fitting a polynomial

is sufficient. The main reason is that it is rather simple yet effective, without affecting
the respiratory component too much. In cases where the signal is heavily contaminated
by noise and the frequency of the baseline wander is higher, we resort to a high-pass filter
instead. As the respiratory component mostly resides in the 0.1–0.5 Hz frequency range,
the chosen cut-off frequency should preferably be less than 0.1 Hz.

Synchronization

Before the signals from different sensors can be compared, they need to be synchronized.
Neither one of the platforms we possess have any built-in support for hardware synchro-
nization, and as such, the synchronization has to be done in software as a part of the
preprocessing. As presented in Section 3.2.1, the use of cross-correlation for synchroniza-
tion is a viable option, but it does, however, come with a requirement. The waveforms of
the two signals must be most similar at the correct point of synchronization. If, for ex-
ample, one of the signals is heavily contaminated by noise, this may not hold. A solution
can be achieved by introducing an event (synchronization point) in the real world which
significantly affects the signal (i.e., a huge peak in the data). Such a peak affects the dis-
tance between the signals drastically such that the smallest distance is at the point where
the peaks from both signals align perfectly. For respiratory effort sensors, on the other
hand, this may not even be needed as the breaths themselves are rather distinct features
of the signals. This holds as long as the breaths remain the dominant component of the
signal and the breath amplitudes between the signals are somewhat correlated. Special
care regarding baseline wander must be taken whenever its amplitude becomes greater
than the breath amplitudes.

The synchronization is not required to be 100% exact for the metrics we are calculating.
The only requirement we have on the synchronization precision is that the peaks of
the real breaths captured by the target sensor should be aligned such that they are
located somewhere between the start and end of the corresponding breaths in the gold
standard. Some synchronization imprecision does, in other words, not matter for the
calculation of the signal quality metrics. After performing some initial testing, we find
that the use of cross-correlation for synchronizing respiratory effort signals proves to
be very accurate, even without the introduction of a synchronization point. We have,
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therefore, decided to use cross-correlation for the automatic synchronization of the signals.
The synchronization result is, however, validated manually for confirmation.

The formula for cross-correlation can be seen in Equation 5.2, where ŷ is the first signal,
and y is the second signal (i.e., their y-values without the time dimension). The output
of this formula is the displacement d∗ (in units of samples) between the signals. The
synchronization is done by shifting one of the signals along their x-axis in relation to this
displacement. When the signals are synchronized, we cut the signals at each end based
on their time dimension such that their length becomes equal.

d∗ = arg max
d ∈ Z

(
+∞∑

i=−∞

ŷ[i]y[i+ d]) (5.2)

Sampling Rate

For this definition of cross-correlation to work correctly, the signals must have an equal
sampling rate. According to Tripathi (2008), the recommended sampling rate for abdom-
inal and thoracic movement sensors is 100 Hz, and the minimum sampling rate is 25 Hz.
For the BITalino sensor, there are four sampling rates to choose from: 1 Hz, 10 Hz, 100
Hz, or 1000 Hz. For the NOX sensor, however, the sampling rate is fixed at 20 Hz for
the RIP sensor, and cannot be changed. For the Shimmer sensor, the sampling rate can
be freely set to anything up to 2048 Hz. However, the technology used by Shimmer to
capture respiration requires a minimum sampling rate of 204.8 Hz. As a result of these
limitations, an equal sampling rate amongst the sensors cannot be set in hardware, and
thus, have to be set in software instead.

As described in Section 3.2.1, a decimation (or downsampling) is regarded as being more
accurate compared to an upsampling. It is, however, not desirable to set the sampling
rates arbitrarily high as this increases the data load considerably, and is especially un-
necessary if the signals are to be decimated in software right away anyway. Based on
this information, we have decided to record the BITalino signal with a sampling rate of
100 Hz, and the Shimmer sensor at 512 Hz. We decimate these signals to 20 Hz in the
preprocessing phase for them to become equal to the NOX’s fixed sampling rate.

Standardization

Standardization is an alternative to normalization. Instead of scaling the data to a specific
range, its mean and standard deviation are set to zero and one, respectively. The formula
for standardization is shown in Equation 5.3, where X are the samples of the signal, µ is
the signal’s mean value, and σ is the signal’s standard deviation. The main advantage of
standardization over normalization is that normalization is heavily affected by outliers,
whereas standardization is rather robust. For example, given two different signals, both
with a steady breath amplitude of two (relative value). If one of the signals contains
an outlier value of 100, the breaths from this signal would after normalization become
so small compared to the breaths in the other signal that a visual waveform comparison
would be impossible. With standardization, on the other hand, this outlier would have
no noticeable effect on the scale of the breaths (assuming the signals are of sufficient
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length).

Xnew =
X − µ
σ

(5.3)

None of the preprocessing steps, nor any of the quality metrics, are dependent on nor-
malization or standardization. However, because the raw values produced by each of
the sensors are so different, they need to be scaled to be visually comparable. We have,
therefore, decided to standardize the signals as part of the preprocessing phase. Out-
liers in these kinds of signals are so common that normalization for the sake of visual
comparability is mostly meaningless.

The Preprocessing Steps

To summarize the preprocessing steps, we perform the following actions prior to any
metric calculations:

1. Calculate the uncalibrated RIPsum signal.

2. Remove baseline wander.

3. Integrate airflow signal to volume.

4. Resample the signals to 20 Hz.

5. Synchronize with the use of cross-correlation.

6. Standardize the signals.

5.1.2 Metrics

Definition of a Breath

As previously stated, a breath as recorded by respiratory effort sensors is by definition the
same as a peak, constrained by physical limitations. In simple terms, the peaks of a signal
can be defined as peaks = {s ∈ S | si−1 < si > si+1}, where S is the signal. In other
words, a peak is any sample that is higher than its immediate neighbors. However, this
definition yields many peaks that are not breaths (especially in noisy signals) and requires
careful filtering according to our requirements. Additionally, it must also be corrected to
support flat peaks (i.e., a peak may span multiple samples). Instead of ”reinventing the
wheel,” we extract the peaks by using the findpeaks function from the MATLAB library
(The Mathworks, Inc. 2016a), which does most of this filtering automatically. The exact
parameters supplied for this function are described further in Section 6.5.2.

To derive the start and end point of a breath, we follow the same definition as proposed
by Retory et al. (2016). The start of a breath is defined as the minimum value between
the breath and the preceding breath, while the end as the minimum value between the
breath and the succeeding breath. In other words, the end of one breath is the start of
another. The formula for start and end can be seen in Equation 5.4 and Equation 5.5,
where S is the signal, i is the index in S of the preceding breath, j is the index of
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Figure 5.3: Start and end of a breath are defined as the minimum between two peaks

the target breath, and k is the index of the succeeding breath (i.e., their peaks). See
Figure 5.3 for a visual illustration. The duration of a breath is measured as the time
distance between its start and end. We specified a requirement regarding the duration of
breaths in Section 4.2, namely that breaths should be no longer than twelve seconds and
no shorter than 0.6 seconds. There is, however, an issue with this definition of breath
duration. In the presence of breathing stops (gaps), the breaths at the start and end of
the gap may get a duration which is longer than twelve seconds, even though their real
duration is not. Due to this issue, we do not filter out breaths that are longer than twelve
seconds, but instead, limit the distance the start/end of a breath can be from its peak.
In other words, the interval in which we find the minimum value (start/end), is either
the distance from the peak to either neighboring peaks or six seconds from the peak in
either direction (peak is in the middle of the breath, 12

2
= 6). If this causes the peak’s

amplitude to get too low, the breath is filtered out. On a side note, the breaths at the
boundaries of the signal are very likely to not get their true start and end value by this
method, and hence not their true amplitude either. These breaths may, therefore, be
excluded from the quality measurement altogether to get a more fair quality comparison.

start = min(Si, Si+1, Si+2, ..., Sj) (5.4)

end = min(Sj, Sj+1, Sj+2, ..., Sk) (5.5)

Since these kinds of signals are very commonly affected by a varying degree of baseline
wander, measuring the amplitude of a breath based on its peak y-value is unreliable. The
amplitude of a breath should, therefore, be measured as the difference between its peak
and its start/end value. As the start and end value of a breath may vary, we calculate
the breath amplitude as the difference from its peak to the mean of the start/end values
(see Equation 5.6). After conducting some initial testing, we find that this definition of
the amplitude is more accurate (it is closer to the gold standard) compared to taking
either the minimum (Equation 5.7) or maximum distance. However, it has a significant
drawback in the context of disregarding peaks with an amplitude lower than 10% of the
mean breath amplitude. When the distance from the peak to either its start or end is very
close to zero, its amplitude may still be way above the threshold with this definition. As
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a result, we use an alternative amplitude definition for the peak filtering. This definition
can be seen in Equation 5.7, where the amplitude is the minimum distance from its peak
to either its start or end.

amplitude = peak − start+ end

2
(5.6)

amplitude = min(peak − start, peak − end) (5.7)

One of the requirements we set for the breath detection is that a peak has to be at least
10% as high as the mean breath amplitude to be regarded as a breath (Section 4.2). The
challenge with this is to determine the mean breath amplitude before detecting the breaths
themselves. This is rather hard (if not impossible) to do accurately, and so we must use
an approximation instead. We derive this approximation by splitting the signal into non-
overlapping tumbling windows, from which we take the maximum amplitude (max−min
y-value). The mean of these amplitudes is the approximated mean breath amplitude. See
Equation 5.8, where S is the signal, and w is the window width in the number of samples.
We set the window width to be four seconds wide for this approximation. The reason
is that four seconds is approximately the duration of a breath during normal breathing
(which is 12–18 breaths per minute for adults). To give an example of the precision
of this approximation method, we got an approximated value of 2.6636, when the real
value was 2.6648. The precision of this approximation depends on either how close the
respiration rate in the signal is to four seconds or the stability of the breath amplitudes.
If the breath amplitudes are somewhat stable, a wider window width is tolerated without
losing precision. With this approximation as a starting point, an iterative approach can
be applied to increase the accuracy of the estimate further if desired. The accuracy of
the automatic breath detection is, however, not the primary focus of this thesis. We
manually validate and confirm the process anyway, and automatic detection is used only
as a means to speed up the process. This breath amplitude approximation method is,
therefore, very much adequate for our purpose.

n =
|S|
w

amplitudemean =
1

n

n∑
i=0

max(Siw, Siw+1, ..., Siw+w−1)−min(Siw, Siw+1, ..., Siw+w−1)

(5.8)

Breath Detection Accuracy

We decided in Section 4.2 that the signal quality of a sensor regarding its ability to detect
apneas should be measured by its ability to correctly identify breaths. Furthermore, the
interpretation of the quality metric should be trivial in relation to how good the sensor
is at detecting apneic events. Based on these requirements, we have decided to use the
sensitivity and positive predictive value metrics as our primary breath detection accuracy
metrics. See Equation 5.9 and Equation 5.10, where |Btrue| is the number of correctly
identified breaths, |B| is the number of all detected breaths, and |R| is the number of
real breaths (as detected by the gold standard). For a breath to be regarded as true, its
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peak has to be between the start and end of a real breath. See Equation 5.11, where B
are the breaths detected by the target sensor, and R the breaths detected by the gold
standard. The sensitivity of a sensor directly reflects the sensor’s ability to identify real
breaths, while the positive predictive value yields information about the proportion of
false breaths. What these metrics lack, however, is information about the distribution
of the errors/artifacts. As such, we additionally use the clean minute proportion metric.
See Equation 5.12, where |Mclean| is the number of clean minutes, and |M | is the total
number of minutes in the signal. A minute is regarded as clean if both the sensitivity and
positive predictive value are 100% during the minute. See Equation 5.13, where M are
all minutes of the signal, s yields the sensitivity, and ppv yields the positive predictive
value. If the errors/artifacts of a sensor are only present once in a while, the proportion
of accurate minutes could still be high, and thus the sensor might still be very much
usable.

Sensitivity =
|Btrue|
|R| × 100% (5.9)

Positive predictive value =
|Btrue|
|B| × 100% (5.10)

Btrue = {b ∈ B | rstart < bpeak < rend, r ∈ R} (5.11)

Clean minute proportion =
|Mclean|
|M | × 100% (5.12)

Mclean = {m ∈M | s(m) = 100 and ppv(m) = 100} (5.13)

Breath Amplitude Accuracy

How good a sensor is at detecting hypopneas depends on how accurate the amplitudes
of the detected breaths are. As such, we measure the signal quality with respect to
hypopnea detection by comparing the breath amplitudes of the target sensor with the
breath amplitudes of the gold standard. Because the different sensors are using different
scales, their amplitude values cannot be compared directly. Even common normaliza-
tion/standardization techniques are not sufficient because of the presence of noise, base-
line wander, and outliers. Instead, the relationship between the amplitudes from both
sensors needs to be determined. As explained in Section 4.1.2, this relationship should be
linear, and as such, is obtained through linear regression. The distance from a breath’s
amplitude value to the corresponding value on the regression line is its relative error
value.

After the error values of all the breath amplitudes are determined, they must be sum-
marized to represent the overall signal quality of the sensor. There are many statistical
methods that can be used to summarize these error values, such as RMSE, coefficient of
determination, Spearman’s correlation coefficient, etc. (see Section 3.4). However, as the
presence of hypopneic events is identified based on the relative percentage reduction of
the breath amplitudes in relation to the baseline breath amplitude, none of these meth-
ods yields a trivial interpretation. For example, given an RMSE error value of 0.3. One
cannot know if this is a good or bad quality sensor in relation to hypopnea detection. To
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be able to reason about that, one would have to additionally know the baseline breath
amplitude. Consequently, the accuracy metric between different sensors, or even between
different signal captures from the same sensor, cannot be compared because the baseline
breath amplitude may vary. One must also remember that the mere existence of a re-
lationship is not of interest. The relationship is assumed to exist, and it is the variance
that is of importance. A better option is, therefore, to calculate the mean percentage
error. An error rate of, for example, 10% can immediately be interpreted as the breath
amplitudes are on average 10% off in either direction.

We have, therefore, decided to use the Weighted Absolute Percentage Error (WAPE ) (see
Section 3.4) metric to represent the breath amplitude accuracy. The formula for WAPE
can be seen in Equation 5.14, where E are the values at the regression line, and B are
the actual breath amplitudes as recorded by the target sensor. The expanded formula
shown in Equation 5.15 may be easier to understand conceptually, where B is the mean
of the breath amplitudes. The way this metric works is that we regard the mean breath
amplitude as being the baseline, and then calculate the reduction/increase as a percentage
difference from this baseline. For example, let the baseline be 1, and the value at the
regression line be 0.4 (i.e., a 60% reduction from the baseline). If a sensor detects the

amplitude of this breath as 0.5, the error would be 10% ( |0.4−0.5|
1
× 100%).

n = |B|

WAPE =

n∑
i=0

|Ei −Bi|
n∑

i=0

Bi

× 100%
(5.14)

n = |B|

WAPE =
1

n

n∑
i=0

|Ei −Bi|
B

× 100%
(5.15)

For this metric to work, we need to determine the linear relationship between the breath
amplitudes and derive the regression line. There are many linear regression algorithms
available, with one of the most common being the (ordinary) least squares (OLS) algo-
rithm. The OLS algorithm fits a regression line such that the squared error is as low
as possible. Consequently, if there are strong outliers in the data, an otherwise obvious
relationship is not captured by this algorithm. See Figure 5.4 for a visual illustration.
In this example, the target sensor is unable to correctly detect the higher breath ampli-
tudes, but the linear relationship is still present for the lower-middle amplitude breaths.
Such a deviation from the relationship should be penalized, and thus, an outlier robust
regression algorithm is more appropriate in this case compared to the OLS algorithm.

Two popular outlier robust regression algorithms are Theil-Sen and Random Sample
Consensus (RANSAC). Put shortly, the Theil-Sen algorithm finds the slope between all
pairs of points and then chooses the median of these slopes as the model. This can
be computed exactly with a complexity of O(n2). The amount of data we are working
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Figure 5.4: OLS vs outlier robust regression algorithm

with is not that vast considering that a breath often spans multiple seconds, and so the
complexity of this algorithm is not of significant concern. The RANSAC algorithm works
by randomly picking the minimum number of samples required to fit a model, and then
uses a voting scheme where any data point that fits this model is regarded as an inlier.
These two steps are repeated iteratively until the number of inliers of a model exceeds
a threshold. Both of these algorithms yield very similar results for our case, and both
are much better than the OLS algorithm. The RANSAC algorithm, however, produces
a slightly different regression line every time it is run on the same data because of its
random nature. This causes the accuracy metric to vary ever so slightly between different
runs, which is not desirable. Because of this factor, we have decided to use the Theil-Sen
regression algorithm for the metric calculation.

There are at least three aspects of the WAPE metric that should be emphasized. Firstly,
if the slope of the regression line is exactly zero, then the metric is misleading/wrong.
This may happen if the breath amplitudes are constant or vary evenly around a point.
When the slope is zero, it is impossible to transfer (calibrate) the target sensor to the
same unit of measure as the gold standard (or absolute units). Secondly, the result
derived from random data with an even distribution is 50% regardless of the slope of the
regression line. Thirdly, the breath amplitudes (once extracted from the signal) must not
be normalized/standardized. The reason is that the (intra) ratio between the amplitudes
of the breaths must not be altered. For example, let the mean breath amplitude be 1.5,
and the amplitude of a sample breath be 1.2 (i.e., a 20% reduction from the mean). If
these breath amplitudes are normalized such that the mean breath amplitude becomes 0.5
and the sample breath amplitude becomes 0.2, then their relative ratio changes (1.2

1.5
6= 0.2

0.5
,

suddenly a 40% reduction).

5.2 Preliminary Testing

Signal capture sessions performed overnight while the subjects are asleep are with no
doubt the most representative sessions for sleep apnea monitoring. These longer sessions,
however, require significantly more work, both with respect to execution as well as subject
recruitment, compared to shorter sessions that can be performed in a laboratory during
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wakefulness. Shorter sessions are, thus, preferred over longer overnight sessions as long
as they prove to be sufficiently representative (see Section 4.3.2). To determine if shorter
sessions performed during wakefulness indeed are sufficient to measure the signal quality
of the sensors, we perform several preliminary tests. The main purpose of this preliminary
testing is more specifically to determine if and how the signal quality from the sensors
changes over time and how changes in body position affect the signal. In addition, these
preliminary tests may also wind up uncovering sensor specific oddities and traits that
should be taken into account when we design the signal capture procedure.

5.2.1 Tests

These preliminary tests focus primarily on the BITalino sensor. The reason is mainly that
the Shimmer sensor is certified as medical grade equipment, and its quality is, therefore,
expected to be rather good overall. That said, the Shimmer sensor is not excluded from
these preliminary tests altogether, but it is not tested as extensively as the BITalino
sensor. Also, the RespiBAN and FLOW sensors are not included because we acquired
them too late in the process. For the BITalino sensor, we perform the preliminary tests
over several sessions, some in which the subject is awake, while others in which the
subject is sleeping. To measure how the signal quality changes over time, we split each
signal capture into smaller chunks and then compare these on an intra-capture basis. We
measure the quality of these captures using the methods described in Section 5.1, namely
by means of breath detection accuracy and breath amplitude accuracy. The RIPsum signal
is excluded from the preliminary testing because the mere signal quality in these tests
are not of interest, but rather how the sensors behave.

We perform the following preliminary tests:

• Four 30-minute tests, capturing both abdominal and thoracic breathing, sitting
relatively still in a chair.

• Two 2.5-hour tests, capturing both abdominal and thoracic breathing, at night
while the subject is sleeping.

• Various smaller experiments to uncover:

– How sensor entrapment affects the signal (e.g., by lying on the sensor).

– How minor belt misplacement affects the signal.

– How the technology used by Shimmer differs from the belt type sensors.

5.2.2 Findings

Sensor Initialization

One of the first things we discovered is that the first two minutes of each signal is some-
what noisy. This applies to both the BITalino sensor as well as the gold standard (NOX).
We suspect that this may be due to a combination of sensor initialization/calibration
and movement by the subject. When the respiratory effort belt is strapped around a new
subject, it has to adapt to a new baseline circumference. An example of this kind of noise
can be seen in Figure 5.5. Notice how the signal is very noisy at the start and stabilizes
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Figure 5.5: First three minutes of a signal capture

towards the end. Because of this phenomenon, it may be a good idea to exclude the first
two minutes from the quality measurement altogether.

30-minute Captures

For the 30-minute captures, we removed the first two minutes of each capture and then
split the signal into four chunks of about seven minutes each. In other words, Part 1
consists of minute 2–8, Part 2 of minute 9–15, and so on. This makes it possible to
see how the signal quality differs between each part, to get an idea of how/if the signal
quality changes as time passes. The results for the breath detection accuracy can be seen
in Table 5.1, and the results for the breath amplitude accuracy can be seen in Table 5.2.

After a quick visual inspection of the signal captures, the first impression is that the
overall signal quality remains somewhat consistent over time. By studying the results, it
becomes clear that the breath detection accuracy does indeed not keep changing in any
one direction over time. It is rather stable with minor fluctuations between each part.
For three out of eight captures, Part 4 does actually have a better PPV compared to
Part 1. Moreover, there is possibly a trend where the PPV decreases until somewhere
between Part 2 and 3 before it starts increasing again. This may indicate that a capture
of about fifteen minutes (Part 1–2 ) is sufficiently long enough to capture the average
breath detection accuracy for the given sensor. One may notice that the sensitivity is
often somewhat good, whereas the PPV is generally a little lower. This suggests that it
is mainly false breaths that are of concern; at least for these captures.

For the breath amplitude accuracy, on the other hand, there is possibly a slight decrease
in quality over time for most of the captures. Part 4 has, in fact, a lower breath amplitude
accuracy compared to Part 1, for seven out of eight captures; although with varying degree
of recession. The difference in accuracy between each part might be the result of changes
in body position, causing motion artifacts or amplitude changes (caused by changes in
belt tightness). Nonetheless, this becomes more clear from the longer overnight sessions.

In general, the abdominal signal (slightly more often than not) have a higher accuracy
overall compared to the thoracic signal. This is most likely because the breathing style in
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Part 1
(min. 2–8)

Part 2
(min. 9–15)

Part 3
(min. 16–22)

Part 4
(min. 23–29)

Capture 1 (abdomen) S: 100.00%
PPV: 99.14%
CMP: 87.50%

S: 100.00%
PPV: 98.86%
CMP: 87.50%

S: 98.84%
PPV: 100.00%
CMP: 87.50%

S: 100.00%
PPV: 100.00%
CMP: 100.00%

Capture 1 (thorax) S: 100.00%
PPV: 82.73%
CMP: 12.50%

S: 100.00%
PPV: 98.88%
CMP: 87.50%

S: 97.73%
PPV: 91.49%
CMP: 50.00%

S: 100.00%
PPV: 94.06%
CMP: 50.00%

Capture 2 (abdomen) S: 100.00%
PPV: 100.00%
CMP: 100.00%

S: 100.00%
PPV: 98.17%
CMP: 71.43%

S: 99.07%
PPV: 99.07%
CMP: 71.43%

S: 100.00%
PPV: 97.73%
CMP: 85.71%

Capture 2 (thorax) S: 100.00%
PPV: 100.00%
CMP: 100.00%

S: 98.18%
PPV: 100.00%
CMP: 71.43%

S: 96.33
PPV: 97.22%
CMP: 28.57%

S: 95.35%
PPV: 95.35%
CMP: 57.14%

Capture 3 (abdomen) S: 100.00%
PPV: 93.22%
CMP: 57.14%

S: 100.00%
PPV: 83.85%
CMP: 0.00%

S: 99.07%
PPV: 84.92%
CMP: 28.57%

S: 99.10%
PPV: 95.65%
CMP: 57.14%

Capture 3 (thorax) S: 100.00%
PPV: 84.62%
CMP: 14.29%

S: 99.08%
PPV: 68.35%
CMP: 0.00%

S: 100.00%
PPV: 63.69%
CMP: 14.29%

S: 99.09%
PPV: 66.46%
CMP: 0.00%

Capture 4 (abdomen) S: 98.15%
PPV: 100.00%
CMP: 87.50%

S: 98.28%
PPV: 100.00%
CMP: 75.00%

S: 88.60%
PPV: 93.52%
CMP: 0.00%

S: 80.77%
PPV: 100.00%
CMP: 50.00%

Capture 4 (thorax) S: 97.22%
PPV: 95.45%
CMP: 37.50%

S: 100.00%
PPV: 98.31%
CMP: 75.00%

S: 95.58%
PPV: 95.58%
CMP: 37.50%

S: 98.13%
PPV: 99.06%
CMP: 75.00%

* S: sensitivity, PPV: positive predictive value, CMP: clean minute proportion

Table 5.1: Breath detection accuracy for the 30-minute captures

Part 1
(min. 2–8)

Part 2
(min. 9–15)

Part 3
(min. 16–22)

Part 4
(min. 23–29)

Capture 1 (abdomen) 9.70% 13.94% 15.68% 16.29%

Capture 1 (thorax) 23.79% 27.71% 18.61% 33.75%

Capture 2 (abdomen) 10.66% 14.03% 18.76% 22.60%

Capture 2 (thorax) 15.16% 13.45% 22.45% 26.76%

Capture 3 (abdomen) 25.68% 25.19% 27.79% 27.48%

Capture 3 (thorax) 18.68% 24.71% 23.73% 29.92%

Capture 4 (abdomen) 15.82% 26.97% 64.78% 23.89%

Capture 4 (thorax) 32.72% 19.18% 33.39% 28.17%

* mean amplitude percentage error (WAPE)

Table 5.2: Breath amplitude accuracy for the 30-minute captures
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Figure 5.6: False breaths between real breaths

these captures are more prominent in the abdomen, causing a higher breath amplitude,
and thus a higher signal-to-noise ratio.

One may notice that although the PPV is much lower in Capture 3 (thorax) compared
to the other captures, its breath amplitude accuracy is still about average. This happens
because the amplitude accuracy is only calculated based on correctly identified breaths
(i.e., breaths matched with the gold standard). In other words, Capture 3 (thorax)
contains a lot of false breaths which are not taken into account when calculating the
breath amplitude accuracy. An example can be seen in Figure 5.6, where the BITalino
signal exhibits high peaks (which are often misinterpreted as breaths) between each real
breath.

In Capture 4 (abdomen), we discovered an oddity where the breath amplitudes suddenly
dropped over a period, without any changes to breathing intensity or body position (see
Figure 5.7). This effect is clearly visible in both the sensitivity and breath amplitude
accuracy metrics. These periods are scattered throughout the capture, and last from
about 30 seconds up to about three minutes each. This phenomenon has yet only been
observed for that specific signal capture (the thoracic signal does not exhibit this phe-
nomenon), however, multiple times during the capture. The cause is yet unknown, but
it seems to be inherent to the belt itself as no external adjustments were made to either
the breathing, body, or belt during the capture. How common this kind of behavior is
will show as we gather more captures, but it is, nevertheless, clear that such behavior
has a direct negative impact on both the breath detection as well as breath amplitude
accuracy. It is expected that even trained personnel would annotate these periods as at
least hypopneic, if not even as apneic.

Overnight Captures

After a visual inspection of the overnight captures, it is evident that the breath amplitudes
vary significantly between different sleeping positions for the BITalino sensor compared
to the NOX sensor (see Figure 5.8 and Figure 5.9). For the BITalino capture (Figure 5.8),
the periods with high amplitudes are from a duration of sleeping on the side, whereas the
lower amplitude periods are from a duration of sleeping in the supine (back) position.
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Figure 5.7: Capture 4 (abdomen) — sudden periods of low amplitude
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Figure 5.8: Overview of an overnight capture from BITalino

As seen from the NOX capture (Figure 5.9), the breath amplitudes are somewhat stable
across sleeping positions, however, with some spikes as a result of motion artifacts (e.g.,
by the change of sleeping position). These examples are taken from an abdominal belt
signal, but the same phenomenon can also be clearly seen from the thoracic signals,
although to a slightly lesser degree.

With such a massive variation in baseline breath amplitude between different sleeping
positions, a challenge arises. The periods with different baseline breath amplitude either
need to be compared with the gold standard separately, or careful adaptive normaliza-
tion techniques must be applied. The breath amplitude relationship would otherwise be
completely misleading (see Figure 5.10). More interestingly, one can in Figure 5.10 make
out at least three distinct clusters, which indicates that at least three such periods (with
different baseline breath amplitudes) exist in the data. In this particular instance, one
can even quite easily make out visually which cluster corresponds to which period. An-
other noteworthy observation is that even periods with the same sleeping position have
a big enough difference in baseline breath amplitude to form distinct clusters.

Another oddity we discovered is that the BITalino signal may suddenly invert its values
across the y-axis for a period of time. In other words, the signal is flipped, which means
that as the belt distraction expands, the y-value decreases instead of increases. This
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Figure 5.9: Overview of an overnight capture from NOX
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Figure 5.10: Breath amplitude relationship when whole signal is standardized together
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Capture 1: Breath Detection Accuracy

Supine
(min. 3–18)

Side
(min. 27–55)

Supine
(min. 62–71)

Side
(min. 76–96)

Supine
(min. 99–113)

Abdomen S: 100.00%
PPV: 100.00%
CMP: 100.00%

S: 99.75%
PPV: 100.00%
CMP: 96.55%

S: 100.00%
PPV: 98.18%
CMP: 77.78%

S: 98.97%
PPV: 100.00%
CMP: 95.24%

S: 97.65%
PPV: 99.52%
CMP: 66.67%

Thorax S: 98.94%
PPV: 75.30%
CMP: 13.33%

S: 100.00%
PPV: 99.75%
CMP: 96.55%

S: 98.15%
PPV: 100.00%
CMP: 88.89%

S: 98.96%
PPV: 99.30%
CMP: 90.48%

S: 100.00%
PPV: 68.28%
CMP: 6.67%

* S: sensitivity, PPV: positive predictive value, CMP: clean minute proportion

Capture 1: Breath Amplitude Accuracy

Supine
(min. 3–18)

Side
(min. 27–55)

Supine
(min. 62–71)

Side
(min. 76–96)

Supine
(min. 99–113)

Abdomen 10.48% 5.89% 19.00% 5.48% 19.77%

Thorax 22.65% 10.96% 14.05% 22.03% 27.44%

* mean amplitude percentage error (WAPE)

Table 5.3: Breath detection and amplitude accuracy for overnight capture 1

seems to be triggered randomly as the subject changes position, in other words, by
physical movement. While this phenomenon is rather easy to correct once identified,
it may not be trivial to detect in the first place. The only indication present without
comparing it to the gold standard is that the amount of noise is usually higher between
breaths compared to during a breath. Moreover, it is unclear how common this kind of
behavior is, as it happens multiple times during both overnight captures (even without
any suspected movement), but not in any of the 30-minute captures. In the second
overnight capture, it happened within five minutes, which is before the subject fell asleep.
The motion associated with lying down in bed is what seems to be the trigger in this
particular case. This suggests that it should be possible to uncover this phenomenon as
easily during shorter wakeful sessions. It may not have been present in the 30-minute
captures because no prominent position changes were involved.

To evaluate the quality of the overnight captures, we compare the periods with different
baseline breath amplitudes separately. Periods of inverted y-axis are manually identi-
fied and corrected on a best effort basis. Very short periods, as well as data captured
during position changes, are excluded from the comparison. The results are presented
in Table 5.3 and Table 5.4, in the same units as for the 30-minute captures. However,
as the time slices and body positions vary between the two overnight captures, they are
separated into different tables.

Based on these results, the abdominal signal is again superior compared to the thoracic
signal. In addition, the signal quality from sleeping on the side is exceptionally good,
especially for the abdominal signal. Regarding any quality changes over time, there is not
any noticeable trend. Rather, the quality is mostly affected by position changes causing
changes to the baseline breath amplitude. It becomes harder to distinguish noise from
breaths as the breath amplitudes become lower.
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Capture 2: Breath Detection Accuracy

Supine
(min. 3–20)

Side
(min. 22–70)

Side
(min. 71–96)

Supine
(min. 97–121)

Side
(min. 124–168)

Abdomen S: 99.64%
PPV: 99.28%
CMP: 85.00%

S: 99.71%
PPV: 100.00%
CMP: 95.65%

S: 99.14%
PPV: 99.71%
CMP: 92.00%

S: 90.00%
PPV: 98.62%
CMP: 33.33%

S: 99.86%
PPV: 99.86%
CMP: 95.65%

Thorax S: 96.80%
PPV: 91.58%
CMP: 30.00%

S: 99.71%
PPV: 100.00%
CMP: 95.65%

S: 98.85%
PPV: 99.71%
CMP: 88.00%

S: 96.47%
PPV: 100.00%
CMP: 79.17%

S: 99.45%
PPV: 99.45%
CMP: 91.30%

* S: sensitivity, PPV: positive predictive value, CMP: clean minute proportion

Capture 2: Breath Amplitude Accuracy

Supine
(min. 3–20)

Side
(min. 22–70)

Side
(min. 71–96)

Supine
(min. 97–121)

Side
(min. 124–168)

Abdomen 22.65% 6.15% 8.21% 30.78% 12.52%

Thorax 35.86% 9.10% 13.72% 16.67% 8.50%

* mean amplitude percentage error (WAPE)

Table 5.4: Breath detection and amplitude accuracy for overnight capture 2

Sensor Entrapment Experiments

The sensor part of a piezoelectric respiratory effort belt does not span the whole circum-
ference of the belt, but only a small area. This makes these kinds of sensors prone to
entrapment, as the non-sensor part of the belt can expand while the sensor part is kept
still (e.g., by lying on the sensor part). Therefore, we perform several smaller experiments
to determine the effect this has on the signal quality. These tests involve behavior that
can happen at night, for example, lying on the sensor as well as resting the arms directly
on top of the sensor.

The results of these tests show that the general outcome of sensor entrapment is a sig-
nificant decrease in breath amplitudes. This is in contrast to the RIP type belt, which is
not affected by entrapment at all. The degree of the amplitude decrease depends on how
trapped the sensor becomes. If the amplitudes decrease too much, the breaths become
indistinguishable from noise, which in turn renders the signal useless. On a side note,
the abdominal signal is slightly less affected compared to the thoracic signal when the
subject is lying on the sensors; at least in these tests.

A somewhat strange oddity we discovered when performing these tests was that the
BITalino belts malfunctioned from time to time. They would suddenly start to only
output values near maximum or minimum (see Figure 5.11), and the only way to restore
them was to physically touch/adjust the belts. The movement from the breathing alone
is enough to correct the signal. We have experienced this behavior on four different belts,
and hence it is not very rare, nor caused by a faulty belt. Although, physical movement
a bit stronger than normal breathing (e.g., by lying on the sensor) seems to be the main
trigger. If this happens during the night, the whole signal might end up becoming useless.
Thus, it is important that we try to determine how commonly this occurs during normal
body position changes in bed.
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Figure 5.11: BITalino belt malfunctioning

Effect of Belt Placement

The respiratory process can be described as a system with two degrees of freedom of mo-
tion (Konno and Mead 1967). This means that to accurately measure tidal volume from
body movement, the sum of both the thoracic and abdominal movements are required.
Moreover, the belts should be placed at the abdominal and thoracic locations where the
movements are most prominent. The recommended positioning of respiratory effort belts
is at the level of the umbilicus for the abdominal belt and at nipple level (just above
or below for females) for the thoracic belt. Any variations from this potentially reduce
the magnitude of the captured breaths, and hence the signal-to-noise ratio declines. In
addition to the mere placement of the belts, their tightness also significantly affects the
signal quality. The belts should optimally be fit snugly around the subject. In other
words, the belts should be tight enough to follow every motion associated with breathing
while still minimizing motion artifacts, but not too tight either. Whereas a very tight
fitted belt might produce higher breath amplitudes, the breath amplitude linearity has
been shown to degrade when the belt distraction becomes too high; at least for some
piezoelectric belts (Vaughn and Clemmons 2012).

Because we use two sets of belts in our tests, two abdominal and two thoracic belts, a
perfect fit is not possible. We instead position the belts as close to each other as possible
(without interfering), and with the optimal position right in the middle. For example,
the level of the umbilicus is right between the two abdominal belts, with a gap between
the belts as small as possible. This yields two ordering possibilities, the gold standard
can either be placed below or above the target sensor. To make sure that there is no
significant difference of the belt order, we conduct a few tests with both orderings. From
the results of these tests, we do not notice any significant difference. When the belts are
positioned so close together, they are expected to capture an equal magnitude of motion
regardless of the ordering.

The effect of minor belt misplacement is especially important to measure when people
are to use such equipment at home without the help of trained personnel. Additionally,
the belts might just as well slip and change position as the subject moves or changes
sleeping position in bed. We, therefore, conduct a number of preliminary experiments in
that regard. To measure the effect of misplacement, we correctly fit the gold standard
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Figure 5.12: BITalino belt contaminated by higher frequency noise

with the target sensor placed about 5cm off from its optimal position. We then move
the target sensor steadily closer to its optimal position as time passes. More specifically,
the first two minutes are measured with a 5cm gap between the belts, the next two
minutes with a 2.5cm gap, and the last two minutes with (almost) no gap. This makes it
possible to determine if and how much the signal quality improves as the belts approach
their optimal positions. We conduct multiple experiments like this while alternating the
direction of the misplacement (up or down).

The results of these tests show that minor misplacement of the belts does not matter too
much regarding the quality of the produced signals. However, as the misplacement get
more severe, the breath amplitudes are more affected. When the thoracic belt approaches
the abdomen, the breath amplitudes increase, while they decrease as the belt approaches
the top of the thorax (throat). Positioning the thoracic belt too close to the abdomen is,
however, not desirable as the movement from the thorax and abdomen must be measured
independently to estimate tidal volume accurately.

On a side note, we did encounter the oddity regarding BITalino flipping the signal across
the y-axis when we repositioned the belts during these tests. This further suggests that
the phenomenon is triggered by physical movement and does not only occur during sleep.
Furthermore, we discovered yet another oddity during these tests. The signals from the
BITalino belts were heavily contaminated by higher frequency noise (both the abdominal
and thoracic belt). See Figure 5.12 for an example. The cause of this phenomenon is
yet unknown, but it seems to be caused by some sort of interference. It did not change
with any physical movement or readjustment of the belts. After conducting a frequency
analysis of the signal, we find that the magnitude of the frequencies involved are evenly
distributed across all bands above 0.5 Hz (which is where the respiratory component
ends), i.e., 0.5–10 Hz, which suggests that it is white noise.

Shimmer Experiments

As described in Section 4.4.2, Shimmer uses an impedance plethysmography (IP) type
sensor, which utilizes electrodes attached directly to the skin on the subject’s chest and
upper thigh. In contrast to, for example, a RIP type sensor, this technology is regarded
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Figure 5.13: Overview of the first twelve minutes of a Shimmer capture

as being more affected by noise, while also suffering from baseline wander (Brouillette
et al. 1987). Shimmer is, as the NOX, certified as medical grade equipment (Shimmer
2018a) and its general quality is, therefore, expected to be reasonably good. Our inten-
tion for conducting these preliminary tests with Shimmer is to uncover if any of these
expected differences should be taken into consideration when designing the signal capture
procedure. In addition, we must also assure that the addition of the electrodes does not
affect the performance of the other sensors in any way. Having four respiratory effort
belts in addition to three electrodes and the Shimmer device itself can be troublesome.

As seen in Figure 5.13, the baseline wander is present (as expected) and clearly visible
in the signal. This is the first twelve minutes of a signal capture, and the spikes are
prominent breaths (i.e., not noise or motion artifacts). As time passes, the baseline
wander does stabilize a little, and instead of going just downwards, it starts to vary by
going up and down like a low-frequency component. It does, however, take quite a few
minutes (around 30 or so) before this starts to happen. Baseline wander with such a
low frequency as this, is rather easily corrected (or at least improved) by fitting and
subtracting a low-order polynomial from the signal.

The electrodes attached to the subject’s chest are located at about the same level as the
respiratory effort belts, although on the side of the chest under the arms. This means that
the belts are strapped atop of the electrodes. The respiratory effort belts are, however,
meant to be worn atop of clothing, and the extra electrodes did not affect the signal in
any way in the tests we performed.

5.3 Signal Capture Procedure

With the results of the preliminary testing in mind, we design in this section a proce-
dure to capture data from various external subjects. The design of this signal capture
procedure defines, in other words, how we acquire data from the sensors. This includes,
for example, how long each signal capture should be, what positions the subject should
undertake, and what actions the subject may perform throughout the procedure. The
primary goal is, in other words, to gather as many representative captures as needed to
make the results as reliable as possible.
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5.3.1 Setting

Body Position

The supine (back) and lateral decubitus (side) positions are the most common sleeping
positions mentioned in the literature. The prone position (chest down) is less commonly
mentioned, which might be due to certain position restrictions enforced by the equipment.
In many studies, the subjects are either restricted to certain positions due to the equip-
ment or have been instructed to sleep in a specific position the whole night for consistency.
Our equipment also puts a restriction on the prone position as the NOX device itself is
located on the subject’s chest, which makes the prone position very uncomfortable. The
relevant body positions for our signal capture procedure are, therefore, the supine (back)
and lateral decubitus (side) positions. Many studies do not even differentiate between the
left and right side, e.g., (George et al. 1988), as they are mostly the same. As such, we
do not differentiate between the left and right side either.

In a study by Whyte et al. (1991), they conclude that RIP belts are unreliable when the
subjects are allowed to change body position throughout the night. We have already seen
this phenomenon from the preliminary tests, where the baseline breath amplitude differs
significantly between different body positions; although, not visually noticeable for the
RIP-belts in our tests. This further suggests that changes in body position should be
included in the signal capture procedure.

Based on this information and our requirement for different body positions (Section 4.3.2),
we include the supine (back) and lateral decubitus (side) positions in our signal capture
procedure. By alternating between the supine and side positions during the test sessions,
we further uncover the frequency and impact of the breath amplitude changes; not to
forget any quality differences that might be present between the different positions.

Breathing Style

To make the signal captures more representative for sleep apnea monitoring, we require
that both breathing stops as well as different breathing styles are included in the signal
captures (Section 4.3.2). To simulate apneic events, the breathing stops should be at
least ten seconds in duration. Real apneic events last from ten seconds up to multiple
minutes, depending on the severity of the disorder. A sensor must, in other words, be able
to detect breathing stops of at least ten seconds in duration to be usable. Longer gaps
may, however, be split into multiple smaller gaps whenever the sensor is exhibiting false
breaths. The duration of the simulated breathing stops does not need to be significantly
longer than ten seconds, but a little longer may be beneficial to measure any inaccuracies.
A duration of about 10–20 seconds should be sufficient.

To better be able to measure the breath amplitude accuracy, we require (Section 4.3.2)
that periods of both normal breathing, deep breathing, and shallow breathing are in-
cluded in the captures. This results in three different levels of breath amplitudes (shal-
low, normal, deep) in addition to minor variations between each breath. How much
deeper/shallower the breathing should be is hard to define definitively, and will, thus,
be subjective and vary between different signal captures. Variation like this is good to
better capture the general case. The inclusion of shallow breathing simulates hypopneic
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Figure 5.14: The effect of including both shallow, normal, and deep breaths

events, and should, therefore, last a minimum of ten seconds. With the same reasoning
as for apneic events, a duration of 10–20 seconds should be sufficient. The duration of
the periods with deep breathing does not need to be too long either, but it should differ
from normal breathing. A duration of about 10–20 seconds should be sufficient for these
periods as well.

The effect and importance of including three different breathing styles are illustrated in
Figure 5.14. Because we are using a regression algorithm that is robust against outliers,
the relationship is still expected to get captured if either one of the shallow or deep
breathing periods happens to be very inaccurate.

5.3.2 Duration

The choice of how long the test sessions should be is a trade-off between quantity versus
quality (or representability) of tests. As previously mentioned, signal capture sessions
performed overnight when the subject is asleep is with no doubt the most representative
situation for sleep apnea monitoring. These longer sessions, however, require significantly
more work, both with respect to execution as well as subject recruitment, compared to
shorter sessions that can be performed in the laboratory during wakefulness. A decent
quantity of tests is essential to determine the frequency of some of the oddities discovered
during the preliminary testing (and additional yet undiscovered ones), in addition to
increasing the confidence and the generalizability of the signal quality measurements.
Shorter tests performed during wakefulness are, in other words, preferred, as long as they
are sufficiently representative (see Section 4.3.2).

In related literature, the duration of the signal captures varies between studies. Some
perform overnight captures, for example, (Wu et al. 2009), (Whyte et al. 1991), and (Can-
tineau et al. 1992), while others perform shorter sessions captured during wakefulness,
for example, (Retory et al. 2016), (Liu et al. 2013), and (Pennock 1990). Although worth
mentioning is that not all of these studies focus specifically on sleep apnea. In a study
by Cantineau et al. (1992), they found that the accuracy of RIP belts varies between
wakefulness and different stages of sleep, with REM sleep showing the most inaccurate
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results. This suggests that the accuracy may decline over the course of the night as REM
sleep becomes more prominent as the night progresses. In other words, if we only perform
the test sessions during wakefulness, the results might be biased. However, the accuracy
they describe in this study represents breath amplitude consistency with respect to an up-
front calibration against a pneumotachograph. All of our sensors measure abdominal and
thoracic movement/expansion, whereas a pneumotachograph measures airflow as inhaled
through the mouth/nose. There has to the best of our knowledge not been conducted
any studies showing that the difference between different respiratory effort sensors vary
in relation to varying stages of sleep, and it might, therefore, not be too relevant for our
case. As already seen from the preliminary tests, the BITalino sensor exhibits highly
inconsistent breath amplitudes between body position changes. If this behavior is the
norm for the sensors, then it suggests that a static up-front calibration proves merely in-
effective for these sensors; at least when the subjects are allowed to change body position
throughout the night.

To summarize the information we have gathered regarding the choice of signal capture
duration:

• The preliminary tests indicate that:

– A two minute initialization period is necessary.

– The overall breath detection accuracy is captured during the first fifteen min-
utes.

– No consistent breath amplitude accuracy degradation over time is present.

– All sensor specific oddities are discoverable during shorter wakeful sessions.

– Position changes have a massive impact on the breath amplitudes.

• The durations used by related studies vary from one minute to overnight captures.

• And the requirements we specified in Section 4.3.2 are:

– A signal capture must include:

∗ Breathing stops.

∗ A period of shallow breathing.

∗ A period of deep breathing.

∗ Multiple sleeping positions.

– The subject must be lying in bed.

The length of a signal capture must, in other words, be long enough to include (1) a two-
minute initialization period, (2) two sleeping positions, (3) breathing stops, (4) a period of
shallow breathing, and (5) a period of deep breathing. Additionally, one must remember
that the breath amplitudes change considerably between different sleeping positions. If
we are to compare the periods of different positions separately, they must be long enough
to include enough data points to fit the linear regression model properly.

Based on this information, sessions lasting around sixteen minutes should be long enough
to capture the overall signal quality of a sensor. Sessions of this length allow for at least
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one position change, while still being short enough to not become unbearably boring for
the subjects. Since we only differentiate between two different body positions (supine and
side), a signal capture of sixteen minutes gives about seven minutes of data from each
position (excluding the first two minutes if necessary). Seven minutes for each position
gives about 84–126 (breaths) data points, which should be sufficient to fit the linear
regression model properly. During each body position period, there are four events of
disrupted/alternate breathing, which means that there are at least three minutes from
each position with normal breathing.

Regarding the initial baseline wander of the Shimmer sensor, the degree and behavior do
stabilize after about 30 minutes (note that stabilize does not necessarily mean improve
in this situation). Besides, the present baseline wander is easily improved by fitting and
subtracting a low-order polynomial from the signal. Capturing the first sixteen minutes
of the Shimmer signal is, therefore, not expected to affect the outcome of the results in
any way.

5.3.3 The Signal Capture Procedure

Based on the discussions above, we arrive at the following signal capture procedure:

• Each signal capture is approximately sixteen minutes in length.

• At least seven consecutive minutes are captured from each body position (side and
supine).

• Two breathing stops lasting 10–20 seconds, in each body position.

• One period of shallow breathing lasting 10–20 seconds, in each body position.

• One period of deep breathing lasting 10–20 seconds, in each body position.

• For the remaining duration, the subject breathes normally while lying still.

The subject is shown an example of what shallow and deep breathing means beforehand,
but the performance is, nonetheless, subjective. The exact times and order of the periods
of disrupted breathing and body positions are not strictly defined. However, for consis-
tency, all subjects perform the following signal capture procedure in our experiments:

• Minute 1–9: Subject lies in the supine position.

– Minute 3: Subject holds their breath for seventeen seconds.

– Minute 4: Subject holds their breath for seventeen seconds.

– Minute 5: Subject breathes shallowly for seventeen seconds.

– Minute 6: Subject breathes deeply for seventeen seconds.

• Minute 10–16: Subject lies in the side position.

– Minute 12: Subject holds their breath for seventeen seconds.

– Minute 13: Subject holds their breath for seventeen seconds.

– Minute 14: Subject breathes shallowly for seventeen seconds.

– Minute 15: Subject breathes deeply for seventeen seconds.
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5.4 Discussion and Conclusions

To summarize, we perform the following preprocessing steps of the raw signals:

1. Calculate the uncalibrated RIPsum signal.

2. Remove baseline wander.

3. Integrate airflow signal to volume.

4. Resample the signals to 20 Hz.

5. Synchronize with the use of cross-correlation.

6. Standardize the signals.

A breath in the signal is the same as a peak, which we automatically score with the
findpeaks function from MATLAB before we manually confirm and validate the detected
peaks. The start/end of a peak is defined as the minimum value between two peaks,
and the amplitude of a breath is calculated as the mean difference between its peak and
start/end.

We have three breath detection accuracy metrics: sensitivity, positive predictive value,
and clean minute proportion, along with one breath amplitude accuracy metric: weighted
absolute percentage error. Sensitivity yields the proportion of correctly identified real
breaths in relation to all real breaths, whereas PPV yields the proportion of real breaths
in relation to all detected breaths. CMP yields the proportion of minutes in the signal that
are 100% accurate in regards to breath detection. WAPE yields the mean amplitude error
of the breaths in relation to the baseline breath amplitude. The baseline breath amplitude
is defined as the mean of the breath amplitudes in the signal, and the expected amplitude
of a breath is acquired through linear regression.





Chapter 6

Implementation

To speed up the process of the preprocessing and the calculation of the signal quality
metrics, we describe in this chapter the implementation of several automatic scripts.
These scripts involve first and foremost the following: (1) data format conversion, (2)
preprocessing and synchronization, and (3) signal quality measurement. The file formats
exported by the data acquisition software from the different platforms are not equal.
While both Noxturnal and Consensys can export the data to a comma-separated (CSV)
file format, the BITalino acquisition software by Gjøby (2016) supports only JavaScript
Object Notation (JSON). As such, the file formats from the different platforms need to be
unified. The intention behind the preprocessing and synchronization script is to prepare
the signals for the quality evaluation according to the procedure defined in Chapter 5.
At last, the quality measurement script accepts the input generated by the preprocessing
script and calculates the signal quality metrics.

We begin in Section 6.1 by describing the system environment we use during the evalua-
tion process. This includes the programming language of the scripts, the library versions,
and the operating system. We continue in Section 6.2 and Section 6.3 by describing the
file format conversion and RIPsum generation scripts. Next, we describe the preprocessing
script in Section 6.4, before we present the quality measurement script in Section 6.5.
Finally, we summarize and conclude the chapter in Section 6.6.

6.1 System Environment

We have decided to implement the scripts using Python, mainly because there are li-
braries available for Python that already contain most of the needed functions. The li-
braries we use include pandas (pandas 2018), NumPy (NumPy 2017), SciPy (SciPy 2018),
and scikit-learn (scikit-learn 2017), which together, contain functions for CSV-parsing,
resampling, interpolation, synchronization, integration, standardization, regression, and
more, as well as a large number of utility functions. Additionally, we also use the library
called matplotlib (matplotlib 2017) to plot the data in a chart. We have, however, not
been able to find any decent implementations of peak detection for Python that meets
our requirements. Most of the Python implementations we have seen do not support a
definition of peak height independent of its y-value (Tournade 2015). As previously men-
tioned, the value of a peak of a breath may very well be negative because of noise and
baseline wander, and should, therefore, be measured as the difference between its peak

87
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Software Version

Python 2.7.14

pandas 0.22.0

NumPy 1.14.0

SciPy 1.0.0

scikit-learn 0.19.1

matplotlib 2.1.2

MATLAB R2016b

MacOS 10.13.3

Table 6.1: Software versions used during the quality evaluation

and its start/end values. Fortunately, the findpeaks function available in MATLAB (The
Mathworks, Inc. 2016a) does partially support this definition through its peak prominence
definition, which is explained further in Section 6.5.2. The functions from MATLAB can
easily be called directly from Python as if it were a normal library, and so the use of
MATLAB causes no additional problems. MATLAB must, nonetheless, be installed on
the system, along with the MATLAB Python API which comes bundled as a part of
the package. An overview of the software versions we are using during the signal quality
evaluation is given in Table 6.1.

pandas (pandas 2018) is an open-source library which contains a number of data struc-
tures and tools specifically designed for data analysis. Functionality such as CSV-parsing,
resampling, and interpolation are readily available. Another useful utility function is the
shift function, which shifts the signal along its x-axis such that synchronization of signals
becomes trivial.

NumPy (NumPy 2017) is the fundamental open-source library for scientific computing.
It is most widely known as an n-dimensional array package, but it is loaded with other
useful utility functions as well; especially with respect to vector/matrix arithmetic.

SciPy (SciPy 2018) is an open-source library which contains a wide range of different
scientific functionality, such as signal processing capabilities. SciPy contains functionality
for integration, cross-correlation, and frequency filtering.

scikit-learn (scikit-learn 2017) is an open-source library for data mining, machine
learning, and data analysis, which is built on NumPy, SciPy, and matplotlib. In our
implementation, we make use of its TheilSen linear regressor.

matplotlib (matplotlib 2017) is an open-source 2D plotting library for Python, which
is designed to be easy and intuitive to use. It supports a wide range of charts, and we
use it for plotting the signals themselves in a line chart, as well as the breath amplitudes
in a scatterplot. The charts also have support for interaction, which we use to manually
validate and correct the breath detection.
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1 {

2 "type": "data",

3 "id": 0,

4 "time": "13:32:44:235",

5 "data": [

6 {

7 "id": 0,

8 "value": 396

9 },

10 {

11 "id": 1,

12 "value": 364

13 }

14 ]

15 }

Listing 6.1: Example of JSON output from the BITalino acquisition application

MATLAB (The Mathworks, Inc. 2016b), also known as Matrix Laboratory, is a com-
mercial mathematical platform by The Mathworks, Inc. (2018) which includes its own
scripting language. MATLAB contains a wide range of functionality for machine learning,
data mining, signal processing, and so forth. Although MATLAB is an independent plat-
form, it can be interfaced and used from a wide range of other programming languages,
for example, Python. We use it primarily for its findpeaks function (see Section 6.5.2).

6.2 Data Format Conversion

The data acquisition software for BITalino is storing the captured data in JSON format.
Every sample is stored as its own JSON object on the form shown in Listing 6.1, with one
such JSON object per line in the file. In other words, the file as a whole is not valid JSON,
but each line separately is. To unify the file formats amongst the different platforms, we
convert this JSON format to a comma-separated (CSV) file format. This conversion is
straightforward, and the code of the python script we use for this conversion is shown
in Listing 6.2. This script accepts two command line arguments, the first is the input
file name of the file containing the JSON, and the second is an optional sensor index.
The intention behind this optional sensor index is to be able to separate the data from
different sensors to different CSV-files, if desired, such as the abdominal and thoracic
signals. This script writes the generated CSV-file to standard output, which can then be
redirected to a file. To give an example of how to execute this script:

$ python csv-converter.py bitalino.txt 0 > bitalino-thorax.csv

With this command, the sensor index of the thorax signal is 0, which is then extracted
from bitalino.txt and stored in the new CSV-file named bitalino-thorax.csv.

6.3 Generation of the RIPsum Signal

The generation of the RIPsum signal is, as specified in Chapter 5, a part of the prepro-
cessing. However, as a separation of concerns, this logic is separated into its own script.
The script is in its essence very simple, as all it needs to do is to read the supplied in-
put CSV-files, add the values together, and then write out the result as a new CSV-file.
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1 import json, sys

2

3 # Read command line arguments

4 try:

5 INPUT_FILE = sys.argv[1]

6 SENSOR_INDEX = int(sys.argv[2]) if (len(sys.argv) > 2) else None

7 except:

8 print("Usage: %s <INPUT_FILE> [<SENSOR_INDEX>]" % sys.argv[0])

9 exit(1)

10

11 infile = open(INPUT_FILE, 'r')

12 for line in infile:

13 try:

14 json_data = json.loads(line)

15 if json_data['type'] != 'data': continue

16

17 if SENSOR_INDEX >= 0: # either only one sensor

18 values = str(json_data['data'][SENSOR_INDEX]['value'])

19 else: # or all sensors separated by \t

20 values = '\t'.join(map(lambda e: str(e['value']), json_data['data']))

21

22 print(json_data['time'] + '\t' + values)

23

24 except: continue

Listing 6.2: JSON to CSV converter

Unfortunately, it needs to be slightly more complex than this. The reason is that the
abdominal and thoracic signals from the NOX sensor are not synchronized, and each sam-
ple is captured two milliseconds apart from each other. Because of this fact, the script
also needs to synchronize the input signals. Additionally, one or both of the signals from
BITalino are sometimes flipped across its y-axis. When only one of the signals is flipped,
it needs to be corrected before the values can be arithmetically combined. The code of
the script can be seen in Listing 6.3, with the argument parsing omitted for clarity, and
it can be executed with the following command:

$ python csv-combiner.py --fs=20 --file=bitalino-thorax.csv,f

--file=bitalino-abdomen.csv > bitalino-ripsum.csv

In this example, the thoracic and abdominal signals from BITalino are resampled to 20
Hz, synchronized, and then arithmetically combined to produce the output. Moreover,
the thoracic signal is flipped across its y-axis before the signals are combined. The
--fs=20 argument specifies that the sampling rate should be set to 20 Hz (sampling
rate is required for synchronization), and the ,f suffix of the thoracic signal’s file name
specifies that this signal should be flipped. A nosync and a delay argument are also
supported. This script is mostly a stripped down version of the preprocessing script, and
so the details of the synchronization and arguments are described further in Section 6.4.

6.4 Preprocessing

To preprocess the signal data, we utilize the chosen pandas, NumPy and SciPy libraries.
Together, these libraries already contain most of the functions needed for the preprocess-
ing, including resampling, interpolation, synchronization, integration, and standardiza-
tion. The main part of the preprocessing script can be seen in Listing 6.4, with the argu-
ment parsing omitted for clarity. The required arguments for this script are the sampling
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44 # Read CSV-files

45 signal1 = pandas.read_csv(files[0]['name'], sep="\t", header=None, index_col=0,

46 parse_dates=[0], date_parser=parseTimestamp)

47 signal2 = pandas.read_csv(files[1]['name'], sep="\t", header=None, index_col=0,

48 parse_dates=[0], date_parser=parseTimestamp)

49

50 # Resample and interpolate

51 fs_interval = str(1000 // args['fs']) + 'ms' # e.g., 20 Hz == one sample every 50ms

52 signal1 = signal1.resample(fs_interval).mean()

53 signal2 = signal2.resample(fs_interval).mean()

54

55 signal1 = signal1.interpolate(method='quadratic')

56 signal2 = signal2.interpolate(method='quadratic')

57

58 # Flip

59 signal1[1] = applyFileOptions(signal1[1].values, files[0])

60 signal2[1] = applyFileOptions(signal2[1].values, files[1])

61

62 # Synchronize

63 if 'nosync' not in args:

64 delay = su.findDelay(signal1[1], signal2[1])

65 signal1 = signal1.shift(delay)

66 if 'delay' in args: signal1 = signal1.shift(args['delay'])

67

68 # Drop NaNs

69 signal1 = signal1.dropna()

70 signal2 = signal2.dropna()

71

72 # Equalize lengths

73 signal1 = su.cutLengthOf(signal1, to=signal2)

74 signal2 = su.cutLengthOf(signal2, to=signal1)

75

76 # Arithmetically add their y-values

77 combined = signal1 + signal2

78

79 # Write new csv-file

80 combined.to_csv(sys.stdout, sep='\t', header=False, date_format='%H:%M:%S:%f')

Listing 6.3: Script to combine CSV-files to generate the RIPsum signal
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rate and the two input CSV signal files. Additionally, the script also accepts optional ar-
guments for nosync, delay, start/end location, and specific options for the different input
files. The nosync argument disables the automatic cross-correlation synchronization. The
optional delay argument is meant as a fine-tuning argument for the synchronization and is
applied after the automatic cross-correlation method, regardless of the automatic method
being disabled or enabled. The delay argument is specified as an integer (can be negative)
in the number of samples the first signal should additionally be delayed. The start and
end arguments specify the part of the signal that should be included in the output. In
other words, only the samples between start and end are included in the output. The
input file specific options are specified as a part of the file name, separated by commas.
The syntax is given as follows: --file=<NAME>,[i],[dt=<ORDER>],[h=<LOWCUT>],[f].
The i option indicates that the signal should be integrated from flow to volume, and dt
specifies that the signal should be detrended with a polynomial of the given order. The
h option specifies that the signal should be filtered with a high-pass filter with the given
low-cut frequency, and f flips the signal across its y-axis. The output of this script is a
new CSV-file where the input files are combined, preprocessed, and synchronized. Again,
the output is written to standard output, which can be redirected to a new file if desired.
Additionally, this script plots the processed data in a chart when the optional argument
show is supplied. This way, the synchronization and preprocessing can be confirmed and
verified visually, and altered if desired.

To give an example of how to run this script:

$ python preprocess.py --fs=20 --delay=11 --start=2000 --end=10000 --show

--file=bitalino-abdomen.csv,i,h=0.1,f --file=nox-abdomen.csv > preprocessed.csv

For this example, most of the arguments are specified. The --fs=20 argument specifies
that the sampling rate should be set to 20 Hz, and the --delay=11 argument specifies
that the signal should be delayed an additional 11 samples. The --start=2000 and
--end=10000 arguments specify that the signal in the period 2000–10000 (in the number
of samples) should be extracted, while the rest of the signal discarded. For the file
specific options, the --file=bitalino-abdomen.csv,i,h=0.1,f argument specifies that
the BITalino signal should be integrated to volume, filtered with a high-pass filter with
a low-cut frequency of 0.1 Hz, and flipped. The second input file contains no custom
options. The result of this preprocessing is a new CSV-file stored as preprocessed.csv,
with one column per input signal.

6.4.1 Resampling

Resampling is already available in the pandas library through the function resample. This
function, however, accepts the sampling rate as an interval rather than a frequency in
Hertz. For example, an interval of 50ms means that there should be one sample every
50 milliseconds. To convert between a sampling rate specified in Hertz to an interval,
the following formula is applied: interval = 1000

Hz
. As one may notice in the script, both

input signals are resampled regardless of their original sampling rates. In other words,
the NOX signal is resampled even though it is already sampled at 20 Hz. The effect of
this is that the timestamp of each sample is adjusted, whereas the samples themselves
remain untouched. In other words, the signal is shifted along its x-axis such that the
sample’s timestamp has a millisecond value which is divisible by the specified sampling
interval (the interval is 50ms for 20 Hz). This makes it possible to align the timestamps
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71 # Read CSV-files

72 signal1 = pandas.read_csv(files[0]['name'], sep="\t", header=None, index_col=0,

73 parse_dates=[0], date_parser=parseTimestamp)

74 signal2 = pandas.read_csv(files[1]['name'], sep="\t", header=None, index_col=0,

75 parse_dates=[0], date_parser=parseTimestamp)

76

77 # Resample

78 fs_interval = str(1000 // args['fs']) + 'ms' # e.g. 20 Hz == one sample every 50ms

79 signal1 = signal1.resample(fs_interval).mean()

80 signal2 = signal2.resample(fs_interval).mean()

81

82 # Interpolate

83 signal1 = signal1.interpolate(method='quadratic')

84 signal2 = signal2.interpolate(method='quadratic')

85

86 # Equalize lengths

87 signal2 = su.cutLengthOf(signal2, to=signal1)

88 signal1 = su.cutLengthOf(signal1, to=signal2)

89

90 # Extract part if specified

91 start = args['start'] if 'start' in args else 0

92 end = args['end'] if 'end' in args else len(signal1[1])

93 signal1 = signal1.iloc[start:end]

94 signal2 = signal2.iloc[start:end]

95

96 # Filter, detrend, integrate, flip

97 signal1[1] = applyFileOptions(signal1[1].values, files[0], args['fs'])

98 signal2[1] = applyFileOptions(signal2[1], files[1], args['fs'])

99

100 # Standardize

101 signal1 = su.standardize(signal1)

102 signal2 = su.standardize(signal2)

103

104 # Synchronize

105 if 'nosync' not in args:

106 delay = su.findDelay(signal1[1], signal2[1])

107 signal1 = signal1.shift(delay)

108 if 'delay' in args: signal1 = signal1.shift(args['delay'])

109

110 # Drop NaNs

111 signal1 = signal1.dropna()

112 signal2 = signal2.dropna()

113

114 # Equalize lengths

115 signal1 = su.cutLengthOf(signal1, to=signal2)

116 signal2 = su.cutLengthOf(signal2, to=signal1)

117

118 preprocessed = signal1 * 1 # make copy

119 preprocessed[2] = signal2[1] # add column

120 preprocessed.to_csv(sys.stdout, sep='\t', header=False, date_format='%H:%M:%S:%f')

121

122 if 'show' in args:

123 pyplot.plot(signal1.index, signal1[1], label=files[0]['name'])

124 pyplot.plot(signal2.index, signal2[1], label=files[1]['name'])

125 pyplot.legend()

126 pyplot.show()

Listing 6.4: The preprocessing script
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1 def standardize(signal):

2 return (signal - signal.mean()) / signal.std()

Listing 6.5: Function to standardize the signal

1 def findDelay(a, b):

2 return (len(b) - 1) - np.argmax(signal.correlate(a, b))

Listing 6.6: Find delay function using cross-correlation

of the different signals perfectly. We resample by taking the mean value for samples that
end up between existing samples. The mean might, however, not be available for a few
samples (e.g., at the signal boundaries), and as such, the missing samples are interpolated
using quadratic interpolation.

6.4.2 Standardization

To standardize the signals, we follow the formula as specified in Chapter 5. The function
we use in the script (Listing 6.4), can be seen in Listing 6.5, where the mean is subtracted
from every sample, and then each sample is divided the standard deviation. The use of
the DataFrame type supplied by the pandas library makes this very trivial to do because
of its built-in utility functions and support for vector arithmetic.

6.4.3 Synchronization

Synchronization with the use of cross-correlation is already partially implemented as a
part of the SciPy library, making it rather trivial to adjust to our context. The correlate
function from SciPy returns an array of correlation values for all possible alignments
of the signals. After the formula specified in Section 3.2.1, the index of the max value
in this array reflects the correct synchronization point. We have wrapped the function
from SciPy in a findDelay function (see Listing 6.6) which returns the delay between the
signals as an integer. The first signal is shifted along its x-axis according to this delay
(see Listing 6.4) to complete the synchronization.

6.4.4 Integratation

For the integration, we decided in Chapter 5 to use the Trapezoidal Rule. Fortunately,
a cumulative version of this algorithm is already available in the SciPy library. The
function is called cumtrapz and is located in the integrate module in the library. As
we are cumulatively integrating from flow to volume, the integrated result contains one
sample for every interval in the original signal. This means that the integrated result has
one less sample compared to the original signal. To correct for this, we simply prepend a
sample with the value 0 to the integrated signal. The integration is performed with the
following statement: signal = integrate.cumtrapz(signal, initial=0).
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1 def detrend(sig, order=7):

2 coeff = np.polyfit(range(len(sig)), sig, order)

3 model = np.poly1d(coeff)

4 polynomial = [model(x) for x in xrange(len(sig))]

5

6 return sig - polynomial

Listing 6.7: Function to detrend the signal

1 def highpassFilter(sig, lowcut, fs, order=5):

2 lowcut /= fs / 2 # Nyquist

3 b, a = signal.butter(order, lowcut, btype='highpass')

4 return signal.lfilter(b, a, sig)

Listing 6.8: The high-pass filter function

6.4.5 Detrending

To fit a polynomial to the signal, we utilize the polyfit function provided as a part of the
NumPy library. This function uses the least-squares algorithm to fit the polynomial and
then returns the coefficients in order of decreasing power. To compute the actual points
of the polynomial using the x-values of the signal, we utilize the helper function poly1d.
This function converts the mathematical polynomial into a runnable python function.
The complete function we use for detrending the signal can be seen in Listing 6.7.

6.4.6 High-pass Filtering

We use a Butterworth filter for the high-pass filtering of the signals (Wikipedia 2018a).
This filter is available as a part of the SciPy library through two functions, butter and
lfilter. The butter function constructs the filter itself with the specified parameters,
whereas the lfilter function performs the actual filtering of the signal using the constructed
filter. The complete function can be seen in Listing 6.8.

6.5 Signal Quality Measurement

The quality measurement script (Listing 6.9) accepts the CSV-file generated by the pre-
processing script as input, along with its sampling rate. In other words, it accepts a
CSV-file with three columns, where the first column is the x-axis as timestamps, the
second column is the target signal, and the third column is the reference/gold standard
signal. In addition, optional arguments may also be provided, such as validate, show, mi-
nAmplitude, minDuration, and maxDuration. When the validate argument is provided,
a chart of the two input signals is presented to the user, who may manually validate
and correct the detected breaths. The show argument specifies that the result of the
quality evaluation (detected breaths and breath amplitude relationship) shall be plotted
visually in a chart. minAmplitude, minDuration, and maxDuration specify the minimum
amplitude, minimum duration, and maximum duration of a breath, respectively. These
three arguments have the values specified in the design as default values (i.e., 10%, 0.6s,
and 12s, respectively). The output of this script is the four metrics WAPE (as the mean
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Validate Breaths

Figure 6.1: Manually validate and correct breaths

breath amplitude error), sensitivity, positive predictive value, and clean minute propor-
tion.

To give an example of how to execute this script:

$ python measure.py --file=processed.csv --fs=20 --show --validate

The output may look like the following:

Mean breath amplitude error: 13.46% +- 8.48%

Breath sensitivity: 98.68%

Breath positive predictive value: 97.69%

Breath clean minute proportion: 0.00%

The dialog shown in Figure 6.1 is presented when the validate argument is provided. In
this window, the user may zoom and scroll, and toggle breaths on/off by double-clicking
in any of the two charts. When the breaths are validated, the user closes the window to
continue execution of the script.

6.5.1 Breath Amplitude Approximation

The function we use to approximate the mean breath amplitude of a signal (by the logic
described in Chapter 5), can be seen in Listing 6.10. As described, the signal is split
into n windows with the given width, and then the mean point-to-point value of these
windows is calculated. The point-to-point value is the difference between the maximum
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84 # Read CSV-file

85 signal = pandas.read_csv(args['filename'], sep="\t", decimal=".", header=None,

86 index_col=0, parse_dates=[0], date_parser=parseTimestamp)

87

88 # Extract columns

89 targetY = signal[1].values

90 refY = signal[2].values

91

92 # Approximate mean breath amplitude with 4 sec window, and take the minAmplitude % as min threshold

93 minTargetBreathAmp = resp.approxMeanBreathAmp(targetY, fs * 4) * minAmplitude

94 minRefBreathAmp = resp.approxMeanBreathAmp(refY, fs * 4) * minAmplitude

95

96 # Detect breaths

97 targetPeaks = resp.detectPeaks(targetY, minTargetBreathAmp, minDuration)

98 refPeaks = resp.detectPeaks(refY, minRefBreathAmp, minDuration)

99

100 if 'validate' in args:

101 targetPeaks, refPeaks = manuallyValidatePeaks(targetPeaks, targetY, refPeaks, refY)

102

103 targetBreaths = resp.constructBreaths(targetPeaks, targetY, minTargetBreathAmp, maxDuration)

104 refBreaths = resp.constructBreaths(refPeaks, refY, minRefBreathAmp, maxDuration)

105

106 # Match breaths

107 matchedTargetBreaths, matchedRefBreaths = resp.matchBreaths(targetBreaths, refBreaths)

108

109 if not matchedTargetBreaths.size:

110 print("No breaths matched... exiting")

111 exit(0)

112

113 # Get breath amplitudes of matched breaths

114 targetBreathAmplitudes = np.array([b.amplitude() for b in matchedTargetBreaths])

115 refBreathAmplitudes = np.array([b.amplitude() for b in matchedRefBreaths])

116

117 # Make regression line of breath amplitudes

118 regressor = TheilSenRegressor()

119 regressor.fit(refBreathAmplitudes.reshape(-1, 1), targetBreathAmplitudes)

120 regressionLine = regressor.predict(refBreathAmplitudes.reshape(-1, 1))

121

122 print("Mean breath amplitude error: %.2f%%, %.2f%%" %

123 metrics.wape(regressionLine, targetBreathAmplitudes))

124 print("Breath sensitivity: %.2f%%" %

125 resp.breathSensitivity(matchedTargetBreaths, refBreaths))

126 print("Breath positive predictive value: %.2f%%" %

127 resp.breathPosPredValue(matchedTargetBreaths, targetBreaths))

128 print("Breath clean minute proportion: %.2f%%" %

129 resp.cleanMinuteProportion(matchedTargetBreaths, targetBreaths, matchedRefBreaths, refBreaths, fs=fs))

130

131 if 'show' in args:

132 targetMarks = [b.peakIndex for b in matchedTargetBreaths]

133 refMarks = [b.peakIndex for b in refBreaths]

134 pyplot.plot(signal.index, targetY, '-D', markevery=targetMarks, label="target")

135 pyplot.plot(signal.index, refY, '-D', markevery=refMarks, label="ref")

136 pyplot.legend()

137

138 pyplot.figure()

139 pyplot.scatter(refBreathAmplitudes, targetBreathAmplitudes)

140 pyplot.plot(refBreathAmplitudes, regressionLine, 'm', label='regression line')

141 pyplot.legend()

142 pyplot.show()

Listing 6.9: The quality measurement script
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1 def approxMeanBreathAmp(signal, windowWidth):

2 windows = np.array_split(signal, len(signal) / windowWidth)

3 theSum = reduce((lambda s, w: s + w.ptp()), windows, 0)

4

5 return theSum / len(windows)

Listing 6.10: Function to approximate the mean breath amplitude

and minimum value of a window, which is acquired through the ptp utility function
from NumPy. Notice that the len(signal) / windowWidth expression may not result
in an integer. The array split function handles this behavior automatically, i.e., the last
window may contain fewer samples compared the other windows.

6.5.2 Breath Detection

We have decided to use the findpeaks function from MATLAB for the automatic breath
detection (The Mathworks, Inc. 2016a). This function is the only peak detection imple-
mentation we have found that is usable from Python, which partially supports a definition
of y-value independent peak height. This is supported through a concept MATLAB de-
fines as peak prominence:

The prominence of a peak measures how much the peak stands out due to
its intrinsic height and its location relative to other peaks. A low isolated
peak can be more prominent than one that is higher but is an otherwise
unremarkable member of a tall range.

To measure the prominence of a peak:

1. Place a marker on the peak.

2. Extend a horizontal line from the peak to the left and right until the line
does one of the following; it

• crosses the signal because there is a higher peak, or

• it reaches the left or right end of the signal.

3. Find the minimum of the signal in each of the two intervals defined in
Step 2. This point is either a valley or one of the signal endpoints.

4. The higher of the two interval minima specifies the reference level. The
height of the peak above this level is its prominence.

Following this definition of peak prominence, the determined breath amplitudes are wrong
(relative to our definition) for all breaths that have a higher peak value than its immediate
neighbors. However, since we are only using prominence to filter out peaks that are too
small, the definition is correct for the majority of the concerned peaks. The only case
where the filtering fails is when a small peak (with less than 10% of mean peak amplitude)
has a y-value higher than its immediate neighbors. This is, however, expected to happen
very rarely and can be significantly improved further by applying a high-pass filter to
the signal. In other words, the use of prominence for filtering smaller peaks is very well
adequate in our situation.
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1 def detectPeaks(signal, minAmp, minDuration):

2 data = matlab.double(signal.tolist())

3

4 _, locs = engine.findpeaks(data,'MinPeakProminence', float(minAmp),

5 'MinPeakWidth', int(minDuration / 2), 'WidthReference', 'halfprom', nargout=2)

6 return np.array(locs._data.tolist()).astype(int) - 1 # matlab uses 1-based indexing

Listing 6.11: Function to detect peaks using the findpeaks function from MATLAB

1 def constructBreaths(peaks, signal, maxDuration):

2 breaths = []

3 maxPeakDistance = maxDuration // 2

4

5 for i in xrange(len(peaks)):

6 currPeak = peaks[i]

7 # either index of prev breath, or start of signal

8 prevPeak = peaks[i - 1] if (i > 0) else 0

9 # either index of next breath, or end of signal

10 nextPeak = peaks[i + 1] if (i < len(breaths) - 1) else len(signal)

11

12 # cap interval to maxPeakDistance

13 prevPeak = max(prevPeak, currPeak - maxPeakDistance)

14 nextPeak = min(nextPeak, currPeak + maxPeakDistance)

15

16 breathStart = np.argmin(signal[prevPeak:currPeak + 1]) + prevPeak

17 breathEnd = np.argmin(signal[currPeak:nextPeak + 1]) + currPeak

18

19 breaths.append(Breath(signal, breathStart, breathEnd, currPeak))

20

21 return np.array(breaths)

Listing 6.12: Function to construct the breaths based on the detected peaks

In addition to using prominence to filtering out peaks based on their amplitude, we use
prominence to filter out breaths that are too short. findpeaks supports this functionality
based on the width of the peak measured at half its prominence. Since we defined the
duration of a breath as the time distance between its start and end, the measurement at
half the prominence should be approximately half the breath duration.

We must, however, emphasize that the accuracy of the automatic breath detection is not
the primary focus of this thesis. We manually validate and correct the detected breaths
anyway, and the automatic detection is only meant as a means to speed up the process.

The function we use to detect the peaks of the signals can be seen in Listing 6.11. This
function converts the provided signal to a MATLAB compliant data structure before it
runs the findpeaks function with the given parameters. As mentioned above, we specify
the minimum prominence of a breath to be the minimum amplitude, and the minimum
width to be half the minimum duration. After the peaks returned by findpeaks are
manually validated (if the validate argument is specified), the breaths are constructed
based on these peaks. The code for this can be seen in Listing 6.12, where the start/end
of each breath is derived, and then stored in a Breath object together with its peak. One
may also notice how we cap the interval from the peaks in relation to the max duration
of a breath.
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1 def matchBreaths(targetBreaths, refBreaths):

2 targetMatch = []

3 refMatch = []

4

5 for i in xrange(len(refBreaths)):

6 match = np.array(filter(lambda b:

7 refBreaths[i].startIndex < b.peakIndex < refBreaths[i].endIndex, targetBreaths))

8 if (len(match) > 0):

9 matched = np.argmax([e.peak for e in match]) # if multiple breaths match, pick highest breath

10 targetMatch.append(match[matched])

11 refMatch.append(refBreaths[i])

12

13 return np.array(targetMatch), np.array(refMatch)

Listing 6.13: Function to match breaths between signals

6.5.3 Matching Breaths

As specified in Chapter 5, a breath of the target signal is matched if its peak is between
the start and end of a breath in the reference signal. However, there may be the case
when multiple breaths seem to be matched with the same breath of the reference signal.
To avoid this behavior, we match only the breath with the highest peak in such cases.
The function we use to match breaths is shown in Listing 6.13.

6.5.4 Breath Amplitude Regression

The breath amplitude regression is (Listing 6.9) performed as specified in Chapter 5.
The TheilSen regression algorithm is already implemented and readily available from the
scikit-learn library, which we utilize. We fit the model by using the breath amplitudes
from the reference signal (gold standard) as the x-axis, and the breath amplitudes from
the target signal as the y-axis. Next, we generate the regression line by predicting the
y-values from the breath amplitudes of the reference signal (i.e., predicting y from x).

6.5.5 Signal Quality Metrics

All the signal quality metrics are implemented after the formulas given in Chapter 5
and can be seen in Listing 6.14. For the WAPE metric, we utilize the vector arithmetic
functionality from NumPy to simplify the implementation and improve the readability.
The formula for sensitivity and positive predictive value are essentially the same, but we
have, however, separated their implementations into distinct functions for readability.
The clean minute proportion implementation is a little more complex compared to the
other metrics. Each of the different breath arrays (matched/all for both target and
reference) is first mapped to a list containing the minute each breath is contained within.
For example, if a breath is contained in minute 3, its value is 2 in this list (0-indexed).
Through NumPy’s bincount function, we create one bin for each minute, which contains
the number of breaths contained within the minute. For example, bin 0 contains the
number of breaths contained in minute 0. In other words, the result of bincount could
look like [5, 11, 9, 12, ...], which means that minute 0 contains 5 breaths, minute 1
contains 11 breaths, and so on. The difference between the number of breaths per bin
(minute) in the allTarget and matchedTarget arrays is the number of false breaths per
minute. Likewise, the difference between the number of breaths per bin in the allRef
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1 def wape(predicted, actual):

2 err = abs(np.array(predicted) - np.array(actual)) / np.array(actual).mean() * 100.0

3 return err.mean(), err.std()

4

5 def breathSensitivity(correctlyDetectedBreaths, allRealBreaths):

6 return float(len(correctlyDetectedBreaths)) / len(allRealBreaths) * 100.0

7

8 def breathPosPredValue(correctlyDetectedBreaths, allDetectedBreaths):

9 return float(len(correctlyDetectedBreaths)) / len(allDetectedBreaths) * 100.0

10

11 def cleanMinuteProportion(matchedTargetBreaths, targetBreaths, matchedRefBreaths,

12 refBreaths, falseBreathTolerance=0, missedBreathTolerance=0, fs=20.0):

13 samplesPerMin = int(fs * 60)

14 totalMinutes = (max(targetBreaths[-1].peakIndex, refBreaths[-1].peakIndex) // samplesPerMin) + 1

15

16 allTarget = np.bincount([b.peakIndex // samplesPerMin for b in targetBreaths],

17 minlength=totalMinutes)

18 matchedTarget = np.bincount([b.peakIndex // samplesPerMin for b in matchedTargetBreaths],

19 minlength=totalMinutes)

20 allRef = np.bincount([b.peakIndex // samplesPerMin for b in refBreaths],

21 minlength=totalMinutes)

22 matchedRef = np.bincount([b.peakIndex // samplesPerMin for b in matchedRefBreaths],

23 minlength=totalMinutes)

24

25 falseBreaths = [m > falseBreathTolerance for m in (allTarget - matchedTarget)]

26 missedBreaths = [m > missedBreathTolerance for m in (allRef - matchedRef)]

27 dirtyMinutes = np.logical_or(falseBreaths, missedBreaths)

28 dirtyMinutes = dirtyMinutes[dirtyMinutes]

29

30 return (1 - len(dirtyMinutes) / float(totalMinutes)) * 100.0

Listing 6.14: Metric implementations

and matchedRef arrays is the number of missed breaths per minute. For these, we count
the number of bins (minutes) that violate the given thresholds. These thresholds are,
however, by default set to 0, which are the thresholds we use during the evaluation. At
first glimpse, it may look like the matchedRef array is unnecessary to calculate missed
breaths. After all, the difference between the breaths in matchedTarget and allRef also
yields the number of missed breaths. However, as we are determining which minute
each breath is contained within based on their peaks, there may be edge cases at the
boundaries of each minute. The breath from the target signal may be matched with a
breath contained in adjacent minutes. To avoid such situations, we use the matchedRef
array instead.

6.6 Discussion and Conclusions

To summarize, we have implemented a total of four Python scripts, where each of these
scripts is used at a different level in the quality measurement procedure. Such a pro-
cedure may involve the following steps: convert all the data to CSV-files using the csv-
converter.py script. Next, the data from the thorax and abdomen may optionally be
combined to create the RIPsum signal using the csv-combiner.py script, before the signals
are preprocessed by the preprocess.py script. After the output from the preprocessing
script is acquired, it is used as input to the measure.py script to evaluate the quality of
the signals.

A complete procedure may be executed as follows:
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1. $ python csv-converter.py bitalino.txt 0 > bitalino-thorax.csv

$ python csv-converter.py bitalino.txt 1 > bitalino-abdomen.csv

2. $ python csv-combiner.py --fs=20 --file=bitalino-thorax.csv,f

--file=bitalino-abdomen.csv > bitalino-ripsum.csv

$ python csv-combiner.py --fs=20 --file=nox-thorax.csv

--file=nox-abdomen.csv > nox-ripsum.csv

3. $ python preprocess.py --fs=20 --start=2000 --end=10000

--file=bitalino-ripsum.csv,i,h=0.1 --file=nox-ripsum.csv > preprocessed.csv

4. $ python measure.py --file=processed.csv --fs=20

Mean breath amplitude error: 13.46% +- 8.48%

Breath sensitivity: 98.68%

Breath positive predictive value: 97.69%

Breath clean minute proportion: 0.00%



Chapter 7

Evaluation

This chapter presents the evaluation of the experiment results for the different platforms,
a platform comparison, and a review of how well suited the metrics are for these kinds of
data. We begin in Section 7.1 by presenting statistics and information about the recruited
subjects, and continue in Section 7.2 with a few examples of the signals recorded from
these subjects. Next, we evaluate the results of the BITalino and Shimmer platforms
separately in Section 7.3 and Section 7.4, before we present a comparison of the best
signals from these platforms in Section 7.5. We discuss and evaluate how well suited the
metrics are for these kinds of data in Section 7.6, and present a comparison with related
work in Section 7.7. Next, we present the results of two additional sensors, RespiBAN
and FLOW, in Section 7.8, and finally, we conclude the chapter in Section 7.9. As a side
note, keep in mind that this chapter is only concerned with BITalino and Shimmer until
Section 7.8.

7.1 Subjects

We recruited a total of twelve healthy subjects, five females and seven males, with a
mean age of 37±15 years and a BMI of 27±5. Unless otherwise stated, we refer to these
subjects as Subject 1–12 sorted by their BMI, where Subject 1 has the lowest BMI, and
Subject 12 has the highest BMI.

While most of the subjects were able to follow the signal capture procedure correctly, not
everyone was able to hold their breath for the complete duration of a period. Instead of
cutting the periods short, these subjects took one or two smaller breaths during the pe-
riod. Many subjects stated that the hardest action to perform was the shallow breathing,
but despite this fact, most subjects were still able to perform it correctly. Please note
that the abdominal BITalino belt did not fit Subject 1 very well. After tightening the belt
as much as possible, it was still slightly more loose than what is optimal. We elaborate
more on the impact of this below, but summarized, it did not affect the breath detection
of the belt at all, but it did affect the breath amplitude accuracy quite significantly. For
all the other subjects, the equipment fit perfectly.

103
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7.2 Signal Capture Excerpts

To get a first impression of exactly what we measure the quality of, we present in this
section a few examples of signal captures from the subjects. As presented in Chapter 5,
the signal capture procedure consists of four actions per body position, two periods of
no breathing, followed by a period of shallow breathing, followed by a period of deep
breathing. Each of these periods lasts for seventeen seconds and are separated by slightly
longer periods of normal breathing. Exactly when these periods occur during the signal
captures are annotated in the examples shown below. A common feature visible in these
examples is a deeper breath at the end of the periods of disrupted breathing, as the
subjects are gasping for air. One may notice that not all the subjects were able to
hold their breath for the complete duration of a period, and for some subjects, the
waveform, therefore, looks more like a staircase or zig-zag pattern rather than a flatline
(see Figure 7.2). On a side note, all signals are standardized, which means that the
amplitudes are relative and, therefore, varies between the signal captures.

Three examples of Shimmer captures from three different subjects are shown in Figure 7.1,
Figure 7.2, and Figure 7.3. The signal quality in these examples is (by the metrics) rated
as good, typical, and bad, respectively. For the good quality capture (Figure 7.1), the
waveforms of Shimmer and NOX are almost identical. Visually, the only thing that
separates them is a slight baseline wander. The high-frequency current inflicted to the
subject’s skin by Shimmer (Section 3.5.1) is visible during the complete breathing stops for
all signal captures. Whereas the NOX produces a very clean flatline, the unfiltered signal
from Shimmer can never be as flat because of the inflicted current. As seen in the more
typical signal quality capture (Figure 7.2), the ratio between breaths and this inflicted
high-frequency current is lower compared to the good quality capture (Figure 7.1). In
Figure 7.2, the waveforms are still very similar to the NOX and the periods of disrupted
breathing are also very distinguishable from normal breathing, but it is also slightly
harder to distinguish noise from breaths in general. In some cases, the signal quality
from Shimmer is somewhat poor. In Figure 7.3, it is almost impossible to differentiate
between the periods of no breathing and shallow breathing, and many normal breaths
are totally overwhelmed by noise.

Likewise for BITalino, three examples of captures from three different subjects are shown
in Figure 7.4, Figure 7.5, and Figure 7.6 rated as good, typical, and bad, respectively. The
first matter one may notice is that even for the good quality BITalino capture, the wave-
forms are not nearly as identical to the NOX as the good and typical Shimmer captures
are. The reason for this is that both Shimmer and NOX captures the respiratory pro-
cess as volume, whereas BITalino as airflow. In other words, all three examples presented
here are raw signals, which are only standardized, synchronized, and downsampled. Even
despite the visual looks of it, the good quality BITalino capture shown in this example
outperforms the good quality Shimmer capture shown in Figure 7.1 for both breath de-
tection as well as amplitude accuracy. As the signal quality of BITalino degrades, the
noise gets more prominent, making breaths harder to distinguish (see Figure 7.5 and Fig-
ure 7.6). A rather major noise factor for these signals (also Shimmer) is the heartbeats
(see Figure 7.7), which for many of the subjects show an amplitude more than 10% of
the mean breath amplitude. The frequencies and behavior of breaths and heartbeats are
quite different and are, therefore, in many situations trivial to distinguish. Nonetheless,
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Figure 7.1: Example of a very good quality Shimmer capture
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Figure 7.3: Example of a somewhat bad quality Shimmer capture

as the signal-to-noise ratio declines, heartbeats can often easily be mistaken for shallow
breaths.

For reference, one may notice how clean the gold standard signal (NOX) is compared
to the signals from both BITalino and Shimmer. The NOX signal does contain a slight
baseline wander, but high-frequency noise is almost non-existent. The amplitude of heart-
beats is extremely low, making the breaths the (almost) sole component of the signal.
Even the most shallow breaths are easily identifiable.

7.3 BITalino

7.3.1 Noise Removal Procedure

During the preliminary testing described in Chapter 5, we discovered a total of four issues
or oddities with the BITalino PZT effort belts: (1) The signal randomly flipped across its
y-axis (i.e., turned upside down), (2) Body position changes resulted in drastic changes
to the baseline breath amplitude, (3) The signal randomly got stuck near its minimum
or maximum values, and (4) The signal was sometimes heavily contaminated by white
noise. Before we gathered any signal captures from the subjects, we were able to find a
workaround for the latter two issues (3 and 4). The issues seem to be caused by static
electricity of some kind, and BITalino themselves confirmed that the problem is caused
by a production fault affecting this specific batch of devices. Nevertheless, we performed
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Figure 7.4: Example of a very good quality BITalino capture
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Figure 7.5: Example of a typical quality BITalino capture
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Figure 7.7: Heartbeats visible during a complete breathing stop
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Figure 7.8: Comparison of BITalino before and after the noise removal procedure

the following workaround (and confirmed its effectiveness) before we captured data from
all subjects:

1. Unplug the BITalino battery.

2. Plug and unplug the USB cable between the BITalino and a PC (with a connected
charger) a few times.

3. Unplug the USB cable and replug the BITalino battery.

The effectiveness of the procedure can be seen in Figure 7.8. This workaround did not
only remove the white noise, but the breath amplitudes also became more deterministic
in relation to belt distraction. Moreover and most importantly, the signal no longer got
stuck near its minimum or maximum values no matter how loose or tight the belts were
fitted around the subject.

7.3.2 Integrating Noisy Signals

We described in Chapter 5 that the BITalino PZT belts capture airflow rather than
volume and, therefore, needs to be integrated before it can be compared to the NOX.
However, it turns out that the signal is too affected by noise and measurement errors,
resulting in a greater distance to the gold standard after integration, compared to the
raw signal. As shown in Figure 7.9, the ratio between breath amplitudes in an airflow
signal remains after integration only for those breaths with an equal duration. In other
words, comparing the raw BITalino signal against the NOX would only be accurate if all
breaths were of equal duration. Yet, it turns out to be more accurate than integrating
the signal.

The increased distance of the integrated signal is mostly related to deeper breaths, whose
amplitudes are consistently too low compared to the NOX. Any measurement errors
and noise regarding the duration of breaths affect the accuracy of the amplitudes of the
integrated signal negatively. As specified in the design, we filter the raw signal with
a Butterworth high-pass filter with a low-cut frequency of 0.1 Hz before integration.
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Figure 7.9: Synthetic example of airflow and volume amplitude relationship

Adjusting this cut-off frequency, or applying a bandpass filter instead, actually worsens
the result further. In fact, integration by itself is after all a low-pass filter. Interestingly,
excluding the few largest amplitude breaths from the metric calculation does sometimes
make the integrated result slightly better than the result for the raw signal. Consequently,
we also measure the signal quality of the raw signals in addition to the integrated signals
alone.

7.3.3 Signals

From each subject, there are a total of four different raw signals from BITalino, the
abdominal and thoracic belt signals from both the supine and side body positions. From
each body position, we also generate the PZTsum signal (RIPsum for NOX) by summing
the abdominal and thoracic signals. Furthermore, we also integrate all these signals,
resulting in a total of twelve different signals from BITalino per subject.

For each signal quality metric, we present the three ”raw” signals (abdominal, thoracic,
and sum) from the supine position separately from the same signals from the side position;
and their integrated counterparts separately in the same manner. As a result, we present
four charts per metric, each containing the results of three signals. We present only visual
charts in this chapter, but the raw data can be found in Appendix B.

Both BITalino signals from Subject 10 for the side position are corrupt and contain no
meaningful data, and are, therefore, excluded from the results. The subject did not lie
directly on the sensor part of the belts, neither were the belts fitted too tight or too loose,
and so the cause remains unknown. The same applies to the thoracic signal from the
side position of Subject 4, which is also corrupt. An example of a corrupt signal from
BITalino is shown in Figure 7.10. The only feature that is identifiable in this example is
the deep breaths. We declare a signal corrupt if the majority of the signal is somewhat
like the example shown in Figure 7.10.
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Figure 7.10: Example of a corrupt BITalino capture

7.3.4 Breath Detection Accuracy

Sensitivity

Sensitivity describes the proportion of correctly identified real breaths, and a sensitivity
of 100%, thus, implies that all real breaths are correctly identified. The total number of
real breaths for each of these signal captures lies in the range of 80–130, which means
that each missing breath results in a sensitivity loss of about 1.25–0.76%. One must note
that sensitivity alone does not directly imply that the signal is of good quality. A large
number of false breaths increases the odds of false breaths being identified as true, and
may, thus, also result in a higher sensitivity. Whereas a large number of false breaths may
increase sensitivity, it may also make it significantly more challenging to detect epochs
of disrupted breathing.

As shown in Figure 7.11a and Figure 7.11b, the sensitivity of the raw BITalino signals
are very good for both positions, with a value above 95% for eleven out of twelve subjects
in the supine position, and ten out of eleven subjects in the side position. The exception
is the thoracic signal, which is slightly better and more stable overall in the side position
compared to the supine position (excluding the corrupt signals). The breath amplitudes
of the thoracic signal are for the majority of the subjects much lower compared to their
abdominal counterparts. This results in a lower signal-to-noise ratio, making it harder
to distinguish breaths from noise in general, and explains the lower sensitivity of the
thoracic signal. The sum of the abdominal and thoracic signals amplifies features that
are common to both signals (i.e., breaths) and minimizes the features that are unique
to one of the signals (i.e., noise). The expected outcome is that the sum-signal should
perform better than the abdominal and thoracic signals alone. However, whereas the
sum-signal is overall very good, it is also rarely better than both the raw abdominal and
thoracic signals but lies more often somewhere between the two.

Integration acts as a low-pass filter and, therefore, smoothes the signal. Hence, low am-
plitude noise is minimized, but so are low amplitude breaths. As shown in Figure 7.11c
and Figure 7.11d, the sensitivity of most of the integrated signals are lower compared to
their raw counterparts. This result implies that the signal-to-noise ratio of the affected
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Figure 7.11: Sensitivity of all signals from BITalino

signals are low to begin with, and the low amplitude breaths are attenuated during the
integration, resulting in a lower sensitivity. For most of the subjects, there is higher sensi-
tivity loss for the thoracic signal compared to the abdominal, which further substantiates
this observation. One may notice that the sensitivity of the sum-signal is less affected
by the integration compared to the abdominal and thoracic signals. In this case, the
sum-signal is better than both the abdominal and thoracic signals for six out of twelve
and five out of eleven subjects in the supine and side positions, respectively.

Positive Predictive Value

The positive predictive value (PPV) describes the proportion of detected breaths which
are real breaths. A PPV of 100% means that all detected breaths are real breaths, and
analogously, a PPV of 90% means that 10% of the detected breaths are false breaths.
Unlike sensitivity, the PPV does not decrease linearly as false breaths are added to a
signal because the number of false breaths is a part of the denominator rather than the
numerator. Given, for example, a signal with 100 real breaths. Adding one false breath
to this signal causes a PPV decrease of 0.99%, while adding 100 false breaths causes a
decrease of 50%.
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Figure 7.12: Positive predictive value of all signals from BITalino

Interestingly, integration has the opposite effect on PPV as opposed to sensitivity (see
Figure 7.12). After integration, the PPV is improved for almost all signals from all
subjects, for both the supine and side positions. In fact, of 68 signals, only ten signals
show a decreased PPV after integration. This result implies that the false breaths present
in the raw signals are of low amplitudes, which are then attenuated during the integration.
The PPV of the sum-signal improved on average the least by the integration. Whereas
random noise is attenuated during the summation, the amplitude of heartbeats and other
common features remain mostly unaffected as they are present in both the abdominal
and thoracic signals. The amplitudes are larger in the sum-signal, which explains why
most features sustain the integration process.

In general, the PPV for most signals is worse and less stable than the sensitivity. For
the raw signals, ten out of twelve subjects show a PPV above 90% for all signals in the
supine position, while seven out of eleven subjects show the same in the side position. In
conclusion, up to 20% of all detected breaths in the raw signals, and up to 10% in the
integrated signals (excluding the outliers) are, in fact, false breaths.
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Clean Minute Proportion

The clean minute proportion (CMP) describes the proportion of minutes in the signal
where both the sensitivity and PPV are 100%. These signals are about seven minutes in
duration, which means that one dirty minute results in a CMP decrease of about 14%.
The CMP by itself may not be a very interesting metric, but combined with sensitivity
and PPV, it explains the distribution of errors. If, for example, a signal has a low PPV,
the CMP yields information about whether the false breaths are spread throughout the
signal or contained within a few minutes.

There is a very noticeable correlation between the PPV and CMP values of the signals. In
fact, for most of the signals, a low PPV also directly corresponds to a low CMP. See, for
example, Subject 5–9 between Figure 7.12a and Figure 7.13a. This suggests that most of
the false breaths are, in fact, distributed somewhat evenly throughout the signals. Given
that the sensitivity of all the signals is very good, the correlation between sensitivity and
CMP is less noticeable, although still present.

While integration attenuates low amplitude features from the signal, regardless of those
being true or false breaths, the CMP value is often better after the integration. Given
that false breaths are the biggest factor affecting the signal quality of these sensors, this
is as expected. Those signals whose sensitivity decreased the most after integration, are
also the ones whose CMP decreased after integration. In other words, whether the CMP
of a signal decreases or increases after integration, depends upon which of PPV and
sensitivity that are most affected by the integration. This observation suggests that not
only are false breaths evenly distributed but so are the missing real breaths.

7.3.5 Breath Amplitude Accuracy

The breath amplitude accuracy for all subjects is presented in Figure 7.14. The WAPE
metric calculates the error (or distance), which means that the lower the metric score,
the higher the accuracy. In other words, lower is better. One must note that the result
of entirely random data for this metric is 50%, which means that anything close to or
worse than this may correspond to an inferior performance depending on the underlying
distribution.

The first matter one may notice is that the thoracic signal is significantly worse than
the abdominal. It is, in fact, more than twice as bad for Subject 2–6 and Subject 12
in the supine position. Overall, it is worse than the abdominal signal for nine out of
twelve and seven out of ten subjects for the supine and side positions, respectively. In
the few other cases, it is either equal to or only slightly better than the abdominal signal.
The exception is Subject 1, for which the abdominal belt did not fit properly, resulting
in reduced performance in the supine position. For the side position, however, the non-
optimal fit of the belt does not affect the performance very much as it achieves an average
score.

For the raw signals, the accuracy of the abdominal signal is slightly better and more
stable for the supine position compared to the side position. Including all subjects, the
mean amplitude error is 13.8% and 16.5% for the supine and side positions, respectively.
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Figure 7.13: Clean minute proportion of all signals from BITalino
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The central tendency of the abdominal signal (excluding outliers) is located in the range
of 5–15% for the supine position, as eight out of twelve subjects lie within this range
(Subject 2–6, 8, 10 and 12). For the side position, the central tendency lies in the range
of 10–20% (Subject 1, 3–6 and 9).

The results of integration show a decrease in accuracy for all signals. The exception is
only one signal (Subject 5 raw abdomen side) which shows a very slight increase. After
integration for both positions, the best signals show a decreased accuracy of about 5%,
whereas the signals with worse accuracy show an even greater decrease in accuracy. We
suspect that the cause behind this phenomenon is mainly related to measurement errors
regarding both the amplitude and duration of breaths. These kinds of measurement
errors amplify during the integration, resulting in a decrease rather than an increase in
accuracy. As shown in Figure 7.15, the measurement error regarding breath duration
is very visible for the highest amplitude breaths. In this example, the signal exhibits a
sudden decrease in airflow in the midst of all the deep breaths, which is clearly wrong,
splitting them into two breaths of lower amplitude. In the integrated version of the signal,
the normal amplitude breaths match the NOX better than their raw counterparts, but
the deep breaths, however, show a much greater distance. This behavior is very common
amongst all signals from all subjects, but a few signals are unaffected.

The raw abdominal signal from Subject 12 shows the best accuracy of all signals with
a score of 5.65%. Interestingly, out of nine signals with a score below 10%, only three
sustain a score below 10% after integration (Subject 4 and 12). Figure 7.16 shows a
scatterplot of the breath amplitude relationship between BITalino and NOX, including
the regression line, for a select few of the raw abdominal signals from the supine position.
The selection is based on all the different kinds of relationships present in the data and
shows how such relationships affect quality. The sub-figures are sorted based on quality,
with Figure 7.16a, Figure 7.16b, Figure 7.16c, and Figure 7.16d having a score of 5.65%,
9.68%, 16.93%, and 20.95%, respectively. Figure 7.16a shows a linear relationship between
the normal and deep breaths, while the amplitudes of the shallow breaths are slightly too
low, making the overall relationship more monotonic. The fact that both the normal and
deep breaths are aligned this close to the regression line is what causes the signal to score
this well. Figure 7.16b and Figure 7.16d show an evident monotonic relationship when
the deep breaths are included but in the opposite direction of each other. Figure 7.16c
exhibits more variation compared to the others, and while it may be harder to see, this
signal does also indicate a monotonic relationship. If the shallow breaths were removed,
the slope of the regression line would be steeper. As seen from these examples, the deep
breaths have the largest room for errors, which results in a significant influence on the
metric score.

7.3.6 Conclusions

The primary concern regarding these sensors’ breath detection accuracy is the low signal-
to-noise ratio. While the sensitivity of all signals is very good, the PPV is generally not.
All signals, including the integrated versions, are affected by a somewhat large number
of false breaths. Whenever the signal-to-noise ratio is better, integration is an effective
method to minimize the number of false breaths. However, as a good signal-to-noise
ratio is generally not the norm, integration does more harm (to sensitivity) than good
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Figure 7.15: Measurement error of breath duration — Subject 2 abdomen side

(to PPV).

Regarding apnea detection, the raw signals perform very poorly if the scoring rules by
the AASM are followed strictly. These scoring rules state that there has to be no signal
excursion of more than 10% of the baseline breath amplitude for at least ten seconds, for a
period to be regarded as apneic. The raw signals for these sensors simply never produce a
line which is nearly flat, as the heartbeats and other kinds of noise are constantly showing
an amplitude greater than 10% of the baseline. To follow the AASM rules strictly, one
would either have to recognize such features for what they are or carefully filter them out
of the signal. Heartbeats are, for example, very effectively attenuated by integration due
to their short duration compared to breaths.

The relationship of the breath amplitudes between BITalino and NOX are often mono-
tonic, rather than linear, and the slope of the relationship is not consistent across different
subjects or signals. By regarding the relationship of the normal breaths as the frame of
reference, it is either the shallow breaths, deep breaths, or a combination, which reduces
the linear relationship into a monotonic one. With no doubt, the deep breaths deviate
the most from the linear relationship. Since the detection of hypopneas is mostly con-
cerned with the transition from normal to shallow breathing, these sensors may therefore
still be very much adequate for the purpose. When including all three types of breaths,
the abdominal signal shows on average a breath amplitude error of 13.8% in the supine
position. This means that a 30% reduction in airflow is on average recorded by the sensor
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as a value in the range of 16.2–43.8%. As a result, hypopneas with a reduction in airflow
greater than 43.8% are very likely to also be correctly identified as such.

There are no clearly visible trends in the data related to BMI and signal performance.
In the supine position, both subjects with the highest and lowest BMI show the best
amplitude accuracies overall for the abdominal signal. Although, there may be an ever
so slight trend in the abdominal signal for the side position. The breath amplitude
accuracy is steadily decreasing in the interval from Subject 2–7 and Subject 11–12. The
same signals’ PPV is also steadily decreasing in the interval from Subject 4–12 (although
Subject 10 is missing).

We discovered an issue during the preliminary testing where the BITalino signal would
suddenly flip across its y-axis. This phenomenon turns out to be very common. In fact,
at least one of the raw signals (abdominal or thoracic) from most subjects is affected.
Identifying such periods is not always trivial. Nonetheless, we have come to the conclusion
that it may not be too much of concern regarding apnea detection. We do not expect
periods of disrupted breathing to be more challenging to identify in a flipped signal; at
least not for humans.

In conclusion, the signal quality of the abdominal signal is superior, with the sum-signal
not far behind. During breathing obstructions, the abdominal signal may still show
significant signal excursion due to respiratory effort (paradoxical breathing). Therefore,
it is unclear whether the abdominal signal alone is sufficient to reliably detect apneic and
hypopneic episodes, or if the thoracic signal is needed to generate the sum-signal. On
the other hand, Kristiansen et al. (2018) show excellent classifier performance using the
abdominal signal alone when the data is of good quality. They do, however, not evaluate
the sum-signal, and it is, therefore, still unclear whether the abdominal signal alone is
sufficient, especially for lower quality signals.

7.4 Shimmer

7.4.1 Signals

In contrast to BITalino’s twelve signals per subject, Shimmer provides only two signals
per subject. Shimmer records just the thoracic expansion and contraction, not abdominal,
which results in one signal from each of the two body positions. As of this fact, we present
all the four metrics for Shimmer together in Figure 7.17, where each of the four metrics
is separated into their own sub-figures containing the results of both body positions.

A significant number of the signals from Shimmer are, in fact, corrupt. Of all the subjects
with a BMI above 30, three out of four signals from the side position are corrupt, whereas
none of the side position signals from the subjects below 30 BMI are corrupt. The
affected signals are overwhelmed by noise, and it is impossible to even distinguish a single
normal breath (deep breaths are still sometimes distinguishable). The same phenomenon
occurred only for one subject (Subject 8) in the supine position. We double checked the
electrodes after the sessions, and they were still properly attached, which means that the
cause is at least not related to electrode slippage. All the affected signals are excluded
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Figure 7.17: All quality metrics for all signals from Shimmer

from the results, but nonetheless, the observation in itself remains significant. An example
of a corrupt signal from Shimmer is shown in Figure 7.18. As seen, without using the
NOX signal as a reference, it is impossible to distinguish most breaths. We declare a
signal corrupt if the majority of the signal is as the example shown in Figure 7.18.

7.4.2 Breath Detection Accuracy

Figure 7.17a presents the sensitivity of both body positions from Shimmer. The first
point one may notice is that when the sensitivity is good, it is very good. In contrast
to the sensitivity of BITalino where the results are often close to 100% but not exactly
100%, the sensitivity of Shimmer is often either precisely 100%, or significantly worse
(with a few exceptions). Even without considering the corrupt signals, the sensitivity
from the supine position is a little better and more stable overall compared to the side
position. The mean sensitivity of the supine and side positions is 98.53% and 97.30%,
respectively.

For the PPV (Figure 7.17b), the signals with a perfect sensitivity mostly also have a
perfect or almost perfect PPV. The exception is the signals from Subject 2. The side
position signal from this subject has a good PPV despite the sensitivity being poor, and
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additionally, the signal from the supine position shows an imperfect PPV despite the
sensitivity being perfect. In contrast to sensitivity, it is the side position that shows
the best PPV on average with a score of 97.55%, where it is 96.58% for the supine
position. This is, however, only when the corrupt signals are excluded, and the picture
would surely be different if they were included (e.g., by regarding their score as 0% or
something similar).

The CMP results (Figure 7.17c) show that a total of seven out of 24 of the signals
maintain a perfect breath detection accuracy throughout the full duration of the capture.
The supine position signal from Subject 1, 3, 5, and 7, and the side position signal from
Subject 5–7, all show a perfect breath detection accuracy. The results show that both
missing and false breaths are somewhat evenly distributed throughout the signals. The
worse the sensitivity, PPV, or both, the worse the CMP, which corresponds to an even
distribution.

There is possibly a trend related to BMI in the CMP results for the side position. Based
on these results, the signal quality is best for the subjects with a BMI close to 25, and
decreases as the distance to a BMI of 25 increases, in both directions. Since CMP depends
on both the sensitivity and PPV, this trend is also present in the results for these metrics
as well, although to a slightly lesser degree.

7.4.3 Breath Amplitude Accuracy

In contrast to the breath amplitude accuracy of the abdominal and sum-signals from
BITalino, Shimmer shows more variation amongst the subjects. Both the supine and
side position signals vary a lot amongst all the subjects, even between those with a very
similar BMI. The only slight stability in amplitude accuracy regarding BMI present in the
data is the supine signal between Subject 10–12 and the side signal between Subject 4–7.
The amplitude accuracy for both positions varies by as much as 25% between subjects,
and the mean amplitude accuracy is 16.89% and 21.37% for the supine and side positions,
respectively. As a result, the signal from the supine position yields the overall best breath
amplitude accuracy, which is also in line with the results for BITalino. Despite the side
position signal being worse in general, there is a correlation between the supine and side
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position scores (at least for Subject 2–7 and 11). The worse the accuracy of the supine
position, the worse the accuracy of the side position, and vice versa.

The best-achieved breath amplitude accuracy is 6.93% from Subject 4 in the supine po-
sition. Both signals from Subject 7 are, in fact, the only other two signals from Shimmer
with a score below 10% (8.92% and 8.74% for supine and side, respectively). Figure 7.19
shows a scatterplot of the breath amplitude relationship between Shimmer and NOX,
including the regression line, for a few selected signals. The selection is again based
on all the different kinds of relationships present in the data and shows how such rela-
tionships affect quality. The sub-figures are sorted based on quality, with Figure 7.19a,
Figure 7.19b, Figure 7.19c, and Figure 7.19d having a score of 6,93%, 12.14%, 17.17%,
and 31,05%, respectively. Whereas most of the breaths are very close to the regression
line in Figure 7.19a, hence the good score, the deepest breaths hint at a more monotonic
relationship. On the other hand, as there are few deep breaths, this may very well also
just be scatter as opposed to a different type of relationship altogether. The relationship
of Figure 7.19b is very linear, but it also has more variation, which is what degrades
the quality. The deep breaths (excluding the two outliers) of Figure 7.19c may indicate
a slightly monotonic relationship, but it is hard to determine definitely because of the
large variation. Despite the fact that Figure 7.19d shows a very linear relationship with
minor scatter for the shallow and normal breaths, the overall relationship is very mono-
tonic because of the deep breaths. The poor breath amplitude accuracy score (31,05%)
of the signal is due to the large amplitudes of the deep breaths in combination with the
monotonic relationship. Another common type of monotonic relationship present in the
data is where the slope of the deep breaths increases, as opposed to decreases as it does
in Figure 7.19d. The breath amplitude relationships from Shimmer are, in other words,
never consistent amongst different subjects and across signal captures.

7.4.4 Conclusions

Regarding the breath detection accuracy, we arrive at mostly the same conclusion for
Shimmer as for BITalino. However, while the main concern for BITalino is mostly the
presence of false breaths, Shimmer struggles with both missing and false breaths. For
Shimmer, the issue with sensitivity primarily concerns the higher end of the BMI scale
for the supine position, while it concerns both ends of the BMI scale for the side position.

The raw signal from Shimmer is never a nearly flatline due to the inflicted high-frequency
current. Regardless, this high-frequency current is very systematic and is, thus, also
trivial to identify and filter out. The main withstanding issue is then the heartbeats. If
the scoring rules by the AASM are followed strictly, Shimmer performs very poorly at
detecting apneas because heartbeats are very prominent features of the signal; and often
above 10% of the baseline in amplitude. One would either have to carefully filter the
heartbeats out of the signal or identify and take them into consideration when scoring
apneic epochs.

Whenever the signal-to-noise ratio is low, the shallow breaths have a tendency to be
completely buried in noise. The result is that epochs which in reality are hypopneic may
be misclassified as apneic. In fact, the shallow breaths are for all the signals from both
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positions, always either at or below the regression line, never above. This means that
either hypopneic episodes may be misclassified as apneic or, if heartbeats are not taken
into consideration, apneic episodes may be misclassified as hypopneic.

There is an issue regarding BMI affecting the signal from Shimmer as the signal quality is
for the most part superior for the subjects with a BMI close to 25, for both positions. The
issue is most prominent for the side position signal, and its presence in the supine signal
is somewhat questionable. Despite the CMP score, the results for the supine signal from
Subject 12 are in fact very good. Moreover, the CMP score for this signal is explained
by a few false/missed breaths very evenly spread throughout the signal.

7.5 Platform Comparison

Figure 7.20 presents a comparison of all the metrics for the overall best signals from
BITalino and Shimmer. The signal from BITalino is the raw abdominal signal from the
supine position, and the Shimmer signal is from the supine position as well.

From Figure 7.20a, it becomes clear that BITalino has the better sensitivity. Excluding
the subjects where both sensors have a sensitivity of 100% (Subject 1–5), BITalino is
better in five out of seven cases, whereas Shimmer is better in the other two. The
mean sensitivity of BITalino and Shimmer is 99.61% and 98.53%, respectively. For the
PPV (Figure 7.20b), the results are quite different. While only one out of twelve signals
from BITalino shows a perfect PPV, four out of eleven signals from Shimmer do. As BMI
increases, both sensors struggle with false breaths, with Shimmer struggling slightly more
than BITalino (Subject 10–11). The mean PPV of BITalino and Shimmer is 96.28% and
96.58%, respectively, making the average score of Shimmer only marginally better. The
corrupt signal from Shimmer (Subject 8) is not taken into account for the calculation of
this mean, and the results would surely be different if it were. It is already determined
that the distribution of missed/false breaths are for both sensors very even, and so the
CMP metric (Figure 7.20c) is less interesting to compare. One may, however, notice
Subject 6 which has a lower sensitivity and PPV for Shimmer, but simultaneously also a
better CMP. This observation indicates that the errors are more spread throughout the
signal for BITalino; for this specific subject.

Based on the breath amplitude accuracy results shown in Figure 7.20d, it is apparent that
Shimmer shows the most variation amongst subjects. BITalino shows somewhat stable
results between Subject 2–5, whereas Shimmer does between Subject 10–12. Regarding
BMI, BITalino does indicate a correlation as the results are much less stable between
subjects at both ends of the scale. For Shimmer, on the other hand, the correlation is
very questionable for this specific signal and metric. The mean breath amplitude accuracy
of BITalino and Shimmer is 13.82% and 16.89%, respectively, making BITalino the overall
most accurate of the two.
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Figure 7.20: Comparison of all quality metrics for the supine signal from BITalino (raw,
abdomen) and Shimmer
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7.6 Metric Review

Breath Detection Accuracy

Both sensitivity and PPV are straightforward metrics which are very easy to interpret,
and also widely used amongst practitioners to describe the performance of binary clas-
sifiers. When these metrics are used to describe the performance of automatic binary
classifiers, the results reflect the objective truth. Our case is, however, a little differ-
ent. The sensors provide an analog signal, and we extract the breaths based on our
subjective evaluation. If we, for example, blindly trusted our automatic breath detection
implementation, the results would be objective, but the metrics would then describe the
performance of the extraction algorithm rather than the signals alone. That said, the
accuracy of the algorithm is almost flawless whenever the signal is as clean as it is for
the NOX sensor but struggles with more noisy signals. There is nothing wrong with
the metrics per se, but it is, however, worth noting the subjective aspect of their use
in this context. A solution to reduce the subjectivity could, for example, be to have
multiple (trained) persons score the signals, but unfortunately, we do not have the time
nor resources to do so during this work.

Of all the three breath detection accuracy metrics, CMP yields the least information,
and its usefulness is questionable. We do realize that a window width of one minute may
be too large considering that the signal captures only consist of about seven minutes.
A window width of about 15–30 seconds may have been more optimal for these signal
captures, but regardless, the metric is more fit for longer sessions anyhow.

Breath Amplitude Accuracy

The standard definition of the WAPE metric (Equation 7.1) consists of two arithmetic
means, the denominator (y) and the mean of all the individual errors (the 1

n

∑n
i=1 term).

WAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiy

∣∣∣∣× 100% (7.1)

In the context of breath amplitude accuracy, the denominator (y) represents the baseline
breath amplitude. Whether or not the arithmetic mean is the best representation of
such, depends upon the underlying distribution of the breath amplitudes. The breath
amplitude distribution for a few selected raw abdominal BITalino signals are shown in the
left column of Figure 7.21 (Figure 7.21a, Figure 7.21c, Figure 7.21e, and Figure 7.21g),
and for reference, these signals are the same as those shown in Figure 7.16. As seen, the
distribution of the breath amplitudes is not perfectly normal but more right-skewed, and
the degree of the skewness varies between the signals. For skewed distributions in general,
the median is often considered a better representation of central tendency compared to
the arithmetic mean. For these signals, the median and mean are fairly close (and even
overlapping in Figure 7.21a), but the median is consistently slightly smaller. Choosing
the median in place of the mean as the denominator for the WAPE metric, therefore,
systematically increases the error (a smaller denominator equals a larger error).

As seen in the right column of Figure 7.21 (Figure 7.21b, Figure 7.21d, Figure 7.21f,
and Figure 7.21h), the distribution of the breath amplitude errors is very right-skewed,
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and the difference between the median and mean is significant (pay attention to the axes
values). Due to the skewness of the distribution, choosing the median as the measure
of central tendency minimizes the effect of outliers, but also systematically decreases the
average amplitude error. The effect of choosing the median in place of the mean for these
signals can be seen in Figure 7.22. This figure presents all the different combinations of
mean and median for the raw abdominal supine signal from BITalino and the supine signal
from Shimmer. The legend notation median of mean means that the outer term 1

n

∑n
i=1 is

converted to median, while the inner term (denominator) y still represents the arithmetic
mean. The results show that converting the outer term to median has the greatest impact
on the metric score, and the impact of outliers is also clearly visible. While most trends
are still present, the variation between subjects is minimized significantly.

In conclusion, which one of these definitions that is most optimal for these kinds of data,
depends on what the metric should represent. If the intention is to minimize the effect
of outliers on the metric score, then the median is superior, and if not, then the standard
definition is superior. Interestingly, the use of median for these kinds of data is very rarely
(if at all) mentioned in related work. Most related work employs metrics which utilize
the arithmetic mean in one way or another, such as MAE, MAPE, RMSE, and MBE
((Silva et al. 2015), (Seppänen et al. 2013), (Liu et al. 2013), (Cantineau et al. 1992),
(Adams et al. 1993), and (Cohn et al. 1982)). Nonetheless, the use of median remains a
very viable alternative for these kinds of data.

7.7 Comparison with Related Work

Brouillette et al. (1987) evaluate the breath detection accuracy of an IP sensor (what
Shimmer uses) and a RIP sensor (what we use with NOX) using sensitivity and PPV
as the metrics. In their study, the IP sensor shows a sensitivity of 98.3% and a PPV of
94.4%. Conversely, their RIP sensor shows a sensitivity of 99.6% and a PPV of 99.5%.
Both sensor types identify 60 out of 60 central apneic events, but for obstructive events,
on the other hand, the picture is quite different. The RIP sensor identifies 35 out of 38
obstructive events, whereas the IP sensor identifies only two out of 38. The study shows
that false breaths caused by cardiac activity and respiratory effort are very significant
issues concerning the IP type sensor.

Our results for Shimmer are in line with the results from this study. Even considering the
subjective aspect of the breath detection metrics, their finding regarding sensitivity is very
similar to our results for Shimmer from the supine position (98.3% versus 98.5%). The
results for PPV are less similar (94.4% versus 96.5%), but their result includes two large
outliers with a PPV of 56% and 46%, which may explain the difference. Additionally,
the study substantiates our findings regarding false breaths and heartbeats being very
significant concerns regarding this kind of sensor.

Concerning breath amplitude accuracy, a direct comparison with related work is not
possible as the metrics in use are different. For example, (Adams et al. 1993), (Cantineau
et al. 1992), (Whyte et al. 1991), and (Cohn et al. 1982) all measure the breath amplitude
accuracy of different sensor types, but employ variations of either MPE or MBE as
the accuracy metric. What we can compare, however, is the consistency of the breath
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amplitude relationship across subjects. Our results show that the amplitude of the breaths
are not consistently higher or lower than the gold standard across subjects, but varies.
This is in line with the results by Cantineau et al. (1992), who measure the accuracy of
a RIP type sensor.

7.8 Additional Sensors

Towards the very end of this work, we received two additional respiratory effort sensors for
evaluation: a RIP belt from biosignalsplux called RespiBAN (biosignalsplux 2018b), and a
strain-gauge belt from SweetZpot called FLOW (SweetZpot 2018). Both of these sensors
are single belts, meaning that they capture either abdominal or thoracic movement.
Given the limited time frame and the (usually) superior signal quality from the abdomen,
we capture only abdominal movement during the evaluation of these two sensors. For this
evaluation, we regathered a subset of the original subjects as well as some newcomers,
resulting in a total of eleven subjects.

7.8.1 RespiBAN

An example capture from RespiBAN is shown in Figure 7.23. Notice how similar the
waveforms of the signal are to the airflow signal from the BITalino PZT belts. As soon
as airflow subsides, without the belt circumference changing, the signal of the RespiBAN
sensor immediately returns to the baseline center. This behavior is just as the BITalino
PZT belts and is precisely how an airflow signal should behave. However, the RespiBAN
is a RIP type sensor, and plethysmography is defined as the change of volume (OED
2018b). Whether this sensor captures airflow or volume is, therefore, unclear, and it may
very well also be some internal filter at work causing this behavior. Nonetheless, we tried
to integrate the raw signal, but the results are the same as for BITalino, i.e., slightly
worse overall than the raw signal.

All the signal quality metrics for the RespiBAN sensor are presented in Figure 7.24. The
sensitivity is overall very good for both body positions with a score above 95% for all
signals (Figure 7.24a). In contrast to both BITalino and Shimmer, the sensitivity of the
side position for this sensor is most often better than the supine position. The mean
sensitivity of the supine and side positions is 98.41% and 98.88%, respectively.

As shown in Figure 7.24b, the PPV of the RespiBAN sensor is somewhat poor. The
mean PPV of the supine and side positions is 90.81% and 86.64%, respectively, making it
achieve the worst PPV of all the sensors. The underlying cause is not related to sporadic
false breaths throughout the signal, but rather the fact that the signal cannot flatline at
all. During the breathing stops, the signal exhibits behavior that is often misinterpreted
as shallow breaths, which in turn results in a poor PPV score. During a breathing stop,
BITalino, Shimmer, and FLOW do not flatline either, but their behavior is at least mostly
distinguishable from shallow breaths. The breathing stops in these signal captures are
often located across two minutes of the signal (i.e., stretching across the boundary of
one minute onto another). Therefore, the two breathing stops may be located within
four minutes, which explains why the CMP score of this sensor is often around 50%
(Figure 7.24c).
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Figure 7.23: Example of a RespiBAN capture

The breath amplitude accuracy, on the other hand, is reasonably good overall with the
mean score for the supine and side positions being 13.60% and 14.65%, respectively
(Figure 7.24d). The score of all signals is remarkably stable across captures and subjects,
and usually reside in the 10–15% range. In contrast BITalino and Shimmer, this sensor
shows only a single outlier (Subject 2 side) in regards to breath amplitude accuracy.

7.8.2 FLOW

An example capture from the FLOW sensor is shown in Figure 7.25. The first point one
may notice is that this sensor does suffer from a slight baseline wander. It is not so severe
that it affects the synchronization in these captures, but it might be for longer captures.
Baseline wander is, nonetheless, easily correctable. It is clear that this sensor captures
volume as the signal does not return to the baseline center when airflow subsides. The
signal is, on the other hand, quite noisy (evident during breathing stops). However, the
noise is of somewhat high frequency, making it easily distinguishable from breaths in
general.

All the signal quality metrics for FLOW are shown in Figure 7.26. The sensitivity of
the FLOW sensor is also very good (Figure 7.26a), with the mean scores of the supine
and side positions being 98.91% and 98.22%, respectively. Unlike the RespiBAN sensor,
FLOW exhibits very few false breaths (Figure 7.26b). The mean PPV of the supine and
side positions is 98.81% and 99.16%, respectively, making it the best sensor regarding
PPV score. The signal from FLOW is one of the more noisy signals amongst these
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Figure 7.24: All quality metrics for all signals from RespiBAN
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Figure 7.25: Example of a FLOW capture

sensors, but its noise is also easily distinguishable from breaths in general. With such
a good sensitivity and PPV scores, there is not much to mention regarding the CMP
(Figure 7.26c). Although, the CMP scores indicate that the few errors present in the
signals are somewhat evenly distributed throughout the signals (i.e., CMP is poor despite
sensitivity and PPV being good).

FLOW achieves the best breath amplitude accuracy of all the sensors (Figure 7.26d).
The score is centered below 10% and is very stable with few to no outliers. The mean
score for the supine and side positions is 8.75% and 9.61%, respectively. The reason why
the FLOW sensor achieves this much better breath amplitude accuracy compared to the
other sensors is unclear. One possible explanation is that it is the only belt type sensor
which captures the same unit of measurement as the NOX (volume), making them very
closely related. Of all the other sensors, it is only Shimmer which definitively captures
volume, but Shimmer is also a very different type of sensor compared to NOX.

7.9 Discussion and Conclusions

Based on the signal captures from twelve subjects, we conclude that false breaths are the
primary concern affecting the breath detection accuracy of both BITalino and Shimmer,
where Shimmer is also somewhat struggling with missing breaths. Both platforms show
an inconsistent relationship between breath amplitude and changes in body circumference
(due to breathing), with varying types of monotonic relationships being the norm. The
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Figure 7.26: All quality metrics for all signals from FLOW
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supine body position is consistently showing the overall best signal quality. While both
platforms show a correlation between signal quality and BMI, the supine position is less
affected than the side position.

The RespiBAN sensor is mostly struggling with false breaths during breathing stops. Its
sensitivity and breath amplitude accuracy are very close to the raw BITalino signals, but
the RespiBAN signal is more stable across body positions and signal captures. Despite
being one of the noisiest signals, the FLOW sensor achieves overall the best metric scores.
In fact, only the sensitivity of the raw abdominal BITalino signal beats it. The FLOW
sensor is also, like RespiBAN, very stable across body positions and signal captures.
The more stable results between body positions for the RespiBAN and FLOW sensors
is suspected to be related to sensor entrapment. The sensor part of the RespiBAN and
maybe FLOW (documentation lacking) stretches the whole circumference of the belts,
whereas only a small area for BITalino. Furthermore, the Shimmer sensor is likely affected
by lying directly on top of the electrode attached to the side of the thorax. An overview of
the mean metric score for each signal and sensor is shown in Table 7.1, with the best signal
for each metric emphasized. Figure 7.27 shows an example of what a complete breathing
stop looks like for all the different sensors. The left column is the target sensors, whereas
the right column their corresponding gold standard signal from NOX.

It is important to note the subjective aspect of the sensitivity and PPV metrics when they
are applied to this context. Without a ”perfect” automatic breath extraction algorithm,
this subjective aspect is unavoidable, but it can be minimized by, for example, having
multiple (trained) persons manually score the signals. The CMP metric is the least useful
of these three breath detection accuracy metrics, and when the signals under evaluation
are very short, the window width of one minute may be too wide.

Depending on whether or not the effect of outliers should be minimized for the breath
amplitude accuracy metric, the median is a very viable alternative to the arithmetic mean.
The distribution of the breath amplitude errors is, for these signals, right-skewed, and
the median is often considered a superior representation of central tendency for skewed
distributions. In the end, the choice depends upon what we intend the metric to describe.
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Sensitivity PPV CMP WAPE Corrupt

BITalino
(raw, abdomen, supine)

99.61% 96.28% 60.93% 13.82% 0 of 12

BITalino
(raw, abdomen, side)

99.16% 93.83% 53.24% 16.51% 1 of 12

BITalino
(raw, thorax, supine)

97.47% 94.69% 41.00% 20.60% 0 of 12

BITalino
(raw, thorax, side)

97.81% 92.24% 47.14% 22.36% 2 of 12

BITalino
(raw, sum, supine)

99.48% 96.44% 67.98% 14.28% 0 of 12

BITalino
(raw, sum, side)

99.29% 94.71% 64.93% 16.51% 1 of 12

BITalino
(integrated, abdomen, supine)

95.79% 96.74% 66.98% 19.36% 0 of 12

BITalino
(integrated, abdomen, side)

96.06% 96.60% 50.64% 21.85% 1 of 12

BITalino
(integrated, thorax, supine)

93.18% 98.43% 51.33% 28.42% 0 of 12

BITalino
(integrated, thorax, side)

90.62% 95.60 42.85 36.31% 2 of 12

BITalino
(integrated, sum, supine)

96.48% 98.46% 66.48% 19.27% 0 of 12

BITalino
(integrated, sum, side)

96.80% 97.41% 57.14% 22.60% 1 of 12

Shimmer
(supine)

98.53% 96.58% 71.72% 16.89% 1 of 12

Shimmer
(side)

97.30% 97.55% 70.11% 21.37% 3 of 12

RespiBAN
(supine)

98.41% 90.81% 49.50% 13.60% 0 of 11

RespiBAN
(side)

98.88% 86.64% 44.16% 14.65% 0 of 11

FLOW
(supine)

98.91% 98.81% 73.08% 8.75% 0 of 11

FLOW
(side)

98.22% 99.16% 74.13% 9.61% 0 of 11

Table 7.1: Overview of the mean metric scores of all signals
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Figure 7.27: Example of a complete breathing stop from all sensors



Chapter 8

Conclusion

This chapter concludes the work of this thesis. We begin in Section 8.1 by present-
ing a summary of the main contributions made in this work. This includes the signal
capture procedure, the metrics, and the results of the four sensors, BITalino, Shimmer,
RespiBAN, and FLOW. We continue in Section 8.2 with a critical assessment of the work
and methods, before we end the thesis by presenting a few possible directions for future
work in Section 8.3.

8.1 Summary of Contributions

In this work, we evaluate the signal quality of four respiratory effort sensors for sleep
apnea monitoring. Namely a piezoelectric effort belt (PZT) from BITalino, an impedance
plethysmography (IP) sensor from Shimmer, a respiratory inductance plethysmography
(RIP) sensor (RespiBAN) from biosignalsplux, and a strain-gauge sensor (FLOW) from
SweetZpot. We use a RIP sensor from NOX Medical as the gold standard. To evaluate the
signal quality of these sensors, we design a sixteen-minute signal capture procedure and
capture data from twelve (BITalino and Shimmer) and eleven (RespiBAN and FLOW)
external subjects. Our signal quality evaluation approach is based on the breath detection
accuracy metrics sensitivity, positive predictive value (PPV), and clean minute proportion
(CMP), along with the breath amplitude accuracy metric weighted absolute percentage
error (WAPE). From BITalino, we measure the signal quality of 48 raw signals (24
abdominal and 24 thoracic signals), along with 96 logical signals (i.e., sum-signals and
integrated counterparts). From Shimmer, we measure the signal quality of 24 raw signals.
Additionally, we also measure the signal quality of 22 signals each from RespiBAN and
FLOW. In total, the quality of 212 different signals is evaluated in this work.

8.1.1 Signal Capture Procedure

The direct method to measure the signal quality of a sensor for sleep apnea monitoring
is to include it in traditional polysomnography using real sleep apnea sufferers, and
then manually score the results. This is, however, very resource demanding and time-
consuming. Given our limited set of resources and time frame for this thesis, we instead
design a shorter signal capture procedure that can be performed in a laboratory during
wakefulness. The full duration of the procedure is sixteen minutes, and it simulates
disrupted breathing through shorter periods of shallow, deep, and no breathing. The
complete signal capture procedure is defined in Section 5.3.3.

139
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The signal capture procedure is generic and not specifically designed for the respiratory
effort sensors we are evaluating. It is designed for any sensor that directly monitors the
respiratory process, such as an oronasal thermal sensor, nasal pressure transducer, and
most types of respiratory effort sensors. The procedure may be used with sensors that
indirectly monitor the respiratory process as well, such as a pulse oximeter or ECG, but
the duration of the periods of disrupted breathing may need to be adjusted. For example,
a period of 10–20 seconds may not be long enough to affect the SpO2 levels as much as
necessary.

8.1.2 Metrics

Many related studies evaluate the signal quality of respiratory sensors based on either
the signal as a whole or the accuracy of each breath in isolation. The result is that
many aspects of the signals that are irrelevant in the context of sleep apnea monitoring
are still included in the signal quality evaluation. We instead employ metrics which are
closely related to how medical personnel scores apneic and hypopneic episodes. Apneic
episodes are ultimately scored based on the absence of breaths. It is, therefore, only
false and missing breaths that affect a sensor’s ability to detect apneic events. The
sensitivity metric directly reflects the proportion of missing breaths, and the positive
predictive value metric directly reflects the proportion of false breaths. However, if the
presence of false/missing breaths occurs seldom, but in bursts, these two metrics may
still be significantly affected even though most parts of the signal are very accurate. As a
result, we also employ the clean minute proportion metric, which reflects the proportion
of minutes in the signal that are 100% accurate (i.e., both sensitivity and PPV are 100%
during the minute). Hypopneic events are scored based on a 30% reduction in breath
amplitude relative to the baseline breath amplitude. The weighted absolute percentage
error metric describes precisely this, the accuracy of the breath amplitudes in relation to
the baseline breath amplitude.

8.1.3 Signal Quality of the Target Sensors

BITalino and Shimmer

Based on the signal data captured from twelve external subjects, we evaluate the sig-
nal quality of a piezoelectric belt from BITalino (both abdominal and thoracic) and an
impedance plethysmography sensor from Shimmer. The PZT sensor from BITalino cap-
tures airflow, whereas the gold standard (NOX RIP belts) and the Shimmer IP sensor
capture volume. As of this fact, one would expect that the integrated signal from BITal-
ino should be closer to the gold standard signal compared to the raw signal. However,
our results show that the raw signals are superior in most cases. We suspect that the
underlying cause includes noise and measurement errors regarding breath amplitude and
duration, which are amplified by the integration.

We evaluate the signal quality of both the BITalino and Shimmer sensors from two
different sleeping positions, the supine (back) and the side position. For both sensors,
the supine position shows the superior results. For the BITalino sensor, it is the raw
abdominal signal from the supine position that shows the best results overall. This
signal shows on average a sensitivity, PPV, CMP, and WAPE score of 99.61%, 96.28%,
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60.93%, 13.82%, respectively. Of all signal combinations, this signal achieves the best
sensitivity metric score. Whereas the raw signals from BITalino achieve better scores
overall compared to their integrated counterparts, the integrated versions achieve the
best PPV scores. The reason is that integration acts as a low-pass filter, which effectively
attenuates the false breaths from the signal. The primary signal quality concern for
BITalino is the presence of false breaths. A large number of false breaths is expected to
increase the rate of false negative apneic and hypopneic events. Of 48 raw signals (two
from each subject from each body position), three are corrupt. Two thoracic signals and
one abdominal signal, both from the side position.

As mentioned, the best performing signal from Shimmer is from the supine position as
well. This signal achieves on average a sensitivity, PPV, CMP, and WAPE score of
98.53%, 96.58%, 71.72%, 16.89%, respectively. The signal quality of the Shimmer sensor
is less stable between subjects compared to the BITalino sensor. In other words, the signal
quality of Shimmer is often either very good or somewhat poor, but seldom in between.
While the BITalino sensor struggles mainly with false breaths, the Shimmer sensor is also
somewhat concerned with missing breaths. Out of 24 signals, four are corrupt. Three
of those are from the side position of subjects with a BMI above 30, while one is from
the supine position of a subject with an average BMI. There is a trend related to signal
quality and BMI present in the data. The signal quality is worse on both ends of the
BMI scale, and best close to a BMI of 25 (i.e., average).

RespiBAN and FLOW

The signal quality evaluation of RespiBAN and FLOW is based on data from eleven
external subjects. From each of these subjects, we capture movement from the abdomen
for both the supine and side body positions. Compared to BITalino and Shimmer, the
signal quality from both the RespiBAN and FLOW is remarkably stable across differ-
ent signal captures, subjects, and body positions. There are, in other words, far fewer
outliers for these sensors. The RespiBAN sensor is severely struggling with false breaths
during breathing stops because the signal just cannot flatline. The FLOW sensor is not
struggling with anything in particular related to the signal quality metrics, but the sig-
nal is, nonetheless, very noisy. The supine signal from RespiBAN achieves on average a
sensitivity, PPV, CMP, and WAPE metric score of 98.41%, 90.81%, 49.50%, and 13.60%,
respectively. Likewise, the supine signal from FLOW achieves on average a sensitivity,
PPV, CMP, and WAPE metric score of 98.91%, 98.81%, 73.08%, and 8.75%, respectively.
Whereas lying in the side position reduces the occurrence of false breaths for the FLOW
sensor, it increases it for the RespiBAN sensor.

8.2 Critical Assessment

The industry gold standard sensor for measuring airflow is a pneumotachograph (Berry
et al. 2012). Due to the limited set of resources available for the work in this thesis, a
pneumotachograph is unavailable, and we have to resort to other means. Therefore, we
use a dual thoracobdominal RIP sensor from NOX Medical as the gold standard during
this work. The RIP technology is shown to correlate very well with the signal from an
integrated pneumotachograph. For example, Cohn et al. (1982) show that 88% of the
tidal breaths recorded by RIP are within 10% the amplitude of the breaths recorded by
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a pneumotachograph. Additionally, the breath amplitudes recorded by a RIP sensor is
shown not to be consistently lower or higher than the pneumotachograph, but vary. Con-
sequently, this may potentially bias our results. For example, the RIP sensor (our gold
standard) may record the amplitude of a breath as 10% higher than what a pneumotacho-
graph would have, and the target sensor under evaluation may record the same breath’s
amplitude as 10% lower than what a pneumotachograph would have. This results in a
20% amplitude difference between the RIP sensor and the target sensor, while the real
error is only 10%. As shown in our results, the breath amplitudes of both BITalino and
Shimmer are also not consistently lower or higher than the RIP NOX sensor. It may,
therefore, also be the case that the bias is canceled out and is insignificant, but this is
nonetheless just speculations.

We must also emphasize that we are by no means medical personnel nor have any kind of
medical training. While most of the breaths in the signals are unambiguous and trivial
to score, some are very ambiguous. Consequently, a person with medical training may
score the ambiguous breaths quite differently than how we do.

The design of the periods of disrupted breathing in the signal capture procedure is very
”textbook” and ”artificial/clean.” For example, apneic and hypopneic events are in reality
very likely to include paradoxical breathing, i.e., asynchronous breathing between the
abdomen and thorax. As such, it may have been beneficial to study further what real
apneic and hypopneic events look like, and then mimic this behavior in the signal capture
procedure more closely. That said, the simpler variants in our procedure are hard enough
to perform for the subjects as they are already. If we are to make them any more
complicated, we expect that quite a few of the subjects would have a hard time performing
them correctly.

8.3 Future Work

There are many opportunities for future work related to the topic of measuring the signal
quality of respiratory effort sensors. First and foremost, consider the primary long-term
goal of enabling people to perform the first step towards a diagnosis at home (Section 1.1).
To tackle this goal, the relationship between the metrics we employ and the performance
of the data mining classifiers must be studied. The results by Kristiansen et al. (2018)
show that the abdominal signal achieves a better data mining classifier performance
compared to the thoracic signal. These results are in line with our findings regarding
the abdominal signal being of better quality compared to the thoracic signal. There is,
however, too little data to conclude anything yet. If the results of the metrics we employ
turn out to be highly correlated with the performance of the data mining classifiers,
then our approach is a very efficient method to evaluate the signal quality of respiratory
sensors in general.

We employ a minimal set of filtering techniques in this work. The signals are only filtered
with a high-pass filter out of necessity to be able to integrate them, while the integration
process in itself also works as a low-pass filter. As described in Section 3.5.5, there
have been proposed a wide range of alternative filtering techniques for these kinds of
data. For example, wavelet decomposition (Keenan and Wilhelm 2005), adaptive filtering
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(Keenan and Wilhelm 2005), noise discrimination (Retory et al. 2016), and empirical
mode decomposition (Liu et al. 2013). All of these techniques have been proven to be very
effective at filtering motion artifacts from the signals. However, since motion artifacts are
usually not a big concern related to sleep signals, it is not clear how much these filtering
techniques improve the quality of these signals. Nevertheless, the effect of different kinds
of filtering techniques is definitively an important aspect to study further.

We barely touched upon the effect of sensor misplacement during the work in this thesis
(Section 5.2.2). The placement of the sensors does indeed affect the amplitude of the
breaths, where the degree depends upon the distance from the optimal placement. For
the signals captured from the external subjects, we positioned the sensors in their optimal
locations. As the long-term goal is to allow people to use the sensors by themselves in
the comfort of their own home, misplacements are very likely to occur. Consequently,
the effect of misplacement on the signal quality is very important to study further.





Bibliography

Adams, Jose A., Ignacio A. Zabaleta, David Stroh, and Marvin A. Sackner. 1993. “Mea-
surement of breath amplitudes: Comparison of three noninvasive respiratory moni-
tors to integrated pneumotachograph.” Pediatric Pulmonology 16, no. 4 (October):
254–258. issn: 87556863. doi:10.1002/ppul.1950160408.

Ahmadi, Negar, Sharon A. Chung, Alison Gibbs, and Colin M. Shapiro. 2008. “The
Berlin questionnaire for sleep apnea in a sleep clinic population: Relationship to
polysomnographic measurement of respiratory disturbance.” Sleep and Breathing 12,
no. 1 (February): 39–45. issn: 15209512. doi:10.1007/s11325-007-0125-y.

Alaska Sleep Clinic. 2015. “The 3 Types of Sleep Apnea Explained: Obstructive, Central,
& Mixed.” Accessed February 14, 2018. http://www.alaskasleep.com/blog/

types-of-sleep-apnea-explained-obstructive-central-mixed.

Almazaydeh, Laiali, Khaled Elleithy, and Miad Faezipour. 2012. “Detection of obstructive
sleep apnea through ECG signal features.” In IEEE International Conference on
Electro Information Technology, 1–6. IEEE, May. isbn: 9781467308199. doi:10.110
9/EIT.2012.6220730.

American Sleep Apnea Association. 2018a. “Central Sleep Apnea.” Accessed February 13,
2018. https://www.sleepapnea.org/learn/sleep- apnea/central- sleep-

apnea/.

. 2018b. “Obstructive Sleep Apnea.” Accessed February 14, 2018. https://www.
sleepapnea.org/learn/sleep-apnea/obstructive-sleep-apnea/.

Askham, N, D Cook, M Doyle, H Fereday, M Gibson, U Landbeck, R Lee, C Maynard, G
Palmer, and J Schwarzenbach. 2013. “The Six Primary Dimensions for Data Quality
Assessment.” Group, DAMA UK Working: 16.

Atkielski, Anthony. 2007. “Schematic diagram of normal sinus rhythm for a human heart
as seen on ECG.” Accessed February 15, 2018. https://commons.wikimedia.org/
wiki/File:SinusRhythmLabels.svg.

Baker, Clark R Jr, and Edward M Richards. 2005. “Signal quality metrics design for
qualifying data for a physiological monitor.” US Patent 7,006,856.

Berry, Richard B., Rohit Budhiraja, Daniel J. Gottlieb, David Gozal, Conrad Iber,
Vishesh K. Kapur, Carole L. Marcus, et al. 2012. “Rules for scoring respiratory
events in sleep: Update of the 2007 AASM manual for the scoring of sleep and as-
sociated events.” Journal of Clinical Sleep Medicine 8 (5): 597–619. issn: 15509389.
doi:10.5664/jcsm.2172.

145

http://dx.doi.org/10.1002/ppul.1950160408
http://dx.doi.org/10.1007/s11325-007-0125-y
http://www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-central-mixed
http://www.alaskasleep.com/blog/types-of-sleep-apnea-explained-obstructive-central-mixed
http://dx.doi.org/10.1109/EIT.2012.6220730
http://dx.doi.org/10.1109/EIT.2012.6220730
https://www.sleepapnea.org/learn/sleep-apnea/central-sleep-apnea/
https://www.sleepapnea.org/learn/sleep-apnea/central-sleep-apnea/
https://www.sleepapnea.org/learn/sleep-apnea/obstructive-sleep-apnea/
https://www.sleepapnea.org/learn/sleep-apnea/obstructive-sleep-apnea/
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
http://dx.doi.org/10.5664/jcsm.2172


146 Bibliography

Berry, Richard B., and Mary H. Wagner. 2014. Sleep Medicine Pearls, 1–690. isbn:
9781455770519.

biosignalsplux. 2018a. “biosignalsplux.” Accessed March 1, 2018. http://biosignalspl
ux.com/en/.

. 2018b. “RespiBAN Researcher.” Accessed March 1, 2018. http://biosignalsp
lux.com/en/respiban-researcher.

BITalino. 2018a. “BITalino.” Accessed January 27, 2018. http://bitalino.com.

. 2018b. “BITalino PZT.” Accessed January 27, 2018. https://store.plux.

info/bitalino-sensors/40-respiration-pzt-sensor.html.

. 2018c. “BITalino RIP.” Accessed January 27, 2018. https://store.plux.info/
professional-sensors/317-respiration-rip-820202501.html.

. 2018d. “BITalino vs. biosignalsplux - intended use.” Accessed March 1, 2018.
http://bitalino.com/index.php/en/intended-use.

. 2018e. “Plugged kit BLE.” Accessed March 1, 2018. http://bitalino.com/en/
plugged-kit-ble.

Boigelot, Denis. 2011. “Pearson correlation coefficient.” Accessed February 7, 2018. https
://upload.wikimedia.org/wikipedia/commons/d/d4/Correlation_examples2.

svg.

Brainworks. 2018. “WHAT ARE BRAINWAVES?” Accessed February 15, 2018. http:
//www.brainworksneurotherapy.com/what-are-brainwaves.

Brouillette, Robert T, Anna S Morrow, Debra E Weese-Mayer, and Carl E Hunt. 1987.
“Comparison of respiratory inductive plethysmography and thoracic impedance for
apnea monitoring.” The Journal of Pediatrics 111 (3): 377–383. issn: 00223476.
doi:10.1016/S0022-3476(87)80457-2.

Cannesson, M., O. Desebbe, P. Rosamel, B. Delannoy, J. Robin, O. Bastien, and J. J.
Lehot. 2008. “Pleth variability index to monitor the respiratory variations in the pulse
oximeter plethysmographic waveform amplitude and predict fluid responsiveness in
the operating theatre.” British Journal of Anaesthesia 101, no. 2 (August): 200–206.
issn: 00070912. doi:10.1093/bja/aen133.

Cantineau, J. P., P. Escourrou, R. Sartene, C. Gaultier, and M. Goldman. 1992. “Accuracy
of respiratory inductive plethysmography during wakefulness and sleep in patients
with obstructive sleep apnea.” Chest 102 (4): 1145–1151. issn: 00123692. doi:10.
1378/chest.102.4.1145.

CleveMed. 2018. “Type I, Type II, Type III Sleep Monitors, CMS AASM Guidelines.”
Accessed February 18, 2018. https://clevemed.com/cms-aasm-guidelines-for-
sleep-monitors-type-i-type-ii-type-iii/.

Cohn, M A, A. S. V. Rao, M Broudy, S Birch, H Watson, Neal Atkins, Brian Davis, F
D Stott, and Marvin A Sackner. 1982. “The respiratory inductive plethysmograph:
a new non-invasive monitor of respiration.” Bulletin européen de physiopathologie
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Appendix A

Source Code

The source code presented and used in this thesis, as well as the automatic timekeeper
application used during the signal capture procedure, can be found at: https://github.
uio.no/CESAR/Fredrik-L-berg
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Appendix B

Experiment Results

The raw data for the all the signal quality metrics are presented in the following tables.
For the BITalino signals, the sensitivity is shown in Table B.1 and Table B.2, the PPV
in Table B.3 and Table B.4, the CMP in Table B.5 and Table B.6, and the WAPE
metric in Table B.7 and Table B.8. For Shimmer, all metrics are shown in Table B.9 and
Table B.10. For RespiBAN, all metric scores are shown in Table B.11 and Table B.12,
and all results for Flow are shown in Table B.13 and Table B.14.
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Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 100.00% 99.40% 99.40% 97.01% 86.83% 85.03%

Subject 2 100.00% 97.87% 100.00% 98.94% 94.68% 95.79%

Subject 3 100.00% 100.00% 100.00% 100.00% 97.03% 100.00%

Subject 4 100.00% 100.00% 100.00% 99.12% 99.12% 100.00%

Subject 5 100.00% 97.18% 100.00% 98.60% 93.57% 99.29%

Subject 6 99.19% 95.16% 98.45% 96.77% 87.10% 94.49%

Subject 7 99.25% 100.00% 99.25% 94.03% 96.21% 98.48%

Subject 8 100.00% 97.98% 98.97% 100.00% 98.88% 98.98%

Subject 9 99.06% 95.33% 99.06% 73.39% 87.85% 94.29%

Subject 10 100.00% 99.37% 100.00% 98.08% 99.36% 100.00%

Subject 11 97.83% 100.00% 100.00% 93.48% 95.56% 98.90%

Subject 12 100.00% 87.33% 98.64% 100.00% 82.00% 92.47%

*int: integrated

Table B.1: BITalino sensitivity results — supine position

Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 99.35% 89.17% 99.29% 98.03% 57.50% 98.58%

Subject 2 100.00% 100.00% 98.81% 97.59% 96.43% 97.59%

Subject 3 100.00% 100.00% 100.00% 98.72% 96.15% 98.72%

Subject 4 100.00% - 100.00% 100.00% - 92.41%

Subject 5 98.51% 97.76% 100.00% 95.52% 94.03% 98.50%

Subject 6 99.19% 98.25% 98.25% 98.26% 81.58% 93.86%

Subject 7 97.48% 100.00% 99.16% 92.44% 98.32% 94.96%

Subject 8 100.00% 100.00% 100.00% 98.77% 97.53% 100.00%

Subject 9 100.00% 98.88% 100.00% 96.70% 95.45% 97.75%

Subject 10 - - - - - -

Subject 11 97.10% 98.53% 98.55% 96.97% 95.52% 97.10%

Subject 12 99.10% 95.50% 98.11% 83.64% 93.64% 95.33%

*int: integrated

Table B.2: BITalino sensitivity results — side position
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Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 97.09% 99.40% 99.40% 99.39% 100.00% 99.30%

Subject 2 96.94% 95.83% 100.00% 100.00% 100.00% 100.00%

Subject 3 98.00% 97.09% 98.99% 97.03% 100.00% 98.99%

Subject 4 100.00% 96.58% 98.26% 98.26% 100.00% 100.00%

Subject 5 98.61% 93.88% 97.92% 100.00% 97.04% 99.29%

Subject 6 96.09% 86.13% 92.03% 100.00% 95.58% 93.75%

Subject 7 91.03% 95.00% 95.68% 93.33% 96.95% 98.48%

Subject 8 97.00% 97.98% 100.00% 100.00% 100.00% 100.00%

Subject 9 86.78% 89.47% 84.68% 74.07% 94.00% 94.29%

Subject 10 99.36% 97.52% 100.00% 100.00% 100.00% 100.00%

Subject 11 97.83% 91.84% 96.81% 98.85% 100.00% 98.90%

Subject 12 96.67% 95.62% 93.55% 100.00% 97.62% 98.54%

*int: integrated

Table B.3: BITalino positive predictive value results — supine position

Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 95.60% 90.68% 93.33% 98.68% 80.23% 97.89%

Subject 2 93.33% 97.70% 100.00% 93.10% 98.78% 100.00%

Subject 3 100.00% 98.73% 100.00% 100.00% 98.68% 100.00%

Subject 4 100.00% - 94.05% 96.34% - 97.33%

Subject 5 97.06% 90.34% 97.10% 100.00% 100.00% 100.00%

Subject 6 96.61% 80.00% 86.82% 96.58% 93.00% 92.24%

Subject 7 95.08% 98.35% 97.52% 97.35% 97.50% 98.26%

Subject 8 94.19% 97.59% 100.00% 100.00% 98.75% 100.00%

Subject 9 91.09% 87.13% 89.90% 92.63% 97.67% 95.60%

Subject 10 - - - - - -

Subject 11 85.90% 95.71% 98.55% 94.12% 96.97% 100.00%

Subject 12 83.33% 86.18% 84.55% 93.88% 94.50% 90.27%

*int: integrated

Table B.4: BITalino positive predictive value results — side position
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Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 44.44% 77.78% 77.78% 66.67% 44.44% 44.44%

Subject 2 66.67% 55.56% 100.00% 88.89% 66.67% 66.67%

Subject 3 77.78% 66.67% 88.89% 66.67% 66.67% 88.89%

Subject 4 100.00% 55.56% 88.89% 66.67% 88.89% 100.00%

Subject 5 71.43% 14.29% 71.43% 85.71% 28.57% 85.71%

Subject 6 37.50% 0.00% 22.22% 62.50% 0.00% 33.33%

Subject 7 22.22% 33.33% 44.44% 33.33% 44.44% 55.56%

Subject 8 77.78% 55.56% 88.89% 100.00% 87.50% 89.89%

Subject 9 22.22% 22.22% 22.22% 0.00% 0.00% 33.33%

Subject 10 88.89% 44.44% 100.00% 77.78% 88.89% 100.00%

Subject 11 66.67% 33.33% 77.78% 55.56% 77.78% 77.78%

Subject 12 55.56% 33.33% 33.33% 100.00% 22.22% 22.22%

*int: integrated

Table B.5: BITalino clean minute proportion results — supine position

Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 28.57% 0.00% 57.14% 57.14% 0.00% 57.14%

Subject 2 57.14% 85.71% 85.71% 28.57% 71.43% 71.43%

Subject 3 100.00% 85.71% 100.00% 85.71% 57.14% 85.71%

Subject 4 100.00% - 71.43% 71.43% - 28.57%

Subject 5 57.14% 14.29% 85.71% 42.86% 57.14% 71.43%

Subject 6 57.14% 42.86% 14.29% 42.86% 14.29% 28.57%

Subject 7 42.86% 85.71% 71.43% 42.86% 57.14% 42.86%

Subject 8 71.43% 71.43% 100.00% 85.71% 71.43% 100.00%

Subject 9 42.86% 14.29% 42.86% 28.57% 42.86% 57.14%

Subject 10 - - - - - -

Subject 11 14.29% 57.14% 71.43% 42.86% 42.86% 85.71%

Subject 12 14.29% 14.29% 14.29% 28.57% 14.29% 0.00%

*int: integrated

Table B.6: BITalino clean minute proportion results — side position
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Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 26.24% 17.25% 25.13% 39.54% 16.05% 28.51%

Subject 2 10.78% 23.42% 10.56% 13.99% 40.20% 16.98%

Subject 3 10.62% 22.30% 10.00% 16.11% 38.72% 16.84%

Subject 4 8.38% 16.46% 7.35% 9.31% 24.86% 9.00%

Subject 5 7.51% 16.13% 10.26% 13.18% 24.87% 14.29%

Subject 6 13.29% 31.54% 17.19% 14.31% 44.35% 26.17%

Subject 7 20.95% 18.78% 13.56% 25.98% 23.75% 16.59%

Subject 8 11.51% 13.96% 12.44% 16.33% 24.61% 18.12%

Subject 9 24.41% 23.28% 24.65% 38.71% 25.24% 28.91%

Subject 10 9.68% 13.83% 9.05% 13.92% 14.78% 10.37%

Subject 11 16.93% 27.64% 15.06% 21.12% 30.38% 22.10%

Subject 12 5.65% 22.71% 16.11% 9.86% 33.27% 23.42%

*int: integrated

Table B.7: BITalino breath amplitude accuracy (WAPE) results — supine position

Subjects Abdomen Thorax Sum Abdomenint Thoraxint Sumint

Subject 1 17.39% 30.06% 17.75% 28.61% 61.39% 27.81%

Subject 2 9.68% 17.41% 18.72% 22.44% 26.23% 23.35%

Subject 3 11.65% 26.29% 13.27% 18.23% 45.73% 18.20%

Subject 4 12.91% - 13.46% 17.49% - 23.30%

Subject 5 17.70% 24.57% 10.54% 17.66% 36.82% 14.32%

Subject 6 17.68% 31.54% 25.71% 21.32% 39.79% 28.95%

Subject 7 21.89% 8.70% 17.52% 21.89% 21.32% 22.88%

Subject 8 8.70% 18.83% 8.74% 16.30% 41.29% 12.55%

Subject 9 15.46% 24.94% 17.03% 21.37% 32.68% 24.41%

Subject 10 - - - - - -

Subject 11 23.38% 22.59% 16.16% 28.09% 28.69% 23.94%

Subject 12 25.26% 18.74% 22.78% 27.00% 29.23% 28.90%

*int: integrated

Table B.8: BITalino breath amplitude accuracy (WAPE) results — side position
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Subjects Sensitivity PPV CMP WAPE

Subject 1 100.00% 100.00% 100.00% 13.20%

Subject 2 100.00% 98.95% 88.89% 25.94%

Subject 3 100.00% 100.00% 100.00% 20.54%

Subject 4 100.00% 95.76% 77.78% 6.93%

Subject 5 100.00% 100.00% 100.00% 12.55%

Subject 6 97.67% 94.03% 55.56% 23.08%

Subject 7 100.00% 100.00% 100.00% 8.92%

Subject 8 - - - -

Subject 9 93.20% 87.27% 22.22% 26.54%

Subject 10 94.27% 95.48% 22.22% 17.87%

Subject 11 100.00% 92.23% 55.56% 16.64%

Subject 12 98.66% 98.66% 66.67% 13.58%

Table B.9: All Shimmer results — supine position

Subjects Sensitivity PPV CMP WAPE

Subject 1 95.30% 88.75% 0.00% 36.98%

Subject 2 85.71% 98.51% 66.67% 29.71%

Subject 3 100.00% 98.72% 85.71% 31.05%

Subject 4 97.50% 98.73% 57.14% 13.31%

Subject 5 100.00% 100.00% 100.00% 12.14%

Subject 6 100.00% 100.00% 100.00% 17.17%

Subject 7 100.00% 100.00% 100.00% 8.74%

Subject 8 100.00% 96.00% 71.43% 31.65%

Subject 9 - - - -

Subject 10 - - - -

Subject 11 97.22% 97.22% 50.00% 11.55%

Subject 12 - - - -

Table B.10: All Shimmer results — side position
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Subjects Sensitivity PPV CMP WAPE

Subject 1 96.35% 95.85% 44.44% 14.20%

Subject 2 98.68% 85.23% 44.44% 10.99%

Subject 3 99.02% 88.60% 66.67% 11.68%

Subject 4 97.87% 94.36% 55.56% 15.76%

Subject 5 100.00% 95.00% 77.78% 9.31%

Subject 6 96.38% 88.09% 11.11% 18.01%

Subject 7 99.18% 91.67% 55.56% 13.31%

Subject 8 98.21% 83.33% 11.11% 13.40%

Subject 9 97.78% 88.00% 55.56% 18.14%

Subject 10 100.00% 95.50% 66.67% 12.76%

Subject 11 98.99% 93.33% 55.56% 11.99%

Table B.11: All RespiBAN results — supine position

Subjects Sensitivity PPV CMP WAPE

Subject 1 95.95% 97.26% 42.86% 11.20%

Subject 2 100.00% 72.16% 14.29% 30.05%

Subject 3 100.00% 84.54% 57.14% 11.61%

Subject 4 96.45% 91.28% 42.86% 14.06%

Subject 5 100.00% 89.68% 57.14% 10.54%

Subject 6 99.07% 92.17% 28.57% 16.55%

Subject 7 98.84% 90.43% 42.86% 13.89%

Subject 8 100.00% 83.81% 42.86% 12.78%

Subject 9 98.67% 77.08% 28.57% 16.93%

Subject 10 98.72% 90.59% 57.14% 12.36%

Subject 11 100.00% 84.09% 71.43% 11.17%

Table B.12: All RespiBAN results — side position
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Subjects Sensitivity PPV CMP WAPE

Subject 1 98.92% 98.92% 75.00% 11.27%

Subject 2 100.00% 100.00% 100.00% 10.60%

Subject 3 100.00% 100.00% 100.00% 5.92%

Subject 4 98.87% 98.87% 50.00% 9.13%

Subject 5 99.19% 97.60% 62.50% 11.05%

Subject 6 99.19% 97.60% 62.50% 10.65%

Subject 7 95.90% 100.00% 60.00% 7.54%

Subject 8 96.97% 98.97% 50.00% 12.89%

Subject 9 100.00% 99.06% 88.89% 5.19%

Subject 10 100.00% 99.05% 80.00% 5.04%

Subject 11 98.94% 96.88% 75.00% 6.96%

Table B.13: All Flow results — supine position

Subjects Sensitivity PPV CMP WAPE

Subject 1 97.87% 100.00% 83.33% 11.61%

Subject 2 91.43% 100.00% 50.00% 12.91%

Subject 3 100.00% 98.78% 83.33% 6.29%

Subject 4 100.00% 97.01% 50.00% 13.64%

Subject 5 98.99% 100.00% 83.33% 5.53%

Subject 6 95.74% 100.00% 83.33% 15.59%

Subject 7 96.43% 98.78% 25.00% 9.20%

Subject 8 100.00% 100.00% 100.00% 8.85%

Subject 9 100.00% 98.84% 85.71% 6.61%

Subject 10 100.00% 100.00% 100.00% 9.14%

Subject 11 100.00% 97.30% 71.43% 6.32%

Table B.14: All Flow results — side position
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