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ABSTRACT
Phenazine is known to regroup planar nitrogen-containing heterocyclic compounds. It was used here to
enhance the bioavailability of the biologically important compound iodinin, which is near insoluble in
aqueous solutions. Its water solubility has led to the development of new formulations using diverse
amphiphilic a-cyclodextrins (CDs). With the per-[6-desoxy-6-(3-perfluorohexylpropanethio)-2,3-di-O-methyl]-
a-CD, we succeeded to get iodinin-loaded nanoformulations with good parameters such as a size of
97.9 nm, 62% encapsulation efficiency and efficient control release. The study presents an interesting alter-
native to optimizing the water solubility of iodinin by chemical modifications of iodinin.
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Introduction

Phenazine is a dibenzo annulated pyrazine present in many nat-
ural products1–3 and has become the parent substance of many
synthetic bioactive molecules4–6. The broad spectrum of biological
activities of phenazine explains the success of research programs
exploiting this scaffold. The most striking examples are the target-
ing of antibiotic-tolerant bacterial biofilms and Mycobacterium
tuberculosis by halogenated phenazines7. Other derivatives such as
endophenazine G showed activity against community-associated
methicillin-resistant Staphylococcus aureus8. Phenazine-1-carboxylic
acid derivatives exhibit fungicidal activities9 and finally numerous
phenazines were developed as anti-cancer agents10, for example,
the novel pyrano[3,2-a]phenazine derivatives demonstrated anti-
proliferative activity against the HepG2 cancer cell line11.

Iodinin (Figure 1) was first discovered in 193912 within
Chromobacterium iodinum bacterial cultures. In 1943, McIlwain
demonstrated its anti-streptococcal action13. For the last 75 years,
iodinin has been isolated from diverse soil bacteria (e.g.
Brevibacterium iodinum14, Pseudomonas phenazinium15,
Nocardiopsis dassonvillei16, and Acidithiobacillus ferrooxidans17), or
marine bacteria (e.g. Actinomadura sp.18, Streptosporangium sp.19).
Recently, recombinant Pseudomonas strains were used successfully
to propose an alternative for the biosynthesis of natural phena-
zines20. Iodinin displays other biological activities, including anti-
microbial and cytotoxic properties21,22. Actually, it is worth noting
that iodinin showed remarkable selective toxicity to acute myeloid
leukaemia (AML) and acute promyelocytic leukaemia (APL) cells,
with various proposed mechanisms of action suggested such as
DNA intercalation and activation of apoptotic signalling proteins
(e.g. caspase-3)19.

The first total synthesis of iodinin was recently described by
Viktorsson et al.21. The physical chemical properties of iodinin can
be summarised as follows: it is a dark red solid, stable in acidic
solution, unstable in alkali. Iodinin’s solubility in different solvent
can be summarised as follows: it is soluble in benzene, toluene,
xylene, carbon disulphide, chloroform, ethyl acetate, THF, concen-
trated sulfuric acid, glacial acetic acid and sodium hydroxide. It is
also slightly soluble in hot alcohol. In parallel, iodinin is practically
insoluble in cold alcohol, ether, acetic acid, petroleum ether, or
amyl alcohol21. Finally, iodinin is absolutely insoluble in water. In
addition, various assays21 showed that iodinin solutions turned (i)
pink when it was solubilised in most solvents; (ii) purple in chloro-
form with formation of crystals with a coppery sheen; (iii) red in
glacial acetic acid and (iv) brilliant blue in sodium hydroxide with
the deposition of green crystals from unstable sodium derivatives.
It thus appears that iodinin is a bioactive molecule, which is diffi-
cult to manage in most biological investigations. To overcome this
issue, we envisaged to complex iodinin with cyclodextrins (CDs) to
increase aqueous solubility and bioavailablility.

Amphiphilic CD derivatives have been available for decades23,24

mainly to overcome problems of native CDs that limit their appli-
cations in pharmaceutical fields. Indeed, since dissociation takes
place too readily upon dilution, untimely release may take place
during administration to the patient, so that inclusion complexes
inside simple water-soluble CD appear ineffective for drug delivery
applications. In fact, the use of amphiphilic CDs (i) enhances the
interaction with biological membranes, (ii) modifies or enhances
interaction of CDs with hydrophobic drugs, and (iii) allows self-
assembly of CDs, forming nanosized carriers and encapsulating
drugs25,26. Polycationic CD nanoparticles containing siRNA have
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been recently used for the delivery of siRNA to the glomerular
mesangium27.

Our group has published several studies demonstrating synthe-
sis of amphiphilic CDs which were able self-assemble to form sta-
ble nanoparticles. Most of our amphiphilic derivatives have been
prepared by modifying their primary face with hydrocarbon or
perfluorocarbon lipophilic chains28–31. As demonstrated previously
for a hydrophobic indeno[1,2-b]indole analog32, not only could
these nanoparticles encapsulate this CK2 inhibitor but also
released it in a controlled manner.

This study deals with the formation and anti-leukemic activity
of iodinin-loaded nanoparticles made from amphiphilic a-CDs.
Encapsulation efficiency and release profiles are reported and
show the beneficial effect of the fluorinated amphiphilic a-CD
derivatives. The non-toxicity of these derivatives on red blood cells
confirmed their potential use for in vivo assays.

Experimental

General

All chemical were purchased from Sigma-Aldrich, La Jolla, CA, USA
and were used without further purification. Native a-cyclodextrin
was generously provided by Roquette Fr�eres (Lestrem, France).
Amphiphilic fluorinated a-CDs and their hydrocarbon analogues
(Figure 2) were synthesised as previously described28,31. Briefly,
after the selective protection of the primary hydroxyl groups with
tertbutyldimethylsilyl groups, all the secondary hydroxyl groups
were methylated using sodium hydride and methyl iodide.
Removal of the tertbutyldimethylsilyl groups was performed with
tetrabutylammonium fluoride in THF and introduction of the
methanesulfonyl groups with methanesulfonyl chloride. Finally,
the hydrophobic chains (fluorinated or hydrocarbonated) were
introduced by nucleophilic substitution of the leaving groups by
the thiolate derivate, generated in situ by the basic hydrolysis of
the 3-perfluoroalkylpropane (or alkyl) isothiouronium salts using
cesium carbonate. The structures and purities were confirmed
using 1H and 13C NMR and mass spectroscopy analysis.

Iodinin was isolated from batch cultures of the bacterium
Streptosporangium sp. The bacterial mass culturing conditions, as
well as the protocol for DMSO-extraction, subsequent HPLC-purifi-
cation and identification of iodinin by MS and NMR were carried
out as previously described19,22.

Dynamic light scattering measures were performed using a
Zetasizer Nano ZSP instrument from Malvern Instruments, Malvern,
UK.

Preparation of nanoparticles by the highly loaded method

The iodinin loaded nanoparticles based a-CD were prepared by
the nanoprecipitation technique, using a 0.8� 10�4M solution
of preformed (1:1) iodinin:a-CD complexes overloaded with
an additional amount of iodinin in the THF phase. The total
concentration of iodinin was 1.6� 10�4M (iodinin/CD ratio ¼ 2).

The relevant solution of the preformed complex in THF (25ml,
1 day stirring) was poured drop-wise into deionised water (50ml)
while stirring. A slightly turbid emulsion of nanospheres spontan-
eously formed. Solvent and a part of water were evaporated under
reduced pressure and the total volume adjusted to 50ml with
water.

Particle size measurements

The mean particle size (diameter, nm) and the polydispersity index
(PDI) of nanospheres were measured by dynamic light scattering
using a NanoZS instrument, which analyses the fluctuations of
scattered light intensity generated by diffusion of the particles in
a diluted suspension (dynamic light scattering data are shown in
Figures S1–S5 and Zeta potentials of empty and loaded nanopar-
ticle dispersions are presented in Figures S6–S10). The measure-
ments were carried out at 25 �C. Experiments were performed in
triplicate.

Determination of the encapsulation efficiency

For measuring the loading efficiency, after the formation of nano-
particle suspensions by the highly loaded method, non-encapsu-
lated iodinin in the nanoparticle dispersions was separated by
centrifugation at 50,000 rpm for 1 h in order to settle down the
loaded nanoparticles. The supernatant was removed. The precipi-
tate was then lyophilised overnight, and the resulting powder con-
taining the loaded nanoparticles was dissolved in a known
amount of THF in order to obtain a clear solution. The absorbance
of supernatant and THF solutions was analysed using an UV spec-
trophotometer at 289 nm to calculate the encapsulated drug
quantity. Loading capacity was expressed in terms of associated
drug percentage:

Associated drug %ð Þ ¼ determined iodinin quantity ðmolÞ½ �
initial iodinin quantity ðmolÞ½ � � 100

In vitro release studies

The suspensions of nanoparticles made from C6H13, C8H17 and
C6F13 derivatives loaded with iodinin (1ml of a 0.8� 10�4M
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Figure 2. Structure of inclusion complex of iodinin (red) in amphiphilic alkyl
(1–3) or perfluoroalkyl (4,5) a-cyclodextrins.
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Figure 1. Structure of iodinin (1,6-dihydroxyphenazine 5,10-dioxide).
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solution) were introduced into a dialysis tube (cutoff 5000Da) at
25 �C. This tube was then placed in a higher volume (20ml) of
phosphate buffered solution (pH 7.4) for a period of time.
Same experiments have been done with non-encapsulated iodinin
by using 1ml of a 0.8� 10�4M iodinin THF/water solution.
Aliquots of 1ml of the buffered solution were removed at different
time intervals to calculate the proportion of released and encapsu-
lated molecules by UV spectrometry at 289 nm.

Cytotoxicity studies

The formulations were tested on the Brown Norwegian myeloid
leukaemia (BNML) rat-derived AML cell line IPC-8133. The cells
were cultured in Dulbecco’s Modified Eagles Medium (DMEM;
Sigma, La Jolla, CA, USA) enriched with 10% horse serum
(Invitrogen, Carlsbad, CA, USA), and added 100 IU/L penicillin and
100mg/L streptomycin (both from Cambrex, Verviers, Belgium),
and cultured in a humidified atmosphere (37 �C, 5% CO2). For
cytotoxicity testing, the cells were seeded in 96 well tissue culture
plates at 150,000 cells/mL. The cells were exposed to various con-
centrations of empty or iodinin-loaded nanoparticles for 24 h and
then fixed in 2% buffered formaldehyde (pH 7.4) with the DNA-
specific dye Hoechst 33342 (Polysciences Inc., Eppelheim,
Germany) and scored for apoptosis as previously described34,35.

Results and discussion

a-CD nanoparticles

It has been reported that the highly loaded method was the most
efficient for encapsulating hydrophobic compounds inside amphi-
philic CD-based nanoparticles30. Since iodinin is hydrophobic, this

method was chosen for its encapsulation, using THF as co-solvent
which allowed the solubilisation of both iodinin and amphiphilic
CD derivatives.

As shown in Table 1 and Figure 3, the different nanoparticles
had similar sizes, ranging from 97.9 nm to 156.2 nm. Comparing 1/
4 and 2/5, it was noticed that, for the same hydrophobic chain
length, perfluorinated nanoparticles gave lower diameters than
the hydrogenated ones. In fact, the specific properties of fluorous
chains allowed for a more compact organisation of the hydropho-
bic chains inside the nanoparticles. Furthermore, for the same ser-
ies (hydrogenated or fluorinated), it was an inverse relationship
between the chain length and the size of the nanoparticle. It is
also worth noting that empty nanoparticles had similar sizes as
the loaded nanoparticles. All these data were found to match find-
ings previously described in literature31,32.

The experiments, run in triplicate, yielded particles with narrow
size distribution (PDI <0.2) demonstrating high homogeneity of
the nanoparticle suspensions.

The loading efficiency of iodinin in these various nanoparticles
ranged from 36% to 62% for C4H9 and C6F13, respectively.
Nevertheless, unlike what has been observed previously for acyclo-
vir, nanospheres made from fluorinated a-CDs did not have signifi-
cant impact on the encapsulation rate. The main differences were
observed by varying the chain length (40%, 54% and 58% for
C4H9, C6H13 and C8H17, respectively), suggesting that C8F17 would
be slightly more efficient for encapsulation of iodinin.

The controlled release studies was performed on suspensions
having at least 50% encapsulated iodinin (i.e. C6H13, C8H17 and
C6F13) in comparison with the profile obtained without any nano-
particles (a 0.8� 10�4M iodinin solution alone in THF/water solu-
tion). As shown in Figure 4, in the absence of nanospheres, the
concentration equilibrium between the outside and inside com-
partments of the dialysis tube was obtained in less than 40min.

The release profiles showed the positive effect of the nanopar-
ticles on the controlled release (Figure 4). Iodinin release from
highly loaded nanospheres reached completion within more than
one hour for hydrocarbon amphiphilic a-CDs and between 2.5 and
3 h for the fluorinated nanospheres. After 1 h, 72% of the encapsu-
lated iodinin were released from the C6H13 nanospheres versus
only 30% from the fluorous analogue. It can be explained by the
fact that fluorinated chains enhance intermolecular interactions
inside the supramolecular assemblies compared to hydrogenated
analogues, leading to more stable nanoparticles. These

Table 1. Characteristics of loaded nanoparticles made from amphiphilic
a-cyclodextrins.

Derivative
Side
chain

Nanoparticle
size (nm)

loaded/empty

Polydispersity
index (PDI)
loaded/empty

Associated
drug (%)

1 C4H9 159.3/162.3 0.07/0.04 40
2 C6H13 117.0/126.3 0.10/0.13 54
3 C8H17 104.1/105.8 0.11/0.05 58
4 C4F9 109.7/120.7 0.02/0.25 36
5 C6F13 097.9/90.6 0.08/0.10 62
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Figure 3. Sizes (in nm) of loaded nanoparticles and percentages of encapsulated iodinin for each derivative.
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observations confirm previous studies which have showed that
nanoparticles based on fluorinated compounds delayed acyclovir
release, showing their potential for applications to drug delivery30.

A particular point needs to be added about the toxicity of
amphiphilic a-CDs. A recent study36 related a study of cytotoxicity
on red blood cells. The results confirmed the potential of amphi-
philic a-CDs to formulate bioactive molecules and then to be
used for in vivo assays. We tested empty or iodinin-loaded fluori-
nated amphiphilic CD nanospheres for ability to induce cell death
in the BNML-derived rat AML cell line IPC-81. This cell line produ-
ces AML with typical signs of the disease in xenograft mouse
models, and responds to the benchmark AML drug daunorubicin
in vitro and in vivo37. We found no toxicity towards the IPC-81
cells with the any of the empty nanoparticles (Figure 5). Iodinin-
loaded nanoparticles, however, efficiently induced IPC-81 AML cell
death within 24 h (Figure 5). From the different CD-compositions
tested, we found that the C4H9 and C6F13 were the most potent
formulation, whereas C6H13 and C4F9 were the least potent formu-
lations. This is opposite to what was seen in the release studies,
which showed that C6H13 released their cargo at a faster rate
than C6F13 (Figure 4). This suggests that internalisation of the
nanoparticles indeed play a role in the cytotoxic effect of the
amphiphilic a-CD nanospheres. Although the efficacy of the nano-
spheres appeared lower than the original compound19,21, the

encapsulation of iodinin is expected to lower toxic effects on
non-target cells, thus increasing the therapeutic index for this
potent AML-selective compound.

Conclusions

This study describes the successful preparation of iodinin-loaded
nanoparticles. The results indicate that nanoencapsulation of iodi-
nin in a-CDs by the highly loaded method is possible, without any
additional surface-active agent. With per-[6-desoxy-6–(3-perfluoro-
hexylpropanethio)-2,3-di-O-methyl]-a-CD we were able to perform
the most loaded nanoparticles (% of associated drug ¼ 62) with a
size of 97.9 nm. Tests of these nanoparticles on AML cells showed
that they were efficient inducers of cell death, due to the encapsu-
lated iodinin, since empty nanoparticles showed no adverse effects
on the cells. Furthermore, amphiphilic a-CD derivatives could be
functionalised on the secondary hydroxyl groups by targeting moi-
eties such as folate38 or by incorporating the fragment antigen-
binding (Fab) of a monoclonal antibody onto CDs to target IL-3
receptor a-chain (IL-3Ra, highly expressed on AML LSCs)24.
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